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CHAPTER 1 ST 520, A. TSIATIS and D. Zhang

1 Introduction

1.1 Scope and objectives

The focus of this course will be on the statistical methods and principles used to study disease

and its prevention or treatment in human populations. There are two broad subject areas in

the study of disease; Epidemiology and Clinical Trials. This course will be devoted almost

entirely to statistical methods in Clinical Trials research but we will first give a very brief intro-

duction to Epidemiology in this Section.

EPIDEMIOLOGY: Systematic study of disease etiology (causes and origins of disease) us-

ing observational data (i.e. data collected from a population not under a controlled experimental

setting).

• Second hand smoking and lung cancer

• Air pollution and respiratory illness

• Diet and Heart disease

• Water contamination and childhood leukemia

• Finding the prevalence and incidence of HIV infection and AIDS

CLINICAL TRIALS: The evaluation of intervention (treatment) on disease in a controlled

experimental setting.

• The comparison of AZT versus no treatment on the length of survival in patients with

AIDS

• Evaluating the effectiveness of a new anti-fungal medication on Athlete’s foot

• Evaluating hormonal therapy on the reduction of breast cancer (Womens Health Initiative)

PAGE 1
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1.2 Brief Introduction to Epidemiology

Cross-sectional study

In a cross-sectional study the data are obtained from a random sample of the population at one

point in time. This gives a snapshot of a population.

Example: Based on a single survey of a specific population or a random sample thereof, we

determine the proportion of individuals with heart disease at one point in time. This is referred to

as the prevalence of disease. We may also collect demographic and other information which will

allow us to break down prevalence broken by age, race, sex, socio-economic status, geographic,

etc.

Important public health information can be obtained this way which may be useful in determin-

ing how to allocate health care resources. However such data are generally not very useful in

determining causation.

In an important special case where the exposure and disease are dichotomous, the data from a

cross-sectional study can be represented as

D D̄

E n11 n12 n1+

Ē n21 n22 n2+

n+1 n+2 n++

where E = exposed (to risk factor), Ē = unexposed; D = disease, D̄ = no disease.

In this case, all counts except n++, the sample size, are random variables. The counts

(n11, n12, n21, n22) have the following distribution:

(n11, n12, n21, n22) ∼ multinomial(n++, P [DE], P [D̄E], P [DĒ], P [D̄Ē]).

With this study, we can obtain estimates of the following parameters of interest

prevalence of disease P [D] (estimated by
n+1

n++
)

probability of exposure P [E] (estimated by
n1+

n++

)

PAGE 2
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prevalence of disease among exposed P [D|E] (estimated by
n11

n1+
)

prevalence of disease among unexposed P [D|Ē] (estimated by
n21

n2+
)

...

We can also assess the association between the exposure and disease using the data from a

cross-sectional study. One such measure is relative risk, which is defined as

ψ =
P [D|E]

P [D|Ē]
.

It is easy to see that the relative risk ψ has the following properties:

• ψ > 1 ⇒ positive association; that is, the exposed population has higher disease probability

than the unexposed population.

• ψ = 1 ⇒ no association; that is, the exposed population has the same disease probability

as the unexposed population.

• ψ < 1 ⇒ negative association; that is, the exposed population has lower disease probability

than the unexposed population.

Of course, we cannot state that the exposure E causes the disease D even if ψ > 1, or vice versa.

In fact, the exposure E may not even occur before the event D.

Since we got good estimates of P [D|E] and P [D|Ē]

P̂ [D|E] =
n11

n1+
, P̂ [D|Ē] =

n21

n2+
,

the relative risk ψ can be estimated by

ψ̂ =
P̂ [D|E]

P̂ [D|Ē]
=
n11/n1+

n21/n2+

.

Another measure that describes the association between the exposure and the disease is the

odds ratio, which is defined as

θ =
P [D|E]/(1 − P [D|E])

P [D|Ē]/(1 − P [D|Ē])
.

Note that P [D|E]/(1 − P [D|E]) is called the odds of P [D|E]. It is obvious that

PAGE 3
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• ψ > 1 ⇐⇒ θ > 1

• ψ = 1 ⇐⇒ θ = 1

• ψ < 1 ⇐⇒ θ < 1

Given data from a cross-sectional study, the odds ratio θ can be estimated by

θ̂ =
P̂ [D|E]/(1 − P̂ [D|E])

P̂ [D|Ē]/(1 − P̂ [D|Ē])
=
n11/n1+/(1 − n11/n1+)

n21/n2+/(1 − n21/n2+)
=
n11/n12

n21/n22
=
n11n22

n12n21
.

It can be shown that the variance of log(θ̂) has a very nice form given by

v̂ar(log(θ̂)) =
1

n11
+

1

n12
+

1

n21
+

1

n22
.

The point estimate θ̂ and the above variance estimate can be used to make inference on θ. Of

course, the total sample size n++ as well as each cell count have to be large for this variance

formula to be reasonably good.

A (1 − α) confidence interval (CI) for log(θ) (log odds ratio) is

log(θ̂) ± zα/2[V̂ar(log(θ̂))]1/2.

Exponentiating the two limits of the above interval will give us a CI for θ with the same confidence

level (1 − α).

Alternatively, the variance of θ̂ can be estimated (by the delta method)

V̂ar(θ̂) = θ̂2
[

1

n11
+

1

n12
+

1

n21
+

1

n22

]
,

and a (1 − α) CI for θ is obtained as

θ̂ ± zα/2[V̂ar(θ̂)]1/2.

For example, if we want a 95% confidence interval for log(θ) or θ, we will use z0.05/2 = 1.96 in

the above formulas.

From the definition of the odds-ration, we see that if the disease under study is a rare one, then

P [D|E] ≈ 0, P [D|Ē] ≈ 0.

PAGE 4
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In this case, we have

θ ≈ ψ.

This approximation is very useful. Since the relative risk ψ has a much better interpretation

(and hence it is easier to communicate with biomedical researchers using this measure), in stud-

ies where we cannot estimate the relative risk ψ but we can estimate the odds-ratio θ (see

retrospective studies later), if the disease under studied is a rare one, we can approximately

estimate the relative risk by the odds-ratio estimate.

Longitudinal studies

In a longitudinal study, subjects are followed over time and single or multiple measurements of

the variables of interest are obtained. Longitudinal epidemiological studies generally fall into

two categories; prospective i.e. moving forward in time or retrospective going backward in

time. We will focus on the case where a single measurement is taken.

Prospective study: In a prospective study, a cohort of individuals are identified who are free

of a particular disease under study and data are collected on certain risk factors; i.e. smoking

status, drinking status, exposure to contaminants, age, sex, race, etc. These individuals are

then followed over some specified period of time to determine whether they get disease or not.

The relationships between the probability of getting disease during a certain time period (called

incidence of the disease) and the risk factors are then examined.

If there is only one exposure variable which is binary, the data from a prospective study may be

summarized as

D D̄

E n11 n12 n1+

Ē n21 n22 n2+

Since the cohorts are identified by the researcher, n1+ and n2+ are fixed sample sizes for each

group. In this case, only n11 and n21 are random variables, and these random variables have the
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following distributions:

n11 ∼ Bin(n1+, P [D|E]), n21 ∼ Bin(n2+, P [D|Ē]).

From these distributions, P [D|E]) and P [D|Ē] can be readily estimated by

P̂ [D|E] =
n11

n1+

, P̂ [D|Ē] =
n21

n2+

.

The relative risk ψ and the odds-ratio θ defined previously can be estimated in exactly the same

way (have the same formula). So does the variance estimate of the odds-ratio estimate.

One problem of a prospective study is that some subjects may drop out from the study before

developing the disease under study. In this case, the disease probability has to be estimated

differently. This is illustrated by the following example.

Example: 40,000 British doctors were followed for 10 years. The following data were collected:

Table 1.1: Death Rate from Lung Cancer per 1000 person years.

# cigarettes smoked per day death rate

0 .07

1-14 .57

15-24 1.39

35+ 2.27

For presentation purpose, the estimated rates are multiplied by 1000.

Remark: If we denote by T the time to death due to lung cancer, the death rate at time t is

defined by

λ(t) = lim
h→0

P [t ≤ T < t+ h|T ≥ t]

h
.

Assume the death rate λ(t) is a constant λ, then it can be estimated by

λ̂ =
total number of deaths from lunge cancer

total person years of exposure (smoking) during the 10 year period
.

In this case, if we are interested in the event

D = die from lung cancer within next one year | still alive now,
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or statistically,

D = [t ≤ T < t+ 1|T ≥ t],

then

P [D] = P [t ≤ T ≤ t+ 1|T ≥ t] = 1 − e−λ ≈ λ, if λ is very small.

Roughly speaking, assuming the death rate remains constant over the 10 year period for each

group of doctors, we can take the rate above divided by 1000 to approximate the probability of

death from lung cancer in one year. For example, the estimated probability of dying from lung

cancer in one year for British doctors smoking between 15-24 cigarettes per day at the beginning

of the study is P̂ [D] = 1.39/1000 = 0.00139. Similarly, the estimated probability of dying from

lung cancer in one year for the heaviest smokers is P̂ [D] = 2.27/1000 = 0.00227.

From the table above we note that the relative risk of death from lung cancer between heavy

smokers and non-smokers (in the same time window) is 2.27/0.07 = 32.43. That is, heavy smokers

are estimated to have 32 times the risk of dying from lung cancer as compared to non-smokers.

Certainly the value 32 is subject to statistical variability and moreover we must be concerned

whether these results imply causality.

We can also estimate the odds-ratio of dying from lung cancer in one year between heavy smokers

and non-smokers:

θ̂ =
.00227/(1− .00227)

.00007/(1− .00007)
= 32.50.

This estimate is essentially the same as the estimate of the relative risk 32.43.

Retrospective study: Case-Control

A very popular design in many epidemiological studies is the case-control design. In such a

study individuals with disease (called cases) and individuals without disease (called controls)

are identified. Using records or questionnaires the investigators go back in time and ascertain

exposure status and risk factors from their past. Such data are used to estimate relative risk as

we will demonstrate.

Example: A sample of 1357 male patients with lung cancer (cases) and a sample of 1357 males

without lung cancer (controls) were surveyed about their past smoking history. This resulted in
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the following:

smoke cases controls

yes 1,289 921

no 68 436

We would like to estimate the relative risk ψ or the odds-ratio θ of getting lung cancer between

smokers and non-smokers.

Before tackling this problem, let us look at a general problem. The above data can be represented

by the following 2 × 2 table:

D D̄

E n11 n12

Ē n21 n22

n+1 n+2

By the study design, the margins n+1 and n+2 are fixed numbers, and the counts n11 and n12 are

random variables having the following distributions:

n11 ∼ Bin(n+1, P [E|D]), n12 ∼ Bin(n+2, P [E|D̄]).

By definition, the relative risk ψ is

ψ =
P [D|E]

P [D|Ē]
.

We can estimate ψ if we can estimate these probabilities P [D|E] and P [D|Ē]. However, we

cannot use the same formulas we used before for cross-sectional or prospective study to estimate

them.

What is the consequence of using the same formulas we used before? The formulas would lead

to the following incorrect estimates:

P̂ [D|E] =
n11

n1+
=

n11

n11 + n12
(incorrect!)

P̂ [D|Ē] =
n21

n2+
=

n21

n21 + n22
(incorrect!)

PAGE 8
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Since we choose n+1 and n+2, we can fix n+2 at some number (say, 50), and let n+1 grow (sample

more cases). As long as P [E|D] > 0, n11 will also grow. Then P̂ [D|E] −→ 1. Similarly

P̂ [D|Ē] −→ 1. Obviously, these are NOT sensible estimates.

For example, if we used the above formulas for our example, we would get:

P̂ [D|E] =
1289

1289 + 921
= 0.583 (incorrect!)

P̂ [D|Ē] =
68

68 + 436
= 0.135 (incorrect!)

ψ̂ =
P̂ [D|E]

P̂ [D|Ē]
=

0.583

0.135
= 4.32 (incorrect!).

This incorrect estimate of the relative risk will be contrasted with the estimate from the correct

method.

We introduced the odds-ratio before to assess the association between the exposure (E) and the

disease (D) as follows:

θ =
P [D|E]/(1 − P [D|E])

P [D|Ē]/(1 − P [D|Ē])

and we stated that if the disease under study is a rare one, then

θ ≈ ψ.

Since we cannot directly estimate the relative risk ψ from a retrospective (case-control) study

due to its design feature, let us try to estimate the odds-ratio θ.

For this purpose, we would like to establish the following equivalence:

θ =
P [D|E]/(1 − P [D|E])

P [D|Ē]/(1 − P [D|Ē])

=
P [D|E]/P [D̄|E]

P [D|Ē]/P [D̄|Ē]

=
P [D|E]/P [D|Ē]

P [D̄|E]/P [D̄|Ē]
.

By Bayes’ theorem, we have for any two events A and B

P [A|B] =
P [AB]

P [B]
=
P [B|A]P [A]

P [B]
.

PAGE 9
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Therefore,

P [D|E]

P [D|Ē]
=

P [E|D]P [D]/P [E]

P [Ē|D]P [D]/P [Ē]
=
P [E|D]/P [E]

P [Ē|D]/P [Ē]

P [D̄|E]

P [D̄|Ē]
=

P [E|D̄]P [D̄]/P [E]

P [Ē|D̄]P [D̄]/P [Ē]
=
P [E|D̄]/P [E]

P [Ē|D̄]/P [Ē]
,

and

θ =
P [D|E]/P [D|Ē]

P [D̄|E]/P [D̄|Ē]

=
P [E|D]/P [Ē|D]

P [E|D̄]/P [Ē|D̄]

=
P [E|D]/(1 − P [E|D])

P [E|D̄]/(1 − P [E|D̄])
.

Notice that the quantity in the right hand side is in fact the odds-ratio of being exposed between

cases and controls, and the above identity says that the odds-ratio of getting disease between

exposed and un-exposed is the same as the odds-ratio of being exposed between cases and

controls. This identity is very important since by design we are able to estimate the odds-ratio

of being exposed between cases and controls since we are able to estimate P [E|D] and E|D̄] from

a case-control study:

P̂ [E|D] =
n11

n+1
, P̂ [E|D̄] =

n12

n+2
.

So θ can be estimated by

θ̂ =
P̂ [E|D]/(1 − P̂ [E|D])

P̂ [E|D̄]/(1 − P̂ [E|D̄])
=
n11/n+1/(1 − n11/n+1)

n12/n+2/(1 − n12/n+2)
=
n11/n21

n12/n22

=
n11n22

n12n21

,

which has exactly the same form as the estimate from a cross-sectional or prospective study.

This means that the odds-ratio estimate is invariant to the study design.

Similarly, it can be shown that the variance of log(θ̂) can be estimated by the same formula we

used before

V̂ar(log(θ̂)) =
1

n11
+

1

n12
+

1

n21
+

1

n22
.

Therefore, inference on θ or log(θ) such as constructing a confidence interval will be exactly the

same as before.

Going back to the lung cancer example, we got the following estimate of the odds ratio:

θ̂ =
1289 × 436

921 × 68
= 8.97.
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If lung cancer can be viewed as a rare event, we estimate the relative risk of getting lung cancer

between smokers and non-smokers to be about nine fold. This estimate is much higher than the

incorrect estimate (4.32) we got on page 9.

Pros and Cons of a case-control study

• Pros

– Can be done more quickly. You don’t have to wait for the disease to appear over time.

– If the disease is rare, a case-control design can give a more precise estimate of relative

risk with the same number of patients than a prospective design. This is because the

number of cases, which in a prospective study is small, would be over-represented by

design in a case control study. This will be illustrated in a homework exercise.

• Cons

– It may be difficult to get accurate information on the exposure status of cases and

controls. The records may not be that good and depending on individuals’ memory

may not be very reliable. This can be a severe drawback.

PAGE 11



CHAPTER 1 ST 520, A. TSIATIS and D. Zhang

1.3 Brief Introduction and History of Clinical Trials

The following are several definitions of a clinical trial that were found in different textbooks and

articles.

• A clinical trial is a study in human subjects in which treatment (intervention) is initiated

specifically for therapy evaluation.

• A prospective study comparing the effect and value of intervention against a control in

human beings.

• A clinical trial is an experiment which involves patients and is designed to elucidate the

most appropriate treatment of future patients.

• A clinical trial is an experiment testing medical treatments in human subjects.

Historical perspective

Historically, the quantum unit of clinical reasoning has been the case history and the primary

focus of clinical inference has been the individual patient. Inference from the individual to the

population was informal. The advent of formal experimental methods and statistical reasoning

made this process rigorous.

By statistical reasoning or inference we mean the use of results on a limited sample of patients to

infer how treatment should be administered in the general population who will require treatment

in the future.

Early History

1600 East India Company

In the first voyage of four ships– only one ship was provided with lemon juice. This was the only

ship relatively free of scurvy.

Note: This is observational data and a simple example of an epidemiological study.

PAGE 12



CHAPTER 1 ST 520, A. TSIATIS and D. Zhang

1753 James Lind

“I took 12 patients in the scurvy aboard the Salisbury at sea. The cases were as similar as I

could have them... they lay together in one place... and had one common diet to them all...

To two of them was given a quart of cider a day, to two an elixir of vitriol, to two vinegar, to

two oranges and lemons, to two a course of sea water, and to the remaining two the bigness of

a nutmeg. The most sudden and visible good effects were perceived from the use of oranges and

lemons, one of those who had taken them being at the end of six days fit for duty... and the

other appointed nurse to the sick...

Note: This is an example of a controlled clinical trial.

Interestingly, although the trial appeared conclusive, Lind continued to propose “pure dry air” as

the first priority with fruit and vegetables as a secondary recommendation. Furthermore, almost

50 years elapsed before the British navy supplied lemon juice to its ships.

Pre-20th century medical experimenters had no appreciation of the scientific method. A common

medical treatment before 1800 was blood letting. It was believed that you could get rid of an

ailment or infection by sucking the bad blood out of sick patients; usually this was accomplished

by applying leeches to the body. There were numerous anecdotal accounts of the effectiveness of

such treatment for a myriad of diseases. The notion of systematically collecting data to address

specific issues was quite foreign.

1794 Rush Treatment of yellow fever by bleeding

“I began by drawing a small quantity at a time. The appearance of the blood and its effects upon

the system satisfied me of its safety and efficacy. Never before did I experience such sublime joy

as I now felt in contemplating the success of my remedies... The reader will not wonder when I

add a short extract from my notebook, dated 10th September. “Thank God”, of the one hundred

patients, whom I visited, or prescribed for, this day, I have lost none.”

Louis (1834): Lays a clear foundation for the use of the numerical method in assessing therapies.

“As to different methods of treatment, if it is possible for us to assure ourselves of the superiority

of one or other among them in any disease whatever, having regard to the different circumstances
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Table 1.2: Pneumonia: Effects of Blood Letting

Days bled proportion

after onset Died Lived surviving

1-3 12 12 50%

4-6 12 22 65%

7-9 3 16 84%

of age, sex and temperament, of strength and weakness, it is doubtless to be done by enquiring

if under these circumstances a greater number of individuals have been cured by one means than

another. Here again it is necessary to count. And it is, in great part at least, because hitherto

this method has been not at all, or rarely employed, that the science of therapeutics is still so

uncertain; that when the application of the means placed in our hands is useful we do not know

the bounds of this utility.”

He goes on to discuss the need for

• The exact observation of patient outcome

• Knowledge of the natural progress of untreated controls

• Precise definition of disease prior to treatment

• Careful observations of deviations from intended treatment

Louis (1835) studied the value of bleeding as a treatment of pneumonia, erysipelas and throat

inflammation and found no demonstrable difference in patients bled and not bled. This finding

contradicted current clinical practice in France and instigated the eventual decline in bleeding

as a standard treatment. Louis had an immense influence on clinical practice in France, Britain

and America and can be considered the founding figure who established clinical trials and epi-

demiology on a scientific footing.

In 1827: 33,000,000 leeches were imported to Paris.

In 1837: 7,000 leeches were imported to Paris.
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Modern clinical trials

The first clinical trial with a properly randomized control group was set up to study streptomycin

in the treatment of pulmonary tuberculosis, sponsored by the Medical Research Council, 1948.

This was a multi-center clinical trial where patients were randomly allocated to streptomycin +

bed rest versus bed rest alone.

The evaluation of patient x-ray films was made independently by two radiologists and a clinician,

each of whom did not know the others evaluations or which treatment the patient was given.

Both patient survival and radiological improvement were significantly better on streptomycin.

The field trial of the Salk Polio Vaccine

In 1954, 1.8 million children participated in the largest trial ever to assess the effectiveness of

the Salk vaccine in preventing paralysis or death from poliomyelitis.

Such a large number was needed because the incidence rate of polio was about 1 per 2,000 and

evidence of treatment effect was needed as soon as possible so that vaccine could be routinely

given if found to be efficacious.

There were two components (randomized and non-randomized) to this trial. For the non-

randomized component, one million children in the first through third grades participated. The

second graders were offered vaccine whereas first and third graders formed the control group.

There was also a randomized component where .8 million children were randomized in a double-

blind placebo-controlled trial.

The incidence of polio in the randomized vaccinated group was less than half that in the control

group and even larger differences were seen in the decline of paralytic polio.

The nonrandomized group supported these results; however non-participation by some who were

offered vaccination might have cast doubt on the results. It turned out that the incidence of polio

among children (second graders) offered vaccine and not taking it (non-compliers) was different

than those in the control group (first and third graders). This may cast doubt whether first and

third graders (control group) have the same likelihood for getting polio as second graders. This is
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a basic assumption that needs to be satisfied in order to make unbiased treatment comparisons.

Luckily, there was a randomized component to the study where the two groups (vaccinated)

versus (control) were guaranteed to be similar on average by design.

Note: During the course of the semester there will be a great deal of discussion on the role of

randomization and compliance and their effect on making causal statements.

Government sponsored studies

In the 1950’s the National Cancer Institute (NCI) organized randomized clinical trials in acute

leukemia. The successful organization of this particular clinical trial led to the formation of two

collaborative groups; CALGB (Cancer and Leukemia Group B) and ECOG (Eastern Cooperative

Oncology Group). More recently SWOG (Southwest Oncology Group) and POG (Pediatrics

Oncology Group) have been organized. A Cooperative group is an organization with many

participating hospitals throughout the country (sometimes world) that agree to conduct common

clinical trials to assess treatments in different disease areas.

Government sponsored clinical trials are now routine. As well as the NCI, these include the

following organizations of the National Institutes of Health.

• NHLBI- (National Heart Lung and Blood Institute) funds individual and often very large

studies in heart disease. To the best of my knowledge there are no cooperative groups

funded by NHLBI.

• NIAID- (National Institute of Allergic and Infectious Diseases) Much of their funding now

goes to clinical trials research for patients with HIV and AIDS. The ACTG (AIDS Clinical

Trials Group) is a large cooperative group funded by NIAID.

• NIDDK- (National Institute of Diabetes and Digestive and Kidney Diseases). Funds large

scale clinical trials in diabetes research. Recently formed the cooperative group TRIALNET

(network 18 clinical centers working in cooperation with screening sites throughout the

United States, Canada, Finland, United Kingdom, Italy, Germany, Australia, and New

Zealand - for type 1 diabetes)
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Pharmaceutical Industry

• Before World War II no formal requirements were made for conducting clinical trials before

a drug could be freely marketed.

• In 1938, animal research was necessary to document toxicity, otherwise human data could

be mostly anecdotal.

• In 1962, it was required that an “adequate and well controlled trial” be conducted.

• In 1969, it became mandatory that evidence from a randomized clinical trial was necessary

to get marketing approval from the Food and Drug Administration (FDA).

• More recently there is effort in standardizing the process of drug approval worldwide. This

has been through efforts of the International Conference on Harmonization (ICH).

website: http://www.pharmweb.net/pwmirror/pw9/ifpma/ich1.html

• There are more clinical trials currently taking place than ever before. The great majority

of the clinical trial effort is supported by the Pharmaceutical Industry for the evaluation

and marketing of new drug treatments. Because the evaluation of drugs and the conduct,

design and analysis of clinical trials depends so heavily on sound Statistical Methodology

this has resulted in an explosion of statisticians working for th Pharmaceutical Industry

and wonderful career opportunities.
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2 Phase I and II clinical trials

2.1 Phases of Clinical Trials

The process of drug development can be broadly classified as pre-clinical and clinical. Pre-

clinical refers to experimentation that occurs before it is given to human subjects; whereas,

clinical refers to experimentation with humans. This course will consider only clinical research.

It will be assumed that the drug has already been developed by the chemist or biologist, tested

in the laboratory for biologic activity (in vitro), that preliminary tests on animals have been

conducted (in vivo) and that the new drug or therapy is found to be sufficiently promising to be

introduced into humans.

Within the realm of clinical research, clinical trials are classified into four phases.

• Phase I: To explore possible toxic effects of drugs and determine a tolerated dose for

further experimentation. Also during Phase I experimentation the pharmacology of the

drug may be explored.

• Phase II: Screening and feasibility by initial assessment for therapeutic effects; further

assessment of toxicities.

• Phase III: Comparison of new intervention (drug or therapy) to the current standard of

treatment; both with respect to efficacy and toxicity.

• Phase IV: (post marketing) Observational study of morbidity/adverse effects.

These definitions of the four phases are not hard and fast. Many clinical trials blur the lines

between the phases. Loosely speaking, the logic behind the four phases is as follows:

A new promising drug is about to be assessed in humans. The effect that this drug might have

on humans is unknown. We might have some experience on similar acting drugs developed in

the past and we may also have some data on the effect this drug has on animals but we are not

sure what the effect is on humans. To study the initial effects, a Phase I study is conducted.

Using increasing doses of the drug on a small number of subjects, the possible side effects of the

drug are documented. It is during this phase that the tolerated dose is determined for future

PAGE 18



CHAPTER 2 ST 520, A. TSIATIS and D. Zhang

experimentation. The general dogma is that the therapeutic effect of the drug will increase with

dose, but also the toxic effects will increase as well. Therefore one of the goals of a Phase I study

is to determine what the maximum dose should be that can be reasonably tolerated by most

individuals with the disease. The determination of this dose is important as this will be used in

future studies when determining the effectiveness of the drug. If we are too conservative then we

may not be giving enough drug to get the full therapeutic effect. On the other hand if we give

too high a dose then people will have adverse effects and not be able to tolerate the drug.

Once it is determined that a new drug can be tolerated and a dose has been established, the

focus turns to whether the drug is good. Before launching into a costly large-scale comparison

of the new drug to the current standard treatment, a smaller feasibility study is conducted to

assess whether there is sufficient efficacy (activity of the drug on disease) to warrant further

investigation. This occurs during phase II where drugs which show little promise are screened

out.

If the new drug still looks promising after phase II investigation it moves to Phase III testing

where a comparison is made to a current standard treatment. These studies are generally large

enough so that important treatment differences can be detected with sufficiently large probability.

These studies are conducted carefully using sound statistical principles of experimental design

established for clinical trials to make objective and unbiased comparisons. It is on the basis of

such Phase III clinical trials that new drugs are approved by regulatory agencies (such as FDA)

for the general population of individuals with the disease for which this drug is targeted.

Once a drug is on the market and a large number of patients are taking it, there is always the

possibility of rare but serious side effects that can only be detected when a large number are

given treatment for sufficiently long periods of time. It is important that a monitoring system

be in place that allows such problems, if they occur, to be identified. This is the role of Phase

IV studies.

A brief discussion of phase I studies and designs and Pharmacology studies will be given based

on the slides from Professor Marie Davidian, an expert in pharmacokinetics. Slides on phase I

and pharmacology will be posted on the course web page.
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2.2 Phase II clinical trials

After a new drug is tested in phase I for safety and tolerability, a dose finding study is sometimes

conducted in phase II to identify a lowest dose level with good efficacy (close to the maximum

efficacy achievable at tolerable dose level). In other situations, a phase II clinical trial uses a

fixed dose chosen on the basis of a phase I clinical trial. The total dose is either fixed or may

vary depending on the weight of the patient. There may also be provisions for modification of

the dose if toxicity occurs. The study population are patients with a specified disease for which

the treatment is targeted.

The primary objective is to determine whether the new treatment should be used in a large-scale

comparative study. Phase II trials are used to assess

• feasibility of treatment

• side effects and toxicity

• logistics of administration and cost

The major issue that is addressed in a phase II clinical trial is whether there is enough evidence

of efficacy to make it worth further study in a larger and more costly clinical trial. In a sense this

is an initial screening tool for efficacy. During phase II experimentation the treatment efficacy

is often evaluated on surrogate markers; i.e on an outcome that can be measured quickly and

is believed to be related to the clinical outcome.

Example: Suppose a new drug is developed for patients with lung cancer. Ultimately, we

would like to know whether this drug will extend the life of lung cancer patients as compared to

currently available treatments. Establishing the effect of a new drug on survival would require a

long study with relatively large number of patients and thus may not be suitable as a screening

mechanism. Instead, during phase II, the effect of the new drug may be assessed based on tumor

shrinkage in the first few weeks of treatment. If the new drug shrinks tumors sufficiently for a

sufficiently large proportion of patients, then this may be used as evidence for further testing.

In this example, tumor shrinkage is a surrogate marker for overall survival time. The belief is

that if the drug has no effect on tumor shrinkage it is unlikely to have an effect on the patient’s

PAGE 20



CHAPTER 2 ST 520, A. TSIATIS and D. Zhang

overall survival and hence should be eliminated from further consideration. Unfortunately, there

are many instances where a drug has a short term effect on a surrogate endpoint but ultimately

may not have the long term effect on the clinical endpoint of ultimate interest. Furthermore,

sometimes a drug may have beneficial effect through a biological mechanism that is not detected

by the surrogate endpoint. Nonetheless, there must be some attempt at limiting the number of

drugs that will be considered for further testing or else the system would be overwhelmed.

Other examples of surrogate markers are

• Lowering blood pressure or cholesterol for patients with heart disease

• Increasing CD4 counts or decreasing viral load for patients with HIV disease

Most often, phase II clinical trials do not employ formal comparative designs. That is, they do

not use parallel treatment groups. Often, phase II designs employ more than one stage; i.e. one

group of patients are given treatment; if no (or little) evidence of efficacy is observed, then the

trial is stopped and the drug is declared a failure; otherwise, more patients are entered in the

next stage after which a final decision is made whether to move the drug forward or not.

2.2.1 Statistical Issues and Methods

One goal of a phase II trial is to estimate an endpoint related to treatment efficacy with sufficient

precision to aid the investigators in determining whether the proposed treatment should be

studied further.

Some examples of endpoints are:

• proportion of patients responding to treatment (response has to be unambiguously defined)

• proportion with side effects

• average decrease in blood pressure over a two week period

A statistical perspective is generally taken for estimation and assessment of precision. That

is, the problem is often posed through a statistical model with population parameters to be

estimated and confidence intervals for these parameters to assess precision.
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Example: Suppose we consider patients with esophogeal cancer treated with chemotherapy prior

to surgical resection. A complete response is defined as an absence of macroscopic or microscopic

tumor at the time of surgery. We suspect that this may occur with 35% (guess) probability using

a drug under investigation in a phase II study. The 35% is just a guess, possibly based on similar

acting drugs used in the past, and the goal is to estimate the actual response rate with sufficient

precision, in this case we want the 95% confidence interval to be within 15% of the truth.

As statisticians, we view the world as follows: We start by positing a statistical model; that is,

let π denote the population complete response rate. We conduct an experiment: n patients with

esophogeal cancer are treated with the chemotherapy prior to surgical resection and we collect

data: the number of patients who have a complete response.

The result of this experiment yields a random variable X, the number of patients in a sample of

size n that have a complete response. A popular model for this scenario is to assume that

X ∼ binomial(n, π);

that is, the random variable X is distributed with a binomial distribution with sample size n and

success probability π. The goal of the study is to estimate π and obtain a confidence interval.

I believe it is worth stepping back a little and discussing how the actual experiment and the

statistical model used to represent this experiment relate to each other and whether the implicit

assumptions underlying this relationship are reasonable.

Statistical Model

What is the population? All people now and in the future with esophogeal cancer who would

be eligible for the treatment.

What is π? (the population parameter)

If all the people in the hypothetical population above were given the new chemotherapy, then π

would be the proportion who would have a complete response. This is a hypothetical construct.

Neither can we identify the population above or could we actually give them all the chemotherapy.

Nonetheless, let us continue with this mind experiment.
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We assume the random variable X follows a binomial distribution. Is this reasonable? Let us

review what it means for a random variable to follow a binomial distribution.

X being distributed as a binomial b(n, π) means that X corresponds to the number of successes

(complete responses) in n independent trials where the probability of success for each trial is

equal to π. This would be satisfied, for example, if we were able to identify every member of the

population and then, using a random number generator, chose n individuals at random from our

population to test and determine the number of complete responses.

Clearly, this is not the case. First of all, the population is a hypothetical construct. Moreover,

in most clinical studies the sample that is chosen is an opportunistic sample. There is gen-

erally no attempt to randomly sample from a specific population as may be done in a survey

sample. Nonetheless, a statistical perspective may be a useful construct for assessing variability.

I sometimes resolve this in my own mind by thinking of the hypothetical population that I can

make inference on as all individuals who might have been chosen to participate in the study

with whatever process that was actually used to obtain the patients that were actually studied.

However, this limitation must always be kept in mind when one extrapolates the results of a

clinical experiment to a more general population.

Philosophical issues aside, let us continue by assuming that the posited model is a reasonable

approximation to some question of relevance. Thus, we will assume that our data is a realization

of the random variable X, assumed to be distributed as b(n, π), where π is the population

parameter of interest.

Reviewing properties about a binomial distribution we note the following:

• E(X) = nπ, where E(·) denotes expectation of the random variable.

• V ar(X) = nπ(1 − π), where V ar(·) denotes the variance of the random variable.

• P (X = k) =



n

k


 πk(1−π)n−k, where P (·) denotes probability of an event, and



n

k


 =

n!
k!(n−k)!

• Denote the sample proportion by p = X/n, then

– E(p) = π
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– V ar(p) = π(1 − π)/n

• When n is sufficiently large, the distribution of the sample proportion p = X/n is well

approximated by a normal distribution with mean π and variance π(1 − π)/n:

p ∼ N(π, π(1 − π)/n).

This approximation is useful for inference regarding the population parameter π. Because of the

approximate normality, the estimator p will be within 1.96 standard deviations of π approxi-

mately 95% of the time. (Approximation gets better with increasing sample size). Therefore the

population parameter π will be within the interval

p± 1.96{π(1 − π)/n}1/2

with approximately 95% probability. Since the value π is unknown to us, we approximate using

p to obtain the approximate 95% confidence interval for π, namely

p± 1.96{p(1 − p)/n}1/2.

Going back to our example, where our best guess for the response rate is about 35%, if we want

the precision of our estimator to be such that the 95% confidence interval is within 15% of the

true π, then we need

1.96{(.35)(.65)

n
}1/2 = .15,

or

n =
(1.96)2(.35)(.65)

(.15)2
= 39 patients.

Since the response rate of 35% is just a guess which is made before data are collected, the exercise

above should be repeated for different feasible values of π before finally deciding on how large

the sample size should be.

Exact Confidence Intervals

If either nπ or n(1−π) is small, then the normal approximation given above may not be adequate

for computing accurate confidence intervals. In such cases we can construct exact (usually

conservative) confidence intervals.

PAGE 24



CHAPTER 2 ST 520, A. TSIATIS and D. Zhang

We start by reviewing the definition of a confidence interval and then show how to construct an

exact confidence interval for the parameter π of a binomial distribution.

Definition: The definition of a (1− α)-th confidence region (interval) for the parameter π is as

follows:

For each realization of the data X = k, a region of the parameter space, denoted by C(k) (usually

an interval) is defined in such a way that the random region C(X) contains the true value of

the parameter with probability greater than or equal to (1 − α) regardless of the value of the

parameter. That is,

Pπ{C(X) ⊃ π} ≥ 1 − α, for all 0 ≤ π ≤ 1,

where Pπ(·) denotes probability calculated under the assumption that X ∼ b(n, π) and ⊃ denotes

“contains”. The confidence interval is the random interval C(X). After we collect data and obtain

the realization X = k, then the corresponding confidence interval is defined as C(k).

This definition is equivalent to defining an acceptance region (of the sample space) for each value

π, denoted as A(π), that has probability greater than equal to 1− α, i.e.

Pπ{X ∈ A(π)} ≥ 1 − α, for all 0 ≤ π ≤ 1,

in which case C(k) = {π : k ∈ A(π)}.

We find it useful to consider a graphical representation of the relationship between confidence

intervals and acceptance regions.
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Figure 2.1: Exact confidence intervals
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Another way of viewing a (1 − α)-th confidence interval is to find, for each realization X = k,

all the values π∗ for which the value k would not reject the hypothesis H0 : π = π∗. Therefore, a

(1−α)-th confidence interval is sometimes more appropriately called a (1−α)-th credible region

(interval).

If X ∼ b(n, π), then when X = k, the (1 − α)-th confidence interval is given by

C(k) = [πL(k), πU(k)],

where πL(k) denotes the lower confidence limit and πU(k) the upper confidence limit, which are

defined as

PπL(k)(X ≥ k) =
n∑

j=k



n

j


 πL(k)j{1 − πL(k)}n−j = α/2,

and

PπU (k)(X ≤ k) =
k∑

j=0



n

j


 πU(k)j{1 − πU(k)}n−j = α/2.

The values πL(k) and πU(k) need to be evaluated numerically as we will demonstrate shortly.
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Remark: Since X has a discrete distribution, the way we define the (1−α)-th confidence interval

above will yield

Pπ{C(X) ⊃ π} > 1 − α

(strict inequality) for most values of 0 ≤ π ≤ 1. Strict equality cannot be achieved because of

the discreteness of the binomial random variable.

Example: In a Phase II clinical trial, 3 of 19 patients respond to α-interferon treatment for

multiple sclerosis. In order to find the exact confidence 95% interval for π for X = k, k = 3, and

n = 19, we need to find πL(3) and πU (3) satisfying

PπL(3)(X ≥ 3) = .025; PπU (3)(X ≤ 3) = .025.

Many textbooks have tables for P (X ≤ c), where X ∼ b(n, π) for some n’s and π’s. Alternatively,

P (X ≤ c) can be obtained using statistical software such as SAS or R. Either way, we see that

πU(3) ≈ .40. To find πL(3) we note that

PπL(3)(X ≥ 3) = 1 − PπL(3)(X ≤ 2).

Consequently, we must search for πL(3) such that

PπL(3)(X ≤ 2) = .975.

This yields πL(3) ≈ .03. Hence the “exact” 95% confidence interval for π is

[.03, .40].

In contrast, the normal approximation yields a confidence interval of

3

19
± 1.96

(
3
19

× 16
19

19

)1/2

= [−.006, .322].
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2.2.2 Gehan’s Two-Stage Design

Discarding ineffective treatments early

If it is unlikely that a treatment will achieve some minimal level of response or efficacy, we may

want to stop the trial as early as possible. For example, suppose that a 20% response rate is the

lowest response rate that is considered acceptable for a new treatment. If we get no responses in

n patients, with n sufficiently large, then we may feel confident that the treatment is ineffective.

Statistically, this may be posed as follows: How large must n be so that if there are 0 responses

among n patients we are relatively confident that the response rate is not 20% or better? If

X ∼ b(n, π), and if π ≥ .2, then

Pπ(X = 0) = (1 − π)n ≤ (1 − .2)n = .8n.

Choose n so that .8n = .05 or n ln(8) = ln(.05). This leads to n ≈ 14 (rounding up). Thus, with

14 patients, it is unlikely (≤ .05) that no one would respond if the true response rate was greater

than 20%. Thus 0 patients responding among 14 might be used as evidence to stop the phase II

trial and declare the treatment a failure.

This is the logic behind Gehan’s two-stage design. Gehan suggested the following strategy: If

the minimal acceptable response rate is π0, then choose the first stage with n0 patients such that

(1 − π0)
n0 = .05; n0 =

ln(.05)

ln(1 − π0)
;

if there are 0 responses among the first n0 patients then stop and declare the treatment a failure;

otherwise, continue with additional patients that will ensure a certain degree of predetermined

accuracy in the 95% confidence interval.

If, for example, we wanted the 95% confidence interval for the response rate to be within ±15%

when a treatment is considered minimally effective at π0 = 20%, then the sample size necessary

for this degree of precision is

1.96
(
.2 × .8

n

)1/2

= .15, or n = 28.

In this example, Gehan’s design would treat 14 patients initially. If none responded, the treatment

would be declared a failure and the study stopped. If there was at least one response, then another

14 patients would be treated and a 95% confidence interval for π would be computed using the

data from all 28 patients.

PAGE 28



CHAPTER 2 ST 520, A. TSIATIS and D. Zhang

2.2.3 Simon’s Two-Stage Design

Another way of using two-stage designs was proposed by Richard Simon. Here, the investigators

must decide on values π0, and π1, with π0 < π1 for the probability of response so that

• If π ≤ π0, then we want to declare the drug ineffective with high probability, say 1 − α,

where α is taken to be small.

• If π ≥ π1, then we want to consider this drug for further investigation with high probability,

say 1 − β, where β is taken to be small.

The values of α and β are generally taken to be between .05 and .20.

The region of the parameter space π0 < π < π1 is the indifference region.

  

0 1

Drug is ineffective Indifference region Drug is effective

π0 π1

π = response rate

A two-stage design would proceed as follows: Integers n1, n, r1, r, with n1 < n, r1 < n1, and

r < n are chosen (to be described later) and

• n1 patients are given treatment in the first stage. If r1 or less respond, then declare the

treatment a failure and stop.

• If more than r1 respond, then add (n− n1) additional patients for a total of n patients.

• At the second stage, if the total number that respond among all n patients is greater than

r, then declare the treatment a success; otherwise, declare it a failure.
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Statistically, this decision rule is the following: Let X1 denote the number of responses in the

first stage (among the n1 patients) and X2 the number of responses in the second stage (among

the n− n1 patients). X1 and X2 are assumed to be independent binomially distributed random

variables, X1 ∼ b(n1, π) and X2 ∼ b(n2, π), where n2 = n− n1 and π denotes the probability of

response. Declare the treatment a failure if

(X1 ≤ r1) or {(X1 > r1) and (X1 +X2 ≤ r)},

otherwise, the treatment is declared a success if

{(X1 > r1) and (X1 +X2) > r)}.

Note: If n1 > r and if the number of patients responding in the first stage is greater than r,

then there is no need to proceed to the second stage to declare the treatment a success.

According to the constraints of the problem we want

P (declaring treatment success|π ≤ π0) ≤ α,

or equivalently

P{(X1 > r1) and (X1 +X2 > r)|π = π0} ≤ α︸ ︷︷ ︸; (2.1)

Note: If the above inequality is true when π = π0, then it is true when π < π0.

Also, we want

P (declaring treatment failure|π ≥ π1) ≤ β,

or equivalently

P{(X1 > r1) and (X1 +X2 > r)|π = π1} ≥ 1 − β. (2.2)

Question: How are probabilities such as P{(X1 > r1) and (X1 +X2 > r)|π} computed?

Since X1 and X2 are independent binomial random variables, then for any integer 0 ≤ m1 ≤ n1

and integer 0 ≤ m2 ≤ n2, the

P (X1 = m1, X2 = m2|π) = P (X1 = m1|π) × P (X2 = m2|π)

=








n1

m1


πm1(1 − π)n1−m1












n2

m2


 πm2(1 − π)n2−m2




.
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We then have to identify the pairs (m1, m2) where (m1 > r1) and (m1 + m2) > r, find the

probability for each such (m1, m2) pair using the equation above, and then add all the appropriate

probabilities.

We illustrate this in the following figure:

Figure 2.2: Example: n1 = 8, n = 14, X1 > 3, and X1 +X2 > 6

0 2 4 6 8

0
1

2
3

4
5

6

X1

X
2

As it turns out there are many combinations of (r1, n1, r, n) that satisfy the constraints (2.1) and

(2.2) for specified (π0, π1, α, β). Through a computer search one can find the “optimal design”

among these possibilities, where the optimal design is defined as the combination (r1, n1, r, n),

satisfying the constraints (2.1) and (2.2), which gives the smallest expected sample size when
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π = π0.

The expected sample size for a two stage design is defined as

n1P (stopping at the first stage) + nP (stopping at the second stage).

For our problem, the expected sample size is given by

n1{P (X1 ≤ r1|π = π0) + P (X1 > r|π = π0)} + nP (r1 + 1 ≤ X1 ≤ r|π = π0).

Optimal two-stage designs have been tabulated for a variety of (π0, π1, α, β) in the article

Simon, R. (1989). Optimal two-stage designs for Phase II clinical trials. Controlled Clinical

Trials. 10: 1-10.

The tables are given on the next two pages.
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3 Phase III Clinical Trials

3.1 Why are clinical trials needed

A clinical trial is the clearest method of determining whether an intervention has the postulated

effect. It is very easy for anecdotal information about the benefit of a therapy to be accepted

and become standard of care. The consequence of not conducting appropriate clinical trials can

be serious and costly. As we discussed earlier, because of anecdotal information, blood-letting

was common practice for a very long time. Other examples include

• It was believed that high concentrations of oxygen was useful for therapy in premature

infants until a clinical trial demonstrated its harm

• Intermittent positive pressure breathing became an established therapy for chronic obstruc-

tive pulmonary disease (COPD). Much later, a clinical trial suggested no major benefit for

this very expensive procedure

• Laetrile (a drug extracted from grapefruit seeds) was rumored to be the wonder drug

for Cancer patients even though there was no scientific evidence that this drug had any

biological activity. People were so convinced that there was a conspiracy by the medical

profession to withhold this drug that they would get it illegally from “quacks” or go to

other countries such as Mexico to get treatment. The use of this drug became so prevalent

that the National Institutes of Health finally conducted a clinical trial where they proved

once and for all that Laetrile had no effect. You no longer hear about this issue any more.

• The Cardiac Antiarhythmia Suppression Trial (CAST) documented that commonly used

antiarhythmia drugs were harmful in patients with myocardial infarction

• More recently, against common belief, it was shown that prolonged use of Hormone Re-

placement Therapy for women following menopause may have deleterious effects.
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3.2 Issues to consider before designing a clinical trial

David Sackett gives the following six prerequisites

1. The trial needs to be done

(i) the disease must have either high incidence and/or serious course and poor prognosis

(ii) existing treatment must be unavailable or somehow lacking

(iii) The intervention must have promise of efficacy (pre-clinical as well as phase I-II evi-

dence)

2. The trial question posed must be appropriate and unambiguous

3. The trial architecture is valid. Random allocation is one of the best ways that treatment

comparisons made in the trial are valid. Other methods such as blinding and placebos

should be considered when appropriate

4. The inclusion/exclusion criteria should strike a balance between efficiency and generaliz-

ibility. Entering patients at high risk who are believed to have the best chance of response

will result in an efficient study. This subset may however represent only a small segment

of the population of individuals with disease that the treatment is intended for and thus

reduce the study’s generalizibility

5. The trial protocol is feasible

(i) The protocol must be attractive to potential investigators

(ii) Appropriate types and numbers of patients must be available

6. The trial administration is effective.

Other issues that also need to be considered

• Applicability: Is the intervention likely to be implemented in practice?

• Expected size of effect: Is the intervention “strong enough” to have a good chance of

producing a detectable effect?
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• Obsolescence: Will changes in patient management render the results of a trial obsolete

before they are available?

Objectives and Outcome Assessment

• Primary objective: What is the primary question to be answered?

– ideally just one

– important, relevant to care of future patients

– capable of being answered

• Primary outcome (endpoint)

– ideally just one

– relatively simple to analyze and report

– should be well defined; objective measurement is preferred to a subjective one. For

example, clinical and laboratory measurements are more objective than say clinical

and patient impression

• Secondary Questions

– other outcomes or endpoints of interest

– subgroup analyses

– secondary questions should be viewed as exploratory

∗ trial may lack power to address them

∗ multiple comparisons will increase the chance of finding “statistically significant”

differences even if there is no effect

– avoid excessive evaluations; as well as problem with multiple comparisons, this may

effect data quality and patient support
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Choice of Primary Endpoint

Example: Suppose we are considering a study to compare various treatments for patients with

HIV disease, then what might be the appropriate primary endpoint for such a study? Let us

look at some options and discuss them.

The HIV virus destroys the immune system; thus individuals infected are susceptible to various

opportunistic infections which ultimately leads to death. Many of the current treatments are

designed to target the virus either trying to destroy it or, at least, slow down its replication.

Other treatments may target specific opportunistic infections.

Suppose we have a treatment intended to attack the virus directly, Here are some possibilities

for the primary endpoint that we may consider.

1. Increase in CD4 count. Since CD4 count is a direct measure of the immune function and

CD4 cells are destroyed by the virus, we might expect that a good treatment will increase

CD4 count.

2. Viral RNA reduction. Measures the amount of virus in the body

3. Time to the first opportunistic infection

4. Time to death from any cause

5. Time to death or first opportunistic infection, whichever comes first

Outcomes 1 and 2 may be appropriate as the primary outcome in a phase II trial where we want

to measure the activity of the treatment as quickly as possible.

Outcome 4 may be of ultimate interest in a phase III trial, but may not be practical for studies

where patients have a long expected survival and new treatments are being introduced all the

time. (Obsolescence)

Outcome 5 may be the most appropriate endpoint in a phase III trial. However, the other

outcomes may be reasonable for secondary analyses.
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3.3 Ethical Issues

A clinical trial involves human subjects. As such, we must be aware of ethical issues in the design

and conduct of such experiments. Some ethical issues that need to be considered include the

following:

• No alternative which is superior to any trial intervention is available for each subject

• Equipoise–There should be genuine uncertainty about which trial intervention may be

superior for each individual subject before a physician is willing to allow their patients to

participate in such a trial

• Exclude patients for whom risk/benefit ratio is likely to be unfavorable

– pregnant women if possibility of harmful effect to the fetus

– too sick to benefit

– if prognosis is good without interventions

Justice Considerations

• Should not exclude a class of patients for non medical reasons nor unfairly recruit patients

from poorer or less educated groups

This last issue is a bit tricky as “equal access” may hamper the evaluation of interventions. For

example

• Elderly people may die from diseases other than that being studied

• IV drug users are more difficult to follow in AIDS clinical trials
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3.4 The Randomized Clinical Trial

The objective of a clinical trial is to evaluate the effects of an intervention. Evaluation implies

that there must be some comparison either to

• no intervention

• placebo

• best therapy available

Fundamental Principle in Comparing Treatment Groups

Groups must be alike in all important aspects and only differ in the treatment which each group

receives. Otherwise, differences in response between the groups may not be due to the treatments

under study, but can be attributed to the particular characteristics of the groups.

How should the control group be chosen

Here are some examples:

• Literature controls

• Historical controls

• Patient as his/her own control (cross-over design)

• Concurrent control (non-randomized)

• Randomized concurrent control

The difficulty in non-randomized clinical trials is that the control group may be different prog-

nostically from the intervention group. Therefore, comparisons between the intervention and

control groups may be biased. That is, differences between the two groups may be due to factors

other than the treatment.
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Attempts to correct the bias that may be induced by these confounding factors either by design

(matching) or by analysis (adjustment through stratified analysis or regression analysis) may not

be satisfactory.

To illustrate the difficulty with non-randomized controls, we present results from 12 different

studies, all using the same treatment of 5-FU on patients with advanced carcinoma of the large

bowel.

Table 3.1: Results of Rapid Injection of 5-FU for Treatment of Advanced Carcinoma of the Large

Bowel

Group # of Patients % Objective Response

1. Sharp and Benefiel 13 85

2. Rochlin et al. 47 55

3. Cornell et al. 13 46

4. Field 37 41

5. Weiss and Jackson 37 35

6. Hurley 150 31

7. ECOG 48 27

8. Brennan et al. 183 23

9. Ansfield 141 17

10. Ellison 87 12

11. Knoepp et al. 11 9

12. Olson and Greene 12 8

Suppose there is a new treatment for advanced carcinoma of the large bowel that we want to

compare to 5-FU. We decide to conduct a new study where we treat patients only with the new

drug and compare the response rate to the historical controls. At first glance, it looks as if the

response rates in the above table vary tremendously from study to study even though all these

used the same treatment 5-FU. If this is indeed the case, then what comparison can possibly be

made if we want to evaluate the new treatment against 5-FU? It may be possible, however, that

the response rates from study to study are consistent with each other and the differences we are

seeing come from random sampling fluctuations. This is important because if we believe there

is no study to study variation, then we may feel confident in conducting a new study using only
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the new treatment and comparing the response rate to the pooled response rate from the studies

above. How can we assess whether these differences are random sampling fluctuations or real

study to study differences?

Hierarchical Models

To address the question of whether the results from the different studies are random samples

from underlying groups with a common response rate or from groups with different underlying

response rates, we introduce the notion of a hierarchical model. In a hierarchical model, we

assume that each of the N studies that were conducted were from possibly N different study

groups each of which have possibly different underlying response rates π1, . . . , πN . In a sense, we

now think of the world as being made of many different study groups (or a population of study

groups), each with its own response rate, and that the studies that were conducted correspond

to choosing a small sample of these population study groups. As such, we imagine π1, . . . , πN to

be a random sample of study-specific response rates from a larger population of study groups.

Since πi, the response rate from the i-th study group, is a random variable, it has a mean and

and a variance which we will denote by µπ and σ2
π. Since we are imagining a super-population

of study groups, each with its own response rate, that we are sampling from, we conceptualize

µπ and σ2
π to be the average and variance of these response rates from this super-population.

Thus π1, . . . , πN will correspond to an iid (independent and identically distributed) sample from

a population with mean µπ and variance σ2
π. I.e.

π1, . . . , πN , are iid with E(πi) = µπ, var(πi) = σ2
π, i = 1, . . . , N.

This is the first level of the hierarchy.

The second level of the hierarchy corresponds now to envisioning that the data collected from

the i-th study (ni, Xi), where ni is the number of patients treated in the i-th study and Xi is

the number of complete responses among the ni treated, is itself a random sample from the i-th

study group whose response rate is πi. That is, conditional on ni and πi, Xi is assumed to follow

a binomial distribution, which we denote as

Xi|ni, πi ∼ b(ni, πi).

This hierarchical model now allows us to distinguish between random sampling fluctuation and

real study to study differences. If all the different study groups were homogeneous, then there
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should be no study to study variation, in which case σ2
π = 0. Thus we can evaluate the degree

of study to study differences by estimating the parameter σ2
π.

In order to obtain estimates for σ2
π, we shall use some classical results of conditional expectation

and conditional variance. Namely, if X and Y denote random variables for some probability

experiment then the following is true

E(X) = E{E(X|Y )}

and

var(X) = E{var(X|Y )} + var{E(X|Y )}.

Although these results are known to many of you in the class; for completeness, I will sketch out

the arguments why the two equalities above are true.

3.5 Review of Conditional Expectation and Conditional Variance

For simplicity, I will limit myself to probability experiments with a finite number of outcomes.

For random variables that are continuous one needs more complicated measure theory for a

rigorous treatment.

Probability Experiment

Denote the result of an experiment by one of the outcomes in the sample space Ω = {ω1, . . . , ωk}.
For example, if the experiment is to choose one person at random from a population of sizeN with

a particular disease, then the result of the experiment is Ω = {A1, . . . , AN} where the different A’s

uniquely identify the individuals in the population, If the experiment were to sample n individuals

from the population then the outcomes would be all possible n-tuple combinations of these N

individuals; for example Ω = {(Ai1, . . . , Ain), for all i1, . . . , in = 1, . . . , N . With replacement

there are k = Nnth combinations; without replacement there are k = N×(N−1)×. . .×(N−n+1)

combinations of outcomes if order of subjects in the sample is important, and k =



N

n




combinations of outcomes if order is not important.

Denote by p(ω) the probability of outcome ω occurring, where
∑

ω∈Ω p(ω) = 1.
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Random variable

A random variable, usually denoted by a capital Roman letter such as X, Y, . . . is a function that

assigns a number to each outcome in the sample space. For example, in the experiment where

we sample one individual from the population

X(ω)= survival time for person ω

Y (ω)= blood pressure for person ω

Z(ω)= height of person ω

The probability distribution of a random variable X is just a list of all different possible

values that X can take together with the corresponding probabilities.

i.e. {(x, P (X = x)), for all possible x}, where P (X = x) =
∑

ω:X(ω)=x p(ω).

The mean or expectation of X is

E(X) =
∑

ω∈Ω

X(ω)p(ω) =
∑

x

xP (X = x),

and the variance of X is

var(X) =
∑

ω∈Ω

{X(ω) −E(X)}2p(ω) =
∑

x

{x−E(X)}2P (X = x)

= E{X − E(X)}2 = E(X2) − {E(X)}2.

Conditional Expectation

Suppose we have two random variablesX and Y defined for the same probability experiment, then

we denote the conditional expectation of X, conditional on knowing that Y = y, by E(X|Y = y)

and this is computed as

E(X|Y = y) =
∑

ω:Y (ω)=y

X(ω)
p(ω)

P (Y = y)
.

The conditional expectation of X given Y , denoted by E(X|Y ) is itself a random variable which

assigns the value E(X|Y = y) to every outcome ω for which Y (ω) = y. Specifically, we note

that E(X|Y ) is a function of Y .
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Since E(X|Y ) is itself a random variable, it also has an expectation given by E{E(X|Y )}. By

the definition of expectation this equals

E{E(X|Y )} =
∑

ω∈Ω

E(X|Y )(ω)p(ω).

By rearranging this sum, first within the partition {ω : Y (ω) = y}, and then across the partitions

for different values of y, we get

E{E(X|Y )} =
∑

y

{∑
ω:Y (ω)=y X(ω)p(ω)

P (Y = y)

}
P (Y = y)

=
∑

ω∈Ω

X(ω)p(ω) = E(X).

Thus we have proved the very important result that

E{E(X|Y )} = E(X).

Conditional Variance

There is also a very important relationship involving conditional variance. Just like conditional

expectation. the conditional variance of X given Y , denoted as var(X|Y ), is a random variable,

which assigns the value var(X|Y = y) to each outcome ω, where Y (ω) = y, and

var(X|Y = y) = E[{X −E(X|Y = y)}2|Y = y] =
∑

ω:Y (ω)=y

{X(ω) −E(X|Y = y)}2 p(ω)

p(Y = y)
.

Equivalently,

var(X|Y = y) = E(X2|Y = y) − {E(X|Y = y)}2.

It turns out that the variance of a random variable X equals

var(X) = E{var(X|Y )} + var{E(X|Y )}.

This follows because

E{var(X|Y )} = E[E(X2|Y ) − {E(X|Y )}2] = E(X2) − E[{E(X|Y )}2] (3.1)

and

var{E(X|Y )} = E[{E(X|Y )}2] − [E{E(X|Y )}]2 = E[{E(X|Y )}2] − {E(X)}2 (3.2)
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Adding (3.1) and (3.2) together yields

E{var(X|Y )} + var{E(X|Y )} = E(X2) − {E(X)}2 = var(X),

as desired.

If we think of partitioning the sample space into regions {ω : Y (ω) = y} for different values of

y, then the formula above can be interpreted in words as

“the variance of X is equal to the mean of the within partition variances of X plus the variance

of the within partition means of X”. This kind of partitioning of variances is often carried out

in ANOVA models.

Return to Hierarchical Models

Recall

Xi|ni, πi ∼ b(ni, πi), i = 1, . . . , N

and

π1, . . . , πN are iid (µπ, σ
2
π).

Let pi = Xi/ni denote the sample proportion that respond from the i-th study. We know from

properties of a binomial distribution that

E(pi|πi, ni) = πi

and

var(pi|πi, ni) =
πi(1 − πi)

ni
.

Note: In our conceptualization of this problem the probability experiment consists of

1. Conducting N studies from a population of studies

2. For each study i we sample ni individuals at random from the i-th study group and count

the number of responses Xi

3. Let us also assume that the sample sizes n1, . . . , nN are random variables from some dis-

tribution.
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4. The results of this experiment can be summarized by the iid random vectors

(πi, ni, Xi), i = 1, . . . , N.

In actuality, we don’t get to see the values πi, i = 1, . . . , N . They are implicitly defined, yet very

important in the description of the model. Often, the values πi are referred to as random effects.

Thus, the observable data we get to work with are

(ni, Xi), i = 1, . . . , N.

Using the laws of iterated conditional expectation and variance just derived, we get the following

results:

E(pi) = E{E(pi|ni, πi)} = E(πi) = µπ, (3.3)

var(pi) = E{var(pi|ni, πi)} + var{E(pi|ni, πi)}

= E

{
πi(1 − πi)

ni

}
+ var(πi)

= E

{
πi(1 − πi)

ni

}
+ σ2

π. (3.4)

Since the random variables pi, i = 1, . . . , N are iid, an unbiased estimator for E(pi) = µπ is

given by the sample mean

p̄ = N−1
N∑

i=1

pi,

and an unbiased estimator of the variance var(pi) is the sample variance

s2
p =

∑N
i=1(pi − p̄)2

N − 1
.

One can also show, using properties of a binomial distribution, that a conditionally unbiased

estimator for πi(1−πi)
ni

, conditional on ni and πi, is given by pi(1−pi)
ni−1

; that is

E

{
pi(1 − pi)

ni − 1
|ni, πi

}
=
πi(1 − πi)

ni

.

I will leave this as a homework exercise for you to prove.

Since pi(1−pi)
ni−1

, i = 1, N are iid random variables with mean

E

{
pi(1 − pi)

ni − 1

}
= E

[
E

{
pi(1 − pi)

ni − 1
|ni, πi

}]
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= E

{
πi(1 − πi)

ni

}
,

this means that we can obtain an unbiased estimator for E
{

πi(1−πi)
ni

}
by using

N−1
N∑

i=1

pi(1 − pi)

ni − 1
.

Summarizing these results, we have shown that

• s2
p =

∑N

i=1
(pi−p̄)2

N−1
is an unbiased estimator for var(pi) which by (3.4) equals

E

{
πi(1 − πi)

ni

}
+ σ2

π

• We have also shown that N−1∑N
i=1

pi(1−pi)
ni−1

is an unbiased estimator for

E

{
πi(1 − πi)

ni

}

Consequently, by subtraction, we get that the estimator

σ̂2
π =

{∑N
i=1(pi − p̄)2

N − 1

}
−
{
N−1

N∑

i=1

pi(1 − pi)

ni − 1

}

is an unbiased estimator for σ2
π.

Going back to the example given in Table 3.1, we obtain the following:

• ∑N
i=1(pi − p̄)2

N − 1
= .0496

•
N−1

N∑

i=1

pi(1 − pi)

ni − 1
= .0061

• Hence

σ̂2
π = .0496 − .0061 = .0435

Thus the estimate for study to study standard deviation in the probability of response is given

by

σ̂π =
√
.0435 = .21.

This is an enormous variation clearly indicating substantial study to study variation.
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4 Randomization

In a randomized clinical trial, the allocation of treatment to patients is carried out using a chance

mechanism so that neither the patient nor the physician knows in advance which treatment will

be assigned. Each patient in the clinical trial has the same opportunity of receiving any of the

treatments under study.

Advantages of Randomization

• Eliminates conscious bias

– physician selection

– patient self selection

• Balances unconscious bias between treatment groups

– supportive care

– patient management

– patient evaluation

– unknown factors affecting outcome

• Groups are alike on average

• Provides a basis for standard methods of statistical analysis such as significance tests

4.1 Design-based Inference

On this last point, randomization allows us to carry out design-based inference rather than model-

based inference. That is, the distribution of test statistics are induced by the randomization itself

rather than assumptions about a super-population and a probability model. Let me illustrate

through a simple example. Suppose we start by wanting to test the sharp null hypothesis.

Under the sharp null hypothesis, it will be assumed that all the treatments being compared

would yield exactly the same response on all the patients in a study. To test this hypothesis,

patients are randomly allocated to the different treatments and their responses are observed.
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To illustrate, suppose we are comparing two treatments and assign 2 of 4 total patients at random

to treatment A and the other 2 to treatment B. Our interest is to see whether one treatment

affects response more than the other. Let’s assume the response is some continuous measurement

which we denote by Y . For example, Y might be the difference in blood pressure one week after

starting treatment.

We will evaluate the two treatments by computing a test statistic corresponding to the difference

in the average response in patients receiving treatment A and the average response in patients

receiving treatment B. If the sharp null hypothesis were true, then we would expect, on average,

the test statistic to be approximately zero; that is the average response for patients receiving

treatment A should be approximately the same as the average response for patients receiving

treatment B. Thus, a value of the test statistic sufficiently far from zero could be used as evidence

against the null hypothesis. P-values will be used to measure the strength of the evidence. The

p-value is the probability that our test statistic could have taken on a value “more extreme”

than that actually observed, if the experiment were repeated, under the assumption that the null

hypothesis is true. If the p-value is sufficiently small, say < .05 or < .025, then we use this as

evidence to reject the null hypothesis.

Main message: In a randomized experiment, the probability distribution of the test statistic

under the null hypothesis is induced by the randomization itself and therefore there is no need

to specify a statistical model about a hypothetical super-population.

We will illustrate this point by our simple example. Let us denote the responses for the two

patients receiving treatment A as y1 and y2 and the responses for the two patients receiving

treatment B as y3 and y4. Thus the value of the test statistic based on this data is given by

T =
(
y1 + y2

2

)
−
(
y3 + y4

2

)
.

How do we decide whether this statistic gives us enough evidence to reject the sharp null hy-

pothesis? More specifically, how do we compute the p-value?

Answer: Under the sharp null hypothesis, the permutational probability distribution of our test

static, induced by the randomization, can be evaluated, see Table 4.1.
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Table 4.1: Permutational distribution under sharp null

patient 1 2 3 4

response y1 y2 y3 y4 Test statistic T

possible A A B B
(

y1+y2

2

)
−
(

y3+y4

2

)
= t1

treatment A B A B
(

y1+y3

2

)
−
(

y2+y4

2

)
= t2

assignments A B B A
(

y1+y4

2

)
−
(

y2+y3

2

)
= t3

each B A A B
(

y2+y3

2

)
−
(

y1+y4

2

)
= t4

equally B A B A
(

y2+y4

2

)
−
(

y1+y3

2

)
= t5

likely B B A A
(

y3+y4

2

)
−
(

y1+y2

2

)
= t6

Under the sharp null hypothesis, the test statistic T (i.e. difference in the two means) can take

on any of the six values t1, . . . , t6, corresponding to the




4

2


 = 6 combinations, each with

probability 1/6. The value of the test statistic actually observed; in this case t1, can be declared

sufficiently large by gauging it according to the probability distribution induced above. That is,

we can compute P (T ≥ t1|sharp null hypothesis), in this case by just counting the number of tj

for j = 1, . . . , 6 that are greater than or equal to t1 and dividing by six.

Clearly, no one would launch into a comparative trial with only four patients. We used this

example for ease of illustration to enumerate the permutational distribution. Nonetheless, for

a larger experiment such an enumeration is possible and the permutational distribution can be

computed exactly or approximated well by computer simulation.

Note: In the above example, we were implicitly testing the null hypothesis against the one-

sided alternative that treatment A was better than treatment B. In this case, larger values of

T give more evidence against the null hypothesis. If we, instead, were interested in testing the

null hypothesis against a two-sided alternative; that is, that one treatment is different than the

other, then large values of the absolute value of T (|T |) would be more appropriate as evidence

against the null hypothesis. For a two-sided alternative the p-value would be computed as

P (|T | ≥ t1|sharp null hypothesis). Because of the symmetry in the permutational distribution

of T about zero, this means that the p-value for a two-sided test would be double the p-value for

the one-sided test (provided the p-value for the one-sided test was less than .5).
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Remark: In evaluating the probability distribution above, we conditioned on the individuals

chosen in the experiment. That is, we took their responses as fixed quantities. Randomness was

induced by the chance assignment of treatments to individuals which in turn was used to derive

the probability distribution of the test statistic.

Contrast this with the usual statistical model which may be used in such an experiment:

Y1, Y2 are iid N(µ1, σ
2)

Y3, Y4 are iid N(µ2, σ
2)

and we are testing the null hypothesis

H0 : µ1 = µ2.

The null hypothesis above would be tested using the t-test, where H0 is rejected when the test

statistic

T =
ȲA − ȲB

sp(n
−1
A + n−1

B )1/2

H0∼ tnA+nB−2,

is sufficiently large or the p-value computed using a t-distribution with nA + nB − 2 degrees of

freedom.

Personal Comment: The use of the permutational distribution for inference about treatment

efficacy is limiting. Ultimately, we are interested in extending our results from an experimental

sample to some larger population. Therefore, in my opinion, the importance of randomization

is not the ability to validly use model free statistical tests as we have just seen, but rather, it

allows us to make causal inference. That is, the results of a randomized clinical trial can be

used to infer causation of the intervention on the disease outcome.

This is in contrast to non-randomized clinical trials or epidemiological experiments where only

associational inference can be made.

There will be discussion of these points later in the semester.

Disadvantages of Randomization

• Patients or physician may not care to participate in an experiment involving a chance

mechanism to decide treatment
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• May interfere with physician patient relationship

• Part of the resources are expended in the control group; i.e. If we had n patients eligible

for a study and had good and reliable historical control data, then it is more efficient to

put all n patients on the new treatment and compare the response rate to the historical

controls rather than randomizing the patients into two groups, say, n/2 patients on new

treatment and n/2 on control treatment and then comparing the response rates among

these two randomized groups.

How Do We Randomize?

4.2 Fixed Allocation Randomization

This scheme, which is the most widely used, assigns interventions to the participants with a

prespecified probability which is not altered as the study progresses.

Suppose we are considering two treatments. We want to assign patients to one treatment with

probability π and to the other treatment with probability 1 − π. Often π is chosen to be .5.

In some cases, studies have been conducted with unequal allocation probabilities. Let us examine

the consequences of the choice of randomization probability from a statistical perspective.

Suppose there are n individuals available for study and we allocate nπ ≈ n1 patients to treatment

“1” and n(1 − π) ≈ n2 patients to treatment “2”, with n1 + n2 = n. Say, for example, that the

goal of the clinical trial is to estimate the difference in mean response between two treatments;

i.e. we want to estimate

µ2 − µ1,

where µ1 and µ2 denote the population mean response for treatments 1 and 2 respectively.

Remark: As always, some hypothetical population is being envisioned as the population we are

interested in making inference on. If every individual in this population were given treatment 1,

then the mean response (unknown to us) is denoted by µ1; whereas, if every individual in this

hypothetical population were given treatment 2, then the mean response (again unknown to us)
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is denoted by µ2. The n1 and n2 patients that are to be randomized to treatments 1 and 2 are

thought of as independent random samples chosen from this hypothetical super-population.

An estimator for the treatment difference is given by

Ȳ2 − Ȳ1,

where Ȳ1 is the sample average response of the n1 patients assigned treatment 1 and Ȳ2 is the

sample average response of the n2 patients assigned treatment 2. Let us also assume that the

population variance of response is the same for the two treatments; i.e. σ2
1 = σ2

2 = σ2. This may

be reasonable if we don’t have any a-priori reason to think these variances are different. The

variance of our estimator is given as

var(Ȳ2 − Ȳ1) = var(Ȳ2) + var(Ȳ1) = σ2
(

1

n1
+

1

n2

)
.

Question: Subject to the constraint that n = n1+n2, how do we find the most efficient estimator

for µ2 − µ1? That is, what treatment allocation minimizes the variance of our estimator? i.e.

σ2
(

1

n1

+
1

n2

)
= σ2

{
1

nπ
+

1

n(1 − π)

}
=
σ2

n

{
1

π(1 − π)

}
.

The answer is the value of 0 ≤ π ≤ 1 which maximizes π(1−π) = π−π2. Using simple calculus,

we take the derivative with respect to π and set it equal to zero to find the maximum. Namely,

d(π − π2)

dπ
= 1 − 2π = 0; π = .5.

This is guaranteed to be a maximum since the second derivative

d2(π − π2)

dπ2
= −2.

Thus, to get the most efficient answer we should randomize with equal probability. However, as

we will now demonstrate, the loss of efficiency is not that great when we use unequal allocation.

For example, if we randomize with probability 2/3, then the variance of our estimator would be

σ2

n

{
1

(2/3)(1/3)

}
=

4.5σ2

n

instead of
σ2

n

{
1

(1/2)(1/2)

}
=

4σ2

n
,
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with equal allocation.

Another way of looking at this relationship is to compute the ratio between the sample sizes

of the equal allocation design and the unequal allocation design that yield the same accuracy.

For example, if we randomize with probability 2/3, then to get the same accuracy as the equal

allocation design, we would need
4.5σ2

n(π=2/3)

=
4σ2

n(π=1/2)

,

where n(π=2/3) corresponds to the sample size for the design with unequal allocation, π = 2/3 in

this case, and n(π=1/2), the sample size for the equal allocation design. It is clear that to get the

same accuracy we need
n(π=2/3)

n(π=1/2)

=
4.5

4
= 1.125.

That is, equal allocation is 12.5% more efficient than a 2:1 allocation scheme; i.e. we need to

treat 12.5% more patients with an unequal allocation (2:1) design to get the same statistical

precision as with an equal allocation (1:1) design.

Some investigators have advocated putting more patients on the new treatment. Some of the

reason given include:

• better experience on a drug where there is little information

• efficiency loss is slight

• if new treatment is good (as is hoped) more patients will benefit

• might be more cost efficient

Some disadvantages are:

• might be difficult to justify ethically; It removes equipoise for the participating clinician

• new treatment may be detrimental
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4.2.1 Simple Randomization

For simplicity, let us start by assuming that patients will be assigned to one of two treatments

A or B. The methods we will describe will generalize easily to more than two treatments. In

a simple randomized trial, each participant that enters the trial is assigned treatment A or B

with probability π or 1 − π respectively, independent of everyone else. Thus, if n patients are

randomized with this scheme, the number of patients assigned treatment A is a random quantity

following a binomial distribution ∼ b(n, π).

This scheme is equivalent to flipping a coin (where the probability of a head is π) to determine

treatment assignment. Of course, the randomization is implemented with the aid of a computer

which generates random numbers uniformly from 0 to 1. Specifically, using the computer, a

sequence of random numbers are generated which are uniformly distributed between 0 and 1 and

independent of each other. Let us denote these by U1, . . . , Un where Ui are iid U [0, 1]. For the

i-th individual entering the study we would assign treatment as follows:

If




Ui ≤ π then assign treatment A

Ui > π then assign treatment B.

It is easy to see that P (Ui ≤ π) = π, which is the desired randomization probability for treatment

A. As we argued earlier, most often π is chosen as .5.

Advantages of simple randomization

• easy to implement

• virtually impossible for the investigators to guess what the next treatment assignment

will be. If the investigator could break the code, then he/she may be tempted to put

certain patients on preferred treatments thus invalidating the unbiasedness induced by the

randomization

• the properties of many statistical inferential procedures (tests and estimators) are estab-

lished under the simple randomization assumption (iid)
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Disadvantages

• The major disadvantage is that the number of patients assigned to the different treatments

are random. Therefore, the possibility exists of severe treatment imbalance.

– leads to less efficiency

– appears awkward and may lead to loss of credibility in the results of the trial

For example, with n = 20, an imbalance of 12:8 or worse can occur by chance with 50% probability

even though π = .5. The problem is not as severe with larger samples. For instance if n = 100,

then a 60:40 split or worse will occur by chance with 5% probability.

4.2.2 Permuted block randomization

One way to address the problem of imbalance is to use blocked randomization or, more

precisely, permuted block randomization.

Before continuing, we must keep in mind that patients enter sequentially over time as they become

available and eligible for a study. This is referred to as staggered entry. Also, we must realize that

even with the best intentions to recruit a certain fixed number of patients, the actual number

that end up in a clinical trial may deviate from the intended sample size. With these constraints

in mind, the permuted block design is often used to achieve balance in treatment assignment. In

such a design, as patients enter the study, we define a block consisting of a certain number and

proportion of treatment assignments. Within each block, the order of treatments is randomly

permuted.

For illustration, suppose we have two treatments, A and B, and we choose a block size of 4,

with two A’s and two B’s. For each block of 4 there are




4

2


 or 6 possible combinations of

treatment assignments.
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These are

A A B B

A B A B

A B B A

B A A B

B A B A

B B A A

The randomization scheme, to be described shortly, chooses one of these six possibilities with

equal probability (i.e. 1/6) and proceeds as follows. The first four patients entering the trial

are assigned in order to treatments A and B according to the permutation chosen. For the

next block of 4, another combination of treatment assignments is chosen at random from the six

permutations above and the next four patients are assigned treatments A or B in accordance.

This process continues until the end of the study.

It is clear that by using this scheme, the difference in the number of patients receiving A versus

B can never exceed 2 regardless when the study ends. Also after every multiple of four patients,

the number on treatments A and B are identical.

Choosing random permutations

This can be done by choosing a random number to associate to each of the letters “AABB” of a

block and then assigning, in order, the letter ranked by the corresponding random number. For

example

Treatment random number rank

A 0.069 1

A 0.734 3

B 0.867 4

B 0.312 2

In the example above the treatment assignment from this block is “ABAB”; that is, A followed by
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B followed by A followed by B. The method just described will guarantee that each combination

is equally likely of being chosen.

Potential problem

If the block size b is known in advance, then the clinician may be able to guess what the next

treatment will be. Certainly, the last treatment in a block will be known if the previous treat-

ments have already been assigned. He/she may then be able to bias the results by putting

patients that are at better or worse prognosis on the known treatment. This problem can be

avoided by varying the blocking number at random. For example, the blocking number may be

2,4,6, chosen at random with, say, each with probability 1/3. Varying the block sizes at random

will make it difficult (not impossible) to break the treatment code.

4.2.3 Stratified Randomization

The response of individuals often depends on many different characteristics of the patients (other

than treatment) which are often called prognostic factors. Examples of prognostic factors are

age, gender, race, white blood count, Karnofsky status. etc. Although randomization balances

prognostic factors “on average” between the different treatments being compared in a study,

imbalances may occur by chance.

If patients with better prognosis end up by luck in one of the treatment arms, then one might

question the interpretability of the observed treatment differences. One strategy, to minimize

this problem, is to use blocked randomization within strata formed by different combinations

of prognostic factors defined a-priori. For example, suppose that age and gender are prognostic

factors that we want to control for in a study. We define strata by breaking down our population

into categories defined by different combinations of age and gender.
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Age

Gender 40-49 50-59 60-69

Male

Female

In the illustration above, a total of six strata were formed by the 3×2 combinations of categories

of these two variables.

In a stratified blocked randomization scheme, patients are randomized using block sizes equal

to b (b/2 on each treatment for equal allocation) within each stratum. With this scheme there

could never be a treatment imbalance greater than b/2 within any stratum at any point in the

study.

Advantages of Stratified Randomization

• Makes the treatment groups appear similar. This can give more credibility to the results

of a study

• Blocked randomization within strata may result in more precise estimates of treatment

difference; but one must be careful to conduct the appropriate analysis

Illustration on the effect that blocking within strata has on the precision

of estimators

Suppose we have two strata, which will be denoted by the indicator variable S, where

S =





1 = strata 1

0 = strata 0.

There are also two treatments denoted by the indicator variable X, where

X =





1 = treatment A

0 = treatment B.

Let Y denote the response variable of interest. For this illustration, we take Y to be a continuous

random variable; for example, the drop in log viral RNA after three months of treatment for HIV
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disease. Consider the following model, where for the i-th individual in our sample, we assume

Yi = µ+ αSi + βXi + ǫi. (4.1)

Here α denotes the magnitude of effect that strata has on the mean response, β denotes the

magnitude of effect that treatment has on the mean response, and the ǫi, i = 1, . . . , n denote

random errors which are taken to be iid random variables with mean zero and variance σ2.

Let n individuals be put into a clinical trial to compare treatments A and B and denote by

nA, the number of individuals assigned to treatment A; i.e. nA =
∑n

i=1Xi and nB the number

assigned to treatment B, nB = n− nA.

Let ȲA be the average response for the sample of individuals assigned to treatment A and ȲB

the similar quantity for treatment B:

ȲA =
∑

Xi=1

Yi/nA,

ȲB =
∑

Xi=0

Yi/nB.

The objective of the study is to estimate treatment effect given, in this case, by the parameter

β. We propose to use the obvious estimator ȲA − ȲB to estimate β.

Some of the patients from both treatments will fall into strata 1 and the others will fall into

strata 0. We represent this in the following table.

Table 4.2: Number of observations falling into the different strata by treatment

Treatment

strata A B total

0 nA0 nB0 n0

1 nA1 nB1 n1

total nA nB n

Because of (4.1), we get

ȲA =
∑

Xi=1

Yi/nA
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=
∑

Xi=1

(µ+ αSi + βXi + ǫi)/nA

= (nAµ+ α
∑

Xi=1

Si + β
∑

Xi=1

Xi +
∑

Xi=1

ǫi)/nA

= (nAµ+ αnA1 + βnA +
∑

Xi=1

ǫi)/nA

= µ+ α
nA1

nA

+ β + ǭA,

where ǭA =
∑

Xi=1 ǫi/nA. Similarly,

ȲB = µ+ α
nB1

nB
+ ǭB,

where ǭB =
∑

Xi=0 ǫi/nB. Therefore

ȲA − ȲB = β + α
(
nA1

nA
− nB1

nB

)
+ (ǭA − ǭB). (4.2)

Stratified randomization

Let us first consider the statistical properties of the estimator for treatment difference if we

used permuted block randomization within strata with equal allocation. Roughly speaking, the

number assigned to the two treatments, by strata, would be

nA = nB = n/2

nA1 = nB1 = n1/2

nA0 = nB0 = n0/2.

Remark: The counts above might be off by b/2, where b denotes the block size, but when n is

large this difference is inconsequential.

Substituting these counts into formula (4.2), we get

ȲA − ȲB = β + (ǭA − ǭB).

Note: The coefficient for α cancelled out.

Thus the mean of our estimator is given by

E(ȲA − ȲB) = E{β + (ǭA − ǭB)} = β + E(ǭA) − E(ǭB) = β,
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which implies that the estimator is unbiased. The variance of the estimator is given by

var(ȲA − ȲB) = var(ǭA) + var(ǭB) = σ2
(

2

n
+

2

n

)

4σ2

n
. (4.3)

Simple randomization

With simple randomization the counts nA1 conditional on nA and nB1 conditional on nB follow

a binomial distribution. Specifically,

nA1|nA, nB ∼ b(nA, θ) (4.4)

and

nB1|nA, nB ∼ b(nB, θ), (4.5)

where θ denotes the proportion of the population in stratum 1. In addition, conditional on

nA, nB, the binomial variables nA1 and nB1 are independent of each other.

The estimator given by (4.2) has expectation equal to

E(ȲA − ȲB) = β + α
{
E
(
nA1

nA

)
−E

(
nB1

nB

)}
+ E(ǭA − ǭB). (4.6)

Because of (4.4)

E
(
nA1

nA

)
= E

{
E
(
nA1

nA

|nA

)}
= E

(
nAθ

nA

)
= θ.

Similarly

E
(
nB1

nB

)
= θ.

Hence,

E(ȲA − ȲB) = β;

that is, with simple randomization, the estimator ȲA − ȲB is an unbiased estimator of the

treatment difference β.

In computing the variance, we use the formula for iterated conditional variance; namely

var(ȲA − ȲB) = E{var(ȲA − ȲB|nA, nB)} + var{E(ȲA − ȲB|nA, nB)}.
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As demonstrated above, E(ȲA − ȲB|nA, nB) = β, thus var{E(ȲA − ȲB|nA, nB)} = var(β) = 0.

Thus we need to compute E{var(ȲA − ȲB|nA, nB)}. Note that

var(ȲA − ȲB|nA, nB)

= var
{
β + α

(
nA1

nA
− nB1

nB

)
+ (ǭA − ǭB)|nA, nB

}

= α2
{
var

(
nA1

nA
|nA

)
+ var

(
nB1

nB
|nB

)}
+ var(ǭA|nA) + var(ǭB|nB)

= α2

{
θ(1 − θ)

nA
+
θ(1 − θ)

nB

}
+

(
σ2

nA
+
σ2

nB

)

= {σ2 + α2θ(1 − θ)}
(

1

nA
+

1

nB

)
.

Therefore

var(ȲA − ȲB) = E{var(ȲA − ȲB|nA, nB)}

= {σ2 + α2θ(1 − θ)}E
(

1

nA
+

1

nB

)

= {σ2 + α2θ(1 − θ)}E
(

1

nA

+
1

n− nA

)
,

where nA ∼ b(n, 1/2).

We have already shown that
(

1
nA

+ 1
n−nA

)
≥ 4

n
. Therefore, with simple randomization the

variance of the estimator for treatment difference; namely

var(ȲA − ȲB) = {σ2 + α2θ(1 − θ)}E
(

1

nA
+

1

n− nA

)

is greater than the variance of the estimator for treatment difference with stratified randomiza-

tion; namely

var(ȲA − ȲB) =
4σ2

n
.

Remark: In order to take advantage of the greater efficiency of the stratified design, one has to

recognize that the variance for (ȲA − ȲB) is different when using a stratified design versus simple

randomization. Since many of the statistical tests and software are based on assumptions that

the data are iid, this point is sometimes missed.

For example, suppose we used a permuted block design within strata but analyzed using a t-test

(the test ordinarily used in conjunction with simple randomization). The t-test is given by

ȲA − ȲB

sP

(
1

nA
+ 1

nB

)1/2
,
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where

s2
P =

{∑
Xi=1(Yi − ȲA)2 +

∑
Xi=0(Yi − ȲB)2

nA + nB − 2

}
.

It turns out that s2
P is an unbiased estimator for {σ2 + α2θ(1 − θ)} as it should be for simple

randomization. However, with stratified randomization, we showed that the variance of (ȲA−ȲB)

is 4σ2

n
.

Therefore the statistic

ȲA − ȲB

sP

(
1

nA
+ 1

nB

)1/2
≈ ȲA − ȲB

{σ2 + α2θ(1 − θ)}1/2
(

2
n

+ 2
n

)1/2
,

has variance
4σ2/n

4{σ2 + α2θ(1 − θ)}/n =
σ2

σ2 + α2θ(1 − θ)
≤ 1.

Hence the statistic commonly used to test differences in means between two populations

ȲA − ȲB

sP

(
1

nA
+ 1

nB

)1/2
,

does not have a t-distribution if used with a stratified design and α 6= 0 (i.e. some strata effect).

In fact, it has a distribution with smaller variance. Thus, if this test were used in conjunction

with a stratified randomized design, then the resulting analysis would be conservative.

The correct analysis would have considered the strata effect in a two-way analysis of variance

ANOVA which would then correctly estimate the variance of the estimator for treatment effect.

In general, if we use permuted block randomization within strata in the design, we

need to account for this in the analysis.

In contrast, if we used simple randomization and the two-sample t-test, we would be making

correct inference. Even so, we might still want to account for the effect of strata post-hoc in the

analysis to reduce the variance and get more efficient estimators for treatment difference. Some

of these issues will be discussed later in the course.

Disadvantage of blocking within strata

One can inadvertently counteract the balancing effects of blocking by having too many strata.

As we consider more prognostic factors to use for balance, we find that the number of strata
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grow exponentially. For example, with 10 prognostic factors, each dichotomized, we would have

210 = 1024 strata. In the most extreme case, suppose we have so many strata that there is no

more than one patient per stratum. The result is then equivalent to having simple randomization

and blocking would have no impact at all. Generally, we should use few strata relative to the

size of the clinical trial. That is, most blocks should be filled because unfilled blocks permit

imbalances.

4.3 Adaptive Randomization Procedures

This is where the rule for allocation to different treatments may vary according to the results

from prior patients already in the study. Baseline adaptive procedures attempt to balance the

allocation of patients to treatment overall and/or by prognostic factors. Some examples are

4.3.1 Efron biased coin design

Choose an integer D, referred to as the discrepancy, and a probability φ less than .5. For example,

we can take D = 3 and φ = .25. The allocation scheme is as follows. Suppose at any point

in time in the study the number of patients on treatment A and treatment B are nA and nB

respectively. The next patient to enter the study will be randomized to treatment A or B with

probability πA or 1 − πA, where

πA = .5 if |nA − nB| ≤ D

πA = φ if nA − nB > D

πA = 1 − φ if nB − nA > D

The basic idea is that as soon as the treatments become sufficiently imbalanced favoring one

treatment, then the randomization is chosen to favor the other treatment in an attempt to

balance more quickly while still incorporating randomization so that the physician can never be

certain of the next treatment assignment,

A criticism of this method is that design-based inference is difficult to implement. Personally, I

don’t think this issue is of great concern because model-based inference is generally the accepted

PAGE 66



CHAPTER 4 ST 520, A. TSIATIS and D. Zhang

practice. However, the complexity of implementing this method may not be worthwhile.

4.3.2 Urn Model (L.J. Wei)

In this scheme we start with 2m balls in an urn; m labeled A and m labeled B. When the first

patient enters the study you choose a ball at random from the urn and assign that treatment. If

you chose an A ball, you replace that ball in the urn and add an additional B ball. If you chose

a B ball then you replace it and add an additional A ball. Continue in this fashion. Clearly,

the reference to an urn is only for conceptualization, such a scheme would be implemented by a

computer.

Again, as soon as imbalance occurs in favor of one treatment, the chances become greater to get

the other treatment in an attempt to balance more quickly. This scheme makes it even more

difficult than the biased coin design for the physician to guess what treatment the next patient

will be assigned to. Again, design-based inference is difficult to implement, but as before, this

may not be of concern for most clinical trial statisticians.

Both the biased coin design and the urn model can be implemented within strata.

4.3.3 Minimization Method of Pocock and Simon

This is almost a deterministic scheme for allocating treatment with the goal of balancing many

prognostic factors (marginally) by treatment. Suppose there are K prognostic factors, indexed

by i = 1, . . . , K and each prognostic factor is broken down into ki levels, then the total number

of strata is equal to k1 × . . . × kK . This can be a very large number, in which case, permuted

block randomization within strata may not be very useful in achieving balance. Suppose, instead,

we wanted to achieve some degree of balance for the prognostic factors marginally rather than

within each stratum (combination of categories from all prognostic factors). Pocock and Simon

suggested using a measure of marginal discrepancy where the next patient would be assigned to

whichever treatment that made this measure of marginal discrepancy smallest. Only in the case

where the measure of marginal discrepancy was the same for both treatments would the next

patient be randomized to one of the treatments with equal probability.
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At any point in time in the study, let us denote by nAij the number of patients that are on

treatment A for the j-th level of prognostic factor i. An analogous definition for nBij .

Note: If nA denotes the total number on treatment A, then

nA =
ki∑

j=1

nAij; for all i = 1, . . . , K.

Similarly,

nB =
ki∑

j=1

nBij ; for all i = 1, . . . , K.

The measure of marginal discrepancy is given by

MD = w0|nA − nB| +
K∑

i=1

wi(
ki∑

j=1

|nAij − nBij |).

The weights w0, w1, . . . , wK are positive numbers which may differ according to the emphasis you

want to give to the different prognostic factors. Generally w0 = K,w1 = . . . = wK = 1.

The next patient that enters the study is assigned either treatment A or treatment B according

to whichever makes the subsequent measure of marginal discrepancy smallest. In case of a tie,

the next patient is randomized with probability .5 to either treatment. We illustrate with an

example. For simplicity, consider two prognostic factors, K=2, the first with two levels, k1 = 2

and the second with three levels k2 = 3. Suppose after 50 patients have entered the study, the

marginal configuration of counts for treatments A and B, by prognostic factor, looks as follows:

Treatment A Treatment B

PF1 PF1

PF2 1 2 Total PF2 1 2 Total

1 * 13 1 * 12

2 9 2 6

3 4 3 6

Total 16 10 26 Total 14 10 24

If we take the weights to be w0 = 2 and w1 = w2 = 1, then the measure of marginal discrepancy

at this point equals

MD = 2|26 − 24| + 1(|16 − 14| + |10 − 10|) + 1(|13 − 12| + |9 − 6| + |4 − 6|) = 12.
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Suppose the next patient entering the study is at the second level of PF1 and the first level of

PF2. Which treatment should that patient be randomized to?

If the patient were randomized to treatment A, then the result would be

Treatment A Treatment B

PF1 PF1

PF2 1 2 Total PF2 1 2 Total

1 14 1 12

2 9 2 6

3 4 3 6

Total 16 11 27 Total 14 10 24

and the measure of marginal discrepancy

MD = 2|27 − 24| + 1(|16 − 14| + |11 − 10|) + 1(|14 − 12| + |9 − 6| + |4 − 6|) = 16.

Whereas, if that patient were assigned to treatment B, then

Treatment A Treatment B

PF1 PF1

PF2 1 2 Total PF2 1 2 Total

1 13 1 13

2 9 2 6

3 4 3 6

Total 16 10 26 Total 14 11 25

and the measure of marginal discrepancy

MD = 2|26 − 25| + 1(|16 − 14| + |10 − 11|) + 1(|13 − 13| + |9 − 6| + |4 − 6|) = 10.

Therefore, we would assign this patient to treatment B.

Note that design-based inference is not even possible since the allocation is virtually deterministic.
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4.4 Response Adaptive Randomization

In response adaptive schemes, the responses of the past participants in the study are used to

determine the treatment allocation for the next patient. Some examples are

Play-the-Winner Rule (Zelen)

• First patient is randomized to either treatment A or B with equal probability

• Next patient is assigned the same treatment as the previous one if the previous patient’s

response was a success; whereas, if the previous patient’s response is a failure, then the

patient receives the other treatment. The process calls for staying with the winner until a

failure occurs and then switching.

For example,

Patient ordering

Treatment 1 2 3 4 5 6 7 8

A S F S S F

B S S F

Urn Model (L.J. Wei)

The first patient is assigned to either treatment by equal probability. Then every time there is

a success on treatment A add r A balls into the urn, when there is a failure on treatment A add

r B balls. Similarly for treatment B. The next patient is assigned to whichever ball is drawn at

random from this urn.

Response adaptive allocation schemes have the intended purpose of maximizing the number of

patients in the trial that receive the superior treatment.

Difficulties with response adaptive allocation schemes

• Information on response may not be available immediately.
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• Such strategies may take a greater number of patients to get the desired answer. Even

though more patients on the trial may be getting the better treatment, by taking a longer

time, this better treatment is deprived from the population at large who may benefit.

• May interfere with the ethical principle of equipoise.

• Results may not be easily interpretable from such a design.

ECMO trial

To illustrate the last point, we consider the results of the ECMO trial which used a play-the-

winner rule.

Extracorporeal membrane oxygenator was a promising treatment for a neonatal population suf-

fering from respiratory insufficiency. This device oxygenates the blood to compensate for the

lung’s inability or inefficiency in achieving this task. Because the mortality rate was very high

for this population and because of the very promising results of ECMO it was decided to use a

play-the-winner rule.

The first child was randomized to the control group and died. The next 10 children were assigned

ECMO and all survived at which point the trial was stopped and ECMO declared a success.

It turned out that after further investigation, the first child was the sickest of all the children

studied. Controversy ensued and the study had to be repeated using a more traditional design.

Footnote on page 73 of the textbook FFD gives further references.

4.5 Mechanics of Randomization

The following formal sequence of events should take place before a patient is randomized into a

phase III clinical trial.

• Patient requires treatment

• Patient is eligible for the trial. Inclusion and exclusion criteria should be checked immedi-

ately. For a large multi-center trial, this may be done at a central registration office
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• Clinician is willing to accept randomization

• Patient consent is obtained. In the US this is a legal requirement

• Patient formally entered into the trial

After a patient and his/her physician agree to participate in the trial then

• Each patient must be formally identified. This can be done by collecting some minimal

information; i.e. name, date of birth, hospital number. This information should be kept

on a log (perhaps at a central office) and given a trial ID number for future identification.

This helps keep track of the patient and it helps guard against investigators not giving the

allocated treatment.

• The treatment assignment is obtained from a randomization list. Most often prepared in

advance

(a) The randomization list could be transferred to a sequence of sealed envelopes each

containing the name of the next treatment on the card. The clinician opens the

envelope when a patient has been formerly registered onto the trial

(b) If the trial is double-blind then the pharmacist preparing the drugs needs to be in-

volved. They prepare the sequence of drug packages according to the randomization

list.

(c) For a multi-center trial, randomization is carried out by the central office by phone or

by computer.

(d) For a double-blind multi-center trial, the randomization may need to be decentralized

to each center according to (b). However, central registration is recommended.

Documentation

• A confirmation form needs to be filled out after treatment assignment which contains name,

trial number and assigned treatment. If randomization is centralized then this confirmation

form gets sent from the central office to the physician. If it is decentralized then it goes

from physician to central office.
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• An on-study form is then filled out containing all relevant information prior to treatment

such as previous therapies, personal characteristics (age, race, gender, etc.), details about

clinical conditions and certain laboratory tests (e.g. lung function for respiratory illness)

All of these checks and balances must take place quickly but accurately prior to the patient

commencing therapy.
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5 Some Additional Issues in Phase III Clinical Trials

5.1 Blinding and Placebos

Even in a randomized trial the comparison of treatments may be distorted if the patients and

those responsible for administering the treatment and evaluation know which treatment is being

used. These problems can be avoided in some cases by making the trial double blind, whereby,

neither patient, physician nor evaluator are aware which treatment the patient is receiving.

• The patient— If the patient knows he/she is receiving a new treatment then this may result

in psychological benefit. The degree of psychological effect depends on the type of disease

and the nature of treatments. One should not underestimate the importance of psychology

for patients with disease. Whether it is asthma, cancer, heart disease, etc, the manner in

which patients are informed of therapy has a profound effect on subsequent performance.

• The treatment team—(anyone who participates in the treatment or management of the

patient). Patients known to be receiving a new therapy may be treated differently than

those on standard treatment. Such difference in ancillary care may affect the response.

• The evaluator— It is especially important that the individual or individuals evaluating

response be objective. A physician who has pre-conceived ideas how a new treatment

might work may introduce bias in his/her evaluation of the patient response if they know

the treatment that the patient received.

The biases above may be avoided with proper blinding. However, blinding treatments takes

a great deal of care and planning. If the treatment is in the form of pills, then the pills for

the different treatments should be indistinguishable; i.e the same size, color, taste, texture.

If no treatment is to be used as the control group then we may consider using a placebo for

patients randomized to the control group. A placebo is a pill or other form of treatment which is

indistinguishable from the active treatment but contains no active substance. (sugar pill, saline,

etc.) If you are comparing two active treatments each, say, with pills that cannot be made to

be similar, then we may have to give each patient two pills; one active pill for one treatment
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and a placebo pill for the other treatment. (This can become overwhelming if we are comparing

different combinations of drugs).

It has been well documented that there is a placebo effect. That is, there have been randomized

studies conducted that gave some patients placebo and the other patients nothing with the

placebo group responding significantly better. Consequently, in a randomized clinical trial which

compares a new drug to a placebo control, we are actually testing whether the active drug has

effect equal to or greater than a placebo effect.

One must realize that although the principles of blinding are good, they are not feasible in some

trials. For example, if we are comparing surgery versus chemotherapy in a cancer clinical trial,

there is no way to blind these treatments. In such cases we must be as careful as possible to

choose endpoints that are as objective as possible. For example, time to death from any cause.

5.2 Ethics

Clinical trials are ethical in the setting of uncertainty.
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The Hippocratic Oath

I swear by Apollo the physician, by Aesculapius, Hygeia and Panacea, and I take to witness all

the gods, all the goddesses, to keep according to my ability and my judgment the following Oath:

To consider dear to me as my parents him who taught me this art; to live in common with him

and if necessary to share my goods with him; to look upon his children as my own brothers, to

teach them this art if they so desire without fee or written promise; to impart to my sons and the

sons of the master who taught me and the disciples who have enrolled themselves and have agreed

to the rules of the profession, but to these alone, the precepts and the instruction. I will prescribe

regimen for the good of my patients according to my ability and my judgment and never do harm

to anyone. To please no one will I prescribe a deadly drug, nor give advice which may cause his

death. Nor will I give a woman a pessary to procure abortion. But I will preserve the purity of

my life and my art. I will not cut for stone, even for patients in whom disease is manifest; I

will leave this operation to be performed by practitioners (specialists in this art). In every house

where I come I will enter only for the good of my patients, keeping myself far from all intentional

ill-doing and all seduction, and especially from the pleasures of love with women or men, be they

free or slaves. All that may come to my knowledge in the exercise of my profession or outside of

my profession or in daily commerce with men, which ought not to be spread abroad, I will keep

secret and I will never reveal. If I keep this oath faithfully, may I enjoy life and practice my art,

respected by all men and in all times; but if I swerve from it or violate it, may the reverse be my

lot.

PAGE 76



CHAPTER 5 ST 520, A. TSIATIS and D. Zhang

Even today physicians may take the Hippocratic oath although it is not repeated in full. Clearly

many of the issues, such as abortion, surgery for kidney stones, use of deadly drugs, no longer

apply. Nor does the pledge for “free instruction” still apply.

Ethical considerations have been addressed by the Nuremberg Code and Helsinki Declaration

(see the class website for more details)

In the United States, the Congress established the National Commission for the Protection of

Human Subjects of Biomedical and Behavioral Research as part of the National Research Act.

This act required the establishment of an Institutional Review Board (IRB) for all research

funded in whole or in part by the federal government. These were later modified to require IRB

approval for all drugs or products regulated by the Food and Drug Administration (FDA).

IRB’s must have at least five members with expertise relevant to safeguarding the rights and

welfare of patients participating in biomedical research. At least one should be a scientist, and at

least one must not be affiliated with the institution. The IRB should be made up of individuals

with diverse racial, gender and cultural backgrounds. The scope of the IRB includes, but is not

limited to consent procedures and research design.

IRB’s approve human research studies that meet specific prerequisites.

(1) The risks to the study participants are minimized

(2) The risks are reasonable in relation to the anticipated benefit

(3) The selection of study patients is equitable

(4) Informed consent is obtained and appropriately documented for each participant

(5) There are adequate provisions for monitoring data collected to ensure the safety of the

study participants

(6) The privacy of the participants and confidentiality of the data are protected

5.3 The Protocol Document

Definition: The protocol is a scientific planning document for a medical study on human sub-
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jects. It contains the study background, experimental design, patient population, treatment and

evaluation details, and data collection procedures.

Purposes

(1) To assist investigators in thinking through the research

(2) To ensure that both patient and study management are considered at the planning stage

(3) To provide a sounding board for external comments

(4) To orient the staff for preparation of forms and processing procedures

(5) To provide a document which can be used by other investigators who wish to confirm

(replicate) the results

I will hand out two protocols in class. One is from the Womens Health Initiative (WHI) and one

from the Cancer and Leukemia Group B (CALGB) study 8541.

In the WHI study, the clinical trial will evaluate the benefits and risks of Hormone Replacement

Therapy (HRT), Dietary Modification, DM, and supplementation with calcium/vitamin D (CaD)

on the overall health of postmenopausal women. Health will be assessed on the basis of quality

of life measurements, cause-specific morbidity and mortality, and total mortality.

CALGB 8541 is a study of different regimen of adjuvant CAF (combination of Cyclophosphamide,

Adriamycin and 5 Fluorouracil (5-FU)) as treatment for women with pathological stage II, node

positive breast cancer. Specifically, intensive CAF for four cycles versus low dose CAF for four

cycles versus standard dose CAF for six cycles will be compared in a three arm randomized

clinical trial.

Protocols generally have the following elements:

1. Schema. Depicts the essentials of a study design.

WHI: page 18

CALGB 8541: page 1
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2. Objectives The objectives should be few in number and should be based on specific

quantifiable endpoints

WHI: pages 14-15 and pages 22-24

CALGB 8541: page 3

3. Project background This section should give the referenced medical/historical back-

ground for therapy of these patients.

WHI: pages 2-13

CALGB 8541: pages 1-3

This generally includes

– standard therapy

– predecessor studies (phase I and II if appropriate)

– previous or concurrent studies of a similar nature

– moral justification of the study

4. Patient Selection A clear definition of the patient population to be studied. This should

include clear, unambiguous inclusion and exclusion criteria that are verifiable at the time

of patient entry. Each item listed should be verified on the study forms.

WHI: pages 24-28

CALGB 8541: pages 4-5

5. Randomization/Registration Procedures This section spells out the mechanics of

entering a patient into the study

WHI: pages 29-38

CALGB 8541: pages 5-7

6. Treatment Administration and Patient Management How the treatment is to be

administered needs to be specified in detail. All practical eventualities should be taken

into account, at least, as much as possible. Protocols should not be written with only the

study participants in mind. Others may want to replicate this therapy such as community

hospitals that were not able to participate in the original study.

WHI: pages 18-22 and 44-49

CALGB 8541: pages 7-20
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7. Study parameters This section gives the schedule of the required and optional investi-

gations/tests.

WHI: pages 38-39

CALGB 8541: page 20

8. Statistical Considerations

WHI: pages 52-55 and an extensive appendix (not provided)

CALGB 8541: pages 22-23

– Study outline, stratification and randomization

– Sample size criteria: Motivation for the sample size and duration of the trial needs to

be given. This can be based on type I and type II error considerations in a hypothesis

testing framework or perhaps based on the desired accuracy of a confidence interval.

– Accrual estimates

– Power calculations

– Brief description of the data analysis that will be used

– Interim monitoring plans

9. Informed Consent The consent form needs to be included.

For both WHI and CALGB 8541 these are in an appendix (not included)

The informed consent should include

– an explanation of the procedures to be followed and their purposes

– a description of the benefits that might reasonably be expected

– a description of the discomforts and risks that could reasonably be expected

– a disclosure of any appropriate alternative procedures that might be advantageous

– a statement that the subject is at liberty to abstain from participation in the study

and is free to withdraw at any time

10. Study Management Policy This section includes how the study will be organized and

managed, when the data will be summarized and the details of manuscript development

and publication

WHI: pages 58-61

CALGB 8541: Was not included
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6 Sample Size Calculations

One of the major responsibilities of a clinical trial statistician is to aid the investigators in

determining the sample size required to conduct a study. The most common procedure for

determining the sample size involves computing the minimum sample size necessary in order that

important treatment differences be determined with sufficient accuracy. We will focus primarily

on hypothesis testing.

6.1 Hypothesis Testing

In a hypothesis testing framework, the question is generally posed as a decision problem regarding

a parameter in a statistical model:

Suppose a population parameter corresponding to a measure of treatment difference using the

primary endpoint is defined for the study. This parameter will be denoted by ∆. For example,

if we are considering the mean response of some continuous variable between two treatments, we

can denote by µ1, the population mean response for treatment 1 and µ2, the mean response on

treatment 2. We then denote by

∆ = µ1 − µ2

the measure of treatment difference. A clinical trial will be conducted in order to make inference

on this population parameter. If we take a hypothesis testing point of view, then we would

consider the following decision problem: Suppose treatment 2 is currently the standard of care

and treatment 1 is a new treatment that has shown promise in preliminary testing. What we

want to decide is whether we should recommend the new treatment or stay with the standard

treatment. As a starting point we might say that if, in truth, ∆ ≤ 0 then we would want to

stay with the standard treatment; whereas, if, in truth, ∆ > 0, then we would recommend that

future patients go on the new treatment. We refer to ∆ ≤ 0 as the null hypothesis “H0” and

∆ > 0 as the alternative hypothesis “HA”. The above is an example of a one-sided hypothesis

test. In some cases, we may be interested in a two-sided hypothesis test where we test the null

hypothesis H0 : ∆ = 0 versus the alternative HA : ∆ 6= 0.

In order to make a decision on whether to choose the null hypothesis or the alternative hypothesis,
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we conduct a clinical trial and collect data from a sample of individuals. The data from n

individuals in our sample will be denoted generically as (z1, . . . , zn) and represent realizations of

random vectors (Z1, . . . , Zn). The Zi may represent a vector of random variables for individual

i; e.g. response, treatment assignment, other covariate information.

As statisticians, we posit a probability model that describes the distribution of (Z1, . . . , Zn) in

terms of population parameters which includes ∆ (treatment difference) as well as other param-

eters necessary to describe the probability distribution. These other parameters are referred to

as nuisance parameters. We will denote the nuisance parameters by the vector θ. As a simple

example, let the data for the i-th individual in our sample be denoted by Zi = (Yi, Ai), where

Yi denotes the response (taken to be some continuous measurement) and Ai denotes treatment

assignment, where Ai can take on the value of 1 or 2 depending on the treatment that patient i

was assigned. We assume the following statistical model: let

(Yi|Ai = 2) ∼ N(µ2, σ
2)

and

(Yi|Ai = 1) ∼ N(µ2 + ∆, σ2),

i.e. since ∆ = µ1 − µ2, then µ1 = µ2 + ∆. The parameter ∆ is the test parameter (treatment

difference of primary interest) and θ = (µ2, σ
2) are the nuisance parameters.

Suppose we are interested in testing H0 : ∆ ≤ 0 versus HA : ∆ > 0. The way we generally

proceed is to combine the data into a summary test statistic that is used to discriminate between

the null and alternative hypotheses based on the magnitude of its value. We refer to this test

statistic by

Tn(Z1, . . . , Zn).

Note: We write Tn(Z1, . . . , Zn) to emphasize the fact that this statistic is a function of all the

data Z1, . . . , Zn and hence is itself a random variable. However, for simplicity, we will most often

refer to this test statistic as Tn or possibly even T .

The statistic Tn should be constructed in such a way that

(a) Larger values of Tn are evidence against the null hypothesis in favor of the alternative
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(b) The probability distribution of Tn can be evaluated (or at least approximated) at the

border between the null and alternative hypotheses; i.e. at ∆ = 0.

After we conduct the clinical trial and obtain the data, i.e. the realization (z1, . . . , zn) of

(Z1, . . . , Zn), we can compute tn = Tn(z1, . . . , zn) and then gauge this observed value against

the distribution of possible values that Tn can take under ∆ = 0 to assess the strength of

evidence for or against the null hypothesis. This is done by computing the p-value

P∆=0(Tn ≥ tn).

If the p-value is small, say, less than .05 or .025, then we use this as evidence against the null

hypothesis.

Note:

1. Most test statistics used in practice have the property that P∆(Tn ≥ x) increases as ∆

increases, for all x. In particular, this would mean that if the p-value P∆=0(Tn ≥ tn) were

less than α at ∆ = 0, then the probability P∆(Tn ≥ tn) would also be less than α for all ∆

corresponding to the null hypothesis H0 : ∆ ≤ 0.

2. Also, most test statistics are computed in such a way that the distribution of the test

statistic, when ∆ = 0, is approximately a standard normal; i.e.

Tn
(∆=0)∼ N(0, 1),

regardless of the values of the nuisance parameters θ.

For the problem where we were comparing the mean response between two treatments, where

response was assumed normally distributed with equal variance by treatment, but possibly dif-

ference means, we would use the two-sample t-test; namely,

Tn =
Ȳ1 − Ȳ2

sY

(
1
n1

+ 1
n2

)1/2
,

where Ȳ1 denotes the sample average response among the n1 individuals assigned to treatment

1, Ȳ2 denotes the sample average response among the n2 individuals assigned to treatment 2,
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n = n1 + n2 and the sample variance is

s2
Y =

{∑n1

j=1(Y1j − Ȳ1)
2 +

∑n2

j=1(Y2j − Ȳ2)
2

(n1 + n2 − 2)

}
.

Under ∆ = 0, the statistic Tn follows a central t distribution with n1 +n2 −2 degrees of freedom.

If n is large (as it generally is for phase III clinical trials), this distribution is well approximated

by the standard normal distribution.

If the decision to reject the null hypothesis is based on the p-value being less that α (.05 or .025

generally), then this is equivalent to rejecting H0 whenever

Tn ≥ Zα,

where Zα denotes the 1 − α-th quantile of a standard normal distribution; e.g. Z.05 = 1.64 and

Z.025 = 1.96. We say that such a test has level α.

Remark on two-sided tests: If we are testing the null hypothesis H0 : ∆ = 0 versus the

alternative hypothesis HA : ∆ 6= 0 then we would reject H0 when the absolute value of the test

statistic |Tn| is sufficiently large. The p-value for a two-sided test is defined as P∆=0(|Tn| ≥ tn),

which equals P∆=0(Tn ≥ tn)+P∆=0(Tn ≤ −tn). If the test statistic Tn is distributed as a standard

normal when ∆ = 0, then a level α two-sided test would reject the null hypothesis whenever the

p-value is less than α; or equivalently

|Tn| ≥ Zα/2.

The rejection region of a test is defined as the set of data points in the sample space that

would lead to rejecting the null hypothesis. For one sided level α tests, the rejection region is

{(z1, . . . , zn) : Tn(z1, . . . , zn) ≥ Zα},

and for two-sided level α tests, the rejection region is

{(z1, . . . , zn) : |Tn(z1, . . . , zn)| ≥ Zα/2}.

Power

In hypothesis testing, the sensitivity of a decision (i.e. level-α test) is evaluated by the probability

of rejecting the null hypothesis when, in truth, there is a clinically important difference. This is
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referred to as the power of the test. We want power to be large; generally power is chosen to be

.80, .90, .95. Let us denote by ∆A the clinically important difference. This is the minimum value

of the population parameter ∆ that is deemed important to detect. If we are considering a one-

sided hypothesis test, H0 : ∆ ≤ 0 versus HA : ∆ > 0, then by defining the clinically important

difference ∆A, we are essentially saying that the region in the parameter space ∆ = (0,∆A) is

an indifference region. That is, if, in truth, ∆ ≤ 0, then we would want to conclude that the

null hypothesis is true with high probability (this is guaranteed to be greater than or equal to

(1 − α) by the definition of a level-α test). However, if, in truth, ∆ ≥ ∆A, where ∆A > 0 is

the clinically important difference, then we want to reject the null hypothesis in favor of the

alternative hypothesis with high probability (probability greater than or equal to the power).

These set of constraints imply that if, in truth, 0 < ∆ < ∆A, then either the decision to reject or

not reject the null hypothesis may plausibly occur and for such values of ∆ in this indifference

region we would be satisfied by either decision.

Thus the level of a one-sided test is

P∆=0(falling into the rejection region) = P∆=0(Tn ≥ Zα),

and the power of the test is

P∆=∆A
(falling into the rejection region) = P∆=∆A

(Tn ≥ Zα).

In order to evaluate the power of the test we need to know the distribution of the test statistic

under the alternative hypothesis. Again, in most problems, the distribution of the test statistic

Tn can be well approximated by a normal distribution. Under the alternative hypothesis

Tn
HA=(∆A,θ)∼ N(φ(n,∆A, θ), σ

2
∗(∆A, θ)).

In other words, the distribution of Tn under the alternative hypothesis HA follows a normal

distribution with non zero mean which depends on the sample size n, the alternative ∆A and the

nuisance parameters θ. We denote this mean by φ(n,∆A, θ). The standard deviation σ∗(∆A, θ)

may also depend on the parameters ∆A and θ.

Remarks

1. Unlike the null hypothesis, the distribution of the test statistic under the alternative hypothesis

also depends on the nuisance parameters. Thus during the design stage, in order to determine the
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power of a test and to compute sample sizes, we need to not only specify the clinically important

difference ∆A, but also plausible values of the nuisance parameters.

2. It is often the case that under the alternative hypothesis the standard deviation σ∗(∆A, θ)

will be equal to (or approximately equal) to one. If this is the case, then the mean under the

alternative φ(n,∆A, θ) is referred to as the non-centrality parameter.

For example, when testing the equality in mean response between two treatments with normally

distributed continuous data, we often use the t-test

Tn =
Ȳ1 − Ȳ2

sY

(
1
n1

+ 1
n2

)1/2
≈ Ȳ1 − Ȳ2

σY

(
1
n1

+ 1
n2

)1/2
,

which is approximately distributed as a standard normal under the null hypothesis. Under the

alternative hypothesis HA : µ1 −µ2 = ∆ = ∆A, the distribution of Tn will also be approximately

normally distributed with mean

EHA
(Tn) ≈ E





Ȳ1 − Ȳ2

σY

(
1
n1

+ 1
n2

)1/2





=
µ1 − µ2

σY

(
1
n1

+ 1
n2

)1/2
=

∆A

σY

(
1
n1

+ 1
n2

)1/2
,

and variance

varHA
(Tn) =

{var(Ȳ1) + var(Ȳ2)}
σ2

Y

(
1
n1

+ 1
n2

) =
σ2

Y

(
1
n1

+ 1
n2

)

σ2
Y

(
1
n1

+ 1
n2

) = 1.

Hence

Tn
HA∼ N




∆A

σY

(
1
n1

+ 1
n2

)1/2
, 1


 .

Thus

φ(n,∆A, θ) =
∆A

σY

(
1
n1

+ 1
n2

)1/2
, (6.1)

and

σ∗(∆A, θ) = 1. (6.2)

Hence





∆A

σY

(
1

n1
+ 1

n2

)1/2





is the non-centrality parameter.

Note: In actuality, the distribution of Tn is a non-central t distribution with n1 +n2 − 2 degrees

of freedom and non-centrality parameter





∆A

σY

(
1

n1
+ 1

n2

)
1/2





. However, with large n this is well

approximated by the normal distribution given above.
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6.2 Deriving sample size to achieve desired power

We are now in a position to derive the sample size necessary to detect a clinically important

difference with some desired power. Suppose we want a level-α test (one or two-sided) to have

power at least equal to 1−β to detect a clinically important difference ∆ = ∆A. Then how large

a sample size is necessary? For a one-sided test consider the figure below.

Figure 6.1: Distributions of T under H0 and HA
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It is clear from this figure that

φ(n,∆A, θ) = {Zα + Zβσ∗(∆A, θ)}. (6.3)

Therefore, if we specify

• the level of significance (type I error) “α”

• the power (1 - type II error) “1 − β”

• the clinically important difference “∆A”

• the nuisance parameters “θ”
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then we can find the value n which satisfies (6.3).

Consider the previous example of normally distributed response data where we use the t-test

to test for treatment differences in the mean response. If we randomize patients with equal

probability to the two treatments so that n1 = n2 ≈ n/2, then substituting (6.1) and (6.2) into

(6.3), we get
∆A

σY

(
4
n

)1/2
= (Zα + Zβ),

or

n1/2 =

{
(Zα + Zβ)σY × 2

∆A

}

n =

{
(Zα + Zβ)2σ2

Y × 4

∆2
A

}
.

Note: For two-sided tests we use Zα/2 instead of Zα.

Example

Suppose we wanted to find the sample size necessary to detect a difference in mean response of

20 units between two treatments with 90% power using a t-test (two-sided) at the .05 level of

significance. We expect the population standard deviation of response σY to be about 60 units.

In this example α = .05, β = .10, ∆A = 20 and σY = 60. Also, Zα/2 = Z.025 = 1.96, and

Zβ = Z.10 = 1.28. Therefore,

n =
(1.96 + 1.28)2(60)2 × 4

(20)2
≈ 378 (rounding up),

or about 189 patients per treatment group.

6.3 Comparing two response rates

We will now consider the case where the primary outcome is a dichotomous response; i.e. each

patient either responds or doesn’t respond to treatment. Let π1 and π2 denote the population

response rates for treatments 1 and 2 respectively. Treatment difference is denoted by ∆ = π1−π2.

We wish to test the null hypothesis H0 : ∆ ≤ 0 (π1 ≤ π2) versus HA : ∆ > 0 (π1 > π2). In

some cases we may want to test the null hypothesis H0 : ∆ = 0 against the two-sided alternative

HA : ∆ 6= 0.
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A clinical trial is conducted where n1 patients are assigned treatment 1 and n2 patients are

assigned treatment 2 and the number of patients who respond to treatments 1 and 2 are denoted

by X1 and X2 respectively. As usual, we assume

X1 ∼ b(n1, π1)

and

X2 ∼ b(n2, π2),

and that X1 and X2 are statistically independent. If we let π1 = π2 +∆, then the distribution of

X1 and X2 is characterized by the test parameter ∆ and the nuisance parameter π2. If we denote

the sample proportions by p1 = X1/n1 and p2 = X2/n2, then we know from the properties of a

binomial distribution that

E(p1) = π1, var(p1) =
π1(1 − π1)

n1
,

E(p2) = π2, var(p2) =
π2(1 − π2)

n2

.

This motivates the test statistic

Tn =
p1 − p2

{
p̄(1 − p̄)

(
1
n1

+ 1
n2

)}1/2
,

where p̄ is the combined sample proportion for both treatments; i.e. p̄ = (X1 +X2)/(n1 + n2).

Note: The statistic T 2
n is the usual chi-square test used to test equality of proportions.

We can also write

p̄ =
p1n1 + p2n2

n1 + n2
= p1

(
n1

n1 + n2

)
+ p2

(
n2

n1 + n2

)
.

As such, p̄ is an approximation (consistent estimator) for

π1

(
n1

n1 + n2

)
+ π2

(
n2

n1 + n2

)
= π̄,

where π̄ is a weighted average of π1 and π2. Thus

Tn ≈ p1 − p2
{
π̄(1 − π̄)

(
1
n1

+ 1
n2

)}1/2
.
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The mean and variance of this test statistic under the null hypothesis ∆ = 0 (border of the null

and alternative hypotheses for a one-sided test) are

E∆=0(Tn) ≈ E∆=0





p1 − p2
{
π̄(1 − π̄)

(
1
n1

+ 1
n2

)}1/2





=
E∆=0(p1 − p2)

{
π̄(1 − π̄)

(
1
n1

+ 1
n2

)}1/2
= 0,

var∆=0(Tn) ≈ {var∆=0(p1) + var∆=0(p2)}{
π̄(1 − π̄)

(
1
n1

+ 1
n2

)} =

{
π1(1−π1)

n1
+ π2(1−π2)

n2

}

{
π̄(1 − π̄)

(
1
n1

+ 1
n2

)} .

But since π1 = π2 = π̄, we get var∆=0(Tn) = 1.

Because the distribution of sample proportions are approximately normally distributed, this

will imply that the distribution of the test statistic, which is roughly a linear combination of

independent sample proportions, will also be normally distributed. Since the normal distribution

is determined by its mean and variance, this implies that,

Tn
(∆=0)∼ N(0, 1).

For the alternative hypothesis HA : ∆ = π1 − π2 = ∆A,

EHA
(Tn) ≈ (π1 − π2)

{
π̄(1 − π̄)

(
1
n1

+ 1
n2

)}1/2
=

∆A
{
π̄(1 − π̄)

(
1
n1

+ 1
n2

)}1/2
,

and using the same calculations for the variance as we did above for the null hypothesis we get

varHA
(Tn) ≈

{
π1(1−π1)

n1
+ π2(1−π2)

n2

}

{
π̄(1 − π̄)

(
1
n1

+ 1
n2

)} .

When n1 = n2 = n/2, we get some simplification; namely

π̄ = (π1 + π2)/2 = (π2 + ∆A/2)

and

varHA
(Tn) =

π1(1 − π1) + π2(1 − π2)

2π̄(1 − π̄)
.

Note: The variance under the alternative is not exactly equal to one, although, if π1 and π2 are

not very different, then it is close to one.

Consequently, with equal treatment allocation,

Tn
HA∼ N




∆A
{
π̄(1 − π̄) 4

n

}1/2
,
π1(1 − π1) + π2(1 − π2)

2π̄(1 − π̄)


 .
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Therefore,

φ(n,∆A, θ) =
∆A

{
π̄(1 − π̄) 4

n

}1/2
,

and

σ2
∗ =

π1(1 − π1) + π2(1 − π2)

2π̄(1 − π̄)
,

where π1 = π2 + ∆A.

Using formula (6.3), the sample size necessary to have power at least (1−β) to detect an increase

of ∆A, or greater, in the population response rate of treatment 1 above the population response

rate for treatment 2, using a one-sided test at the α level of significance is

n1/2∆A

{4π̄(1 − π̄)}1/2
= Zα + Zβ

{
π1(1 − π1) + π2(1 − π2)

2π̄(1 − π̄)

}1/2

.

Hence

n =

{
Zα + Zβ

{
π1(1−π1)+π2(1−π2)

2π̄(1−π̄)

}1/2
}2

4π̄(1 − π̄)

∆2
A

. (6.4)

Note: For two-sided tests we replace Zα by Zα/2.

Example: Suppose the standard treatment of care (treatment 2) has a response rate of about .35

(best guess). After collaborations with your clinical colleagues, it is determined that a clinically

important difference for a new treatment is an increase in .10 in the response rate. That is, a

response rate of .45 or larger. If we are to conduct a clinical trial where we will randomize patients

with equal allocation to either the new treatment (treatment 1) or the standard treatment, then

how large a sample size is necessary to detect a clinically important difference with 90% power

using a one-sided test at the .025 level of significance?

Note for this problem

• α = .025, Zα = 1.96

• β = .10 (power = .9), Zβ = 1.28

• ∆A = .10

• π2 = .35, π1 = .45, π̄ = .40
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Substituting these values into (6.4) we get

n =

{
1.96 + 1.28

{
.45×.55+.35×.65

2×.40×.60

}1/2
}2

4 × .40 × .60

(.10)2
≈ 1, 004,

or about 502 patients on each treatment arm.

6.3.1 Arcsin square root transformation

Since the binomial distribution may not be well approximated by a normal distribution, especially

when n is small (not a problem in most phase III clinical trials) or π is near zero or one,

other approximations have been suggested for deriving test statistics that are closer to a normal

distribution. We will consider the arcsin square root transformation which is a variance stabilizing

transformation. Before describing this transformation, I first will give a quick review of the

delta method for deriving distributions of transformations of estimators that are approximately

normally distributed.

Delta Method

Consider an estimator γ̂n of a population parameter γ such that

γ̂n ∼ N(γ,
σ2

γ

n
).

Roughly speaking, this means that

E(γ̂n) ≈ γ

and

var(γ̂n) ≈
σ2

γ

n
.

Consider the variable f(γ̂n), where f(·) is a smooth monotonic function, as an estimator for f(γ).

Using a simple Taylor series expansion of f(γ̂n) about f(γ), we get

f(γ̂n) = f(γ) + f ′(γ)(γ̂n − γ) + (small remainder term),

where f ′(γ) denotes the derivative df(γ)
dγ

. Then

E{f(γ̂n)} ≈ E{f(γ) + f ′(γ)(γ̂n − γ)}
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= f(γ) + f ′(γ)E(γ̂n − γ) = f(γ).

and

var{f(γ̂n)} ≈ var{f(γ) + f ′(γ)(γ̂n − γ)}

= {f ′(γ)}2var(γ̂n) = {f ′(γ)}2

(
σ2

γ

n

)
.

Thus

f(γ̂n) ∼ N

(
f(γ), {f ′(γ)}2

(
σ2

γ

n

))
.

Take the function f(·) to be the arcsin square root transformation; i.e

f(x) = sin−1(x)1/2.

If y = sin−1(x)1/2, then sin(y) = x1/2. The derivative dy
dx

is found using straightforward calculus.

That is,
dsin(y)

dx
=
dx1/2

dx
,

cos(y)
dy

dx
=

1

2
x−1/2.

Since cos2(y) + sin2(y) = 1, this implies that cos(y) = {1 − sin2(y)}1/2 = (1 − x)1/2. Therefore.

(1 − x)1/2 dy

dx
=

1

2
x−1/2,

or
dy

dx
=

1

2
{x(1 − x)}−1/2 = f ′(x).

If p = X/n is the sample proportion, where X ∼ b(n, π), then var(p) = π(1−π)
n

. Using the delta

method, we get that

var{sin−1(p)1/2} ≈ {f ′(π)}2

{
π(1 − π)

n

}
,

=
[
1

2
{π(1 − π)}−1/2

]2 {π(1 − π)

n

}
,

=

{
1

4π(1 − π)

}{
π(1 − π)

n

}
=

1

4n
.

Consequently,

sin−1(p)1/2 ∼ N
(
sin−1(π)1/2,

1

4n

)
.

Note: The variance of sin−1(p)1/2 does not involve the parameter π, thus the term “variance

stabilizing”.
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The null hypothesis H0 : π1 = π2 is equivalent to H0 : sin−1(π1)
1/2 = sin−1(π2)

1/2. This suggests

that another test statistic which could be used to test H0 is given by

Tn =
sin−1(p1)

1/2 − sin−1(p2)
1/2

(
1

4n1
+ 1

4n2

)1/2
.

The expected value of Tn is

E(Tn) =
E{sin−1(p1)

1/2} −E{sin−1(p2)
1/2}

(
1

4n1
+ 1

4n2

)1/2
≈ sin−1(π1)

1/2 − sin−1(π2)
1/2

(
1

4n1
+ 1

4n2

)1/2
.

and the variance of Tn is

var(Tn) =
var{sin−1(p1)

1/2 − sin−1(p2)
1/2}(

1
4n1

+ 1
4n2

) =
var{sin−1(p1)

1/2} + var{sin−1(p2)
1/2}(

1
4n1

+ 1
4n2

)

≈
(

1
4n1

+ 1
4n2

)

(
1

4n1
+ 1

4n2

) = 1.

In addition to the variance stabilizing property of the arcsin square root transformation for the

sample proportion of a binomial distribution, this transformed sample proportion also has distri-

bution which is closer to a normal distribution. Since the test statistic Tn is a linear combination

of independent arcsin square root transformations of sample proportions, the distribution of Tn

will also be well approximated by a normal distribution. Specifically,

Tn
H0∼ N(0, 1)

Tn
HA∼ N



sin−1(π1)

1/2 − sin−1(π2)
1/2

(
1

4n1
+ 1

4n2

)1/2
, 1


 .

If we take n1 = n2 = n/2, then the non-centrality parameter equals

φ(n,∆A, θ) = n1/2∆A,

where ∆A, the clinically important treatment difference, is parameterized as

∆A = sin−1(π1)
1/2 − sin−1(π2)

1/2.

Consequently, if we parameterize the problem by considering the arcsin square root transfor-

mation, and use the test statistic above, then with equal treatment allocation, the sample size

necessary to detect a clinically important treatment difference of ∆A in the arcsin square root
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of the population proportions with power (1 − β) using a test (one-sided) at the α level of

significance, is derived by using (6.3); yielding

n1/2∆A = (Zα + Zβ),

n =
(Zα + Zβ)2

∆2
A

.

Remark: Remember to use radians rather than degrees in computing the arcsin or inverse of

the sine function. Some calculators give the result in degrees where π = 3.14159 radians is equal

to 180 degrees; i.e. radians=
degrees

180
× 3.14159.

If we return to the previous example where we computed sample size based on the proportions

test, but now instead use the formula for the arc sin square root transformation we would get

n =
(1.96 + 1.28)2

{sin−1(.45)1/2 − sin−1(.35)1/2}2
=

(1.96 + 1.28)2

(.7353 − .6331)2
= 1004,

or 502 patients per treatment arm. This answer is virtually identical to that obtained using

the proportions test. This is probably due to the relatively large sample sizes together with

probabilities being bounded away from zero or one where the normal approximation of either

the sample proportion of the arcsin square root of the sample proportion is good.
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7 Comparing More Than Two Treatments

Suppose we randomize patients to K > 2 treatments and are interested in testing whether there

are treatment differences in response. We proceed by positing the null hypothesis that there are

no treatment differences and then test this null hypothesis against the alternative hypothesis

that there exist some difference in response among the treatments.

Let us first consider the case where the response is dichotomous; i.e. the patient either responds

or doesn’t respond to treatment. Let π1, . . . , πK denote the population response rates for the K

treatments under study. The null hypothesis of no treatment differences is given by

H0 : π1 = π2 = . . . = πK .

The alternative hypothesis HA : states that the K population response rates “the π’s” are not

all equal.

To decide between H0 and HA, we conduct an experiment where we allocate n1, . . . , nK individ-

uals on each of the K treatments respectively and count the number that respond to each of the

treatments. Therefore, the data from such a clinical trial can be viewed as realizations of the

independent random variables X1, . . . , XK , where

Xi ∼ b(ni, πi), i = 1, . . . , K.

Each of the population response rates πi are estimated using the sample proportions pi =

Xi/ni, i = 1, . . . , K.

The strategy for decision making is to combine the data from such an experiment into a test

statistic for which larger values would provide increasing evidence against the null hypothesis.

In addition, the distribution of this test statistic, under the null hypothesis, is necessary in order

to gauge how extreme (evidence against H0) the observed data are compared to what may have

occurred by chance if the null hypothesis were true.

We begin by by first giving some general results regarding estimators that are normally dis-

tributed which will be used later for constructing test statistics.
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7.1 Testing equality using independent normally distributed estima-

tors

For i = 1, . . . , K, let the estimator θ̂i be an unbiased estimator for the parameter θi which has a

normal distribution; i.e.

θ̂i ∼ N(θi, σ
2
i ).

Assume σ2
i is either known or can be estimated well (consistently) using the data.

Suppose we have K independent estimators θ̂1, . . . , θ̂K of θ1, . . . , θK respectively such that

θ̂i ∼ N(θi, σ
2
i ), i = 1, . . . , K.

If we assume that θ1 = . . . = θK (i.e. similar to a K-sample null hypothesis), then the weighted

estimator

ˆ̄θ =

∑K
i=1wiθ̂i∑K
i=1wi

, wi =
1

σ2
i

is the best unbiased estimator for the common value θ.

Remark: By best, we mean that among all functions of θ̂1, . . . , θ̂K that are unbiased estimators

of θ, ˆ̄θ (defined above) has the smallest variance.

In addition, when θ1 = . . . = θK ,, then the random variable

K∑

i=1

wi(θ̂i − ˆ̄θ)2 (7.1)

is distributed as a central chi-square distribution with K − 1 degrees of freedom. If the θi, i =

1, . . . , K are not all equal, then
K∑

i=1

wi(θ̂i − ˆ̄θ)2 (7.2)

is distributed as a non-central chi-square distribution with K − 1 degrees of freedom and non-

centrality parameter equal to
K∑

i=1

wi(θi − θ̄)2, (7.3)

where

θ̄ =

∑K
i=1wiθi∑K
i=1wi

.

Note: The non-centrality parameter is based on on the true population parameters.
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7.2 Testing equality of dichotomous response rates

How do the results above help us in formulating test statistics? Returning to the problem of

dichotomous response, the null hypothesis is

H0 : π1 = . . . = πK .

This is equivalent to

H0 : sin−1√π1 = . . . = sin−1√πK .

We showed in chapter 6 that if pi = Xi/ni is the sample proportion responding to treatment i,

then

sin−1√pi ∼ N
(
sin−1√πi,

1

4ni

)
.

Letting

• sin−1√pi take the role of θ̂i

• sin−1√πi take the role of θi

• 1
4ni

be σ2
i ; hence wi = 4ni

then by (7.1), the test statistic

Tn =
K∑

i=1

4ni(sin
−1√pi − Āp)

2, (7.4)

where

Āp =

∑K
i=1 nisin

−1√pi∑K
i=1 ni

,

is distributed as a central chi-square distribution with K − 1 degrees of freedom under the null

hypothesis H0.

This test statistic is a reasonable measure for assessing the strength of evidence of the alternative

hypothesis. If the population response rates πi, i = 1, . . . , K are all the same, then we would

expect the sample proportions pi to also be close to each other; in which case the test statistic

Tn would be near zero. The more different the pi’s are from each other the greater Tn would be.

Consequently, a reasonable strategy would be to reject the null hypothesis when the statistic Tn
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is sufficiently large. The degree of evidence is obtained by gauging the observed value of the test

statistic to the chi-square distribution with K − 1 degrees of freedom. If we denote by χ2
α;K−1,

the (1−α)-th quantile of the central chi-square distribution with K−1 degrees of freedom, then

a test at the α-th level of significance can be obtained by rejecting H0 when

Tn ≥ χ2
α;K−1.

Power and sample size calculations

In order to assess the power of the test, we need to know the distribution of the test statistic

under the alternative hypothesis. Suppose we entertain a specific alternative hypothesis that we

believe is clinically important to detect (more about this later). Say,

HA : π1 = π1A, . . . , πK = πKA,

where the πiA’s are not all equal. Using (7.2), the distribution of Tn is a non-central chi-square

with K − 1 degrees of freedom and non-centrality parameter given by (7.3), which in this case

equals

φ2 =
K∑

i=1

4ni(sin
−1√πiA − ĀπA)2, (7.5)

where

ĀπA =

∑K
i=1 nisin

−1√πiA∑K
i=1 ni

.

The level-α test rejects H0 when Tn ≥ χ2
α;K−1. Therefore, the power of the test to detect HA

is the probability that a non-central chi-square distribution, with K − 1 degrees of freedom and

non-centrality parameter φ2, given by (7.5), exceed the value χ2
α;K−1. See illustration below.

There are tables and/or computer packages available to carry out these probability calculations.

Sample size calculations

Suppose we allocate patients to each of the K treatments equally. Thus, on average, n1 = . . . =

nK = n/K, where n denotes the total sample size. In that case, the non-centrality parameter

(7.5) equals

φ2 =
4n

K

{
K∑

i=1

(sin−1√πiA − ĀπA)2

}
, (7.6)
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Figure 7.1: Distributions of Tn under H0 and HA
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where

ĀπA = K−1
K∑

i=1

sin−1√πiA.

Note: ĀπA is just a simple averages of the sin−1√πiAs for the alternative of interest.

Let us define by

φ2(α, β,K − 1),

the value of the non-centrality parameter necessary so that a non-central chi-square distributed

random variable with K−1 degrees of freedom and non-centrality parameter φ2(α, β,K−1) will

exceed the value χ2
α;K−1 with probability (1 − β). Values for φ2(α, β,K − 1) are given in tables

or derived from software packages for different values of α, β and degrees of freedom K − 1. For

illustration, we have copied a subset of such tables that we will use later in examples.

Thus, if we want a level-α test of the null hypothesis H0 : π1 = . . . = πK to have power (1 − β)

to detect the alternative hypothesis HA : π1 = π1A, . . . , πK = πKA (not all equal), then we need

the non-centrality parameter

4n

K

{
K∑

i=1

(sin−1√πiA − ĀπA)2

}
= φ2(α, β,K − 1),
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or

n =
Kφ2(α, β,K − 1)

4
{∑K

i=1(sin
−1
√
πiA − ĀπA)2

} . (7.7)

Choosing clinically important alternatives

Specifying alternatives that may be of clinical importance for comparing K treatments may

not be that straightforward. (It is not that easy even for two-treatment comparisons). One

conservative strategy is to find the sample size necessary to have sufficient power if any of the K

treatments differ from each other by ∆A or more.

Remark: Keep in mind that by using the arcsin square-root transformation, all treatment

differences are measured on this scale.

To do this we must find the least favorable configuration of population response probabilities

subject to the constraint that at least two treatment response rates on the arcsin square-root

scale differ by ∆A or more. By the least favorable configuration, we mean the configuration

which would lead to the smallest non-centrality parameter. If we can find such a least favorable

configuration, then this would imply that any other configuration has a larger non-centrality

parameter, thus, any other configuration would have power at least as large as the least favorable

one.

For a fixed sample size we showed in (7.6) that the non-centrality parameter is proportional

to {∑K
i=1(sin

−1√πiA − ĀπA)2}, although we will not prove this formally, it is intuitively clear

that the least favorable configuration is obtained when two treatments, the one with the largest

and smallest response, differ by ∆A (in this case on the arcsin square root scale) and the other

treatments have response half way in between.

It is clear from the picture above that

{
K∑

i=1

(sin−1√πiA − ĀπA)2} =
(

∆A

2

)2

+ 0 + . . .+ 0 +
(

∆A

2

)2

=
∆2

A

2
.

Substituting the result for the least favorable configuration in equation (7.7) yields

n =
Kφ2(α, β,K − 1)

2∆2
A

. (7.8)

Example: Suppose a standard treatment has a response rate of about .30. Another three
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treatments have been developed and it is decided to compare all of them in a head to head

randomized clinical trial. Equal allocation of patients to the four treatments is used so that

approximately n1 = n2 = n3 = n4 = n/4. We want the power of a test, at the .05 level of

significance, to be at least 90% if any of the other treatments has a response rate greater than

or equal to .40. What should we choose as the sample size?

For this example:

• α = .05

• 1 − β = .90, or β = .10

• K=4

• ∆A = sin−1
√
.40 − sin−1

√
.30 = .1051

• φ2(.05, .10, 3) = 14.171 (derived from the tables provided)

Therefore by (7.8), we get

n =
4 × 14.171

2(.1051)2
= 2567,

or about 2567/4 = 642 patients per treatment arm.

7.3 Multiple comparisons

If we had done a two-treatment comparison for the previous example, and wanted 90% power

to detect a difference from .30 to .40 in response rate at the .05 (two-sided) level of significance,

then the sample size necessary is

n =
2 × 10.507

2(.1051)2
= 952,

or 476 patients per treatment arm.

For a four-treatment comparison, we needed 642 patients per treatment arm under similar pa-

rameter and sensitivity specifications. Why is there a difference and what are the implications

of this difference?
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We first note that when we test four treatments simultaneously, we can make six different pairwise

comparisons; i.e.

1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4.

If each of these comparisons were made using separate studies, each at the same level and power

to detect the same alternative, then six studies would be conducted, each with 952 patients, or

952×6 = 5, 712 total patients. This is in contrast to the 2,567 patients used in the four-treatment

comparison.

This brings up the controversial issue regarding multiple comparisons. When conducting a clinical

trial with K treatments, K > 2, there are



K

2


 possible pairwise comparisons that can be

made. If each comparison was made at the α level of significance, then even if the global null

hypothesis were true; (i.e. in truth, all treatments had exactly the same response rate), the

probability of finding at least one significant difference will be greater than α. That is, there is

an inflated study-wide type I error that is incurred due to the multiple comparisons.

Let’s be more specific. Denote by Tnij the test statistic used to compare treatment i to treatment

j, i < j, i, j = 1, . . . , K. There are



K

2


 such pairwise treatment comparisons, each using the

test statistic

Tnij =
2(sin−1√pi − sin−1√pj)

(
1
ni

+ 1
nj

)1/2
.

For a two-sample comparison, the level α test (two-sided) would reject the hypothesis H0ij : πi =

πj if

|Tnij| ≥ Zα/2,

That is,

PH0ij
(|Tnij| ≥ Zα/2) = α.

However, if we made all possible pairwise treatment comparisons then the event of finding at

least one significant result is
⋃

i<j, i,j=1,...,K

(|Tnij| ≥ Zα/2).

PAGE 103



CHAPTER 7 ST 520, A. TSIATIS and D. Zhang

It is clear that

PH0
{

⋃

i<j, i,j=1,...,K

(|Tnij| ≥ Zα/2)} > PH0ij
(|Tnij| ≥ Zα/2) = α.

If we are concerned about this issue and want to control the overall study-wide type I error

rate, then we would require greater evidence of treatment difference before declaring a pairwise-

treatment comparison to be significant. One simple, albeit conservative, strategy is to use Bon-

ferroni correction. This follows by noting that

PH0
{
⋃

i<j

(|Tnij| ≥ c} ≤
∑

i<j

PH0ij
(|Tnij | ≥ c).

There are



K

2


 = K(K − 1)/2 elements in the sum on the right hand side of the formula

above. Therefore, if we choose the constant “c” so that each of the probabilities in the sum is

equal to

α/



K

2


 ,

then we are ensured that the probability on the left will be less than or equal to α. Since under

the null hypothesis Tnij follows a standard normal distribution, we choose

c = Zα/{K(K−1)}.

Hence, with a Bonferroni correction, we would declare a pairwise treatment comparison (say

treatment i versus treatment j) significant if

|Tnij| ≥ Zα/{K(K−1)}.

Using this as the convention, the probability of declaring any treatment pairwise comparison

significant under the null hypothesis is

PH0
{
⋃

i<j

(|Tnij| ≥ Zα/{K(K−1)}} ≤
∑

i<j

PH0ij
(|Tnij| ≥ Zα/{K(K−1)}) =



K

2


×2α/{K(K−1)} = α.

Example: If we were comparing four treatments, there would be six possible treatment compar-

isons. Using the Bonferroni method we would declare any such pairwise comparison significant
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at a study-wide global significance level of α if the nominal pairwise p-value was less than α/6.

For two sided tests, this would imply that the test statistic

|Tnij | ≥ Zα/12.

If we choose α = .05, then a simple two-sample comparison requires the two-sample test to

exceed 1.96 in order to declare significance. However, as part of a four-treatment comparison, if

we use a Bonferroni correction, we need the two-sample test to exceed Z.05/12 = 2.635 to declare

significance.

Typically, the way one proceeds when testing for treatment differences with K > 2 treatments

is to first conduct a global test of the null hypothesis at level α using (7.4). If this test fails to

reject the null hypothesis, then we conclude that there are no treatment differences. If the null

hypothesis is rejected, then we may want to consider the different pairwise treatment comparisons

to determine where the treatment differences occur. A pairwise comparison would be declared

significant based on the Bonferroni correction described above. Such a strategy conservatively

protects all type I errors that can be committed to be less than α.

There are other more sophisticated methods for multiple comparisons which will not be discussed

here. There are some clinical trials statisticians that object to the whole notion of correcting

for multiple comparisons and believe that each pairwise comparison should be considered as a

separate experiment.

Quote: Why should we be penalized for having the insight to test more than two treatments

simultaneously which allows for



K

2


 treatment comparisons as opposed to conducting



K

2




separate studies each of which individually would not be penalized. (By penalize we mean

increased evidence of treatment difference before significance can be declared.)

The FDA’s position is that they will consider such arguments but it must be agreed to up front

with good rationale.

Chi-square tests for comparing response rates in K treatments

It was convenient, in developing the theory and deriving sample size calculations, to use the

arcsin square-root transformation of sample proportions to test the equality of K treatment
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response rates. In general, however, the standard K-sample test used to test this null hypothesis

is the chi-square test; namely,
∑

over 2×K cells

(Oj − Ej)
2

Ej

,

where Oj denotes the observed count in the j-th cell of a 2×K contingency table of response-non-

response by the K treatments, and Ej denotes the expected count under the null hypothesis.

For comparison, we will construct both the chi-square test and the test based on the arcsin

square-root transformation given by (7.4) on the same set of data.

Table 7.1: Observed Counts

Treatment

Response 1 2 3 4 Total

yes 206 273 224 275 978

no 437 377 416 364 1594

Total 643 650 640 639 2572

For each cell in the 2×K table, the expected count is obtained by multiplying the corresponding

marginal totals and dividing by the grand total. For example, the expected number responding

for treatment 1, under H0, is 978×643
2572

= 244.5.

Table 7.2: Expected Counts

Treatment

Response 1 2 3 4 Total

yes 244.5 247.2 243.4 243 978

no 398.5 402.8 396.6 396 1594

Total 643 650 640 639 2572

The chi-square test is equal to

(206 − 244.5)2

244.5
+

(437 − 398.5)2

398.5
+ . . .+

(364 − 396)2

396
= 23.43.

Gauging this value against a chi-square distribution with 3 degrees of freedom we get a p-value

< .005.
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Using the same set of data we now construct the K-sample test (7.4) using the arcsin square-root

transformation.

Treatment i pi sin−1√pi

1 206/643=.32 .601

2 273/650=.42 .705

3 224/640=.35 .633

4 275/639=.43 .715

Āp =
643 × .601 + 650 × .705 + 640 × .633 + 639 × .715

2572
= .664,

and

Tn = 4{643(.601− .664)2 + 650(.705 − .664)2 + 640(.633 − .664)2 + 639(.715 − .664)2} = 23.65.

Note: This is in good agreement with the chi-square test which, for the same set of data, gave

a value of 23.43. This agreement will occur when sample sizes are large as often is the case in

phase III clinical trials.

Example of pairwise comparisons

Suppose the data above were the results of a clinical trial. Now that we’ve established that it is

unlikely that the global null hypothesis H0 is true (p-value < .005), i.e. we reject H0, we may

want to look more carefully at the individual pairwise treatment differences.

Additionally, you are told that treatment 1 was the standard control and that treatments 2, 3

and 4 are new promising therapies. Say, that, up front in the protocol, it was stated that the

major objectives of this clinical trial were to compare each of the new treatments individually to

the standard control. That is, to compare treatments 1 vs 2, 1 vs 3, and 1 vs 4. If we want to

control the overall experimental-wide error rate to be .05 or less, then one strategy is to declare

any of the above three pairwise comparisons significant if the two-sided p-value were less than

.05/3=.0167. With a two-sided test, we would declare treatment j significantly different than

treatment 1, for j = 2, 3, 4 if the two-sample test

|Tn1j | ≥ Z.0167/2 = 2.385, j = 2, 3, 4.
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Remark: The exact same considerations would be made using a one-sided test at the .025 level

of significance. The only difference is that we would reject when Tnij ≥ 2.385. We must be

careful in defining Tn1j that the sign is such that large values are evidence against the one-sided

null hypothesis of interest.

With that in mind, we consider the test based on the arcsin square-root transformation

Tn1j = 2

(
n1nj

n1 + nj

)1/2

(sin−1√pj − sin−1√p1).

Substituting the data above we get

Tn12 = 2
(

643 × 650

643 + 650

)1/2

(.705 − .601) = 3.73∗

Tn13 = 2
(

643 × 640

643 + 640

)1/2

(.633 − .601) = 1.14

Tn14 = 2
(

643 × 639

643 + 639

)1/2

(.715 − .601) = 4.08∗

Thus we conclude that treatments 2 and 4 are significant better than treatment 1 (the standard

control).

Suppose all four treatments were experimental, in which case, all six pairwise comparisons are of

interest. To account for multiple comparisons, we would declare a pairwise comparison significant

if the two-sided p-value were less than .05/6=.0083. Thus we would reject the null hypothesis

H0ij : πi = πj when

|Tnij| ≥ Z.0083/2 = 2.635.

Note: the comparisons of treatments 1 vs 2 and 1 vs 4 would still be significant with this more

stringent criterion.

Rounding out the remaining pairwise comparisons we get

|Tn23| = |2
(

650 × 640

650 + 640

)1/2

(.705 − .633)| = 2.59

|Tn24| = |2
(

650 × 639

650 + 639

)1/2

(.705 − .715)| = 0.36
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|Tn34| = |2
(

640 × 639

640 + 639

)1/2

(.633 − .715)| = 2.94 ∗ .

Clearly, treatments 2 and 4 are the better treatments, certainly better than control. The only

controversial comparison is treatment 2 versus treatment 3, where, we may not be able to conclude

that treatment 2 is significantly better than treatment 3 because of the conservativeness of the

Bonferroni correction

7.4 K-sample tests for continuous response

For a clinical trial where we randomize patients to one of K > 2 treatments and the primary

outcome is a continuous measurement, then our primary interest may be to test for differences in

the mean response among the K treatments. Data from such a clinical trial may be summarized

as realizations of the iid random vectors

(Yi, Ai), i = 1, . . . , n,

where Yi denotes the response (continuously distributed) for the i-th individual and Ai denotes

the treatment (1, 2, . . . , K) that the i-th individual was assigned. Let us denote the treatment-

specific mean and variance of response by

E(Yi|Ai = j) = µj, j = 1, . . . , K

and

var(Yi|Ai = j) = σ2
Y j , j = 1, . . . , K.

Note:

1. Often, we make the assumption that the treatment-specific variances are equal; i.e. σ2
Y 1 =

. . . = σ2
Y K = σ2

Y , but this assumption is not necessary for the subsequent development.

2. Moreover, it is also often assumed that the treatment-specific distribution of response is

normally distributed with equal variances; i.e.

(Yi|Ai = j) ∼ N(µj , σ
2
Y ), j = 1, . . . , K

Again, this assumption is not necessary for the subsequent development.
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Our primary focus will be on testing the null hypothesis

H0 : µ1 = . . . = µK .

Let us redefine our data so that (Yij, i = 1, . . . , nj, j = 1, . . . , K) denotes the response for the i-th

individual within treatment j, and nj denotes the number of individuals in our sample assigned

to treatment j (n =
∑K

j=1 nj). From standard theory we know that the treatment-specific sample

mean

Ȳj =
nj∑

i=1

Yij/nj

is an unbiased estimator for µj and that asymptotically

Ȳj ∼ N(µj ,
σ2

Y j

nj
), j = 1, . . . , K.

Remark: If the Y ’s are normally distributed, then the above result is exact. However, with the

large sample sizes that are usually realized in phase III clinical trials, the asymptotic approxi-

mation is generally very good.

Also, we know that the treatment-specific sample variance

s2
Y j =

∑nj

i=1(Yij − Ȳj)
2

nj − 1

is an unbiased estimator for σ2
Y j , and that asymptotically

Ȳj ∼ N(µj ,
s2

Y j

nj
), j = 1, . . . , K.

Remark: If the treatment specific variances are all equal, then the common variance is often

estimated using the pooled estimator

s2
Y =

∑K
j=1

∑nj

i=1(Yij − Ȳj)
2

n−K
.

Returning to the general results of section 7.1 of the notes, we let

• Ȳj take the role of θ̂j

• µj take the role of θj
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• s2

Y j

nj
take the role of σ2

j ; hence wj =
nj

s2

Y j

Using (7.1), we construct the test statistic

Tn =
K∑

j=1

wj(Ȳj − ¯̄Y )2, (7.9)

where

¯̄Y =

∑K
j=1wjȲj
∑K

j=1wj

,

and wj =
nj

s2

Y j
.

For the case where we are willing to assume equal variances, we get that

Tn =

∑K
j=1 nj(Ȳj − ¯̄Y )2

s2
Y

, (7.10)

where

¯̄Y =

∑K
j=1 njȲj

n
.

Under the null hypothesis H0, Tn is approximately distributed as a chi-square distribution with

K − 1 degrees of freedom. Under the alternative hypothesis

HA : µ1 = µ1A, . . . , µK = µKA

where the µjA’s are not all equal, Tn is approximately distributed as a non-central chi-square

distribution with K − 1 degrees of freedom and non-centrality parameter

φ2 =
K∑

j=1

wj(µjA − µ̄A)2, (7.11)

where

µ̄A =

∑K
j=1wjµjA
∑K

j=1wj

,

and wj =
nj

σ2

Y j
.

Assuming equal variances, we get the simplification

φ2 =

∑K
j=1 nj(µjA − µ̄A)2

σ2
Y

, (7.12)

where

µ̄A =

∑K
j=1 njµjA

n
.
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Remark: In the special case where the response data are exactly normally distributed with equal

treatment-specific variances, the test statistic Tn given by (7.10), under the null hypothesis, has a

distribution which is exactly equal to K−1 times a central F distribution with K−1 numerator

degrees of freedom and n−K denominator degrees of freedom. That is

Tn/(K − 1) =

∑K
j=1 nj(Ȳj − ¯̄Y )2/(K − 1)

s2
Y

has an F distribution under the null hypothesis. This is exactly the test statistic that is used

for testing the equality of means in a one-way ANOVA model.

However, when the sample size n is large, we can use the test statistic given by (7.9), based on an

asymptotic chi-square distribution, to test H0 without making either the normality assumption

or the assumption of equal variances.

7.5 Sample size computations for continuous response

Let us consider the case where patients are allocated equally to the K treatments so that

n1 = . . . = nK = n/K,

and, for design purposes, we assume that the treatment specific variances are all equal which we

posit to be the value σ2
Y . The question is how do we compute the sample size that is necessary to

have power (1−β) to detect an alternative where any two treatments population mean responses

may differ by ∆A or more? Using considerations almost identical to those used for testing equality

of response rates for dichotomous outcomes, we can find the least favorable configuration which

after substituting into (7.12), yields the non-centrality parameter

n∆2
A

2Kσ2
Y

. (7.13)

Hence, to obtain the desired power of (1 − β), we need

n∆2
A

2Kσ2
Y

= φ2(α, β,K − 1),

or

n =
2Kσ2

Y φ
2(α, β,K − 1)

∆2
A

. (7.14)

Example:
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We expand on the example used for two-sample comparisons given on page 84 of the notes, but

now we consider K = 4 treatments. What is the sample size necessary to detect a significant

difference with 90% power or greater if any pairwise difference in mean treatment response is at

least 20 units using the K-sample test above at the .05 level of significance? We posit that the

standard deviation of response, assumed equal for all treatments, is σY = 60 units. Substituting

into formula (7.14), we get that

n =
2 × 4 × (60)2 × 14.171

(20)2
≈ 1020,

or about 1021/4=255 patients per treatment arm.

Remark: The 255 patients per arm represents an increase of 35% over the 189 patients per arm

necessary in a two-sample comparison (see page 84 of notes). This percentage increase is the

same as when we compare response rates for a dichotomous outcome with 4 treatments versus

2 treatments. This is not a coincidence, but rather, has to do with the relative ratio of the

non-centrality parameters for a test with 3 degrees of freedom versus a test with 1 degree of

freedom.

7.6 Equivalency Trials

The point of view we have taken thus far in the course is that of proving the superiority of one

treatment over another. It may also be the case that there already exists treatments that have

been shown to have benefit and work well. For example, a treatment may have been proven

to be significantly better than placebo in a clinical trial and has been approved by the FDA

and is currently on the market. However, there still may be room for other treatments to be

developed that may be equally effective. This may be the case because the current treatment or

treatments may have some undesirable side-effects, at least for some segment of the population,

who would like to have an alternative. Or perhaps, the cost of the current treatments are high

and some new treatments may be cheaper. In such cases, the company developing such a drug

would like to demonstrate that their new product is equally effective to those already on the

market or, at least, has beneficial effect compared to a placebo. The best way to prove that

the new product has biological effect is to conduct a placebo-controlled trial and demonstrate

superiority over the placebo using methods we have discussed. However, in the presence of
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established treatments that have already been proven effective, such a clinical trial would be

un-ethical. Consequently, the new treatment has to be compared to one that is already known

to be effective. The comparison treatment is referred to as an active or positive control.

The purpose of such a clinical trial would not necessarily be to prove that the new drug is better

than the positive control but, rather, that it is equivalent in some sense. Because treatment com-

parisons are based on estimates obtained from a sample of data and thus subject to variation, we

can never be certain that two products are identically equivalent in their efficacy. Consequently, a

new drug is deemed equivalent to a positive control if it can be proved with high probability that

it has response at least within some tolerable limit of the positive control. Of course the tricky

issue is to determine what might be considered a tolerable limit for purposes of equivalency. If

the positive control was shown to have some increase in mean response compared to placebo, say

∆∗, then one might declare a new drug equivalent to the positive control if it can be proved that

the mean response of the new drug is within ∆∗/2 of the mean response of the positive control

or better with high probability. Conservatively, ∆∗ may be chosen as the lower confidence limit

derived from the clinical trial data that compared the positive control to placebo. Let us assume

that the tolerable limit has been defined, usually, by some convention, or in negotiations of a

company with the regulatory agency. Let us denote the tolerable limit by ∆A.

Remark: In superiority trials we denoted by ∆A, the clinically important difference that we

wanted to detect with desired power. For equivalency trials, ∆A refers to the tolerable limit.

Let us consider the problem where the primary response is a dichotomous outcome. (Identical

arguments for continuous response outcomes can be derived analogously). Let π2 denote the

population response rate for the positive control, and π1 be the population response rate for the

new treatment.

Evaluating equivalency is generally stated as a one-sided hypothesis testing problem; namely,

H0 : π1 ≤ π2 − ∆A versus HA : π1 > π2 − ∆A.

If we denote by the parameter ∆ the treatment difference π1 − π2, then the null and alternative

hypotheses are

H0 : ∆ ≤ −∆A versus HA : ∆ > −∆A.

The null hypothesis corresponds to the new treatment being inferior to the positive control. This
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is tested against the alternative hypothesis that the new treatment is at least equivalent to the

positive control. As always, we need to construct a test statistic, Tn, which, when large, would

provide evidence against the null hypothesis and whose distribution at the border between the

null and alternative hypotheses (i.e. when π1 = π2 − ∆A) is known. Letting p1 and p2 denote

the sample proportion that respond on treatments 1 and 2 respectively, an obvious test statistic

to test H0 versus HA is

Tn =
p1 − p2 + ∆A√

p1(1−p1)
n1

+ p2(1−p2)
n2

,

where n1 and n2 denote the number of patients allocated to treatments 1 and 2 respectively.

This test statistic was constructed so that at the border of the null and alternative hypotheses;

i.e. when π1 = π2 −∆A, the distribution of Tn will be approximately a standard normal; that is

Tn
(π1=π2−∆A)∼ N(0, 1).

Clearly, larger values of Tn give increasing evidence that the null hypothesis is not true in favor

of the alternative hypothesis. Thus, for a level α test, we reject when

Tn ≥ Zα.

With this strategy, one is guaranteed with high probability (≥ 1 − α) that the drug will not be

approved if, in truth, it is not at least equivalent to the positive control.

Remark: Notice that we didn’t use the arcsin square-root transformation for this problem. This

is because the arcsin square-root is a non-linear transformation; thus, a fixed difference of ∆A in

response probabilities between two treatments (hypothesis of interest) does not correspond to a

fixed difference on the arcsin square-root scale.

Sample size calculations for equivalency trials

In computing sample sizes for equivalency trials, one usually considers the power, i.e the prob-

ability of declaring equivalency, if, in truth, π1 = π2. That is, if, in truth, the new treatment

has a response rate that is as good or better than the positive control, then we want to declare

equivalency with high probability, say (1 − β). To evaluate the power of this test to detect the

alternative (π1 = π2), we need to know the distribution of Tn when π1 = π2.
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Because

Tn =
(p1 − p2 + ∆A)√
p1(1−p1)

n1
+ p2(1−p2)

n2

≈ p1 − p2 + ∆A√
π1(1−π1)

n1
+ π2(1−π2)

n2

,

straightforward calculations can be used to show that

E(Tn)
(π1=π2=π)≈ ∆A√

π(1 − π)
(

1
n1

+ 1
n2

) ,

and

var(Tn)
(π1=π2=π)≈ 1.

Hence

Tn
(π1=π2=π)∼ N




∆A√
π(1 − π)

(
1
n1

+ 1
n2

) , 1


 ,

and the non-centrality parameter equals

φ(·) =
∆A√

π(1 − π)
(

1
n1

+ 1
n2

) .

If n1 = n2 = n/2, then

φ(·) =
∆A√

π(1 − π)
(

4
n

) .

To get the desired power, we solve

∆A√
π(1 − π)

(
4
n

) = Zα + Zβ

or

n =
(Zα + Zβ)2 × 4π(1 − π)

∆2
A

. (7.15)

Generally, it requires larger sample sizes to establish equivalency because the tolerable limit ∆A

that the regulatory agency will agree to is small. For example, a pharmaceutical company has

developed a new drug that they believe has similar effects to drugs already approved and decides

to conduct an equivalency trial to get approval from the FDA to market the new drug. Suppose

the clinical trial that was used to demonstrate that the positive control was significantly better

than placebo had a 95% confidence interval for ∆ (treatment difference) that ranged from .10-

.25. Conservatively, one can only be relatively confident that this new treatment has a response

rate that exceeds the response rate of placebo by .10. Therefore the FDA will only allow a new
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treatment to be declared equivalent to the positive control if the company can show that their

new drug has a response rate that is no worse than the response rate of the positive control

minus .05. Thus they require a randomized two arm equivalency trial to compare the new drug

to the positive control with a type I error of α = .05. The response rate of the positive control is

about .30. (This estimate will be used for planning purposes). The company believes their drug

is similar but probably not much better than the positive control. Thus, they want to have good

power, say 90%, that they will be successful (i.e. be able to declare equivalency by rejecting H0)

if, indeed, their drug was equally efficacious. Thus they use formula (7.15) to derive the sample

size

n =
(1.64 + 1.28)2 × 4 × .3 × .7

(.05)2
= 2864,

or 1432 patients per treatment arm.
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8 Causality, Non-compliance and Intent-to-treat

8.1 Causality and Counterfactual Random Variables

Throughout the course, we’ve repeatedly said that randomization allows us to make causal

statements regarding the effect of treatment on the primary response of interest. In this section,

we will be more formal. The actual definition of cause and effect has been hotly debated over

the years especially by philosophers. We will take a particular point of view using what are

called counterfactual random variables. As usual, we consider a super-population of individuals

that we are interested in and assume that the participants in a clinical trial represent a random

sample from this population. For concreteness, let us consider a clinical trial which will compare

a new treatment (treatment 1) to no treatment or placebo (treatment 0).

We define the counterfactual random variable Y ∗
1 to denote the response (may be a binary

or continuous outcome) that a randomly selected individual from our population if, possibly

contrary to fact, that individual received treatment 1 (new treatment). Similarly, we define the

counterfactual random variable Y ∗
0 to denote the response that a randomly selected individual

from our population if, possibly contrary to fact, that individual received treatment 0 (placebo).

We imagine the existence of both random variables (Y ∗
0 , Y

∗
1 ) even though in actuality it would

be impossible to observe both responses on any given individual. Thus the term counterfactual

or “contrary to fact”. At the individual level, we say that treatment causes the effect Y ∗
1 − Y ∗

0 .

Clearly, if an individual knew their response to both treatment and placebo, then he/she would

choose whichever gave the better response. Of course, this is not possible at the individual level

but perhaps we can look at this question at the population level. That is, we will consider the

population mean causal effect; namely ∆ = E(Y ∗
1 −Y ∗

0 ) = E(Y ∗
1 )−E(Y ∗

0 ). If ∆ is positive, then

on average the response on treatment 1 will be better than on treatment 0. At the individual

level this will not necessarily imply that any specific individual will be guaranteed to benefit,

but on average, the population as a whole will benefit.

Knowledge of the average causal effect at the population level, if it can be obtained or estimated, is

still useful at the individual level. Say, for example, it has been proved that ∆ is positive; i.e. that

on average treatment 1 is better than treatment 0, then in the absence of any additional a-priori

knowledge that would distinguish one individual from the other, the best treatment choice for any
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individual in the population is treatment 1. If there are additional pre-treatment characteristics

that can distinguish individuals from each other; say, covariates X (e.g. age, gender, race,

etc.), then we would be interested in knowing or estimating the conditional expectation ∆(x) =

E(Y ∗
1 − Y ∗

0 |X = x). If such a relationship were known, then the best choice for an individual

whoseX characteristics were equal to x, without any other additional knowledge of the individual,

would be to choose treatment 1 if ∆(x) > 0 and to choose treatment 0 if ∆(x) < 0. The question

then becomes whether we can estimate the average causal treatment effect ∆ or the average

causal treatment effect conditional on X = x, ∆(x), from a sample of individuals in a clinical

trial.

The data that we actually get to observe from a clinical trial can be summarized by (Yi, Ai, Xi), i =

1, . . . , n, where, for a randomly selected individual i from our population, Ai = (0, 1) denotes

the treatment assignment, Yi denotes the response and Xi denotes any additional characteristics,

(prognostic factors) that are collected on the individual prior to treatment assignment (baseline

characteristics). We will refer to these as the observable random variables. We distinguish here

between the observed response Yi for the i-th individual and the counterfactual responses Y ∗
1i, Y

∗
0i.

We will, however, make the reasonable assumption that

Yi = Y ∗
1iI(Ai = 1) + Y ∗

0iI(Ai = 0), (8.1)

where I(·) denotes the indicator function of an event; that is, if the event is true this function

equals 1, otherwise, it equals 0. In words, assumption (8.1) means that the observed response Yi

equals the counterfactual response Y ∗
1i if the i-th individual were assigned treatment 1; whereas,

the observed response would equal the counterfactual response Y ∗
0i if the i-th individual were

assigned treatment 0.

Traditional statistical methods and models allow us to make associational relationships regarding

the probability distribution of the observable random variables. For example, we can posit

regression models that allow us to estimate relationships such as E(Yi|Ai, Xi). However, these

associational relationships are not the causal relationships that we argue are the important

parameters of interest. Thus, the question is under what conditions or assumptions can we

estimate causal parameters such as ∆ or ∆(x), from the sample of observable data. This is

where randomization plays a key role. Since the assignment of treatment to the patient in a

randomized study is made using a random number generator, it is completely independent of
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any pre-treatment characteristics of the individual. An individual’s counterfactual responses can

be thought of as pre-destined inherent characteristics of that individual and, as such, can be

reasonably assumed to be independent of treatment in a randomized clinical trial. That is, how

an individual would have responded if given treatment 1 and how he/she would have responded

if given treatment 0 would not have an effect on which treatment he/she was randomized to.

Thus, we make the assumption that

Ai is independent of (Y ∗
1i, Y

∗
0i, Xi). (8.2)

Remark: It is important to note that assumption (8.2) is not the same as saying that Ai is

independent of Yi. Since by assumption (8.1) Yi = Y ∗
1iI(Ai = 1) + Y ∗

0iI(Ai = 0) (i.e. Yi is a

function both of counterfactuals and treatment assignment), Ai being independent of (Y ∗
1i, Y

∗
0i)

will not imply that Ai is independent of Yi. In fact, if treatment is effective, as one hopes, then

we would expect (and want) the distribution of Yi to depend on Ai.

We will now use assumptions (8.1) and (8.2) to show that the distribution of the counterfactual

random variable Y ∗
1i, i.e. P (Y ∗

1i ≤ u) is the same as the conditional distribution P (Yi ≤ u|Ai = 1).

This follows because

P (Yi ≤ u|Ai = 1) = P (Y ∗
1i ≤ u|Ai = 1) (8.3)

= P (Y ∗
1i ≤ u). (8.4)

Equation (8.3) is a consequence of assumption (8.1) and equation (8.4) is a consequence of

assumption (8.2). Similarly, we can show that the distribution of the counterfactual random

variable Y ∗
0i, i.e. P (Y ∗

0i ≤ u) is the same as the conditional distribution P (Yi ≤ u|Ai = 0).

Consequently, the average causal treatment effect

∆ = E(Y ∗
1 ) − E(Y ∗

0 ) = E(Y |A = 1) − E(Y |A = 0).

This is an important relationship as we now have an expression for the causal parameter ∆ in

terms of quantities that are functions of the distribution of the observable random variables.

Thus, to estimate ∆ it suffices to estimate E(Y |A = 1) and E(Y |A = 0). But these can be

estimated easily using the treatment-specific sample averages. If we let n1 =
∑n

i=1 I(Ai = 1)

and n0 =
∑n

i=1 I(Ai = 0), denote the treatment-specific sample sizes, then the treatment specific
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sample averages

Ȳ1 =
n∑

i=1

YiI(Ai = 1)/n1; Ȳ0 =
n∑

i=1

YiI(Ai = 0)/n0,

are unbiased estimators for E(Y |A = 1) and E(Y |A = 0) respectively. Thus, an unbiased

estimator for the causal treatment effect ∆ can be derived from a randomized study using

∆̂ = Ȳ1 − Ȳ0.

Remark: The above arguments make formal what is intuitively obvious; that is, we can use the

difference in the treatment-specific sample averages in a randomized clinical trial to estimate the

true population treatment effect.

Similar arguments can also be used to show that in a randomized trial

∆(x) = E(Y ∗
1 − Y ∗

0 |X = x) = E(Y |A = 1, X = x) − E(Y |A = 0, X = x).

Thus, to estimate ∆(x), it suffices to estimate the conditional mean of the observable random

variables E(Y |A,X). This can be accomplished, say, by positing a model (either linear or

nonlinear with or without interaction terms)

E(Y |A,X) = µ(A,X, β),

in terms of unknown parameters β. For example, if X is a single covariate, we might consider a

linear model with treatment-covariate interactions such as

µ(A,X, β) = β0 + β1A + β2X + β3AX. (8.5)

From a sample of data (Yi, Ai, Xi), i = 1, . . . , n we can estimate the parameters β in our model

using standard statistical techniques such as least squares or weighted least squares. If we denote

the estimator by β̂, then the estimate for ∆(x) is given by

∆̂(x) = µ(1, x, β̂) − µ(0, x, β̂).

For example, if we used model (8.5), then

∆̂(x) = (β̂0 + β̂1 + β̂2x+ β̂3x) − (β̂0 + β̂2x) = β̂1 + β̂3x.

PAGE 121



CHAPTER 8 ST 520, A. TSIATIS and D. Zhang

8.2 Noncompliance and Intent-to-treat analysis

The arguments outlined above assume that patients receive and take the treatment (or control)

to which they are randomized. In many clinical trials, if not most, this is rarely the case. There

is almost always some form of noncompliance from the intended treatment regimen.

Some reasons for a departure from the ideal treatment schedule are:

• A refusal by the patient to start or continue the assigned treatment, perhaps because of

side effects or a belief that the treatment is ineffective

• A failure to comply with detailed instructions, for example, drug dosage, or to attend

examinations when requested to do do

• A change of treatment imposed by the physician for clinical reasons, usually occurrence of

adverse effects or deterioration of patient’s health

• An administrative error. In its most extreme form this may be the implementation of the

wrong treatment.

How should we analyze the data when there is noncompliance? Some strategies that have been

proposed and is a source of much debate between clinicians and statisticians include

• Intent-to-Treat Analysis (As randomized)

Everyone is included in the analysis and the comparison of treatments is based on the

difference of the average response between the randomized groups ignoring the fact that

some patients were non-compliant.

• As-treated analysis

This type of analysis takes on various forms, but the general idea is to compare only

those patients who fully complied with their assigned treatment regimen and exclude non

compliers from the analysis.
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General Dogma of Clinical Trials

The exclusion of patients from the analysis should not allow the potential of bias in the treatment

comparisons. Thus, exclusions based on post-randomization considerations, such as noncompli-

ance, are not allowed for the primary analysis.

To illustrate some of the difficulties that can result from noncompliance, we consider some results

from a study conducted by the Coronary Drug Project which was published in the New England

Journal of Medicine, October, 1980, 303: 1038-1041. This study was a double-blind placebo-

controlled clinical trial comparing Clofibrate to Placebo.

Table 8.1: Intent-to-Treat Analysis

Clofibrate Placebo

5 year mortality .18 .19

rate

number of patients 1065 2695

Table 8.2: Clofibrate Patients Only

Adherence 5 year Number

(% of capsules taken) mortality rate patients

Poor (< 80%) .25 357

Good (> 80%) .15 708

p-value=.001

Table 8.3: Clofibrate and Placebo Patients

Clofibrate Placebo

5 year number 5 year number

Adherence mortality patients mortality patients

Poor (< 80%) .25 357 .28 882

Good (> 80%) .15 708 .15 1813
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It is clear from this data that patients who comply are prognostically different from those who

do not comply. Therefore, analyzing the data according to as-treated may lead to severe biases

because we cannot separate out the prognostic effect of noncompliance from the prognostic effect

of treatment. An intent-to-treat analysis does not suffer from this type of potentially biased

exclusions; nonetheless, we intuitively realize that when some patients do not comply with the

intended treatment then an intent-to-treat analysis would diminish the effect of a treatment. Let

us look at this issue a bit more carefully with the use of counterfactual modeling.

8.3 A Causal Model with Noncompliance

We consider the following simple example for illustrative purposes.

• A randomized study is conducted where patients are randomized with equal probability to

active drug (treatment 1) or placebo (control) (treatment 0)

• Response is dichotomous; i.e. a patient either responds or not

• The main goal of the clinical trial is to estimate the difference in the probability of response

between active drug and placebo

• Patients may not comply with their assigned treatment

• For simplicity, we assume that everyone either takes their assigned treatment or not (partial

compliance is not considered)

• A simple assay can be conducted on patients that were randomized to receive active drug

to see if they complied or not

• Patients assigned to placebo do not have access to the study drug

• Compliance cannot be determined for patients randomized to placebo

Counterfactual and observable random variables

The problem above can be conceptualized as follows:
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Let the counterfactual random variables (Y ∗
1 , Y

∗
0 ) denote the response (1 if they respond, 0 if they

don’t respond) of a randomly selected individual in our population if they received treatment 1 or

treatment 0 respectively. Also let C denote the counterfactual random variable corresponding to

whether or not a randomly selected individual in our population would comply or not C = (1, 0)

if offered the new treatment. We refer to this as a counterfactual random variable because we

will not know the compliance status if offered new treatment for patients randomized to placebo.

Some of the population parameters associated with these counterfactuals are

• A complier (COM) and a noncomplier (NC) refer only to patients complying or not if

offered active drug

• θ = P (C = 1) denotes the population probability of complying

• πCOM
1 = P (Y ∗

1 = 1|C = 1) denotes the population probability of response among compliers

if given active drug,

• πNC
1 = P (Y ∗

1 = 1|C = 0) denotes the population probability of response among noncom-

pliers if given active drug

• πCOM
0 = P (Y ∗

0 = 1|C = 1) denotes the population probability of response among compliers

if given placebo

• πNC
0 = P (Y ∗

0 = 1|C = 0) denotes the population probability of response among noncom-

pliers if given placebo

Table 8.4: Hypothetical Population

COMPLIERS NONCOMPLIERS

θ (1 − θ)

Treatment πCOM
1 πNC

1

Placebo πCOM
0 πNC

0

Difference ∆COM ∆NC

As we argued previously, it is not reasonable to assume that (Y ∗
1 , Y

∗
0 ) are independent of C.

Thus, we would not expect πCOM
1 = πNC

1 or πCOM
0 = πNC

0 .
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Using this notation and some simple probability calculations we get that

E(Y ∗
1 ) = P (Y ∗

1 = 1) = πCOM
1 θ + πNC

1 (1 − θ) = π1

and

E(Y ∗
0 ) = P (Y ∗

0 = 1) = πCOM
0 θ + πNC

0 (1 − θ) = π0.

Therefore, the average causal treatment effect equals

∆ = E(Y ∗
1 ) − E(Y ∗

0 ) = π1 − π0 = ∆COMθ + ∆NC(1 − θ).

The question is whether we can estimate these counterfactual parameters using the data we get to

observe from a randomized clinical trial when there is noncompliance. We denote the observable

data as (Y,A,AC), where A = (1, 0) denotes the treatment that a patient is randomized to. C

will denote the indicator of compliance which is only observed for patients randomized to active

treatment. Thus the possible values that (A,AC) can take are

• (0, 0) corresponding to a patient randomized to placebo

• (1, 1) corresponding to a patient randomized to active treatment who complies

• (1, 0) corresponding to a patient randomized to active treatment who does not comply

Finally, the observable random variable Y = (0, 1) denotes the observed response.

Remark: In our scenario, if a patient is randomized to placebo, then that patient will not

receive active treatment; whereas, if a patient is randomized to active treatment, then he/she

will receive active treatment only if he/she complies; otherwise if the patient doesn’t comply,

then he/she will not receive active treatment.

The above considerations lead to the following reasonable assumptions:

Y = Y ∗
0 I(A = 0) + Y ∗

1 I(A = 1, C = 1) + Y ∗
0 I(A = 1, C = 0)

and because of randomization

A is independent of (Y ∗
1 , Y

∗
0 , C).
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Because of these assumptions, we can equate some of the parameters regarding the distribution

of the observable random variables to the parameters of the distribution of the counterfactual

random variables.

Namely,

P (C = 1|A = 1) = P (C = 1) = θ

P (Y = 1|A = 0) = P (Y ∗
0 = 1|A = 0) = P (Y ∗

0 = 1) = π0

P (Y = 1|A = 1, C = 1) = P (Y ∗
1 = 1|A = 1, C = 1) = P (Y ∗

1 = 1|C = 1) = πCOM
1

P (Y = 1|A = 1, C = 0) = P (Y ∗
0 = 1|A = 1, C = 0) = P (Y ∗

0 = 1|C = 0) = πNC
0

Note: All the probabilities above can be estimated using the corresponding sample proportions

in a clinical trial.

Interestingly, since we can get estimates of π0, π
NC
0 and θ, then we can use the relationship that

π0 = πCOM
0 θ + πNC

0 (1 − θ)

to get that

πCOM
0 =

π0 − πNC
0 (1 − θ)

θ
.

In fact, the only counterfactual probability that cannot be estimated is πNC
1 as it is impossible

to deduce the proportion of noncompliers who would have responded if forced to take treatment.

Intent-to-treat analysis

In an intent-to-treat analysis, where we compare the response rate among patients randomized

to active drug to the response rate among patients randomized to placebo, we are estimating

∆ITT = P (Y = 1|A = 1) − p(Y = 1|A = 0).

Again, by the assumptions made and some probability calculations we get
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P (Y = 1|A = 1) = P (Y = 1|A = 1, C = 1)P (C = 1|A = 1)

+ P (Y = 1|A = 1, C = 0)P (C = 0|A = 1)

= P (Y ∗
1 = 1|A = 1, C = 1)P (C = 1|A = 1) + P (Y ∗

0 = 1|A = 1, C = 0)P (C = 0|A = 1)

= P (Y ∗
1 = 1|C = 1)P (C = 1) + P (Y ∗

0 = 1|C = 0)P (C = 0)

= πCOM
1 θ + πNC

0 (1 − θ) (8.6)

Also

P (Y = 1|A = 0) = P (Y ∗
0 = 1|A = 0) = P (Y ∗

0 = 1) = π0 = πCOM
0 θ + πNC

0 (1 − θ). (8.7)

Subtracting (8.7) from (8.6) we get that

∆ITT = P (Y = 1|A = 1) − P (Y = 1|A = 0) = (πCOM
1 − πCOM

0 )θ,

or

∆ITT = ∆COMθ. (8.8)

Recall that

∆COM = P (Y ∗
1 = 1|C = 1) − P (Y ∗

0 = 1|C = 1) = E(Y ∗
1 − Y ∗

0 |C = 1)

is the difference in the mean counterfactual responses between treatment and placebo among

patients that would comply with treatment. As such, ∆COM is a causal parameter and some

argue that it is the causal parameter of most interest since the patients that will benefit from a

new treatment are those who will comply with the new treatment. Equation (8.8) makes it clear

that the intention-to-treat analysis will yield an estimator which diminishes a causal treatment

effect. In fact, since we are able to estimate the parameter θ, the probability of complying if

offered the new treatment, then the causal parameter ∆COM can be identified using parameters

from the observable random variables; namely

∆COM =
P (Y = 1|A = 1) − P (Y = 1|A = 0)

P (C = 1|A = 1)
. (8.9)

Since all the quantities on the right hand side of (8.9) are easily estimated from the data of a

clinical trial, this means we can estimate the causal parameter ∆COM .
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Remarks

• If the null hypothesis of no treatment effect is true; namely

H0 : ∆COM = ∆NC = ∆ = 0

– The intent to treat analysis, which estimates (∆COMθ), gives an unbiased estimator

of treatment difference (under H0) and can be used to compute a valid test of the null

hypothesis

• If we were interested in estimating the causal parameter ∆COM , the difference in response

rate between treatment and placebo among compliers only, then

– the intent to treat analysis gives an underestimate of this population causal effect

• Since there are no data available to estimate πNC
1 , we are not able to estimate ∆NC or ∆

As-treated analysis

In one version of an as treated analysis we compare the response rate of patients randomized to

receive active drug who comply to all patients randomized to receive placebo. That is, we

compute

∆AT = πCOM
1 − π0.

Since π0 = πCOM
0 θ + πNC

0 (1 − θ), after some algebra we get that

∆AT = ∆ + (πCOM
1 − πNC

1 )(1 − θ),

where ∆ denotes the average causal treatment effect. This makes clear that when there is

noncompliance, (θ < 1), the as-treated analysis will yield an unbiased estimate of the average

causal treatment effect only if πCOM
1 = πNC

1 . As we’ve argued previously, this assumption is not

generally true and hence the as-treated analysis can result in biased estimation even under the

null hypothesis.

Some Additional Remarks about Intention-to-Treat (ITT) Analyses

• By not allowing any exclusions, we are preserving the integrity of randomization
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• With the use of ITT, we are comparing the policy of using treatment A where possible to

the policy of using treatment B (control) where possible

• If the intended treatments are alway used, there is of course no problem

• If the treatments are rarely used, then the clinical trial will carry little information about

the true effect of A versus B, but a great deal of information about the difficulties to use

them

• The approach of comparing policies of intentions rather than rigorously standardized regi-

mens may be a more realistic statement of the purpose of the investigation

– This is the pragmatic approach to a clinical trial

– As compared to the explanatory approach which looks for a measure of effectiveness

rather than efficacy.

• The estimate of the causal effect ∆COM is larger than the intent-to-treat estimator ∆ITT ,

but it also has proportionately larger standard deviation. Thus use of this estimator as

a basis for a test of the null hypothesis yields the same significance level as a standard

intent-to-treat analysis
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9 Survival Analysis in Phase III Clinical Trials

In chronic disease clinical trials; e.g. Cancer, AIDS, Cardiovascular disease, Diabetes, etc., the

primary endpoint is often time to an event, such as time to death, time to relapse of disease, etc.

For such clinical trials the major focus is to compare the distribution of time to event among

competing treatments.

Typically, the clinical trials occur over a finite period of time and consequently the time to event

is not ascertained on all the patients in the study. This results in censored data. In addition,

since patients enter the clinical trial at different calendar times (staggered entry), the length

of follow-up varies by the individual. The combination of censoring and differential follow-up

creates some unusual difficulties in the analysis of such data that do not allow standard statistical

techniques to be used. Because of this, a whole new research area in Statistics has emerged to

study such problems. This is called Survival Analysis or Censored Survival Analysis. A

brief introduction of Survival Analysis will be given in this chapter, but for a more thorough

study of this area I recommend the course in Applied Survival Analysis offered every Spring

semester and for individuals interested in a more rigorous treatment of the subject there is a

course on Advanced Survival Analysis offered every other year.

In survival analysis, the endpoint of interest is time to an event which we denote by the positive

random variable T . Some examples include

• survival time (time from birth to death)

• time from treatment of lung cancer to death among patients with lung cancer

• among patients with an infection that are treated with an antibiotic, the time from treat-

ment until eradication of infection

In order to be unambiguous, the start and end of the event must be clearly identified.
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9.1 Describing the Distribution of Time to Event

We will describe some different, but equivalent, ways to define the distribution of the random

variable, T , “time to event.”

• The distribution function:

F (t) = P (T ≤ t);

• The survival function:

S(t) = P (T ≥ t);

The right-continuous version of the survival function will be denoted by

S(t−) = P (T > t) = 1 − F (t).

Remark: For the most part, we will assume that T is a continuous random variable in which

case S(t−) = S(t) = 1 − F (t). We will also assume that T has a density function

f(t) =
dF (t)

dt
= −dS(t)

dt
.

Clearly:

F (t) =
∫ t

0
f(u)du,

and

S(t) =
∫ ∞

t
f(u)du.

Hazard rate

The hazard rate is a useful way of defining the distribution of a survival time which can also be

used to describe the aging of a population. We motivate the definition of a hazard rate by first

introducing “mortality rate” or discrete hazard rate.

The mortality rate at time t (where t is usually taken to be an integer of some unit of time; i.e.

day, week, month, year, etc.) is the proportion of the population who fail between times t and

(t+ 1) among individuals alive (who have not failed) at time t.

m(t) = P (t ≤ T < t+ 1|T ≥ t).
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Figure 9.1: A typical mortality pattern for human
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In a human population, the mortality rate has a pattern like

The hazard rate λ(t) is the limit of the mortality rate or the instantaneous rate of failure at time

t given the individual is alive at time t. That is,

λ(t) = lim
h→0

{
P (t ≤ T < t+ h|T ≥ t)

h

}
.

This can be expressed as

λ(t) = lim
h→0

{
P (t ≤ T < t+ h)/h

P (T ≥ t)

}
=
f(t)

S(t)

=
−dS(t)

dt

S(t)
=

−d log{S(t)}
dt

.

Integrating both sides of the equation above, we get

− log{S(t)} =
∫ t

0
λ(u)du = Λ(t),

where Λ(t) is defined as the cumulative hazard function. Consequently,

S(t) = exp
{
−
∫ t

0
λ(u)du

}

= exp {−Λ(t)} .

Note: Although the mortality rate is a probability, the hazard rate is NOT a probability; thus

it can take on any positive value unlike a mortality rate which must be bounded by 1.
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The mortality rate

m(t) =
P (T ≥ t) − P (T ≥ t+ 1)

P (T ≥ t)

= 1 − P (T ≥ t+ 1)

P (T ≥ t)

= 1 − exp{−Λ(t+ 1)}
exp{−Λ(t)}

= 1 − exp
{
−
∫ t+1

t
λ(u)du

}
.

Notice that if the probability of an event occurring in a single time unit is small and the hazard

rate doesn’t change quickly within that time unit, then the hazard rate is approximately the

same as the mortality rate. To see this, note that

m(t) = 1 − exp
{
−
∫ t+1

t
λ(u)du

}
≈ 1 −

{
1 −

∫ t+1

t
λ(u)du

}

=
∫ t+1

t
λ(u)du ≈ λ(t).

Also, by definition, the hazard rate depends on the time scale being used. Therefore, at the same

point in time the hazard rate in days is 1/365 times the hazard rate in years.

Because of the one-to-one relationships that were previously derived, the distribution of a con-

tinuous survival time T can be defined by any of the following:

S(t), F (t), f(t), λ(t).

Exponential distribution

If the hazard rate is constant over time

λ(t) = λ, then

S(t) = exp
{
−
∫ t

0
λ(u)du

}
= exp(−λt).

This is an exponential distribution with hazard equal to λ. Sometimes this is referred to as the

negative exponential.

It is sometimes useful to plot the log survival probability over time. This is because − log{S(t)} =

Λ(t).
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Figure 9.2: The survival function of an exponential distribution on two scales
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If T follows an exponential distribution with hazard rate λ, then the the median survival time

{m : P (T ≥ m) = .5}; exp(−λm) = .5;m = − log(.5)/λ,= log(2)/λ = .6931/λ,

and the mean survival time

E(T ) =
∫ ∞

0
tλ exp(−λt)dt = λ−1.

Other parametric models commonly used

Weibull distribution

The hazard function of the Weibull distribution is given by

λ(t) = λtγ−1; λ, γ > 0.

This is a two-parameter model with the scale parameter λ and the shape parameter γ. This

model allows us to consider hazard functions which increase or decrease over time according to

the choice of γ.

S(t) = exp
(−λtγ)
γ

.

Gompertz-Makeham distribution

This distribution is useful for modeling the hazard function of human populations especially later

in life. The hazard function is given by

λ(t) = θ + βeγt.
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Must be careful to choose θ, β, γ so that λ(t) ≥ 0 and if we also want a proper distribution, i.e.

S(t) → 0 as t→ ∞ then

Λ(∞) = ∞.

Other popular distributions include the log normal distribution where

log(T ) ∼ N(µ, σ2),

and the gamma distribution whose density

f(t) is proportional to tρe−λt.

Remark: In most clinical trials applications and research in survival analysis it has become

common practice to use non-parametric and semi-parametric models where the shape of the

distribution function is left unspecified.

9.2 Censoring and Life-Table Methods

Two important issues in clinical trials where the primary endpoint of interest is time to an event

which are different than most studies:

1. Some individuals are still alive (event of interest has not occurred) at the time of analysis.

This results in right censored data.

2. The length of follow-up varies due to staggered entry.

This is illustrated in the schematic shown in the next page.

The time to event of interest in most clinical trials is the time from entry into the study until

death (right-hand panel).

In addition to censoring occurring because of insufficient follow-up, it may also occur for other

reasons such as

• loss to follow-up (patient drops out of the study, stops coming to the clinic or moves away)
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Figure 9.3: Illustration of censored data
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• death from other causes

(competing risks; e.g. gets run over by a bus)

The above are examples of what is called random right censoring. That is, we conceptualize a

random variable (possibly unobserved) corresponding to the potential time that an individual

may be censored. This censoring time is a random variable which varies by individual. Random

right censoring creates unique difficulties which does not allow the use of standard inferential

techniques. This is illustrated in the following example from a study of 146 patients with previous

history of heart disease treated with a new anti-hypertensive drug. The study was carried out

over a ten year period and the data are grouped into one year intervals.
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Year since Number at risk Number dying Number censored

entry into study at beginning of interval in interval in interval

0-1 146 27 3

1-2 116 18 10

2-3 88 21 10

3-4 57 9 3

4-5 45 1 3

5-6 41 2 11

6-7 28 3 5

7-8 20 1 8

8-9 11 2 1

9-10 8 2 6

Question: Estimate the five-year mortality rate? Two naive estimators are as follows:

1. 76 deaths in 5 years
146 individuals = .521, Ŝ(5) = .479

2.
76 deaths in 5 years
146 - 29 (withdrawn)

= .650, Ŝ(5) = .350.

Estimator 1. corresponds to censoring on the right; that is, if everyone that was withdrawn in

the first 5 years was withdrawn exactly at 5 years, then this approach would give an unbiased

estimator. Since this isn’t what happened, this estimator is too optimistic.

In contrast, estimator 2. would be appropriate if everyone that was withdrawn in the first 5

years was withdrawn immediately at time “0”. If this were the case then this approach would

yield an unbiased estimator. Since this isn’t what happened, this estimator is too pessimistic.

The more appropriate method uses life-table estimates, illustrated as follows:

Assume censoring occurs at the right of each yearly interval
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Time nr d w mR = d/nr 1 −mR ŜR = Π(1 −mR)

0-1 146 27 3 .185 .815 .815

1-2 116 18 10 .155 .845 .689

2-3 88 21 10 .239 .761 .524

3-4 57 9 3 .158 .842 .441

4-5 45 1 3 .022 .978 .432

5 year survival estimate = .432

5 year mortality rate estimate = .568

Assume censoring occurs at the left of each interval

time nr d w mL = d/(nr − w) 1 −mL Ŝ = Π(1 −mL)

0-1 146 27 3 .189 .811 .811

1-2 116 18 10 .170 .830 .673

2-3 88 21 10 .269 .731 .492

3-4 57 9 3 .167 .833 .410

4-5 45 1 3 .024 .976 .400

5 year survival estimate = .400

5 year mortality rate = .600

We note that the naive estimator for the five year survival probability ranged from .35 to .479,

whereas the life-table estimates ranged from .40 to .432 depending on whether we assumed

censoring occurred on the left or right of each interval.

More than likely, censoring occurred during the interval. Thus ŜL and ŜR are under and over

estimates respectively. A compromise would be to use

m = d/(nr − w/2) in the tables above.

This is what is referred to as the life-table estimate and for this example leads to the estimate

of the 5 year survival probability Ŝ(5) = .417.

Since the life-table estimator is an estimator for the underlying population survival probability

based on a sample of data, it is subject to variability. To assess the variability of this estimator,
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the standard error can be computed using Greenwood’s formulas as follows:

se{Ŝ(t)} = Ŝ(t)





t∑

j=1

dj

(nrj − wj/2)(nrj − dj − wj/2)





1/2

.

With sufficiently large sample sizes this estimator is approximately normally distributed; in which

case, the (1 − α)th confidence interval for S(t) can be approximated by

Ŝ(t) ±Zα/2[se{Ŝ(t)}],

where Zα/2 is the (1 − α/2) quantile of the standard normal distribution.

In our example

time nr d w Ŝ d
(nr−w/2)(nr−d−w/2)

∑ d
(n−w/2)(n−d−w/2)

se

0-1 146 27 3 .813 .00159 .00159 .032

1-2 118 18 10 .681 .00168 .00327 .039

2-3 88 21 10 .509 .00408 .00735 .044

3-4 57 9 3 .426 .00345 .01084 .044

4-5 45 1 3 .417 .00054 .01138 .044

The 95% confidence interval for S(5) is given as .417 ± 1.96(.044) = (.331 − .503).

9.3 Kaplan-Meier or Product-Limit Estimator

We notice in our previous example that the bias that occurs in estimating the survival distribution

by incorrectly assuming that censoring occurs at the left or right of each interval was decreased

when the interval was taken to be smaller (i.e. 1 year intervals as opposed to 5 year intervals).

If the data were not grouped (i.e. we know the exact times to death or censoring), then this

suggests that we may want to apply the life-table estimator using many intervals with small

interval widths. The limit of the life-table estimator when the intervals are taken so small that at

most only one observation occurs within any interval is called the product-limit estimator which

is also the same as the Kaplan-Meier estimator. Kaplan and Meier (1958) derived the estimator

based on likelihood principles. We believe it is more instructive and intuitive to consider this

estimator as the limit of the life-table estimator.
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To illustrate how this estimator is constructed, consider the following example:

Figure 9.4: An illustrative example of Kaplan-Meier estimator
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m = d/nr =
number of deaths in an interval

number at risk at beginning of interval

= (1/nr or 0 depending on whether or not a death occurred in interval)

(1 −m) = (1 − d/nr) = ((1 − 1/nr) or 1) .

In the limit, the Kaplan-Meier (product-limit) estimator will be a step function taking jumps at

times where a failure occurs. Therefore at any time t, the product-limit estimator of the survival

distribution is computed as the product

∏

all deaths

(
1 − 1

number at risk

)

over all death times occurring up to and including time t.

By convention, the Kaplan-Meier estimator is taken to be right-continuous.

Non-informative Censoring
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In order that life-table estimators give unbiased results, there is an implicit assumption that

individuals who are censored have the same risk of subsequent failure as those who are alive and

uncensored. The risk set at any point in time (individuals still alive and uncensored) should

be representative of the entire population alive at the same time in order that the estimated

mortality rates reflect the true population mortality rates.

Some notation and software

In describing censored survival data, it is useful to conceptualize two latent random variables

(possibly unobserved) corresponding to the failure time and censoring time. For the i-th individ-

ual we will denote these by Ti and Ci respectively. Specifically, Ti represents the survival time

if that individual was followed until death; whereas, Ci corresponds to the time measured from

their entry into the study until they were censored in the hypothetical situation that they could

not die. For example, Ci may be the time from entry into the study until the time the final

analysis was conducted. However, if the individual could be lost to follow-up, then the variable

Ci would have to account for that possibility as well. In any case, Ci corresponds to the time

that an individual would have been censored in a study if their death could be prevented.

In contrast to these latent variables, the variables we actually get to observe for the i-th individual

are denoted by (Ui,∆i), where Ui denotes the observed time on study (i.e. the time to death or

censoring, and ∆i denotes the failure indicator taking on the value 1 if the patient is observed

to die and the value 0 if the patient is censored. In terms of the latent variables we assume

Ui = min(Ti, Ci) and ∆i = I(Ti ≤ Ci).

The main objective of a clinical trial is to make inference about the probability distribution of the

latent survival time Ti even though this variable is not always observed due to censoring. In the

one-sample problem we are interested in estimating the survival distribution S(t) = P (Ti ≥ t)

using a sample of observable data

(Ui,∆i), i = 1, . . . , n.

If we define the number of individuals at risk at any time t by

n(t) =
n∑

i=1

I(Ui ≥ t),

that is, the number of individuals in our sample who neither died or were censored by time t,
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then the Kaplan-Meier estimator is given by

KM(t) =
∏

i:Ui≤t

{
n(Ui) − 1

n(Ui)

}∆i

.

This is the Kaplan-Meier estimator when there are no tied survival times in our sample. More

generally, if we denote by

d(t) =
n∑

i=1

I(Ui = t,∆i = 1),

the number of observed deaths in our sample at time t, thus allowing the possibility that d(t) ≥ 2

in cases where survival times are tied, then we can write the Kaplan-Meier estimator as

KM(t) =
∏

death times u≤t

{
1 − d(u)

n(u)

}
.

The standard error of the Kaplan-Meier estimator is also taken as the limit in Greenwood’s

formula, Namely,

se{KM(t)} = KM(t)





∑

death times u≤t

d(u)

n(u){n(u) − d(u)}





1/2

.

Proc lifetest in SAS

Many statistical packages, including SAS, have software available for censored survival analysis.

For example, the above Kaplan-Meier estimator can be obtained using the following SAS program:

Data example;
input survtime censcode;
cards;
4.5 1
7.5 1
8.5 0
11.5 1
13.5 0
15.5 1
16.5 1
17.5 0
19.5 1
21.5 0

;

Proc lifetest;
time survtime*censcode(0);

run;

And part of the output from the above program is
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The LIFETEST Procedure

Product-Limit Survival Estimates

Survival
Standard Number Number

SURVTIME Survival Failure Error Failed Left

0.0000 1.0000 0 0 0 10
4.5000 0.9000 0.1000 0.0949 1 9
7.5000 0.8000 0.2000 0.1265 2 8
8.5000* . . . 2 7
11.5000 0.6857 0.3143 0.1515 3 6
13.5000* . . . 3 5
15.5000 0.5486 0.4514 0.1724 4 4
16.5000 0.4114 0.5886 0.1756 5 3
17.5000* . . . 5 2
19.5000 0.2057 0.7943 0.1699 6 1
21.5000* . . . 6 0

* Censored Observation

9.4 Two-sample Tests

The major objective of many Phase III clinical trials is to compare two or more treatments with

respect to some primary endpoint. If the primary endpoint is time to an event (e.g. survival

time), then interest will focus on whether one treatment will increase or decrease the distribution

of this time as compared to some standard or control treatment. Let us begin by considering the

comparison of two treatments. Let the variable A denote treatment group, where we take A = 0

to denote the control group or standard treatment and A = 1 the new treatment.

The problem of comparing two treatments is often cast as a hypothesis testing question. The null

hypothesis being that the distribution of time to death (event) is the same for both treatments.

Letting T denote a patient’s underlying survival time, we define the treatment specific survival

distributions by S1(t) = P (T ≥ t|A = 1) and S0(t) = P (T ≥ t|A = 0). The null hypothesis is

given as

H0 : S1(t) = S0(t) = S(t), t > 0,

or equivalently

H0 : λ1(t) = λ0(t) = λ(t),

where λj(t), j = 0, 1 denote the treatment-specific hazard rates.

PAGE 144



CHAPTER 9 ST 520, A. TSIATIS and D. Zhang

The alternative hypothesis of most interest in such trials is that the survival time for one treat-

ment is stochastically larger than the survival time for the other treatment. Specifically, we say

the survival time for treatment 1 is stochastically larger than the survival time for treatment 0

if S1(t) ≥ S0(t) for all t > 0 with strict inequality for at least one value of t.

It has become standard practice in clinical trials to use nonparametric tests; that is, tests based

on statistics whose distribution under the null hypothesis does not depend on the underlying

survival distribution S(t) (At least asymptotically). The most widely used test with censored

survival data is the logrank test which we now describe.

Data from a clinical trial comparing the survival distribution between two treatments can be

viewed as realizations of the random triplets

(Ui,∆i, Ai), i = 1, . . . , n,

where

• Ui = min(Ti, Ci)

– Ti denotes the latent failure time

– Ci denotes the latent censoring time

• ∆i = I(Ti ≤ Ci) denotes failure indicator

• Ai denotes treatment indicator

We also define the following notation:

• nj =
∑n

i=1 I(Ai = j) denotes the number of patients assigned treatment j = 0, 1; n = n0+n1

• nj(u) =
∑n

i=1 I(Ui ≥ u,Ai = j) denotes the number at risk at time u from treatment

j = 0, 1

• n(u) = n0(u) + n1(u) denotes the total number at risk at time u from both treatments

• dj(u) =
∑n

i=1 I(Ui = u,∆i = 1, Ai = j) denotes the number of observed deaths at time u

from treatment j = 0, 1
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• d(u) = d0(u) + d1(u) denotes the number of observed deaths at time u from both samples

The notation above allows the possibility of more than one death occurring at the same time

(tied survival times).

The logrank test is based on the statistic

∑

all death times u

{
d1(u) −

n1(u)

n(u)
d(u)

}
.

This statistic can be viewed as the sum over the distinct death times of the observed number

of deaths from treatment 1 minus the expected number of deaths from treatment 1 if the null

hypothesis were true.

Thus at any point in time u corresponding to a time where a death was observed, i.e. d(u) ≥ 1,

the data at that point in time can be viewed as a 2 × 2 table; namely,

treatment

1 0 total

number of deaths d1(u) d0(u) d(u)

number alive n1(u) − d1(u) n0(u) − d0(u) n(u) − d(u)

number at risk n1(u) n0(u) n(u)

• The observed number of deaths at time u from treatment 1 is d1(u)

• The expected number of deaths from treatment 1 at time u if the null hypothesis were true

is d(u)
n(u)

n1(u)

• Thus the observed minus expected number of deaths at time u is
{
d1(u) − d(u)

n(u)
n1(u)

}

From this point of view, the survival data from a clinical trial can be summarized as k 2 × 2

tables, where k denotes the number of distinct death times. If the null hypothesis is true, then we

would expect
{
d1(u) − d(u)

n(u)
n1(u)

}
to be about zero on average for all {u : d(u) ≥ 1}. However, if

the hazard rate for treatment 0 is greater than the hazard rate for treatment 1 consistently over

all u, then, on average, we would expect
{
d1(u) − d(u)

n(u)
n1(u)

}
to be negative. The opposite would

be expected if the hazard rate for treatment 1 was greater than the hazard rate for treatment 0

for all u.
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This suggests that the null hypothesis of treatment equality should be rejected if the test statistic

is sufficiently large or small depending on the alternative of interest for one-sided tests or if the

absolute value of the test statistic is sufficiently large for two-sided tests. In order to gauge the

strength of evidence against the null hypothesis we must be able to evaluate the distribution of

the test statistic (at least approximately) under the null hypothesis. Therefore, the test statistic

has to be standardized appropriately. Specifically, the logrank test is given by

Tn =

∑{
d1(u) − d(u)

n(u)
n1(u)

}

[∑ n1(u)n0(u)d(u){n(u)−d(u)}
n2(u){n(u)−1}

]1/2
. (9.1)

Remark: In a 2 × 2 contingency table

d1(u) · d(u)

· · n(u) − d(u)

n1(u) n0(u) n(u)

The value d1(u), under the null hypothesis, conditional on the marginal totals, has a hypergeo-

metric distribution with mean
d(u)

n(u)
n1(u)

and variance [∑ n1(u)n0(u)d(u){n(u) − d(u)}
n2(u){n(u) − 1}

]
.

The sum of the hypergeometric variances of these 2 × 2 tables, summed over the distinct death

times, is the estimator of the variance of the test statistic under the null hypothesis. Therefore,

the logrank test Tn given by (9.1) is distributed as a standard normal under H0; i.e.

Tn
H0∼ N(0, 1).

Consequently, a level α test (two-sided) would reject the null hypothesis when |Tn| ≥ Zα/2. One

sided level α tests would reject whenever Tn ≥ Zα or −Tn ≥ Zα depending on the question. For

example, if we were interested in showing that treatment 1 is better (longer survival times) than

treatment 0, then we would reject H0 when −Tn ≥ Zα because under the alternative hypothesis

we would expect the observed number of deaths from treatment 1 to be less than that expected

under the null hypothesis.
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Note: All the arguments made above were based on summarizing the data as 2 × 2 tables

at distinct death times. Nowhere did we have to make any assumptions (other than the null

hypothesis) about the actual shape of the underlying survival distribution in deriving the nu-

merator of the logrank test statistic or its variance. This, intuitively, explains why this test is

nonparametric.

If censored survival data are organized as (Ui,∆i, Ai), i = 1, . . . , n, where Ui denotes time to

failure or censoring, ∆i denotes failure indicator, and Ai denotes treatment indicator, then the

logrank test can be computed using SAS. To illustrate, we again use the data from CALGB 8541

(clinical trial on beast cancer).

Recall that CALGB 8541 was a randomized three arm clinical trial for patients with stage II node

positive breast cancer. Although there were three treatments, the major focus was comparing

treatment 1 (Intensive CAF) to treatment 2 (Low dose CAF), where CAF is the combination of

the drugs Cyclophosphamide, Adriamycin an 5 Fluorouracil. For the purpose of this illustration

we will restrict attention to the comparison of these two treatments. Later we will discuss the

comparison of all three treatments.

data trt12; set bcancer;
if (trt=1) or (trt=2);

run;

title "Log-rank test comparing treatments 1 and 2";
proc lifetest data=trt12 notable;

time years*censor(0);
strata trt;

run;

Part of the output from the above SAS program:

The LIFETEST Procedure

Testing Homogeneity of Survival Curves for years over Strata

Rank Statistics

trt Log-Rank Wilcoxon

1 -30.030 -23695
2 30.030 23695
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Covariance Matrix for the Log-Rank Statistics

trt 1 2

1 91.3725 -91.3725
2 -91.3725 91.3725

Covariance Matrix for the Wilcoxon Statistics

trt 1 2

1 54635903 -5.464E7
2 -5.464E7 54635903

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 9.8692 1 0.0017
Wilcoxon 10.2763 1 0.0013
-2Log(LR) 9.5079 1 0.0020

9.5 Power and Sample Size

Thus far, we have only considered the properties of the logrank test under the null hypothesis.

In order to assess the statistical sensitivity of this test, we must also consider the power to detect

clinically meaningful alternatives. A useful way to define alternative hypotheses is through the

proportional hazards assumption. That is, letting λ1(t) and λ0(t) denote the hazard functions at

time t, for treatments 1 and 0 respectively, the proportional hazards assumption assumes that

λ1(t)

λ0(t)
= exp(γ), for all t ≥ 0. (9.2)

We use exp(γ) here because a hazard ratio must be positive and because γ = 0 will correspond to

a hazard ratio of one which would imply that both treatments have the same hazard function (i.e.

the null hypothesis). The proportional hazards assumption, if true, also has a nice interpretation.

The hazard ratio exp(γ) can be viewed as a relative risk and for purposes of testing the null

hypothesis of no treatment difference
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• γ > 0 implies that individuals on treatment 1 have worse survival (i.e. die faster)

• γ = 0 implies the null hypothesis

• γ < 0 implies that individuals on treatment 1 have better survival (i.e. live longer)

If the proportional hazards assumption were true; that is,

λ1(t) = λ0(t) exp(γ),

then this would imply that

−d log S1(t)

dt
= −d log S0(t)

dt
exp(γ),

or

− log S1(t) = − log S0(t) exp(γ).

Consequently,

S1(t) = {S0(t)}exp(γ),

and

log{− logS1(t)} = log{− logS0(t)} + γ.

This last relationship can be useful if we want to assess whether a proportional hazards as-

sumption is a reasonable representation of the data. By plotting the two treatment-specific

Kaplan-Meier curves on a log{− log} scale we can visually inspect whether these two curves

differ from each other by a constant over time.

Also, in the special case where we feel comfortable in assuming that the survival distributions

follow an exponential distribution; i.e. constant hazards, the proportional hazards assumption is

guaranteed to hold. That is,
λ1(t)

λ0(t)
=
λ1

λ0
.

In section 9.1 we showed that the median survival time for an exponential distribution with

hazard λ is equal to m = log(2)/λ. Therefore, the ratio of the median survival times for two

treatments whose survival distributions are exponentially distributed with hazard rates λ1 and

λ0 is
m1

m0

=
{log(2)/λ1}
{log(2)/λ0}

=
λ0

λ1

.
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Figure 9.5: Two survival functions with proportional hazards on log[-log] scale
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That is, the ratio of the medians of two exponentially distributed random variables is inversely

proportional to the ratio of the hazards. This relationship may be useful when one is trying

to illicit clinically important differences from medical collaborators during the design stage of

an experiment. Clinical investigators generally have a good sense of the median survival for

various treatments and can more easily relate to the question of determining an important

increase in median survival. However, as we just illustrated, if the survival distributions are well

approximated by exponential distributions then the differences in median survival can be easily

translated to a hazard ratio through the inverse relationship derived above.

The reason we focus on proportional hazards alternatives is that, in addition to having “nice”

interpretation, theory has been developed that shows that the logrank test is the most powerful

nonparametric test to detect proportional hazards alternatives. Moreover, it has also been shown

that the distribution of the logrank test under the alternative

HA :
λ1(t)

λ0(t)
= exp(γA), t ≥ 0

is approximately distributed as a normal distribution

Tn
HA∼ N({dθ(1 − θ)}1/2γA, 1),

where d denotes the total number of deaths (events), and θ denotes the proportion randomized

to treatment 1 (generally .5). That is, under a proportional hazards alternative, the logrank
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test is distributed approximately as a normal random variable with variance 1 and noncentrality

parameter

{dθ(1 − θ)}1/2γA.

When θ = .5, the noncentrality parameter is

γAd
1/2/2.

In order that a level α test (say, two-sided) have power 1 − β to detect the alternative

λ1(t)

λ0(t)
= exp(γA),

then the noncentrality parameter must equal Zα/2 + Zβ . That is,

γAd
1/2/2 = Zα/2 + Zβ,

or

d =
4(Zα/2 + Zβ)2

γ2
A

. (9.3)

This means that the power of the logrank test to detect a proportional hazards alternative is

directly related to the number of events (deaths) d during the course of the clinical trial.

Remark: This very nice and simple relationship would not apply if we didn’t use the logrank

test in conjunction with a proportional hazards alternative.

If we take α = .05 (two-sided), power (1 − β) = .90, and θ = .5, then

d =
4(1.96 + 1.28)2

γ2
A

. (9.4)

Some examples of the number of deaths necessary to detect an alternative where the hazard ratio

equals exp(γA) with 90% power using the logrank test at the .05 (two-sided) level of significance

is given in the following table.

Hazard Ratio exp(γA) Number of deaths d

2.00 88

1.50 256

1.25 844

1.10 4623
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During the design stage we must ensure that a sufficient number of patients are entered into the

trial and followed long enough so that the requisite number of events are attained.

Sample Size Considerations

One straightforward approach to ensure the desired power of a trial to detect a clinically impor-

tant alternative is to continue a clinical trial until we obtain the required number of failures.

Example: Suppose patients with advanced lung cancer historically have a median survival of

six months and the survival distribution is approximately exponentially distributed. An increase

in the median survival from six months to nine months is considered clinically important and

we would like to have at least 90% power to detect such a difference if it can be achieved with

a new therapy using a logrank test at the .05 (two-sided) level of significance. How should we

design a clinical trial comparing the standard treatment to a promising new treatment?

If the survival distributions for both treatments were exponentially distributed, then the clinically

important hazard ratio would be

λ1

λ0

=
m0

m1

=
6

9
= 2/3.

Hence γA = log(2/3) = −.4055. Using the formula given by equation (9.4) we determine that

we need to carry out a study that will ultimately require a total of 256 deaths.

Since, for this example, patients do not survive for very long, one strategy is to enter some number

of patients greater than 256 and continue the study until 256 deaths occur. For example, we

may enter, say 350 patients, whom we randomize with equal probability to the two treatments

and then analyze the data after 256 deaths.

Note The 350 patients was chosen arbitrarily. We now give more careful consideration to some

of the design aspects of a clinical trial with a survival endpoint.

Design Specifications

In most clinical trials, arbitrarily picking a number of patients and waiting for the requisite

number of events to occur will not be adequate for the proper planning of the trial. More often

we need to consider the following in the proper design of a clinical trial with a time to event

endpoint.
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• number of patients

• accrual period

• follow-up time

It was shown by Schoenfeld that to obtain reasonable approximations for the power, we need the

expected number of events (deaths), computed under the alternative, to equal the number given

by equation (9.3). Specifically, the expected number of deaths need to be computed separately

for each treatment arm, under the assumption that the alternative hypothesis were true, and the

sum from both treatments should equal (9.3) to achieve the desired power.

In order to compute the expected number of deaths for each treatment during the design stage,

we must consider the following. Also, see figure below.

Figure 9.6: Illustration of accrual and follow-up

0
-

Ei
(Accrual) (Follow-up)

A L = A+ F

Remark: We will assume that any censoring that may occur is due to end of study censoring

resulting from staggered entry. We will sometimes refer to this as “administrative censoring”.

If, in addition, we wanted to consider other forms of censoring, such as lost to follow-up due to

withdrawal or censoring due to death from other causes, then the formulas given below would

have to be modified.

We define the following notation:

• A denotes the accrual period; that is, the calendar period of time that patients are entering

the study

• F denotes the calendar period of time after accrual has ended before the final analysis is

conducted

• L = A + F denotes the total calendar time of the study from the time the study opens

until the final analysis
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• Denote the accrual rate at calendar time u by a(u); more precisely as

a(u) = lim
h→0

{
Expected no. of patients entering between [u, u+ h)

h

}
.

The total expected number of patients in the clinical trial is given by

∫ A

0
a(u)du.

If we have a constant accrual rate (this is the most common assumption made during the design

stage), then a(u) = a and the expected number of patients is aA.

In a randomized study where patients are assigned with equal probability to each of two treat-

ments the accrual rate to each treatment would be a(u)
2

. If we denote the distribution function

of the survival time for each treatment (0 or 1) by

Fj(u) = P (T ≤ u|A = j) = 1 − Sj(u), j = 0, 1,

then the expected number of observed deaths from treatment j is

dj =
∫ A

0

a(u)

2
Fj(L− u)du, j = 0, 1. (9.5)

In words, we expect a(u)
2
du patients to enter between times [u, u+ du), of which the proportion

Fj(L − u) are expected to die by the end of the study (at time L). This number summed

(integrated) over u, for values of u during the accrual period [0, A], will yield the expected

number of deaths on treatment j = 0, 1. To get the desired power we want

d1 + d0 =
4(Zα/2 + Zβ)2

γ2
A

,

Note: The number of failures can be affected by

• the accrual rate

• accrual period (sample size)

• follow-up period

• the failure (hazard) rate (survival distribution)
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Some, or all, of these factors can be controlled by the investigator and have to be considered

during the design stage.

Example:

Assume the accrual rate is constant a patients per year and we randomize equally to two treat-

ments so that the accrual rate is a/2 patients per year on each treatment. Also assume that the

treatment specific survival distributions are exponentially distributed with hazards λj, j = 0, 1.

Then

dj =
∫ A

0

a

2
[1 − exp{−λj(L− u)}] du

=
a

2

[
A− exp(−λjL)

λj
{exp(λjA) − 1}

]
.

During the design stage, we expect 100 patients per year to be recruited into the study. The

median survival for treatment 0 is expected to be about 4 years and assumed to follow an

exponential distribution (λ0 = .173). We want the power to be 90% if the new treatment

(treatment 1) can increase the median survival to 6 years (λ1 = .116) using a logrank test at the

.05 (two-sided) level of significance.

For this problem the clinically important hazard ratio is 2/3 corresponding to γA = log(2/3).

Using equation (9.3), the total number of deaths necessary is 256. Hence, we need

d1(A,L) + d0(A,L) = 256.

Note: We use the notation d1(A,L) to emphasize the fact that the number of deaths will depend

on our choice of accrual period A and length of study L.

According to the formulas we derived, we need A and L to satisfy the equation

50

[
A− exp(−.116L)

.116
{exp(.116A) − 1}

]

+50

[
A− exp(−.173L)

.173
{exp(.173A) − 1}

]

= 256.

There are many combinations of A and L that would satisfy the equation above. Clearly, the

minimum length of the study would occur if we continued accruing patients continuously until
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we obtained the desired number of events. This corresponds to the case where A = L. When

A = L there is only one unknown above and solving the equation above yields A = L = 7 years.

Such a design would require a total of 700 patients.

Note: This equation does not have a closed form solution and the solution must be obtained

numerically by iterative techniques.

In contrast, if we accrued for five years, A = 5, or a total of 500 patients, then solving for L

yields L = 7.65.

Clearly, to obtain 256 deaths, we need to accrue at least 256 patients. Therefore, A must be

greater than 2.56 years. However, choosing L that small in order to accrue as few patients as

possible would result in a trial that would take an exceedingly long time to complete.

A good strategy is to experiment with a variety of combinations of A and L that can be used to

present to the clinical investigators and then the choice which best suits the needs of the study

can be made.

Other factors that may affect power that we will not discuss are

• loss to follow-up (withdrawal)

• competing risks

• non-compliance

An excellent account on how to deal with these issues during the design stage is given by Lakatos

(1988), Biometrics.

9.6 K-Sample Tests

We now consider the case where we randomize to K > 2 treatments and are interested in testing

the null hypothesis that the survival distributions are the same for all treatments versus the

alternative that there is some difference. With right censoring, the data from such a clinical trial

can be represented as realizations of the iid triplets (Ui,∆i, Ai), i = 1, . . . , n, where for the i-th
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individual, Ui = min(Ti, Ci), ∆i = I(Ti ≤ Ci), and Ai = (1, . . . , K) denotes the treatment group

that the individual was randomized to. Letting Sj(t) = P (T ≥ t|A = j), j = 1, . . . , K denote

the treatment-specific survival distributions, the null hypothesis of no treatment difference is

H0 : S1(t) = . . . = SK(t), t ≥ 0,

or equivalently

H0 : λ1(t) = . . . = λK(t), t ≥ 0,

where λj(t), j = 1, . . . , K denote the treatment-specific hazard rates.

The test of the null hypothesis for this K-sample problem will be a direct generalization of the

logrank test used for the two-sample test. Using the same notation as in the previous section

where nj(u) denotes the number of individuals at risk at time u in treatment group j and dj(u)

the number of observed deaths in treatment group j at time u, we view the data as a series of

2 ×K tables at the distinct failure times u where d(u) ≥ 1. For example,

Treatments

1 2 . . . K Total

No. of deaths d1(u) d2(u) . . . dK(u) d(u)

No. alive n1(u) − d1(u) n2(u) − d2(u) . . . nK(u) − dK(u) n(u) − d(u)

No. at risk n1(u) n2(u) . . . nK(u) n(u)

Generalization of the two-sample test

At each time u where d(u) ≥ 1, we now consider a vector of observed minus expected number of

deaths under the null hypothesis for each treatment group j. Namely,




d1(u) − n1(u)
n(u)

d(u)

·
·
·

dK(u) − nK(u)
n(u)

d(u)




K×1

Note: The sum of the elements in this vector is equal to zero. Because of this, such vectors

can only vary in (K − 1)-dimensional space. Consequently, it suffices to use only K − 1 of these
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vectors for further consideration in constructing test statistics. It doesn’t matter which K − 1

of these we use, thus, for convention, we will take from now on j = 1, . . . , K − 1.

Analogous to the two-sample problem, if we condition on the marginal counts of these 2×K con-

tingency tables, then, under the null hypothesis, the distribution of the counts {d1(u), . . . , dK(u)}
is a multivariate version of the hypergeometric distribution. Specifically, this implies that, con-

ditional on the marginal counts, the conditional expectation of dj(u) is

EC{dj(u)} =
nj(u)

n(u)
d(u), j = 1, . . . , K.

Note: We use the notation EC(·) to denote conditional expectation.

Also the conditional variance-covariance matrix of the dj(u)’s is given by

varC{dj(u)} =
d(u){n(u) − d(u)}nj(u){n(u) − nj(u)}

n2(u){n(u) − 1} , j = 1, . . . , K,

and for j 6= j′

covC{dj(u), dj′(u)} = −
[
d(u){n(u) − d(u)}nj(u)nj′(u)

n2(u){n(u) − 1}

]
.

Again, analogous to the construction of the logrank test in two-samples, consider the K − 1

dimensional vector Tn, made up by the sum of the observed minus expected counts for treatments

j = 1, . . . , K − 1, summed over distinct death times u such that d(u) ≥ 1. That is

Tn =




∑
death times u

{
d1(u) − n1(u)

n(u)
d(u)

}

·
·
·

∑
death times u

{
dK−1(u) − nK−1(u)

n(u)
d(u)

}




(K−1)×1

The corresponding (K−1)×(K−1) covariance matrix of the vector Tn is given by V(K−1)×(K−1)
n ,

where for j = 1, . . . , K − 1 the diagonal terms are given by

Vnjj =
∑

death times u

[
d(u){n(u) − d(u)}nj(u){n(u) − nj(u)}

n2(u){n(u) − 1}

]
,

and for j 6= j′, the off-diagonal terms are

Vnjj′ = −
∑

death times u

[
d(u){n(u) − d(u)}nj(u)nj′(u)

n2(u){n(u) − 1}

]
.
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The test statistic used to test the null hypothesis is given by the quadratic form

Tn = T T
n [Vn]−1Tn,

where we use the notation (·)T to denote the transpose of a vector. Under H0, the statistic Tn

is distributed asymptotically as a central chi-square distribution with K − 1 degrees of freedom.

This test statistic is called the K-sample logrank test statistic. If the null hypothesis is true,

we would expect the elements in the vector Tn to be near zero. Hence the quadratic form, Tn,

should also be near zero. If however, there were treatment differences, then we would expect

some of the elements in the vector Tn to deviate from zero and thus expect the quadratic form,

Tn, to be larger. Thus, we will reject the null hypothesis if Tn is sufficiently large. For a level α

test, we would reject H0 when

Tn = T T
n [Vn]−1Tn ≥ χ2

α,K−1.

Proc lifetest in SAS implements this test and we will illustrate shortly using the data from

CALGB 8541. But first let us end this section with a short discussion on how sample size

calculations can be implemented during the design stage when one is comparing the survival

distribution of more than two treatments with the logrank test.

9.7 Sample-size considerations for the K-sample logrank test

The computations of the sample size necessary to attain the desired power to detect clinically

important treatment differences using the logrank test generalize from the two-sample problem to

the K-sample problem in a manner similar to that considered for the comparison of proportions

or means discussed in Chapter 7.

Specifically, if we randomize with equal probability to K treatments, then the total number of

deaths necessary for the K-sample logrank test at the α level of significance to have power at

least 1 − β to detect a hazard ratio (assumed constant over time) between any two treatments

greater than equal to exp(γA) is given by

d =
2Kφ2(α, β,K − 1)

γ2
A

,

where

φ2(α, β,K − 1),
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is the value of the non-centrality parameter necessary so that a non-central chi-square distributed

random variable with K − 1 degrees of freedom and non-centrality parameter φ2(α, β,K − 1)

will exceed the value χ2
α;K−1 with probability (1− β). Tables of φ2(α, β,K − 1) for α = .05 were

provided in chapter 7.

For example, if we take K = 3, then in order to ensure that we have at least 90% power to detect

a hazard ratio between any two treatments that may exceed 1.5, using a logrank test at the .05

level of significance, we would need the total number of deaths to exceed

d =
2 × 3 × 12.654

{log(1.5)}2
= 462.

We can contrast this to a two-sample comparison which needs 256 events. As in the two-sample

problem, the computations during the design stage will involve the best guesses for the accrual

rate, accrual period, follow-up period, and underlying treatment-specific survival distributions

which can be translated to the desired number of failures. Thus we can experiment with different

values of

• accrual rate a(u)

• underlying treatment-specific failure time distributions Fj(t) = P (T ≤ t|A = j) = 1 −
Sj(t), j = 1, . . . , K under the alternative hypothesis of interest (we may take these at the

least favorable configuration)

• the accrual period A

• the length of study L

so that
K∑

j=1

dj{a(·), Fj(·), A, L} =
2Kφ2(α, β,K − 1)

γ2
A

,

where dj{a(·), Fj(·), A, L} denotes the expected number of deaths in treatment group j as a

function of a(·), Fj(·), A, L, computed using equation (9.5).

CALGB 8541 Example

We now return to the data from CALGB 8541 which compared three treatments in a randomized

study of node positive stage II breast cancer patients. The three treatments were
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• treatment 1 (Intensive CAF)

• treatment 2 (Low dose CAF)

• treatment 3 (Standard dose CAF)

where CAF denotes the combination of Cyclophosphamide, Adriamycin and 5-Fluorouracil. As

well as testing for overall differences in the three treatments, we shall also look at the three

pairwise comparisons.

SAS program:

title "Log-rank test comparing all three treatments";
proc lifetest data=bcancer notable;

time years*censor(0);
strata trt;

run;

Part of the output:

Log-rank test comparing all three treatments

The LIFETEST Procedure

Testing Homogeneity of Survival Curves for years over Strata

Rank Statistics

trt Log-Rank Wilcoxon

1 -21.245 -27171
2 37.653 43166
3 -16.408 -15995

Covariance Matrix for the Log-Rank Statistics

trt 1 2 3

1 120.132 -57.761 -62.371
2 -57.761 114.004 -56.243
3 -62.371 -56.243 118.615

Covariance Matrix for the Wilcoxon Statistics

trt 1 2 3
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1 1.6295E8 -7.94E7 -8.355E7
2 -7.94E7 1.5675E8 -7.734E7
3 -8.355E7 -7.734E7 1.6089E8

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square

Log-Rank 12.4876 2 0.0019
Wilcoxon 12.1167 2 0.0023
-2Log(LR) 11.3987 2 0.0033
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10 Early Stopping of Clinical Trials

10.1 General issues in monitoring clinical trials

Up to now we have considered the design and analysis of clinical trials assuming the data would

be analyzed at only one point in time; i.e. the final analysis. However, due to ethical as well

as practical considerations, the data are monitored periodically during the course of the study

and for a variety of reasons may be stopped early. In this section we will discuss some of the

statistical issues in the design and analysis of clinical trials which allow the possibility of early

stopping. These methods fall under the general title of group-sequential methods.

Some reasons a clinical trial may be stopped early include

• Serious toxicity or adverse events

• Established benefit

• No trend of interest

• Design or logistical difficulties too serious to fix

Since there is lot invested (scientifically, emotionally, financially, etc.) in a clinical trial by

the investigators who designed or are conducting the trial, they may not be the best suited

for deciding whether the clinical trial should be stopped. It has become common practice for

most large scale phase III clinical trials to be monitored by an independent data monitoring

committee; often referred to as a Data Safety Monitoring Board (DSMB). It is the responsibility

of this board to monitor the data from a study periodically (usually two to three times a year)

and make recommendations on whether the study should be modified or stopped. The primary

responsibility of this board is to ensure the safety and well being of the patients that have enrolled

into the trial.
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The DSMB generally has members who represent the following disciplines:

• Clinical

• Laboratory

• Epidemiology

• Biostatistics

• Data Management

• Ethics

The members of the DSMB should have no conflict of interest with the study or studies they

are monitoring; e.g. no financial holdings in the company that is developing the treatments by

member or family. All the discussions of the DSMB are confidential. The charge of the DSMB

includes:

• Protocol review

• Interim reviews

– study progress

– quality of data

– safety

– efficacy and benefit

• Manuscript review

During the early stages of a clinical trial the focus is on administrative issues regarding the

conduct of the study. These include:

• Recruitment/Entry Criteria

• Baseline comparisons
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• Design assumptions and modifications

– entry criteria

– treatment dose

– sample size adjustments

– frequency of measurements

• Quality and timeliness of data collection

Later in the study, as the data mature, the analyses focus on treatment comparisons. One of

the important issues in deciding whether a study should be stopped early is whether a treatment

difference during an interim analysis is sufficiently large or small to warrant early termination.

Group-sequential methods are rules for stopping a study early based on treatment differences

that are observed during interim analyses. The term group-sequential refers to the fact that the

data are monitored sequentially at a finite number of times (calendar) where a group of new data

are collected between the interim monitoring times. Depending on the type of study, the new

data may come from new patients entering the study or additional information from patients

already in the study or a combination of both. In this chapter we will study statistical issues in

the design and analysis of such group-sequential methods. We will take a general approach to

this problem that can be applied to many different clinical trials. This approach is referred to

as Information-based design and monitoring of clinical trials.

The typical scenario where these methods can be applied is as follows:

• A study in which data are collected over calendar time, either data from new patients

entering the study or new data collected on patients already in the study

• Where the interest is in using these data to answer a research question. Often, this is posed

as a decision problem using a hypothesis testing framework. For example, testing whether

a new treatment is better than a standard treatment or not.

• The investigators or “the monitoring board” monitor the data periodically and conduct

interim analyses to assess whether there is sufficient “strong evidence” in support of the

research hypothesis to warrant early termination of the study
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• At each monitoring time, a test statistic is computed and compared to a stopping boundary.

The stopping boundary is a prespecified value computed at each time an interim analysis

may be conducted which, if exceeded by the test statistic, can be used as sufficient evidence

to stop the study. Generally, a test statistic is computed so that its distribution is well

approximated by a normal distribution. (This has certainly been the case for all the

statistics considered in the course)

• The stopping boundaries are chosen to preserve certain operating characteristics that are

desired; i.e. level and power

The methods we present are general enough to include problem where

• t-tests are used to compare the mean of continuous random variables between treatments

• proportions test for dichotomous response variables

• logrank test for censored survival data

• tests based on likelihood methods for either discrete or continuous random variables; i.e.

Score test, Likelihood ratio test, Wald tests using maximum likelihood estimators

10.2 Information based design and monitoring

The underlying structure that is assumed here is that the data are generated from a probability

model with population parameters ∆, θ, where ∆ denotes the parameter of primary interest, in

our case, this will generally be treatment difference, and θ denote the nuisance parameters. We

will focus primarily on two-sided tests where we are testing the null hypothesis

H0 : ∆ = 0

versus the alternative

HA : ∆ 6= 0,

however, the methods are general enough to also consider one-sided tests where we test

H0 : ∆ ≤ 0
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versus

HA : ∆ > 0.

Remark This is the same framework that has been used throughout the course.

At any interim analysis time t, our decision making will be based on the test statistic

T (t) =
∆̂(t)

se{∆̂(t)}
,

where ∆̂(t) is an estimator for ∆ and se{∆̂(t)} is the estimated standard error of ∆̂(t) using

all the data that have accumulated up to time t. For two-sided tests we would reject the null

hypothesis if the absolute value of the test statistic |T (t)| were sufficiently large and for one-sided

tests if T (t) were sufficiently large.

Example 1. (Dichotomous response)

Let π1, π0 denote the population response rates for treatments 1 and 0 (say new treatment and

control) respectively. Let the treatment difference be given by

∆ = π1 − π0

The test of the null hypothesis will be based on

T (t) =
p1(t) − p0(t)√

p̄(t){1 − p̄(t)}
{

1
n1(t)

+ 1
n2(t)

} ,

where using all the data available through time t, pj(t) denotes the sample proportion responding

among the nj(t) individuals on treatment j = 0, 1.

Example 2. (Time to event)

Suppose we assume a proportional hazards model. Letting A denote treatment indicator, we

consider the model
λ1(t)

λ0(t)
= exp(−∆),

and we want to test the null hypothesis of no treatment difference

H0 : ∆ = 0

versus the two-sided alternative

HA : ∆ 6= 0,
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or the one-sided test that treatment 1 does not improve survival

H0 : ∆ ≤ 0

versus the alternative that it does improve survival

HA : ∆ > 0.

Using all the survival data up to time t (some failures and some censored observations), we would

compute the test statistic

T (t) =
∆̂(t)

se{∆̂(t)}
,

where ∆̂(t) is the maximum partial likelihood estimator of ∆ that was derived by D. R. Cox

and se{∆̂(t)} is the corresponding standard error. For the two-sided test we would reject the

null hypothesis if |T (t)| were sufficiently large and for the one-sided test if T (t) were sufficiently

large.

Remark: The material on the use and the properties of the maximum partial likelihood estimator

are taught in the classes on Survival Analysis. We note, however, that the logrank test computed

using all the data up to time t is equivalent asymptotically to the test based on T (t).

Example 3. (Parametric models)

Any parametric model where we assume the underlying density of the data is given by p(z; ∆, θ),

and use for ∆̂(t) the maximum likelihood estimator for ∆ and for se{∆̂(t)} compute the estimated

standard error using the square-root of the inverse of the observed information matrix, with the

data up to time t.

In most important applications the test statistic has the property that the distribution when

∆ = ∆∗ follows a normal distribution, namely,

T (t) =
∆̂(t)

se{∆̂(t)}
∆=∆∗

∼ N(∆∗I1/2(t,∆∗), 1),

where I(t,∆∗) denotes the statistical information at time t. Statistical information refers to

Fisher information, but for those not familiar with these ideas, for all practical purposes, we can

equate (at least approximately) information with the standard error of the estimator; namely,

I(t,∆∗) ≈ {se(∆̂(t)}−2.
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Under the null hypothesis ∆ = 0, the distribution follows a standard normal, that is

T (t)
∆=0∼ N(0, 1),

and is used a basis for a group-sequential test. For instance, if we considered a two-sided test,

we would reject the null hypothesis whenever

|T (t)| ≥ b(t),

where b(t) is some critical value or what we call a boundary value. If we only conducted one

analysis and wanted to construct a test at the α level of significance, then we would choose

b(t) = Zα/2. Since under the null hypothesis the distribution of T (t) is N(0, 1) then

PH0
{|T (t)| ≥ Zα/2} = α.

If, however, the data were monitored at K different times, say, t1, . . . , tK , then we would want to

have the opportunity to reject the null hypothesis if the test statistic, computed at any of these

times, was sufficiently large. That is, we would want to reject H0 at the first time tj , j = 1, . . . , K

such that

|T (tj)| ≥ b(tj),

for some properly chosen set of boundary values b(t1), . . . , b(tK).

Note: In terms of probabilistic notation, using this strategy, rejecting the null hypothesis cor-

responds to the event
K⋃

j=1

{|T (tj)| ≥ b(tj)}.

Similarly, accepting the null hypothesis corresponds to the event

K⋂

j=1

{|T (tj)| < b(tj)}.

The crucial issue is how large should the treatment differences be during the interim analyses

before we reject H0; that is, how do we choose the boundary values b(t1), . . . , b(tK)? Moreover,

what are the consequences of such a strategy of sequential testing on the level and power of the

test and how does this affect sample size calculations?
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10.3 Type I error

We start by first considering the effect that group-sequential testing has on type I error; i.e.

on the level of the test. Some thought must be given on the choice of boundary values. For

example, since we have constructed the test statistic T (tj) to have approximately a standard

normal distribution, if the null hypothesis were true, at each time tj , if we naively reject H0

at the first monitoring time that the absolute value of the test statistic exceeds 1.96 (nominal

p-value of .05), then the type I error will be inflated due to multiple comparisons. That is,

type I error = PH0
[

K⋃

j=1

{|T (tj)| ≥ 1.96}] > .05,

if K ≥ 2.

This is illustrated in the following table:

Table 10.1: Effect of multiple looks on type I error

K false positive rate

1 0.050

2 0.083

3 0.107

4 0.126

5 0.142

10 0.193

20 0.246

50 0.320

100 0.274

1,000 0.530

∞ 1.000

The last entry in this table was described by J. Cornfield as

“Sampling to a foregone conclusion”.
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Our first objective is to derive group-sequential tests (i.e. choice of boundaries b(t1), . . . , b(tK))

that have the desired prespecified type I error of α.

Level α test

We want the probability of rejecting H0, when H0 is true, to be equal to α, say .05. The strategy

for rejecting or accepting H0 is as follows:

• Stop and reject H0 at the first interim analysis if

{|T (t1)| ≥ b(t1)}

• or stop and reject H0 at the second interim analysis if

{|T (t1)| < b(t1), |T (t2)| ≥ b(t2)}

• or . . .

• or stop and reject at the final analysis if

{|T (t1)| < b(t1), . . . , |T (tK−1)| < b(tK−1), |T (tK)| ≥ b(tK)}

• otherwise, accept H0 if

{|T (t1)| < b(t1), . . . , |T (tK)| < b(tK)}.

This representation partitions the sample space into mutually exclusive rejection regions and

an acceptance region. In order that our testing procedure have level α, the boundary values

b(t1), . . . , b(tK) must satisfy

P∆=0{|T (t1)| < b(t1), . . . , |T (tK)| < b(tK)} = 1 − α. (10.1)

Remark:

By construction, the test statistic T (tj) will be approximately distributed as a standard nor-

mal, if the null hypothesis is true, at each time point tj . However, to ensure that the group-

sequential test have level α, the equality given by (10.1) must be satisfied. The probability on
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the left hand side of equation (10.1) involves the joint distribution of the multivariate statistic

(T (t1), . . . , T (tK)). Therefore, we would need to know the joint distribution of this sequentially

computed test statistic at times t1, . . . , tK , under the null hypothesis, in order to compute the

necessary probabilities to ensure a level α test. Similarly, we would need to know the joint dis-

tribution of this multivariate statistic, under the alternative hypothesis to compute the power of

such a group-sequential test.

The major result which allows the use of a general methodology for monitoring clinical trials is

that

“Any efficient based test or estimator for ∆, properly normalized, when computed se-

quentially over time, has, asymptotically, a normal independent increments process

whose distribution depends only on the parameter ∆ and the statistical informa-

tion.”

Scharfstein, Tsiatis and Robins (1997). JASA. 1342-1350.

As we mentioned earlier the test statistics are constructed so that when ∆ = ∆∗

T (t) =
∆̂(t)

se{∆̂(t)}
∼ N(∆∗I1/2(t,∆∗), 1),

where we can approximate statistical information I(t,∆∗) by [se{∆̂(t)}]−2. If we normalize by

multiplying the test statistic by the square-root of the information; i.e.

W (t) = I1/2(t,∆∗)T (t),

then this normalized statistic, computed sequentially over time, will have the normal independent

increments structure alluded to earlier. Specifically, if we compute the statistic at times t1 <

t2 < . . . < tK , then the joint distribution of the multivariate vector {W (t1), . . . ,W (tK)} is

asymptotically normal with mean vector {∆∗I(t1,∆
∗), . . . ,∆∗I(tK ,∆

∗)} and covariance matrix

where

var{W (tj)} = I(tj ,∆
∗), j = 1, . . . , K

and

cov[W (tj), {W (tℓ) −W (tj)}] = 0, j < ℓ, j, ℓ = 1, . . . , K.

That is
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• The statistic W (tj) has mean and variance proportional to the statistical information at

time tj

• Has independent increments; that is

W (t1) = W (t1)

W (t2) = W (t1) + {W (t2) −W (t1)}

·

·

·

W (tj) = W (t1) + {W (t2) −W (t1)} + . . .+ {W (tj) −W (tj−1)}

has the same distribution as a partial sum of independent normal random variables

This structure implies that the covariance matrix of {W (t1), . . . ,W (tK)} is given by

var{W (tj)} = I(tj ,∆
∗), j = 1, . . . , K

and for j < ℓ

cov{W (tj),W (tℓ)}

= cov[W (tj), {W (tℓ) −W (tj)} +W (tj)]

= cov[W (tj), {W (tℓ) −W (tj)}] + cov{W (tj),W (tj)}

= 0 + var{W (tj)}

= I(tj,∆
∗).

Since the test statistic

T (tj) = I−1/2(tj,∆
∗)W (tj), j = 1, . . . , K

this implies that the joint distribution of {T (t1), . . . , T (tK)} is also multivariate normal where

the mean

E{T (tj)} = ∆∗I1/2(tj ,∆
∗), j = 1, . . . , K (10.2)

and the covariance matrix is such that

var{T (tj)} = 1, j = 1, . . . , K (10.3)
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and for j < ℓ, the covariances are

cov{T (tj), T (tℓ)} = cov{I−1/2(tj ,∆
∗)W (tj), I

−1/2(tℓ,∆
∗)W (tℓ)}

= I−1/2(tj,∆
∗)I−1/2(tℓ,∆

∗)cov{W (tj),W (tℓ)}

= I−1/2(tj,∆
∗)I−1/2(tℓ,∆

∗)I(tj ,∆
∗)

=
I1/2(tj ,∆

∗)

I1/2(tℓ,∆∗)
=

√√√√I(tj,∆∗)

I(tℓ,∆∗)
. (10.4)

In words, the covariance of T (tj) and T (tℓ) is the square-root of the relative information at times

tj and tℓ. Hence, under the null hypothesis ∆ = 0, the sequentially computed test statistic

{T (t1), . . . , T (tK)} is multivariate normal with mean vector zero and covariance matrix (in this

case the same as the correlation matrix, since the variances are all equal to one)

VT =



√√√√I(tj , 0)

I(tℓ, 0)


 , j ≤ ℓ. (10.5)

The importance of this result is that the joint distribution of the sequentially computed test statis-

tic, under the null hypothesis, is completely determined by the relative proportion of information

at each of the monitoring times t1, . . . , tK . This then allows us to evaluate probabilities such as

those in equation (10.1) that are necessary to find appropriate boundary values b(t1), . . . , b(tK)

that achieve the desired type I error of α.

10.3.1 Equal increments of information

Let us consider the important special case where the test statistic is computed after equal incre-

ments of information; that is

I(t1, ·) = I, I(T2, ·) = 2I, . . . , I(tK , ·) = KI.

Remark: For problems where the response of interest is instantaneous, whether this response be

discrete or continuous, the information is proportional to the number of individuals under study.

In such cases, calculating the test statistic after equal increments of information is equivalent to

calculating the statistic after equal number of patients have entered the study. So, for instance, if

we planned to accrue a total of 100 patients with the goal of comparing the response rate between
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two treatments, we may wish to monitor five times after equal increments of information; i.e after

every 20 patients enter the study.

In contrast, if we were comparing the survival distributions with possibly right censored data,

then it turns out that information is directly proportional to the number of deaths. Thus, for

such a study, monitoring after equal increments of information would correspond to conducting

interim analyses after equal number of observed deaths.

In any case, monitoring a study K times after equal increments of information imposes a

very specific distributional structure, under the null hypothesis, for the sequentially com-

puted test statistic that can be exploited in constructing group-sequential tests. Because

I(tj , 0) = jI, j = 1, . . . , K, this means that the joint distribution of the sequentially com-

puted test statistic {T (t1), . . . , T (tK)} is a multivariate normal with mean vector equal to zero

and by (10.5) with a covariance matrix equal to

VT =



√√√√I(tj , 0)

I(tℓ, 0)
=

√
j

ℓ


 , j ≤ ℓ. (10.6)

This means that under the null hypothesis the joint distribution of the sequentially computed

test statistic computed after equal increments of information is completely determined once we

know the total number K of interim analyses that are intended. Now, we are in a position to

compute probabilities such as

P∆=0{|T (t1)| < b1, . . . , |T (tK)| < bK}

in order to determine boundary values b1, . . . , bK where the probability above equals 1 − α as

would be necessary for a level-α group-sequential test.
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Remark: The computations necessary to compute such integrals of multivariate normals with

the covariance structure (10.6) can be done quickly using using recursive numerical integration

that was first described by Armitage, McPherson and Rowe (1969). This method takes advantage

of the fact that the joint distribution is that of a standardized partial sum of independent normal

random variables. This integration allows us to search for different combinations of b1, . . . , bK

which satisfy

P∆=0{|T (t1)| < b1, . . . , |T (tK)| < bK} = 1 − α.

There are infinite combinations of such boundary values that lead to level-α tests; thus, we need

to assess the statistical consequences of these different combinations to aid us in making choices

in which to use.

10.4 Choice of boundaries

Let us consider the flexible class of boundaries proposed by Wang and Tsiatis (1987) Biometrics.

For the time being we will restrict attention to group-sequential tests computed after equal

increments of information and later discuss how this can be generalized. The boundaries by

Wang and Tsiatis were characterized by a power function which we will denote by Φ. Specifically,

we will consider boundaries where

bj = (constant) × j(Φ−.5), .

Different values of Φ will characterize different shapes of boundaries over time. We will also refer

to Φ as the shape parameter.

For any value Φ, we can numerically derive the the constant necessary to obtain a level-α test.

Namely, we can solve for the value c such that

P∆=0{
K⋂

j=1

|T (tj)| < cj(Φ−.5)} = 1 − α.

Recall. Under the null hypothesis, the joint distribution of {T (t1), . . . , T (tK)} is completely

known if the times t1, . . . , tK are chosen at equal increments of information. The above integral

is computed for different c until we solve the above equation. That a solution exists follows from

the monotone relationship of the above probability as a function of c. The resulting solution will

be denoted by c(α,K,Φ). Some of these are given in the following table.
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Table 10.2: Group-sequential boundaries for two-sided tests for selected values of α, K, Φ

K

Φ 2 3 4 5

α = .05

0.0 2.7967 3.4712 4.0486 4.5618

0.1 2.6316 3.1444 3.5693 3.9374

0.2 2.4879 2.8639 3.1647 3.4175

0.3 2.3653 2.6300 2.8312 2.9945

0.4 2.2636 2.4400 2.5652 2.6628

0.5 2.1784 2.2896 2.3616 2.4135

α = .01

0.0 3.6494 4.4957 5.2189 5.8672

0.1 3.4149 4.0506 4.5771 5.0308

0.2 3.2071 3.6633 4.0276 4.3372

0.3 3.0296 3.3355 3.5706 3.7634

0.4 2.8848 3.0718 3.2071 3.3137

0.5 2.7728 2.8738 2.9395 2.9869

Examples: Two boundaries that have been discussed extensively in the literature and have been

used in many instances are special cases of the class of boundaries considered above. These are

when Φ = .5 and Φ = 0. The first boundary when Φ = .5 is the Pocock boundary; Pocock (1977)

Biometrika and the other when Φ = 0 is the O’Brien-Fleming boundary; O’Brien and Fleming

(1979) Biometrics.

10.4.1 Pocock boundaries

The group-sequential test using the Pocock boundaries rejects the null hypothesis at the first

interim analysis time tj , j = 1, . . . , K (remember equal increments of information) that

|T (tj)| ≥ c(α,K, 0.5), j = 1, . . . , K.

That is, the null hypothesis is rejected at the first time that the standardized test statistic using

all the accumulated data exceeds some constant.
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For example, if we take K = 5 and α = .05, then according to Table 10.2 c(.05, 5, 0.5) = 2.41.

Therefore, the .05 level test which will be computed a maximum of 5 times after equal increments

of information will reject the null hypothesis at the first time that the standardized test statistic

exceeds 2.41; that is, we reject the null hypothesis at the first time tj , j = 1, . . . , 5 when |T (tj)| ≥
2.41. This is also equivalent to rejecting the null hypothesis at the first time tj , j = 1, . . . , 5 that

the nominal p-value is less than .0158.

10.4.2 O’Brien-Fleming boundaries

The O’Brien-Fleming boundaries have a shape parameter Φ = 0. A group-sequential test using

the O’Brien-Fleming boundaries will reject the null hypothesis at the first time tj, j = 1, . . . , K

when

|T (tj)| ≥ c(α,K, 0.0)/
√
j, j = 1, . . . , K.

For example, if we again choose K = 5 and α = .05, then according to Table 10.2 c(.05, 5, 0.0) =

4.56. Therefore, using the O’Brien-Fleming boundaries we would reject at the first time tj, j =

1, . . . , 5 when

|T (tj)| ≥ 4.56/
√
j, j = 1, . . . , 5.

Therefore, the five boundary values in this case would be b1 = 4.56, b2 = 3.22, b3 = 2.63,

b4 = 2.28, and b5 = 2.04

The nominal p-values for the O’Brien-Fleming boundaries are contrasted to those from the

Pocock boundaries, for K = 5 and α = .05 in the following table.

Table 10.3: Nominal p-values for K = 5 and α = .05

Nominal p-value

j Pocock O’Brien-Fleming

1 0.0158 0.000005

2 0.0158 0.00125

3 0.0158 0.00843

4 0.0158 0.0225

5 0.0158 0.0413
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The shape of these boundaries are also contrasted in the following figure.

Figure 10.1: Pocock and O’Brien-Fleming Boundaries
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10.5 Power and sample size in terms of information

We have discussed the construction of group-sequential tests that have a pre-specified level of

significance α. We also need to consider the effect that group-sequential tests have on power and

its implications on sample size. To set the stage, we first review how power and sample size are

determined with a single analysis using information based criteria.

As shown earlier, the distribution of the test statistic computed at a specific time t; namely T (t),

under the null hypothesis, is

T (t)
∆=0∼ N(0, 1)

and for a clinically important alternative, say ∆ = ∆A is

T (t)
∆=∆A∼ N(∆AI

1/2(t,∆A), 1),

where I(t,∆A) denotes statistical information which can be approximated by [se{∆̂(t)}]−2, and

∆AI
1/2(t,∆A) is the noncentrality parameter. In order that a two-sided level-α test have power

1 − β to detect the clinically important alternative ∆A, we need the noncentrality parameter

∆AI
1/2(t,∆A) = Zα/2 + Zβ,

or

I(t,∆A) =

{
Zα/2 + Zβ

∆A

}2

. (10.7)

From this relationship we see that the power of the test is directly dependent on statistical

information. Since information is approximated by [se{∆̂(t)}]−2, this means that the study

should collect enough data to ensure that

[se{∆̂(t)}]−2 =

{
Zα/2 + Zβ

∆A

}2

.

Therefore one strategy that would guarantee the desired power to detect a clinically important

difference is to monitor the standard error of the estimated difference through time t as data

were being collected and to conduct the one and only final analysis at time tF where

[se{∆̂(tF )}]−2 =

{
Zα/2 + Zβ

∆A

}2

using the test which rejects the null hypothesis when

|T (tF )| ≥ Zα/2.
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Remark Notice that we didn’t have to specify any of the nuisance parameters with this

information-based approach. The accuracy of this method to achieve power depends on how

good the approximation of the distribution of the test statistic is to a normal distribution and

how good the approximation of [se{∆̂(tF )}]−2 is to the Fisher information. Some preliminary

numerical simulations have shown that this information-based approach works very well if the

sample sizes are sufficiently large as would be expected in phase III clinical trials.

In actuality, we cannot launch into a study and tell the investigators to keep collecting data until

the standard error of the estimated treatment difference is sufficiently small (information large)

without giving them some idea how many resources they need (i.e. sample size, length of study,

etc.). Generally, during the design stage, we posit some guesses of the nuisance parameters and

then use these guesses to come up with some initial design.

For example, if we were comparing the response rate between two treatments, say treatment 1

and treatment 0, and were interested in the treatment difference π1 − π0, where πj denotes the

population response probability for treatment j = 0, 1, then, at time t, we would estimate the

treatment difference using ∆̂(t) = p1(t) − p0(t), where pj(t) denotes the sample proportion that

respond to treatment j among the individuals assigned to treatment j by time t for j = 0, 1.

The standard error of ∆̂(t) = p1(t) − p0(t) is given by

se{∆̂(t)} =

√√√√π1(1 − π1)

n1(t)
+
π0(1 − π0)

n0(t)
.

Therefore, to obtain the desired power of 1 − β to detect the alternative where the population

response rates were π1 and π0, with π1 − π0 = ∆A, we would need the sample sizes n1(t
F ) and

n0(t
F ) to satisfy {

π1(1 − π1)

n1(tF )
+
π0(1 − π0)

n0(tF )

}−1

=

{
Zα/2 + Zβ

∆A

}2

.

Remark: The sample size formula given above is predicated on the use of the test statistic

T (t) =
p1(t) − p0(t)√

p1(t){1−p1(t)}
n1(t)

+ p0(t){1−p0(t)}
n0(t)

to test for treatment difference in the response rates. Strictly speaking, this is not the same as

the proportions test

T (t) =
p1(t) − p0(t)√

p̄(t){1 − p̄(t)}
{

1
n1(t)

+ 1
n0(t)

} ,
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although the difference between the two tests is inconsequential with equal randomization and

large samples. What we discussed above is essentially the approach taken for sample size calcu-

lations used in Chapter 6 of the notes. The important point here is that power is driven by the

amount of statistical information we have regarding the parameter of interest from the available

data. The more data the more information we have. To achieve power 1 − β to detect the

clinically important difference ∆A using a two-sided test at the α level of significance means that

we need to have collected enough data so that the statistical information equals

{
Zα/2 + Zβ

∆A

}2

.

Let us examine how issues of power and information relate to group-sequential tests. If we are

planning to conduct K interim analyses after equal increments of information, then the power

of the group-sequential test to detect the alternative ∆ = ∆A is given by

1 − P∆=∆A
{|T (t1)| < b1, . . . , |T (tK)| < bK}.

In order to compute probabilities of events such as that above we need to know the joint distri-

bution of the vector {T (t1), . . . , T (tK)} under the alternative hypothesis ∆ = ∆A.

It will be useful to consider the maximum information at the final analysis which we will denote

as MI. A K-look group-sequential test with equal increments of information and with maximum

information MI would have interim analyses conducted at times tj where j×MI/K information

has occurred; that is,

I(tj ,∆A) = j ×MI/K, j = 1, . . . , K. (10.8)

Using the results (10.2)-(10.4) and (10.8) we see that the joint distribution of {T (t1), . . . , T (tK)},
under the alternative hypothesis ∆ = ∆A, is a multivariate normal with mean vector

∆A

√
j ×MI

K
, j = 1, . . . , K

and covariance matrix VT given by (10.6). If we define

δ = ∆A

√
MI,

then the mean vector is equal to

(δ

√
1

K
, δ

√
2

K
, . . . , δ

√
K − 1

K
, δ). (10.9)
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A group-sequential level-α test from the Wang-Tsiatis family rejects the null hypothesis at the

first time tj , j = 1, . . . , K where

|T (tj)| ≥ c(α,K,Φ)j(Φ−.5).

For the alternative HA : ∆ = ∆A and maximum information MI, the power of this test is

1 − Pδ[
K⋂

j=1

{|T (tj)| < c(α,K,Φ)j(Φ−.5)}],

where δ = ∆A

√
MI, and {T (t1), . . . , T (tK)} is multivariate normal with mean vector (10.9) and

covariance matrix VT given by (10.6). For fixed values of α, K, and Φ, the power is an increasing

function of δ which can be computed numerically using recursive integration. Consequently, we

can solve for the value δ that gives power 1− β above. We denote this solution by δ(α,K,Φ, β).

Remark: The value δ plays a role similar to that of a noncentrality parameter.

Since δ = ∆A

√
MI , this implies that a group-sequential level-α test with shape parameter Φ,

computed at equal increments of information up to a maximum of K times needs the maximum

information to equal

∆A

√
MI = δ(α,K,Φ, β)

or

MI =

{
δ(α,K,Φ, β)

∆A

}2

to have power 1 − β to detect the clinically important alternative ∆ = ∆A.

10.5.1 Inflation Factor

A useful way of thinking about the maximum information that is necessary to achieve prespecified

power with a group-sequential test is to relate this to the information necessary to achieve

prespecified power with a fixed sample design. In formula (10.7), we argued that the information

necessary to detect the alternative ∆ = ∆A with power 1 − β using a fixed sample test at level

α is

IFS =

{
Zα/2 + Zβ

∆A

}2

.
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In contrast, the maximum information necessary at the same level and power to detect the same

alternative using a K-look group-sequential test with shape parameter Φ is

MI =

{
δ(α,K,Φ, β)

∆A

}2

.

Therefore

MI =

{
Zα/2 + Zβ

∆A

}2 {
δ(α,K,Φ, β)

Zα/2 + Zβ

}2

= IFS × IF (α,K,Φ, β),

where

IF (α,K,Φ, β) =

{
δ(α,K,Φ, β)

Zα/2 + Zβ

}2

is the inflation factor, or the relative increase in information necessary for a group-sequential test

to have the same power as a fixed sample test.

Note: The inflation factor does not depend on the endpoint of interest or the magnitude of the

treatment difference that is considered clinically important. It only depends on the level (α),

power (1− β), and the group-sequential design (K,Φ). The inflation factors has been tabulated

for some of the group-sequential tests which are given in the following table.
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Table 10.4: Inflation factors as a function of K, α, β and the type of boundary

α=0.05 α=0.01

Power=1-β Power=1-β

K Boundary 0.80 0.90 0.95 0.80 0.90 0.95

2 Pocock 1.11 1.10 1.09 1.09 1.08 1.08

O-F 1.01 1.01 1.01 1.00 1.00 1.00

3 Pocock 1.17 1.15 1.14 1.14 1.12 1.12

O-F 1.02 1.02 1.02 1.01 1.01 1.01

4 Pocock 1.20 1.18 1.17 1.17 1.15 1.14

O-F 1.02 1.02 1.02 1.01 1.01 1.01

5 Pocock 1.23 1.21 1.19 1.19 1.17 1.16

O-F 1.03 1.03 1.02 1.02 1.01 1.01

6 Pocock 1.25 1.22 1.21 1.20 1.19 1.17

O-F 1.03 1.03 1.03 1.02 1.02 1.02

7 Pocock 1.26 1.24 1.22 1.22 1.20 1.18

O-F 1.03 1.03 1.03 1.02 1.02 1.02

This result is convenient for designing studies which use group-sequential stopping rules as it

can build on techniques for sample size computations used traditionally for fixed sample tests.

For example, if we determined that we needed to recruit 500 patients into a study to obtain

some prespecified power to detect a clinically important treatment difference using a traditional

fixed sample design, where information, say, is proportional to sample size, then in order that

we have the same power to detect the same treatment difference with a group-sequential test

we would need to recruit a maximum number of 500 × IF patients, where IF denotes the

corresponding inflation factor for that group-sequential design. Of course, interim analyses would

be conducted after every 500×IF
K

patients had complete response data, a maximum of K times,

with the possibility that the trial could be stopped early if any of the interim test statistics

exceeded the corresponding boundary. Let us illustrate with a specific example.

Example with dichotomous endpoint

Let π1 and π0 denote the population response rates for treatments 1 and 0 respectively. Denote

PAGE 186



CHAPTER 10 ST 520, A. TSIATIS and D. Zhang

the treatment difference by ∆ = π1−π0 and consider testing the null hypothesis H0 : ∆ = 0 versus

the two-sided alternative HA : ∆ 6= 0. We decide to use a 4-look O’Brien-Fleming boundary; i.e.

K = 4 and Φ = 0, at the .05 level of significance (α = .05). Using Table 10.2, we derive the

boundaries which correspond to rejecting H0 whenever

|T (tj)| ≥ 4.049/
√
j, j = 1, . . . , 4.

The boundaries are given by

Table 10.5: Boundaries for a 4-look O-F test

j bj nominal p-value

1 4.05 .001

2 2.86 .004

3 2.34 .019

4 2.03 .043

In designing the trial, the investigators tell us that they expect the response rate on the control

treatment (treatment 0) to be about .30 and want to have at least 90% power to detect a

significant difference if the new treatment increases the response by .15 (i.e. from .30 to .45)

using a two-sided test at the .05 level of significance. They plan to conduct a two arm randomized

study with equal allocation and will test the null hypothesis using the standard proportions test.

The traditional fixed sample size calculations using the methods of chapter six, specifically for-

mula (6.4), results in the desired fixed sample size of

nFS =





1.96 + 1.28
√

.3×.7+.45×.55
2×.375×.625

.15





2

× 4 × .375 × .625 = 434,

or 217 patients per treatment arm.

Using the inflation factor from Table 10.4 for the 4-look O’Brien-Fleming boundaries at the

.05 level of significance and 90% power i.e. 1.02, we compute the maximum sample size of

434 × 1.02=444, or 222 per treatment arm. To implement this design, we would monitor the

data after every 222/4 ≈ 56 individuals per treatment arm had complete data regarding their

response for a maximum of four times. At each of the four interim analyses we would compute
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the test statistic, i.e. the proportions test

T (tj) =
p1(tj) − p0(tj)√

p̄(tj){1 − p̄(tj)}
{

1
n1(tj)

+ 1
n0(tj )

} ,

using all the data accumulated up to the j-th interim analysis. If at any of the four interim anal-

yses the test statistic exceeded the corresponding boundary given in Table 10.5 or, equivalently,

if the two-sided p-value was less than the corresponding nominal p-value in Table 10.5, then we

would reject H0. If we failed to reject at all four analyses we would then accept H0.

10.5.2 Information based monitoring

In the above example it was assumed that the response rate on the control treatment arm was .30.

This was necessary for deriving sample sizes. It may be, in actuality, that the true response rate

for the control treatment is something different, but even so, if the new treatment can increase

the probability of response by .15 over the control treatment we may be interested in detecting

such a difference with 90% power. We’ve argued that power is directly related to information.

For a fixed sample design, the information necessary to detect a difference ∆ = .15 between the

response probabilities of two treatments with power 1 − β using a two-sided test at the α level

of significance is {
Zα/2 + Zβ

∆A

}2

.

For our example, this equals {
1.96 + 1.28

.15

}2

= 466.6.

For a 4-look O-F design this information must be inflated by 1.02 leading to MI = 466.6×1.02 =

475.9. With equal increments, this means that an analysis should be conducted at times tj when

the information equals j×475.9
4

= 119 × j, j = 1, . . . , 4. Since information is approximated by

[se{∆̂(t)}]−2, and in this example (comparing two proportions) is equal to

[
p1(t){1 − p1(t)}

n1(t)
+
p0(t){1 − p0(t)}

n0(t)

]−1

,

we could monitor the estimated standard deviation of the treatment difference estimator and

conduct the four interim analyses whenever

[se{∆̂(t)}]−2 = 119 × j, j = 1, . . . , 4,
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i.e. at times tj such that

[
p1(tj){1 − p1(tj)}

n1(tj)
+
p0(tj){1 − p0(tj)}

n0(tj)

]−1

= 119 × j, j = 1, . . . , 4.

At each of the four analysis times we would compute the test statistic T (tj) and reject H0 at the

first time that the boundary given in Table 10.5 was exceeded.

This information-based procedure would yield a test that has the correct level of significance

(α = .05) and would have the desired power (1 − β = .90) to detect a treatment difference

of .15 in the response rates regardless of the underlying true control treatment response rate

π0. In contrast, if we conducted the analysis after every 112 patients (56 per treatment arm),

as suggested by our preliminary sample size calculations, then the significance level would be

correct under H0 but the desired power would be achieved only if our initial guess (i.e. π0 = .30)

were correct. Otherwise, we would over power or under power the study depending on the true

value of π0 which, of course, is unknown to us.

10.5.3 Average information

We still haven’t concluded which of the proposed boundaries (Pocock, O-F, or other shape

parameter Φ) should be used. If we examine the inflation factors in Table 10.4 we notice that K-

look group-sequential tests that use the Pocock boundaries require greater maximum information

that do K-look group-sequential tests using the O-F boundaries at the same level of significance

and power; but at the same time we realize that Pocock tests have a better chance of stopping

early than O-F tests because of the shape of the boundary. How do we assess the trade-offs?

One way is to compare the average information necessary to stop the trial between the different

group-sequential tests with the same level and power. A good group-sequential design is one

which has a small average information.

Remark: Depending on the endpoint of interest this may translate to smaller average sample

size or smaller average number of events, for example.

How do we compute average information?

We have already discussed that the maximum information MI is obtained by computing the
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information necessary to achieve a certain level of significance and power for a fixed sample

design and multiplying by an inflation factor. For designs with a maximum of K analyses after

equal increments of information, the inflation factor is a function of α (the significance level), β

(the type II error or one minus power), K, and Φ (the shape parameter of the boundary). We

denote this inflation factor by IF (α,K,Φ, β).

Let V denote the number of interim analyses conducted before a study is stopped. V is a discrete

integer-valued random variable that can take on values from 1, . . . , K. Specifically, for a K-look

group-sequential test with boundaries b1, . . . , bK , the event V = j (i.e. stopping after the j-th

interim analysis) corresponds to

(V = j) = {|T (t1)| < b1, . . . , |T (tj−1)| < bj−1, |T (tj)| ≥ bj}, j = 1, . . . , K.

The expected number of interim analyses for such a group-sequential test, assuming ∆ = ∆∗ is

given by

E∆∗(V ) =
K∑

j=1

j × P∆∗(V = j).

Since each interim analysis is conducted after increments MI/K of information, this implies that

the average information before a study is stopped is given by

AI(∆∗) =
MI

K
E∆∗(V ).

Since MI = IFS × IF (α,K,Φ, β), then

AI(α,K,Φ, β,∆∗) = IFS

[{
IF (α,K,Φ, β)

K

}
E∆∗(V )

]
.

Note: We use the notation AI(α,K,Φ, β,∆∗) to emphasize the fact that the average information

depends on the level, power, maximum number of analyses, boundary shape, and alternative of

interest. For the most part we will consider the average information at the null hypothesis ∆∗ = 0

and the clinically important alternative ∆∗ = ∆A. However, other values of the parameter may

also be considered.

Using recursive numerical integration, the E∆∗(V ) can be computed for different sequential de-

signs at the null hypothesis, at the clinically important alternative ∆A, as well as other values

for the treatment difference. For instance, if we take K = 5, α = .05, power equal to 90%,

then under HA : ∆ = ∆A, the expected number of interim analyses for a Pocock design is
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equal to E∆A
(V ) = 2.83. Consequently, the average information necessary to stop a trial, if the

alternative HA were true would be

IFS

[{
IF (.05, 5, .5, .10)

5

}
× 2.83

]

= IFS
{

1.21

5
× 2.83

}

= IFS × .68.

Therefore, on average, we would reject the null hypothesis using 68% of the information necessary

for a fixed-sample design with the same level (.05) and power (.90) as the 5-look Pocock design, if

indeed, the clinically important alternative hypothesis were true. This is why sequential designs

are sometimes preferred over fixed-sample designs.

Remark: If the null hypothesis were true, then it is unlikely (< .05) that the study would be

stopped early with the sequential designs we have been discussing. Consequently, the average

information necessary to stop a study early if the null hypothesis were true would be close to the

maximum information (i.e. for the 5-look Pocock design discussed above we would need almost

21% more information than the corresponding fixed-sample design).

In contrast, if we use the 5-look O-F design with α = .05 and power of 90%, then the expected

number of interim analyses equals E∆A
(V ) = 3.65 under the alternative hypothesis HA. Thus,

the average information is

IFS

[{
IF (.05, 5, 0.0, .10)

5

}
× 3.65

]

= IFS
{

1.03

5
× 3.65

}

= IFS × .75.
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Summarizing these results: For tests at the .05 level of significance and 90% power, we have

Maximum Average

Designs information information (HA)

5-look Pocock IFS × 1.21 IFS × .68

5-look O-F IFS × 1.03 IFS × .75

Fixed-sample IFS IFS

Recall:

IFS =

{
Zα/2 + Zβ

∆A

}2

.

Remarks:

• If you want a design which, on average, stops the study with less information when there

truly is a clinically important treatment difference, while preserving the level and power of

the test, then a Pocock boundary is preferred to the O-F boundary.

• By a numerical search, one can derive the “optimal” shape parameter Φ which minimizes

the average information under the clinically important alternative ∆A for different values

of α, K, and power (1 − β). Some these optimal Φ are provided in the paper by Wang

and Tsiatis (1987) Biometrics. For example, when K = 5, α = .05 and power of 90% the

optimal shape parameter Φ = .45, which is very close to the Pocock boundary.

• Keep in mind, however, that the designs with better stopping properties under the alter-

native need greater maximum information which, in turn, implies greater information will

be needed if the null hypothesis were true.

• Most clinical trials with a monitoring plan seem to favor more “conservative” designs such

as the O-F design.

Statistical Reasons

1. Historically, most clinical trials fail to show a significant difference; hence, from a global

perspective it is more cost efficient to use conservative designs.
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2. Even a conservative design, such as O-F, results in a substantial reduction in average

information, under the alternative HA, before a trial is completed as compared to a fixed-

sample design (in our example .75 average information) with only a modest increase in the

maximum information (1.03 in our example).

Non-statistical Reasons

3. In the early stages of a clinical trial, the data are less reliable and possibly unrepresentative

for a variety of logistical reasons. It is therefore preferable to make it more difficult to stop

early during these early stages.

4. Psychologically, it is preferable to have a nominal p-value at the end of the study which

is close to .05. The nominal p-value at the final analysis for the 5-look O-F test is .041

as compare to .016 for the 5-look Pocock test. This minimizes the embarrassing situation

where, say, a p-value of .03 at the final analysis would have to be declared not significant

for those using a Pocock design.

10.5.4 Steps in the design and analysis of group-sequential tests with equal incre-

ments of information

Design

1. Decide the maximum number of looks K and the boundary Φ. We’ve already argued the

pros and cons of conservative boundaries such as O-F versus more aggressive boundaries such

as Pocock. As mentioned previously, for a variety of statistical and non-statistical reasons,

conservative boundaries have been preferred in practice. In terms of the number of looks K, it

turns out that the properties of a group-sequential test is for the most part insensitive to the

number of looks after a certain point. We illustrate this point using the following table which

looks at the maximum information and the average information under the alternative for the

O’Brien-Fleming boundaries for different values of K.
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Table 10.6: O’Brien-Fleming boundaries (Φ = 0); α = .05, power=.90

Maximum Average

K Information Information (HA)

1 IFS IFS

2 IFS × 1.01 IFS × .85

3 IFS × 1.02 IFS × .80

4 IFS × 1.02 IFS × .77

5 IFS × 1.03 IFS × .75

We note from Table 10.6 that there is little change in the early stopping properties of the group-

sequential test once K exceeds 4. Therefore, the choice of K should be chosen based on logistical

and practical issues rather than statistical principles (as long as K exceeds some lower threshold;

i.e. 3 or 4). For example, the choice might be determined by how many times one can feasibly

get a data monitoring committee to meet.

2. Compute the information necessary for a fixed sample design and translate this into a physical

design of resource use. You will need to posit some initial guesses for the values of the nuisance

parameters as well as defining the clinically important difference that you want to detect with

specified power using a test at some specified level of significance in order to derive sample sizes

or other design characteristics. This is the usual “sample size considerations” that were discussed

throughout the course.

3. The fixed sample information must be inflated by the appropriate inflation factor IF (α,K,Φ, β)

to obtain the maximum information

MI = IFS × IF (α,K,Φ, β).

Again, this maximum information must be translated into a feasible resource design using initial

guesses about the nuisance parameters. For example, if we are comparing the response rates of

a dichotomous outcome between two treatments, we generally posit the response rate for the

control group and we use this to determine the required sample sizes as was illustrated in the

example of section 10.5.1.
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Analysis

4. After deriving the maximum information (most often translated into a maximum sample size

based on initial guesses), the actual analyses will be conducted a maximum of K times after

equal increments of MI/K information.

Note: Although information can be approximated by [se{∆̂(t)}]−2, in practice, this is not gen-

erally how the analysis times are determined; but rather, the maximum sample size (determined

based on best initial guesses) is divided by K and analyses are conducted after equal increments

of sample size. Keep in mind, that this usual strategy may be under or over powered if the initial

guesses are incorrect.

5. At the j-th interim analysis, the standardized test statistic

T (tj) =
∆̂(tj)

se{∆̂(tj)}
,

is computed using all the data accumulated until that time and the null hypothesis is rejected

the first time the test statistic exceeds the corresponding boundary value.

Note: The procedure outlined above will have the correct level of significance as long as the

interim analyses are conducted after equal increments of information. So, for instance, if we

have a problem where information is proportional to sample size, then as long as the analyses

are conducted after equal increments of sample size we are guaranteed to have the correct type

I error. Therefore, when we compute sample sizes based on initial guesses for the nuisance

parameters and monitor after equal increments of this sample size, the corresponding test has

the correct level of significance under the null hypothesis.

However, in order that this test have the correct power to detect the clinically important difference

∆A, it must be computed after equal increments of statistical information MI/K where

MI =

{
Zα/2 + Zβ

∆A

}2

IF (α,K,Φ, β).

If the initial guesses were correct, then the statistical information obtained from the sample

sizes (derived under these guesses) corresponds to that necessary to achieve the correct power.

If, however, the guesses were incorrect, then the resulting test may be under or over powered

depending on whether there is less or more statistical information associated with the given

sample size.
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Although an information-based monitoring strategy, such as that outlined in section 10.5.2, is

not always practical, I believe that information (i.e. [se{∆̂(t)}]−2) should also be monitored as

the study progresses and if this deviates substantially from that desired, then the study team

should be made aware of this fact so that possible changes in design might be considered. The

earlier in the study that problems are discovered, the easier they are to fix.
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