

# Reality-Driven Physical Synthesis

#### **Patrick Groeneveld**

Chief Technologist, Magma Design Automation, San Jose (soon: Synopsys inc., Mountain View)

Chair, 49<sup>th</sup> Design Automation Conference, San Francisco

## Kevin Trudeau, the king of Quacks



## **Physical Design of Apple processors**

Common technology:

45nm Samsung

**A4**: 2010

iPad 3 Theo Claasen
12.0 - A5x: 201603

12.9mm x 12.7mm

= 3x as big as the A4





## A closer look at the Apple's physical design style



## PD: Many Objectives Simultaneously

- **Correct** & manufacturable mask pattern
  - Congestion control
  - Big chip = good
- Meets **timing** & electrical requirements
  - Battle parasitics: timing, voltage drop
  - Big gates = good, compact chip = good & a little of the power v power
- Low **power** 
  - Leakage control muli voltuse, sleep, etc
  - Small gates | Loomplex floorplan = necessary evil
- Low part cost
  - Compact chip, dense wires = good
- Low design effort
  - Robust design, short tool run times, re-use
  - Simple = good, pushbutton = good



## Magma Flow: guided by 'best available' data



- Global route:
  - Layer assignment
  - Congestion
  - Resource contention
  - Detours
- Track route:
  - Refines global route
- Detail route
  - Copies track route
  - Fixes opens
  - Ripup & Reroute

The only thing that matters is the quality at the end!



## Layout Design at different levels of abstraction



## What is the timing accuracy?





## Measuring correlation error: Experimental set-up

- Take routed design:
  - Segments time in global mode, CCT
  - Wires time in final mode,. Xtalk on = golden
- Only compare 2-pin nets, > 40um length



Comp<u>are ne</u>l delay Compare wire cap Comp<del>are sla</del>ck





## Observations on Global vs Final delay correlation

- Over 7 real designs, net delay miscorrelates badly between global and final:
  - Average = roughly OK
  - 88% standard deviation
  - So 33% of the net delays are off by more than 88%
  - 97% of nets are worse than +-5% accurate





## **Garbage in – Garbage out ?**

- Modeling inaccuracies, causes earlier opto to work on the wrong parts
- Crosstalk noise could seriously randomize results.



#### What can we do?

- Attempt to increase accuracy of early timing:
  - Add xtalk estimate during Global Route Extraction
  - Perform track routing as well
- And/or:

"But!? But!?
I need to optimize for something!!"

- Live with the problem:
  - Spend less effort on early optimization...
  - Carefully examine statistics of optimization effectiveness
  - Have a good way to patch up xtalk at the end



## **Building a Layout Design Flow**

#### **Observation 1:**

Need gradual refinement flow using many algorithms

#### **Observation 2:**

Synthesis algorithms need highly simplified models of reality

#### **Observation 3:**

Synthesis algorithms cannot deliver good multi-objective trade-offs

### **Observation 4:**

Optimizing a single objective often makes other objectives worse.



## Optimal is not Optimal!



## The ABC of a solid EDA Design Flow

A: Avoid

Use pessimism to make problem unlikely, 'Correct by Construction'

More avoidance = worse results...

B: Build

Synthesize using an algorithm

Synthesis is from Mars...

C: Correct

Fix each failure by incremental modifications (ECOs).





## Goal: Living on the edge

- Avoid as little as possible
- Such that the remaining failures can be Corrected incrementally



 And accept the reality that Build algorithms offer little control

Needs correction





## ABC in action: Combating crosstalk delay

- Avoid: using pessimism:
  - Size up all drivers: Costs cell area and power
  - Force double spacing NDR on many nets: Costs congestion = area





'C' routing improvement: pushing neighbors away









## Effect of this layout push on timing



- New drug
  - Biological model of cause, actions and side-effects
- Develop it
- Test tube test
- Test on animals
  - Efficacy,
  - side effects
- Clinical trials
  - Large double-blind placebo controlled tests
- FDA-approval
- Deployment

- New Method/Algorithm
  - Based on electrical/ physical plausibility
- Program it (C++/TCL)
- Unit test
- Test on small testcases
  - Debug program
  - Get a results table
- Publish at ISPD
  - Go for it!



## Lack of Evidence = Quackery









SANDEN ELECTRIC CO., 172 First St., PORTLAND, ORECON.

"EAU MALLERON."

EDA is not exempt:

- Datapath placement
- Thermal-driven placement
- •DFM-driven design
- Plug 'n play tool interoperability
- •Hybrid GPU/CPU EDA tools.
- Gridless routing
- •X-Architecture



## **Skeptical wisdom for Electronic Design**

- "Humans are amazingly good at self-deception"
  - This looks soooo good, therefore this must work
- "If it has no side effects, it probably has no effects either"
  - Example: improving temperature gradients will cost timing you! Are you really willing to pay based on the evidence?
- "Do not confuse association with causation"
  - "I took this airborne pill, and I did not get sick"
  - "I used this DFM optimizer, and the chip yields!
- "The plural of 'anecdote' is 'anecdotes', not 'data'"
  - Result could be a random effect, or another side effect
  - No substitute for unbiased placebo-controlled tests
  - Only large data sets are statistically relevant



## Summary: observations from practice

- Layout is a multi-objective optimization problem
  - DRC, Manufacturability, timing, power, cost, design effort
- Timing is poorly predictable early in the flow
- The only thing that counts is the result at the end
  - Intermediate data is a poor indicator
  - Need hard evidence that trade off is worthwhile
- Beware of XX-driven synthesis/place/route
  - Is the gain worth the side effects?
- Optimal is irrelevant, while greedy is pretty good
- Simple A-B-C flows are proven in practice





