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Purpose 

Whenever I introduce myself and explain that I studied mathematics in college, nine 
times out of ten the other person will respond with something along the lines of, “ugh, I really 
hate math”. It frustrates me for my chosen profession to be dismissed so easily. Why can’t 
everyone see how interesting mathematics is? How beautiful and pure it is? My wish to spread 
the beauty of math was where this project began, but it evolved into something much larger.  

I meant this project to be a learning experience for others to help rid them of their 
ignorance. In the end, it was I who learned of my ignorance and sought to grow past it.  

Initially, I thought that creating mathematical art would be simple; after all, how hard 
could it be to arrange shapes into something pretty or to create three-dimensional objects from 
formulas? I knew the math, and the art seemed simple, so I assumed this project would go down 
without any problems. It turns out I didn’t know enough about neither art nor math to complete 
the art pieces in my mind.  

The first thing I learned was that knowing the formulas was very different from knowing 
how to create a model of the object. After searching for the best program to graph objects, I 
ended up selecting Mathematica. I knew that it is often used in a wide variety of professions, so I 
figured it would be an easy program to use. I was wrong. When I opened up Mathematica, the 
only thing that popped up was a blank screen with a blinking text curser. No tutorials, no user 
interface, only an empty space for typing. Mathematica works simply by inputting lines of code. 
Thankfully, there is a wide range of Mathematica tutorials to help newcomers. Finally, and with 
a lot of assistance from the internet, I was able to create a wide range of mathematical objects 
and export their meshes to Maya. 

Then I faced the overwhelming challenge that is Maya. I know a lot of artists, and I’ve 
seen them easily manipulate objects in Maya. Unlike Mathematica, Maya almost exclusively 
used buttons from the user interface. So taking my freshly created meshes and turning them into 
art should have been as easy as point and click, right? I must admit, I have never respected 
digital artists as much as I did in my first few days with Maya; my initiation to Maya involved 
me frantically watching tutorials and pressing buttons while yelling at my computer to make art.  

I eventually learned the basics of Mathematica and Maya and created art pieces that I am 
genuinely proud of. I hope my art as well as my experiences will be a lesson to others. Both math 
and art are beautiful and complicated disciplines; they both deserve to be respected and praised 
for the difficultly their creations entail.  
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About the Pieces 

A Moment in Infinity 

This piece contains three different shapes. The most obvious is the Möbius Strip Variation; there 
are four of them altogether. The background of the piece is a Sine-Cosine Wave. Finally, I use 
the inner column of Object 1; the most obvious use of this shape is just off-center when one of 
these columns goes through an orange Möbius strip. The column of Object 1 is used three times 
in the piece.  

I love this variation of the Möbius strip because it feels like a visual representation of infinity. 
The strips curl together in the middle only to separate and stretch out to the horizon. One strip 
curls itself around the sharp inner pillar of Object 1. Another weaves around the surface of the 
Sine-Cosine Wave. Two loop around each other. However, if you see these strips as time lines, 
this moment of interaction and connection is very brief. Each strip has traveled for an infinite 
amount of time to reach is single curl in time; and when they pass the loop, they will again travel 
alone for the rest of infinity.  

 

Summer Morning 

This piece uses Objects 2 and 3. The entire scene takes place inside of a large version of Object 
2. Object 3 appears eight times in this piece, and Object 2, not including the background, appears 
four times. 

Both of these shapes make me feel slightly nostalgic. To me, Object 2 reminds me of starfruit or 
oranges and Object 3 resembles a wiffle ball. Together, they remind me of the summer days of 
my childhood. I played softball almost every day. Team practice was usually in the mornings to 
avoid the scorching heat of midday. The morning mist still covered the fields as we took turns 
practicing our batting. As the sun reached its height, we would end practice with a snack of 
orange slices and juice boxes.   

 

Crystal Flowers 

Three shapes where used in this piece: Object 4, Small Stellated Dodecahedron, and Great 
Stellated Dodecahedron. 

In this piece, I experimented with the reflectivity of the shapes. Since Object 4’s Maya model has 
so many faces, increasing reflectivity caused it to take on a crystal-like appearance. I made the 
stellated dodecahedrons comparatively brighter colors so that their reflections were more 
apparent. In fact, quite a few of the objects you see in the image are just reflections. This 
uncertainty of what is real causes this piece to feel sort of dreamlike. 

 

 



Using Maya and Mathematica to Create Mathematical Art 
 

4 
 

The Trap 

Gyroids and Trinoids were used to create this piece. 

I was immediately fascinated with the shape of the Gyroid, but I couldn’t figure out how to use 
it. I spend so long trying to find interesting angles from within the Gyroid only to feel lost and 
tangled within the shape. That journey is how I found inspiration for this piece. The Gyroids 
appear beautiful and intriguing; their shapes are so unusual and the soft pink and green coloring 
makes them feel safe. Even more enticing are the Trinoids; they shine like rubies and look as 
delicate as petals, but they too are only a part of the trickery. For while these are beautiful, the 
maze of thorns proves to be deadly. 

 

The Impossible Shape 

This piece contains the Costa Surface and several Roman surfaces. 

Mathematically, these two minimal surfaces are extremely challenging to comprehend. The 
theories behind these shapes are far more complex than anything I ever covered in my studies. It 
thus seemed fitting for them to star in a piece together. The Costa surface is confusing to look at. 
It has many openings, but none of them led to where you think they should, and some seem to 
disappear when you try to find the other end; it almost seemed impossible for this shape to exist. 
Even after thoroughly examining it and confirming that it is in fact a completely possible object, 
my brain still found it visually hard to accept. The Roman surfaces are like little bubbles trying 
to navigate the seemingly impossible maze.  

 

Möbius Forest  

The Möbius Strip and the Hourglass-shaped Surface are contained in this piece. 

While manipulating the Möbius Strip, I found that creating a pillar of them like ringlets looked 
very plant-like.  After creating a forest of these, I realized that they looked like they belonged in 
the ocean. The edges of the Hourglass-shaped Surface are wavy like the tailfin of a fish, so I 
scattered these shaped about my Möbius forest.  
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Mathematical Objects: Equations and Creation 
 

Below I’ve explained the Mathematica codes used to create the various digital objects, the 
formulas that describe the shapes and surfaces, and a brief explanation of the more complex 
objects. I have also included a short statement discussing why I chose to use these objects in my 
art. There are four sections to organize the digital objects: Spherical Objects, Polyhedrons, 
Surfaces, and Minimal Surfaces. 

 
 

Spherical Objects 
 
The spherical coordinate system is fantastic for causally fiddling with equations; almost any 
combination of sine and cosine will yield interesting results. Even simple changes to an equation 
can create an extremely different object; in fact, the first three objects below are really only one 
term apart from each other.    
 
 
Object 1 
 
Mathematica formula[1]: SphericalPlot3DሾSinሾߠሿ ൅ Sinሾ5߶ሿ 5⁄ , ሼߠ, 0, Piሽ, ሼ߶, 0,2Piሽሿ 

This is using the spherical coordinate system (r, θ, φ). So the conventional formula in this case is 
ݎ ൌ sinሺߠሻ ൅ sinሺ݇߶ሻ ݇,⁄ 0	݁ݎ݄݁ݓ ൏ ߠ ൏ 0	݀݊ܽ	ߨ ൏ ߮ ൏  The constant, k, dictates how .ߨ2
many ribs the shape has. Since I used k = 5, the resulting shape had five ribs. 

 
 
 
In my opinion, the inside of this shape is the most interesting part. The top and bottom of the 
shape pinch together sharply creating the image below. 
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In my mind, this column resembles a stalagmite and stalactite. The texture of this part of the 
model appears very rough, and the edges are very sharp. Compared to this part of the model, the 
smooth, flower-like appearance of the shape’s exterior is quite dull. 
 
 
Object 2 
 

Mathematica formula[6]: SphericalPlot3Dሾ1 ൅ ଵ

ହ
Sinሾ5߶ሿ, ሼߠ, 0, ,ሽߨ ሼ߶,  ሽሿߨ0,2

This is using the spherical coordinate system (r, θ, φ). So the conventional formula in this case is 
ݎ ൌ 1 ൅ sinሺ݇߶ሻ ݇,⁄ 0	݁ݎ݄݁ݓ ൏ ߠ ൏ 0	݀݊ܽ	ߨ ൏ ߮ ൏  Like with Object 1, k dictates the .ߨ2
number of ribs. Again, I used the object created when k=5. 

 
While the only difference between this Object and Object 1 is that the center does not pinch 
inward, this shape still caught my attention. Probably in part because it resembles starfruit, this 
shape makes me think of food and nature.   
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Object 3 
 
Mathematica formula[4]: SphericalPlot3Dሾ1 ൅ Sinሾ5ߠሿ Sinሾ5߶ሿ 5⁄ , ሼߠ, 0, Piሽ, ሼ߶, 0,2Piሽ,
RegionFunction → ሺ#6 ൐ 0.95&ሻሿ 
Using the spherical coordinate system, this object’s formula is ݎ ൌ 1 ൅
sin	ሺ5ߠሻ sinሺ5߶ሻ 5,⁄ 0	݁ݎ݄݁ݓ ൏ ߠ ൏ 0	݀݊ܽ	ߨ ൏ ߮ ൏  ,In the Mathematica formula .ߨ2
“RegionFunction” limits which parts of the shape are graphed. The image below on the left was 
created using RegionFunction while the image on the right was not.  

  
I learned how to create this shape while researching Mathematica’s RegionFunction, and I knew 
instantly that I wanted to create a piece using it. Every time I look at this object, I think of a 
wiffle ball. Not only do I find this object nostalgic, I find it artistically versitile; the holes in the 
object allow for both the inside and the outside of the object to be used simultaneously.  
 
 
Object 4 
 
Mathematica formula[2]: SphericalPlot3Dሾ1 ൅ Cosሾ4ߠሿ, ሼߠ, 0, Piሽ, ሼ߶, 0,2Piሽሿ 
Using the spherical coordinate system, this object’s formula is ݎ ൌ 1 ൅ cos	ሺ4ߠሻ݁ݎ݄݁ݓ	0 ൏ ߠ ൏
0	݀݊ܽ	ߨ ൏ ߮ ൏  .ߨ2
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While this is an interesting shape to look at, I initially didn’t think it would work well in an art 
piece. However, after playing around with it in Maya, my opinion changed. This shape looks 
completely different depending on the angle at which it is viewed. If looked at from the top, it 
resembles a flower with its pollen tube. On the other hand, when viewed from the side it looks 
more like wheels or a butterfly. The versitality of this shape allowed me to use it in multiple 
ways in my art. 
 
 
 

Polyhedrons 
 
Unlike the other shapes, objects, and planes used in this project, polyhedrons don’t really have a 
mathematical formula. There are equations to find their properties, like volume or suface area, 
and a set of equations can be assigned to them to create them graphically, but there isn’t one 
formula that completely describes a polyhedron. For both of the polyhedrons I used in this 
project, the small and great stellated dodecahedrons, I will instead discuss their properties and 
the formulas that can describe them. 
 
Small Stellated Dodecahedron[12] 

 
In Mathematica, this shape can be created by simply inputing: 
PolyhedronDataሾ“SmallStellatedDodecahedron”ሿ	

 
As can be seen below, the small stellated dodecahedron is comprised of twelve pentagonal 
pyramids. The polyhedron is often described in terms of the twelve pentagrammic faces it 
contains. A pentagrammic face is a set of five vertices that are coplanar. In the image above, the 
peach trianges represent one pentagrammic face, and the periwinkle triangles form another. 
Assuming the pentagrams have unit edge lengths, the circumradius of the small stellated 

dodecahedron is 
ଵ

ଶ
ටଵ

ଶ
൫5 െ √5൯.  The volume and surface area of this polyhedron are  

ܸ ൌ ହ

ସ
൫7 ൅ 3√5൯	ܽ݊݀	ܵ ൌ 15ඥ5 ൅ 2√5	. 
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Great Stellated Dodecahedron[11] 

 
In Mathematica, this shape can be created by simply inputing: 
PolyhedronDataሾ“SmallStellatedDodecahedron”ሿ	

 
Like the small stellated dodecahedron, the great stellated dodecahedron has twelve 
pentagrammic faces. In the image above, the peach colored faces make up one of the 
pentagrammic faces. The difference between this polyhedron and the last is that is is comprised 
of twenty triangular pyramids. 

Assuming the pentagrams have unit edge lengths, the circumradius is 
ଵ

ସ
√3൫√5 െ 1൯. The volume 

and surface area are ܸ ൌ ହ

ସ
൫3 ൅ √5൯	ܽ݊݀	ܵ ൌ 15ඥ5 ൅ 2√5. 

 
I found both of these polyhedrons very intersting. When I was in elementary school, my math 
class taught me how to create these shapes using origami, but I never knew their names or the 
equations that go with them. So learning about the naming convensions of these polyhedrons, the 
derivations of their equations, and what stellating a polyhedron actually details was a very 
enjoyable process. After having such a good time learning the mathematics of these shapes, I 
knew that I had to use them creatively as well. 
 
 
 

Surfaces 
 

Traditional Möbius Strip 
 
Mathematica formula[7]:	 
MoebiusሾR_ሿሾs_,			t_ሿ ∶ൌ 	 ሼሺR	 ൅ 	s	Cosሾt/2ሿሻ	Cosሾtሿ, ሺR	 ൅ s	Cosሾt/2ሿሻ	Sinሾtሿ, s	Sinሾt/2ሿሽ	

ParametricPlot3DሾMoebiusሾ2ሿሾs, tሿ, ሼs, െ.5, .5ሽ, ሼt, 0, 2	\ሾPiሿሽ,Mesh	െ൐ 	 ሼ5, 40ሽሿ	
The Möbius Strip can be represented parametrically as: 

,ݑሺݔ ሻݒ ൌ ሺ1 ൅
ݒ
2
cos

ݑ
2
ሻ cos  ݑ

,ݑሺݕ ሻݒ ൌ ሺ1 ൅
ݒ
2
cos

ݑ
2
ሻ sin  ݑ

,ݑሺݖ ሻݒ ൌ
ݒ
2
sin

ݑ
2

 

0	݁ݎ݄݁ݓ ൑ ݑ ൑ ݀݊ܽ	ߨ2 െ 1 ൑ ݒ ൑ 1 
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The Möbius Strip has always fascinated me. I was once told that it could be used to visualize the 
full number line; the numbers on the outside increase to positive infinity, become imaginary 
numbers on the inside of the strip, and then go from negative infinity to zero once on the outside 
again. The strip seems to defy what should be physically possible in our dimension, yet exists 
nonetheless; in that way, I think it is beautiful.  
 
 
Möbius Strip Variation 
 
Mathematica formula[7]: ContourPlot3Dሾെݕ ൅ ݕଶݔ ൅ ଷݕ െ ݖݔ2 െ ݖଶݔ2 െ ݖଶݕ2 ൅ ଶݖݕ ൌൌ
0, ሼݔ, െ3,3ሽ, ሼݕ, െ3,3ሽ, ሼݖ, െ3,3ሽ, RegionFunction → ሺ.6^2 ൏ #1^2 ൅ #2^2 ൏ 1^2&ሻሿ 
The conventional formula is 0 ൌ െݕ ൅ ݕଶݔ ൅ ଷݕ െ ݖݔ2 െ ݖଶݔ2 െ ݖଶݕ2 ൅ ,ଶݖݕ ݁ݎ݄݁ݓ െ 3 ൏
ݔ ൏ 3,െ3 ൏ ݕ ൏ 3, ܽ݊݀ െ 3 ൏ ݖ ൏ 3. In the mathematica formula, “RegionFunction” limits 
which parts of the shape are graphed. The image below on the left was created using 
RegionFuction while the image on the right was not.  

 
This is similar to the traditional Möbius Strip. The obvious difference being that the ends of the 
strip don’t reconnect. As I mentioned earlier, I really love the Möbius Strip; this variation 
seemed to have even more artistic potential than its traditional form.  
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Sine-Cosine Wave 
 
Mathematica formula: Plot3DሾSinሾݔሿCosሾݕሿ, ሼݔ, 0,4Piሽ, ሼݕ, 0,4Piሽሿ 
The conventional formula of this object is ݂ሺݔ, ሻݕ ൌ sinሺݔሻ ∗ cosሺݕሻ , where	0 ൏ ݔ ൏
4π	and	0 ൏ ݕ ൏ 4π. This plane is a three-dimensional Sine-Cosine wave.  

 
This is really a simple and uninteresting plane, but I love the textured look it creates. When the 
plane has its reflectivity increased, it creates very interestingly distorted reflections. Due to these 
two factors, I use this plane as the background in one of my pieces. 
 
 
Hourglass-shaped Surface 
 
Mathematica formula[2]: ContourPlot3Dሾ2^ݔ ൅ 2^ݕ െ 2^ݖ ൌൌ
1, ሼݔ, െ3,3ሽ, ሼݕ, െ3,3ሽ, ሼݖ, െ3,3ሽሿ 
Traditional formula: 1 ൌ ଶݔ ൅ ଶݕ െ ,ଶݖ ݁ݎ݄݁ݓ െ 3 ൏ ݔ ൏ 3,െ3 ൏ ݕ ൏ 3, ܽ݊݀ െ 3 ൏ ݖ ൏ 3. 

 
What I found most interesting about this shape is the edges along the top and bottom. At some 
angles, the slight wave of the edge causes the shape to resemble the tailfin of a beta fish. I use 
this angle multiple times in the art piece that includes this surface. 
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Minimal Surfaces 
 

Roman Surface 
 
The traditional equation for this surface is ݔଶݕଶ ൅ ଶݖଶݕ ൅ ଶݔଶݖ െ ݖݕݔଶݎ ൌ 0, where r is any 
number that is real and positive. However, using this equation in Mathematica results in a model 
that is broken into four pieces. 
Withሾሼݎ ൌ 2ሽ, ContourPlot3Dሾݔଶݕଶ െ ݖݕݔଶݎ ൅ ଶݖଶݔ ൅ ଶݖଶݕ ൌൌ 0, ሼݔ, െݎ, ,ሽݎ ሼݕ, െݎ, ,ሽݎ

ሼݖ, െݎ,  ሽሿሿݎ

 
To create an image in Mathematica that looks like a true Roman surface, the following codes are 
used[8]: 
romeqn ൌ ሺ2^ݔ ൅ 2^ݕ ൅ 2^ݖ െ ݇^2ሻ^2 ൌൌ ሺሺݖ െ ݇ሻ^2 െ ݖ2ሻሺሺ^ݔ2 ൅ ݇ሻ^2 െ  ;2ሻ^ݕ2
romsoln ൌ Solveሾromeqn,  ሿݖ
rom1[x_, y_] := z /. romsoln[[1]] /. k -> 1 
rom2[x_, y_] := z /. romsoln[[2]] /. k -> 1 
ParametricPlot3DሾBlockሾሼݔ ൌ ,ሿݐCosሾݎ ݕ

ൌ ,ሿሽݐSinሾݎ ሼݔ, ,ݕ #ሾݔ, ,ሿሽሿݕ ሼ9999.,0001.,ݎሽ, ሼݐ, 0,2Piሽ, Boxedെ൐ False, Axesെ
൐ False, PlotRangeെ൐ Allሿ&/@ሼrom1, rom2ሽ 

Showሾ%ሿ 

 
This method creates two separate surfaces and combines them to create the image of a Roman 
surface. You can just slightly see the seam between the two planes in the image above. The first 
time I had ever heard the term “minimal surface” was while learning about the Roman surface; 
now this shape has a sort of sentimental value to me. Even though I struggled to find an artistic 
way to incorporate this shape in my art, I was determined to use it. 
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The Costa Surface 
 
Mathematically, this is a surface quite complicated. According to Wolfram MathWorld[10], the 
Costa surface can be represented parametrically explicitly by 

 

 

 
Where  is the Weierstrass zeta function,  is the Weierstrass elliptic function with 

, and . 
 
In his article “Visualizing Minimal Surfaces”[3], O. Michael Melko describes a method to create 
a 3D model of the Costa surface in Mathematica. The code for this method can be seen in the 
Appendix, and the resulting model is shown below. 

 
Mathematically, the Costa surface is the most difficult shape that I incorporated into this project. 
Differential geometry is far from easy, but this shape takes it to a whole new level.  However, I 
couldn’t resist the beauty of this shape.  The surface doesn’t behave the way my brain thinks it 
logically should. It makes sense after examining it closer, but I was initially very confused when 
I turned the model over and didn’t see the openings on the other side. I wanted to use this shape 
in my art to recreate that initial confusion I experienced. 
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Trinoid 
 
Mathematica code[9]:  
Trinoidሾr_, ϕ_ሿ:

ൌ ሼ
1
18

ሺ
ݎሺݎ6 ൅ ሺ1 ൅ ଶሻCosሾ߶ሿሻݎ

1 ൅ ଶݎ ൅ ସݎ ൅ 2ሺݎ ൅ ଷሻCosሾ߶ሿݎ ൅ ଶCosሾ2߶ሿݎ2
െ 4Logሾ1 ൅ ଶݎ

െ Cosሾ߶ሿሿݎ2 ൅ 2Logሾ1 ൅ ଶݎ ൅ ସݎ ൅ 2ሺݎ ൅ ଷሻCosሾ߶ሿݎ

൅ ,ଶCosሾ2߶ሿሿሻݎ2
1
9
ሺെ2√3ArcTanhሾ

Sinሾ߶ሿݎ3√
1 ൅ ଶݎ ൅ Cosሾ߶ሿݎ

ሿ

െ
ሺ1ݎ3 ൅ ସݎ ൅ 2ሺݎ ൅ ଷሻCosሾ߶ሿሻSinሾ߶ሿݎ

1 ൅ ଺ݎ െ ଷCosሾ3߶ሿݎ2
ሻ,

1

3 ൅ 3 െ ଺ݎ3
െ2 ൅ ଷCosሾ3߶ሿݎ2

ሽ 

ParametricPlot3DሾTrinoidሾݎ, ,ሿݐ ሼݐ, 0,2Piሽ, ሼݎ, 0,4ሽ, RegionFunction → ሺ#1^2 ൅ #2^2 ൅ #3^2
൏ 3^2&ሻሿ 

Parametrically, the trinoid can be represented by: 

ݔ. ൌ ଵ

ଵ଼
ቀ ଺௥ሺ௥ାሺଵା௥మሻ ୡ୭ୱథሻ

ଵା௥మା௥రାଶሺ௥ା௥యሻ ୡ୭ୱథାଶ௥మ ୡ୭ୱ ଶథ
െ 4 logሺ1 ൅ ଶݎ െ ݎ2 cos߶ሻ ൅ 2 logሺ1 ൅ ଶݎ ൅ ସݎ ൅

2ሺݎ ൅ ଷሻݎ cos߶ ൅ ଶݎ2 cos 2߶ሻቁ 

ݕ. ൌ ଵ

ଽ
ቀെ2√3 tanhିଵ ቀ √ଷ௥ ୱ୧୬థ

ଵା௥మା௥ ୡ୭ୱథ
ቁ െ ଷ௥ሺଵା௥రାଶሺ௥ା௥యሻ ୡ୭ୱథ ୱ୧୬థ

ଵା௥లିଶ௥య ୡ୭ୱ ଷథ
ቁ 

ݖ. ൌ ଵ

ଷା యషయೝల

షమశమೝయ ౙ౥౩యഝ

 

0	݁ݎ݄݁ݓ ൏ ߶ ൏ 0	݀݊ܽ	ߨ2 ൏ ݎ ൏ 4 

 
The trinoid is interesting surface. At first glance, the three directions of the surface appear to be 
identical; however, as can be seen in the image above, the rightmost split-off of the surface is 
larger than the other two. It cannot be seen from this angle, but the bottom side of the surface has 
a hole in the center.  
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Gyroid 
 
The gyroid is considered an “infinitely connected triply periodic minimal surface”[13]. This 
description in layman’s terms, it is a structure that has a symmetrical lattice pattern that extends 
in every direction indefinitely. It was discovered by Alan Schoen in 1970. 
The Mathematica code for this surface is quite long and complex; the text is about 34 pages long. 
Due to this, I will not include the code here. However, Alan Schoen wrote a Mathematica 
notebook that contains the complete code which can be found at this link: 
http://mathworld.wolfram.com/notebooks/Surfaces/Gyroid.nb.[5] 

 
 

 
 
This is certainly one of the most interesting objects that I used in this project. The inside of this 
object feels like a maze; the tunnels twist around creating identical passageways for literally 
eternity. Even with the code completely laid out in the about Mathematica notebook, it was still a 
challenge to create. The slightest mistake in the code can cost hours of debugging or redoing the 
entire code. Artistically, it was worth the patience to create.  
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Appendix 
 

Costa Surface[3] 
 
Costa surface code as described by Melko in “Visualizing Minimal Surfaces”. 
The package “MinimalSurfaces” can be found at http://www.mathematica-
journal.com/data/uploads/2010/12/MinimalSurfaces.m 
 
GetሾMinimalSurfaces`ሿ	
boundaryሾδ_,ϵ_,ϕ_ሿ:ൌሼ	
		Lineሾሼሼδ,0ሽ,ሼሺ1/2ሻ‐ϵ,0ሽሽሿ,	
		Arcሾሼ1/2,0ሽ,ϵ,ሼπ,0ሽ,Clockwiseሿ,	
		Lineሾሼሼሺ1/2ሻ൅ϵ,0ሽ,ሼ1‐δ,0ሽሽሿ,	
		Arcሾሼ1,0ሽ,δ,ሼπ,π/2ሽ,Clockwiseሿ,	
			
		Lineሾሼሼ1,δሽ,ሼ1,ሺ1/2ሻ‐ϕሽሽሿ,	
		Arcሾሼ1,1/2ሽ,ϕ,ሼ‐π/2,π/2ሽ,Clockwiseሿ,Lineሾሼሼ1,ሺ1/2ሻ൅ϕሽ,ሼ1,1‐δሽሽሿ,	
		Arcሾሼ1,1ሽ,δ,ሼ‐π/2,‐πሽ,Clockwiseሿ,	
			
		Lineሾሼሼ1‐δ,1ሽ,ሼሺ1/2ሻ൅ϵ,1ሽሽሿ,	
		Arcሾሼ1/2,1ሽ,ϵ,ሼ0,‐πሽ,Clockwiseሿ,	
		Lineሾሼሼሺ1/2ሻ‐ϵ,1ሽ,ሼδ,1ሽሽሿ,	
		Arcሾሼ0,1ሽ,δ,ሼ0,‐π/2ሽ,Clockwiseሿ,	
			
		Lineሾሼሼ0,1‐δሽ,ሼ0,ሺ1/2ሻ൅ϕሽሽሿ,Arcሾሼ0,1/2ሽ,ϕ,ሼπ/2,‐π/2ሽ,Clockwiseሿ,Lineሾሼሼ0,ሺ1/2ሻ‐
ϕሽ,ሼ0,δሽሽሿ,	
		Arcሾሼ0,0ሽ,δ,ሼπ/2,0ሽ,Clockwiseሿ	
		ሽ	
gridlinesሾq_,s_,	n_ሿ:ൌ	
		Joinሾ	
			Tableሾ	
				Lineሾሼሼqሾሾ1ሿሿ	൅k	sሾሾ1ሿሿ,	qሾሾ2ሿሿ൅nሾሾ2ሿሿሾሾ1ሿሿ	sሾሾ2ሿሿሽ,	ሼqሾሾ1ሿሿ൅k	sሾሾ1ሿሿ,qሾሾ2ሿሿ൅nሾሾ2ሿሿሾሾ2ሿሿ	
sሾሾ2ሿሿሽሽሿ,ሼk,nሾሾ1ሿሿሾሾ1ሿሿ,nሾሾ1ሿሿሾሾ2ሿሿሽ	
				ሿ,	
			TableሾLineሾሼሼqሾሾ1ሿሿ൅nሾሾ1ሿሿ	ሾሾ1ሿሿsሾሾ1ሿሿ,qሾሾ2ሿሿ൅k	sሾሾ2ሿሿሽ,ሼqሾሾ1ሿሿ൅nሾሾ1ሿሿ	ሾሾ2ሿሿsሾሾ1ሿሿ,qሾሾ2ሿሿ൅k	
sሾሾ2ሿሿሽሽሿ,ሼk,nሾሾ2ሿሿሾሾ1ሿሿ,nሾሾ2ሿሿሾሾ2ሿሿሽሿ	
			ሿ;	
bൌboundaryሾ1/6,1/4,1/4ሿ;	
vൌCreateVertexDataሾb,MeshSize‐൐ሼ10,10ሽሿ;	
ShowሾGraphicsሾሼሼGrayLevelሾ0.8`ሿ,gridlinesሾሼ0,0ሽ,ሼ0.1`,0.1`ሽ,ሼሼ0,10ሽ,ሼ0,10ሽሽሿሽ,ሼGreen,PointSi
zeሾ0.02`ሿ,Point/@vሾሾ1ሿሿሽ,ሼRed,PointSizeሾ0.02`ሿ,Point/@Flattenሾvሾሾ2ሿሿ,1ሿሽሽሿ,Frame‐
൐True,PlotRange‐൐ሼሼ‐0.2`,1.2`ሽ,ሼ‐0.2`,1.2`ሽሽ,AspectRatio‐൐Automaticሿ	
pൌTriangulateሾv,bሿ;	
idሾu_,v_ሿ:ൌሼu,v,0ሽ	
qൌሼApplyሾid,pሾሾ1ሿሿ,ሼ1ሽሿ,pሾሾ2ሿሿ,pሾሾ3ሿሿሽ;	
grൌሼRGBColorሾ3/4,3/4,0ሿ,SpecularityሾGrayLevelሾ1ሿ,5ሿሽ;	
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qwൌሼqሾሾ1ሿሿ,ሼሼgr,qሾሾ2ሿሿሽሽሽ;	
sൌCreatePolyhedronሾqwሿ;	
ssൌFlatten/@s;	
ShowሾGraphics3Dሾssሿ,AspectRatio‐൐Automatic,Axes‐൐False,Boxed‐൐False,ViewPoint‐
൐ሼ0,0,9ሽሿ	
bൌboundaryሾ1/8,1/24,1/24ሿ;	
vൌCreateVertexDataሾb,MeshSize‐൐ሼ50,50ሽሿ;	
edgeIds	ൌ	ሼሼ1,11ሽ,ሼ3,9ሽ,ሼ5,15ሽ,ሼ7,13ሽሽ;	
vertexIds	ൌ	ሼሼ2,10ሽ,ሼ4,16,12,8ሽ,ሼ6,14ሽሽ;	
pൌTriangulateሾv,b,Identifications	‐൐ሼedgeIds,	vertexIdsሽሿ;	
Zሾu_,v_,rho_ሿ:ൌParallelSurfaceሾCostaSurfaceሾx,yሿ,ሼx,yሽ,rhoሿ/.ሼx‐൐u,y‐൐v,d‐൐rhoሽ	
X1ሾu_,v_ሿ:ൌReሾZሾu,v,0.025ሿሿ	
X2ሾu_,v_ሿ:ൌReሾZሾu,v,‐0.025ሿሿ	
q1ൌሼApplyሾX1,pሾሾ1ሿሿ,ሼ1ሽሿ,pሾሾ2ሿሿ,pሾሾ3ሿሿሽ;	
q2ൌሼApplyሾX2,pሾሾ1ሿሿ,ሼ1ሽሿ,pሾሾ2ሿሿ,pሾሾ3ሿሿሽ;	
zx	ൌGlueComponentsሾq1,q2ሿ;	
gr1ൌሼEdgeFormሾሿ,RGBColorሾ1/2,3/4,0ሿ,SpecularityሾGrayLevelሾ0.5`ሿ,6ሿሽ;	
gr2ൌሼEdgeFormሾሿ,RGBColorሾ3/4,1/2,0ሿ,SpecularityሾGrayLevelሾ1ሿ,9ሿሽ;	
gr3ൌሼEdgeFormሾሿ,RGBColorሾ1/2,0,1/2ሿ,SpecularityሾGrayLevelሾ1ሿ,9ሿሽ;	
qw	ൌ	ሼzxሾሾ1ሿሿ,Joinሾሼሼgr1,zxሾሾ2ሿሿሾሾ1ሿሿሽ,ሼgr2,zxሾሾ2ሿሿሾሾ2ሿሿሽሽ,Mapሾሼgr3,#ሽ&,zxሾሾ2ሿሿሾሾ3ሿሿሿሿሽ;	
sൌCreatePolyhedronሾqwሿ;	
ssൌMapሾFlatten,sሿ;	
Graphics3Dሾss,AspectRatio‐൐Automatic,Axes‐൐False,Boxed‐൐False,Lighting‐
൐"Neutral",ViewPoint‐൐ሼ‐2.417`,‐1.984`,1.294`ሽሿ	
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