
Crestron SIMPL+ 
Software 
Programming Guide 
 



 
 

 
This document was prepared and written by the Technical Documentation department at: 

 

 
Crestron Electronics, Inc. 

15 Volvo Drive 
Rockleigh, NJ 07647 

1-888-CRESTRON 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

All brand names, product names and trademarks are the property of their respective owners. 
©2003 Crestron Electronics, Inc. 



Crestron SIMPL+  Software 

Contents 

SIMPL+ 1 
Introduction ...............................................................................................................................1 

What is SIMPL+?........................................................................................................1 
For Whom is this Guide Intended?..............................................................................1 
Using SIMPL vs. SIMPL+..........................................................................................2 
What is Needed to Use SIMPL+?................................................................................2 
Where Can I Get More Information?...........................................................................2 

Quick Start .................................................................................................................................2 
Writing Your First SIMPL+ Program: “Hello world!” ...............................................2 
Making it Work ...........................................................................................................4 

The Structure of a SIMPL+ Program.........................................................................................5 
Compiler Directives.....................................................................................................5 
Include Libraries..........................................................................................................7 
Variable Declarations ..................................................................................................8 
User-Defined Functions.............................................................................................10 
Event Functions.........................................................................................................10 
Function Main ...........................................................................................................12 

Working with Data (Variables)................................................................................................13 
Input/Output Types....................................................................................................13 
All About Variables...................................................................................................16 
Arrays ........................................................................................................................20 

Operators, Expressions, and Statements ..................................................................................22 
Operators ...................................................................................................................22 
Expressions................................................................................................................23 
Statements .................................................................................................................24 

Controlling Program Flow: Branching ....................................................................................24 
if–else ........................................................................................................................24 
switch–case................................................................................................................26 

Controlling Program Flow: Loops ...........................................................................................27 
for Loops ...................................................................................................................27 
while and do-until Loops...........................................................................................29 
Exiting from Loops Early..........................................................................................30 

Using System Functions ..........................................................................................................30 
User Defined Functions ...........................................................................................................31 

Function Definitions..................................................................................................32 
Defining Local Variables In Functions......................................................................34 
Passing Variables to Functions as Arguments...........................................................35 
Functions That Return Values ...................................................................................36 
Function Libraries .....................................................................................................38 

Compact Flash Functions.........................................................................................................39 
CheckForDisk and WaitForNewDisk........................................................................39 
Reading and Writing Data.........................................................................................40 

Working with Time..................................................................................................................42 
Delay .........................................................................................................................42 
Pulse ..........................................................................................................................43 

Programming Guide – DOC. 5789A Contents  •  i 



Software Crestron SIMPL+
 

Wait Events ...............................................................................................................43 
Working with Strings...............................................................................................................45 

BUFFER_INPUT ......................................................................................................45 
Removing Data From Buffers ...................................................................................47 

Understanding Processing Order .............................................................................................49 
How SIMPL+ and SIMPL Interact............................................................................49 
Forcing a Task Switch ...............................................................................................49 

Debugging ...............................................................................................................................50 
Compiler Errors .........................................................................................................50 
Run-time Errors .........................................................................................................50 
Debugging with Print()..............................................................................................51 

Software License Agreement...................................................................................................52 
Return and Warranty Policies ..................................................................................................54 

Merchandise Returns / Repair Service ......................................................................54 
CRESTRON Limited Warranty.................................................................................54 

 

ii  •  Contents Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

SIMPL+ 

Introduction 

What is SIMPL+? 
SIMPL+ is a language extension to SIMPL Windows. It does not replace SIMPL, 
but instead it enhances it. With SIMPL+ it is now possible to use a procedural “C-
like” language to code elements of the program that were difficult, or impossible 
with SIMPL alone. 

A SIMPL+ program is a module that directly interacts with the control system.  In 
order to interact with the control system, a module must contain a few essential 
elements.  The first element is a starting point.  A starting point is needed for two 
reasons.  First, it serves as a convenient place to initialize any global variables that 
are declared within the module.  Second, any functionality that the module needs to 
perform on its own (instead of being triggered though an event), can be instantiated 
here.  Another element is event processing.  In order for a SIMPL+ module and a 
control system to interact, they must be able to send and receive signals to and from 
one another.  Input and output (I/O) signals are declared within the module and are 
then tied directly to the control system.  Input signals are sent from the control 
system and are received within the SIMPL+ module.  Output signals are sent from 
the SIMPL+ module to the control system.  Events are functions that are triggered 
through input signals from the control system.   I/O signals can be either digital, 
analog or serial and are declared within the SIMPL+ module.  Events tell the 
SIMPL+ module that something has changed within the control system and allows 
the module to perform any action accordingly. 

For Whom is this Guide Intended? 
This manual assumes the reader has at least a working knowledge of the SIMPL™ 
Windows programming environment. This includes the ability to configure a new 
program (define the hardware), and interconnect user-interfaces (e.g., a touchpanel) 
and system outputs (e.g., a relay). Knowledge of the SIMPL logic symbols is not 
required, but is helpful in understanding some of the examples presented herein. 

This guide is intended to be the complete SIMPL+ programming guide, appropriate 
for the beginning SIMPL+ programmer, or the expert programmer looking for a 
refresher course. This guide, along with The SIMPL+ Reference Manual should 
provide all the information needed for any SIMPL+ programmer. 

Programming Guide – DOC. 5789A SIMPL+  •  1 



Software  Crestron SIMPL+
 

Using SIMPL vs. SIMPL+ 
SIMPL+, while exciting and powerful, does present the programmer with somewhat 
of a dilemma, namely, when to program in SIMPL and when in SIMPL+. The 
answer of course is not cut-and-dry, and just about any task can be accomplished 
entirely in one language or the other. However, the true power of Crestron control 
system programming is unleashed when the strengths of both environments are 
harnessed simultaneously. 

First, almost every program to be written will have some elements of SIMPL. Any 
time a button is needed to act as a toggle, or it is necessary to interlock a group of 
source buttons, it is generally simpler to handle these tasks with SIMPL. 

SIMPL+ is advantageous for more complex and algorithmic tasks, such as building 
complex strings, calculating checksums, or parsing data coming from another device. 
In addition, complex decision-making, especially when dealing with time and date, is 
generally much easier to handle in SIMPL+. Finally, data storage and manipulation 
may be better suited to SIMPL+ than to SIMPL (though many SIMPL programs 
have been written to do these chores). 

Of course, ultimately the decision as to how to program is up to the individual. 
Personal preference certainly comes in to play. With practice, a happy medium can 
be found that makes programming both efficient and fun.  

What is Needed to Use SIMPL+? 
SIMPL+ version 2.0 requires a CNX-series control processor and SIMPL Windows 
v1.23 or later. 

SIMPL+ version 3.0 accompanies SIMPL Windows v2.00 or later, and may be used 
to program either a 2-Series control system or a CNX-series control system. 

Where Can I Get More Information? 
This guide should contain all the information needed to program in SIMPL+. For 
specific information about the language syntax, refer to the latest revision of the 
SIMPL+ Language Reference Guide (Doc. 5797). 

Quick Start 

Writing Your First SIMPL+ Program: “Hello world!” 
The best way to become acquainted with SIMPL+ is to write a simple program right 
off the bat. Although programs can be written in SIMPL+, it is important to 
understand that all control system “i/o” must be defined directly in SIMPL Windows. 
This SIMPL Windows program can be thought of as a “shell” in which the SIMPL+ 
modules are contained. This shell consists of hardware definitions at the very least, 
but in most cases also consists of raw SIMPL code. SIMPL+ program(s) appear as 
logic symbols in the overall SIMPL program. 

Based on the fact that SIMPL+ programs can exist only inside this wrapper, it is 
necessary to create a skeleton SIMPL Windows program before testing the program. 
This is covered in a later section (to be supplied). For now, concentrate on writing 
the SIMPL+ code only. 

2  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

Start creating a new SIMPL+ program while running SIMPL Windows. Select File | 
New | New SIMPL+ Module.  The SIMPL+ programming environment appears. 
Instead of a blank window, a skeleton program filled with commented code shows 
up. This commented out code makes it easy to remember the language syntax and 
structure. Simply locate the necessary lines, uncomment them, and add the 
appropriate code. To uncomment a line of code, either remove the “//” that appears at 
the start of the line or remove the multi-line comment indicators /*…*/. 

SIMPL+ programs communicate with the SIMPL Windows wrapper program via 
inputs and outputs. These inputs and outputs correspond to signals in the world of 
SIMPL and can be digital, analog, or serial signals (if these terms are unfamiliar, 
they are covered in more detail in “Input/Output Types”). For this first program, only 
a single digital input is defined. Find the line of code that says “// 
DIGITAL_INPUT”. Uncomment it and edit it so it looks like the following: 

DIGITAL_INPUT speak; 

This line defines the variable speak as the first digital input to the SIMPL+ program. 
Notice that most lines in SIMPL+ end in a semi-colon (;). To be precise, all 
statements end with a semi-colon. The definition of a statement in SIMPL+ can be 
found in the latest revision of the SIMPL+ Language Reference Guide (Doc. 5797). 

When a digital input goes from low to high, a push event is generated. To define a 
push event function for that signal, program this function to yield the desired actions. 
From the skeleton program, find the commented line of code that says “push {”. 
Uncomment the function block by removing the surrounding comment characters 
and edit it to read the following: 

PUSH speak  
{ 
 Print( “Hello world!”\n ); 
} 

This function causes the string “hello world” plus a carriage return and line feed to 
be sent out the control system computer port (or Ethernet port) whenever the signal 
speak goes high. Notice the curly-braces ({}) surrounding the print statement above. 
In SIMPL+ these braces are used to group multiple statements into a compound 
statement. In the case of a function definition, always surround the contents of the 
function with these braces. 

The next step is to add another event function, one that responds when a signal goes 
from high to low. This event is called a release event. From the skeleton program, 
find the line of code that says “RELEASE input”. Uncomment and edit it to read the 
following: 

RELEASE speak  
{ 
 Print( “Crestron people make the difference”\n ); 
} 

Finally, define what happens when the control system first boots up. This is 
accomplished using Function Main. Upon system startup, the program code defined 
in this function executes. Unless there are looping constructs (discussed in 
“Controlling Program Flow: Loops”) defined in this function, this code executes 
only one time for the life of the control system (or until it is rebooted). From the 
skeleton program, find the section of the program that says “Function Main”. Edit it 
to read the following.  

Programming Guide – DOC. 5789A SIMPL+  •  3 



Software  Crestron SIMPL+
 

Function Main 
{ 
 Print( “I am born!”\n ); 
} 

This causes the text “I am born” to be sent out the computer port only upon startup. 

To save the file, from the menu, select File | Save.  Assign the name, My first 
SIMPL+.   To compile the file, select Build | Save and Compile.  This command 
saves the code module, compiles it, and tells SIMPL Windows how to present it to 
the SIMPL programmer.  SIMPL+ version 2.0 requires that all SIMPL+ modules 
reside in the User SIMPL+ directory (this can be checked in SIMPL Windows by 
selecting Edit | Preferences and clicking on the Directories tab).  In SIMPL+ 3.0 
and later, SIMPL+ modules can also reside in the corresponding SIMPL Windows 
Project Directory, where the SIMPL Windows program also resides. 

Each time the program is saved, an “update log” appears at the bottom of the screen. 
This log shows the results of the save, compile, and update process that just 
occurred. Review and become familiar with it. The window should display 
something similar to this code: 

Compiling c:\Crestron\simpl\usrsplus\my first simpl+.usp 
Total Error(s): 0 
Total Warning(s): 0 
SIMPL+ file saved successfully 
No errors found: SIMPL Windows Symbol Definition updated 

This first SIMPL+ program is complete. The next section explains how to 
incorporate this program into the required SIMPL Windows wrapper, and how to run 
and test it. 

Making it Work 
This section describes how to make the simple SIMPL+ program written in the last 
section work inside a Crestron control processor. As was mentioned earlier, SIMPL+ 
programs cannot run all by themselves. They must be enclosed inside a SIMPL 
wrapper. This section discusses how to set up this program in SIMPL Windows. 

Create a new SIMPL Windows program and add a control processor from the 
Configuration Manager. Notice that only CNX-series or 2-Series control processors 
are compatible with SIMPL+. For this example, use the Test Manager to trigger the 
digital input. As a result, there is no need to define a touchpanel or other user-
interface device, although it is even better if one is available for testing. 

After system is configured, switch to the Program Manager and make sure that the 
symbol library pane is visible on the left-hand side of the screen. Find the User 
SIMPL+ folder and open it. An icon representing the SIMPL+ program written in the 
previous section appears. Drag this icon into the Logic folder in the Program View 
pane. The SIMPL+ program now becomes just another symbol in the program. 

Double click on the logic symbol to bring it into the Detail window. It should have a 
single input, labeled “speak.” This of course corresponds directly to the declarations 
section of our SIMPL+ code, where only a single input and no outputs were defined. 
Define a signal for this input. The signal name here is not important, but for this 
example, call it “test_me.” Also note that if a user interface was defined in an earlier 
step, assign this same signal to a button press. 

That’s it! The first program is complete. All that is left is to compile the whole thing, 
transfer it to the control processor, and test it. As in SIMPL Windows, compile the 

4  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

program by clicking on the compile toolbar button or selecting Project | 
Convert/Compile. The compile process automatically recognizes that there is a 
SIMPL+ module in the program and compiles it along with the SIMPL code (even 
though it was already compiled when it was saved; SIMPL Windows always 
recompiles because it must link the modules together with the SIMPL Windows 
program). 

After compilation, transfer the program when prompted by SIMPL Windows. Click 
YES and the SIMPL code section is sent first (followed by the save permanent 
memory image). Once completed, the SIMPL+ program code is sent. The SIMPL+ 
code resides in a separate area of memory, thus it is transferred in a separate step. 
Also realize that the SIMPL+ program is written directly to flash memory, thus there 
is no need to create a permanent memory image. 

At this point a program has been loaded into the control system and is ready to be 
tested. Start Test Manager, and select Status Window | Add Signal. A list of all the 
signals defined in the program appears. Click on the “test_me” signal and then click 
the Add button. Then select Close. An icon representing the signal in the status 
window appears. 

The program is ready to be tested. Make sure that the section of Test Manager 
labeled Incoming Data  is visible in the left-most pane. Click on the “test_me” icon 
in the status window and then on the Assert button on the toolbar (or select Status 
Window | Assert Signals). The signal is driven to the high state, which triggers the 
push event. In the Incoming Data window, the string “Hello world!” appears.  

Click on the De-Assert button to drive the signal low and trigger the release event. 
In the Incoming Data window, the string “Goodbye cruel world!” appears.  

By clicking on the Positive Pulse button, both strings appear one after the other, 
since the push and release events are triggered in rapid succession. 

Finally, what happened to the startup text “I am born”? Remember that Function 
Main only runs on system startup and this occurred even before Test Manager was 
started. Thus it was missed. To see it now, reboot the control processor by selecting 
Options | Reset Rack. 

In addition to the latest revision of the SIMPL+ Language Reference Guide (Doc. 
5797), continue reading through this manual to learn more about how to program in 
SIMPL+. 

The Structure of a SIMPL+ Program 
What are the different elements that make up a SIMPL+ program? This section 
provides an overview of the code structure, given in the typical order that they are 
used. 

Compiler Directives 
Compiler directives should come at the beginning of the program, and are used to 
provide explicit instructions to the compiler. As such, these elements are not part of 
the SIMPL+ language itself. These directives are distinguished from actual SIMPL+ 
code by preceding them with a pound sign (#). 

Currently there are seven compiler directives, each of which is provided in the 
template file that is created when a new program is started. The compiler directives 
are as follows. 

Programming Guide – DOC. 5789A SIMPL+  •  5 



Software  Crestron SIMPL+
 

#SYMBOL_NAME - Allows the user to specify the name that SIMPL Windows 
uses for this module. If this directive is left out, the filename will be used by default. 

#HINT - Provides text that appears in the SIMPL Windows status bar whenever the 
module icon is clicked on. 

#CATEGORY – (SIMPL+ 3.0 and later)  Specifies the SIMPL Windows symbol 
tree category number for this SIMPL+ module, which controls where the SIMPL+ 
module is listed in the symbol tree in Program Manager.  Selecting Edit | Insert 
Category from the menu will display a list of available categories to choose from 
and automatically insert the selected category in to the program module.  

#DEFAULT_VOLATILE – (SIMPL+ 3.0 and later)  Specifies that all program 
variables will retain their values if hardware power is lost. If neither the 
#DEFAULT_VOLATILE nor #DEFAULT_NONVOLATILE are specified, the 
compiler will default all variables declared within the SIMPL+ module as 
nonvolatile. 

#DEFAULT_VOLATILE – (SIMPL+ 3.0 and later)  Program variables will not 
retain their value if hardware power is lost. 

#HELP_BEGIN / #HELP_END - Allows on-line help to be entered for this 
module. This text appears when the user selects the module and presses F1 from 
within SIMPL Windows. 

#DEFINE_CONSTANT - Allows constant numeric/string values to be assigned to 
alphanumeric names. This is extremely useful for writing changeable and readable 
code. 

This last compiler directive deserves more discussion, since using constant 
definitions are a very important part of writing readable code. To illustrate this, 
examine the following example.  

PUSH vcr_select 
{ 
 switcher_input = 3; 
 switcher_output = 2; // video projector 
} 

PUSH dvd_select 
{ 
 switcher_input = 4; 
 switcher_output = 2; // video projector 
} 

In this example it should be clear that the value of a variable, switcher_input, is 
being set to 3 if the vcr button is pressed or 4 if the dvd button is pressed. In both 
cases, the variable, switcher_output, is set to 2, which is the output connected to the 
video projector. Presumably, these variables would be used somewhere else in the 
program to generate a command string to control a switcher. Using numbers in a 
small and simple program like this still produces a relatively readable program. Even 
so, a couple of problems should become evident. For one thing, if the switcher 
configuration is changed, and the inputs and outputs are rearranged, the user must 
carefully go through the program and change all the appropriate values for the 
switcher input and output. Secondly, in a larger program this technique becomes 
very hard to read. After all, the number 3 has no intrinsic relationship to a VCR. 

Examine the following equivalent program, which uses constant definitions in place 
of actual numbers.  

6  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

#DEFINE_CONSTANT VCR_INPUT 3 
#DEFINE_CONSTANT DVD_INPUT 4 
#DEFINE_CONSTANT VPROJ_OUTPUT 2 

PUSH vcr_select 
{ 
 switcher_input = VCR_INPUT; 
 switcher_output = VPROJ_OUTPUT; // video projector 
} 

PUSH dvd_select 
{ 
 switcher_input = DVD_INPUT; 
 switcher_output = VPROJ_OUTPUT; // video projector 
} 

Note the use of capital letters for the constant definitions. This is not required, but it 
makes it clear to see the difference between variables and constants when reading 
through a program (but of course is not useful if all caps are used for the rest of the 
program). Not only is this version of the program easier to read, even for a small 
example, but it is obvious that changing a numeric value in one place (the 
#DEFINE_CONSTANT) can affect the value everywhere in the program. 

Include Libraries 
Libraries are a way of grouping common functions into one source file to enable 
modularity and reusability of source code.  Libraries are different from modules in 
that they do not contain a starting point (Function Main), and cannot interact with the 
control system (through I/O signals and events).  Libraries can include other 
libraries, but cannot include a SIMPL+ module.  Only functions and defined 
constants are allowed to be declared and defined within libraries.  Global variable 
declarations are not allowed.  Functions, however, can contain local variables.  Other 
advantages are: 

1. Modularity.   SIMPL+ programs can grow to be large and can be better 
organized by taking sections of code and placing them into a User-
Library.  It is best to create libraries that contain sets of related 
functions.  For example, a library might be created that contains only 
functions that perform certain math related functions.  Another library 
might be created that contains functions performing special string 
parsing routines.  

2. Reusability.  As modules are written, it is common for SIMPL+ 
modules to need pieces of functionality that were previously written in 
other modules.  These common and repeatedly portions of code can be 
extracted and placed into one or more libraries.  Once placed into a 
library, one or more SIMPL+ modules can include and make use of 
them. 

SIMPL+ modules include libraries using the following syntax: 

#USER_LIBRARY “<library_name>” 
#CRESTRON_LIBRARY “<library_name>” 

Note that library_name is the name of the library without the file extension.  User-
Libraries are libraries that the end user writes.  These can exist either in the SIMPL+ 
module’s project directory, or the User SIMPL+ directory (set in SIMPL Windows).  

Programming Guide – DOC. 5789A SIMPL+  •  7 



Software  Crestron SIMPL+
 

Crestron-Libraries are provided from Crestron and are contained within the Crestron 
Database. 

Variable Declarations 
Variables can be thought of as storage areas to keep data. When writing all but the 
most basic of programs, users need to use variables to store values.  

Any variable used in a SIMPL+ program must be declared before it is used.  This 
also tells the operating system how much space must be reserved to hold the values 
of these variables. This section describes the different types of variables in SIMPL+ 
and how to define them. 

Inputs, Outputs, and Parameters 
The current release of 
SIMPL+ does not support 
passing parameters (constant 
values) from the SIMPL 
program into the SIMPL+ 
module. Look for this feature 
in a future release. 

SIMPL+ programs communicate with the SIMPL program in which they are placed 
through input and output variables and through parameter values. This is similar in 
concept to the Define Arguments symbol used in SIMPL macros.  Input variables 
can be of three types: digital, analog, and string types. These correspond directly to 
the same signal types in SIMPL and the buffer input, which is a special case of the 
string input. Output variables can only be of the digital, analog, or string variety. 

Input variables are declared using the following syntax.  
For more information on the 
buffer_input, refer to 
“Working with Strings” on 
page 45. 

DIGITAL_INPUT <dinput1>,<dinput2>,…<dinputn>; 
ANALOG_INPUT <ainput1>,<ainput2>,…<ainputn>; 
STRING_INPUT <sinput1>[size],<sinput2>[size], 
 ...<sinputn>[size]; 
BUFFER_INPUT <binput1>[size],<binput2>[size], 
 ...<binputn>[size]; 

Digital and analog output variables are declared in the same way, except the word 
input is replaced with output, as follow shown below. String output variables do not 
include a size value. There is no output version of the buffer variable.  

DIGITAL_OUTPUT <doutput1>,<doutput2>,…<doutputn>; 
ANALOG_OUTPUT <aoutput1>,<aoutput2>,…<aoutputn>; 
STRING_OUTPUT <soutput1>,<soutput2>,…<soutputn>; 

The inputs and outputs declared in this way govern the appearance of the SIMPL+ 
symbols that are presented via SIMPL Windows. The order of the signal declarations 
is important only within signal types; in SIMPL Windows, digital signals always 
appear at the top of the list, followed by analogs, and then serials. 

Variables 
In addition to the input and output variables described in the last section, the user can 
define and use variables that are only seen by the SIMPL+ program. That is, the 
SIMPL program, which holds this module has no knowledge of these variables. In 
addition, any other SIMPL+ modules that are included in the SIMPL program would 
not have access to these variables. 

“Working with Data (Variables)” discusses variables in much more detail. For now, 
understand how to declare them. Declaring variables tells the SIMPL+ compiler how 
much memory to put aside to hold the workable data. 

These variable declarations are very similar to input/output declarations. However, 
instead of digital, analog, and serial (string and buffer) types,  integer and string 

8  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

variables are also available with the INTEGER and STRING datatype.  Integers are 
16 bit quantities.  For the 2-series control system, 32 bit quantities are supported with 
the LONG_INTEGER datatype.  Both INTEGER and LONG_INTEGER are treated 
as unsigned values.  Signed versions for both of these datatypes are available by 
using the SIGNED_INTEGER and SIGNED_LONG_INTEGER datatypes.  The 
following example illustrates how each of these datatypes can be used within a 
program module: 

INTEGER intA, intB, intC; 
STRING stringA[10], stringB[20];  
LONG_INTEGER longintA, longIntB; 
SIGNED_INTEGER sintA, sintB; 
SIGNED_LONG_INTEGER slongIntA;  

It is important to realize that all variables declared in this manner are non-volatile. 
That is, they remember their values when the control system reinitializes or even if 
the power is shut off and then turned back on. Since input/output variables are 
attached directly to signals defined in the SIMPL program, they do not have this 
property unless the signals they are connected to are explicitly made non-volatile 
through the use of special symbols. 

Structures  
Sometimes sets of data are needed rather than individual pieces. Variables store a 
piece of data, but are not related to other variables in any way. Structures are used to 
group individual pieces of data together to form a related set. Before structures can 
be used, a structure definition must be defined. Defining a structure is really defining 
a custom datatype (such as STRINGs and INTEGERs). Once this new type (the 
STRUCTURE) is defined, variables of that type can be declared. The following 
example illustrates how a structure can be defined and used within a program 
module: 

STRUCTURE PhoneBookEntry 
{ 
   STRING name[100]; 
   STRING address[100]; 
   STRING phone_number[25]; 
   INTEGER age; 
} 
 
PhoneBookEntry entry; 
PhoneBookEntry entries[50]; 

To access a variable within a structure, the structure’s declared variable name is 
used, followed by a period (also known as the ‘dot’ or ‘dot operator’), followed by 
the structure member variable name. For example: 

entry.name = “David”; 
entries[1].age = 32; 

Programming Guide – DOC. 5789A SIMPL+  •  9 



Software  Crestron SIMPL+
 

User-Defined Functions 
The term checksum byte is 
commonly used in serial 
communications to represent 
a byte (or bytes) that is 
appended to a command 
string. This byte is calculated 
from the other characters in 
the string using some 
specified algorithm. 
Checksum bytes are used to 
provide error-checking when 
communicating between 
devices. 

In programming, it is common to reuse the same code over and over again. For 
example, when writing a program to generate strings (to control a device), there may 
be a need to calculate a checksum byte. Once the code to calculate this byte is 
formulated, paste it in to the program after each instance where a command string is 
created. 

This technique has many flaws. First, the program can grow unnecessarily large and 
become hard to manage and debug. Second, if there is a need to change the code, it 
must be changed every place it was used, which is time consuming and error prone. 

The solution is to create user-defined functions to perform common tasks. A user-
defined function is very similar to a “built-in” function like Date or MakeString, 
with some important exceptions.  

To invoke a user-defined function, use the following syntax: 

CALL MyUserFunction(); 

Event Functions 
Event functions make up the heart of most SIMPL+ programs. Since a well-designed 
control system is “event-driven” in nature, most code is activated in response to 
certain events when they occur. Event functions allow the user to execute code in 
response to some change that has occurred to one or more of the input signals 
feeding the SIMPL+ module from the SIMPL program. 

Two things must be realized about event functions. They can be used with input 
variables only (not with locally defined variables). Also, they are only triggered by 
the operating system at the appropriate time (that is, they cannot be called manually 
by the programmer). 

Like everything else in the control system, event functions are multi-tasking. That is, 
an event can be triggered even if another event in the same SIMPL+ module is 
already processing. As described in “Understanding Processing Order” on page 49, 
this only happens if events are triggered on the same logic wave, or if one event 
function has caused a task switch. 

The structure of an event function is as follows.  

event_type <input list> 
{ 
 <statements> 
} 

In SIMPL+ there are three basic event types that can occur: PUSH, RELEASE, and 
CHANGE. In addition to these three is a fourth type simply called "EVENT." These 
event types are discussed in the following subsections. 

PUSH and RELEASE Events 
Push and release events are valid only for DIGITAL_INPUT variables. The push 
event is triggered when the corresponding digital input goes from a low to a high 
state (positive- or rising-edge). The release event occurs when the signal goes from a 
high to a low (negative- or falling-edge). For example, the following code sends a 
string to a camera unit to pan left when the left button is pressed and then send a stop 
command when the button is released. 

10  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

This example assumes that 
the camera unit being 
controlled continues to move 
in a given direction until a 
stop command is issued. 
Some devices function this 
way, but others do not. 

DIGITAL_INPUT cam_up, cam_down, cam_left, cam_right; 
STRING_OUTPUT camera_command; 

PUSH cam_left 
{ 
      camera_command = "MOVE LEFT"; 
} 

RELEASE cam_left 
{ 
      camera_command = "STOP"; 
} 

CHANGE Events 
Change events can be triggered by digital, analog, string, or buffer inputs. Anytime 
the corresponding signal changes its value, the change event will be triggered. For 
digital signals, this means that the event will trigger on both the rising and falling 
edges (push and release). For buffer inputs, this event triggers any time another 
character is added to the buffer. 

The following example sends a command to a CD player to switch to a different disc 
whenever the analog input disc_number changes value. 

ANALOG_INPUT disc_number; 
STRING_OUTPUT CD_command; 

CHANGE disc_number 
{ 
 CD_command = "GOTO DISC " + itoa(disc_number); 
} 

This program uses the itoa function to convert the analog value in disc_number into 
a string value which can be concatenated onto CD_command. The string 
concatenation operator (+) and system functions (i.e., itoa) are discussed in later 
sections of the manual and in the latest revision of the SIMPL+ Language Reference 
Guide (Doc. 5797). 

Compound Events 
Sometimes it is desired to have the same (or similar) action occur when any of a 
number of events occur. For example, there may be a need to generate a switcher 
command string each time any of a group of “output” buttons are pressed. 

Compound events can be created in two ways. One way is to provide a list of input 
signals separated by commas in the event function declaration. Refer to the following 
example.  

PUSH button1, button2, button3 
{ 
 <statements> 
} 

A second form of compound event occurs when combining different types of events 
into a single function. For example, there may be a need to execute some code when 
a button is pushed or the value of an analog signal changes. To accomplish this, stack 
the event function declarations, as follows.  

Programming Guide – DOC. 5789A SIMPL+  •  11 



Software  Crestron SIMPL+
 

CHANGE output_value 
PUSH button1, button2 
{ 
 <statements> 
} 

A useful feature of SIMPL+ event functions is that a single input can have more than 
one event function defined for it. This makes it possible to write one event function 
for a specific input only and another event function for a group of inputs. Refer to the 
following example. 

PUSH button1 
{  // code here only runs when 
   // button1 goes high 
} 

PUSH button1, button2, button3 
{  // this code runs when any of 
   // these inputs goes high 
} 

The Global Event 
A special form of event exists, which is triggered anytime any of the inputs to the 
SIMPL+ module changes. This is simply a shortcut for having to build a compound 
event manually which includes all the inputs separated by commas in a CHANGE 
event declaration. Access this special event function by using the EVENT keyword, 
as follows. 

EVENT 
{  // this code runs anytime anything 
   // on the input list changes 
} 

Be careful when using this global event function. If the user has a SIMPL+ program 
in which a change on any input causes the same code to execute, this type of event is 
useful. However, if additional inputs are added at a later time, remember that this 
event function exists, and is caused when these new inputs change as well. This may 
not be desirable. 

Function Main 
Main is a special case of a user-defined function. The Main function is executed 
when the control system initializes (boots up) and is never called again. In many 
cases, the main function is used to initialize variables; it may not contain any 
statements at all. 

However, in some cases, a loop may be placed in the Main function to perform a 
continuous action. Refer to the following example, and note that this example uses a 
while loop construct, which is discussed in “Controlling Program Flow: Loops” on 
page 27. 

Function Main() 
{ 
 x = 0; // this code executes only once 
 

12  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

    while (1) 
 { 
  <do something forever> // code in here runs 
      // continuously 
 } 
} 

This loop runs continuously for as long as the control system is on. If a construct like 
this is used, it is recommended that a ProcessLogic or Delay function in the loop be 
included to allow the logic processor a chance to handle the rest of the system. If one 
of these statements is not included, the operating system forces a task switch at some 
point in time. These concepts are discussed in detail in “Understanding Processing 
Order” on page 49. 

Working with Data (Variables) 
Programming is really the manipulation of data. Examples of data in a program are 
the switcher input and output numbers, the name of the next speaker and the amount 
of time left before the system shuts down automatically. This section covers the 
different data types available in SIMPL+. 

Input/Output Types 
Input/output variables are used to transfer data between SIMPL+ modules and the 
surrounding SIMPL program. Each input or output variable in the SIMPL+ is 
connected directly to a signal in the SIMPL program. SIMPL programmers should 
already be familiar with the three signal types available in that language: digital, 
analog, and serial. The table below takes a closer look at the type of data conveyed 
by these signal types.  

SIMPL Signal Types 

SIGNAL TYPE DATA EXAMPLE
Digital Single bit Button push/release
Analog 16-bit (0 to 65,535) Volume level
Serial Up to 255 bytes Serial data input from a COM port  

This table illustrates that digital signals only transfer a single bit of information 
between SIMPL+ and SIMPL. Of course this makes sense, as digital signals only 
have two possible states (on and off). Obviously, analog and serial signals allow the 
transfer of much more information per signal. Depending on the application, it may 
be more convenient to generate an analog signal in SIMPL and connect it to a 
SIMPL+ program, rather than connecting a large number of digital signals and 
setting some variable based on which was pressed last (though both methods should 
work). 

Digital Inputs/Outputs 
Digital signals comprise the bulk of signals in a typical SIMPL program. In SIMPL+ 
they are used mainly to trigger events on the rising- or falling- edge of the signal, 
though they can also be used in expressions. 

The state (or value) of a digital signal is always either 1 or 0 (also referred to as ON 
or OFF). In SIMPL+, assigning a value of 0 to a digital signal turns it OFF. 
Assigning it any non-zero value will turn it ON (for clarity, in most cases, use the 
value 1). 

Programming Guide – DOC. 5789A SIMPL+  •  13 



Software  Crestron SIMPL+
 

Analog Inputs/Outputs 
Analog signals are used in SIMPL to accomplish tasks for which digital signals are 
inadequate. Typical examples include volume control and camera pan/tilt control. In 
SIMPL+, analog signals take on even greater importance since they provide an easy 
way of transferring data (16 bits at a time) into and out of SIMPL+ modules. 

In SIMPL+, analog signals are treated much as they are in SIMPL. They are 16-bit 
numbers that can range between 0 and 65,535 (unsigned) or –32768 and +32,767 
(signed). Signed and unsigned numbers are discussed in detail in “Integers” on page 
16. 

String Inputs/Outputs and Buffer Inputs 
Perhaps the greatest advantage that SIMPL+ provides is related to string handling. In 
SIMPL, serial data can be generated dynamically and placed on serial signals. 
However, one problem that arises is due to the “transient nature” of these signals. 
Simply put, serial signals are invalid except for the time between when they are 
created and when they reach the next symbol. With careful programming this does 
not cause problems, but it requires a good understanding of SIMPL. 

SIMPL+ makes working with serial data much simpler by storing this data into 
temporary string variables. When a serial signal is connected to a SIMPL+ module 
and the SIMPL program causes data to be sent via this signal, the SIMPL+ program 
copies the data from this signal into local memory. The data is kept there until the 
SIMPL program changes it. 

By storing the serial data into a string variable, SIMPL+ programmers can now 
perform tasks on strings that were difficult or impossible with SIMPL alone. For 
example, it is easy to evaluate a string and then add a checksum byte on the end to 
insert or remove characters from a string, or to parse information out of a string for 
use elsewhere. Functions that are designed to work explicitly with string signals and 
string variables are discussed in detail in the latest revision of the SIMPL+ Language 
Reference Guide (Doc. 5797).  

Serial data is also unique in that unlike digital or analog signals, the data may not 
appear at one time, but instead it can “stream in” (e.g., if it comes from a COM port). 
This raises an interesting problem, namely, what happens if a command string 
coming in from a device is not picked up as one piece, but rather is broken up into 
two or more pieces? The problem arises in that a string input is completely replaced 
each time new data is detected on the input. To account for this, an alternate type of 
serial input type may be used, the buffer input. The buffer input differs from the 
string input in that serial data that comes in is appended onto data that already exists 
in the buffer, instead of replacing it. This type of behavior is critical for performing 
sophisticated string parsing and manipulation when dealing with streaming data. 
Refer to “Working with Strings” on page 45 for a detailed discussion of buffer 
inputs. 

Signal Scope 
Signals are global throughout the entire SIMPL program and to any SIMPL+ 
program to which they are connected. In a SIMPL+ program, the values of digital, 
analog, and string inputs are read (their values can be evaluated). However, their 
values cannot be changed from within the SIMPL+, thus they are considered read-
only. Buffer inputs can be read from and modified. 

Digital and analog output signals in SIMPL+ can be read and modified. String 
outputs can be modified, but cannot be read back. To understand this, the user must 
realize what is being seen when looking at the contents of an output variable in a 

14  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

SIMPL+ program. The value of any output is the value of the signal as seen by the 
outside SIMPL program at that instant. This is critical considering that SIMPL+ does 
not necessarily “propagate” outputs to the SIMPL program each time they are 
changed in the program. As a general rule, assume that analog and serial outputs are 
propagated at the time they are assigned new values. However, digital signals are not 
propagated until a task switch occurs. 

This explains reading values of analog and digital outputs, but why is it that string 
outputs cannot be read? The reason has to do with the nature of serial signals in 
SIMPL. Namely that these signals do not actually store strings in them, but rather 
point to locations in memory where a string exists. Since the data stored at a 
particular location in memory can change at some later time, there is no guarantee 
that the string data is still there. As a result, SIMPL+ does not allow a string output 
to be examined. 

Examine the following code example. 

DIGITAL_OUTPUT d_out; 
ANALOG_OUTPUT  a_out; 
STRING_OUTPUT s_out; 

PUSH someEvent 
{ 
 d_out = 1; // set this digital output to ‘on’ 
 a_out = 2000; // set this analog output to 2000 
 s_out = "hello"; // set this string output to "hello" 

 if (d_out = 1)  // this WILL NOT be true until the 
  Print ("d_out is on\n");  // next task-switch 

 if (a_out = 2000)  // this WILL be true 
  Print ("a_out = 2000");   

 if (s_out = "hello") // this WILL NOT be true due to the 
  Print ("s_out is hello"); // nature of serial signals 

 ProcessLogic();  // force a task-switch 

 if (d_out = 1)  // NOW this is true  
  Print ("d_out is on\n");  
} 

Function Main() // initialization 
{ 
 d_out=0; 
 a_out = 0; 
} 

Programming Guide – DOC. 5789A SIMPL+  •  15 



Software  Crestron SIMPL+
 

The 'if' language construct is 
described in detail in 
“Controlling Program Flow: 
Branching”. Evaluation of 
TRUE and FALSE 
expressions are covered in 
“Operators, Expressions, 
and Statements” on page 22.  

In this example, the digital output, d_out, and the analog output, a_out, are set to 0 
on system startup in the Function Main. In the push function, the first conditional if 
statement evaluates to FALSE because the digital output signal, d_out, is considered 
OFF until this value is propagated to the SIMPL program. With digital outputs, this 
does not happen until the SIMPL+ program performs a task switch. The analog and 
string outputs, on the other hand, are propagated as soon as they are assigned new 
values. Thus the second if condition evaluates to TRUE and the subsequent print 
statement is executed. The third if statement can still evaluate to FALSE however, 
due to the nature of serial signals in SIMPL, as previously described. 

Notice the ProcessLogic function call in the last example. This function forces a task 
switch from SIMPL+ to the SIMPL logic processor. This causes the digital signal to 
be propagated out to the SIMPL program. The next time the logic processor passes 
control back to this SIMPL+ program, it picks up where it left off. As a result, the 
fourth if condition evaluates to TRUE, thus executing the print statement. 

All About Variables 
In addition to input and output signals, additional variables can be declared that are 
only used inside the SIMPL+ program. That is, the outside SIMPL program has no 
knowledge of these variables and no access to them. These variables are critical for 
use as temporary storage locations for calculations. 

Unless otherwise specified with a compiler directive, all variables in SIMPL+ are 
“non-volatile,” which means that they remember their values even after the control 
system is shut off.  This can be extremely useful, though it does require some 
caution. In the 2-series control system, the compiler directive, 
#DEFAULT_VOLATILE, can be used to change this behavior so that the variable’s 
values are not retained after the control system is shut off.  Notably, it is generally a 
good idea to explicitly initialize variables to some value before using them, except in 
the cases where it becomes necessary to take advantage of their non-volatility.  An 
obvious place to do this is in Function Main. 

SIMPL+ allows for two different types of variables: integers and strings. In addition, 
variables of either type may be declared as one- or two-dimensional arrays.  The 
following sections explain these topics in detail. 

Integers 
Integers contain 16-bit “whole numbers.” That is, they can range between 0 and 
65,535 (unsigned, refer to paragraph after example) and cannot contain a decimal 
point. SIMPL programmers may recognize that this range is identical to that of 
analog signals. This is because analog signals are also treated as 16-bit values. 

Integers are declared as follows: 

INTEGER <int1>, <int2>,…,<intn>; 

Depending on how they are used, integers can either be “unsigned” or “signed.” 
Unsigned integers have values between 0 and 65,535. Signed integers have values 
between –32768 and +32767.  

In reality, there is no difference between a signed and unsigned integer, the 
difference is solely in how the control system views them. That is, for any given 
value, that number can be thought of as either being a signed number or an unsigned 
number. Depending upon which operations are perform on a number, the control 
system decides whether to treat that number as signed or unsigned. 

16  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

When an integer has a value of between 0 and 32767, it is identical whether it is 
considered signed or unsigned. However, numbers above 32767 may be treated as 
negative numbers. If they are, they will have a value of x – 65536, where x is the 
unsigned value of the number. This means that the value 65,535 has a signed value 
of –1, 65534 is –2, etc. This scheme is referred to as two’s complement notation. 

Why is all this signed/unsigned nonsense important? Well, in most cases, it can be 
ignored and things work out fine. However, for those instances when it does make a 
difference, it pays to understand how to debug programs that are not working as 
expected. 

In control system programming, often there is not a need for negative numbers (e.g., 
how often is a switcher switched to input number –12 ?). As a result, the most 
common operations treat integers as unsigned and it becomes necessary to use 
special “signed” operators or functions when treating numbers as signed. The table 
after this paragraph lists operators and functions that are unsigned and those that are 
signed. Any operators or functions that are not shown here do not need special 
consideration. 

Unsigned/Signed Operators and Functions 

DESCRIPTION UNSIGNED 
OPERATORS/FUNCTIONS

SIGNED 
OPERATORS/FUNCTIONS

Less than < S<
Less than or equal to <= S<=
Greater than > S>
Greater than or equal to >= S>=
Integer division / S/
Maximum Max() SMax()
Minimum Min() SMin()  

Examine the following: 

INTEGER j, k; 
 
Function Main() 
{ 
 j = 2; 
 k = -1;  // this is the same as k = 65535 

if (j > k) // this will evaluate to FALSE 
 Print( “j is bigger as unsigned numbers\n” ); 

 if (j S> k) // this will evaluate to TRUE 
  Print( “j is bigger as signed numbers\n” ); 
} 

In this example, the first condition, j > k, evaluates to FALSE and the Print 
statement does not execute. This is because the > operator performs an “unsigned 
greater than” operation. If both j and k are converted to unsigned values, j remains at 
2, but k becomes 65,535, and thus k is obviously not smaller than j. 

The second condition, j S> k, evaluates to TRUE, because this time the “signed 
greater than” operator was used. 

Programming Guide – DOC. 5789A SIMPL+  •  17 



Software  Crestron SIMPL+
 

Examine one more example: 

INTEGER a, b, c, d; 
 
Function Main() 
{ 
 a = 100; 
 b = -4; 

 c = a / b;  // c = 0 (100/65532) 
 d = a S/ b; // d = -25 (100/-4) 
} 

Notice that c calculates to zero because the / operator is unsigned. It treats the 
variable b as +65,532. Since the / operator truncates the decimal portion of the result, 
c becomes zero. In regard to the variable d, since the signed division operator S/ was 
used, b is treated as –4 and the result is –25. 

A final note regarding signed/unsigned integers, if an operation results in a number 
that is greater than 65,535 that number “overflows” and the value wraps around 
again starting at zero. This allows certain operators (e.g. +, -, and *) to operate with 
no regard to sign (the result is accurate when thinking of the numbers as signed or 
unsigned). This also means that when trying to add (or multiply) two unsigned 
numbers and the result is greater than 65,535, the answer may not be what is 
expected.  

Strings 
String variables are used to hold multiple characters in a single variable. The term 
string is used to illustrate the act of “stringing” together a number of characters to 
produce words, sentences, etc. Typically strings in SIMPL+ are used to hold things 
such as serial commands, database records, and so on. 

Strings are declared as follows: 

STRING <string1[size]>, <string2[size]>,…,<stringn[size]>; 

The number in square brackets following the variable name defines the size of the 
string variable. When declaring strings, choose a size that is large enough to hold any 
amount of data that might be needed, but that is not overly large so as to waste space. 
That is, it is unnecessary to set the variable size to 100 characters when a given 
variable in an application does not contain more than 50 characters. 

Working with strings is not unlike working with other variable or signal types. To 
assign a value to a string, for example, do the following:  

STRING myString[50]; 
myString = "Tiptoe, through the tulips\n"; 

In the example above, a variable called myString is declared, which can contain up to 
50 characters of data.  The value, “Tiptoe, through the tulips\n”, is the value being 
assigned to the variable. The double-quotation marks surrounding the data defines a 
literal string expression. That is, a string expression  which is defined at compile-
time (when the program is compiled) and cannot change during run-time (while the 
program is running).  Also note the “\n” at the end of this string literal. This 
represents a “newline,” or a carriage return followed by a line feed. This character 
combination is used often, so a shortcut was developed. For a complete list of similar 
shortcuts, refer to the latest revision of the SIMPL+ Language reference Guide (Doc. 
5797). Finally, note that the square brackets were not included after the variable 

18  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

name, as was done when it was declared. When assigning a value to a string, that 
value is always assigned starting at the first character position. 

It is important to note that the length of the this value does not exceed total length 
allocated for myString (in this case, 50 characters).  If the declared variable is not 
large enough to hold the data being assigned to it, the data is truncated to as many 
characters as the string can hold.  Also, when the program is being executed, a string 
overflow error will be reported within the control system’s error log. 

The example above is useful, but does not really begin to tap the enormous string-
generating capabilities of SIMPL+. A common task in control system programming 
is the control of an audio/video matrix router via RS-232. To control such a router, 
often it is necessary to specify the input and output which make up the desired matrix 
crosspoint. As an example, assume the device to be controlled expects to see a 
command in a format, shown as follows: 

IN<input#>OUT<output#><CR><LF> 

This protocol allows the input and output to be specified as numbers. For example, to 
switch input 4 to output 10, the command would be as follows: 

IN4OUT10<CR><LF> 

Where <CR><LF> represents the carriage return and line feed characters. Obviously, 
for a router of any significant size, the number of possible crosspoints can grow very 
large. Thus creating a literal string expression for each case would be very 
inefficient. Instead, build the control string dynamically as the program runs. An 
easy way to do this is through the use of the “string concatenation” operator (+). 
Note that this is identical to the addition operator, but the SIMPL+ compiler is smart 
enough to know whether integers are added or string expressions are concatenated.  

This is addressed in the following code: 

DIGITAL_INPUT do_switch; 
STRING_OUTPUT switcher_out[10]; 
INTEGER input, output; 

PUSH do_switch 
{ 
 switcher_out = "IN" + itoa(input) + "OUT" + itoa(output) + 
"\n"; 
} 

In this example, the + operator is used to concatenate multiple string expressions. 
The itoa function has been used, which converts an integer value (in this case from 
analog input signals) into a string representation of that number (e.g. 23 becomes 
“23”).  

There is an alternate way to build strings in SIMPL+. The MakeString function 
provides functionality similar to the concatenation operator, while providing a bit 
more power and flexibility. The following line is equivalent to the concatenation 
statement above: 

MakeString( switcher_out, "IN%dOUT%d\n", input, output ); 

This syntax is a bit more confusing. The first argument to the MakeString function, 
switcher_out, is the destination string. This is where the resulting string created by 
MakeString is placed. The second argument, the part embedded in double-quotation 
marks, is the “format specification”. This determines the general form of the data. 

Programming Guide – DOC. 5789A SIMPL+  •  19 



Software  Crestron SIMPL+
 

Notice how the constant parts of the string are entered directly. The interesting thing 
about the format specification is the %d sequences, which are known as “type 
specifiers”.  

Variable Scope 
Variable declarations in a SIMPL+ program can be either global or local. Global 
variables are defined in the "Define Variables" section of the code, and "exist" 
throughout the entire SIMPL+ program. This means that any event function or user-
defined function can reference and modify global variables.  When the value of a 
global variable is being set or modified, it is reflected throughout the entire program. 

Local variables are defined inside a function declaration and exist only inside that 
particular function. In other words, if a local variable, byteCount, were defined inside 
of a function, CalcChecksum, any reference to byteCount, outside of the scope of this 
function (e.g. in another function) will result in a compiler syntax error. Note that 
different functions can use the same variable names when defining local variables. 
Take a look at the following example: 

// simple function to add up all the bytes in a 
// string and append the sum as a single byte 
// onto the original string. 
String_Function CalcChecksum(STRING argData) 
{ 
   INTEGER i, checksum; 
 
   checksum = 0; 
 
   for (i = 1 to len(argData)) 
      checksum = checksum + byte(argData,i); 
 
   return (argData + chr(checksum)); 
} 

In this example, i and checksum are local variables that only exist inside the function, 
CalcChecksum. This example also introduces an additional way to implement a local 
variable: by passing it as an argument to the function, as was done with the STRING 
variable, argData. The concept of local variables and argument passing is discussed 
in detail in the section "User-Defined Functions" on page 31. 

While the use of global variables may seem simpler, local variables can help keep 
your programs better organized and easier to debug. A significant disadvantage of 
global variables is that you must be careful each time you use or modify a variable 
that it does not have an adverse effect on another part of the program. Since local 
variables can only be used inside of a function, this is not a concern. 

Arrays 
When INTEGER or STRING variables are declared, the user may also declare them 
as one- or two-dimensional (INTEGERs only) arrays. An array is a group of data of 
the same type arranged in a table. A one-dimensional array can be thought of as a 
single row with two or more columns, while a two-dimensional array can be thought 
of as a table with multiple rows . In SIMPL+, arrays are declared as follows.  

INTEGER myArray1[15]    // 1-D integer array with 16 elements 
INTEGER myArray2[10][3] // 2-D integer array with 11x4 elements 
STRING myArray3[50][8]  // 1-D string array with 9 elements 

20  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

The first two examples above define 1D and 2D integer arrays, respectively. The last 
example looks like it declares a 2D array of strings, yet the comments states that it 
actually declares a 1D array of strings. Recall that in “Strings”, it was necessary to 
define the maximum size of the string in square brackets, which is the same notation 
used for arrays. So, in the example above, nine-element array of 50-byte strings is 
being declared. The user cannot declare a 2D array of strings in SIMPL+. 

Another question should have come to mind from the above examples. That is, why 
does declaring myArray1[15] create an array with 16 elements instead of 15? The 
answer is that array elements start at 0 and go to the declared size (15 in this case). 
This fact makes for an easy transition to SIMPL+ for programmers of other 
languages (some of which start at 0 and others which start at 1). That is, if the user is 
comfortable with treating arrays as starting with element 0, then the user can 
continue programming in this manner. If however, the user has used languages, 
which treat the first element in an array as element 1, then the user may want to use 
that notation instead. 

To reference a particular element of an array when programming, use the variable 
name followed by the desired element in square brackets. Using the arrays declared 
in the example above, the following statements are all valid in SIMPL+.  

j = 5;     // set an integer variable to 5 
myArray1[3] = j;   // set the 3rd element of the array to 5 
myArray1[j*2] = 100;  // set the 10th element of the array  
      // to 100 
 
myArray2[j][1] = k;   // set the j,1 element of myArray2 to 
      // the value of k 
 
m = myArray2[j][k-1]; // set the variable m to the value in 
      // the j,k-1 element of the array 
 
myArray3[2] = "test"; // set the 3rd element of the string 
      // array to "test" 

From these examples, it should be clear that the user may use constants, variables, or 
expressions (discussed in “Operators, Expressions, and Statements” on page 22) 
inside of the brackets to access individual array elements. Array elements can appear 
on either side of the assignment (=) operator. That is they can be written to (left side) 
or read from (right side). Of special interest is the notation used for storing a value 
into the string array myArray3. Notice that only one set of brackets was used here 
even though two sets of brackets are needed when declaring the array. Remember 
that the first set of brackets in the declaration specified the size (in characters) of 
each string element. Also recall from earlier in this section, that the size field is not 
included when referring to strings. For example, refer to the following.  

STRING myString[50];  // declare a 50-character string 
 
myString = "hello!";  // we do not use the size brackets here 
      // to assign a value to a string variable 

As a result, when working with string arrays, only use one set of brackets, which 
refer to the array element, not the string size. 

Programming Guide – DOC. 5789A SIMPL+  •  21 



Software  Crestron SIMPL+
 

Operators, Expressions, and Statements 
This section deals with the core programming elements in SIMPL+.  

Operators 
Operators take one or two “operands” and combine them in some way to produce a 
result. In SIMPL+ operators can be binary (takes two arguments) or unary (takes a 
single argument). For example, the + operator is binary (e.g., x + y), while the  
– operator can be binary or unary (e.g., x – y, or –x are valid). Most operators in 
SIMPL+ are binary. Notice that operands do not have to be simple constants or 
variables. Instead they can be complex expressions that result in an integer. 

SIMPL+ operators can be classified into three categories: arithmetic, bitwise, and 
relational. The sections below describe each category briefly. For a complete list of 
operators and their function, consult the latest revision of the SIMPL+ Language 
Reference Guide (Doc. 5797).  

Arithmetic Operators 
Arithmetic operators are used to perform basic mathematical functions on one or two 
variables. In all but one case, these operations make sense only for integer types 
(includes analog inputs and outputs). For example, to add two integers, x and y, 
together, use the addition operator +, as follows. 

x + y 

As mentioned in the previous paragraph, use these operators with integers in all but 
one case. The exception is the + operator when used with string variables. In this 
case the operator performs a concatenation instead of addition, which is very handy 
for generating complex strings from smaller parts. This is discussed in more detail 
later. 

Bitwise Operators 
Arithmetic operators deal with integers as a whole. Bitwise operators treat the 
individual binary bits of a number independently. For example, the unary operator 
NOT simply negates each bit in number, while the & operator performs a binary 
“and” operation to each bit in the arguments (bit0 and-ed with bit0, bit1 with bit1, 
etc.). 

Relational Operators 
Relational operators are used in expressions when it is necessary to relate (compare, 
equate, etc.) two values in some way (the exception to this is the unary operator 
NOT). When a comparison is done using a relational operator, the result is an 
integer, which represents TRUE or FALSE. In SIMPL+, TRUE results equal 1 and 
FALSE results equal 0. In general, any non-zero value is considered by SIMPL+ to 
be TRUE, while FALSE is always 0. 

Typically, relational operators are used to help control the program flow. That is, test 
certain conditions and the result determines what happens next. This is discussed in 
more detail in “Controlling Program Flow: Branching” on page 24. 

22  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

Expressions 
As reading through the later parts of this guide, as well as the latest revision of the 
SIMPL+ Language Reference Guide (Doc. 5797), the term expression is mentioned 
in many places. For example, in describing the syntax of the if-else construct, it may 
be described as the following: 

if (expression1) 
{ 
 // code to execute 
} 
else if (expression2) 
{ 
 // code the execute 
} 

In the above example, expression1 and expression2 can be any valid SIMPL+ 
expression. This section describes what is and what is not an expression. 

An expression in SIMPL+ is anything that consists of operators and operands. 
Operators were discussed previously in this section, and operands are simply the 
things on which operators act. For example, refer to the following simple expression.  

x + 5 

In this expression the operator is the addition operator (+), and the operands are x 
and 5. Expressions can contain constants, variables, and function calls in addition to 
operators. One expression may be made up of many smaller expressions. The 
following are all valid SIMPL+ expressions.  

max(x,15) 
y * x << z 
a = 3 
(26 + byte(aString,i) mod z = 25 

Expressions can range from the very simple to the very complex. Also note that the 
last two expressions contained an equal sign. It is very important to recognize that 
this operator can have two different meanings based upon where it is used. In the 
first example above, the equal sign can serve as an assignment operator (assign the 
value 3 to the variable a) or as an equivalency comparison operator (does the 
variable a equal 3?). However, an expression cannot contain an assignment (it would 
then become a statement, discussed in “Statements” on page 24), so it is indeed 
recognized as a comparison operation. In the second case, the equal sign also serves 
as a equivalency comparison operator. Here there is no ambiguity since a value 
cannot be assigned into an expression (as opposed to a variable). 

Expressions always evaluate to either an integer or a string. Refer to the following 
example.  

x + 5   // this evaluates to an integer 
chr(i) + myString // evaluates to a string 
a = 3   // evaluates to 1 if true, 0 if false 
b < c   // evaluates to 1 if true, 0 if false 

The last two expressions are comparisons. Comparison operations always result in a 
true or false value. In SIMPL+, true expressions result in a value of 1 and false 
expressions result in a value of 0. Understanding this concept is key to performing 
decision making in SIMPL+. In reality, any expression that evaluates to a non-zero 
value is considered TRUE. This concept is discussed in “Controlling Program Flow: 

Programming Guide – DOC. 5789A SIMPL+  •  23 



Software  Crestron SIMPL+
 

Branching” and “Controlling Program Flow: Loops” on pages 24 and 27, 
respectively.  

Statements 
Statements in SIMPL+ consist of function calls, expressions, assignments, or other 
instructions. Statements can be of two types: simple or complex. Simple statements 
end in a semicolon (;). Examples of simple statements are as follows: 

x = MyInt / 10;   // An assignment 
print("hello, world!\n");  // A function call 
checksum = atoi(MyString) + 5; /* Assignment using function  
         calls and operators */ 

A complex statement is a collection of simple statements surrounded with curly 
braces ( {} ). An example of a complex statement would be as follows: 

{ // start of a complex statement 
 x = MyInt / 10; 
 print("hello, world!\n"); 
 checksum = atoi(MyString) + 5; 
} // end of a complex statement 

Controlling Program Flow: Branching 
In any substantial program, making decisions must control the program. SIMPL+ 
provides two constructs for branching the program based on the value of 
expressions: if-else and the switch-case statement. 

if–else 
if-else is the most commonly used branching construct. In its most basic form, it is 
structured as follows.  

if (expression1) 
{ 
 // do something here 
} 

Where expression1 represents any valid SIMPL+ expression, including variables, 
function calls, and operators. If this expression evaluates to TRUE, then the code 
inside the braces is executed. If this expression evaluates to FALSE, the code inside 
the braces is skipped. 

What is the definition of TRUE and FALSE in SIMPL+? As was discussed in 
“Working with Data (Variables)” on page 13, expressions, which evaluate to a non-
zero result, are considered TRUE, and expressions that evaluate to 0 are considered 
FALSE. For example, refer to the expressions in the table that follows.  

24  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

Expressions 

EXPRESSION EVALUATES TO 
a = 3 true if a=3, false otherwise
b*4 - a/3 true as long as the result is non-zero
1 always true
0 always false  

One limitation with the if construct, as shown above, is that the code inside the if is 
run whenever expression1 evaluates as TRUE, but any code after the closing braces 
runs regardless. It is often useful to execute one set of code when a condition is 
TRUE and then another set of code if that same condition is FALSE. For this 
application, use the if-else construct, which looks like the following.  

if (expression1) 
{ 
 // do something if expression1 is true 
} 
else 
{ 
 // do something else if expression1 is false 
} 

 
 
Programming to anticipate 
user errors and handle them 
appropriately is called error-
trapping. It is a 
recommended programming 
practice. 

It should be clear that the code following the if runs whenever expression1 evaluates 
to TRUE and the code following the else executes whenever expression1 evaluates 
to FALSE. Obviously, there can never be a case where both sections of code execute 
together. 

The following example is designed to control a CD changer. Before telling the CD 
player to go to a particular disc number, it checks to see that the analog value, which 
represents the disc number, does not exceed the maximum value. 

#DEFINE_CONSTANT NUMDISCS 100 

ANALOG_INPUT disc_number; 
STRING_OUTPUT CD_command, message; 

CHANGE disc_number 
{ 
 if (disc_number <= NUMDISCS) 
 { 
  CD_command = "DISC " + itoa(disc_number) + "\r"; 
  message = "Changing to disc " + itoa(disc_number) + 
       "\n"; 
 } 
 else 
 { 
  message = "Illegal disc number\n"; 
 } 
} 

There is one last variation on the if-else statement. In the example above, the 
decision to be made is binary. That is, do one thing if this is true, otherwise do 
something else. In some cases decisions are not that straight forward. For example, 
to check the current day of the week, execute one set of code if it is Saturday, 
another set of code if it is Sunday, and yet some other code if it is any other day of 
the week. One way to accomplish this is by using a series of if-else statements. For 
this example, the code might look like the following.  

Programming Guide – DOC. 5789A SIMPL+  •  25 



Software  Crestron SIMPL+
 

today = getDayNum(); // gets the current day of the week 

if (today = 0)  // is today Sunday? 
{ 
 // code to run on Sundays 
} 
else if (today = 5)  // is today Friday? 
{ 
 // code to run on Friday 
} 
else if (today = 6)  // is today Saturday? 
{ 
 // code to run on Saturdays 
} 
else    // only gets here if the first three 
{     // conditions are false 
 // code to run on all other days 
} 

NOTE: There can be as many if-else statements in a single construct as necessary. 
However, sometimes tasks like these are better handled with the switch - case 
construct, discussed in the next section. 

Finally, note that if statements can be nested inside other if statements. 

switch–case 
In the last section, it was shown that the if-else construct can be used for making 
complex decisions. Also it was used for making a choice between mutually exclusive 
conditions (conditions that cannot coexist), the syntax can become cumbersome. For 
this particular case SIMPL+ offers the switch-case construct. 

Think of switch-case as a compact way of writing an if-else construct. The basic 
form of the switch-case is shown after this paragraph.  

switch (expression) 
{ 
 case (expression1): 
 { 
  // code here executes if 
  // expression = expression1 
 } 
 case (expression2): 
 { 
  // code here executes if 
  // expression = expression2 
 } 
 default: 
 { 
  // code here executes if none 
  // of the above cases are true 
 } 
} 

NOTE:  The use of the default keyword allows specific code to execute if none of 
the other cases are true. This is identical to the final else statement in the if-else 
construct mentioned in “if–else”. 

26  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

Examine an example using the switch-case construct. Perhaps there is a variable that 
should hold the number of days in the current month. The following example uses 
switch-case to set the value of this variable.  

switch (getMonthNum()) 
{ 
 case (2): //February 
 { 
  if (leapYear) // this variable was set elsewhere 
   numdays = 29; 
  else 
   numdays = 28; 
 } 
 case (4): // April 
  numdays = 30; 
 case (6): // June 
  numdays = 30; 
 case (9): // September 
  numdays = 30; 
 case (11): // November 
  numdays = 30; 
 default: // Any other month 
  numdays = 31; 
} 

Notice that curly braces did not enclose many of the statements in the previous 
example. For most SIMPL+ constructs, the braces are only needed when more than 
one statement is to be grouped together. If the program has only a single statement 
following the case keyword, then the braces are optional.  

Controlling Program Flow: Loops 
“Controlling Program Flow: Branching” (on page 24) discussed constructs for 
controlling the flow of a program by making decisions and branching. Sometimes a 
program should execute the same code a number of times. This is called looping. 
SIMPL+ provides three looping constructs: the for loop, the while loop, and the do-
until loop. 

for Loops 
The for loop is useful to cause a section of code to execute a specific number of 
times. For example, consider clearing each element of a 15-element string array (set 
it to an empty string). Use a for loop set to run 15 times and clear one element each 
time through the loop. 

Control the number of loops a for loop executes through the use of an index variable, 
which must be an integer variable previously declared in the variable declaration 
section of the program. Specify the starting and ending values for the index variable, 
and an optional step value (how much the variable increments by each time through 
the loop).  Inside the loop, the executing code can reference this index. 

The syntax of the for loop is as follows.  

for (<variable> = <start> to <end> step <stepValue>) 
{ 
 // code in here executes each time through the loop 
} 

Programming Guide – DOC. 5789A SIMPL+  •  27 



Software  Crestron SIMPL+
 

To see an example of the for loop use the situation alluded to above. That is, a need 
to clear each string element in a string array. A program to accomplish this might 
look like the following.  

DIGITAL_INPUT clearArray;   // a trigger signal 
INTEGER i;     // the index variable 
STRING stringArray[50][14];  // a 15-element array 
 
PUSH clearArray    // event function 
{ 
 for (i = 0 to 14) 
 { 
  stringArray[i] = "";  // set the ith element 
       // to an empty string 
  print("cleared element %d\n",i); // debug message 
 }       // this ends the for  
       // loop 
}        // this ends the push  
       // function 

In this example, the loop index i is set to run from 0 to 14, which represents the first 
and last elements in stringArray respectively. Also notice that the step keyword is 
omitted. This keyword is optional and if it is not used, the loop index increments by 
1 each time through the loop. To clear only the even-numbered array elements, the 
following could have used.  

 for (i = 0 to 14 step 2) 
 { . . . } 

The step value can also be negative, allowing the loop index to be reduced by some 
value each time though the loop. 

The for loop flexibility can be enhanced further by using expressions instead of 
constant values for the start, end, and step values. For example, there might be a need 
to add up the value of each byte in a string in order to calculate the value of a 
checksum character. Since the length of the string can change as the program runs, 
the number of iterations through the loop is unknown. The following code uses the 
built-in function, len, to determine the length of the string and only run through the 
for loop the necessary number of times.  System functions are described in detail in 
“Using System Functions” on page 30. 

checksum = 0; // initialize the chucksum variable 
 
/* iterate through the string and add up the bytes. 
   Note that the { } braces are not needed here 
   because the contents of the for-loop is only 
   a single line of code */ 
for (i = 1 to len(someString)) 
 checksum = checksum + byte(someString,i); 
 
/* now add the checksum byte on to the string 
   using the chr function. Note that in this 
   example we only use the low-order byte from 
   the checksum variable */ 
someString = someString + chr(checksum); 

28  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

while and do-until Loops 
The for loop discussed in an earlier section is useful for iterating through code a 
specific number of times. However, sometimes the exact number of times a loop 
should repeat is unknown. Instead, it may be necessary to check to see if a condition 
is true after each loop to decide whether or not the loop should execute again. 

There are two looping constructs in SIMPL+ which allows execution of a loop only 
for as long as a certain condition is true. These are the while and do-until loops. The 
while loop has the following syntax. 

while (expression) 
{ 
 <statements> 
} 

When the while statement is executed, the expression contained in parentheses is 
evaluated. If this expression evaluates to TRUE, then the statements inside the braces 
are executed. When the closed brace is reached, the program returns to the while 
statement and reevaluates the expression. At this point the process is repeated. It 
should become clear that the code inside the braces is executed over and over again 
as long as the while expression remains TRUE. 

The nature of the while loop means that it is the responsibility of the programmer to 
ensure that the loop is exited at some point. Unlike the for loop discussed previously, 
this loop does not run for a set number of times and then finishes. Consider the 
example after this paragraph.  

x = 5; 
while (x < 10) 
{ 
 y = y + x; 
 print("Help me out of this loop!\n"); 
} 

Endless loops cause the 
SIMPL+ module (in which 
they occur) to rerun the same 
code forever. However, due 
to the multi-tasking nature of 
the operating system, an 
endless loop in one module 
does not cause the rest of the 
SIMPL program (including 
other SIMPL+ modules) to 
stop running. This is 
discussed in more detail in 
“Understanding Processing 
Order” on page 49.  

This example shows an endless loop. That is, a loop that runs forever and never 
exits. The problem is that the value of the while expression never changes once the 
loop is entered. Thus the expression can never evaluate to FALSE. Include code 
inside the loop that affects the while expression (in this case the variable x must be 
modified in some way) and allows the loop to exit at some point. 

The do-until looping construct is similar to the while loop. The difference lies in 
where the looping expression is evaluated and how this evaluation affects the loop. 
To see the difference, examine the form of a do-until loop.  

do 
{ 
 <statements> 
} until (expression) 

From the syntax, it is obvious that the looping expression for a do-until appears after 
the looping code. This expression appears before the code in a while loop. This 
discrepancy affects the way the loop is initially entered. As was shown above, a 
while loop first evaluates the expression to see if it is TRUE. If it is, then the loop 
runs through one time and then the expression is evaluated again. 

The do-until loop differs from this in that it always executes at least one time. When 
the do keyword is reached, the code that follows (enclosed in braces) is executed 
before the value of the until expression is evaluated. After the initial pass through 

Programming Guide – DOC. 5789A SIMPL+  •  29 



Software  Crestron SIMPL+
 

this code, the value of this expression determines whether or not the code should be 
executed again. Here lies the other difference between the while and do-until. The 
while loop executes as long as the expression remains TRUE. A do-until loop 
executes until an expression becomes TRUE. 

When deciding which type of loop should be used, first understand that using any of 
the three types of loops discussed here can solve many problems. However, one 
particular loop is usually better suited for a given application than the others. As a 
general rule of thumb, when the number of iterations the code should execute is 
known, a for loop is preferred. A while or a do-until loop is ideal to execute a section 
of code continuously based on the value of some expression. 

Once a while or a do-until loop is determined suitable for a particular application, the 
question becomes which one of the two should be used? Once again realize that 
either one can usually accomplish the goal, but one type of loop may require less 
coding or be more readable in some cases. The basic question to ask is whether or 
not the loop needs to run through at least one time. If so, a do-until is the best choice. 
If instead, the value of an expression should be checked, then use the while loop. 

Exiting from Loops Early 
All three loops discussed above have built-in ways to exit. The for loop exits when 
the index variable reaches the stated maximum. The while loop exits when the 
expression becomes FALSE. The do-until loop exits when the expression becomes 
TRUE. 

Sometimes programming tasks do not always fall neatly into place regarding loops 
and it may be desirable (or necessary) to exit a loop prematurely. Consider the 
following example.  

INTEGER x,y; 

for (x=3 to z) 
{ 
 y = y + x*3 – z*z; 
 if (y = 0) 
  break; 
} 

Notice that in most (if not all) cases, the need for the break statement could be 
avoided by the use of a different type of loop. In the example above, this could be 
accomplished by using a do-until loop. Consider the following.  

x = 3; 
 
do 
{ 
 y = y + x*3 – z*z; 
 x = x + 1; 
} until ((y = 0) || (x = z)) 

Either technique would be considered acceptable. 

Using System Functions 
In order to make programming in SIMPL+ simpler and more powerful, the concept 
of functions is introduced. A function is essentially a more complicated 

30  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

programming task that has been predefined and given a name. Many of the examples 
in previous sections of this document have used special types of functions called 
system functions (or built-in functions). To employ system functions, use the 
following format.  

returnValue = FunctionName(Parameter1, Parameter2,...); 

The above syntax is called a function call, because it tells the function (calls it) to 
cause / perform an action. Notice that there are three elements to a function call. 
First, it is identified by FunctionName, which must be unique for every system 
function. The function name itself is followed by a comma-separated parameter list 
enclosed in parentheses. Each function may have a fixed number of parameters, a 
variable number of parameters, or no parameters at all. These parameters provide the 
means to supply information to a function. For example, the itoa function converts 
an integer value into its ASCII equivalent, which is very useful for creating strings to 
control switchers. The single parameter to this function would be the integer value 
that needs to be converted. Parameters can be any valid SIMPL+ expression. 
Consider the statements: 

returnValue = itoa(154);  // constant param 
returnValue = itoa(input_num); // variable param 
returnValue = itoa(x*5-4);  // general expression param 

All are valid function calls. 

The variable to the left of the equal sign in the above function calls is used to hold 
the return value of the function. This value can be either an integer or a string, 
depending on the nature of the function. Clearly, if a given function returns an 
integer value, an integer variable must be used to accept this value and a string 
variable for those functions that return strings. In the itoa examples shown above, the 
return value is the ASCII string which represents the number being converted. Thus, 
returnValue in this case must be a string variable. 

Some functions do not return any values at all. Thus it makes no sense to assign a 
variable to a function as shown above. In addition, when using functions that do 
return values, sometimes the return value may not be needed. In both cases, use the 
Call keyword: 

Call FunctionName(Parameter1, Parameter2, ...); 

In this case, if the function being called does return a value, it is ignored. 

Be aware as well that some functions may need to return more than one value. Since 
functions can only have at most a single return value, there are some functions that 
modify the values of the parameters that are passed to it. 

SIMPL+ provides a large number of system functions, which are listed under a 
number of categories in the latest revision of the SIMPL+ Language Reference 
Guide (Doc. 5797). Many of these system functions are used as examples throughout 
this manual.  

User Defined Functions 
The previous section details how to use system functions in SIMPL+. When 
programming, there may be a need to create functions of your own to simplify your 
programs. These functions are called user-defined functions. User-defined functions 

Programming Guide – DOC. 5789A SIMPL+  •  31 



Software  Crestron SIMPL+
 

perform exactly like system functions with the only exception in that they must be 
defined before they are used. 

Function Definitions 
Since user-defined functions are created by the user (the SIMPL+ programmer), the 
user must make sure that the SIMPL+ compiler knows about these functions before 
the program tries to call them. This is accomplished by creating a function definition, 
which is different from a function call. Remember from the discussion of system 
functions that a function call is used to invoke a function. A function definition is 
what tells the SIMPL+ compiler “this is what this function does”. 

User functions are used for several reasons.  It is not desirable to create one function 
that performs every task for the entire program.  To help better organize program 
modules, creating several smaller functions makes programming easier to read and 
understand, and debug.  User defined functions can also be called by any other 
function.  Rather than have the same programming logic written out in several 
functions, one function can be defined with this logic and then called by any other 
function within the module.  This will also greatly reduce the module’s size. 

To help the reusability of functions, any number of variables can be passed to 
functions.  Variables are passed to functions through the function’s argument list.  
This is also called ‘parameter passing’, or ‘function arguments’.  Function arguments 
can be thought of as passing a value into a function.  Other variables or literal values 
can be passed to function arguments.  Function arguments are another way of 
defining local variables.  The difference between declaring a local variable within the 
function and declaring one as part of the parameter list is that the function argument 
will have the value of the calling function’s variable copied into it. 

It is also useful for a function to return a value.  A function might be written to 
compute a value.  Another function might want to perform a task and return an error 
code that can be evaluated by the calling function.  Functions can only return at most 
one value, namely integers or strings.  When defining a function, the returning value 
will determine what type of function to declare.  The different types of functions are:  
FUNCTION, INTEGER_FUNCTION and STRING_FUNCTION.  For the 2-series 
compiler, LONG_FUNCTION, SIGNED_INTEGER and 
SIGNED_LONG_FUNCTION are also available.  

The syntax of a SIMPL+ function call is as follows: 

FUNCTION MyUserFunction( [parameter1][, parameter2][, 
parametern] ) 
{ 
 <statements> 
} 

INTEGER_FUNCTION MyUserIntFunction( [parameter1][, 
parameter2][, parametern] ) 
{ 
 <statements> 
} 

STRING_FUNCTION MyUserStrFunction( [parameter1][, parameter2][, 
parametern] ) 
{ 
 <statements> 
} 

32  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

The FUNCTION keyword is used to tell the SIMPL+ compiler that what follows is 
the definition of a function and not a function call.  The FUNCTION keyword also 
specifies that there will be no return value for this function.  INTEGER_FUNCTION 
and STRING_FUNCTION specify that an integer or string value will be returned as 
the result of the function.  These keywords are also called the ‘function type’. 

The next keyword is a name provided by the SIMPL+ programmer that will become 
the name for this user function (called the ‘function name’).  Be sure to use a unique 
name and not an existing SIMPL+ keyword, system function, or a previously 
declared variable name.  Otherwise, a compile syntax error will result. 

Following the function name is the function’s argument list.  If no arguments are 
needed within this function, then the list can remain empty.  Otherwise, a parameter 
is defined by giving a variable type and name (i.e., INTEGER myIntArgument).  
One or more functions are possible by separating each with a comma.  

Function definitions are global to the SIMPL+ module in which they are defined. 
That is, any event function, the Function Main, or even another user-defined function 
can call a user-defined function that has been defined in the same SIMPL+ module. 
Functions defined in other modules are not accessible. 

When calling a function, it is critical not only that that function has been defined in 
the SIMPL+ module, but also that this function definition occur before the line of 
code which calls the function. For example, consider the following.  

INTEGER x; 
 
PUSH someSignal 
{ 
 call MyUserFunction1(); 
 x = MyUserFunction2( x, 10 ); 
} 
 
FUNCTION MyUserFunction1() 
{ 
 print("This is MyFunction1 runnning!\n"); 
} 
 
INTEGER_FUNCTION MyUserFunction2( INTEGER arg1, STRING arg2 ) 
{ 
 print("This is MyFunction2 runnning!\n"); 
} 

Programming Guide – DOC. 5789A SIMPL+  •  33 



Software  Crestron SIMPL+
 

This code causes a compile error, because the function MyUserFunction1 has been 
called before it has been defined. This can easily be remedied by reversing the order: 

INTEGER x; 
 
FUNCTION MyUserFunction1() 
{ 
 print("This is MyFunction1 runnning!\n"); 
} 
 
INTEGER_FUNCTION MyUserFunction2( INTEGER arg1, STRING arg2 ) 
{ 
 print("This is MyFunction2 runnning!\n"); 
} 
 
PUSH someSignal 
{ 
 call MyUserFunction1(); 
 x = MyUserFunction2( x, 10 ); 
} 

This program compiles without any problems. Due to this dependence on order, the 
SIMPL+ module template that appears each time a new program is created provides 
a place to put function definitions. Notice that this section comes after the 
input/output and variable definitions, but before the event and main functions. 
Following the layout suggested by the template should prevent most of these errors.  

Defining Local Variables In Functions 
The concept of local variables was introduced in the section "All About Variables". 
In this section we will discuss the topic in greater detail and present a number of 
examples. 

What is a local variable? A local variable is a variable (i.e. an integer or string) with 
a limited "life span" and limited "scope." You can think of global variables as being 
immortal. That is, for as long as the control system is plugged in and the program is 
running, global variables retain their values unless a programming statement 
modifies them. In addition, global variables can be accessed (either to use their value 
or to modify them) anywhere in a SIMPL+ program. Here is a simple example: 

DIGITAL_INPUT go; 
INTEGER i,j,k; // define 3 global integers 
 
FUNCTION sillyFunction() 
{ 
  i = j * 2; 
  k = i – 1; 
} 
 
FUNCTION anotherSillyFunction() 
{ 
  j = i + k; 
} 
 
PUSH go 
{ 
  i = 1; 
  j = 2; 
  k = 3; 
 

34  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

  Print("i = %d, j = %d, k = %d\n", i, j, k); 
  Call sillyFunction(); 
  Print("i = %d, j = %d, k = %d\n", i, j, k); 
  Call anotherSillyFunction(); 
  Print("i = %d, j = %d, k = %d\n", i, j, k); 
} 

In this program, it should be clear to see that both of the functions defined, as well as 
the push event, have access to the three global integers i, j, and k. 

Local variables, on the other hand, can only be accessed within the function in which 
they are defined. If another user-defined function or event function tries to access a 
local variable defined elsewhere, a compiler error will be generated. In addition, as 
soon as the function completes execution, all of the functions' local variables are 
"destroyed." This means that any value they contained is lost. The next time this 
function is called the local variables are re-created. 

Creating local variables is identical to creating global variables, except that the 
declaration statement is placed inside of the function definition, as follows: 

FUNCTION localExample() 
{ 
  INTEGER i, count, test; 
  STRING s[100], buf[50]; 
} 

Passing Variables to Functions as Arguments 
The last section describes how to make your programs easier to read and maintain by 
defining variables local to functions. However, this does not change the fact that by 
their very nature most functions require access to one or more variables that have 
been declared elsewhere in the program, either as global variables or as local 
variables in a different function. The question is, how can your function access these 
variables. 

As we have already seen, global variables are available everywhere in a program, 
thus you can simply use such variables to share data between functions and the rest 
of the program. This is considered bad programming practice, however, and often 
leads to programs that are hard to read and even harder to debug. Functions can also 
access any input/output signals defined in the program, but as these signals can be 
thought of as global variables, this too is not considered good programming practice. 

Instead of using global variables to share data, we instead use the concept of passing 
arguments (also known as parameters) into functions. Arguments can be thought of 
as an ordered list of variables that are passed to a function by the calling function 
(the term calling function simply refers to the scope of the code statement which 
calls the function in question). To define a function’s parameters, you list them 
inside the parentheses following the function name. A typical function definition 
would look like this: 

FUNCTION some_function (INTEGER var1, INTEGER var2, STRING 
var3) 
{ 
  INTEGER localInt; 
  STRING  localStr[100]; 
 
  var1 = var1 + 1; 
  localInt = var1 + var2; 
   

Programming Guide – DOC. 5789A SIMPL+  •  35 



Software  Crestron SIMPL+
 

  localStr = left(var3, 10); 
} 

Notice that the function shown above has three arguments, named var1, var2, and 
var3.  var1 and var2 are integers, while var3 is a string. Shown below is an example 
of how to call this function from elsewhere in your program: 

Call some_function( intVal1, 5+1, stringVal1); 

Here we are assuming that the variable int1 has been defined as an integer earlier in 
the program, as has the string variable, string1. Also note that the second argument is 
a constant, and not a variable at all. This simply means that inside some_function, 
the value of var2 will be set to 6. 

ByRef, ByVal, and ReadOnlyByRef 
When defining a function’s argument list, there are optional keywords you can use 
which give you greater control over the behavior of the arguments. These keywords 
are ByRef, ByVal, and ReadOnlyByRef. 

What do these keywords mean? Essentially they describe the way that SIMPL+ 
passes variables to the function. When a function argument is defined as ByRef, any 
variable that is passed to this argument will pass enough information about itself to 
allow the function to modify the value of the original variable. The term ByRef is 
used because we say a “reference” to the original variable is passed to the function. 
This reference can be thought of the memory location where the original variable 
lives. When a function argument is defined as “ByVal”, only the value of the 
variable and not the variable itself is passed to the function, so the original variable 
cannot be modified within the function. As an example, below is a function, which 
takes two strings as arguments. It inserts one string into the other at a specified 
character location: 

FUNCTION insertString(ByRef STRING string1, ByVal STRING 
string2, ByVal INTEGER position) 
{ 
  STRING leftpart[20], rightpart[20]; 
 
  leftpart = left(string1,position); 
  rightpart = right(string1,position); 
 
  string1 = leftpart + string2 + rightpart; 
} 

In this example, note that only the first string argument, string1, was defined as 
ByRef. 

Functions That Return Values 
To this point all user-defined functions we have discussed have had one thing in 
common: when the functions are finished executing they do not return a value to the 
calling code. This statement is ambiguous, because some of the functions do modify 
the values of their arguments, and thus these modified variables can be used by the 
calling procedure. However, the term return value is used to describe the core value, 
which is returned from the function to the calling procedure. Many system functions 
discussed earlier in this manual have return values. For example, here are some 
statements that use the return values of functions: 

36  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

String1 = itoa(int1); 
position = find(“Artist”,CD_data); 
int3 = max(int1, int2); 

For clarity, here are some example statements using system functions that do not 
have return values: 

Print(“Variable int1 = %d\n”,int1); 
ProcessLogic(); 
CancelWait(VCRWait); 

It should be clear that, at least as far as system functions go, whether or not a 
function returns a value depends largely upon what that function is designed to do. 
For example, the itoa function would not be very valuable if it did not return a string, 
which could then be assigned to a variable, or used inside of an expression. On the 
other hand, the Print function simply outputs text to the console for viewing, and 
thus no return value is needed. 

Allowing a user-defined function to return a value is extremely useful, as it allows 
such functions to be used in flexible ways, such as inside of an expression. To enable 
a function to return a value, use a modified version of the function keyword, as 
shown below: 

STRING_FUNCTION strfunc1();  //function returns a string 
INTEGER_FUNCTION intfunc1(); //function returns an integer 
FUNCTION func1();             //function has no return value 

Clearly, functions defined using the STRING_FUNCTION keyword will return a 
string value, and those defined using the INTEGER_FUNCTION keyword will 
return an integer value. Function declared using the function keyword would have no 
return value. 

Once a function has been declared using the appropriate function type, it is the 
responsibility of the programmer to ensure that the proper value is returned. This is 
accomplished using the return function. To illustrate this, examine the following 
function example, which raises one number to the power determined by the second 
argument, and returns the result. 

INTEGER_FUNCTION power(INTEGER base, INTEGER exponent) 
{ 
  INTEGER i, result; 
 
  if (base = 0) 
    return (0); 
 
  else if (exponent = 0) 
    return (1); 
 
  else { 
    result = 0; // initialize result 
    for (i = 1 to exponent) 
      result = result + result * base; 
 
    return (result); 
  } 
} 

To use this function in a program, simply call the function just like you would any 
built-in system function. Here are a few usage examples: 

Programming Guide – DOC. 5789A SIMPL+  •  37 



Software  Crestron SIMPL+
 

Print(“5 raised to the power of 3 = %d\n”,power(5,3)); 
x = power(y,z); 

As a second example, we shall build a function which appends a simple checksum 
byte onto the end of a string. As was mentioned earlier in this manual, checksums are 
used by many devices to provide a basic form of error checking. In this example, the 
checksum is formed by simply adding up the values of each byte in the command 
string and then appending the equivalent ASCII character of the result onto the string 
itself. If the checksum value is larger than a single byte (255 decimal), we simply 
ignore the overflow and use the lower 8-bits of the result. 

DIGITAL_INPUT control_device1, control_device2; 
STRING_OUTPUT device1_out, device2_out; 
STRING device1_cmd[20], device2_cmd[20], tempCmd[20]; 

STRING_FUNCTION appendChecksum(STRING command) 
{ 
 INTGEGER checksum, i;  // define local variables 
 
 checksum = 0; // initialize variable 
 
    for (i = 1 to len(command))   // calculate the sum 
  checksum = checksum + byte(command,i); 
 
 return(command + chr(checksum));  //append the byte 
} 

PUSH vcr_play 
{ 
 vcr_out = appendChecksum(“PLAY”); 
} 

PUSH vcr_stop 
{ 
 vcr_out = appendChecksum(“STOP”); 
} 

In this example, the system function, byte, is used inside the function to get the 
numeric value of each byte in the string. After the checksum has been calculated, the 
chr function is used to append the corresponding ASCII character to the end of the 
command string. Realize that this example is useful for just one (very simple) type of 
checksum.  

Function Libraries 
You are likely to find that the longer you program in SIMPL+ the more you will 
need to repeat code you have already written. For example, a function that converts 
the temperature from Celsius to Fahrenheit might come in handy in more than one 
job. 

Clearly, code that has many applications is best placed inside of a function. 
Remember, however, that unlike system functions, which are globally available, 
user-defined functions are only available inside of the SIMPL+ program in which 
they exist. Thus is you need to use a user-defined function in more than one SIMPL+ 
program, you must copy and paste it from one program to another. While this 
technique works, it can lead to problems when, for example, you find a bug in the 
function and fix it one program but forget to change it elsewhere. 

38  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

To solve this problem, SIMPL+ has introduced the concept of function libraries. 
Simply put, a function library is a collection of user-defined functions placed in a 
separate file. A library can consist of only a single function, or can consist of every 
function you have ever written. More likely, you will organize your libraries so that 
each one contains related functions. For example, you may create a "string handling" 
library, which consists of a number of functions that perform useful operations on 
stings. 

Once a function has been included inside of a function library, it now becomes 
accessible to all SIMPL+ modules that are made aware of it. To make a SIMPL+ 
program aware of a particular library, you must use the #USER_LIBRARY.  To 
include a user library within a SIMPL+ module, the syntax is as follows: 

#USER_LIBRARY "MyStringFunctionLib" 

Note that the file extension (.usl in this case) is left out. The above example refers to 
the function library called "MyStringFunctionLib.usl."  Any number of user libraries 
can be included within a SIMPL+ module. 

Special function libraries that are created by Crestron and made available to all 
customers can be used in a similar manner. The only difference is the use of the 
#CRESTRON_LIBRARY compiler directive in place of  #USER_LIBRARY. 
Crestron function library files end with the extension .csl. 

Compact Flash Functions 
The 2-series control system supports reading and writing to compact flash cards.  
Certain control systems have a built-in compact flash slot with the ability to easily 
insert and remove compact flash cards (i.e., AV2, PRO2, and PAC2). 

Data storage is a valuable, powerful and important part of programming.  The ability 
to store and retrieve data from a removable data source can provide many useful and 
powerful solutions.  Some of these solutions include the ability to backup data, 
transferring data from one control system to another, reading and writing data to and 
from formats that other database programs can recognize, and implementing 
database-driven programs (the ability for a program to act dynamically based on 
actions defined in the database). 

The SIMPL+ file functions perform file access with the control system’s compact 
flash card. Because of the overhead involved with maintaining current directory and 
file positions, there are restrictions on file I/O. Each SIMPL+ thread (main loop or 
event handler) that requires file operations must first identify itself with the operating 
system. This is done with the function, StartFileOperations.  Before terminating the 
thread, the function, EndFileOperations must be called.  Files cannot be opened 
across threads. In other words, you cannot open a file in one thread, such as Function 
Main, and then access the file with the returned file handle in another thread, such as 
an event handler.  Files should be opened, accessed and closed within the same 
thread. 

CheckForDisk and WaitForNewDisk 
Before accessing compact flash, the program must either first check to see if a 
compact flash card exists within the control system, or wait for a card to be inserted.   

Certain programs might rely on the compact flash card being inserted within the 
control system.  The function, CheckForDisk, will test for the existence of a compact 

Programming Guide – DOC. 5789A SIMPL+  •  39 



Software  Crestron SIMPL+
 

flash card within the control system.  The function will return an error code and the 
program can act accordingly. 

Other programs might prompt the end-user to insert a compact flash card.  The 
function, WaitForNewDisk, will halt the program and resume when a compact flash 
card is detected within the control system. 

The following is an example of a program that needs to read data from a compact 
flash card upon startup: 

FUNCTION ReadMyCompactFlashCard() 
{ 
    // call functions to read the compact flash card 
    // 
    // Note that this function will exist within the same 
    //   thread as the calling function (Function Main). 
    //   Because of this, the functions, StartFileOperations 
    //   and EndFileOperations should not be used here. 
} 
 
Function Main() 
{ 
    StartFileOperations(); 
 
    if (CheckForDisk() = 1) 
        Call ReadMyCompactFlashCard(); 
    else if ( WaitForNewDisk() = 0 ) 
        Call ReadMyCompactFlashCard(); 
 
    EndFileOperations(); 
} 

If the program is dependent upon data that read in from the compact flash card, it is 
imperative for the program to validate the existence of the card.  Otherwise, the 
program will not have the necessary data needed to execute properly.  The above 
function will first check if the compact flash card is already inserted into the control 
system upon system startup.  If so, it will call the user-defined function, 
ReadMyCompactFlashCard, to perform any file read operations on the compact 
flash card.  If the compact flash card was not found in the control system, the 
program will wait for the card to be inserted before continuing.  Once inserted, the 
same function, ReadMyCompactFlashCard, is called. 

Reading and Writing Data 
Once the existence of the compact flash card is verified, the reading and writing of 
data can be performed.  Data can be read or written either with individual elements 
(i.e., a single integer or string), or with entire structures of data. 

Because each datatype (i.e.: INTEGER, STRING, LONG_INTEGER) uses a 
different amount of storage in memory, there are different functions to read and write 
each of these types.  The return value of each of these functions is the actual number 
of bytes read or written to the file.  The reason why different functions have to be 
called instead of having just one function is for the following reason.  Data elements 
are written to a file by inserting one element after another.  The file does not contain 
any information as to what that data is or how it is to be extracted out.  It is up to the 
program that will ultimately read that file to know exactly what is contained within 
the file and how to extract the data back out of it. 

The following example demonstrates this: 

40  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

DIGITAL_INPUT readCompactFlashCard; 
DIGITAL_INPUT writeCompactFlashCard; 
 
INTEGER myInt; 
LONG_INTEGER myLongInt; 
STRING myStr[50]; 
  
PUSH writeCompactFlashCard 
{ 
    SIGNED_INTEGER nFileHandle; 
    INTEGER nNumBytes; 
 
    StartFileOperations() 
 
    nFileHandle = FileOpen( "\\CF0\\MyFile.txt", 
                            _O_WRONLY | _O_CREAT ); 
    if( nFileHandle >= 0 ) 
    { 
        nNumBytes = WriteInteger( nFileHandle, myInt ); 
        nNumBytes = WriteLongInteger( nFileHandle, myLongInt ); 
        nNumBytes = WriteString( nFileHandle, myStr ); 
         
        FileClose( nFileHandle ); 
    } 
 
    EndFileOperations(); 
} 
 
PUSH readCompactFlashCard 
{ 
    SIGNED_INTEGER nFileHandle; 
    INTEGER nNumBytes; 
 
    StartFileOperations() 
 
    nFileHandle = FileOpen( "\\CF0\\MyFile.txt", _O_CREAT ); 
    if( nFileHandle >= 0 ) 
    { 
        nNumBytes = ReadInteger( nFileHandle, myInt ); 
        nNumBytes = ReadLongInteger( nFileHandle, myLongInt ); 
        nNumBytes = ReadString( nFileHandle, myStr ); 
         
        FileClose( nFileHandle ); 
    } 
 
    EndFileOperations(); 
} 

The functions, ReadStructure and WriteStructure, automate the reading and writing 
of the individual fields within the structure.  These functions do not return the 
number of bytes read or written.  Instead, both functions have an additional argument 
that will contain the number of bytes read or written after the function call executes.  

The following example demonstrates this: 

DIGITAL_INPUT readCompactFlashCard; 
DIGITAL_INPUT writeCompactFlashCard; 
 
STRUCTURE myStruct 
{  
    INTEGER myInt; 
    LONG_INTEGER myLongInt; 
    STRING myStr[50]; 

Programming Guide – DOC. 5789A SIMPL+  •  41 



Software  Crestron SIMPL+
 

} 
myStruct struct;  
  
PUSH writeCompactFlashCard 
{ 
    SIGNED_INTEGER nFileHandle; 
    INTEGER nNumBytes; 
 
    StartFileOperations() 
 
    nFileHandle = FileOpen( "\\CF0\\MyFile.txt", 
                            _O_WRONLY | _O_CREAT ); 
    if( nFileHandle >= 0 ) 
    { 
        WriteStructure( nFileHandle, struct, nNumBytes ); 
         
        Print( “The number of bytes written = %d”, nNumBytes ); 
         
        FileClose( nFileHandle ); 
    } 
 
    EndFileOperations(); 
} 
 
PUSH readCompactFlashCard 
{ 
    SIGNED_INTEGER nFileHandle; 
    INTEGER nNumBytes; 
 
    StartFileOperations() 
 
    nFileHandle = FileOpen( "\\CF0\\MyFile.txt", _O_CREAT ); 
    if( nFileHandle >= 0 ) 
    { 
        ReadStructure( nFileHandle, myInt, nNumBytes ); 
         
        Print( “The number of bytes read = %d”, nNumBytes ); 
         
        FileClose( nFileHandle ); 
    } 
 
    EndFileOperations(); 
} 

Working with Time 
Up until now, this manual has discussed elements of the SIMPL+ language that have 
no concept of time. This means that each statement in a SIMPL+ program executes 
after the  previous statement is completed. There are times when programming where 
there is a need to have control over exactly when the statements in the program 
execute. This section deals with those language constructs. 

Delay 
The Delay function pauses the execution of the current SIMPL+ for the time 
specified in the parameter field. As with most time values in SIMPL+, this time 
value is specified in hundredths of seconds. The following program causes the 
program to stop for five seconds before resuming.  

42  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

PUSH startMe 
{ 
 Print("I’m starting now..."); 
 Delay(500); //this equals 5 seconds 
 Print("and I’m ending 5 seconds later.\n"); 
} 

It is important to realize that the control system never allows a SIMPL+ program to 
“lock up” the rest of the system for any significant amount of time. Thus, whenever a 
delay function is reached, the control system performs a task switch, meaning that 
the execution of the current SIMPL+ module stops momentarily as the natural flow 
through the SIMPL program continues. In this case, even though the SIMPL+ 
program has stopped for five seconds, other code in the overall SIMPL program 
(including standard logic symbols and other SIMPL+ modules) continues to operate 
normally. The concept of task switching is covered in more detail in the section 
marked “Understanding Processing Order” on page 49.  

Pulse 
The Pulse function is used to drive a digital output signal high for a specified amount 
of time. Once again, the time is specified in hundredths of seconds. When a Pulse 
statement is executed, the digital output signal specified is driven high and a task 
switch occurs. Such a task switch is necessary in order for the rest of the SIMPL 
program to recognize that the digital signal has indeed gone high. After the time 
specified has expired, the digital output is driven low and another task switch occurs. 
The following program causes the digital output signal, preset_1, to be pulsed for a 
half a second. 

#DEFINE_CONSTANT PULSE_TIME 50 
 
DIGITAL_OUTPUT preset_1, preset_2, preset_3; 

PUSH some_input 
{ 
 Pulse(PULSE_TIME, preset_1); 
} 

The Pulse function is very similar in operation to the SIMPL One Shot symbol. In 
fact, in many cases, it may be more convenient (or more sensible) to simply connect 
a One Shot, or Multiple One Shot symbols to the output signals of a SIMPL+ 
module. 

Also notice that unlike the Delay function, Pulse does not cause a pause in the 
execution of the SIMPL+ code. Therefore, the statements that follow the Pulse 
execute immediately and do not wait for the expiration of the pulse time. 

Wait Events 
Wait events in SIMPL+ allow operations that are somewhat similar to the Delay 
SIMPL logic symbol. The syntax for a wait event is as follows.  

Wait (wait_time [, wait_name]) 
{ 
 <statements> 
} 

Programming Guide – DOC. 5789A SIMPL+  •  43 



Software  Crestron SIMPL+
 

This syntax defines a wait event to occur at some time in the future, defined by the 
value of wait_time. While the wait event is pending execution, it is said to have been 
“scheduled”. The wait event may have an optional name, which can be used to refer 
back to the event elsewhere in the code. 

When a wait event definition is reached during execution, the execution of the 
statements inside the braces (these braces are not needed if the event is only one 
statement long) is deferred until the time defined by wait_time has expired. Until this 
occurs, the remainder of the SIMPL+ program executes. If a wait event definition is 
nested inside of a loop, it is possible that it can be reached multiple times before it 
even executes once. If a wait event is pending (i.e., has been scheduled, but not 
executed), it is not scheduled again until it has been completed. 

Once a wait event has been scheduled to execute at some later point in time, various 
operations can be performed on the event before it actually executes. However, only 
named wait events can be modified in this manner, since it is necessary to use the 
name to refer to the event. The table on the next page lists the available functions, 
which can operate on wait events. 

Functions Available During Wait Events 

FUNCTION DESCRIPTION
CancelWait(name) Removes the named wait from the schedule. The code never 

executes.
CancelAllWait() Removes all pending waits from the schedule.
PauseWait(name) Stops the timer for the named wait. The code does not execute 

until the timer is started again using ResumeWait().
ResumeWait(name) Resumes the timer for the named wait, which had been paused 

earlier.
PauseAllWait() Similar to PauseWait(), but acts on all pending wait events.
ResumeAllWait() Similar to ResumeWait(), but acts on all paused wait events.
RetimeWait(time, name) Sets the time for a pending wait event to the value specified.  

This example shows a typical use of wait events. Here, the SYSTEM ON button 
starts a power up sequence and the SYSTEM OFF button likewise starts a power 
down sequence. 

#DEFINE_CONSTANT   PULSETIME   50   // half second 

DIGITAL_INPUT system_on, system_off; 
DIGITAL_OUTPUT screen_up, screen_down, lift_up, lift_down;  
DIGITAL_OUTPUT vcr_on, vcr_off, dvd_on, dvd_off; 
DIGITAL_OUTPUT vproj_on, vproj_off; 
DIGITAL_OUTPUT vproj_video1, vproj_video2, vproj_rgb; 
DIGITAL_OUTPUT lights_pre_1, lights_pre_2, lights_pre_3; 

PUSH system_on 
{ 
 CancelWait(sysOffWait); // cancel the system off wait event 

 Pulse(2000, screen_down); // lower screen for 20 sec. 
 Pulse(9500, lift_down);    // lower lift for 9.5 sec. 

 Wait (1000, sysOnWait1) // 10 second delay 
 { 
  Pulse(PULSETIME, vcr_on); 
  Pulse(PULSETIME, dvd_on); 
  Pulse(PULSETIME, lights_pre_1); 

44  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

  Pulse(PULSETIME, vproj_on); 
 } 

 Wait (1500, sysOnWait2) // 15 second delay 
  pulse(PULSETIME, vproj_video); 
} // end of push event 

PUSH system_off 
{ 
 CancelWait(sysOnWait1); 
 CancelWait(sysOnWait2); 

 Pulse(2000, screen_up); 
 Pulse(PULSETIME, vproj_off); 
 Pulse(PULSETIME, vcr_off); 
 Pulse(PULSETIME, dvd_off); 

 Wait(500, sysOffWait) 
 { 
  Pulse(9500, lift_up); 
  Pulse(PULSETIME, lights_pre_3); 
 } 
} // end of push event 

Notice that in this example, the CancelWait function was used to cancel any pending 
waits when the SYSTEM ON or SYSTEM OFF buttons were pressed. This is 
analogous to using the reset input on the Delay symbol in SIMPL. 

Working with Strings 
In “Working with Data (Variables)” on page 13 the concept of the BUFFER_INPUT 
was discussed. This section provides a more in-depth treatment of working with 
incoming serial data. 

BUFFER_INPUT 
To review what was discussed earlier, serial data entering a SIMPL+ program may 
be treated as either a STRING_INPUT or as a BUFFER_INPUT. What is the 
difference, and which one should be used? 

The difference between a STRING_INPUT and BUFFER_INPUT is quite simple. 
The value of a STRING_INPUT is always the last value of the serial signal that 
feeds it from the SIMPL program. This means that every time new data is generated 
on the serial signal in the SIMPL program, the STRING_INPUT variable in the 
SIMPL+ program changes to contain that data; any data that was previously 
contained in that variable is lost. 

BUFFER_INPUTs on the other hand do not lose any data that was stored there 
previously. Instead, any new data that is generated onto the serial signal in the 
SIMPL program is appended to the data currently in the BUFFER_INPUT variable. 

Programming Guide – DOC. 5789A SIMPL+  •  45 



Software  Crestron SIMPL+
 

The Serial Send symbol 
simply generates the static 
text defined in its parameter 
field onto the output serial 
signal whenever the trigger 
input sees a rising signal. 

To make this concept even clearer, consider the following simple example. The 
SIMPL program shown below contains two Serial Send symbols, each one triggered 
by a button press. The outputs of these symbols are tied together so that both 
symbols can generate a string onto the same serial signal. Next this signal is 
connected in two places to the SIMPL+ module. The first input is mapped to a 
STRING_INPUT and the second is mapped to a BUFFER_INPUT. The declaration 
section for this module should appear as follows.  

STRING_INPUT theString[100]; 
BUFFER_INPUT theBuffer[100]; 

The table below shows the state of these two input variables in response to button 
presses. 

States of Two Input Variables 
ACTION theString theBuffer

system initializes empty empty
button 1 pressed “Now is” “Now is”
button 2 pressed “the time” “Now is the time”
button 1 pressed “Now is” “Now is the time Now is”  

From this table, notice that each time the serial signal changes, theString assumes 
this value and the old data stored there is lost. On the other hand, theBuffer retains 
any old data and simply appends the new data onto the end. 

A logic wave is the time 
needed for a signal to 
propagate from the input to 
the output of a single logic 
symbol. This concept is 
discussed fully in 
“Understanding Processing 
Order” on page 49. 

Each application should dictate whether it is appropriate to use a STRING_INPUT 
or a BUFFER_INPUT. In general, use STRING_INPUTs when the serial signal that 
is feeding it is being driven from a logic symbol like a Serial Send, Analog to Serial, 
or Serial Gather. In these cases, the serial data is issued on a single logic wave. 
Therefore, it is certain that the entire string is copied into the STRING_INPUT. 

If, on the other hand, the signal feeding into the SIMPL+ program comes from a 
streaming source such as a serial port, use a BUFFER_INPUT, which can gather up 
the data as it “dribbles in.” 

To solidify this concept, consider another example. Say the program is written for a 
CD jukebox, which is capable of sending text strings containing the current song 
information. Typical data received from this device might appear as the following.  

Artist=Frank Sinatra, Track=My Way, Album=Very Good Years<CR> 

Where the <CR> at the end of the string represents a carriage return character. This 
is a relatively long string of data and it is quite possible, even probable, that the 
operating system would not remove the entire string from the serial port in one piece. 
This is due to the fact that the control system checks the state of the serial ports very 
often and removes any data that is found there. Since this data takes some time to 
reach the port (depending on the baud rate), it is likely that the port’s input buffer is 
collected before the whole string is there. If there was a serial signal called 
jukebox_in connected to the rx terminal on the COM port definition, the program 
might be written as follows.  

first pass: 

 jukebox_in = "Artist=Frank Sinatra, Trac" 

46  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

second pass: 

 jukebox_in = "k=My Way, Album=Very Good Yea" 

third pass: 

 jukebox_in = "rs<CR>" 

If this signal, jukebox_in, were then connected to a STRING_INPUT of a SIMPL+ 
program, it is likely that the string might not be seen as one complete piece. Thus the 
artist’s name, the track name, and the album name might not be parsed out for 
display on a touchpanel. On the other hand, if a BUFFER_INPUT were used instead, 
this buffer would collect the data as it arrived. Therefore, after the processor read the 
port the third time, this BUFFER_INPUT would contain the complete string. 

Removing Data From Buffers 
Once data has been routed into a BUFFER_INPUT, techniques are required to 
extract data from it. Typically the first thing to be done with data on a 
BUFFER_INPUT is to pull off a completed command and store it into a separate 
variable. For example, most data that comes from other devices are delimited with a 
certain character (or characters) to denote the end of the command. In many 
instances a carriage return (or carriage return followed by a line feed) is used. 

The getc function is the most basic way to remove data from a buffer. Each call of 
getc pulls one character out of the buffer and returns that character’s ASCII value as 
the function’s return value. Characters are removed from the buffer in the order they 
arrived. Thus the first character in becomes the first character out. This function now 
provides the ability to extract data until the desired delimiter is seen. For example, 
the following code is read data from the buffer until a carriage return is seen.  

BUFFER_INPUT data_in[100]; 
INTEGER nextChar;  
STRING temp[50], line[50]; 

CHANGE data_in // trigger whenever a character comes in 
{ 
 do 
 { 
  nextChar = getc(data_in); // get the next character 
  temp = temp + chr(nextChar); 
  if (nextChar = 0x0D) // is it a carriage return? 
  { 
   line = temp; 
   temp = ""; 
  } 
 } until (len(data_in) = 0) // empty the buffer 
} 

Function Main() 
{ 
 temp = ""; 
} 

Programming Guide – DOC. 5789A SIMPL+  •  47 



Software  Crestron SIMPL+
 

Notice that a do-until loop was used in the example above. Every time a change 
event is triggered for the data_in buffer, it is uncertain that only one character has 
been inserted. In fact, many characters may have been added since the last change 
event. Due to this possibility, continue to pull characters out of the buffer with getc 
until the buffer is empty, which is what the expression (len(data_in) = 0) reveals. 

Also notice from the example that the extracted character is stored into an integer. 
This is because getc returns the ASCII value of the character, which is an integer. On 
the next line, the chr function is used to convert that value into a one-byte string, 
which can be added to temp. 

Although this example should work for real-world applications, there is a potential 
problem should multiple lines of data come in on the same logic wave. Should this 
happen, only the last complete line is stored into line and the rest is lost. To account 
for this, make line into a string array and store each subsequent line into a different 
array element. Another possibility is that any code that is needed to further act upon 
the data could be built directly into this loop. Thus removing the need to store more 
than one line of data. 

Once the data has been removed from the buffer and stored in a known format (in 
this case, one complete command from the device), the desired data can be extracted. 
Using the example above where the data was coming from a CD jukebox, the 
following example could be used to extract the artist, track, and album title.  

BUFFER_INPUT jukebox[100]; 
STRING_OUTPUT artist, track, album; 
INTEGER startPos; 
STRING searchStr[20], tempStr[100]; 

CHANGE jukebox 
{ 
  do 
  { 
    tempStr = tempStr + chr(getc(jukebox)); 
    if ( right(tempStr,1) = "\r" ) 
    {  
      searchStr = "Artist="; 
      startPos = Find(searchStr,tempStr); 
      if (startPos) {  // was the string found? 
        startPos = startPos + len(searchStr); 
        artist = mid(tempStr, startpos, 
                  Find(",",tempStr,startpos) - startpos); 
        searchStr = "Track="; 
        startpos = Find(searchStr,tempStr) + len(searchStr); 
        track = mid(tempStr, startpos, 
                 Find("\r",tempStr,startpos) - startpos); 
        searchStr = "Album="; 
        startpos = Find(searchStr,tempStr) + len(searchStr); 
        album = mid(tempStr, startpos, 
                 Find("\r",tempStr,startpos) - startpos); 
        tempStr = ""; 
      } 
    }    

  } until (len(jukebox) = 0);   
} 

Function Main() 
{ 

48  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

 tempStr = ""; 
} 

This example introduces two new system functions, which are extremely useful for 
string manipulation, the Find and Mid functions. To search for the existence of a 
substring inside of another string, use Find. If it is located, the return value of the 
function is the character position where this string was found. If the substring was 
not found, then Find returns zero. Notice that towards the top of the example the 
program checked to see if the substring "Artist=" is found in the string. If it is not, 
then assume that the incoming data was of another format and there is no need to 
bother looking for the other search strings ("Track=" and "Album="). 

Understanding Processing Order 

How SIMPL+ and SIMPL Interact 
Advanced SIMPL programmers should be familiar with how logic is processed in 
SIMPL programs. This guide does not attempt to explain this concept here, but it 
does detail how SIMPL+ programs fit into the picture. However, a couple of 
definitions may be helpful. 

Logic Wave - The act of propagating signals from the input to the output of a logic 
symbol. In a typical program, a single logic wave may include the processing of 
many symbols. 

Logic Solution - An arbitrary number of logic waves, processed until the state of all 
signals in the program have settled to a stable (i.e. unchanging) state. 

In general, when a SIMPL+ event function is triggered, it is processed to conclusion 
in a single logic wave. That is, if this event caused a change to one of the output 
signals, that signal would be valid one logic wave after the event was triggered. In 
this simple case, a SIMPL+ program acts identically to a SIMPL logic symbol from 
a timing standpoint. In addition, for multiple SIMPL+ events triggered on the same 
logic wave (whether or not they are in the same module), these events multi-task (run 
at the same time) and complete before the next wave. 

As SIMPL+ programs become more complex and processor intensive however, this 
general rule may no longer apply. Instead, the operating system may determine that 
too much time has elapsed and temporarily suspend the SIMPL+ program while it 
continues to process the SIMPL logic (which may also include other SIMPL+ 
programs). For example, if an event function must run through a loop 2000 times 
before completing, the processor may decide to perform a task switch and process 
other logic before completing the loop. 

This task-switching ability has the benefit of not freezing up the rest of the program 
while a particularly intensive calculation is proceeding. After the completion of the 
current logic solution, the SIMPL+ program that was exited continues from where it 
left off.  

Forcing a Task Switch 
There may be times in programming when it is necessary to force a task switch to 
occur. For example, when a digital_output is set high, it normally is not propagated 
to the SIMPL program until the SIMPL+ completes. To guarantee that the digital 
signal is asserted, force the system to switch from the SIMPL+ module back into the 
SIMPL program.  

Programming Guide – DOC. 5789A SIMPL+  •  49 



Software  Crestron SIMPL+
 

There are two ways to force a task switch: with the ProcessLogic function or the 
Delay function. To provide an immediate task switch out of the current SIMPL+ 
module use ProcessLogic. When the logic processor enters this module on the next 
logic solution, execution begins with the line immediately following. An immediate 
task switch also results from Delay, but the SIMPL+ module does not continue 
executing until the time specified has elapsed. The Delay function is discussed in 
greater detail in “Working with Time” on page 42. 

Debugging 
Rare is the case where a program works perfectly on the first try. Usually, a 
programmer must make numerous modifications to the original code in order to get 
the desired results. Programming bugs can be mistakes in syntax, typos, design 
errors, or a misunderstanding of certain language elements. This section is not 
intended to prevent mistakes, but rather to find and fix them. 

Compiler Errors 
Of all the possible problems that a program can have, ones that cause the compiler to 
complain are perhaps the easiest to remedy. The reason is quite simple: the compiler 
reveals what the problem is and where in the program it is located. The only job is to 
recognize exactly what the compiler means and make the necessary changes. 

The following list provides the most common causes of compiler errors.  

• Missing a semi-colon at the end of a statement 

• Having a semi-colon where it does not belong (e.g., before an opening 
brace of a compound statement) 

• Trying to use a variable that has not been declared, or misspelling a 
variable 

• Attempting to assign a value to an input variable (digital, analog, string, 
or buffer) 

• Syntax errors 

If multiple error messages are received when compiling the program, always work 
with the first one before attempting to fix the rest. Many times, a missing semi-colon 
at the beginning of a program can confuse the compiler enough that it thinks there 
are many more errors. Fixing the first error may clear up the rest. 

Run-time Errors 
The term run-time error refers to an error, which is not caught by the compiler, but 
causes the program to crash while it is running. For example, consider the following 
statement.  

x = y / z; 

The compiler passes by this statement in the program with no problem, as it should. 
This is a perfectly valid statement. However, if during run-time, the variable z 
contains 0 when this statement executes, this becomes an illegal operation. Although 
the control system is robust enough to catch most errors like this and the system 
should not crash, unexpected results may occur. 

50  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

To determine if a run-time error is occurring in your program, watch the status of the 
control system's computer port with a program such as the Viewport (available 
through SIMPL Windows or Crestron VisionTools Pro-e). An "Interrupt" message 
or some other error message can clue the user in to a problem. Locate the problem by 
strategically placing Print statements in the code. The Print statement is covered in 
the next section. 

Debugging with Print() 
The most powerful debugging tool for use with SIMPL+ is the Print function. This 
function allows the user to print out messages and variable contents during program 
execution. The data that is generated by the Print function is sent to the computer 
port of the control system, making it viewable using a terminal emulation program 
such as the Viewport tool that comes with SIMPL Windows and VisionTools Pro. 

The Print function is nearly identical to the MakeString function discussed in 
“Working with Data (Variables)”. The only difference between the two functions is 
that MakeString generates a formatted string into a string variable, while Print 
generates a formatted string and spits it out of the control system's computer port. 

The syntax of Print is provided in the following example.  

Print("<specification string>",<variable list>); 

The <specification string> is a string, which determines what the output looks like. It 
can contain static text intermixed with format specifiers. A format specifier is a 
percentage sign (%) followed by a type character. For example, %d is a format 
specifier for a decimal value, and %s is the format specifier for a string. Consider 
this specific example.  

INTEGER extension; 
STRING name[30]; 

PUSH print_me 
{ 
 extension = 275; 
 name = "Joe Cool"; 
 Print("%s is at extension %d", name, extension); 
} 

When this program is run and the digital input, print_me, goes high, the following 
text is output from the computer port: 

Joe Cool is at extension 275 

The Print statement works by replacing the format specifiers in the specification 
string with the value of the variables in the variable list. Notice that the order of the 
format specifiers must match the order of the variables in the list. In this example, 
the first format specifier encountered is %s, which corresponds to the string name. 
The next specifier is %d, which corresponds to the integer extension. If the variables 
in the list were reversed and the specification string kept the same, the output would 
be unpredictable because the system would try to print extension as a string and 
name as an integer. 

Refer to the latest revision of the SIMPL+ Language Reference Guide (Doc. 5797) 
for a complete listing of all available format specifiers for use with the Print and 
MakeString.  

 

Programming Guide – DOC. 5789A SIMPL+  •  51 



Software  Crestron SIMPL+
 

Software License Agreement 
This License Agreement (“Agreement”) is a legal contract between you (either an individual or a single business entity) and 

Crestron Electronics, Inc. (“Crestron”) for software referenced in this guide, which includes computer software and, as applicable, 
associated media, printed materials, and “online” or electronic documentation (the “Software”). 

BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE, YOU REPRESENT THAT YOU ARE AN 
AUTHORIZED DEALER OF CRESTRON PRODUCTS OR A CRESTRON AUTHORIZED INDEPENDENT PROGRAMMER 
AND YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF 
THIS AGREEMENT, DO NOT INSTALL OR USE THE SOFTWARE. 

IF YOU HAVE PAID A FEE FOR THIS LICENSE AND DO NOT ACCEPT THE TERMS OF THIS AGREEMENT, 
CRESTRON WILL REFUND THE FEE TO YOU PROVIDED YOU (1) CLICK THE DO NOT ACCEPT BUTTON, (2) DO NOT 
INSTALL THE SOFTWARE AND (3) RETURN ALL SOFTWARE, MEDIA AND OTHER DOCUMENTATION AND 
MATERIALS PROVIDED WITH THE SOFTWARE TO CRESTRON AT:  CRESTRON ELECTRONICS, INC., 15 VOLVO 
DRIVE, ROCKLEIGH, NEW JERSEY  07647, WITHIN 30 DAYS OF PAYMENT. 

LICENSE TERMS 

Crestron hereby grants You and You accept a nonexclusive, nontransferable license to use the Software (a) in machine 
readable object code together with the related explanatory written materials provided by Creston (b) on a central processing unit 
(“CPU”) owned or leased or otherwise controlled exclusively by You, and (c) only as authorized in this Agreement and the related 
explanatory files and written materials provided by Crestron.  

If this software requires payment for a license, you may make one backup copy of the Software, provided Your backup copy 
is not installed or used on any CPU. You may not transfer the rights of this Agreement to a backup copy unless the installed copy of 
the Software is destroyed or otherwise inoperable and You transfer all rights in the Software.  

You may not transfer the license granted pursuant to this Agreement or assign this Agreement without the express written 
consent of Crestron. 

If this software requires payment for a license, the total number of CPU’s on which all versions of the Software are installed 
may not exceed one per license fee (1) and no concurrent, server or network use of the Software (including any permitted back-up 
copies) is permitted, including but not limited to using the Software (a) either directly or through commands, data or instructions from 
or to another computer (b) for local, campus or wide area network, internet or web hosting services; or (c) pursuant to any rental, 
sharing or “service bureau” arrangement. 

The Software is designed as a software development and customization tool. As such Crestron cannot and does not 
guarantee any results of use of the Software or that the Software will operate error free and You acknowledge that any development 
that You perform using the Software or Host Application is done entirely at Your own risk. 

The Software is licensed and not sold. Crestron retains ownership of the Software and all copies of the Software and 
reserves all rights not expressly granted in writing.  

OTHER LIMITATIONS 

You must be an Authorized Dealer of Crestron products or a Crestron Authorized Independent Programmer to install or use 
the Software. If Your status as a Crestron Authorized Dealer or Crestron Authorized Independent Programmer is terminated, Your 
license is also terminated. 

You may not rent, lease, lend, sublicense, distribute or otherwise transfer or assign any interest in or to the Software. 
You may not reverse engineer, decompile, or disassemble the Software. 
You agree that the Software will not be shipped, transferred or exported into any country or used in any manner prohibited 

by the United States Export Administration Act or any other export laws, restrictions or regulations (“Export Laws”). By downloading 
or installing the Software You (a) are certifying that You are not a national of Cuba, Iran, Iraq, Libya, North Korea, Sudan, or Syria or 
any country to which the United States embargoes goods (b) are certifying that You are not otherwise prohibited from receiving the 
Software and (c) You agree to comply with the Export Laws.  

If any part of this Agreement is found void and unenforceable, it will not affect the validity of the balance of the Agreement, 
which shall remain valid and enforceable according to its terms. This Agreement may only be modified by a writing signed by an 
authorized officer of Crestron. Updates may be licensed to You by Crestron with additional or different terms. This is the entire 
agreement between Crestron and You relating to the Software and it supersedes any prior representations, discussions, undertakings, 
communications or advertising relating to the Software. The failure of either party to enforce any right or take any action in the event 
of a breach hereunder shall constitute a waiver unless expressly acknowledged and set forth in writing by the party alleged to have 
provided such waiver.  

52  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software 

If You are a business or organization, You agree that upon request from Crestron or its authorized agent, You will within 
thirty (30) days fully document and certify that use of any and all Software at the time of the request is in conformity with Your valid 
licenses from Crestron of its authorized agent. 

Without prejudice to any other rights, Crestron may terminate this Agreement immediately upon notice if you fail to comply 
with the terms and conditions of this Agreement. In such event, you must destroy all copies of the Software and all of its component 
parts. 

PROPRIETARY RIGHTS 

Copyright. All title and copyrights in and to the Software (including, without limitation, any images, photographs, 
animations, video, audio, music, text, and “applets” incorporated into the Software), the accompanying media and printed materials, 
and any copies of the Software are owned by Crestron or its suppliers. The Software is protected by copyright laws and international 
treaty provisions. Therefore, you must treat the Software like any other copyrighted material, subject to the provisions of this 
Agreement. 

Submissions. Should you decide to transmit to Crestron’s website by any means or by any media any materials or other 
information (including, without limitation, ideas, concepts or techniques for new or improved services and products), whether as 
information, feedback, data, questions, comments, suggestions or the like, you agree such submissions are unrestricted and shall be 
deemed non-confidential and you automatically grant Crestron and its assigns a non-exclusive, royalty-tree, worldwide, perpetual, 
irrevocable license, with the right to sublicense, to use, copy, transmit, distribute, create derivative works of, display and perform the 
same. 

Trademarks. CRESTRON and the Swirl Logo are registered trademarks of Crestron Electronics, Inc. You shall not remove 
or conceal any trademark or proprietary notice of Crestron from the Software including any back-up copy. 

GOVERNING LAW 

This Agreement shall be governed by the laws of the State of New Jersey, without regard to conflicts of laws principles. 
Any disputes between the parties to the Agreement shall be brought in the state courts in Bergen County, New Jersey or the federal 
courts located in the District of New Jersey. The United Nations Convention on Contracts for the International Sale of Goods, shall not 
apply to this Agreement. 

CRESTRON LIMITED WARRANTY 

CRESTRON warrants that:  (a) the Software will perform substantially in accordance with the published specifications for a 
period of ninety (90) days from the date of receipt, and (b) that any hardware accompanying the Software will be subject to its own 
limited warranty as stated in its accompanying written material. Crestron shall, at its option, repair or replace or refund the license fee 
for any Software found defective by Crestron if notified by you within the warranty period. The foregoing remedy shall be your 
exclusive remedy for any claim or loss arising from the Software. 

CRESTRON shall not be liable to honor warranty terms if the product has been used in any application other than that for 
which it was intended, or if it as been subjected to misuse, accidental damage, modification, or improper installation procedures. 
Furthermore, this warranty does not cover any product that has had the serial number or license code altered, defaced, improperly 
obtained, or removed. 

Notwithstanding any agreement to maintain or correct errors or defects Crestron, shall have no obligation to service or 
correct any error or defect that is not reproducible by Crestron or is deemed in Crestron’s reasonable discretion to have resulted from 
(1) accident; unusual stress; neglect; misuse; failure of electric power, operation of the Software with other media not meeting or not 
maintained in accordance with the manufacturer’s specifications; or causes other than ordinary use; (2) improper installation by 
anyone other than Crestron or its authorized agents of the Software that deviates from any operating procedures established by 
Crestron in the material and files provided to You by Crestron or its authorized agent; (3) use of the Software on unauthorized 
hardware; or (4) modification of, alteration of, or additions to the Software undertaken by persons other than Crestron or Crestron’s 
authorized agents. 

ANY LIABILITY OF CRESTRON FOR A DEFECTIVE COPY OF THE SOFTWARE WILL BE LIMITED 
EXCLUSIVELY TO REPAIR OR REPLACEMENT OF YOUR COPY OF THE SOFTWARE WITH ANOTHER COPY OR 
REFUND OF THE INITIAL LICENSE FEE CRESTRON RECEIVED FROM YOU FOR THE DEFECTIVE COPY OF THE 
PRODUCT. THIS WARRANTY SHALL BE THE SOLE AND EXCLUSIVE REMEDY TO YOU. IN NO EVENT SHALL 
CRESTRON BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND 
(PROPERTY OR ECONOMIC DAMAGES INCLUSIVE), EVEN IF A CRESTRON REPRESENTATIVE HAS BEEN ADVISED 
OF THE POSSIBILITY OF SUCH DAMAGES OR OF ANY CLAIM BY ANY THIRD PARTY. CRESTRON MAKES NO 
WARRANTIES, EXPRESS OR IMPLIED, AS TO TITLE OR INFRINGEMENT OF THIRD-PARTY RIGHTS, 
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTIES, NOR 
AUTHORIZES ANY OTHER PARTY TO OFFER ANY WARRANTIES, INCLUDING WARRANTIES OF 
MERCHANTABILITY FOR THIS PRODUCT. THIS WARRANTY STATEMENT SUPERSEDES ALL PREVIOUS 
WARRANTIES. 

Programming Guide – DOC. 5789A SIMPL+  •  53 



Software  Crestron SIMPL+
 

Return and Warranty Policies 
Merchandise Returns / Repair Service 

1. No merchandise may be returned for credit, exchange, or service without prior authorization 
from CRESTRON. To obtain warranty service for CRESTRON products, contact the factory 
and request an RMA (Return Merchandise Authorization) number. Enclose a note specifying 
the nature of the problem, name and phone number of contact person, RMA number, and 
return address. 

2. Products may be returned for credit, exchange, or service with a CRESTRON Return 
Merchandise Authorization (RMA) number. Authorized returns must be shipped freight 
prepaid to CRESTRON, Cresskill, N.J., or its authorized subsidiaries, with RMA number 
clearly marked on the outside of all cartons. Shipments arriving freight collect or without an 
RMA number shall be subject to refusal. CRESTRON reserves the right in its sole and 
absolute discretion to charge a 15% restocking fee, plus shipping costs, on any products 
returned with an RMA. 

3. Return freight charges following repair of items under warranty shall be paid by CRESTRON, 
shipping by standard ground carrier. In the event repairs are found to be non-warranty, return 
freight costs shall be paid by the purchaser. 

CRESTRON Limited Warranty 
CRESTRON ELECTRONICS, Inc. warrants its products to be free from manufacturing defects in 
materials and workmanship under normal use for a period of three (3) years from the date of 
purchase from CRESTRON, with the following exceptions: disk drives and any other moving or 
rotating mechanical parts, pan/tilt heads and power supplies are covered for a period of one (1) 
year; touchscreen display and overlay components are covered for 90 days; batteries and 
incandescent lamps are not covered.  

This warranty extends to products purchased directly from CRESTRON or an authorized 
CRESTRON dealer. Purchasers should inquire of the dealer regarding the nature and extent of the 
dealer's warranty, if any. 

CRESTRON shall not be liable to honor the terms of this warranty if the product has been used in 
any application other than that for which it was intended, or if it has been subjected to misuse, 
accidental damage, modification, or improper installation procedures. Furthermore, this warranty 
does not cover any product that has had the serial number altered, defaced, or removed.  

This warranty shall be the sole and exclusive remedy to the original purchaser. In no event shall 
CRESTRON be liable for incidental or consequential damages of any kind (property or economic 
damages inclusive) arising from the sale or use of this equipment. CRESTRON is not liable for 
any claim made by a third party or made by the purchaser for a third party.  

CRESTRON shall, at its option, repair or replace any product found defective, without charge for 
parts or labor. Repaired or replaced equipment and parts supplied under this warranty shall be 
covered only by the unexpired portion of the warranty. 

Except as expressly set forth in this warranty, CRESTRON makes no other warranties, expressed 
or implied, nor authorizes any other party to offer any warranty, including any implied warranties 
of merchantability or fitness for a particular purpose. Any implied warranties that may be imposed 
by law are limited to the terms of this limited warranty. This warranty statement supercedes all 
previous warranties. 
Trademark Information 
All brand names, product names, and trademarks are the sole property of their respective owners. Windows is a registered 
trademark of Microsoft Corporation. Windows95/98/Me/XP and WindowsNT/2000 are trademarks of Microsoft 
Corporation.  

54  •  SIMPL+ Programming Guide – DOC. 5789A 



Crestron SIMPL+  Software  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Programming Guide – DOC. 5789A SIMPL+  •  55 



 

Crestron Electronics, Inc. Programming Guide – DOC. 5789A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

15 Volvo Drive   Rockleigh, NJ 07647 04.03   
Tel: 888.CRESTRON  
Fax: 201.767.7576  Specifications subject to  
www.crestron.com change without notice. 


	SIMPL+(
	Introduction
	What is SIMPL+?
	For Whom is this Guide Intended?
	Using SIMPL vs. SIMPL+
	What is Needed to Use SIMPL+?
	Where Can I Get More Information?

	Quick Start
	Writing Your First SIMPL+ Program: “Hello world!”
	Making it Work

	The Structure of a SIMPL+ Program
	Compiler Directives
	Include Libraries
	Variable Declarations
	Inputs, Outputs, and Parameters
	Variables
	Structures

	User-Defined Functions
	Event Functions
	PUSH and RELEASE Events
	CHANGE Events
	Compound Events
	The Global Event

	Function Main

	Working with Data (Variables)
	Input/Output Types
	Digital Inputs/Outputs
	Analog Inputs/Outputs
	String Inputs/Outputs and Buffer Inputs
	Signal Scope

	All About Variables
	Integers
	Strings
	Variable Scope

	Arrays

	Operators, Expressions, and Statements
	Operators
	Arithmetic Operators
	Bitwise Operators
	Relational Operators

	Expressions
	Statements

	Controlling Program Flow: Branching
	if–else
	switch–case

	Controlling Program Flow: Loops
	for Loops
	while and do-until Loops
	Exiting from Loops Early

	Using System Functions
	User Defined Functions
	Function Definitions
	Defining Local Variables In Functions
	Passing Variables to Functions as Arguments
	ByRef, ByVal, and ReadOnlyByRef

	Functions That Return Values
	Function Libraries

	Compact Flash Functions
	CheckForDisk and WaitForNewDisk
	Reading and Writing Data

	Working with Time
	Delay
	Pulse
	Wait Events

	Working with Strings
	BUFFER_INPUT
	Removing Data From Buffers

	Understanding Processing Order
	How SIMPL+ and SIMPL Interact
	Forcing a Task Switch

	Debugging
	Compiler Errors
	Run-time Errors
	Debugging with Print()

	Software License Agreement
	Return and Warranty Policies
	Merchandise Returns / Repair Service
	CRESTRON Limited Warranty



