Chapter 6

Principles of Data Reduction

“..we are suffering from a plethora of surmise, conjecture and hypothesis. The

difficulty is to detach the framework of fact — of absolute undeniable fact — from
the embellishments of theorists and reporters.”

Sherlock Holmes

Silver Blaze

6.1 Introduction

An experimenter uses the information in a sample Xi,..., X, to make inferences
about an unknown parameter 6. If the sample size n is large, then the observed sam-
plexy,...,z, is a long list of numbers that may be hard to interpret. An experimenter
might wish to summarize the information in a sample by determining a few key fea-
tures of the sample values. This is usually done by computing statistics, functions of
the sample. For example, the sample mean, the sample variance, the largest observa-
tion, and the smallest observation are four statistics that might be used to summarize
some key features of the sample. Recall that we use boldface letters to denote multiple
variates, so X denotes the random variables Xi,...,X, and x denotes the sample
L1y...,Tp.

Any statistic, T'(X), defines a form of data reduction or data summary. An experi-
menter who uses only the observed value of the statistic, T'(x), rather than the entire
observed sample, x, will treat as equal two samples, x and y, that satisfy T'(x) = T(y)
even though the actual sample values may be different in some ways.

Data reduction in terms of a particular statistic can be thought of as a partition
of the sample space X'. Let 7 = {t: t = T'(x) for some x € X'} be the image of
X under T'(x). Then T'(x) partitions the sample space into sets A, t € 7, defined
by Ay = {x: T(x) = t}. The statistic summarizes the data in that, rather than
reporting the entire sample x, it reports only that T'(x) = ¢ or, equivalently, x € A;.
For example, if T'(x) = x1 + - -+ + @y, then T(x) does not report the actual sample
values but only the sum. There may be many different sample points that have the
same sum. The advantages and consequences of this type of data reduction are the
topics of this chapter.

We study three principles of data reduction. We are interested in methods of data
reduction that do not discard important information about the unknown parameter 6
and methods that successfully discard information that is irrelevant as far as gaining
knowledge about @ is concerned. The Sufficiency Principle promotes a method of data
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reduction that does not discard information about # while achieving some summa-
rization of the data. The Likelihood Principle describes a function of the parameter,
determined by the observed sample, that contains all the information about 8 that is
available from the sample. The Equivariance Principle prescribes yet another method
of data reduction that still preserves some important features of the model.

6.2 The Sufficiency Principle

A sufficient statistic for a parameter 6 is a statistic that, in a certain sense, captures
all the information about 6 contained in the sample. Any additional information
in the sample, besides the value of the sufficient statistic, does not contain any more
information about 8. These considerations lead to the data reduction technique known
as the Sufficiency Principle.

SUFFICIENCY PRINCIPLE: If T(X) is a sufficient statistic for 8, then any inference
about 6 should depend on the sample X only through the value T'(X). That is, if x
and y arc two sample points such that T(x) = T(y), then the inference about §
should be the same whether X = x or X =y is observed.

In this scction we investigate some aspects of sufficient statistics and the Sufficiency
Principle.

6.2.1 Sufficient Statistics

A sufficient statistic is formally defined in the following way.

Definition 6.2.1 A statistic T'(X) is a sufficient statistic for 6 if the conditional
distribution of the sample X given the value of T(X) does not depend on 6.

If T(X) has a continuous distribution, then Py(7T(X) = t) = 0 for all values of ¢. A
more sophisticated notion of conditional probability than that introduced in Chapter
1 is needed to fully understand Definition 6.2.1 in this case. A discussion of this can be
found in more advanced texts such as Lehmann (1986). We will do our calculations in
the discrete case and will point out analogous results that are true in the continuous
case.

To understand Definition 6.2.1, let ¢ be a possible value of T'(X), that is, a value
such that Pp(T'(X) =t) > 0. We wish to consider the conditional probability Pp(X =
x|T(X) = t). If x is a sample point such that T'(x) # ¢, then clearly Pp(X = x|T'(X) =
t) = 0. Thus, we are interested in P(X = x|T'(X) = T'(x)). By the definition, if T(X)
is a sufficient statistic, this conditional probability is the same for all values of 6 so
we have omitted the subscript.

A sufficient statistic captures all the information about 0 in this sense. Consider
Experimenter 1, who observes X = x and, of course, can compute T(X) = T'(x). To
make an inference about @ he can use the information that X = x and 7'(X) = T(x).
Now consider Experimenter 2, who is not told the value of X but only that T'(X) =
T'(x). Experimenter 2 knows P(X = y|T(X) = T(x)), a probability distribution on
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Ay = {y: T(y) = T(x)}, because this can be computed from the model without
knowledge of the true value of 8. Thus, Experimenter 2 can use this distribution and a
randomization device, such as a random number table, to generate an observation Y
satisfying P(Y = y|T(X) = T(x)) = P(X = y|T(X) = T(x)). It turns out that, for
each value of 4, X and Y have the same unconditional probability distribution, as we
shall see below. So Experimenter 1, who knows X, and Experimenter 2, who knows Y,
have equivalent information about 6. But surely the use of the random number table
to generate Y has not added to Experimenter 2’s knowledge of §. All his knowledge
about 6 is contained in the knowledge that T'(X) = T'(x). So Experimenter 2, who
knows only T'(X) = T'(x), has just as much information about  as does Experimenter
1, who knows the entire sample X = x.

To complete the above argument, we need to show that X and Y have the same
unconditional distribution, that is, Py(X = x) = P»p(Y = x) for all x and 6. Note
that the events {X = x} and {Y = x} are both subsets of the event {T'(X) = T'(x)}.
Also recall that

P(X = x|T(X) = T(x)) = P(Y = x|T(X) = T(x))
and these conditional probabilities do not depend on 6. Thus we have
Py(X = x)
= Pp(X =x and T(X) = T'(x))

= P(X = x|T(X) = T(x))Bs(T(X) = T'(x)) ( definition of >

conditional probability
— P(Y = x|T(X) = T(x)) Po(T(X) = T(x))

= Py(Y =x and T(X) =T(x)) -

= Pp(Y = x).

To use Definition 6.2.1 to verify that a statistic T'(X) is a sufficient statistic for
f, we must verify that for any fixed values of x and t, the conditional probability
Py(X = x|T(X) = t) is the same for all values of §. Now, this probability is 0 for all
values of 6 if T'(x) # t. So, we must verify only that Py(X = x|T(X) = T'(x)) does
not depend on €. But since {X = x} is a subset of {T(X) = T'(x)},

Py(X =xand T(X) =T (x))

Py(X =x|T(X) = T(x)) = Py(T(X) = T(x))

__ b (X =x)
Py (T(X) = T(x))
__p(x]6)
o(T(x)|6)"

where p(x|6) is the joint pmf of the sample X and ¢(¢|0) is the pmf of T(X). Thus,
T(X) is a sufficient statistic for 6 if and only if, for every x, the above ratio of pmfs
is constant as a function of §. If X and T'(X) have continuous distributions, then the
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above conditional probabilities cannot be interpreted in the sense of Chapter 1. But
it is still appropriate to use the above criterion to determine if 7(X) is a sufficient
statistic for 0.

Theorem 6.2.2 If p(x|0) is the joint pdf or pmf of X and q(t|0) is the pdf or pmf
of T(X), then T(X) is a sufficient statistic for 8 if, for every x in the sample space,
the ratio p(x|0)/q(T'(x)|0) is constant as a function of 6.

We now use Theorem 6.2.2 to verify that certain common statistics are sufficient
statistics.

Example 6.2.3 (Binomial sufficient statistic) Let X3,..., X, be iid Bernoulli
random variables with parameter 8,0 < 6 < 1. We will show that T'(X) = X+ - -+X,
is a sufficient statistic for . Note that 7'(X) counts the number of X;s that equal 1,
so T'(X) has a binomial(n, #) distribution. The ratio of pmfs is thus

x|0 6% (1 — g)1—<i
q(I;E(DIC) |)9) N (?) O(t(l — )Q)n—t (define t = Xax)
gxzi (1 — 9)=(1-z:)
T (ea-or
__ea-on
C(Hea-om

(1= = §%=)

o+ 3| =
N—r

Since this ratio does not depend on 6, by Theorem 6.2.2, T'(X) is a sufficient statistic
for . The interpretation is this: The total number of 1s in this Bernoulli sample
contains all the information about 6 that is in the data. Other features of the data,
such as the exact value of X3, contain no additional information. I

Example 6.2.4 (Normal sufficient statistic) Let Xi,..., X, be iid n(y,0?),
where o2 is known. We wish to show that the sample mean, T'(X) = X = (X1 +---+
X,)/n, is a sufficient statistic for g. The joint pdf of the sample X is

n

f(xlp) = [[(2r0®) 2 exp (= (i — 1)*/ (20%))

=1

= (2m0?) ™2 exp (_Z(wi - w?/ (202))

=1
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n

= (2m0?) ™2 exp (—Z(mz —Z+Z— ,[1,)2/(20'2)) (add and subtract %)

(62.1) = (2mo?)"™?exp (— <Z(CBz —7)* +n(z - /,L)z) /(202)> .

The last equality is true because the cross-product term > .. . (z; — Z)(Z — p) may
be rewritten as (Z — p)Y i (#; — Z), and Y., (x; — Z) = 0. Recall that the sample
mean X has a n(u,o?/n) distribution. Thus, the ratio of pdfs is

f(x0) _ (2mo?) ™ exp (~ (i (zi — 2)* +n(@ — p)?) /(202))

g(T(x)16) (202 [n)=1/2 exp(—n(Z — 1)?/(20?))
=n"12(2r0?) ("D 2 exp (- i(xi - z)? /(202)) ,

which does not depend on u. By Theorem 6.2.2, the sample mean is a sufficient
statistic for p. I

In the next example we look at situations in which a substantial reduction of the
sample is not possible.

Example 6.2.5 (Sufficient order statistics) Let Xi,...,X, be iid from a pdf
f, where we are unable to specify any more information about the pdf (as is the case
in nonparametric estimation). It then follows that the sample density is given by

(6.2.2) Fx) =[] 7)) =]] f=@),
i=1 i=1
where z(;) < T2y < -+ < (p) are the order statistics. By Theorem 6.2.2, we can

show that the order statistics are a sufficient statistic. Of course, this is not much of a
reduction, but we shouldn’t expect more with so little information about the density
f.

However, even if we do specify more about the density, we still may not be able to
get much of a sufficiency reduction. For example, suppose that f is the Cauchy pdf

. s e——(a:—g)
f($l9) = m‘l_-o—)g or the longtIC pdf f(xl@) = m

reduction as in (6.2.2), and no more. So reduction to the order statistics is the most
we can get in these families (see Exercises 6.8 and 6.9 for more examples).

It turns out that outside of the exponential family of distributions, it is rare to have
asufficient statistic of smaller dimension than the size of the sample, so in many cases
it will turn out that the order statistics are the best that we can do. (See Lehmann
and Casella 1998, Section 1.6, for further details.) I

. We then have the same

It may be unwieldy to use the definition of a sufficient statistic to find a sufficient
statistic for a particular model. To use the definition, we must guess a statistic 7'(X)
to be sufficient, find the pmf or pdf of T(X), and check that the ratio of pdfs or
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pmfs does not depend on 6. The first step requires a good deal of intuition and
the second sometimes requires some tedious analysis. Fortunately, the next theorem,
due to Halmos and Savage (1949), allows us to find a sufficient statistic by simple
inspection of the pdf or pmf of the sample.!

Theorem 6.2.6 (Factorization Theorem) Let f(x|0) denote the joint pdf or
pmf of a sample X. A statistic T(X) is a sufficient statistic for 0 if and only if there
exist functions g(t|0) and h(x) such that, for all sample points x and all parameter
points 0,

(6.2.3) f(x10) = g(T(x)|0)h(x).

Proof: We give the proof only for discrete distributions.

Suppose T'(X) is a sufficient statistic. Choose g(t|0) = Pp(T(X) = t) and h(x) =
P(X = x|T(X) = T(x)). Because T(X) is sufficient, the conditional probability
defining h(x) does not depend on €. Thus this choice of h(x) and g(t|@) is legitimate,
and for this choice we have

I

f(x]0) = Po(X = x)

Py(X =x and T(X) = T(x))

= Pp(T(X) =T(x))P(X =x|T(X) = T(x)) (sufficiency)
= g(T(x)|0)h(x).

So factorization (6.2.3) has been exhibited. We also see from the last two lines above
that

By(T(X) = T(x)) = g(T(x)]6),

so g(T'(x)|0) is the pmf of T'(X).

Now assume the factorization (6.2.3) exists. Let ¢(¢|f) be the pmf of T'(X). To
show that T'(X) is sufficient we examine the ratio f(x[0)/q(T(x)|0). Define Aq =
{y:T(y) =T(x)}. Then

f(x|0)  g(T(x)|0)h(x) since is satisfie
aTE)0) ~  ¢T(x)[0) inee (23) s satisied
9(T'(x)|9)h(x) (definition of the pmf of T)

T T TR
_ _ 9(T(x)|0)h(x)
9(T (X)) appo h(y)
__ hx)
EAT(x)h(Y).

1 Although, according to Halmos and Savage, their theorem “may be recast in a form more akin
in spirit to previous investigations of the concept of sufficiency.” The investigations are those of
Neyman (1935). (This was pointed out by Prof. J. Beder, University of Wisconsin, Milwaukee.)

(since T' is constant on Ar(y)) -
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Since the ratio does not depend on 8, by Theorem 6.2.2, T(X) is a sufficient statistic
for 6. O

~ To use the Factorization Theorem to find a sufficient statistic, we factor the joint
pdf of the sample into two parts, with one part not depending on 6. The part that
does not depend on 6 constitutes the h(x) function. The other part, the one that
depends on 8, usually depends on the sample x only through some function 7'(x) and
this function is a sufficient statistic for 6. This is illustrated in the following example.

Example 6.2.7 (Continuation of Example 6.2.4) For the normal model de-
scribed earlier, we saw that the pdf could be factored as

n

624)  f(xlp) = (2m0®)"*exp (— > (- 6?)2/(202)) exp(—n(Z — p)*/(20%)).

We can define
h(x) = (2m0®) ™2 exp (‘ Z(% —-I)%/ (202)) ,
i=1

which does not depend on the unknown parameter p. The factor in (6.2.4) that
contains 4 depends on the sample x only through the function 7'(x) = Z, the sample
mean. So we have

g(tlp) = exp (—n(t — p)*/(207))
and note that

Flp) = h(x)g(T(x)|p).
Thus, by the Factorization Theorem, T(X) = X is a sufficient statistic for . I

The Factorization Theorem requires that the equality f(x|0) = g(T'(x)|6)h(x) hold
for all x and 6. If the set of x on which f(x|0) is positive depends on 6, care must
be taken in the definition of h and g to ensure that the product is 0 where f is 0. Of
course, correct definition of h and g makes the sufficient statistic evident, as the next

example illustrates.

Example 6.2.8 (Uniform sufficient statistic) Let X;,...,X, be iid observa-
tions from the discrete uniform distribution on 1, ..., 0. That is, the unknown param-
eter, 6, is a positive integer and the pmf of X is

f(x[9)={% z=1,2,...,0

0 otherwise.
Thus the joint pmf of X4,..., X, is

_Jo™ z;e{l,...,0fori=1,...,n
9 — 1 ) ) ’ )
f(x16) {0 otherwise.
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The restriction “x; € {1,...,0} for ¢ = 1,...,n” can be re-expressed as “z; €
{1,2,...} fori=1,...,n (note that there is no 8 in this restriction) and max; z; <6.”
If we define T'(x) = max; ;,

1 ze{,2,..}fori=1,...,n
) = {0 otherwise,

and

_jom™ t<Lo
9(t10) = {O otherwise,

it is easily verified that f(x|6) = g(T(x)|0)h(x) for all x and 6. Thus, the largest
order statistic, 7'(X) = max; X;, is a sufficient statistic in this problem.

This type of analysis can sometimes be carried out more clearly and concisely using
indicator functions. Recall that I4(x) is the indicator function of the set A; that i,
it is equal to 1 if z € A and equal to 0 otherwise. Let N’ = {1,2,...} be the set of
positive integers and let Ny = {1,2,...,6}. Then the joint pmf of X;,..., X, is

Fx10) =TT 07 I, (i) = 67" [ I (0).
=1 t=1

Defining 7'(x) = max; x;, we see that

H INs (x’t) - (HIN(:B%)) INe (T(X))
i=1

=1

Thus we have the factorization
f(x10) = 07" In, (T(x)) (HIN(%‘)) :
i=1

The first factor depends on z1,...,z, only through the value of T'(x) = max;uz,
and the second factor does not depend on 6. By the Factorization Theorem, T(X) ="
max; X; is a sufficient statistic for 6. [

In all the previous examples, the sufficient statistic is a real-valued function of the
sample. All the information about € in the sample x is summarized in the single
number 7'(x). Sometimes, the information cannot be summarized in one number and
several numbers are required instead. In such cases, a sufficient statistic is a vector,
say T(X) = (T1(X),...,T(X)). This situation often occurs when the parameter is
also a vector, say @ = (64, ...,0s), and it is usually the case that the sufficient statistic
and the parameter vectors are of equal length, that is, 7 = s. Different combinations of
lengths are possible, however, as the exercises and Examples 6.2.15, 6.2.18, and 6.2.20
illustrate. The Factorization Theorem may be used to find a vector-valued sufficient
statistic, as in Example 6.2.9.
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Example 6.2.9 (Normal sufficient statistic, both parameters unknown)
Again assume that Xi,..., X, are iid n(u,o?) but, unlike Example 6.2.4, assume
that both p and o2 are unknown so the parameter vector is 8 = (i1, 02). Now when
we use the Factorization Theorem, any part of the joint pdf that depends on either
por o2 must be included in the g function. From (6.2.1) it is clear that the pdf
depends on the sample x only through the two values T1(x) = Z and Tx(x) = s2 =
Yo (zi —%)?/(n —1). Thus we can define h(x) = 1 and

1=1
g(t|0) = g(t1,ta2|p, o)
= (210%) "2 exp (— (n(t1 — p)? + (n — 1)t2) /(20%)) .
Then it can be seen that

(6:2.5) f(xlp, o) = g(Tu(x), To(x) 1, 0*) h(x).

Thus, by the Factorization Theorem, T(X) = (T} (X), 72(X)) = (X, S?) is a sufficient
statistic for (u,0?) in this normal model. I

Example 6.2.9 demonstrates that, for the normal model, the common practice of
summarizing a data set by reporting only the sample mean and variance is justified.
The sufficient statistic (X,.5?) contains all the information about (i, 0?) that is avail-
able in the sample. The experimenter should remember, however, that the definition
of a sufficient statistic is model-dependent. For another model, that is, another family
of densities, the sample mean and variance may not be a sufficient statistic for the
population mean and variance. The experimenter who calculates only X and S? and
totally ignores the rest of the data would be placing strong faith in the normal model
assumption.

It is easy to find a sufficient statistic for an exponential family of distributions
using the Factorization Theorem. The proof of the following important result is left
as Exercise 6.4.

Theorem 6.2.10 Let X4,..., X, be iid observations from a pdf or pmf f(x|0) that
belongs to an exponential family given by

k
k)= a0 o (w012 ).
where @ = (61,0, ...,04), d < k. Then
ﬂXﬁ::Sn@ﬁwa}A&)

is a sufficient statistic for 6.

6.2.2 Minimal Sufficient Statistics

In the preceding section we found one sufficient statistic for each model considered.
In any problem there are, in fact, many sufficient statistics.
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It is always true that the complete sample, X, is a sufficient statistic. We can factor
the pdf or pmf of X as f(x]0) = f(T(x)|0)h(x), where T'(x) = x and h(x) =1 for all
x. By the Factorization Theorem, T(X) = X is a sufficient statistic.

Also, it follows that any one-to-one function of a sufficient statistic is a sufficient
statistic. Suppose T'(X) is a sufficient statistic and define 7" (x) = 7(T'(x)) for all x,
where 7 is a one-to-one function with inverse r~!. Then by the Factorization Theorem
there exist g and h such that

f(x10) = g(T(x)|0)h(x) = g(r~" (T (x))|0)A(x).
Defining g*(t|0) = g(r~1(¢)|9), we see that

F(x]0) = g*(T" (x)|0) h(x)-

So, by the Factorization Theorem, 7%(X) is a sufficient statistic.

Because of the numerous sufficient statistics in a problem, we might ask whether one
sufficient statistic is any better than another. Recall that the purpose of a sufficient
statistic is to achieve data reduction without loss of information about the parameter
6; thus, a statistic that achieves the most data reduction while still retaining all the
information about € might be considered preferable. The definition of such a statistic
is formalized now.

Definition 6.2.11 A sufficient statistic 7'(X) is called a minimal sufficient statistic
if, for any other sufficient statistic 7"(X), T'(x) is a function of T"(x).

To say that T'(x) is a function of 7”(x) simply means that if 77(x) = T"(y), then
T(x) =T(y). In terms of the partition sets described at the beginning of the chapter,
if {By:t' € T'} are the partition sets for 77(x) and {A;: ¢t € T} are the partition sets
for T'(x), then Definition 6.2.11 states that every By is a subset of some A;. Thus, the
partition associated with a minimal sufficient statistic, is the coarsest possible parti-
tion for a sufficient statistic, and a minimal sufficient statistic achieves the greatest
possible data reduction for a sufficient statistic.

Example 6.2.12 (Two normal sufficient statistics) The model considered in
Example 6.2.4 has X1, ..., X, iid n(u, 0?) with ¢ known. Using factorization (6.2.4),
we concluded that T(X) = X is a sufficient statistic for u. Instead, we could write
down factorization (6.2.5) for this problem (¢? is a known value now) and correctly
conclude that 77(X) = (X, 5?) is a sufficient statistic for p in this problem. Clearly
T'(X) achieves a greater data reduction than 7”(X) since we do not know the sample
variance if we know only T(X). We can write T'(x) as a function of 7”(x) by defining
the function 7(a,b) = a. Then T'(x) = Z = r(z, s?) = 7(T"(x)). Since T'(X) and T"(X)
are both sufficient statistics, they both contain the same information about u. Thus,
the additional information about the value of S2, the sample variance, does not add
to our knowledge of y since the population variance o2 is known. Of course, if ¢
is unknown, as in Example 6.2.9, T(X) = X is not a sufficient statistic and T"(X)
contains more information about the parameter (u, o) than does T'(X). I

Using Definition 6.2.11 to find a minimal sufficient statistic is impractical, as was
using Definition 6.2.1 to find sufficient statistics. We would need to guess that T'(X)
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was a minimal sufficient statistic and then verify the condition in the definition. (Note
that we did not show that X is a minimal sufficient statistic in Example 6.2.12.)
Fortunately, the following result of Lehmann and Scheffé (1950, Theorem 6.3) gives
an easier way to find a minimal sufficient statistic.

Theorem 6.2.13  Let f(x|0) be the pmf or pdf of a sample X. Suppose there ezists a
function T'(x) such that, for every two sample points x andy, the ratio f(x|0)/f(y|0)
is constant as a function of 0 if and only if T(x) = T'(y). Then T(X) is a minimal
sufficient statistic for 0.

Proof: To simplify the proof, we assume f(x|6) > 0 for all x € X and 6.

First we show that T'(X) is a sufficient statistic. Let 7 = {t: ¢t = T'(x) for some
x € X} be the image of X under T'(x). Define the partition sets induced by T'(x) as
Ay = {x: T(x) = t}. For each A;, choose and fix one element x; € A;. For any x € X,
Xr(x) is the fixed element that is in the same set, A¢, as x. Since x and xr(x) are
in the same set Ay, T(x) = T'(xr(x)) and, hence, f(x|0)/f(x7(x)|0) is constant as a
function of . Thus, we can define a function on A by h(x) = f(x|0)/f(x7(x)|0) and
h does not depend on 6. Define a function on 7 by ¢(t|f) = f(x;|6). Then it can be
seen that

Pl — rionco

and, by the Factorization Theorem, T'(X) is a sufficient statistic for 6.

Now to show that T'(X) is minimal, let 7/(X) be any other sufficient statistic.
By the Factorization Theorem, there exist functions g’ and k' such that f(x|0) =
¢(T'(x)|@)h'(x). Let x and y be any two sample points with 77(x) = 7(y). Then

fx16) _ g (T'(x)|0)h'(x) _ K (x)
fy9) TN (y) R(y)

Since this ratio does not depend on 6, the assumptions of the theorem imply that
T(x) = T(y). Thus, T'(x) is a function of 7”"(x) and T'(x) is minimal. O

f(x]0) =

Example 6.2.14 (Normal minimal sufficient statistic) Let X;,..., X, beiid
n(y,02), both u and ¢? unknown. Let x and y denote two sample points, and let
(z,52) and (7, s2) be the sample means and variances corresponding to the x and y
samples, respectively. Then, using (6.2.5), we see that the ratio of densities is

F(xl,0®) _ (2m0?) "2 exp (= [n(& = ) + (n— 1)s2] /(20%))
f(ylp,0%)  (2mo?) =" 2exp (— [n(§ — p)? + (n — 1)s2] /(202))

=exp ([-n(@® = 7°) + 2nu(Z — §) — (n — 1)(s2 — s3)] /(207)) .
2

This ratio will be constant as a function of y and o2 if and only if Z = § and s2 = Sy-
Thus, by Theorem 6.2.13, (X, 5?) is a minimal sufficient statistic for (u,o?). I

If the set of xs on which the pdf or pmf is positive depends on the parameter 8,
then, for the ratio in Theorem 6.2.13 to be constant as a function of 8, the numerator
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and denominator must be positive for exactly the same values of 8. This restriction
is usually reflected in a minimal sufficient statistic, as the next example illustrates.

Example 6.2.15 (Uniform minimal sufficient statistic) Suppose Xi,...,X,
are iid uniform observations on the interval (9,0 + 1), —0o < 8 < co. Then the joint
pdf of X is

1 O0<z;<0+1,i=1,...,n,
0 otherwise,

i) = {

which can be written as

(1 max;z; — 1< 6 < min; z;
f(xl0) = {0 otherwise.

Thus, for two sample points x and y, the numerator and denominator of the ratio
f(x]6)/ f(y|0) will be positive for the same values of € if and only if min; x; = min; y;
and max; r; = max; y;. And, if the minima and maxima are equal, then the ratio i
constant and, in fact, equals 1. Thus, letting X1y = min; X; and X,y = max; X;,
we have that T'(X) = (X(1), X(n)) is 2 minimal sufficient statistic. This is a case in
which the dimension of a minimal sufficient statistic does not match the dimension
of the parameter. ‘ I

A minimal sufficient statistic is not unique. Any one-to-one function of a minimal
sufficient statistic is also a minimal sufficient statistic. So, for example, 77(X) =
(X(n) — X(1), (X(n) + X(1))/2) is also a minimal sufficient statistic in Example 6.2.15
and T"(X) = (7, X;, %, X?) is also a minimal sufficient statistic in Example 6.2.14

6.2.3 Ancillary Statistics

In the preceding sections, we considered sufficient statistics. Such statistics, in a sense,
contain all the information about 6 that is available in the sample. In this section we
introduce a different sort of statistic, one that has a complementary purpose.

Definition 6.2.16 A statistic S(X) whose distribution does not depend on the
parameter 6 is called an ancillary statistic.

Alone, an ancillary statistic contains no information about 6. An ancillary statistic
is an observation on a random variable whose distribution is fixed and known, unre-
lated to 8. Paradoxically, an ancillary statistic, when used in conjunction with other
statistics, sometimes does contain valuable information for inferences about 8. We will
investigate this behavior in the next section. For now, we just give some examples of
ancillary statistics. |

Example 6.2.17 (Uniform ancillary statistic) As in Example 6.2.15, l¢t
X1,...,Xp be iid uniform observations on the interval (6,0 + 1),—c0 < 0 < m.
Let X(1) < -+ < X() be the order statistics from the sample. We show below that
the range statistic, R = X ('n) — X(1), is an ancillary statistic by showing that the pdf
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of R does not depend on 6. Recall that the cdf of each X is

0 r<6
F(a:|9):{x——0 f<z<b+1
1 0+1<z.

.Thus, the joint pdf of X(1y and Xy, as given by (5.4.7), is

n—2
e |0) = n(n — 1)(zw) — z()) <z <zTm <0+1
9(@, Tw|0) {0 otherwise.

Making the transformation R = X(,) — X (1) and M = (X (1) + X())/2, which has the
inverse transformation X1y = (2M — R)/2 and X,y = (2M + R)/2 with Jacobian 1,
we see that the joint pdf of R and M is

h(r,m|0) = {n(n -2 0<r <L0+(r/2) <m <f+1-(r/2)
0 otherwise.

(Notice the rather involved region of positivity for A(r,m|6).) Thus, the pdf for R is

0+1—(r/2)
h(r|6) = /0+( ) n(n — 1)r"~2dm

=nn-1)r""21-r), 0<r<l.
This is a beta pdf with @ = n — 1 and B = 2. More important, the pdf is the same
for all #. Thus, the distribution of R does not depend on #, and R is ancillary. I

In Example 6.2.17 the range statistic is ancillary because the model considered there
is a location parameter model. The ancillarity of R does not depend on the uniformity
of the X;s, but rather on the parameter of the distribution being a location parameter.
We now consider the general location parameter model.

Example 6.2.18 (Location family ancillary statistic) Let X;,...,X, beiid
observations from a location parameter family with cdf F(z — 6), —0o < 6 < co. We
will show that the range, R = X(,) — X(1), is an ancillary statistic. We use Theorem
3.5.6 and work with Z,..., Z, iid observations from F(z) (corresponding to § = 0)
with X3 = Z; 4+ 60,...,X, = Z, + 0. Thus the cdf of the range statistic, R, is

Fr(r|0) = Ps(R<r)
= Py(max X; — min X; <)

= Py(max(Z; + 6) — min(Z; +6) < r)
= Pg(ma}{ Zz —jm'in Zz < 7').

The last probability does not depend on 8 because the distribution of 73, ..., Z, does
not depend on 6. Thus, the cdf of R does not depend on 8 and, hence, R is an ancillary
statistic. I
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Example 6.2.19 (Scale family ancillary statistic)  Scale parameter families
also have certain kinds of ancillary statistics. Let X,..., X, be iid observations from
a scale parameter family with cdf F(z/o),0 > 0. Then any statistic that depends
on the sample only through the n — 1 values X;/X,,...,X,_1/X, is an ancillary
statistic. For example,

X1t 4+ X X +.”+Xn—1

1
Xn Xn, X’I’L +

is an ancillary statistic. To see this fact, let Z4,..., Z, be iid observations from F(z)
(corresponding to o = 1) with X; = 0Z;. The joint cdf of X1 /X,,..., Xpn—1/X, is

F(yi,- . Un-1]0) = Po(X1/Xn <v1,.. .y Xn—-1/Xn < Yn-1)
- PU(Uzl/(UZn) <Y1, .- 70Zn—1/(azn) < yn—l)
= P,(Z1/Zn < Y15+ Zn-1/Zn < Yn—1).

The last probability does not depend on ¢ because the distribution of Z4, ..., Z, does
not depend on . So the distribution of X;/X,,...,X,_1/X, is independent of o,
as is the distribution of any function of these quantities.

In particular, let X; and X» be iid n(0,02) observations. From the above result,
we see that X /X5 has a distribution that is the same for every value of o. But, in
Example 4.3.6, we saw that, if 0 = 1, X; /X2 has a Cauchy(0,1) distribution. Thus,
for any o > 0, the distribution of X; /X5 is this same Cauchy distribution. I

In this section, we have given examples, some rather general, of statistics that are
ancillary for various models. In the next section we will consider the relationship
between sufficient statistics and ancillary statistics.

6.2.4 Sufficient, Ancillary, and Complete Statistics

A minimal sufficient statistic is a statistic that has achieved the maximal amount of
data reduction possible while still retaining all the information about the parameter
0. Intuitively, a minimal sufficient statistic eliminates all the extraneous information
in the sample, retaining only that piece with information about 6. Since the distri
bution of an ancillary statistic does not depend on 6, it might be suspected that
minimal sufficient statistic is unrelated to (or mathematically speaking, functionally
independent of) an ancillary statistic. However, this is not necessarily the case. In
this section, we investigate this relationship in some detail.

We have already discussed a situation in which an ancillary statistic is not indepen-
dent of a minimal sufficient statistic. Recall Example 6.2.15 in which Xy, ..., X,, wer
iid observations from a uniform(4, 8 + 1) distribution. At the end of Section 6.2.2, we
noted that the statistic (X(n) — X (1), (X(n) +X(1))/2) is a minimal sufficient statisti,
and in Example 6.2.17, we showed that X,y — X(1) is an ancillary statistic. Thus, in
this case, the ancillary statistic is an important component of the minimal sufficient
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statistic. Certainly, the ancillary statistic and the minimal sufficient statistic are not
independent.

To emphasize the point that an ancillary statistic can sometimes give important
information for inferences about 8, we give another example.

Example 6.2.20 (Ancillary precision) Let X; and X5 be iid observations from
the discrete distribution that satisfies

Pg(X:G)=P9(X=0+1):P9(X=9+2)=%,

where 0, the unknown parameter, is any integer. Let X1y < X(9) be the order statistics
for the sample. It can be shown with an argument similar to that in Example 6.2.15
that (R, M), where R = X9y — X(1) and M = (X (1) + X(2))/2, is a minimal sufficient
statistic. Since this is a location parameter family, by Example 6.2.17, R is an ancillary
statistic. To see how R might give information about 8, even though it is ancillary,
consider a sample point (r,m), where m is an integer. First we consider only m; for
this sample point to have positive probability, § must be one of three values. Either
f=morf =m-—1or 8§ =m — 2. With only the information that M = m, all
three 8 values are possible values. But now suppose we get the additional information
that R = 2. Then it must be the case that X(;) = m — 1 and X(9) = m + 1. With
this additional information, the only possible value for 8 is # = m — 1. Thus, the
knowledge of the value of the ancillary statistic R has increased our knowledge about
§. Of course, the knowledge of R alone would give us no information about 6. (The
idea that an ancillary statistic gives information about the precision of an estimate
of § is not new. See Cox 1971 or Efron and Hinkley 1978 for more ideas.) I

For many important situations, however, our intuition that a minimal sufficient
statistic is independent of any ancillary statistic is correct. A description of situations
in which this occurs relies on the next definition.

Definition 6.2.21  Let f(¢|6) be a family of pdfs or pmfs for a statistic 7(X). The
family of probability distributions is called complete if Egg(T") = 0 for all § implies
Py(9(T) = 0) = 1 for all §. Equivalently, T'(X) is called a complete statistic.

Notice that completeness is a property of a family of probability distributions, not
of a particular distribution. For example, if X has a n(0, 1) distribution, then defining
g(z) = z, we have that Eg(X) = EX = 0. But the function g(z) = z satisfies
P(9(X) =0) = P(X =0) =0, not 1. However, this is a particular distribution, not a
family of distributions. If X has a n(6, 1) distribution, —co < 8 < oo, we shall see that
no function of X, except one that is 0 with probability 1 for all 8, satisfies Egg(X) =0
for all 8. Thus, the family of n(6, 1) distributions, —co < 6 < oo, is complete.

Example 6.2.22 (Binomial complete sufficient statistic) Suppose that T has
a binomial(n, p) distribution, 0 < p < 1. Let ¢g be a function such that E,g(7T") = 0.
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Then

0= Epg(T) = Zg )(}) -

= -p)";g(t) (%) (Tﬁ}y

for all p, 0 < p < 1. The factor (1 —p)™ is not O for any p in this range. Thus it must
be that

o—zgo( ) (5 ) th)( )

forall r, 0 < r < co. But the last expression is a polynomial of degree n in 7, where the
coefficient of ¢ is g(¢)("}). For the polynomial to be 0 for all r, each coefficient must be
0. Since none of the () terms is 0, this implies that g(t) =0 fort =0, 1,...,n. Since
T takes on the values 0,1,...,n with probability 1, this yields that P,(g(T) =0) =1
for all p, the desired conclusion. Hence, T' is a complete statistic. I

Example 6.2.23 (Uniform complete sufficient statistic) Let Xj,..., X, be
iid uniform(0, ) observations, 0 < 6 < oo. Using an argument similar to that in
Example 6.2.8, we can see that T(X) = max; X; is a sufficient statistic and, by
Theorem 5.4.4, the pdf of T'(X) is

n—1g—n
£y = J nt"T 0 0<t<@
1(t16) {0 otherwise.

Suppose g(t) is a function satisfying Egg(T") = 0 for all 6. Since Egg(T’) is constant
as a function of 6, its derivative with respect to 8 is 0. Thus we have that

d n—1 n
0= —-Eog(T) = d@/ t)nt™ 10" dt

= (9_71)35/0 ng(t)t" dt + (%9‘") /09 ng(t)t" dt

R n—1 applying the product
= 07"ng(0)0" ™" +0 (rule for differentiation)

= 071ng(6).

The first term in the next to last line is the result of an application of the Fundamental
Theorem of Calculus. The second term is 0 because the integral is, except for a
constant, equal to Egg(T), which is 0. Since 6§~ ng(8) = 0 and 6~ 1n # 0, it must
be that g(d) = 0. This is true for every 6 > 0; hence, T is a complete statistic. (On
a somewhat pedantic note, realize that the Fundamental Theorem of Calculus does
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“not apply to all functions, but only to functions that are Riemann-integrable. The
equation

5 [ st =90

is valid only at points of continuity of Riemann-integrable g. Thus, strictly speaking,
the above argument does not show that 7' is a complete statistic, since the condition
of completeness applies to all functions, not just Riemann-integrable ones. From a
more practical view, however, this distinction is not of concern since the condition of
Riemann-integrability is so general that it includes virtually any function we could
think of.) I

We now use completeness to state a condition under which a minimal sufficient
statistic is independent of every ancillary statistic.

Theorem 6.2.24 (Basu’s Theorem) If T(X) is a complete and minimal suffi-
cient statistic, then T'(X) is independent of every ancillary statistic.

Proof: We give the proof only for discrete distributions.
Let S(X) be any ancillary statistic. Then P(S(X) = s) does not depend on 6 since
S(X) is ancillary. Also the conditional probability,

P(S(X)=s|T(X)=t) = P(X € {x: S(x) = s}|T(X) =t),

does not depend on @ because T(X) is a sufficient statistic (recall the definition!).
Thus, to show that S(X) and T'(X) are independent, it suffices to show that

(6.2.6) P(SX) =s|T(X) =t) = P(S(X) = s)
for all possible values t € 7. Now,

P(S(X)=5)= > P(8(X) = s|T(X) = t) P(T(X) = t).
teT

Furthermore, since ), Po(T'(X) = t) = 1, we can write
P(S(X) =s) =) _ P(S(X) = s)P(T(X) =1).
teT
Therefore, if we define the statistic
9(t) = P(S(X) = s|T(X) = t) - P(5(X) = s),
the above two equations show that

Eog(T) = > gt)Py(T(X)=1)=0 for all 6.
teT

Since T'(X) is a complete statistic, this implies that g(t) = 0 for all possible values
te 7. Hence (6.2.6) is verified. O
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Basu’s Theorem is useful in that it allows us to deduce the independence of two
statistics without ever finding the joint distribution of the two statistics. To use
Basu’s Theorem, we need to show that a statistic is complete, which is sometimes a :
rather difficult analysis problem. Fortunately, most problems we are concerned with :
are covered by the following theorem. We will not prove this theorem but note that
its proof depends on the uniqueness of a Laplace transform, a property that was
mentioned in Section 2.3.

Theorem 6.2.25 (Complete statistics in the exponential family) Let

X1,...,X, be tid observations from an exponential family with pdf or pmf of the
form

k
(6.2.7) f(216) = h(z)c(8) exp | > w;(6)t;(2) | ,

Jj=1

where @ = (61,02, ...,0k). Then the statistic

T(X) = (z tl(Xi),ZtQ(Xi), . -,Ztk(Xi)>
i=1 i=1 i=1

is complete if {(w1(0),...,wi(0)):0 € O} contains an open set in R*.

The condition that the parameter space contain an open set is needed to avoid a sit-
uation like the following. The n(6, §2) distribution can be written in the form (6.2.7);
however, the parameter space (#,0?) does not contain a two-dimensional open set,
as it consists of only the points on a parabola. As a result, we can find a transfor-
mation of the statistic T(X) that is an unbiased estimator of 0 (see Exercise 6.15).
(Recall that exponential families such as the n(6, 62), where the parameter space isa
lower-dimensional curve, are called curved exponential families; see Section 3.4.) The
relationship between sufficiency, completeness, and minimality in exponential families
is an interesting one. For a brief introduction, see Miscellanea 6.6.3. v

We now give some examples of the use of Basu’s Theorem, Theorem 6.2.25, and.
many of the earlier results in this chapter.

Example 6.2.26 (Using Basu’s Theorem-I) Let Xj,...,X, be iid exponential
observations with parameter 8. Consider computing the expected value of

Xn
X1+ + X

9(X) =

We first note that the exponential distributions form a scale parameter family and
thus, by Example 6.2.19, g(X) is an ancillary statistic. The exponential distributions
also form an exponential family with ¢(z) = z and so, by Theorem 6.2.25,
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is a complete statistic and, by Theorem 6.2.10, T'(X) is a sufficient statistic. (As noted
below, we need not verify that 7(X) is minimal, although it could easily be verified
using Theorem 6.2.13.) Hence, by Basu’s Theorem, T'(X) and g(X) are independent.
Thus we have

0 = Eg X, = EoT(X)g(X) = (EeT(X))(Egg(X)) = nfEgg(X).
Hence, for any 6, Egg(X) =n~1. I

Example 6.2.27 (Using Basu’s Theorem—II) As another example of the use
of Basu’s Theorem, we consider the independence of X and S2, the sample mean
and variance, when sampling from a n(u, 02) population. We have, of course, already
shown that these statistics are independent in Theorem 5.3.1, but we will illustrate
the use of Basu’s Theorem in this important context. First consider o2 fixed and let
vary, —oo < p < 0o. By Example 6.2.4, X is a sufficient statistic for . Theorem 6.2.25
may be used to deduce that the family of n(u,0?/n) distributions, —co < u < oo,
¢*/n known, is a complete family. Since this is the distribution of X, X is a complete
statistic. Now consider S2. An argument similar to those used in Examples 6.2.18 and
6.2.19 could be used to show that in any location parameter family (remember o2 is
fixed, u is the location parameter), S? is an ancillary statistic. Or, for this normal
model, we can use Theorem 5.3.1 to see that the distribution of $? depends on the
fixed quantity o2 but not on the parameter u. Either way, S? is ancillary and so, by
Basu’s Theorem, S2 is independent of the complete sufficient statistic X. For any s
and the fixed 02, X and S? are independent. But since ¢ was arbitrary, we have that
the sample mean and variance are independent for any choice of 1 and o2. Note that
neither X nor S? is ancillary in this model when both p and ¢? are unknown. Yet, by
this argument, we are still able to use Basu’s Theorem to deduce independence. This
kind of argument is sometimes useful, but the fact remains that it is often harder to
show that a statistic is complete than it is to show that two statistics are independent.

It should be noted that the “minimality” of the sufficient statistic was not used
in the proof of Basu’s Theoreni. Indeed, the theorem is true with this word omitted,
because a fundamental property of a complete statistic is that it is minimal.

Theorem 6.2.28 If a minimal sufficient statistic exists, then any complete statistic
is also a minimal sufficient statistic.

So even though the word “minimal” is redundant in the statement of Basu’s Theo-
rem, it was stated in this way as a reminder that the statistic 7'(X) in the theorem is
a minimal sufficient statistic. (More about the relationship between complete statis-
tics and minimal sufficient statistics can be found in Lehmann and Scheffé 1950 and
Schervish 1995, Section 2.1.)

Basu’s Theorem gives one relationship between sufficient statistics and ancillary
statistics using the concept of complete statistics. There are other possible definitions
of ancillarity and completeness. Some relationships between sufficiency and ancillarity
for these definitions are discussed by Lehmann (1981).
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6.3 The Likelihood Principle

In this section we study a specific, important statistic called the likelihood function
that also can be used to summarize data. There are many ways to use the likelihood
function some of which are mentioned in this section and some in later chapters. But
the main consideration in this section is an argument which indicates that, if certain
other principles are accepted, the likelihood function must be used as a data reduction
device.

6.3.1 The Likelihood Function

Definition 6.3.1  Let f(x|0) denote the joint pdf or pmf of the sample X =
(X1,...,Xn). Then, given that X = x is observed, the function of 8 defined by

L(0]x) = f(x|0)
is called the likelihood function.

If X is a discrete random vector, then L(f|x) = Pp(X = x). If we compare the
likelihood function at two parameter points and find that

Py (X =x) = L(61|x) > L(02]x) = Po, (X = x),

then the sample we actually observed is more likely to have occurred if § = 8, than if
6 = 05, which can be interpreted as saying that 0, is a more plausible value for the true
value of 6 than is 2. Many different ways have been proposed to use this information,
but certainly it seems reasonable to examine the probability of the sample we actually
observed under various possible values of #. This is the information provided by the
likelihood function.

If X is a continuous, real-valued random variable and if the pdf of X is continuous
in z, then, for small €, Py(x — € < X < x + €) is approximately 2¢f(z|0) = 2eL(f|z)
(this follows from the definition of a derivative). Thus,

Pp(zr—e<X<z+e) L(01]7)
Po(t—e<X<z+e) L(bz)

and comparison of the likelihood function at two parameter values again gives an
approximate comparison of the probability of the observed sample value, x.

Definition 6.3.1 almost seems to be defining the likelihood function to be the same
as the pdf or pmf. The only distinction between these two functions is which variable
is considered fixed and which is varying. When we consider the pdf or pmf f(x|6),
we are considering @ as fixed and x as the variable; when we consider the likelihood
function L(6|x), we are considering x to be the observed sample point and 6 to be
varying over all possible parameter values.

Example 6.3.2 (Negative binomial likelihood) Let X have a negative bino
mial distribution with » = 3 and success probability p. If x = 2 is observed, then the
likelihood function is the fifth-degree polynomial on 0 < p < 1 defined by

L) = A(x =2 = () P00
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In general, if X = z is observed, then the likelihood function is the polynomial of
degree 3 + z,

Loie) = (P72 w0 ||

The Likelihood Principle specifies how the likelihood function should be used as a
data reduction device.

LIKELIHOOD PRINCIPLE: If x and y are two sample points such that L(6|x) is
proportional to L(f]y), that is, there exists a constant C(x,y) such that

(6.3.1) L(0|x) = C(x,y)L(0ly) for all 0,
then the conclusions drawn from x and y should be identical.

Note that the constant C(x,y) in (6.3.1) may be different for different (x,y) pairs
but C'(x,y) does not depend on 6.

In the special case of C(x,y) = 1, the Likelihood Principle states that if two
sample points result in the same likelihood function, then they contain the same
information about 6. But the Likelihood Principle goes further. It states that even
if two sample points have only proportional likelihoods, then they contain equivalent
information about 6. The rationale is this: The likelihood function is used to compare
the plausibility of various parameter values, and if L(03|x) = 2L(6;|x), then, in some
sense, 02 is twice as plausible as 6;. If (6.3.1) is also true, then L(0:2|y) = 2L(6,]y).
Thus, whether we observe x or y we conclude that 05 is twice as plausible as 0.

We carefully used the word “plausible” rather than “probable” in the preceding
paragraph because we often think of 4 as a fixed (albeit unknown) value. Furthermore,
although f(x|0), as a function of x, is a pdf, there is no guarantee that L(f|x), as a
function of 8, is a pdf.

One form of inference, called fiducial inference, sometimes interprets likelihoods
as probabilities for 6. That is, L(f]x) is multiplied by M (x) = (. L(]x)dd) ™"
(the integral is replaced by a sum if the parameter space is countable) and then
M(x)L(6|x) is interpreted as a pdf for 6 (provided, of course, that M (x) is finite!).
Clearly, L(0|x) and L(f|y) satisfying (6.3.1) will yield the same pdf since the constant
C(x,y) will simply be absorbed into the normalizing constant. Most statisticians do
not subscribe to the fiducial theory of inference but it has a long history, dating back
to the work of Fisher (1930) on what was called inverse probability (an application of
the probability integral transform). For now, we will for history’s sake compute one
fiducial distribution.

Example 6.3.3 (Normal fiducial distribution) Let X3,...,X, be iid n(u,o?),
o? known. Using expression (6.2.4) for L(u|x), we note first that (6.3.1) is satisfied if
and only if Z = ¢, in which case

Clx,y) = exp (— > (@~ 2)/(20%) + 3 (0 - g)?/(ch?)) -

1
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Thus, the Likelihood Principle states that the same conclusion about p should be
drawn for any two sample points satisfying £ = §. To compute the fiducial pdf for y,
we see that if we define M (x) = n™2exp(3 1, (z; — )%/(20?)), then M (x)L(ulx)
(as a function of u) is a n(Z,0?/n) pdf. This is the fiducial distribution of u, and a
fiducialist can make the following probability calculation regarding u.

The parameter u has a n(Z, 02/n) distribution. Hence, (u—2Z)/(o/+/n) has an(0,1)
distribution. Thus we have

u—=z
95 =P -1.96< 1.96
( 0/\/7—1 < >

= P(-1.960/v/n < p— T < 1.960/+/n)
= P(Z—1960/vn < u < T+ 1.960/y/n).

This algebra is similar to earlier calculations but the interpretation is quite different. |
Here 7 is a fixed, known number, the observed data value, and p is the variable with
the normal probability distribution. v I

We will discuss other more common uses of the likelihood function in later chapters -
when we discuss specific methods of inference. But now we consider an argument
that shows that the Likelihood Principle is a necessary consequence of two other
fundamental principles.

6.3.2 The Formal Likelihood Principle

For discrete distributions, the Likelihood Principle can be derived from two intuitively
simpler ideas. This is also true, with some qualifications, for continuous distributions.
In this subsection we will deal only with discrete distributions. Berger and Wolpert
(1984) provide a thorough discussion of the Likelihood Principle in both the discrete
and continuous cases. These results were first proved by Birnbaum (1962) in a land-
mark paper, but our presentation more closely follows that of Berger and Wolpert.
Formally, we define an experiment E to be a triple (X, 8, { f(x|0)}), where X isa
random vector with pmf f(x|6) for some 6 in the parameter space ©. An.experimenter,
knowing what experiment E was performed and having observed a particular sample
X = x, will make some inference or draw some conclusion about 6. This conclusion
we denote by Ev(E, x), which stands for the evidence about 6 arising from E and x.

Example 6.3.4 (Evidence function) Let E be the experiment consisting of
observing X1, ..., X, iid n(u, 0?), 02 known. Since the sample mean, X, is a sufficient
statistic for 4 and EX = u, we might use the observed value X = Z as an estimate
of u. To give a measure of the accuracy of this estimate, it is common to report the
standard deviation of X,o/y/n. Thus we could define Ev(E,x) = (%,0/v/n). Here
we see that the Z coordinate depends on the observed sample x, while the o//n
coordinate depends on the knowledge of E. |

To relate the concept of an evidence function to something familiar we now restate
the Sufficiency Principle of Section 6.2 in terms of these concepts.
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FORMAL SUFFICIENCY PRINCIPLE: Consider experiment £ = (X, 6, {f(x|0)})
and suppose T'(X) is a sufficient statistic for . If x and y are sample points satisfying
T(x) = T(y), then Ev(E,x) = Ev(E,y).

Thus, the Formal Sufficiency Principle goes slightly further than the Sufficiency
Principle of Section 6.2. There no mention was made of the experiment. Here, we are
agreeing to equate evidence if the sufficient statistics match. The Likelihood Principle
can be derived from the Formal Sufficiency Principle and the following principle, an
eminently reasonable one.

CONDITIONALITY PRINCIPLE: Suppose that F1 = (Xy,60,{f1(x1]0)}) and E-
= (X, 0, {f2(x2]0)}) are two experiments, where only the unknown parameter 6
need be common between the two experiments. Consider the mixed experiment in
which the random variable J is observed, where P(J = 1) = P(J = 2) = 3
(independent of 8, X;, or Xs), and then experiment E; is performed. Formally,
the experiment performed is E* = (X*,0,{f*(x*|0)}), where X* = (j,X,) and
F716) = £*((,%;)10) = 17, (x516). Then

(6.3.2) Ev(E*, (5,%;)) = Ev(E}, x;).

The Conditionality Principle simply says that if one of two experiments is randomly
chosen and the chosen experiment is done, yielding data x, the information about 6
depends only on the experiment performed. That is, it is the same information as
would have been obtained if it were decided (nonrandomly) to do that experiment
from the beginning, and data x had been observed. The fact that this experiment
was performed, rather than some other, has not increased, decreased, or changed
knowledge of 6.

Example 6.3.5 (Binomial/negative binomial experiment) Suppose the pa-
rameter of interest is the probability p, 0 < p < 1, where p denotes the probability
that a particular coin will land “heads” when it is flipped. Let E; be the experiment
consisting of tossing the coin 20 times and recording the number of heads in those
20 tosses. E7 is a binomial experiment and { f1(x1|p)} is the family of binomial(20, p)
pmfs. Let Fy be the experiment consisting of tossing the coin until the seventh head
occurs and recording the number of tails before the seventh head. F, is a negative
binomial experiment. Now suppose the experimenter uses a random number table to
choose between these two experiments, happens to choose E5, and collects data con-
sisting of the seventh head occurring on trial 20. The Conditionality Principle says
that the information about 6 that the experimenter now has, Ev(E*,(2,13)), is the
same as that which he would have, Ev(FE2, 13), if he had just chosen to do the negative
binomial experiment and had never contemplated the binomial experiment. I

The following Formal Likelihood Principle can now be derived from the Formal
Sufficiency Principle and the Conditionality Principle.

FORMAL LIKELIHOOD PRINCIPLE: Suppose that we have two experiments,
By = (X1,0,{f1(x1]0)}) and Es = (X2, 0, { f2(x2]6)}), where the unknown parameter
f is the same in both experiments. Suppose x7 and x5 are sample points from £; and
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Es, respectively, such that |

(6.3.3) L(0]x3) = CL(8|x7)

for all 6 and for some constant C' that may depend on x7 and x5 but not 6. Then
Ev(E:,x7) = Ev(FE2,x3).

The Formal Likelihood Principle is different from the Likelihood Principle in Section
6.3.1 because the Formal Likelihood Principle concerns two experiments, whereas the
Likelihood Principle concerns only one. The Likelihood Principle, however, can be
derived from the Formal Likelihood Principle by letting Fy be an exact replicate of
E;. Thus, the two-experiment setting in the Formal Likelihood Principle is something
of an artifact and the important consequence is the following corollary, whose proof
is left as an exercise. (See Exercise 6.32.)

LIKELIHOOD PRINCIPLE COROLLARY:-If E = (X, 0,{f(x|0)}) is an experiment,
then Ev(E,x) should depend on E and x only through L(0]x).

Now we state Birnbaum’s Theorem and then investigate its somewhat surprising
consequences.

Theorem 6.3.6 (Birnbaum’s Theorem) The Formal Likelihood Principle fol
lows from the Formal Sufficiency Principle and the Conditionality Principle. The
converse is also true.

Proof: We only outline the proof, leaving details to Exercise 6.33. Let E;, Fs, x{,'
and x3 be as defined in the Formal Likelihood Principle, and let £* be the mixed
experiment from the Conditionality Principle. On the sample space of E* define the
statistic

(I,x7) ifj=1and x; =x75 orif j =2 and xo = x3
(7,x;) otherwise.

T(4,%;) = {

The Factorization Theorem can be used to prove that T'(J, X ) is a sufficient statistic

in the E* experiment. Then the Formal Sufficiency Principle implies

(6.3.4) Ev(E*, (1,x7)) = Ev(E*, (2,%3)),

the Conditionality Principle implies

(6.3.5) Ev(E™, (1,x])
Ev(E*, (2,x3)

) = Ev(Ey,x7)

) = Ev(E2,x3),

and we can deduce that Ev(E;,x}) = Ev(E», x3), the Formal Likelihood Principle.
To prove the converse, first let one experiment be the E* experiment and the other

E;. It can be shown that Ev(E*, (j,x;)) = Ev(E},x;), the Conditionality Principle.

Then, if T(X) is sufficient and T'(x) = T'(y), the likelihoods are proportional and the

Formal Likelihood Principle implies that Ev(E, x) = Ev(E,y), the Formal Sufficiency

Principle. 0
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Example 6.3.7 (Continuation of Example 6.3.5) Consider again the binomial
and negative binomial experiments with the two sample points z; = 7 (7 out of 20
heads in the binomial experiment) and xz = 13 (the 7th head occurs on the 20th flip
of the coin). The likelihood functions are

20 .
Liplz, =7) = ( 7 ) p'(1—p)* for the binomial experiment

and

19
L{plxe =13) = ( 6 ) p"(1—p)*® for the negative binomial experiment.

These are proportional likelihood functions, so the Formal Likelihood Principle states
that the same conclusion regarding p should be made in both cases. In particular,
the Formal Likelihood Principle asserts that the fact that in the first case sampling
ended because 20 trials were completed and in the second case sampling stopped
because the 7th head was observed is immaterial as far as our conclusions about p are
concerned. Lindley and Phillips (1976) give a thorough discussion of the binomial-
negative binomial inference problem. I

This point, of equivalent inferences from different experiments, may be amplified by
considering the sufficient statistic, 7", defined in the proof of Birnbaum’s Theorem and
the sample points x] = 7 and x5 = 13. For any sample points in the mixed experiment,
other than (1,7) or (2,13), T tells which experiment, binomial or negative binomial,
was performed and the result of the experiment. But for (1,7) and (2,13) we have
T(1,7) =T(2,13) = (1, 7). If we use only the sufficient statistic to make an inference
and if T = (1,7), then all we know is that 7 out of 20 heads were observed. We do
not know whether the 7 or the 20 was the fixed quantity.

Many common statistical procedures violate the Formal Likelihood Principle. With
these procedures, different conclusions would be reached for the two experiments dis-
cussed in Example 6.3.5. This violation of the Formal Likelihood Principle may seem
strange because, by Birnbaum’s Theorem, we are then violating either the Sufficiency
Principle or the Conditionality Principle. Let us examine these two principles more
closely.

The Formal Sufficiency Principle is, in essence, the same as that discussed in Section
6.1. There, we saw that all the information about # is contained in the sufficient
statistic, and knowledge of the entire sample cannot add any information. Thus,
basing evidence on the sufficient statistic is an eminently plausible principle. One
shortcoming of this principle, one that invites violation, is that it is very model-
dependent. As mentioned in the discussion after Example 6.2.9, belief in this principle
necessitates belief in the model, something that may not be easy to do.

Most data analysts perform some sort of “model checking” when analyzing a set
of data. Most model checking is, necessarily, based on statistics other than a suffi-
cient statistic. For example, it is common practice to examine residuals from a model,
statistics that measure variation in the data not accounted for by the model. (We will
see residuals in more detail in Chapters 11 and 12.) Such a practice immediately vio-
lates the Sufficiency Principle, since the residuals are not based on sufficient statistics.
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(Of course, such a practice directly violates the Likelihood Principle also.) Thus, it
must be realized that before considering the Sufficiency Principle (or the Likelihood
Principle), we must be comfortable with the model.

The Conditionality Principle, stated informally, says that “only the experiment
actually performed matters.” That is, in Example 6.3.5, if we did the binomial ex-
periment, and not the negative binomial experiment, then the (not done) negative
binomial experiment should in no way influence our conclusion about 6. This princi-
ple, also, seems to be eminently plausible. .

How, then, can statistical practice violate the Formal Likelihood Principle, when.
it would mean violating either the Principle of Sufficiency or Conditionality? Several
authors have addressed this question, among them Durbin (1970) and Kalbfleisch
(1975). One argument, put forth by Kalbfleisch, is that the proof of the Formal
Likelihood Principle is not compelling. This is because the Sufficiency Principle is
applied in ignorance of the Conditionality Principle. The sufficient statistic, T'(J, X;),
used in the proof of Theorem 6.3.6 is defined on the mixture experiment. If the
Conditionality Principle were invoked first, then separate sufficient statistics would
have to be defined for each experiment. In this case, the Formal Likelihood Principle
would no longer follow. (A key argument in the proof of Birnbaum’s Theorem is that
T(J,X ) can take on the same value for sample points from each experiment. This
cannot happen with separate sufficient statistics.)

At any rate, since many intuitively appealing inference procedures do violate the
Likelihood Principle, it is not universally accepted by all statisticians. Yet it is math-
ematically appealing and does suggest a useful data reduction technique.

6.4 The Equivariance Principle

The previous two sections both describe data reduction principles in the following
way. A function T'(x) of the sample is specified, and the principle states that if x and
y are two sample points with 7'(x) = T'(y), then the same inference about # should be
made whether x or y is observed. The function T'(x) is a sufficient statistic when the
Sufficiency Principle is used. The “value” of T'(x) is the set of all likelihood functions
proportional to L(f|x) if the Likelihood Principle is used. The Equivariance Principle
describes a data reduction technique in a slightly different way. In any application of
the Equivariance Principle, a function T'(x) is specified, but if T'(x) = T'(y), then the
Equivariance Principle states that the inference made if x is observed should have a
certain relationship to the inference made if y is observed, although the two inferences
may not be the same. This restriction on the inference procedure sometimes leads toa
simpler analysis, just as do the data reduction principles discussed in earlier sections.?

Although commonly combined into what is called the Equivariance Principle, the
data reduction technique we will now describe actually combines two different equi-
variance considerations.

2 As in many other texts (Schervish 1995; Lehmann and Casella 1998; Stuart, Ord, and Arnold
1999) we distinguish between equivariance, in which the estimate changes in a prescribed way as
the data are transformed, and invariance, in which the estimate remains unchanged as the data
are transformed.
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The first type of equivariance might be called measurement equivariance. It pre-
scribes that the inference made should not depend on the measurement scale that is
used. For example, suppose two foresters are going to estimate the average diameter
of trees in a forest. The first uses data on tree diameters expressed in inches, and
the second uses the same data expressed in meters. Now both are asked to produce
an estimate in inches. (The second might conveniently estimate the average diame-
ter in meters and then transform the estimate to inches.) Measurement equivariance
requires that both foresters produce the same estimates. No doubt, almost all would
agree that this type of equivariance is reasonable.

The second type of equivariance, actually an invariance, might be called formal
invariance. It states that if two inference problems have the same formal structure in
terms of the mathematical model used, then the same inference procedure should be
used in both problems. The elements of the model that must be the same are: ©, the
parameter space; {f(x|6): 6 € O}, the set of pdfs or pmfs for the sample; and the
set of allowable inferences and consequences of wrong inferences. This last element
has not been discussed much prior to this; for this section we will assume that the
set of possible inferences is the same as ©; that is, an inference is simply a choice of
an element of © as an estimate or guess at the true value of 8. Formal invariance is
concerned only with the mathematical entities involved, not the physical description
of the experiment. For example, © may be © = {#: § > 0} in two problems. But in one
problem # may be the average price of a dozen eggs in the United States (measured in
cents) and in another problem 6§ may refer to the average height of giraffes in Kenya
(measured in meters). Yet, formal invariance equates these two parameter spaces since
they both refer to the same set of real numbers.

EQUIVARIANCE PRINCIPLE: 1f Y = g(X) is a change of measurement scale such

that the model for Y has the same formal structure as the model for X, then an in-
ference procedure should be both measurement equivariant and formally equivariant.

We will now illustrate how these two concepts of equivariance can work together
to provide useful data reduction.

Example 6.4.1 (Binomial equivariance) Let X have a binomial distribution
with sample size n known and success probability p unknown. Let T'(x) be the estimate
of p that is used when X = x is observed. Rather than using the number of successes,
X, to make an inference about p, we could use the number of failures, ¥ = n — X.
Y also has a binomial distribution with parameters (n,q = 1 — p). Let T*(y) be the
estimate of ¢ that is used when Y = y is observed, so that 1 — T*(y) is the estimate
of p when Y = y is observed. If & successes are observed, then the estimate of p is
T(x). But if there are = successes, then there are n — x failures and 1 — 7*(n — ) is
also an estimate of p. Measurement equivariance requires that these two estimates be
equal, that is, T'(x) = 1 — T*(n — x), since the change from X to Y is just a change
in measurement scale. Furthermore, the formal structures of the inference problems
based on X and Y are the same. X and Y both have binomial(n, ) distributions,
0 <6 < 1. So formal invariance requires that T'(z) = T*(z) for all z =0, ...,n. Thus,
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measurement and formal invariance together require that
(6.4.1) Tx)=1-T*(n—z)=1-T(n—x).

If we consider only estimators satisfying (6.4.1), then we have greatly reduced and sim-
plified the set of estimators we are willing to consider. Whereas the specification of an
arbitrary estimator requires the specification of T(0),T(1),...,T(n), the specification
of an estimator satisfying (6.4.1) requires the specification only o
T(0),T(1),...,T([n/2]), where [n/2] is the greatest integer not larger than n/2. The
remaining values of T'(x) are determined by those already specified and (6.4.1). For
example, T'(n) = 1—-T(0) and T'(n—1) = 1 —=T(1). This is the type of data reduction
that is always achieved by the Equivariance Principle. The inference to be made for
some sample points determines the inference to be made for other sample points.
Two estimators that are equivariant for this problem are T3 (x) = /n and Ty(z) =
9(x/n) + .1(.5). The estimator T3(z) uses the sample proportion of successes to
estimate p. To(x) “shrinks” the sample proportion toward .5, an estimator that might
be sensible if there is reason to think that p is near .5. Condition (6.4.1) is easily
verified for both of these estimators and so they are both equivariant. An estimator
that is not equivariant is T3(z) = .8(x/n) + .2(1). Condition (6.4.1) is not satisfied
since T53(0) = .2 % 0 =1 — T5(n — 0). See Exercise 6.39 for more on measurement vs.
formal invariance. I

A key to the equivariance argument in Example 6.4.1 and to any equivariance argu-
ment is the choice of the transformations. The data transformation used in Example
6.4.1is Y = n— X. The transformations (changes of measurement scale) used in any
application of the Equivariance Principle are described by a set of functions on the
sample space called a group of transformations.

Definition 6.4.2 A set of functions {g(x) : ¢ € G} from the sample space X onto
X is called a group of transformations of X if

(i) (Inverse) Forevery g € G thereisa g’ € G such that ¢'(g(x)) = x for all x € X,

(ii) (Composition) For every g € G and ¢’ € G there exists g’ € G such that
g’ (g(x)) = ¢"(x) for all x € X.

Sometimes the third requirement,
(iiif) (Identity) The identity, e(x), defined by e(x) = x is an element of G,

is stated as part of the definition of a group. But (iii) is a consequence of (i) and (i,
and need not be verified separately. (See Exercise 6.38.)

Example 6.4.3 (Continuation of Example 6.4.1) For this problem, only two
transformations are involved so we may set G = {91, 92}, with g;(z) = n — z and
g2(x) = . Conditions (i) and (ii) are easily verified. The choice of g’ = g verifies (i)
that is, each element is its own inverse. For example,

g1(g1(z)) =g(n—z)=n—-(n—2) ==z
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In (ii), if ¢’ = g, then g” = go, while if ¢’ # g, then ¢’ = g; satisfies the equality. For
example, take ¢’ # g = g1. Then

92(g1(z)) = g2(n —z) =n —x = g1 (). I

To use the Equivariance Principle, we must be able to apply formal invariance to
the transformed problem. That is, after changing the measurement scale we must
still have the same formal structure. As the structure does not change, we want the
underlying model, or family of distributions, to be invariant. This requirement is
summarized in the next definition.

Definition 6.4.4 Let F = {f(x]6): 6 € O} be a set of pdfs or pmfs for X, and let
G be a group of transformations of the sample space X'. Then F is invariant under
the group G if for every 8 € © and g € G there exists a unique 6’ € © such that
Y = g(X) has the distribution f(y|0’) if X has the distribution f(x|8).

Example 6.4.5 (Conclusion of Example 6.4.1) In the binomial problem,
we must check both ¢g; and g;. If X ~ binomial(n,p), then ¢;(X) = n — X ~
binomial(n,1 — p) so p’ = 1 — p, where p plays the role of 6 in Definition 6.4.4.
Also g2(X) = X ~ binomial(n,p) so p’ = p in this case. Thus the set of binomial
pmfs is invariant under the group G = {g1,92}- I

In Example 6.4.1, the group of transformations had only two elements. In many
cases, the group of transformations is infinite, as the next example illustrates (see
also Exercises 6.41 and 6.42).

Example 6.4.6 (Normal location invariance) Let Xi,..., X, be iid n(y, o?),
both x and ¢? unknown. Consider the group of transformations defined by G =
{ga(x), —00 < a < 0}, where go(z1,...,2,) = (z1 + a,...,2, + a). To verify that
this set of transformations is a group, conditions (i) and (ii) from Definition 6.4.2
must be verified. For (i) note that
g—a(ga(xla R 73311)) = g—a(xl +a,...,Tn+ a)
=(z1+a—a,...,zp+a—a)
= (5171, e ,xn).

So if g = gq, then g’ = g_, satisfies (i). For (ii) note that

. gaz(g(n(xl" . amn)) = gaz(xl +CL1,. cy T +(I1)

= (1 + a1 +az,..., Ty + a1 +az)
= gal+a2(w1) .- -7$n)-

So if g = g4, and ¢’ = ga,, then ¢ = g,,+4, satisfies (ii), and Definition 6.4.2 is
verified. G is a group of transformations.

The set F in this problem is the set of all joint densities f(z1,...,Tn|1,0?) for
X1,..., X, defined by “Xi,..., X, are iild n(u,0?) for some —oo < u < oo and
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0?2 > 0.” For any a, —00 < a < 00, the random variables Yi,...,Y, defined by
(Y1,...,Yn) =9.(X1,.... X)) =(X1+a,..., X, +a)

are iid n(u + @, 0?) random variables. Thus, the joint distribution of Y = g,(X) isin
F and hence F is invariant under G. In terms of the notation in Definition 6.4.4, if
0 = (u,0?%), then ¢’ = (u + a, 0?). I

Remember, once again, that the Equivariance Principle is composed of two distinct
types of equivariance. One type, measurement equivariance, is intuitively reasonable.
When many people think of the Equivariance Principle, they think that it refers
only to measurement equivariance. If this were the case, the Equivariance Principle
would probably be universally accepted. But the other principle, formal invariance, is
quite different. It equates any two problems with the same mathematical structure,
regardless of the physical reality they are trying to explain. It says that one inference
procedure is appropriate even if the physical realities are quite different, an assumption
that is sometimes difficult to justify. ’

But like the Sufficiency Principle and the Likelihood Principle, the Equivariance
Principle is a data reduction technique that restricts inference by prescribing what
other inferences must be made at related sample points. All three principles pre-
scribe relationships between inferences at different sample points, restricting the set
of allowable inferences and, in this way, simplifying the analysis of the problem.

6.5 Exercises

6.1 Let X be one observation from a n(0,0?) population. Is | X| a sufficient statistic?

6.2 Let Xi,...,X, be independent random variables with densities
-z >4
;(x]0) = {6 TZw
Prilelf) = z < if.

Prove that T = min;(X; /1) is a sufficient statistic for 6.
6.3 Let Xi,..., X, be a random sample from the pdf

1 _ T — o
f(a:],u,a)z-(;e (@=w/e <z <00, 0<0 < o0
Find a two-dimensional sufficient statistic for (u, o).
6.4 Prove Theorem 6.2.10.
6.5 Let Xi,..., X, be independent random variables with pdfs

) e —i(0—1) <z <i(0+1)

f(@:[0) = { (2) ’ otherwise,
where 6 > 0. Find a two-dimensional sufficient statistic for 6.

6.6 Let Xi,...,X, be a random sample from a gamma(a,3) population. Find a two
dimensional sufficient statistic for (a, 3).

6.7 Let f(z,y|01,02,03,04) be the bivariate pdf for the uniform distribution on the rectan-
gle with lower left corner (61, 62) and upper right corner (63, 64) in ®2. The parameters
satisfy 61 < 03 and 62 < 04. Let (X1,Y1),...,(Xn,Yn) be a random sample from this
pdf. Find a four-dimensional sufficient statistic for (61,02, 03,84).
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6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

Let X1,..., X, be arandom sample from a population with location pdf f(z—8). Show
that the order statistics, T'(X1,...,Xn) = (X(),..., X)), are a sufficient statistic
for # and no further reduction is possible.

For each of the following distributions let X,..., X, be a random sample. Find a

minimal sufficient statistic for 6.

(a) f(z]0) = \/%e‘(x'e)Q/Q, —co <z <00, —00<B<oo (normal)
(b) f(z|0) =e ™9, f<x <00, —00<Bh< 0 (location exponential)
(c) f(z|0) = (hf%_j%—)f, —co <z <00, —00<b<x (logistic)
(d) f(z]f) = m—;—_———e)yl, —co<r <o, -—-0<i<oco (Cauchy)
e) f(z|0) =Le P _co<z <0, —00<l< o0 double exponential

2 )

Show that the minimal sufficient statistic for the uniform(8,8 + 1), found in Example
6.2.15, is not complete.

Refer to the pdfs given in Exercise 6.9. For each, let X(;) < --- < X(4) be the ordered
sample, and define Y; = X,y — X(yy,i=1,...,n— 1.

(a) For each of the pdfs in Exercise 6.9, verify that the set (Y1,...,Y,_1) is ancillary
for 8. Try to prove a general theorem, like Example 6.2.18, that handles all these
families at once.

(b) In each case determine whether the set (Y1,...,Y,-1) is independent of the min-
imal sufficient statistic. ‘

A natural ancillary statistic in most problems is the sample size. For example, let N
be a random variable taking values 1,2,... with known probabilities p;1, p2, ..., where
Yp; = 1. Having observed N = n, perform n Bernoulli trials with success probability
8, getting X successes.

(a) Prove that the pair (X, N) is minimal sufficient and N is ancillary for 6. (Note
the similarity to some of the hierarchical models discussed in Section 4.4.)

(b) Prove that the estimator X/N is unbiased for # and has variance (1 — 0)E(1/N).

Suppose X; and X» are iid observations from the pdf f(z]|a) = az®* e ™", 2 > 0, a >

0. Show that (log X1)/(log X2) is an ancillary statistic.

Let X1,...,X, be a random sample from a location family. Show that A — X is an
ancillary statistic, where M is the sample median.

Let X1,..., X, be iid n(f, ad?), where a is a known constant and 6 > 0.

(a) Show that the parameter space does not contain a two-dimensional open set.
(b) Show that the statistic T' = (X, S?) is a sufficient statistic for 8, but the family of
distributions is not complete.

A famous example in genetic modeling (Tanner, 1996 or Dempster, Laird, and Rubin
1977) is a genetic linkage multinomial model, where we observe the multinomial vector
(z1, T2, T3, 24) With cell probabilities given by (3 + £,1(1-6),2(1-0), %).

(a) Show that this is a curved exponential family.

(b) Find a sufficient statistic for 4.

(c) Find a minimal sufficient statistic for 6.
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6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24
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Let Xi,..., Xy be iid with geometric distribution
P X=2)=01-0)""" z=12,..., 0<0<1.

Show that X X; is sufficient for 8, and find the family of distributions of ¥Xj;. Is the
family complete?

Let X1,...,X, be iid Poisson(\). Show that the family of distributions of XX; is
complete. Prove completeness without using Theorem 6.2.25.

The random variable X takes the values 0, 1, 2 according to one of the following
distributions:

P(X=0) P(X=1 P(X=2)

Distribution 1 P 3p 1—4p 0<p<
Distribution 2 P p° l1—-p—p? 0<p<

[ IR N

In each case determine whether the family of distributions of X is complete.

For each of the following pdfs let Xi,..., X, be iid observations. Find a complete
sufficient statistic, or show that one does not exist.

(a) f(=z|0) =23, O0<z<6, 6>0

(b) f(z18) = Grymre, 0<z <00, 0>0

(c) f(z]o) =LBDZ " g<a<1, 6>1

(d) f(z|0) =e T Dexp(—e ), —co<z <00, —00<0<00

() f(xl0) = (3)0°(1-0)>", 2=0,1,2, 0<0<1

Let X be one observation from the pdf

izl
sy =(5) -0, s=-101, 001
(a) Is X a complete sufficient statistic?
(b) Is | X| a complete sufficient statistic?
(c) Does f(z]@) belong to the exponential class?

Let X1,...,X, be a random sample from a population with pdf
f(z|0) =027, 0<z<1, 6>0.

(a) Is XX, sufficient for 67
(b) Find a complete sufficient statistic for 6.

Let X1,...,Xn be arandom sample from a uniform distribution on the interval (6,26),
0 > 0. Find a minimal sufficient statistic for 8. Is the statistic complete?

Consider the following family of distributions:
P={P\(X =z): AA(X =x) = e /zhiz=0,1,2,...; A =0or 1}.

This is a Poisson family with X restricted to be 0 or 1. Show that the family P i
not complete, demonstrating that completeness can be dependent on the range of the
parameter. (See Exercises 6.15 and 6.18.)
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6.25

6.26

6.27

We have seen a number of theorems concerning sufficiency and related concepts for
exponential families. Theorem 5.2.11 gave the distribution of a statistic whose suffi-
ciency is characterized in Theorem 6.2.10 and completeness in Theorem 6.2.25. But if
the family is curved, the open set condition of Theorem 6.2.25 is not satisfied. In such
cases, is the sufficient statistic of Theorem 6.2.10 also minimal? By applying Theorem
6.2.13 to T'(x) of Theorem 6.2.10, establish the following;:

(a) The statistic (3 Xi, Y X7) is sufficient, but not minimal sufficient, in the n(x, p)
family.

(b) The statistic > X7 is minimal sufficient in the n(p, ) family.

(¢) The statistic (3. X;, > X7) is minimal sufficient in the n(y, %) family.

(d) The statistic (3 X;, Y, X7) is minimal sufficient in the n(x,o?) family.

Use Theorem 6.6.5 to establish that, given a sample X1, ..., X5, the following statistics

are minimal sufficient.

Statistic Distribution
(a) X n(d,1)
(b) X gamma(a, ), a known
(c) max X uniform(0, 9)
(d) Xay,. s X Cauchy(6,1)
()  Xay,.-s X logistic(u, B)
Let Xi,..., X, be a random sample from the inverse Gaussian distribution with pdf

)\ 1/2 —-)\(;L‘-;t.)2
flzlp, A) = (27?333) e 2%, 0<zx<oo.

(a) Show that the statistics

3

X =

S

T;Xi and T:Zn S

i=1 X;

i~

are sufficient and complete.

" (b) For n = 2, show that X has an inverse Gaussian distribution, n)/7T has a X2 _1

6.28

6.29

6.30

distribution, and they are independent. (Schwarz and Samanta 1991 do the general
case.)
The inverse Gaussian distribution has many applications, particularly in modeling of
lifetimes. See the books by Chikkara and Folks (1989) and Seshadri (1993).
Prove Theorem 6.6.5. (Hint: First establish that the minimal sufficiency of T'(X) in the
family {fo(x),..., fe(x)} follows from Theorem 6.2.13. Then argue that any statistic
that is sufficient in F must be a function of T'(x).)
The concept of minimal sufficiency can be extended beyond parametric families of
distributions. Show that if Xi,...,X,, are a random sample from a density f that is
unknown, then the order statistics are minimal sufficient.
(Hint: Use Theorem 6.6.5, taking the family { fo(x), ..., fx(x)} to be logistic densities.)
Let X1,..., X be a random sample from the pdf f(z|p) = e~ &~ where —co < p1 <
T < 00.

(a) Show that X(;y = min; X; is a complete sufficient statistic.
(b) Use Basu’s Theorem to show that X(;y and S* are independent.
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6.31 Boos and Hughes-Oliver (1998) detail a number of instances where application of
Basu’s Theorem can simplify calculations. Here are a few.

(a) Let Xi1,...,X, beiid n(g, 0?), where o2 is known.

(i) Show that X is complete sufficient for z, and S? is ancillary. Hence by Basu’s
Theorem, X and S? are independent.

(ii) Show that this independence carries over even if o2 is unknown, as knowledge
of o2 has no bearing on the distributions. (Compare this proof to the more
involved Theorem 5.3.1(a).)

(b) A Monte Carlo swindle is a technique for improving variance estimates. Suppose
that Xi,...,X, are iid n(y, 02) and that we want to compute the variance of the
median, M.

(i) Apply Basu’s Theorem to show that Var(M) = Var(M — X )+ Var(X); thus we
only have to simulate the Var(M — X) piece of Var(M) (since Var(X) = o°/n).

(ii) Show that the swindle estimate is more precise by showing that the variance of
M is approximately 2[Var(M)]?/(N — 1) and that of M — X is approximately
2[Var(M — X)]?/(N — 1), where N is the number of Monte Carlo samples.

(¢) (i) If X/Y and Y are independent random variables, show that

- (X)k _ E(X%)

Y/ T E({k)

(ii) Use this result and Basu’s Theorem to show that if Xi,..., X, are iid
gamma(a, §), where o is known, then for T =) X;

X()

T)=E< T

6.32 Prove the Likelihood Principle Corollary. That is, assuming both the Formal Sufficiency
Principle and the Conditionality Principle, prove that if £ = (X, 6, {f(x|6)}) is an
experiment, then Ev(E, x) should depend on E and x only through L(8|x).

6.33 Fill in the gaps in the proof of Theorem 6.3.6, Birnbaum’s Theorem.

(a) Define g(t|0) = g((4,%;)10) = f*((4,%;)16) and

h(j,Xj) = {C if (j’xj) = (2,X;)

1 otherwise.

T]T) _rEX@)

E (X 5T

Show that T'(j,x;) is a sufficient statistic in the E* experiment by verifying that

9(T(5,%5)10)h(5,%5) = F((4,%;)10)

for all (j,x;).

(b) As T is sufficient, show that the Formal Sufficiency Principle implies (6.3.4). Also
the Conditionality Principle implies (6.3.5), and hence deduce the Formal Likeli-
hood Principle.

(c) To prove the converse, first let one experiment be the E* experiment and the
other E; and deduce that Ev(E*, (j,x;)) = Ev(Ej,x;), the Conditionality Prin-
ciple. Then, if T'(X) is sufficient and T'(x) = T(y), show that the likelihoods are
proportional and then use the Formal Likelihood Principle to deduce Ev(E,x) =
Ev(E,y), the Formal Sufficiency Principle.
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6.34

6.35

6.36

6.37

6.38
6.39

Consider the model in Exercise 6.12. Show that the Formal Likelihood Principle implies
that any conclusions about 6 should not depend on the fact that the sample size n
was chosen randomly. That is, the likelihood for (n,z), a sample point from Exercise
6.12, is proportional to the likelihood for the sample point x, a sample point from a
fixed-sample-size binomial(n, #) experiment.

A risky experimental treatment is to be given to at most three patients. The treatment
will be given to one patient. If it is a success, then it will be given to a second. If it
is a success, it will be given to a third patient. Model the outcomes for the patients
as independent Bernoulli(p) random variables. Identify the four sample points in this
model and show that, according to the Formal Likelihood Principle, the inference
about p should not depend on the fact that the sample size was determined by the
data.

One advantage of using a minimal sufficient statistic is that unbiased estimators will
have smaller variance, as the following exercise will show. Suppose that 77 is sufficient
and 7% is minimal sufficient, U is an unbiased estimator of 8, and define Uy = E(U|T1)
and Uz = E(U|T?).

(a) Show that Uz = E(U1|T?).

(b) Now use the conditional variance formula (Theorem 4.4.7) to show that VarUs <
Var U;.

(See Pena and Rohatgi 1994 for more on the relationship between sufficiency and

unbiasedness.)

Joshi and Nabar (1989) examine properties of linear estimators for the parameter in
the so-called “Problem of the Nile,” where (X,Y’) has the joint density

f(z,y]0) = exp{—(0z +y/0)}, x>0, y>0.

(a) For an iid sample of size n, show that the Fisher information is I(6) = 2n/6>.
(b) For the estimators

T— \/ZY;-/ZX,- and U= \/ZXZY

show that

(i) the information in T" alone is [2n/(2n + 1)]1(0);

(ii) the information in (7, U) is I(6);

(iii) (T, U) is jointly sufficient but not complete.
In Definition 6.4.2, show that (iii) is implied by (i) and (ii).
Measurement equivariance requires the same inference for two equivalent data points:
X, measurements expressed in one scale, and y, exactly the same measurements ex-
pressed in a different scale. Formal invariance, in the end, leads to a relationship
between the inferences at two different data points in the same measurement scale.
Suppose an experimenter wishes to estimate 6, the mean boiling point of water, based
on a single observation X, the boiling point measured in degrees Celsius. Because of the
altitude and impurities in the water he decides to use the estimate T'(z) = .5z+.5(100).
If the measurement scale is changed to degrees Fahrenheit, the experimenter would
use T*(y) = .5y + .5(212) to estimate the mean boiling point expressed in degrees
Fahrenheit. '

(a) The familiar relation between degrees Celsius and degrees Fahrenheit would lead

us to convert Fahrenheit to Celsius using the transformation 2(T™(y) — 32). Show
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6.40

6.41

6.42

6.43
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that this procedure is measurement equivariant in that the same answer will be
obtained for the same data; that is, 2(T™(y) — 32) = T(x).

(b) Formal invariance would require that T'(z) = 7™(z) for all . Show that the
estimators we have defined above do not satisfy this. So they are not equivariant
in the sense of the Equivariance Principle.

Let Xi,...,X, be iid observations from a location—scale family. Let T1(Xi,...,X5)
and 72(X1,...,Xn) be two statistics that both satisfy

Ti(ax1+0b,...,azn +b) = ali(z1,...,2n)

for all values of z;,...,z, and b and for any a > 0.

(a) Show that T)/7% is an ancillary statistic.
(b) Let R be the sample range and S be the sample standard deviation. Verify that
R and S satisfy the above condition so that R/S is an ancillary statistic.

Suppose that for the model in Example 6.4.6, the inference to be made is an estimate
of the mean p. Let T'(x) be the estimate used if X = x is observed. If go(X) =Y =y
is observed, then let 7™ (y) be the estimate of p + a, the mean of each Y;. If p+ais
estimated by T*(y), then 2 would be estimated by T (y) — a.

(a) Show that measurement equivariance requires that T'(x) = T™(y) - a for all x =

(z1,...,2n) and all a.

(b) Show that formal invariance requires that 7T(x) = 7"(x) and hence the Equiv-
ariance Principle requires that T(zi1,...,2n) +a=T(21 +a,...,zn + a) for all
(z1,...,2n) and all a.

(c) If Xu,...,Xn are ild f(z — 0), show that, as long as EoX1 = 0, the estimator
W(X1,...,Xn) = X is equivariant for estimating 6 and satisfies EgWW = 0.

Suppose we have a random sample Xi,..., X, from % f((z —0)/c), a location-scale
pdf. We want to estimate 8, and we have two groups of transformations under consid-
eration:

G1 = {ga,c(x): —00 < a < 00, ¢ > 0},
where gq.c(21,...,2n) = (cz1 +a,...,cz, + a), and
G2 = {ga(x): —c0 < a < o0},

where go(x1,...,2n) = (21 + a,...,Tn + a).

(a) Show that estimators of the form
W(z1,...,20) =T + k,

where k is a nonzcro constant, are equivariant with respect to the group G, but
arc not equivariant with respect to the group G.

(b) For each group, under what conditions does an equivariant estimator W satisfy
EgW = 0, that is, it is unbiased for estimating 07

Again, supposc we have a random sample Xi,..., X, from %f((x —0)/0), a location-
scale pdf, but we arc now interested in estimating 0. We can consider three groups
of transformations:

G1 = {ga,c(x): —00 < a < 00, ¢ > 0},
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where ga,c(21,...,2n) = (cz1 +@,...,cTn + a);
G2 = {ga(x): —00 < a < o0},
where ga(z1,...,2n) = (z1 +a,...,Z, + a); and
Gs = {gc(x): ¢ > 0},

where gc(z1,...,%n) = (cz1,...,CTn).

(a) Show that estimators of o of the form kS?, where k is a positive constant and
S? is the sample variance, are invariant with respect to G and equivariant with
respect to the other two groups.

(b) Show that the larger class of estimators of o of the form

W(Xl,...,Xn) = ¢<:§-)827

where ¢(z) is a function, are equivariant with respect to Gs but not with respect
to either Gi or Ga, unless ¢(x) is a constant (Brewster and Zidek 1974).
Consideration of estimators of this form led Stein (1964) and Brewster and Zidek
(1974) to find improved estimators of variance (see Lehmann and Casella 1998,
Section 3.3).

6.6 Miscellanea

6.6.1 The Converse of Basu’s Theorem

An interesting statistical fact is that the converse of Basu’s Theorem is false. That
is, if T(X) is independent of every ancillary statistic, it does not necessarily follow
that 7(X) is a complete, minimal sufficient statistic. A particularly nice treatment
of the topic is given by Lehmann (1981). He makes the point that one reason the
converse fails is that ancillarity is a property of the entire distribution of a statistic,
whereas completeness is a property dealing only with expectations. Consider the
following modification of the definition of ancillarity. -

Definition 6.6.1 A statistic V(X) is called first-order ancillary if EoV(X) is
independent of 6.

Lehmann then proves the following theorem, which is somewhat of a converse to
Basu’s Theorem.

Theorem 6.6.2 Let T be a statistic with VarT < co. A necessary and sufficient
condition for T to be complete is that every bounded first-order ancillary V is
uncorrelated (for all ) with every bounded real-valued function of T.

Lehmann also notes that a type of converse is also obtainable if, instead of modi-
fying the definition of ancillarity, the definition of completeness is modified.
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6.6.2 Confusion About Ancillarity

One of the problems with the concept of ancillarity is that there are many different
definitions of ancillarity, and different properties are given in these definitions. As
was scen in this chapter, ancillarity is confusing enough with one definition—with
five or six the situation becomes hopeless.

As told by Buehler (1982), the concept of ancillarity gocs back to Sir Ronald Fisher
(1925), “who left a characteristic trail of intriguing concepts but no definition.”
Buehler gocs on to tell of at least three definitions of ancillarity, crediting, among
others, Basu (1959) and Cox and Hinkley (1974). Buehler gives eight propertics of
ancillary statistics and lists 25 examples.

However, it is worth the effort to understand the difficult topic of ancillarity, as
it can play an important role in inference. Brown (1996) shows how ancillarity
affects inference in regression, and Reid (1995) reviews the role of ancillarity (and
other conditioning) in inference. The review article of Lechmann and Scholz (1992)
provides a good entry to the topic.

6.6.3 More on Sufficiency

1. Sufficiency and Likelihood
Therc is a striking similarity between the statement of Theorem 6.2.13 and the
Likelihood Principle. Both rclate to the ratio L(0|x)/L(8]y), one to describe a
minimal sufficient statistic and the other to describe the Likclihood Principle.
In fact, these theorems can be combined, with a bit of care, into the fact that
a statistic 7'(x) is a minimal sufficient statistic if and only if it is a onc-to-one
function of L(0|x) (where two sample points that satisfy (6.3.1) are said to have
the same likelihood function). Example 6.3.3 and Exercisc 6.9 illustrate this
point.

2. Sufficiency and Necessity
We may ask, “If there are sufficient statistics, why aren’t therc necessary statis-
tics?” In fact, there are. According to Dynkin (1951), we have the following
definition.

Definition 6.6.3 A statistic is said to be necessary if it can be written asa
function of every sufficient statistic.

If we comparc the definition of a neccessary statistic and the definition of a
minimal sufficient statistic, it should comec as no surprise that we have the
following theorem.

Theorem 6.6.4 A statistic is a minimal sufficient statistic if and only if it
s a necessary and sufficient statistic.

3. Minimal Sufficiency
There is an interesting development of minimal sufficiency that actually follows
from Theorem 6.2.13 (scc Exercise 6.28) and is extremely uscful in establishing
minimal sufficiency outside of the cxponential family.
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Theorem 6.6.5 (Minimal sufficient statistics) Suppose that the family of
densities { fo(x), ..., fe(x)} all have common support. Then

a. The statistic

CAX) R fX)
1) = (fo(X) (X)) fo(X)>

is minimal sufficient for the family { fo(x),..., fr(x)}.
b. If F is a family of densities with common support, and

(i) fz(X) eF,t1=0,1,...,k,
(ii) T'(x) s sufficient for F,

then T'(x) is minimal sufficient for F.

Although Theorem 6.6.5 can be used to establish the minimal sufficiency of X
in a n(#, 1) family, its real usefulness comes when we venture outside of simple
situations. For example, Theorem 6.6.5 can be used to show that for samples
from distributions like the logistic or double exponential. the order statistics are
minimal sufficient (Exercise 6.26). Even further, it can extend to nonparamectric
families of distributions (Exercise 6.26).

For more on minimal sufficiency and completeness, see Lehmann and Casella
(1998, Section 1.6).






Chapter 7

Point Estimation

“What! you have solved it already?”
“Well, that would be too much to say. I have discovered a suggestive fact, that
is all.”
Dr. Watson and Sherlock Holmes
The Sign of Four

7.1 Introduction

This chapter is divided into two parts. The first part deals with methods for finding
estimators, and the second part deals with evaluating these (and other) estimators. In
general these two activities are intertwined. Often the methods of evaluating estima-
tors will suggest new ones. However, for the time being, we will make the distinction
between finding estimators and evaluating them.

The rationale behind point estimation is quite simple. When sampling is from a
population described by a pdf or pmf f(z|0), knowledge of 6 yields knowledge of the
entire population. Hence, it is natural to seek a method of finding a good estimator
of the point 0, that is, a good point estimator. It is also the case that the parameter
f has a meaningful physical interpretation (as in the case of a population mean) so
there is direct interest in obtaining a good point estimate of 6. It may also be the
case that some function of 0, say 7(6), is of interest. The methods described in this
chapter can also be used to obtain estimators of 7(6).

The following definition of a point estimator may seem unnecessarily vague. How-
ever, at this point, we want to be careful not to eliminate any candidates from con-
sideration.

Definition 7.1.1 A point estimator is any function W(Xjy,...,X,) of a sample;
that is, any statistic is a point estimator.

Notice that the definition makes no mention of any correspondence between the
estimator and the parameter it is to estimate. While it might be argued that such a
statement should be included in the definition, such a statement would restrict the
available set of estimators. Also, there is no mention in the definition of the range
of the statistic W (X3, ..., X,,). While, in principle, the range of the statistic should
coincide with that of the parameter, we will see that this is not always the case.



312 POINT ESTIMATION Section 7. -

There is one distinction that must be made clear, the difference between an estimate -
and an estimator. An estimator is a function of the sample, while an estimate is the
realized value of an estimator (that is, a number) that is obtained when a sample is
actually taken. Notationally, when a sample is taken, an estimator is a function of the
random variables X1,...,X,, while an estimatc is a function of the realized values
LlyeeyTn-

In many cases, there will be an obvious or natural candidate for a point estimator
of a particular parameter. For example, the sample mean is a natural candidate for
a point estimator of the population mean. However, when we leave a simple case like
this, intuition may not only desert us, it may also lead us astray. Therefore, it is
useful to have some techniques that will at least give us some reasonable candidates
for consideration. Be advised that these techniques do not carry any guarantees with
them. The point estimators that they yield still must be evaluated before their worth
is established.

7.2 Methods of Finding Estimators.

In some cascs it is an easy task to decide how to cstimate a parameter, and often intu-
ition alone can lead us to very good estimators. For example, estimating a parameter
with its sample analogue is usually reasonable. In particular, the sample mean is a
good estimate for the population mean. In more complicated models, ones that often
arise in practice, we need a more methodical way of estimating parameters. In this
section we detail four methods of finding estimators.

7.2.1 Method of Moments

The method of moments is, perhaps, the oldest method of finding point estimators,
dating back at least to Karl Pearson in the late 1800s. It has the virtue of being
quite simple to use and almost always yields some sort of estimate. In many cases,
unfortunately, this method yields estimators that may be improved upon. However,
it is a good place to start when other methods prove intractable.

Let X1,...,X, be a sample from a population with pdf or pmf f(z|6,...,60).
Method of moments estimators are found by equating the first £ sample moments
to the corresponding k population moments, and solving the resulting system of
simultancous equations. More precisely, define

1 n

my =EZX1,17 ,u'lleXla
i=1

_]' - 2 1 2

mQ—;L"ZXia H’Q—EXa
i=1

(7.2.1)

1 n
mk=a§:xﬁ p, =EX*.
=1
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The population moment p'; will typically be a function of 01, . . ., Oy, say ' ; (01, . . ., Ok).

The method of moments estimator (6y,...,0;) of (61,...,0%) is obtained by solving
the following system of equations for (6y,...,0x) in terms of (mq,...,mg):

mi = :u'/l(el)' .. 7916)}
mo = /J,,Q(@l,. . .,Qk),

(7.2.2)
myp = u’k(Gl, “es ,Gk)

Example 7.2.1 (Normal method of moments) Suppose X1y..., Xy are iid
n(d,0?). In the preceding notation, §; = 6 and 6, = 2. We have m; = X, mp =
(1/n)S> X2, 1y =0, 'y = 6% + 02, and hence we must solve

_ 1
X=0, =Y X?=0°%+c2
X XI=0to

Solving for § and o? yields the method of moments estimators

~ 1 _ 1 _
0=2X d 2==-) X?_X?=-_= X, — X)2.
and o nz ; nZ( ) |

In this simple example, the method of moments solution coincides with our intuition
and perhaps gives some credence to both. The method is somewhat more helpful,
however, when no obvious estimator suggests itself.

Example 7.2.2 (Binomial method of moments) Let X1,...,X, be iid
binomial(k, p), that is,

k
P(X; = zlk,p) = (x)pf”(l —-p)*%  z=0,1,...,k

Here we assume that both k£ and p are unknown and we desire point estimators
for both parameters. (This somewhat unusual application of the binomial model has
been used to estimate crime rates for crimes that are known to have many unreported
occurrences. For such a crime, both the true reporting rate, p, and the total number
of occurrences, k, are unknown.)

Equating the first two sample moments to those of the population yields the system
of equations

X = kp,
%ZXz?:kp(l—kaz ?,

which now must be solved for k and p. After a little algebra, we obtain the method
of moments estimators

X’Q

b= %o (1/n) 2 (X; — X)?
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and

p=

= >

Admittedly, these are not the best estimators for the population parameters. In
particular, it is possible to get negative estimates of k and p which, of course, must
be positive numbers. (This is a case where the range of the estimator does not coincide
with the range of the parameter it is estimating.) However, in fairness to the method
of moments, note that negative estimates will occur only when the sample mean is
smaller than the sample variance, indicating a large degree of variability in the data.
The method of moments has, in this case, at least given us a set of candidates for
point cstimators of k and p. Although our intuition may have given us a candidate
for an estimator of p, coming up with an estimator of k£ is much more difficult. |

The method of moments can be very uscful in obtaining approximations to the dis-
tributions of statistics. This technique, sometimes called “moment matching,” gives
us an approximation that is based on matching moments of distributions. In theory,
the moments of the distribution of any statistic can be matched to those of any distri-
bution but, in practice, it is best to use distributions that are similar. The following
example illustrates one of the most famous uses of this technique, the approximation
of Satterthwaite (1946). It is still used today (see Exercise 8.42).

Example 7.2.3 (Satterthwaite approximation) If Y;,i =1, ...k, are inde-
pendent X%i random variables, we have already scen (Lemma 5.3.2) that the distribu-
tion of >_ Y; is also chi squared, with degrees of freedom equal to ) 7;. Unfortunately,
the distribution of > a;Y;, where the a;s are known constants, is, in general, quite
difficult to obtain. It does seem reasonable, however, to assume that a x2, for some
value of v, will provide a good approximation.

This is almost Satterthwaite’s problem. He was interested in approximating the
denominator of a t statistic, and ) a;Y; represented the square of the denominator
of his statistic. Hence, for given ag,...,ax, he wanted to find a value of v so that

k 2
Z a;Y; ~ Xy (approximately).
i=1 v
Since E(x2/v) = 1, to match first moments we need

k k k
E (Z CZZY;) = ZazEY; = Zaﬂ'i = 1,
i=1 i=1 =1

which gives us a constraint on the a;s but gives us no information on how to estimate
v. To do this we must match second moments, and we need

k 2 E\? 2
vl =g(X2) =21
(Ber) -5 ()3
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Applying the method of moments, we drop the first expectation and solve for v,
yielding
2
(Cimy ai¥i)? = 1

- Thus, straightforward application of the method of moments yields an estimator of
v, but one that can be negative. We might suppose that Satterthwaite was aghast at
this possibility, for this is not the estimator he proposed. Working much harder, he
customized the method of moments in the following way. Write

E (Z aiYi>2 = Var (Z aY) + <EZaiY;>2
= (BY a; ) lvgrzzafh )) + 1}

N [Ygr(zzaamg " 1] | (B Sa;Y; =1)

Now equate second moments to obtain

~ Var(Ya;Y;)

Finally, use the fact that Y3, ..., Yr are independent chi squared random variables

to write
Var (E aiYi) = _S_ a?VarYi
’ a?(EY;)?
=2 o A et VarY; = 2(EY;)?/r;
2 (VarY; = 2(EY;)?/r;)

U=

Substituting this expression for the variance and removing the expectations, we obtain
Satterthwaite’s estimator

(T a:Ys)
afv2
Y
This approximation is quite good and is still widely used today. Notice that Sat-

terthwaite succeeded in obtaining an estimator that is always positive, thus alleviating
the obvious problems with the straightforward method of moments estimator. I

U=

1.2.2 Mazimum Likelthood Estimators

The method of maximum likelihood is, by far, the most popular technique for deriving
estimators. Recall that if X1, ..., X,, are an iid sample from a population with pdf
or pmf f(x|61,...,0%), the likelihood function is defined by

(723> L(H’X) = L(gl’ cee 9k|$1, .- 'amn) - Hj=1f(xi|01> ceey ek:)



316 POINT ESTIMATION Scction 7.2

Definition 7.2.4 For each sample point x, let 9()() be a parameter value at which
L(0]x) attains its maximum as a function of 8, with x held fixed. A mazimum likelihood

estimator (MLE) of the parameter 8 based on a sample X is 6(X).

Notice that, by its construction, the range of the MLE coincides with the range of
the parameter. We also usc the abbreviation MLE to stand for maximum likelihood
estimate when we are talking of the rcalized value of the estimator.

Intuitively, the MLE is a reasonable choice for an estimator. The MLE is the pa-
rameter point for which the observed sample is most likely. In general, the MLE is a
good point cstimator, possessing some of the optimality properties discussed later.

There are two inherent drawbacks associated with the general problem of finding
the maximum of a function, and hence of maximum likelihood estimation. The first
problem is that of actually finding the global maximum and verifying that, indeed,-
a global maximum has been found. In many cases this problem reduces to a simple
differential calculus exercise but, sometimes cven for common densities, difficulties do
arise. The second problem is that of numerical sensitivity. That is, how sensitive is
the estimate to small changes in the data? (Strictly speaking, this is a mathematical
rather than statistical problem associated with any maximization procedure. Since
an MLE is found through a maximization procedure, however, it is a problem that
we must deal with.) Unfortunately, it is sometimes the case that a slightly different
sample will produce a vastly different MLE, making its use suspect. We consider first
the problem of finding MLEs.

If the likelihood function is diffcrentiable (in 6;), possible candidates for the MLE
are the values of (64, ...,0;) that solve

0
00;

(7.2.4) L(f|x) =0, 1=1,...,k.

Note that the solutions to (7.2.4) are only possible candidates for the MLE since the
first derivative being 0 is only a necessary condition for a maximum, not a sufficient
condition. Furthermore, the zecros of the first derivative locate only extreme points
in the interior of the domain of a function. If the extrema occur on the boundary
the first derivative may not be 0. Thus, the boundary must be checked separately for
extrema.

Points at which the first derivatives are 0 may be local or global minima, local or
global maxima, or inflection points. Our job is to find a global maximum.

Example 7.2.5 (Normal likelihood) Let Xq,...,X, be iid n(0,1), and let
L(6]x) denote the likelihood function. Then

- 1 2
L(f|x) = —(1/2)(90,-—9)2 _ e(—1/2)TE (z:i—0)*
IX (27r)n/2

2:1
The equation (d/df)L(8|x) = 0 reduces to

n

> (zi—0) =

i=1
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which has the solution 6 = Z. Hence, Z is a candidate for the MLE. To verify that
zis, in fact, a global maximum of the likelihood function, we can use the following
argument. First, note that § = Z is the only solution to > (z; — ) = 0; hence Z is the
only zero of the first derivative. Second, verify that

d2

WL(GIX)b:i < 0.

\Thus, Z is the only extreme point in the interior and it is a maximum. To finally verify
that Z is a global maximum, we must check the boundaries, dco. By taking limits it
is easy to establish that the likelihood is 0 at £00. So ¢ = 7 is a global maximum and
hence X is the MLE. (Actually, we can be a bit more clever and avoid checking +oo.
Since we established that Z is a unique interior extremum and is a maximum, there
can be no maximum at oco. If there were, then there would have to be an interior
minimum, which contradicts uniqueness.) I

Another way to find an MLE is to abandon differentiation and proceed with a
direct maximization. This method is usually simpler algebraically, especially if the
derivatives tend to get messy, but is sometimes harder to implement because there
are no set rules to follow. One general technique is to find a global upper bound on
the likelihood function and then establish that there is a unique point for which the
upper bound is attained.

Example 7.2.6 (Continuation of Example 7.2.5) Recall (Theorem 5.2.4) that
for any number a,

n

(w0 2 Y (i - 7)?

=1
“with equality if and only if @ = Z. This implies that for any 6,

e~ (/2T (@:i=0)* < ,—(1/2)%(z:~2)*
with equality if and only if @ = Z. Hence X is the MLE. I

In most cases, especially when differentiation is to be used, it is easier to work
~with the natural logarithm of L(0|x),log L(6|x) (known as the log likelihood), than it
is to work with L(6|x) directly. This is possible because the log function is strictly
increasing on (0, 00), which implies that the extrema of L(#|x) and log L(8|x) coincide
(see Exercise 7.3).

Example 7.2.7 (Bernoulli MLE) Let X,,..., X, be iid Bernoulli(p). Then the
likelihood function is

n

L(p|x) — pri(l _ p)l—xi — py(l _ p)n——y,
i=1
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where y = Y x;. While this function is not all that hard to differentiate, it is much
easier to differentiate the log likelihood

log L(p|x) = ylogp + (n — y) log(1 — p).

If 0 < y < n, differentiating log L(p|x) and setting the result equal to 0 give the
solution, p = y/n. It is also straightforward to verify that y/n is the global maximum
in this case. If y = 0 or y = n, then |

Jog L(p|x) = {nlog(l - D) ify=0

nlogp if y=n.

In either case log L(p|x) is a monotone function of p, and it is again straightforward
to verify that p = y/n in each case. Thus, we have shown that ) X;/n is the MLE

of p. |

In this derivation we have assumed that the parameter space is 0 < p < 1. The
values p = 0 and 1 must be in the parameter space in order for p = y/n to be the
MLE for y = 0 and n. Contrast this with Example 3.4.1, where we took 0 < p < 1 to
satisfy the requirements of an exponential family.

One other point to be aware of when finding a maximum likelihood estimator is
that the maximization takes place only over the range of parameter values. In some
cases this point plays an important part.

Example 7.2.8 (Restricted range MLE) Let Xi,..., X, beiid n(6, 1), whereit

is known that # must be nonnegative. With no restrictions on 6, we saw that the MLE

of 8 is X; however, if X is negative, it will be outside the range of the parameter.
If Z is negative, it is easy to check (see Exercise 7.4) that the likelihood function

L(0|x) is decreasing in 6 for § > 0 and is maximized at = 0. Hence, in this case,
the MLE of 6 is

f=Xif X>0 and =0if X <. ||

If L(f|x) cannot be maximized analytically, it may be possible to use a computer
and maximize L(f|x) numerically. In fact, this is one of the most important features
of MLEs. If a model (likelihood) can be written down, then there is some hope of
maximizing it numerically and, hence, finding MLEs of the parameters. When this
is done, there is still always the question of whether a local or global maximum has
been found. Thus, it is always important to analyze the likelihood function as much
as possible, to find the number and nature of its local maxima, before using numeric
maximization.

Example 7.2.9 (Binomial MLE, unknown number of trials) Let Xj,...,
X, be a random sample from a binomial(k, p) population, where p is known and £ is
unknown. For example, we flip a coin we know to be fair and observe x; heads but
we do not know how many times the coin was flipped. The likelihood function is

L{k|x,p) = ﬁ (j)px"(l —p)FTT.

i=1
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Maximizing L(k|x,p) by differentiation is difficult because of the factorials and be-
cause k must be an integer. Thus we try a different approach.

Of course, L(k|x,p) = 0 if k¥ < max; ;. Thus the MLE is an integer £ > max; z;
that satisfies L(k|x,p)/L(k — 1|x,p) > 1 and L(k + 1|x,p)/L(k|x,p) < 1. We will
show that there is only one such k. The ratio of likelihoods is

L(klx,p) _ (kA =p)"
L(k = 1px,p) Ly (b —z:)

Thus the condition for a maximum is

(k(1 = p) H c—z;) and ((k+ 1)1 -p)" < [J(E+1-2).

Dividing by &£™ and letting z = 1/k, we want to solve

(1—-p)" =] —22)

i=1

for 0 < z < 1/ max; x;. The right-hand side is clearly a strictly decreasing function
of z for z in this range with a value of 1 at z = 0 and a value of 0 at z = 1/ max; z;.
Thus there is a unique z (call it 2) that solves the equation. The quantity 1/2 may not
be an integer. But the integer k that satisfies the inequalities, and is the MLE, is the
largest integer less than or equal to 1/2 (see Exercise 7.5). Thus, this analysis shows
that there is a unique maximum for the likelihood function and it can be found by
numerically solving an nth-degree polynomial equality. This description of the MLE
for k£ was found by Feldman and Fox (1968). See Example 7.2.13 for more about
estimating k. I

A useful property of maximum likelihood estimators is what has come to be known
as the invariance property of mazimum likelihood estimators (not to be confused with
the type of invariance discussed in Chapter G). Suppose that a distribution is indexed
by a parameter 8, but the interest is in finding an estimator for some function of 0,
say 7(0). Informally speaking, the invariance property of MLEs says that if g is the
MLE of 6, then 7(#) is the MLE of (6). For example, if 6 is the mean of a normal
distribution, the MLE of sin(f) is sin(X). We present the approach of Zehna (1966),
but see Pal and Berry (1992) for alternative approaches to MLE invariance.

There are, of course, some technical problems to be overcome before we can formal-
ize this notion of invariance of MLEs, and they mostly focus on the function 7(6) that
we are trying to estimate. If the mapping § — 7(0) is one-to-one (that is, for each
value of 8 there is a unique value of 7(0), and vice versa), then there is no problem.
In this case, it is easy to see that it makes no difference whether we maximize the
likelihood as a function of 8 or as a function of 7(f) — in each case we get the same
answer. If we let n = 7(6), then the inverse function 771(n) = 6 is well defined and
the likelihood function of 7(6), written as a function of 7, is given by

L*(nlx) = H flailr™ () = L(r~ () %)
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and

sup L*(n|x) = sup L(71(n)|x) = sgp L(0]|x).
n 7

Thus, the maximum of L*(n|x) is attained at n = 7(0) = 7(0), showing that the MLE

of 7(8) is 7(6).

In many cases, this simple version of the invariance of MLEs is not useful because
many of the functions we are interested in are not one-to-one. For example, to estimate
62, the square of a normal mean, the mapping § — 6?2 is not one-to-one. Thus, we
need a more general theorem and, in fact, a more general definition of the likelihood
function of 7(6).

If 7(f) is not one-to-one, then for a given value 7 there may be more than one
value of 8 that satisfies 7(f) = 7. In such cases, the correspondence between the
maximization over n and that over § can break down. For example, if 0 is the MLE of
g, there may be another value of 6, say 6y, for which 7(8) = 7(6p). We need to avoid
such difficulties. :

We proceed by defining for 7(6) the induced likelihood function L*, given by

(7.2.5) L*(n|x) = sup L(0|x).
{0:7(0)=n}

The value 7 that maximizes L*(n|x) will be called the MLE of n = 7(6), and it can
be seen from (7.2.5) that the maxima of L* and L coincide.

Theorem 7.2.10 (Invariance property of MLEs) If 0 is the MLE of 0, then

A

for any function 7(0), the MLE of 7(0) is 7(0).

Proof: Let 7 denote the value that maximizes L*(n|x). We must show that L*(7|x) =
L*[7(0)|x]. Now, as stated above, the maxima of L and L* coincide, so we have

L*(fj|x) =sup sup L(6]x) (definition of L*)
n {6:7(0)=n}
= sup L(0]x)
0
= L(f]x), (definition of §)

where the second equality follows because the iterated maximization is equal to the
unconditional maximization over 6, which is attained at 8. Furthermore

Llx)=  sup  L(4x) (0 is the MLE)
{6:7(0)=7(8)}
= L*[7(0)]x]. (definition of L*)

Hence, the string of equalities shows that L*(7|x) = L*(7(6)|x) and that 7(f) is the
MLE of 7(6). 0
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Using this theorem, we now see that the MLE of 62, the square of a normal mean,
is X2. We can also apply Theorem 7.2.10 to more complicated functions to see that,
for example, the MLE of 1/p(1 — p), where p is a binomial probability, is given by
o= p).

Before we leave the subject of finding maximum likelihood estimators, there are a
few more points to be mentioned.

The invariance property of MLEs also holds in the multivariate case. There is
nothing in the proof of Theorem 7.2.10 that precludes ¢ from being a vector. If
the MLE of (01,...,0k) is (01,...,0), and if 7(6q,...,0k) is any function of the
parameters, the MLE of 7(61,...,0;) is T(él, . ,ék)

If0 = (61,...,0k) is multidimensional, then the problem of finding an MLE is that
of maximizing a function of several variables. If the likelihood function is differentiable,
setting the first partial derivatives equal to 0 provides a necessary condition for an
extremum in the interior. However, in the multidimensional case, using a second
derivative condition to check for a maximum is a tedious task, and other methods
might be tried first. We first illustrate a technique that usually proves simpler, that
of successive maximizations.

Example 7.2.11 (Normal MLEs, p and ¢ unknown) Let Xi,..., X, be iid
n(f,0?), with both § and ¢? unknown. Then

1 n 2
L(0, 0%|x) = We—ﬂ/zmwre)"’/v

and

1 n
log L(6, 02|x) = —g- log 2 — glog o =5 ) (@i 0)*/0%
=1

The partial derivatives, with respect to # and o2, are

and

Setting these partial derivatives equal to 0 and solving yields the solution g = z,6% =

n~tY " (z; — %)% To verify that this solution is, in fact, a global maximum, recall
first that if 6 # Z, then > (z; — 8)2 > S (z; — Z)2. Hence, for any value of o2,

(726) (2—17)76—(1/2)2:5;1(:67:_‘%)2/02 Z —(2 12) /2 e_(1/2)2?=1(_1;i_9)2/0,2.
To“)n TO2)"

Therefore, verifying that we have found the maximum likelihood estimators is reduced
to a one-dimensional problem, verifying that (6%)~"/2exp(—3 " (2;—%)?/0?) achieves
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its global maximum at 02 = n~! Y (z; — z)2. This is straightforward to do using
univariate calculus and, in fact, the estimators (X, n™! > (X; — X)?) are the MLEs,

We note that the left side of the inequality in (7.2.6) is known as the profile likelihood
for o2. See Miscellanea 7.5.5. I

Now consider the solution to the same problem using two-variate calculus.

Example 7.2.12 (Continuation of Example 7.2.11)  To use two-variate cal
culus to verify that a function H(61,62) has a local maximum at (01,05), it must be
shown that the following three conditions hold.

a. The first-order partial derivatives are 0,

0 0
"a—g—lH(al, 02)|91=é1:92=0“2 =0 and (—9'0—2-.[{(01, 92>|61:9‘1’92=0‘2 = 0.

b. At least one second-order partial derivative is negative,

02 L
8—9%H(91,92)]91:91’6,2:92 <0 or 602H(91,92)|91 —,,0,=6, < 0-

c. The Jacobian of the second-order partial derivatives is positive,

82’ H(@l, 92) 00 ag (011 92)

5°
aeaezH(91>92) a5z H (61, 02) 01 =61 0uds

82 82 62 2
892 (01,92)692 (01,92) - (801892}](91'92))

For the normal log likelihood, the second-order partial derivatives are

> 0.
01=0,,02=0,

55 log L(6,0°|x) = —

N2 n

%) 5 1 & 5
372 log L(0, 0°|x) = 501~ F;(xz —0)

92 1 <
8_0—5}-2— lOb (9 02[X) F Z(iﬂz - 9)
1=1

Properties (a) and (b) are easily seen to hold, and the Jacobian is

—-n 1
52 T4 ;(fﬂi —0)
1 <& n 1< 0
=y (zi — 6) 2% 5 - (zi — 0)
i=1 1=1 0=3%,0%2=52
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1 |-n? n <« 1 (<& ?

i=1 .
0=%,02=62

1 n?

5_6-2— > 0.

Thus, the calculus conditions are satisfied and we have indeed found a maximum.
(Of course, to be really formal, we have verified that (zZ,52) is an interior maximum.
We still have to check that it is unique and that there is no maximum at infinity.)
The amount of calculation, even in this simple problem, is formidable, and things will
only get worse. (Think of what we would have to do for three parameters.) Thus, the
moral is that, while we always have to verify that we have, indeed, found a maximum,
we should look for ways to do it other than using second derivative conditions. I

Finally, it was mentioned earlier that, since MLEs are found by a maximization
process, they are susceptible to the problems associated with that process, among
them that of numerical instability. We now look at this problem in more detail.

Recall that the likelihood function is a function of the parameter, 8, with the data,
x, held constant. However, since the data are measured with error, we might ask how
small changes in the data might affect the MLE. That is, we calculate 0 based on
L(f]x), but we might inquire what value we would get for the MLE if we based our
calculations on L(6|x + €), for small e. Intuitively, this new MLE, say 91, should be
close to 8 if € is small. But this is not always the case.

Example 7.2.13 (Continuation of Example 7.2.2) Olkin, Petkau, and Zidek
(1981) demonstrate that the MLEs of £ and p in binomial sampling can be highly
unstable. They illustrate their case with the following example. Five realizations of a
binomial(k, p) experiment are observed, where both k£ and p are unknown. The first
data set is (16, 18, 22, 25, 27). (These are the observed numbers of successes from
an unknown number of binomial trials.) For this data set, the MLE of k is k= 99.
If a second data set is (16, 18, 22, 25, 28), where the only difference is that the 27
is replaced with 28, then the MLE of k is k= 190, demonstrating a large amount of
variability. ' I

Such occurrences happen when the likelihood function is very flat in the neigh-
borhood of its maximum or when there is no finite maximum. When the MLEs can
be found explicitly, as will often be the case in our examples, this is usually not a
problem. However, in many instances, such as in the above example, the MLE cannot
be solved for explicitly and must be found by numeric methods. When faced with
such a problem, it is often wise to spend a little extra time investigating the stability
of the solution.
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7.2.8 Bayes Estimators

The Bayesian approach to statistics is fundamentally different from the classical ap-
proach that we have been taking. Nevertheless, some aspects of the Bayesian approach
can be quite helpful to other statistical approaches. Before going into the methods
for finding Bayes estimators, we first discuss the Bayesian approach to statistics.

In the classical approach the parameter, 8, is thought to be an unknown, but fixed,
quantity. A random sample Xi,..., X, is drawn from a population indexed by 8
and, based on the observed values in the sample, knowledge about the value of 8 is
obtained. In the Bayesian approach 6 is considered to be a quantity whose variation
can be described by a probability distribution (called the prior distribution). This is
a subjective distribution, based on the experimenter’s belief, and is formulated before
the data are scen (hence the name prior distribution). A sample is then taken from
a population indexed by 6 and the prior distribution is updated with this sample
information. The updated prior is called the posterior distribution. This updating
is done with the use of Bayes’ Rule (seen in Chapter 1), hence the name Bayesian
statistics. .

If we denote the prior distribution by 7(6) and the sampling distribution by f(x|6),
then the posterior distribution, the conditional distribution of 6 given the sample, x,
is

(7.2.7) m(0]x) = f(x|0)7(0)/m(x), (f(x|0)7(0) = f(x,6))

where m(x) is the marginal distribution of X, that is,

(7.2.8) m(x) = / £(x]0)m(6)d6.

Notice that the posterior distribution is a conditional distribution, conditional upon
observing the sample. The posterior distribution is now used to make statements
about @, which is still considered a random quantity. For instance, the mean of the
posterior distribution can be used as a point estimate of 6.

A note on notation: When dealing with distributions on a parameter, 6, we will break
our notation convention of using uppercase letters for random variables and lowercase
letters for arguments. Thus, we may speak of the random quantity 8 with distribution
7(#). This is more in line with common usage and should not cause confusion.

Example 7.2.14 (Binomial Bayes estimation) Let Xi,...,X, be iid
Bernoulli(p). Then Y = > X, is binomial(n,p). We assume the prior distribution
on p is beta(a, ). The joint distribution of Y and p is

o[- [E-o] (

_ n F((X-{—ﬁ) y+o—1 n—y+£5-1
_(y>1“(oc)1“(6)p+ A
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The marginal pdf of Y is

(M. . (n\ D(e+B) Iy+a)l(n—y+p)
(7.2.9) ﬂw—[;ﬂ%m@—(y)mmwm Tntatld)

adistribution known as the beta-binomial (see Exercise 4.34 and Example 4.4.6). The
posterior distribution, the distribution of p given vy, is

_ .f(yap) _ P(TL+OZ+B) y+oa—1lrq _ yn—y+5-1
=" =T+ alt-y+p? P

which is beta(y + a,n — y + ). (Remember that p is the variable and y is treated
as fixed.) A natural estimate for p is the mean of the posterior distribution, which
would give us as the Bayes estimator of p,

ﬁB:_y_JTL_ I
at+B+n

Consider how the Bayes estimate of p is formed. The prior distribution has mean
o/(a + B), which would be our best estimate of p without having seen the data.
Ignoring the prior information, we would probably use p = y/n as our estimate of p.
The Bayes estimate of p combines all of this information. The manner in which this
information is combined is made clear if we write pp as

L n Y a+p o}
PB = (a+5+n)(n)+<a+ﬂ+n) (a+ﬂ>'

Thus pg is a linear combination of the prior mean and the sample mean, with the
weights being determined by «, 3, and n.

When estimating a binomial parameter, it is not necessary to choose a prior distri-
bution from the beta family. However, there was a certain advantage to choosing the
. beta family, not the least of which being that we obtained a closed-form expression
for the estimator. In general, for any sampling distribution, there is a natural family
of prior distributions, called the conjugate family.

Definition 7.2.15 Let F denote the class of pdfs or pmfs f(x|0) (indeked by 6). A
class [ ] of prior distributions is a conjugate family for F if the posterior distribution
isin the class [] for all f € F, all priors in [], and all z € X.

The beta family is conjugate for the binomial family. Thus, if we start with a beta
- prior, we will end up with a beta posterior. The updating of the prior takes the form of
updating its parameters. Mathematically, this is very convenient, for it usually makes
" calculation quite easy. Whether or not a conjugate family is a reasonable choice for a
particular problem, however, is a question to be left to the experimenter.

We end this section with one more example.



326 POINT ESTIMATION Section 7.2

Example 7.2.16 (Normal Bayes estimators) Let X ~ n(f,0?), and suppose
that the prior distribution on 6 is n(u,72). (Here we assume that o2, u, and 72 are
all known.) The posterior distribution of 6 is also normal, with mean and variance
given by

2 o2
E(f|x) =
(6]) e S gL
(7.2.10)
5272
Var (0|z) = ——.
ar (0]z) = ———

(See Exercise 7.22 for details.) Notice that the normal family is its own conjugate
family. Again using the posterior mean, we have the Bayes estimator of 8 is E(4|X).

The Bayes estimator is, again, a linear combination of the prior and sample means.
Notice also that as 72, the prior variance, is allowed to tend to infinity, the Bayes
estimator tends toward the sample mean. We can interpret this as saying that, as the
prior information becomes more vague, the Bayes estimator tends to give more weight
to the sample information. On the other hand, if the prior information is good, so
that ¢2 > 72, then more weight is given to the prior mean. I

7.2.4 The EM Algorithm?

A last method that we will look at for finding estimators is inherently different in its
approach and specifically designed to find MLEs. Rather than detailing a procedure
for solving for the MLE, we specify an algorithm that is guaranteed to converge to
the MLE. This algorithm is called the EM (Ezpectation-Mazimization) algorithm. It
is based on the idea of replacing one difficult likelihood maximization with a sequence
of easier maximizations whose limit is the answer to the original problem. It is partic- -
ularly suited to “missing data” problems, as the very fact that there are missing data
can sometimes make calculations cumbersome. However, we will see that filling in the
“missing data” will often make the calculation go more smoothly. (We will also see
that “missing data” have different interpretations-see, for example, Exercise 7.30.)

In using the EM algorithm we consider two different likelihood problems. The
problem that we are interested in solving is the “incomplete-data” problem, and the
problem that we actually solve is the “complete-data problem.” Depending on the
situation, we can start with either problem.

Example 7.2.17 (Multiple Poisson rates) We observe X1,...,X, and Y1,...,
Y., all mutually independent, where Y; ~ Poisson(87;) and X; ~ Poisson(7;). This
would model, for instance, the incidence of a disease, Y;, where the underlying rate is
a function of an overall effect # and an additional factor 7;. For example, 7; could be
a measure of population density in area ¢, or perhaps health status of the population
in area 7. We do not see 7; but get information on it through X;.

1 This section contains material that is somewhat specialized and more advanced. It may be skipped
without interrupting the flow of the text.
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The joint pmf is therefore

f((xlyyl)a (x27y2)7 vy (xn;yn)|ﬂ77-177—2, oo ,7'7,,)

(7.2.11) -

_ ) e )
- : .
i=1 Yi:

The likelihood estimators, which can be found by straightforward differentiation (see
Exercise 7.27) are

n
_EZ:%ZI iz and 7A'j = xé—i_zf, ] =1,2,
j=1 *1 +

The likelihood based on the pmf (7.2.11) is the complete-data likelihood, and
A(z1,91), (T2,92)5 -« -5 (T, yn)) is called the complete data. Missing data, which is
a common occurrence, would make estimation more difficult. Suppose, for example,
that the value of x; was missing. We could also discard y; and proceed with a sample
of size n — 1, but this is ignoring the information in y;. Using this information would
improve our estimates.

Starting from the pmf (7.2.11), the pmf of the sample with z; missing is

(7.2.12) B=

P 3

(7.2.13) > f(@n11), (@2, 02), - s (@ Yn)|B, 1, T2y - ).

1?1=0

The likelihood based on (7.2.13) is the incomplete-data likelihood. This is the likeli-
hood that we need to maximize. I

In general, we can move in either direction, from the complete-data problem to the
incomplete-data problem or the reverse. If Y = (Y1,...,Y,) are the incomplete data,
and X = (Xy,...,X,,) are the augmented data, making (Y, X) the complete data,
the densities ¢(+|8) of Y and f(-|0) of (Y, X) have the relationship

(1.2.14) 9(y18) = / £(y, x16) dx

with sums replacing integrals in the discrete case.

If we turn these into likelihoods, L(f|y) = ¢(y|0) is the incomplete-data likelihood
and L(0ly,x) = f(y, x|0) is the complete-data likelihood. If L(0|y) is difficult to work
with, it will sometimes be the case that the complete-data likelihood will be easier to
work with.

Example 7.2.18 (Continuation of Example 7.2.17) The incomplete-data like-
lihood is obtained from (7.2.11) by summing over x;. This gives

L(ﬂaTla T2y ey Tnlyl; (Jig,yg), e (xn, y’n))

N =BT T Yi n e~ Ti T z;
(7.2.15) ~ {H e_yif_)_} [H x(i!) ]

1=1 =2
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and (y1, (z2,¥2),.-.,(Tn,yn)) is the incomplete data. This is the likelihood that we
need to maximize. Differentiation leads to the MLE equations

3= D ic1 i
Zi:l %T
(7.2.16) y1 = 718,

T+ Yj =%j([3+1), J=2,3,...,n,
which we now solve with the EM algorithm. |

The EM algorithm allows us to maximize L(f|y) by working with only L(f|y,x)
and the conditional pdf or pmf of X given y and 8, defined by

, X0
1217 LOly.x) = frxl0), L) = o(y). and kxlpy) = L)
Rearrangement of the last equation in (7.2.17) gives the identity
(7.2.18) log L(8]y) = log L(0y,x) — log k(x|0,y)-

As x is missing data and hence not observed, we replace the right side of (7.2.18)
with its expectation under k(x|6’,y), creating the new identity

(7.2.19)  logL(0ly) = E[log L(0]y, X)|¢', y] — E [log k(X]0, y)|6', y].

Now we start the algorithm: From an initial value #(9) we create a sequence (")
according to

(7.2.20) 0("+1) = the value that maximizes E [log L0y, X)IQ(’"), y] .

The “E-step” of the algorithm calculates the expected log likelihood, and the “M-
step” finds its maximum. Before we look into why this algorithm actually converges
to the MLE, let us return to our example.

Example 7.2.19 (Conclusion of Example 7.2.17) Let (x,y) = ((z1,%),
(72,%2), ..., (Tn,Yn)) denote the complete data and (x(_1),y) = (1, (z2,%2),...,
(Zn, Yn)) denote the incomplete data. The expected complete-data log likelihood is

Ellog L(8, 71, 72, - - -, 7al (%, ¥) 1717, (%(-1), )]

s n e BT(Br)Yi e~ i (1;)% —7{ (M
e 7)Y e i (T e T
S o (B ) )

|
:C1=0 1=1 yz'

= [-B7 + yi(log B+ log7:) — log ys!] + Y _ [~ 7 + z: log 7i — log z:4!]

i=1 =2

e—Tl(r) (7..1("') )1131

331!

(oo}
(7221)  + ) [~ +zlogm —logzy!]

:I:1=0
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n n o0 —T]Sr) (T) ol
= (Z[—ﬂn + yi(log B+ log 73)] + Z[—Ti + z; log 7] + Z[—'rl + 21 log 71] e () )
i=2

!
i=1 x1=0 1

—T(r) (7‘) T
(ZIOgyll-l—Zloga;zl—l— Z log z;! : :1:(1’1 ) ) ,

x1=0

where in the last equality we have grouped together terms involving 8 and 7; and
terms that do not involve these parameters. Since we are calculating this expected
log likelihood for the purpose of maximizing it in 8 and 7;, we can ignore the terms
in the second set of parentheses. We thus have to maximize only the terms in the first
set of parentheses, where we can write the last sum as

e e_Tl(r) (T(T)):r (r
(7.2.22) -7 + log 1y Z 1 - ’1 =-71+7 )log T1.
1
1)1:0

When substituting this back into (7.2.21), we see that the expected complete-data
likelihood is the same as the original complete-data likelihood, with the exception
that z; is replaced by Tl(r). Thus, in the rth step the MLEs are only a minor variation
of (7.2.12) and are given by

(7.2.23) B+ D i1 Vi a1 _ _L)_ﬂi
G AT B+ 417
’7'§T+1)=A—%:F—y]¥, ) =2,3,...,n.
’ B+l 41

This defines both the E-step (which results in the substitution of f'l(r) for z1) and
the M-step (which results in the calculation in (7.2.23) for the MLEs at the rth it-
eration. The properties of the EM algorithm give us assurance that the sequence

(80, #) # 2{") converges to the incomplete-data MLE as r — 0. See Exer-
cise 7 27 for more. I

We will not give a complete proof that the EM sequence {é(")} converges to the
incomplete-data MLE, but the following key property suggests that this is true. The
proof is left to Exercise 7.31.

Theorem 7.2.20 (Monotonic EM sequence) The sequence {0} defined by
(7.2.20) satisfies

(7.2.24) L (é(’"“) ly) >L (9(’") Iy) ,

with equality holding if and only if successive iterations yield the same value of the
mazimized expected complete-data log likelihood, that is,

E [log L(é(”l)ly,X)lé(”,y} =K [logL (é(r) ly, X) lé(T),y] .
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7.3 Methods of Evaluating Estimators

The methods discussed in the previous section have outlined reasonable techniques for
finding point estimators of parameters. A difficulty that arises, however, is that since
we can usually apply more than one of these methods in a particular situation, we
are often faced with the task of choosing between estimators. Of course, it is possible
that different methods of finding estimators will yield the same answer, which makes
evaluation a bit easier, but, in many cases, different methods will lead to different
estimators.

The general topic of evaluating statistical procedures is part of the branch of statis-
tics known as decision theory, which will be treated in some detail in Section 7.3.4.
However, no procedure should be considered until some clues about its performance
have been gathered. In this section we will introduce some basic criteria for evaluating
estimators, and examine several estimators against these criteria.

7.3.1 Mean Squared Error

We first investigate finite-sample measures of the quality of an estimator, beginning
with its mean squared error.

Definition 7.3.1 The mean squared error (MSE) of an estimator W of a parameter
6 is the function of 6 defined by Eq(W — 6)2.

Notice that the MSE measures the average squared difference between the estimator
W and the parameter 6, a somewhat reasonable measure of performance for a point
estimator. In general, any increasing function of the absolute distance |W — 8| would
serve to measure the goodness of an estimator (mean absolute error, Eo(|W — 0]), is
a reasonable alternative), but MSE has at least two advantages over other distance
measures: First, it is quite tractable analytically and, second, it has the interpretation

(7.3.1)  Eg(W —6)? = Varg W + (EgW — 6)? = Vary W + (Biasy W)?,
where we define the bias of an estimator as follows.

Definition 7.3.2 The bias of a point estimator W of a parameter 0 is the difference
between the expected value of W and 6; that is, Biasg W = EgW — 6. An estimator
whose bias is identically (in 6) equal to 0 is called unbiased and satisfies EgW = 6 for
all 0.

Thus, MSE incorporates two components, one measuring the variability of the
estimator (precision) and the other measuring its bias (accuracy). An estimator that
has good MSE properties has small combined variance and bias. To find an estimator
with good MSE properties, we need to find estimators that control both variance and
bias. Clearly, unbiased estimators do a good job of controlling bias.

For an unbiased estimator we have

Eg(W — 6)? = Varg W,

and so, if an estimator is unbiased, its MSE is equal to its variance.
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Example 7.3.3 (Normal MSE) Let X,..., X, be iid n(u, 0?). The statistics X
and S? are both unbiased estimators since'

EX =u, ES?=0¢? forall pando?

(This is true without the normality assumption; see Theorem 5.2.6.) The MSEs of
these estimators are given by

E(X—u)zz\/arX:%,
204

E(S? —0%)? = Var §% = ‘
n—1

The MSE of X remains 02?/n even if the normality assumption is dropped. However,
the above expression for the MSE of S? does not remain the same if the normality
assumption is relaxed (see Exercise 5.8). I

Although many unbiased estimators are also reasonable from the standpoint of
MSE, be aware that controlling bias does not guarantee that MSE is controlled. In
particular, it is sometimes the case that a trade-off occurs between variance and bias
in such a way that a small increase in bias can be traded for a larger decrease in
variance, resulting in an improvement in MSE.

Example 7.3.4 (Continuation of Example 7.3.3)  An alternative estimator
for 0% is the maximum likelihood estimator 6% = 2 3" (X; — X)? = 22152 Tt is
straightforward to calculate

E62=E (" — 152) =l
n n

s0 62 is a biased estimator of o2. The variance of 42 can also be calculated as

— —1\?2 _ 4
Var&Q:Var(n 152)= (" 1> Var52=2—(n———21)0—,

n n

and, hence, its MSE is given by

— 1ot — 2 —
E(&2_02)2=2(n 1o +<n 102_02) :<2n 1)04.

n? n

We thus have
-1 2
E(6% ~0%)? = <2n ) ot < ( 1) 0! = B(S? - 0?)?,

n2 n —

showing that 42 has smaller MSE than S2. Thus, by trading off variance for bias, the
MSE is improved. I
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We hasten to point out that the above example does not imply that S? should be
abandoned as an estimator of o2. The above argument shows that, on the average, §*
will be closer to o2 than S? if MSE is used as a measure. However, 2 is biased and
will, on the average, underestimate 2. This fact alone may make us uncomfortable
about using 62 as an estimator of o2. Furthermore, it can be argued that MSE, whilea
reasonable criterion for location parameters, is not reasonable for scale parameters, so
the above comparison should not even be made. (One problem is that MSE penalizes
equally for overestimation and underestimation, which is fine in the location case. In
the scale case, however, 0 is a natural lower bound, so the estimation problem is not
symmetric. Use of MSE in this case tends to be forgiving of underestimation.) The
end result of this is that no absolute answer is obtained but rather more information
is gathered about the estimators in the hope that, for a particular situation, a good
estimator is chosen.

In general, since MSE is a function of the parameter, there will not be one “best”
estimator. Often, the MSEs of two estimators will cross each other, showing that
each estimator is better (with respect to the other) in only a portion of the parameter
space. However, even this partial information can sometimes provide guidelines for
choosing between estimators.

Example 7.3.5 (MSE of binomial Bayes estimator) Let Xi,..., X, beiid
Bernoulli(p). The MSE of p, the MLE, as an estimator of p, is

. > 1-
Ey(p —p)* = Var, X = 1%

Y+a
a+p+n’

Let Y = " X, and recall the Bayes estimator derived in Example 7.2.14, pg =
The MSE of this Bayes estimator of p is

E,(pp — p)® = Var, pp + (Bias, pp)*
Y +a Y +a 2
= - E.l——— ) —
-%%<a+ﬁ+n)+<p<a+ﬁ+n> p)

__np(l1-p) +<7w+a ~>2
T a+B8+n2  \a+pB+n F) -

In the absence of good prior information about p, we might try to choose o and
to make the MSE of pp constant. The details are not too difficult to work out (see
Exercise 7.33), and the choice o = 8 = y/n/4 yields

. Y +/n/4 .
- Y E(pr — -
PB TL—I—\/ﬁ and (pB p) 4(n+\/ﬁ)2

If we want to choose between pg and p on the basis of MSE, Figure 7.3.1 is helpful.
For small n, pp is the better choice (unless there is a strong belief that p is near (
or 1). For large n, p is the better choice (unless there is a strong belief that p is close
to —é—) Even though the MSE criterion does not show one estimator to be uniformly
better than the other, useful information is provided. This information, combined

) n
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.075 L MSE(:Y—) 00075 — MSE(/_Y-)
LN\ MSE(ps)
050 .00050 |
025F \ MSE(P8) 00025 |-
| i | | | |
P
0 5 1 0 5 P
n=4 n=400

Figure 7.3.1. Comparison of MSE of p and ps for sample sizes n = 4 and n = 400 in
Ezample 7.3.5

with the knowledge of the problem at hand, can lead to choosing the better estimator
for the situation. I

In certain situations, particularly in location parameter estimation, MSE can be
a helpful criterion for finding the best estimator in a class of equivariant estimators
(see Section 6.4). For a fixed g in the group G, denote the function that takes 6§ — ¢’
by 3(6) = 6’. Then if W(X) estimates § we have

Measurement Equivariance: W (x) estimates § = §(W(x)) estimates g(§) = 6"
Formal Invariance: W (x) estimates § = W(g(x)) estimates g(6) = 6'.

Putting these two requirements together gives W(g(x)) = g(W(x)).

Example 7.3.6 (MSE of equivariant estimators) Let X;,..., X, beiid f(z—
f). For an estimator W (X1, ..., X,) to satisfy W(g.(x)) = ga (W (x)), we must have

(7.3.2) W(x1,...,xn) +a=W(z1 +a,...,2, +a),

which specifies the equivariant estimators with respect to the group of transformations
defined by G = {gq(x): —00 < a < oo}, where go(z1,...,2n) = (z1 + a,..., 2, + a).
For these estimators we have \

Eog(W(X1,...,X,) — 0)?
=Eo (W(X1+a,...,Xn+a)—a—0)°
=Eo (W(X1—0,..., X, —0)) (a = —0)

=/—O:O.../_Z(W(;c1—0,,...,xn~9))21i11f(:6i—O)dl‘i

n

=1
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This last cxpression does not depend on 6; hence, the MSEs of these equivariant esti-
mators are not functions of 8. The MSE can therefore be used to order the equivariant
estimators, and an equivariant estimator with smallest MSE can be found. In fact,
this estimator is the solution to the mathematical problem of finding the function W
that minimizes (7.3.3) subject to (7.3.2). (See Exercises 7.35 and 7.36.) I

7.8.2 Best Unbiased FEstimators

As noted in the previous scction, a comparison of estimators based on MSE consider-
ations may not yield a clear favorite. Indeed, there is no one “best MSE” estimator.
Many find this troublesome or annoying, and rather than doing MSE comparisons of
candidate cstimators, they would rather have a “recommended” one.

The reason that there is no one “best MSE” estimator is that the class of all
estimators is too large a class. (For example, the estimator § = 17 cannot be beaten
in MSE at § = 17 but is a terrible estimator otherwise.) One way to make the problem
of finding a “best” estimator tractable is to limit the class of estimators. A popular
way of restricting the class of estimators, the onc we consider in this section, is to
consider only unbiased estimators.

If W, and W5 are both unbiased estimators of a parameter 6, that is, EgW; =
E¢Ws = 0, then their mean squared errors are equal to their variances, so we should
choosc the estimator with the smaller variance. If we can find an unbiased estimator
with uniformly smallest variance—a best unbiased estimator—then our task is done.

Before proceeding we note that, although we will be dealing with unbiased esti- -
mators, the results here and in the next section are actually more general. Suppose
that there is an estimator W* of § with Eg W* = 7(0) # 6, and we are interested in
investigating the worth of W*. Consider the class of estimators

Cr = {W: E¢W = 7(6)}.
For any W, W, € C,, Biasy W; = Biasg W5, so
Eg(Wl - 9)2 — EQ(VVQ — 9)2 = Val“g W1 — V&I‘g WQ,

and MSE comparisons, within the class C,, can be based on variance alone. Thus,
although we speak in terms of unbiased estimators, we really are comparing estimators
that have the same expected value, 7(6).

The goal of this section is to investigate a method for finding a “best” unbiased
estimator, which we define in the following way.

Definition 7.3.7 An estimator W* is a best unbiased estimator of 7(0) if it satisfies
EgW* = 7(0) for all § and, for any other estimator W with E¢gW = 7(0), we have
Varg W* < Varg W for all 8. W* is also called a uniform minimum variance unbiased
estimator (UMVUE) of 7(0).

Finding a best unbiased estimator (if one exists!) is not an easy task for a variety
of reasons, two of which are illustrated in the following example.
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Example 7.3.8 (Poisson unbiased estimation) Let Xi,...,X, be iid
Poisson()), and let X and S? be the sample mean and variance, respectively. Re-
call that for the Poisson pmf both the mean and variance are equal to A. Therefore,
applying Theorem 5.2.6, we have

E X =), forall ),
and
ExS? =\, for all ),

s0 both X and S2 are unbiased estimators of \.

To determine the better estimator, X or S2%, we should now compare variances.
Again from Theorem 5.2.6, we have Vary X = A/n, but Vary S? is quite a lengthy
calculation (resembling that in Exercise 5.10(b)). This is one of the first problems in
finding a best unbiased estimator. Not only may the calculations be long and involved,
but they may be for naught (as in this case), for we will see that Vary X < Vary S?
for all \.

Even if we can establish that X is better than S2, consider the class of estimators

Wa(X,5%) =aX + (1 —a)S>.

For every constant a, ExW,(X, §2) = )\, so we now have infinitely many unbiased
estimators of A. Even if X is better than S2, is it better than every W,(X,S?%)?
Furthermore, how can we be sure that there are not other, better, unbiased estimators
lurking about? I

This example shows some of the problems that might be encountered in trying to
find a best unbiased estimator, and perhaps that a more comprehensive approach is
desirable. Suppose that, for estimating a parameter 7() of a distribution f(z|8), we

~can specify a lower bound, say B(€), on the variance of any unbiased estimator of
-7(6). If we can then find an unbiased estimator W* satisfying Vary W* = B(6), we
have found a best unbiased estimator. This is the approach taken with the use of the
- Cramér-Rao Lower Bound.

Theorem 7.3.9 (Cramér—Rao Inequality) Let Xy,...,X, be a sample with pdf
f(x]6), and let W(X) = W(Xy,...,X,) be any estimator satisfying

GEWX) = [ SI6(x0)] dx

(13.4) and
| VarglV(X) < oc.
Then
4 2
(7.3.5) Varg (W(X)) > (Tl (X))

By (& log £(X16))*)
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Proof: The proof of this theorem is elegantly simple and is a clever application of the
Cauchy—Schwarz Inequality or, stated statistically, the fact that for any two random
variables X and Y,

(7.3.6) [Cov(X,Y)]? < (Var X)(VarY).

If we rearrange (7.3.6) we can get a lower bound on the variance of X,

[Cov(X, Y)[*

>
Var X > Var Y

The cleverness in this theorem follows from choosing X to be the estimator W(X)
and Y to be the quantity &5 log f(X]6) and applying the Cauchy—Schwarz Inequality.
First note that

GEWE) = [ W | i) ax

(7.3.7) =Eg - W(X )Qog(——}f%] (multiply by f(X]6)/f(X]6))
= Eg W(X) 0 log f(X|9)] (property of logs)

which suggests a covariance between W(X) and = log f(X]6). For it to be a co-
variance, we need to subtract the product of the expected values, so we calculate
Eyg (585 log f(X]60)). But if we apply (7.3.7) with W(x) = 1, we have

(7.3.8) o ( 880 log f(Xl@)) ;2139[1] 0.

Therefore Cove(W (X), 2 355 10g f(X]0)) is equal to the expectation of the product, and
it follows from (7.3.7) and (7.3.8) that <

d

(7.3.9) Cove< (X), gélog f(XlG)) (W(X) 9 1og f(X[O)) 5B W (X).

Also, since Eg(&; log f(X|0)) = 0 we have

(7.3.10) Varg <§9 log f(Xl@)) (( 5 5 log f (Xle))Z)

Using the Cauchy—Schwarz Inequality together with (7.3.9) and (7.3.10), we obtain
2
(45EsW (X))
2 ?
By (5102 /(X10))°)

proving the theorem. ]

Varg (W(X)) >
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If we add the assumption of independent samples, then the calculation of the lower
bound is simplified. The expectation in the denominator becomes a univariate calcu-
lation, as the following corollary shows.

Corollary 7.3.10 (Cramér—Rao Inequality, iid case) If the assumptions of The-
orem 7.3.9 are satisfied and, additionally, if X1,..., X, are #id with pdf f(z|@), then

(d E9W(X))
nEq ( (& log £(X10))°)

Varg W(X) >

Proof: We only need to show that

Ey (( felogf(XW))Q) =nEe<< gelogf(XI@))Q)

Since X7, ..., X, are independent,

(expand the square)

(ERE0)
=Ep (( Y 55 log /(Xil6) ) ) (property of logs)
i) )

(7.3.11) +) Ep <§9 log f(X; |9)§9 log f(ij)) .
i#£]

For ¢ # 7 we have

B (g 108 £(X,19) 35 108 £(X,16))

= Eyg (860 log f( z|9)) (;0 log f(X; IO)) (independence)
= 0. (from (7.3.8))

Therefore the second sum in (7.3.11) is 0, and the first term is

2 2
EEQ (( log f(X; |9)) ) = nEy ((6?0 log f(X[G)) ) , (identical distributions)

which establishes the corollary. d
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Before going on we note that although the Cramér-Rao Lower Bound is stated
for continuous random variables, it also applies to discrete random variables. The
key condition, (7.3.4), which allows interchange of integration and differentiation,
undergoes the obvious modification. If f(z|6) is a pmf, then we must be able to
interchange differentiation and summation. (Of course, this assumes that even though
f(z]0) is a pmf and not differentiable in z, it is differentiable in #. This is the case
for most common pmfs.)

The quantity Eg ((5% log f (X[é’))2) is called the information number, or Fisher
information of the sample. This terminology reflects the fact that the information
number gives a bound on the variance of the best unbiased estimator of 6. As the
information number gets bigger and we have more information about 6, we have a
smaller bound on the variance of the best unbiased estimator.

In fact, the term Information Inequality is an alternative to Cramér—Rao Inequality,
and the Information Inequality exists in much more general forms than is presented
here. A key difference of the more general form is that all assumptions about the can-
didate estimators are removed and are replaced with assumptions on the underlying
density. In this form, the Information Inequality becomes very useful in comparing the
performance of cstimators. See Lehmann and Casella (1998, Section 2.6) for details.

For any differentiable function 7(6) we now have a lower bound on the variance of
any estimator W satisfying (7.3.4) and EgW = 7(6). The bound depends only on 7(f)
and f(z|@) and is a uniform lower bound on the variance. Any candidate estimator
satisfying E¢IV = 7(6) and attaining this lower bound is a best unbiased estimator
of 7(8).

Before looking at some examples, we present a computational result that aids in
the application of this theorem. Its proof is left to Exercise 7.39.

Lemma 7.3.11 If f(z|0) satisfies

G5 gpoex10) = [ 5| (gr0e ) s(ci0)] do

(true for an exponential family), then

B <(080 log f(X10)>2> = —Ey (;; logf(X|9)>

Using the tools just developed, we return to, and settle, the Poisson example.

Example 7.3.12 (Conclusion of Example 7.3.8) Here 7(\) = A, so 7/(A\) =1L
Also, since we have an exponential family, using Lemma 7.3.11 gives us

2
0 = 52
Ex (ﬁ logg f(Xi[)‘)> = —nky <8/\2 log f(X|/\)>

82 e—A}\X
z*"EA<aA2 1°g< X! ))
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02
= — —_ |
nE,\(a)\Q( A+ Xlog A logX.))

Hence for any unbiased estimator, W, of A, we must have

Var, W > ﬂ
n

Since Vary X = A\/n, X is a best unbiased estimator of . l

It is important to remember that a key assumption in the Cramér-Rao Theorem
is the ability to differentiate under the integral sign, which, of course, is somewhat
restrictive. As we have seen, densities in the exponential class will satisfy the assump-
tions but, in general, such assumptions need to be checked, or contradictions such as
the following will arise.

Example 7.3.13 (Unbiased estimator for the scale uniform) Let X,...,
X, be iid with pdf f(z[0) = 1/6,0 < = < 6. Since 2 log f(z|0) = —1/0, we have

Fy ((%bg(me})z) _ 5—2

The Cramér—Rao Theorem would seem to indicate that if W is any unbiased estimator
of 8,

92
Varg W > —
n’
. We would now like to find an unbiased estimator with small variance. As a first guess,

consider the sufficient statistic Y = max(X,,...,X,), the largest order statistic. The
pdf of Y is fy(y|0) = ny™~1/0", 0 <y < 6, so

0 n
ny n
EgY = —dy =
0 0 9” y 'n+].

0,

showing that ”—nﬂY is an unbiased estimator of §. We next calculate

 (2500) - (25"
- (22) - (29
:(”

1 [ n n 2
) i~ ()|
n+2 n-+1
n(n + 2)

) Val‘g Y

S|+

—

02
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which is uniformly smaller than #2/n. This indicates that the Cramér-Rao Theorem
is not applicable to this pdf. To see that this is so, we can use Leibnitz’s Rule (Section
2.4) to calculate

d [° d ° 1
G | esaioyde =2 [ h@)g s

2 i)
4 / f(x16) da

unless h(6)/0 = 0 for all §. Hence, the Cramér-Rao Theorem does not apply. In
general, if the range of the pdf depends on the parameter, the theorem will not be
applicable. I

A shortcoming of this approach to finding best unbiased estimators is that, even if
the Cramér—Rao Theorem is applicable, there is no guarantee that the bound is sharp.
That is to say, the value of the Cramér—Rao Lower Bound may be strictly smaller than
the variance of any unbiased estimator. In fact, in the usually favorable case of f(z|6)
being a one-parameter exponential family, the most that we can say is that there
exists a parameter 7(6) with an unbiased estimator that achieves the Cramér-Rao
Lower Bound. However, in other typical situations, for other parameters, the bound
may not be attainable. These situations cause concern because, if we cannot find an
estimator that attains the lower bound, we have to decide whether no estimator can
attain it or whether we must look at more estimators.

Example 7.3.14 (Normal variance bound) Let Xi,...,X, be iid n(y,0?),
and consider estimation of o2, where p is unknown. The normal pdf satisfies the
assumptions of the Cramér—-Rao Theorem and Lemma 7.3.11, so we have

2 2
—6—10g L amewer) 2 L)

and

u,az) =—E< 1 _(Xfﬂ)z

204 o6

02 ‘ 9
-E (mlogf()({u,a )
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In Example 7.3.3 we saw

2 4
Var(§%[p,0%) = —,

s0 5% does not attain the Cramér-Rao Lower Bound. I

In the above example we are left with an incomplete answer; that is, is there a better
unbiased estimator of o2 than S?, or is the Cramér-Rao Lower Bound unattainable?

The conditions for attainment of the Cramér—Rao Lower Bound arc actually quite
simple. Recall that the bound follows from an application of the Cauchy-Schwarz
Inequality, so conditions for attainment of the bound are the conditions for equality
in the Cauchy—Schwarz Inequality (see Section 4.7). Note also that Corollary 7.3.15 is
auseful tool because it implicitly gives us a way of finding a best unbiased estimator.

Corollary 7.3.15 (Attainment) Let Xy,...,X, be iid f(x|0), where f(z|0) sat-
isfies the conditions of the Cramér-Rao Theorem. Let L(0|x) = [[i; f(zil0) denote
the likelihood function. If W(X) = W (X, ..., Xy) is any unbiased estimator of 7(6),
then W (X) attains the Cramér-Rao Lower Bound if and only if

(7.3.12) a(0)[W(x) — 7(0)] = % log L(6]x)

for some function a(6).

Proof: The Cramér-Rao Inequality, as given in (7.3.6), can be written as

2

[Cove (W(X), -a% logH f(lee)) < Varg (X)Varg (;% logH f(X,,;lﬁ)),
i=1 i=1

and, recalling that EgW = 7(0), Eo(& log [T, f(X;]0)) = 0, and using the results
of Theorem 4.5.7, we can have equality if and only if W (x) — 7(0) is proportional to
2log [Ti, f(x:]0). That is exactly what is expressed in (7.3.12). Ol

Example 7.3.16 (Continuation of Example 7.3.14) Here we have

1 - e 102 /o2
L(M'}O—le) = W{g (1/2)E (zi—p)*/ ,

and hence

7 5 n
53 08 L(p, 0%|x) = -2772<

n

(; —ﬂ)Q B 02) .

Thus, taking a(o0?) = n/(20%) shows that the best unbiased estimator of o? is
Yooy (z; — w)?/n, which is calculable only if 4 is known. If y is unknown, th. bound
cannot be attained. I

=1
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The theory developed in this scction still leaves some questions unanswered. First,
what can we do if f(z|0) does not satisfy the assumptions of the Cramér—Rao Theo-
rem? (In Example 7.3.13, we still do not know if 2£1Y" is a best unbiased estimator.)
Second, what if the bound is unattainable by allowable estimators, as in Example -
7.3.14?7 There, we still do not know if S? is a best unbiased estimator.

One way of answering these questions is to search for methods that are more widely
applicable and yield sharper (that is, greater) lower bounds. Much rescarch has been
done on this topic, with perhaps the most well-known bound being that of Chapman
and Robbins (1951). Stuart, Ord, and Arnold (1999, Chapter 17) have a good treat-
ment of this subject. Rather than take this approach, however, we will continue the
study of best unbiased estimators from another view, using the concept of sufficiency.

7.8.3 Sufficiency and Unbiasedness

In the previous scction, the concept of sufficiency was not used in our search for
unbiased estimates. We will now sec that consideration of sufficiency is a powerful
tool, indced.

The main theorem of this section, which relates sufficient statistics to unbiased
estimates, is, as in the case of the Cramér—Rao Theorem, another clever application
of some well-known theorems. Recall from Chapter 4 that if X and Y are any two
random variables, then, provided the expectations exist, we have '

EX = BE(X]Y)]
(7.3.13)
Var X = Var[E(X|Y)] + E[Var(X|Y)].

Using these tools we can prove the following theorem.

Theorem 7.3.17 (Rao—Blackwell) Let W be any unbiased estimator of 7(6), and
let T be a sufficient statistic for 8. Define ¢(T) = E(W|T). Then Egp(T) = 7(0) and
Varg ¢(T') < Varg W for all ; that is, ¢(T) is a uniformly betier unbiased estimator

of 7(0).
Proof: From (7.3.13) we have

7(0) = EgW = E[E(W|T)] = Egé(T),
so ¢(T) is unbiased for 7(6). Also,

Varg W = Vary [E(W|T')] + Eg [Var(W|T")]
— Varg §(T) + Eg[Var(W/T)] |
> Varg ¢(T). (Var(W|T) > 0)

Hence ¢(T) is uniformly better than W, and it only remains to show that ¢(T) is
indeed an estimator. That is, we must show that ¢(7") = E(W|T) is a function of only
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the sample and, in particular, is independent of 8. But it follows from the definition of
sufficiency, and the fact that W is a function only of the sample, that the distribution
of W|T is independent of 6. Hence ¢(T') is a uniformly better unbiased estimator of

7(). O

Therefore, conditioning any unbiased estimator on a sufficient statistic will result
in a uniform improvement, so we need consider only statistics that are functions of a
sufficient statistic in our search for best unbiased estimators.

The identities in (7.3.13) make no mention of sufficiency, so it might at first seem
that conditioning on anything will result in an improvement. This is, in effect, true,
but the problem is that the resulting quantity will probably depend on 6 and not be
an estimator.

Example 7.3.18 (Cond_itioning on an insufficient statistic) Let X, Xo be
id n(6, 1). The statistic X = 1(X1 + X>) has

_ -1
E¢X =60 and Varg X = 5

Consider conditioning on X1, which is not sufficient. Let ¢(X1) = Eo(X]X1). It follows
from (7.3.13) that Eg¢(X1) = 0 and Vare ¢(X;) < Vare X, so ¢(X1) is better than
X. However,

$(X1) = Eo(X|X1)

1 1

= §E9(X1|X1) + §E9(X2|X1)
1 1

=lx, 410
2 1 + 2 ’

since Eg(X2|X71) = Eg X2 by independence. Hence, ¢(X7) is not an estimator. |

We now know that, in looking for a best unbiased estimator of 7(0), we need
consider only estimators based on a sufficient statistic. The question now arises that
if we have Eg¢ = 7(0) and ¢ is based on a sufficient statistic, that is, E(¢|T) = ¢, how
do we know that ¢ is best unbiased? Of course, if ¢ attains the Cramér-Rao Lower
Bound, then it is best unbiased, but if it does not, have we gained anything? For
example, if ¢* is another unbiased estimator of 7(8), how does E(¢*|T) compare to
¢? The next theorem answers this question in part by showing that a best unbiased
estimator is unique.

Theorem 7.3.19 If W is a best unbiased estimator of 7(0), then W is unique.

Proof: Suppose W’ is another best unbiased estimator, and consider the estimator
W* = (W + W’). Note that EgW* = 7(0) and
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. 1 1.,
Varg W* = Vary §W + §W

1 1 WW E
= iVare W+ Zval’e W’ ECOVG( ) /) ( Xercise 444)
(7.3.14)

1 1
< ZVarg W + ZVarg W'+ %[(V&I‘g W) (Varg W')]/2  (Cauchy-Schwarz)

= Varg W. (Varg W = Varg W’)

But if the above inequality is strict, then the best unbiasedness of W is contradicted,
so we must have cquality for all §. Since the inequality is an application of Cauchy-
Schwarz, we can have equality only if W/ = a(6)W + b(8). Now using properties of
covariance, we have

Cove(W,W') = Covg[W, a(0)W + b(6)]
= Covy[W, a(9)W]

= a(O)Varg W,

but Covg(W, W') = Varg W since we had equality in (7.3.14). Hence a(8) = 1 and,
since EgW’ = 7(0), we must have b(0) = 0 and W = W’, showing that W is unique.
0

To see when an unbiased estimator is best unbiased, we might ask how could we
improve upon a given unbiased estimator? Suppose that W satisfies EgW = 7(6),
and we have another estimator, U, that satisfies EoU = 0 for all 8, that is, U is an
unbiased estimator of 0. The estimator

¢a=W+aUa

where «a is a constant, satisfies Eg¢, = 7(0) and hence is also an unbiased estimator
of 7(0). Can ¢, be better than W? The variance of ¢, is

Varg ¢, = Varg (W + aU) = Varg W + 2aCovg(W,U) + a*Vary U.

Now, if for some 8 = 6y, Covg,(W,U) < 0, then we can make 2aCovg,(W,U) +
a*Varg, U < 0 by choosing a € (0, —2Covy, (W, U)/Varg, U). Hence, ¢, will be better
than W at 8 = 0y and W cannot be best unbiased. A similar argument will show that
if Covg,(W,U) > 0 for any 6y, W also cannot be best unbiased. (See Exercise 7.53.)
Thus, the relationship of W with unbiased estimators of 0 is crucial in evaluating
whether W is best unbiased. This relationship, in fact, characterizes best unbiased-
ness.

Theorem 7.3.20 If EgW = 7(0),W is the best unbiased estimator of 7(0) if and
only if W is uncorrelated with all unbiased estimators of 0.

Proof: If W is best unbiased, the above argument shows that W must satisfy
Cove(W,U) = 0 for all 6, for any U satisfying EqU = 0. Hence the necessity is
established. '
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Suppose now that we have an unbiased estimator W that is uncorrelated with all
unbiased estimators of 0. Let W’ be any other estimator satisfying EqW' = EgW =
7(0). We will show that W is better than W’. Write

W =W+ (W —-W),
and calculate

(7.3.15) Varg W’ = Varg W + Varg (W’ — W) + 2Covq(W, W' — W)
= Varg W + Varg (W' — W),

where the last equality is true because W’ — W is an unbiased estimator of 0 and
is uncorrelated with W by assumption. Since Varg (W’ — W) > 0, (7.3.15) implies
that Varg W’ > Varyg W. Since W’ is arbitrary, it follows that W is the best unbiased
estimator of 7(6). U

Note that an unbiased estimator of 0 is nothing more than random noise; that is,
there is no information in an estimator of 0. (It makes sense that the most sensible
way to estimate 0 is with 0, not with random noise.) Therefore, if an estimator
could be improved by adding random noise to it, the estimator probably is defective.
(Alternatively, we could question the criterion used to evaluate the estimator, but in
this case the criterion seems above suspicion.) This intuition is what is formalized in
Theorem 7.3.20.

Although we now have an interesting characterization of best unbiased estimators,
its usefulness is limited in application. It is often a difficult task to verify that an
esstimator is uncorrelated with all unbiased estimators of 0 because it is usually difficult
to describe all unbiased estimators of 0. However, it is sometimes useful in determining
that an estimator is not best unbiased.

Example 7.3.21 (Unbiased estimators of zero) Let X be an observation from
a uniform (0, 6 4 1) distribution. Then

0+1 1
EQX:/ zdr =0+ -,
0 2

and so X — —%— is an unbiased estimator of 4, and it is easy to check that Varg X = %5
For this pdf, unbiased estimators of zero are periodic functions with period 1. This
follows from the fact that if h(z) satisfies

6+1
/ h(z)dz =0, for all @,
0
then

0+1
0= 2 / h(z)dz = h(0 +1) — h(8), for all 6.
0
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Such a function is h(z) = sin(27z). Now

Covg(X — 5,sin(27 X)) = Covy(X,sin(27X))

0+1
= / zsin(27x) dx

0

x cos(2mz) o+ /0“ cos(27x)
B e + —dzx
27 0 6 27
(integration by parts

_ cos(270) )
N 2

where we used cos(27(6 + 1)) = cos(276) and sin(27(0 + 1)) = sin(270).

Hence X — —%— is correlated with an unbiased estimator of zero, and cannot be a
best unbiascd estimator of 6. In fact, it is straightforward to check that the estimator
X — 3 +sin(27X)/(2n) is unbiased for 6 and has variance less than & for some f
values. ‘ I

To answer the question about existence of a best unbiased estimator, what is needed
is some characterization of all unbiased estimators of zero. Given such a character-
ization, we could then see if our candidate for best unbiased estimator is, in fact,
optimal.

Characterizing the unbiased estimators of zero is not an easy task and requires
conditions on the pdf (or pmf) with which we are working. Note that, thus far in
this section, we have not specified conditions on pdfs (as were needed, for example,
in the Cramér-Rao Lower Bound). The price we have paid for this generality is the
difficulty in verifying the existence of the best unbiased estimator. |

If a family of pdfs or pmfs f(x|@) has the property that there are no unbiased
estimators of zero (other than zero itself), then our search would be ended, since any
statistic W satisfics Covg(W, 0) = 0. Recall that the property of completeness, defined
in Definition 6.1.4, guarantees such a situation.

Example 7.3.22 (Continuation of Example 7.3.13) For X;,..., X, iid uni
form(0, #), we saw that —@%‘—IY is an unbiased estimator of 6§, where Y = max{Xj,...,
Xn}. The conditions of the Cramér-Rao Theorem are not satisfied, and we have not
yet established whether this estimator is best unbiased. In Example 6.2.23, however,
it was shown that Y is a complete sufficient statistic. This means that the family of
pdfs of Y is complete, and there are no unbiased estimators of zero that are based
on Y. (By sufficiency, in the form of the Rao-Blackwell Theorem, we neced consider
only unbiased estimators of zero based on Y.) Therefore, P—;L—"—lY is uncorrelated with
all unbiased estimators of zero (since the only one is zero itself) and thus 2V is
the best unbiased estimator of 0. I

It is worthwhile to note once again that what is important is the completeness of the
family of distributions of the sufficient statistic. Completeness of the original family
is of no consequence. This follows from the Rao--Blackwell Theorem, which says that
we can restrict attention to functions of a sufficient statistic, so all expectations wil
be taken with respect to its distribution.
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We sum up the relationship between completeness and best unbiasedness in the
following theorem.

Theorem 7.3.23  Let T be a complete sufficient statistic for a parameter 0, and
let $(T) be any estimator based only on T. Then ¢(T) is the unique best unbiased
“estimator of its expected value.

We close this section with an interesting and useful application of the theory de-
veloped here. In many situations, there will be no obvious candidate for an unbiased
“estimator of a function 7(#), much less a candidate for best unbiased estimator. How-
ever, in the presence of completeness, the theory of this section tells us that if we
can find any unbiased estimator, we can find the best unbiased estimator. If T is
a complete sufficient statistic for a parameter # and h(Xj,...,X,) is any unbiased
estimator of 7(0), then ¢(T) = E(h(X1,...,X,)|T) is the best unbiased estimator of
7(0) (see Exercise 7.56).

Example 7.3.24 (Binomial best unbiased estimation) Let Xi,...,X,, beiid
binomial(k, #). The problem is to estimate the probability of exactly one success from
a binomial(k, ), that is, estimate

7(0) = Pp(X = 1) = k(1 — 9)* L.

Now >" | X; ~ binomial(kn,#) is a complete sufficient statistic, but no unbiased
estimator based on it is immediately evident. When in this situation, try for the
“simplest solution. The simple-minded estimator

0 otherwise

MXQ:{

satisfies

k
Ean) = 3 el Jom 1 -0

Ty =0

= kf(1 — §)F!

and hence is an unbiased estimator of k6(1 — §)*~1. Our theory now tells us that the
estimator

() =e{rerzx)

" is the best unbiased estimator of k6(1—8)*~!. (Notice that we do not need to actually
calculate the expectation of ¢(3 ., X;); we know that it has the correct expected
" value by properties of iterated expectations.) We must, however, be able to evaluate
¢. Suppose that we observe > .- ; X; = ¢. Then
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_ = o the expectation does
() =E (h(X1)| ;Xz - t) ( not depend on 6 )
:P(XlzllZXi:t) (his 0 or 1)
1=1 .
 B(Xi=1,2,X =1) definition of
PG(Z?:l X;=1) conditional probability

P =L, Xi=t-1) X =1is
B P>t Xi=1t) redundant

 P(Xy=1)P(Y i, Xi=t—1) X1 is independent
B P37 Xi=1t) ‘ of Xo,..., Xn

Now X; ~ binomial(k,0), >, X; ~ binomial(k(n — 1),0), and > & ; X; ~
binomial(kn, #). Using these facts we have

— f\k-1 K(n=1)\ gt—1/1 _ a\k(n—1)—(t—1
qs(t):[ke(1 o ”( t-1 )9 (1 - g)Fr=h=( >]
() 61— oynt

(k(n—l))
AN
kn
(%)
Note that all of the fs cancel, as they must since ., X; is sufficient. Hence, the
best unbiased estimator of kf(1 — #)*~1 is

i=1 ( TX;

We can assert unbiasedness without performing the difficult evaluation of

Eglp (31 Xi)l- H

7.8.4 Loss Function Optimality

Our evaluations of point estimators have been basced on their mean squared error
performance. Mean squared error is a special case of a function called a loss function.
The study of the performance, and the optimality, of estimators evaluated through
loss functions is a branch of decision theory.

After the data X = x are observed, where X ~ f(x|0), 8 € O, a decision regarding
6 is made. The set of allowable decisions is the action space, denoted by .A. Often in
point estimation problems A is equal to ©, the parameter space, but this will change
in other problems (such as hypothesis testing—see Section 8.3.5).

The loss function in a point estimation problem reflects the fact that if an action
a is close to §, then the decision a is reasonable and little loss is incurred. If a is fa

i
|
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from @, then a large loss is incurred. The loss function is a nonnegative function that
generally increases as the distance between a and 6 increases. If 0 is real-valued, two
commonly used loss functions are

absolute error loss, L(6,a)=|a—10|,
and
squared error loss, L(0,a) = (a — 0)>.

Both of these loss functions increase as the distance between 6 and a increases, with
minimum value L(6,0) = 0. That is, the loss is minimum if the action is correct.
-Squared error loss gives relatively more penalty for large discrepancies, and absolute
error loss gives relatively more penalty for small discrepancies. A variation of squared
error loss, one that penalizes overestimation more than underestimation, is

_f(a-6)?2 ifa<$
L(6,0) = {10(&—9)2 ifa>0.

A loss that penalizes errors in estimation more if 6 is near 0 than if |6] is large, a
relative squared error loss, is

(a—0)°
L(@, 0,) == W—}-l—

Notice that both of these last variations of squared error loss could have been based
instead on absolute error loss. In general, the experimenter must consider the con-
sequences of various errors in estimation for different values of 6 and specify a loss
function that reflects these consequences.

In a loss function or decision theoretic analysis, the quality of an estimator is quan-
tified in its risk function; that is, for an estimator 6(x) of €, the risk function, a
function of 6, is

(7.3.16) R(6,6) = EoL(9,6(X)).

At a given 6, the risk function is the average loss that will be incurred if the estimator
§(x) is used.

Since the true value of 6 is unknown, we would like to use an estimator that has
a small value of R(0,6) for all values of #. This would mean that, regardless of the
true value of @, the estimator will have a small expected loss. If the qualities of two
different estimators, 6; and 5, are to be compared, then they will be compared by
comparing their risk functions, R(6,61) and R(0,68,). If R(0,6,) < R(6,62) for all
f € ©, then 67 is the preferred estimator because §; performs better for all §. More
~ typically, the two risk functions will cross. Then the judgment as to which estimator
is better may not be so clear-cut.

The risk function for an estimator ¢ is the expected loss, as defined in (7.3.16). For
~ squared error loss, the risk function is a familiar quantity, the mean squared error
(MSE) that was used in Section 7.3.1. There the MSE of an estimator was defined as
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MSE(6) = Eq(56(X) — )2, which is just EgL(0, 6(X)) = R(6,6) if L(,a) = (a — )%
As in Chapter 7 we have that, for squared error loss,

(7.3.17)  R(6,6) = Varg 6(X) + (E¢6(X) — 0)* = Varg §(X) + (Biasg 6(X))>.

This risk function for squared error loss clearly indicates that a good estimator should
have both a small variance and a small bias. A decision theoretic analysis would judge
how well an estimator succeeded in simultaneously minimizing these two quantities.
It would be an atypical decision theoretic analysis in which the set D of allowable
estimators was restricted to the set of unbiased estimators, as was done in Section -
7.3.2. Then, minimizing the risk would just be minimizing the variance. A decision
theoretic analysis would be more comprehensive in that both the variance and bias
are in the risk and will be considered simultaneously. An estimator would be judged
good if it had a small, but probably nonzero, bias combined with a small variance.

Example 7.3.25 (Binomial risk functions) In Example 7.3.5 we considered
Xi,...,Xn, a random sample from a Bernoulli(p) population. We considered two
estimators,

PB = Zi:lXi " n/4 and X =
n+/n

S|

Z X;.
=1

The risk functions for these two estimators, for n = 4 and n = 400, were graphed in
Figure 7.3.1, and the comparisons of these risk functions are as stated in Example
7.3.5. On the basis of risk comparison, the estimator pg would be preferred for small
n and the estimator X would be preferred for large n. I

Example 7.3.26 (Risk of normal variance) Let Xi,...,X, be arandom sample
from a n(u,o?) population. Consider estimating o2 using squared error loss. We will
consider estimators of the form 6,(X) = bS?, where S? is the sample variance and b
can be any nonnegative constant. Recall that ES? = o2 and, for a normal sample,
Var S% = 20*/(n — 1). Using (7.3.17), we can compute the risk function for 8 as

R((p,0?),6) = VarbS? + (EbS? — 02)2

= b?Var §? + (bES? — 02)”

22 4 ‘
= I; _01 + (b—1)%0* (using Var $?)
2b° 2| 4 '

= [n—1+(b_1) Ja :

The risk function for &, does not depend on y and is a quadratic function of o2, Thisi
quadratic function is of the form c¢;(02)2, where ¢, is a positive constant. To compare:
two risk functions, and hence the worth of two estimators, note that if ¢, < ¢y, then-

R((H: 02)? 6b) = 05(02)2 < Cp (02)2 = R((,U,, 02)7 6b’)
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Risk
30 /
R(d?, S’)I/
/ R(d*,0%
/
20 - /

R(0% 5%

10

I
6

0 2 4
Figure 7.3.2. Risk functions for three variance estimators in Ezample 7.3.26

for all values of (u4,0?). Thus §, would be a better estimator than & . The value of b
that gives the overall minimum value of

2b?
n—1

(7.3.18) cp = +(b—1)?

“yields the best estimator , in this class. Standard calculus methods show that b =
(n—1)/(n+1) is the minimizing value. Thus, at every value of (11, 02), the estimator

a2 n—1,o 1 2
o _n+1S _n—}-lZ(Xl X)

has the smallest risk among all estimators of the form bS%. For n = 5, the risk
- functions for this estimator and two other estimators in this class are shown in Figure
7.3.2. The other estimators are S2, the unbiased estimator, and 62 = 2152 the

MLE of 0. It is clear that the risk function for S? is smallest everywhere. |

Example 7.3.27 (Variance estimation using Stein’s loss) Again we consider
estimating a population variance o2 with an estimator of the form 5S2. In this analysis
- we can be quite general and assume only that X;,..., X, is a random sample from
some population with positive, finite variance o2. Now we will use the loss function

a a
L(o?,a) = ol 1 —log =y

attributed to Stein (James and Stein 1961; see also Brown 1990a). This loss is more
complicated than squared error loss but it has some reasonable properties. Note that
if @ = o2, the loss is 0. Also, for any fixed value of o2, L(c%,a) — oo as a —
"0or a — oo. That is, gross underestimation is penalized just as heavily as gross
- overestimation. (A criticism of squared error loss in a variance estimation problem is
that underestimation has only a finite penalty, while overestimation has an infinite

penalty.) The loss function also arises out of the likelihood function for o2, if this is
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a sample from a normal population, and thus ties together good decision theoretic
properties with good likelihood properties (see Exercise 7.61).
For the estimator &, = bS?, the risk function is

bS? bS?
2 —
R(O’ ,(Sb) _E<? —1—10g—2)
2 2
=bE§2- —1—Elogbai2
o
S? S?

The quantity Elog(S?/0?) may be a function of 02 and other population parameters
but it is not a function of b. Thus R(c?,6,) is minimized in b, for all o2, by the value
of b that minimizes b — log b, that is, b = 1. Therefore the estimator of the form b3
that has the smallest risk for all values of o2 is §; = S2. I

We can also use a Bayesian approach to the problem of loss function optimality,
where we would have a prior distribution, 7(8). In a Bayesian analysis we would use
this prior distribution to compute an average risk

/ R(6,6)(0) do,
©

known as the Bayes risk. Averaging the risk function gives us one number for assessing
the performance of an estimator with respect to a given loss function. Moreover, we
can attempt to find the estimator that yields the smallest value of the Bayes risk. Such
an estimator is called the Bayes rule with respect to a prior w and is often denoted
o™,

Finding the Bayes decision rule for a given prior 7 may look like a daunting task,
but it turns out to be rather mechanical, as the following indicates. (The technique
of finding Bayes rules by the method given below works in greater generality than
presented here; see Brown and Purves 1973.)

For X ~ f(x|0) and 0 ~ 7, the Bayes risk of a decision rule é can be written as

/@ R(0,6)n(0) df = /@ ( /X L(O,é(x))f(xw)d)() (6) df.

Now if we write f(x|0)7(6) = w(0|x)m(x), where 7(f|x) is the posterior distribution
of 8 and m(x) is the marginal distribution of X, we can write the Bayes risk as

(7.3.19) /@ R(6,8)r(0) df = / [ /@ L(6, 5(x))m(0]x) de] m(x) dx.

X
The quantity in square brackets is the expected value of the loss function with respect
to the posterior distribution, called the posterior expected loss. It is a function only of
x, and not a function of 6. Thus, for each x, if we choose the action §(x) to minimiz
the posterior expected loss, we will minimize the Bayes risk.
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Notice that we now have a recipe for constructing a Bayes rule. For a given obser-

vation x, the Bayes rule should minimize the posterior expected loss. This is quite
unlike any prescription we have iad in previous sections. For example, consider the
methods of finding best unbiased estimators discussed previously. To use Theorem
1.3.23, first we need to find a complete sufficient statistic 7. Then we need to find
afunction ¢(7T) that is an unbiased estimator of the parameter. The Rao-Blackwell
Theorem, Theorem 7.3.17, may be helpful if we know of some unbiased estimator of
the parameter. But if we cannot dream up some unbiased estimator, then the method
‘does not tell us how to construct one.
- Even if the minimization of the posterior expected loss cannot be done analytically,
the integral can be evaluated and the minimization carried out numerically. In fact,
having observed X = x, we need to do the minimization only for this particular x.
However, in some problems we can explicitly describe the Bayes rule.

Example 7.3.28 (Two Bayes rules) Consider a point estimation problem for a
real-valued parameter 6.

a For squared error loss, the posterior expected loss is

/@(e — ) (0x) d8 = E (6 — )*X = x).

Here 6 is the random variable with distribution 7(6|x). By Example 2.2.6, this
expected value is minimized by §™(x) = E(8|x). So the Bayes rule is the mean of
~ the posterior distribution.
b. For absolute error loss, the posterior expected loss is E (|@ — a||X = x). By applying
Exercise 2.18, we see that this is minimized by choosing 6™ (x) = median of 7(6|x).

In Section 7.2.3, the Bayes estimator we discussed was 6™ (x) = E(6|x), the posterior
mean. We now see that this is the Bayes estimator with respect to squared error loss.
If some other loss function is deemed more appropriate than squared error loss, the

‘Bayes estimator might be a different statistic.

Example 7.3.29 (Normal Bayes estimates) Let X;,..., X, be a random sam-
ple from a n(6, 0?) population and let w(0) be n(u, 72). The values o2, u, and 72 are
known. In Example 7.2.16, as extended in Exercise 7.22, we found that the posterior
distribution of  given X = Z is normal with

S0 = T
and xy
Var(0|z) = oy prymE

For squared error loss, the Bayes estimator is 6™ (x) = E(@|Z). Since the posterior
distribution is normal, it is symmetric about its mean and the median of 7(0|x) is
equal to E(6|Z). Thus, for absolute error loss, the Bayes estimator is also 6™(x) =

E6]z). I
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Table 7.3.1. Three estimators for a binomial p

n=10  prior n(p) ~ uniform(0,1)

Bayes Bayes

absolute squared
Y MLE error error
0  .0000 0611 .0833
1 .1000 .1480 1667
2 .2000 2358 .2500
3 .3000 .3238 3333
4 .4000 4119 4167
5 .5000 .5000 .5000
6 .6000 5881 5833
7 .7000 6762 6667
8 .8000 7642 7500
9  .9000  .8520 .8333
10 1.0000 .9389 9137

Example 7.3.30 (Binomial Bayes estimates) Let Xi,...,X, be iid

Bernoulli(p) and let Y = >~ X;. Suppose the prior on p is beta(a, 8). In Example
7.2.14 we found that the posterior distribution depends on the sample only through
the observed value of Y = y and is beta(y + a,n — y + 3). Hence, §™(y) = E(p|y) =
(y + a)/(a+ B+ n) is the Bayes estimator of p for squared error loss.

For absolute error loss, we need to find the median of 7(p|y) = beta(y+a, n—y+p)
In general, there is no simple expression for this median. The median is implicitly
defined to be the number, m, that satisfies

.

" F(Oﬁ + /8 + n) y+a—1 — - 1
y+ao 1 — p)? y+p0 1d - _
|, Tty ap g

This integral can be evaluated numerically to find (approximately) the value m that
satisfies the equality. We have done this for n = 10 and o = 8 = 1, the uniform(0, 1)
prior. The Bayes estimator for absolute error loss is given in Table 7.3.1. In the tabl
we have also listed the Bayes estimator for squared error loss, derived above, and the
MLE, p = y/n.

Notice in Table 7.3.1 that, unlike the MLE, neither Bayes estimator estimates p to
be 0 or 1, even if y is 0 or n. It is typical of Bayes estimators that they would not
take on extreme values in the parameter space. No matter how large the sample siz,
the prior always has some influence on the estimator and tends to draw it away from
the extreme values. In the above expression for E(p|y), you can see that even if y =0
and n is large, the Bayes estimator is a positive number. I
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7.1 One observation is taken on a discrete random variable X with pmf f(z|€), where

7.2

7.3

74

7.5

7.6

.7

6 € {1,2,3}. Find the MLE of 6.

z  flzll) f(@2) f(=[3)
0 3 3 0
1 3 3 0
2 0 2 :
35 i 2
4 3 0 i
Let X1,...,X, be a random sample from a gamma(«, 8) population.

(a) Find the MLE of 3, assuming « is known.

(b) If o and B are both unknown, there is no explicit formula for the MLEs of & and 3,
but the maximum can be found numerically. The result in part (a) can be used to
reduce the problem to the maximization of a univariate function. Find the MLEs

for o and S for the data in Exercise 7.10(c).

Given a random sample X1,..., X, from a population with pdf f(z|#), show that max-
imizing the likelihood function, L(6|x), as a function of € is equivalent to maximizing

log L(0]x).

Prove the assertion in Example 7.2.8. That is, prove that 6 given there is the MLE

when the range of 0 is restricted to the positive axis.

Consider estimating the binomial parameter k£ as in Example 7.2.9.

(a) Prove the assertion that the integer k that satisfies the inequalities and is the MLE

is the largest integer less than or equal to 1/3.

(b) Let p=%,n=4, and X1 =0, X2 =20, X3 = 1, and X4 = 19. What is k?

Let Xi,...,X, be a random sample from the pdf
f(z|f) =0z7% 0<6<z< o0

(a) What is a sufficient statistic for 67
(b) Find the MLE of 6.
(c) Find the method of moments estimator of 6.

Let Xi,...,X, be iid with one of two pdfs. If § = 0, then

1 fo<ae <1
J(xlf) = {0 otherwise,

while if 8 = 1, then

otherwise.

F(al6) = {(1)/(2\/:5) if0<z<1

Find the MLE of 6.



356 POINT ESTIMATION Section 74

7.8 One observation, X, is taken from a n(0, o?) population.

(a) Find an unbiased estimator of 2.
(b) Find the MLE of o.
(c) Discuss how the method of moments estimator of o might be found.

7.9 Let Xi1,...,X, beiid with pdf

1
f(z|6) = 7’ 0<z<46, 6>0.
Estimate @ using both the method of moments and maximum likelihood. Calculate the
means and variances of the two estimators. Which one should be preferred and why?

7.10 The independent random variables Xi,..., X, have the common distribution
0 if x <0
P(X; <zla,B) =< (&/B)* f0<z<p
1 if x > g,

where the parameters « and 3 are positive.

(a) Find a two-dimensional sufficient statistic for (c, 3).

(b) Find the MLEs of « and 3.

(¢) The length (in millimeters) of cuckoos’ eggs found in hedge sparrow nests can be
modeled with this distribution. For the data

22.0, 23.9, 20.9, 23.8, 25.0, 24.0, 21.7, 23.8, 22.8, 23.1, 23.1, 23.5, 23.0, 23.0,

find the MLEs of o and (.
7.11 Let X;,..., X, be iid with pdf

f(z|0) =602""", 0<z<1, 0<0<oo.

(a) Find the MLE of 6, and show that its variance — 0 as n — oo.
(b) Find the method of moments estimator of 6.

7.12 Let Xi,...,X, be a random sample from a population with pmf
Py X=2)=60"1-6)""" 2z=00r1, 0<6Z<

(a) Find the method of moments estimator and MLE of 6.
(b) Find the mean squared errors of each of the estimators.
(c) Which estimator is preferred? Justify your choice.

7.13 Let Xi,...,X, be a sample from a population with double exponential pdf
1 _jz—p
f(xl@):§e , —oo<zxr<oo, —oo<f<oo.

Find the MLE of 6. (Hint: Consider the case of even n separate from that of odd
n, and find the MLE in terms of the order statistics. A complete treatment of this
problem is given in Norton 1984.)

7.14 Let X and Y be independent exponential random variables, with

1 1
flzlh) = se A x>0, flylp) = e vty > 0.
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We observe Z and W with

. 1 if Z=X
Z =min(X,Y) and W—{O F 7Y
In Exercise 4.26 the joint distribution of Z and W was obtained. Now assume that
(Z;,W;),i =1,...,n, are n iid observations. Find the MLEs of A and p.
715 Let X3, Xo,..., X, be a sample from the inverse Gaussian pdf,

1/2
faln N = (575)  ew{-Ma-w¥/ED)}, @>o0.

23
(a) Show that the MLEs of 1 and A are

n

(b) Tweedie (1957) showed that fi, and M are independent, {in having an inverse
Gaussian distribution with parameters p and nA, and n\/ An having a x2_, distri-
bution. Schwarz and Samanta (1991) give a proof of these facts using an induction
argument.

fan =X and A

(i) Show that fi2 has an inverse Gaussian distribution with parameters p and 2,
2)\/5\2 has a x? distribution, and they are independent.

(ii) Assume the result is true for n = k and that we get a new, independent
observation x. Establish the induction step used by Schwarz and Samanta
(1991), and transform the pdf f(z, ji, M) to f(z, fiks1, Aks1). Show that this
density factors in the appropriate way and that the result of Tweedie follows.

.1.16 Berger and Casella (1992) also investigate power means, which we have seen in Exercise

4.57. Recall that a power mean is defined as [2 > 7" | 7] */ This definition can be
further generalized by noting that the power function z” can be replaced by any

continuous, monotone function h, yielding the generalized mean h™! (117 Yot h(xz))

(a) The least squares problem min, Zz(:v, —a)? is sometimes solved using transformed
variables, that is, solving ming Y, [k(z;) — h(a)]*. Show that the solution to this
latter problem is a = ™' ((1/n) Y . h(z:)).

(b) Show that the arithmetic mean is the solution to the untransformed least squares
problem, the geometric mean is the solution to the problem transformed by h(z) =
log z, and the harmonic mean is the solution to the problem transformed by h(z) =
1/x.

(c) Show that if the least squares problem is transformed with the Boxz-Cox Transfor-
mation (see Exercise 11.3), then the solution is a generalized mean with h(z) = 2.

(d) Let Xi,...,X, be a sample from a lognormal(u,az) population. Show that the
MLE of p is the geometric mean.

(e) Suppose that Xi,...,X, are a sample from a one-parameter exponential family
f(x|0) = exp{0h(z) — H(6)}g(x), where h = H' and h is an increasing function.

(i) Show that the MLE of 6 is = h=*((1/n) > h(x:)).

(ii) Show that two densities that satisfy h = H' are the normal and the inverted
gamma with pdf f(z|0) = 02~ 2 exp{—0/x} for > 0, and for the normal the
MLE is the arithmetic mean and for the inverted gamma it is the harmonic
mean.
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7.17 The Borel Paradox (Miscellanea 4.9.3) can also arise in inference problems. Suppose

7.18

7.19

7.20

7.21

7.22

that X; and X3 are iid exponential(§) random variables.

(a) If we observe only Xa, show that the MLE of 8 is § = Xa.

(b) Suppose that we instead observe only Z = (X2 —1)/X1. Find the joint distribution
of (X1, Z), and integrate out X1 to get the likelihood function.

(¢) Suppose that X2 = 1. Compare the MLEs for 8 from parts (a) and (b).

(d) Bayesian analysis is not immune to the Borel Paradox. If 7(6) is a prior density
for 8, show that the posterior distributions, at X» = 1, are different in parts (a)
and (b).

(Communicated by L. Mark Berliner, Ohio State University.)

Let (X1,Y1),...,(Xn, Ys) be iid bivariate normal random variables (pairs) where all

five parameters are unknown.

(a) Show that the method of moments estimators for ,u,X,uy,ag(, 0%, p are fix =
iy = §,6% = 53w —2)%6v = ;3w - 055 = 32 (@ - D) -
)/ (6x0y).

(b) Derive the MLEs of the unknown parameters and show that they are the same as
the method of moments estimators. (One attack is to write the joint pdf as the
product of a conditional and a marginal, that is, write

f(x;y“llX,/l:Y,O'?\’,O'%/,p) - f(ylx)NX)ﬂyaa,%(,ag/ap)f(xlﬂxaag()a

and argue that the MLEs for ux and o% are given by % and =5 (@i — )%,
Then, turn things around to get the MLEs for py and ory Finally, work with the

“partially maximized” likelihood function L(Z,7,6%,6%,p|X,y) to get the MLE
for p. As might be guessed, this is a difficult problem.)

Suppose that the random variables Y7, ..., Y, satisfy
Yi:ﬁxi—!_eia 1=1,...,n,

where z1,...,z, are fixed constants, and e1,..., €, are iid n(0, 02), o? unkrown.

(a) Find a two-dimensional sufficient statistic for (8, 02).

(b) Find the MLE of 3, and show that it is an unbiased estimator of 3.
(c) Find the distribution of the MLE of §3.

Consider Y1,...,Y, as defined in Exercise 7.19.

(a) Show that > Y;/>  x; is an unbiased estimator of 3. |

(b) Calculate the exact variance of > Y;/ > x; and compare it to the variance of the
MLE.

Again, let Y1,...,Y, be as defined in Exercise 7.19.

(a) Show that [Z(K /wz)] /n is also an unbiased estimator of 3.

(b) Calculate the exact variance of [Z(YL /:L'z)] /n and compare it to the variances of
the estimators in the previous two exercises.

This exercise will prove the assertions in Example 7.2.16, and more. Let X,..., X, be

a random sample from a n(f, %) population, and suppose that the prior distribution

on 6 is n(p, 7%). Here we assume that o2, u, and 72 are all known.

(a) Find the joint pdf of X and 6. )

(b) Show that m(Z|o?, u, T ), the marginal distribution of X, is n(y, (62/n) + 7°).

(c) Show that 7 (8|Z,c?, 1, %), the posterior distribution of 6, is normal with mean
and variance given by (7.2.10).
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7.23

7.24

7.25

7.26

7.27

7.28

If S? is the sample variance based on a sample of size n from a normal population,
we know that (n —1)S2/0? has a x2_; distribution. The conjugate prior for o2 is the
inverted gamma pdf, IG(co, 8), given by

1 1 -1/(8e?
]’_“(a)ﬁa (0-2)a+1 ’

w(c?) = 0 < 0® < o0,

where o and @ are positive constants. Show that the posterior distribution of o2 is
2

IG(a+ 25+, [(’L;_)ﬁ_ + %]_1). Find the mean of this distribution, the Bayes estimator

of 2.

Let X1,...,X, be iid Poisson()), and let A have a gamma(«,3) distribution, the

conjugate family for the Poisson.

(a) Find the posterior distribution of A.
(b) Calculate the posterior mean and variance.

We examine a generalization of the hierarchical (Bayes) model considered in Example
7.2.16 and Exercise 7.22. Suppose that we observe Xi,...,X,, where

Xil0: ~n(6;,02), i1=1,...,n, independent,
0; ~ n(p,7?), i=1,...,n, independent.

(a) Show that the marginal distribution of X; is n(u, o + 7%) and that, marginally,
X1,..., X, are iid. (Empirical Bayes analysis would use the marginal distribution
of the X;s to estimate the prior parameters y and 72. See Miscellanea 7.5.6.)

(b) Show, in general, that if

X;l0: ~ f(z]6:), i1=1,...,n, independent,
0; ~ m(0|T), t1=1,...,n, independent,

then marginally, X,,..., X, are iid:

In Example 7.2.16 we saw that the normal distribution is its own conjugate family.
It is sometimes the case, however, that a conjugate prior does not accurately reflect
prior knowledge, and a different prior is sought. Let X1, ..., X, be iid n(#, 0?), and let
0 have a double exponential distribution, that is, 7(6) = e~1°//*/(2a), a known. Find
the mean of the posterior distribution of 6.

Refer to Example 7.2.17.

(a) Show that the likelihood estimators from the complete-data likelihood (7.2.11) are
given by (7.2.12).

(b) Show that the limit of the EM sequence in (7.2.23) satisfies (7.2.16)

(c) A direct solution of the original (incomplete-data) likelihood equations is possible.
Show that the solution to (7.2.16) is given by

n
N o Yi . . x-{- .
B = Z:L_z ) Tl:yTIa T = 2 yj, J=23,...,m,

and that this is the limit of the EM sequence in (7.2.23).

Use the model of Example 7.2.17 on the data in the following table adapted from
Lange et al. (1994). These are leukemia counts and the associated populations for a
number of areas in New York State.
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Counts of leukemia cases

Population 3540 3560 3739 2784 2571 2729 3952 993 1908
Number of cases 3 4 1 1 3 1 2 0 2

Population 948 1172 1047 3138 5485 5554 2943 4969 4828
Number of cases 0 1 3 5 4 6 2 5 4

7.29

7.30

(a) Fit the Poisson model to these data both to the full data set and to an “incomplete”
data set where we suppose that the first population count (z1 = 3540) is missing.

(b) Suppose that instead of having an z value missing, we actually have lost a leukemia
count (assume that y1 = 3 is missing). Use the EM algorithm to find the MLEs
in this case, and compare your answers to those of part (a).

An alternative to the model of Example 7.2.17 is the following, where we observe
(v5,X:), ¢ = 1,2,...,n, where ¥; ~ Poisson(mf@w;) and (X1,...,X,) ~ mult
nomial(m; 7), where 7 = (71,72,...,7.) with > 75 = 1. So here, for example,
we assume that the population counts are multinomial allocations rather than Poisson
counts. (Treat m = ) x; as known.)

(a) Show that the joint density of Y = (¥1,...,Y,) and X = (X4,...,X,) is

~mET (mBr )i T
m

(b) If the complete data are observed, show that the MLEs are given by

n
3 = ———————Zi:l Y and 7; = —'—‘fj +'_yj' ’ ] = 1727' N2
n J

i=1 Ti Ei:l Ti + Y

(c) Suppose that z1 is missing. Use the fact that X1 ~ binomial(m,t1) to calculate
the expected complete-data log likelihood. Show that the EM sequence is given by

n
Bty = i=1 Yt and #+Y = i T Ui

m'f'l(r) + 2?22 Ti ! mf—l(r) + Z?-_-z Zi + Z?:l yi’

i=1,2...,n

(d) Use this model to find the MLEs for the data in Exercise 7.28, first assuming that
you have all the data and then assuming that z1 = 3540 is missing.

The EM algorithm is useful in a variety of situation, and the definition of “miss-
ing data” can be stretched to accommodate many different models. Suppose that
we have a mixture density pf(z) + (1 — p)g(x), where p is unknown. If we observe
X = (X1,...,Xn), the sample density is

[Iipf@) + - p)glz),

which could be difficult to deal with. (Actually, a mixture of two is not terrible, but

consider what the likelihood would look like with a mixture Z:;l p; fi(z) for large k.)
The EM solution is to augment the observed (or incomplete) data with Z = (7, ...,
Zy,), where Z; tells which component of the mixture X; came from; that is,

X,;|Zi =1~ f(iL‘l) and X,|zl =0~ g(:ni),
and P(Z; =1) =p.
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(a) Show that the joint density of (X, Z) is given by [ [, [pf(x:)*][(1 — p)g(z:)' 7).
(b) Show that the missing data distribution, the distribution of Z;|z;,p is Bernoulli

with success probability pf(z:)/(pf(x:) + (1 — p)g(z:))-
(c) Calculate the expected complete-data log likelihood, and show that the EM se-

quence is given by

n

s+ - 1 S P f (i) |
n & p) fz;) + (1 — p())g(:)

=1

7.31 Prove Theorem 7.2.20.

7.32

7.33

(a) Show that, using (7.2.19), we can write
log L(0Ty) = E [log L(6™ |y, X)16”, y] — E [log k(X|67, )67, y],

and, since 47 is a maximum, log L(6 Y|y, X) > E [log L(é(r)|y,X)|9A(’"),y].
When is the inequality an equality?
(b) Now use Jensen’s inequality to show that

E [log k(X|0T ), y)167, y] < E [log k(X|67, 3187, ],

which together with part (a) proves the theorem.

(Hint: If f and g are densities, since log is a concave function, Jensen’s inequality
(4.7.7) implies

f(x) f(z) _ _
/log (5@3) 9(z) dx < log (/ mg(x) dm) = log (/f(x) d:c) =0.

By the property of logs, this in turn implies that

/ log[f(«)]g(c) dz < / loglg(2))g(x) dz.)

The algorithm of Exercise 5.65 can be adapted to simulate (approximately) a sample

from the posterior distribution using only a sample from the prior distribution. Let

Xi,.-.y Xn ~ f(x|0), where 6 has prior distribution . Generate 61,...,0r from T,

and calculate q; = L(0:[x)/ ), L(6;/]x), where L(8|x) = [, f(z:|¢) is the likelihood

function.

(a) Generate 67,...,60%, where P(6* = 6;) = ¢;. Show that this is a (approximate)
sample from the posterior in the sense that P(6* < t) converges to [ foo m(0|x) db.

(b) Show that the estimator ) °_, h(0})/r converges to E[h(¢)|x], where the expec-
tation is with respect to the posterior distribution.

(¢) Ross (1996) suggests that Rao-Blackwellization can improve the estimate in part
(b). Show that for any 7,

B0 - O] = g D hO)EGH

has the same mean and smaller variance than the estimator in part (b).

In Example 7.3.5 the MSE of the Bayes estimator, pp, of a success probability was
calculated (the estimator was derived in Example 7.2.14). Show that the choice a =

B = \/n/4 yields a constant MSE for ps.
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7.34 Let Xu,..., X, be arandom sample from a binomial(n, p). We want to find equivariant

7.35

7.36

7.37

7.38

7.39
7.40

point estimators of p using the group described in Example 6.4.1.

(a) Find the class of estimators that are equivariant with respect to this group.

(b) Within the class of Bayes estimators of Example 7.2.14, find the estimators that
are equivariant with respect to this group.

(¢) From the equivariant Bayes estimators of part (b), find the one with the smallest
MSE.

The Pitman Estimator of Location (see Lehmann and Casella 1998 Section 3.1, or the
original paper by Pitman 1939) is given by

f°° Hflfxi——t)dt
[ 110 " flma—t)dt’

where we observe a random sample Xi,..., X, from f(z — 8). Pitman showed that
this estimator is the location-equivariant estimator with smallest mean squared error
(that is, it minimizes (7.3.3)). The goals of this exercise are more modest.

dp(X) =

(a) Show that dp(X) is invariant with respect to the location group of Example 7.3.6.
(b) Show that if f(x — 6) is n(8, 1), then dp(X) =
(c) Show that if f(z — 6) is uniform(f — 3,0 + 1), then dp(X) = 2(Xg) + X(n))-

The Pitman Estimmator of Scale is given by

S n+r 1
f Hz 1 f(til?;) dt
f {nt+2r—1 H" f(txz) dt
where we observe a random sample Xi,..., X, from % f(x /o). Pitman showed that this

estimator is the scale-equivariant estimator of ¢” with smallest scaled mean squared
error (that is, it minimizes E(d — o")?/o*").

p(X) =

(a) Show that dp(X) is equivariant with respect to the scale group, that is, it satisfies
dp(cz1,...,cxn) = c dp(z1,...,2Zn),

for any constant ¢ > 0.
(b) Find the Pitman scale-equivariant estimator for o if X1,..., X, are iid n(0,c?).
(c) Find the Pitman scale-equivariant estimator for 3 if X1, ..., X, are iid exponential(f)
(d) Find the Pitman scale-equivariant estimator for 8 if X4, ..., Xy, are iid uniform(0,).

Let Xi,..., X, be a random sample from a population with pdf
f(:z:|9)=2—19-, —-0<zx<b, 6>0.

Find, if one exists, a best unbiased estimator of 6.

For each of the following distributions, let Xi,..., X, be a random sample. Is there
a function of 0, say g(0), for which there exists an unbiased estimator whose variance
attains the Cramér—Rao Lower Bound? If so, find it. If not, show why not.

(a) f(z|0) =027, O0<2z<1l, 6>0
) f@lo) = 22D¢= 0<z<1, 6>1

Prove Lemma 7.3.11. B
Let Xi,...,X, beiid Bernoulli_(p). Show that the variance of X attains the Cramér-
Rao Lower Bound, and hence X is the best unbiased estimator of p.
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7.41

7.42

7.43

7.44

7.45

Let X1,..., X, be a random sample from a population with mean p and variance o2.

(a) Show that the estimator )., @;X; is an unbiased estimator of p if Y, . a:; = 1.
(b) Among all unbiased estimators of this form (called linear unbiased estimators) find
the one with minimum variance, and calculate the variance.

Let Wi,..., Wi be unbiased estimators of a parameter § with VarW; = o? and
COV(Wi, WJ) =0ifs # _7
(a) Show that, of all estimators of the form Z a;W;, where the a;s are constant and

W; /o2 o .
Eo(> " a;W;) = 6, the estimator W* = Z—/—‘ has minimum variance.

> /e?)
(b) Show that Var W™ = _2(11_/0%2_)

Exercise 7.42 established that the optimal weights are qf = (1/07)/ (ZJ 1/03). A result

due to Tukey (see Bloch and Moses 1988) states that if W = Zi q: W, is an estimator
based on another sets of weights ¢; > 0, Zz q; = 1, then

VarW < 1
VarW* — 1 — )2’

where A satisfies (1 + A)/(1 — A) = bmax/bmin, and bmax and bmin are the largest and

smallest of b; = q:/q; .

(a) Prove Tukey’s inequality.

(b) Use the inequality to assess the performance of the usual mean Zl Wi/k as a
function of 02,./0in

Let X1,..., X, beiid n(f,1). Show that the best unbiased estimator of §2 is X*—(1/n).
Calculate its variance (use Stein’s Identity from Section 3.6), and show that it is greater
than the Cramér-Rao Lower Bound.

Let X1, X2,..., X be iid from a distribution with mean p and variance o2, and let S°
be the usual unbiased estimator of ¢2. In Example 7.3.4 we saw that, under normality,
the MLE has smaller MSE than S2. In this exercise will explore variance estimates
some more.

(a) Show that, for any estimator of the form aS?, where a is a constant,
MSE(aS?) = E[aS? — ¢°])* = a® Var(5?) + (a — 1)%c™.

(b) Show that

Var(8?) = 1 (/ﬂ‘, S 3) ot

n n—1

where k = E[X — u]*/o® is the kurtosis. (You may have already done this in
Exercise 5.8(b).)

(¢c) Show that, under normality, the kurtosis is 3 and establish that, in this case, the
estimator of the form aS* with the minimum MSE is 2—;}5’2. (Lemma 3.6.5 may
be helpful.)

(d) If normality is not assumed, show that MSE(aS?) is minimized at

n—1
(n+ 1) + (k—3)(n—1)"

a =

which is useless as it depends on a parameter.
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7.46

7.47

7.48

7.49

7.50

7.51
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(e) Show that ,
(i) for distributions with « > 3, the optimal a will satisfy a <

n—1,
il
(ii) for distributions with < 3, the optimal a will satisfy 221 < a < 1.
See Searls and Intarapanich (1990) for more details.
Let X1, X2, and X3 be a random sample of size three from a uniform(¢, 20) distribution,
where 6 > 0.

(a) Find the method of moments estimator of 6.

(b) Find the MLE, 6, and find a constant k such that Eg(kf) = 6.

(c) Which of the two estimators can be improved by using sufficiency? How?
(d) Find the method of moments estimate and the MLE of 8 based on the data

1.29, .86, 1.33,

three observations of average berry sizes (in centimeters) of wine grapes.

Suppose that when the radius of a circle is measured, an error is made that has
a n(0,0?) distribution. If n independent measurements are made, find an unbiased
estimator of the area of the circle. Is it best unbiased?

Suppose that X;,7 = 1,...,n, are iid Bernoulli(p).

(a) Show that the variance of the MLE of p attains the Cramér—Rao Lower Bound.
(b) For n > 4, show that the product X; X2X3X, is an unbiased estimator of p*, and
use this fact to find the best unbiased estimator of p*.

Let X1,..., X, be iid exponential(\).

(a) Find an unbiased estimator of A based only on Y = min{Xj,..., X, }.

(b) Find a better estimator than the one in part (a). Prove that it is better.

(c) The following data are high-stress failure times (in hours) of Kevlar/epoxy spher-
ical vessels used in a sustained pressure environment on the space shuttle:

50.1, 70.1, 137.0, 166.9, 170.5, 152.8, 80.5, 123.5, 112.6, 148.5, 160.0, 125.4.

Failure times are often modeled with the exponential distribution. Estimate the
mean failure time using the estimators from parts (a) and (b).
Let X1,...,Xn be iid n(6,6%),0 > 0. For this model both X and ¢S are unbiased

VA=1r((n—1)/2)
V2C(n/2)

(a) Prove that for any number a the estimator aX+(1—a)(cS) is an unbiased estimator
of 6.

(b) Find the value of a that produces the estimator with minimum variance.

(c) Show that (X,S?) is a sufficient statistic for  but it is not a complete sufficient
statistic.

estimators of 8, where ¢ =

Gleser and Healy (1976) give a detailed treatment of the estimation problem in the
n(f, af?) family, where a is a known constant (of which Exercise 7.50 is a special case).
We explore a small part of their results here. Again let Xi,..., X, be iid n(9,6?),
9 > 0, and let X and ¢S be as in Exercise 7.50. Define the class of estimators

T: {T T = CMX +a2(cS)} ’

where we do not assume that a1 + a2 = 1.
(a) Find the estimator T € 7 that minimizes E¢(f — T)?; call it T*.

AY
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.52

.53

7.54

1.55

7.56

.57

(b) Show that the MSE of T™ is smaller than the MSE of the estimator derived in
Exercise 7.50(b).

(c) Show that the MSE of " = max{0,7*} is smaller than the MSE of T™.

(d) Would 8 be classified as a location parameter or a scale parameter? Explain.

Let Xi,...,X, be iid Poisson()\), and let X and S? denote the sample mean and
variance, respectively. We now complete Example 7.3.8 in a different way. There we
used the Cramér—Rao Bound; now we use completeness.

(a) Prove that X is the best unbiased estimator of A without using the Cramér-Rao
Theorem.

(b) Prove the rather remarkable identity E(S?|X) = X, and use it to explicitly demon-
strate that Var §% > Var X.

(c) Using completeness, can a general theorem be formulated for which the identity
in part (b) is a special case?

Finish some of the details left out of the proof of Theorem 7.3.20. Suppose W is an

unbiased estimator of 7(8), and U is an unbiased estimator of 0. Show that if, for some

8 = 6o, Cove, (W, U) # 0, then W cannot be the best unbiased estimator of 7().

Consider the “Problem of the Nile” (see Exercise 6.37).

(a) Show that T"is the MLE of 6 and U is ancillary, and

T(n+1/2)T(n - 1/2) _ D(n+1)0(n—1)
O o)

(b) Let Z1 = (n—1)/> X and Z2 = > Yi/n. Show that both are unbiased with
variances 62/(n — 2) and 62 /n, respectively.

(c) Find the best unbiased estimator of the form aZ;+(1—a)Z2, calculate its variance,
and compare it to the bias-corrected MLE.

ET = 92,

For each of the following pdfs, let Xi,...,X, be a sample from that distribution. In
each case, find the best unbiased estimator of 8". (See Guenther 1978 for a complete
discussion of this problem.) '

(a) f(zlf) =3, O0<z<b,7r<nm

(b) f(z]d) = e—@—") x>0

(c) f(z|0) = m, 0 <x<b, bknown

Prove the assertion made in the text preceding Example 7.3.24: If T is a complete
sufficient statistic for a parameter 8, and A(X1,...,Xr) is any unbiased estimator of
7(0), then ¢(T) = E(h(X;4,... ,Xn)‘T) is the best unbiased estimator of 7(6).

Let X1,..., Xn+1 be iid Bernoulli(p), and define the function h(p) by

= P(in‘ > Xnt1 p) ,
i=1

the probability that the first n observations exceed the (n + 1)st.
(a) Show that

_J1 if 351 X > Xnia
T(X1,..., Xnp1) = {0 otherwise

is an unbiased estimator of h(p).
(b) Find the best unbiased estimator of h(p).
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Let X be an observation from the pdf

e}
f(@lf) = (g) (1017 o= _1,01; 0<0<L.

(a) Find the MLE of 6.
(b) Define the estimator T'(X) by

2 ifxz=1
I(x)= { 0 otherwise.

Show that 7'(X) is an unbiased estimator of 6.
(¢) Find a better estimator than T'(X) and prove that it is better.

Let Xi,...,Xn be iid n(u, 0%). Find the best unbiased estimator of o”, where p is a
known positive constant, not necessarily an integer.

Let X1,...,Xn be iid gamma(a, #) with o known. Find the best unbiased estimator
of 1/8.

Show that the log of the likelihood function for estimating o2, based on observing
S? ~ 0%x2 /v, can be written in the form

- 2 2
log L(c°|s%) = Ki1— — Kzlog — + K,
o o

where K1, K>, and K3 are constants, not dependent on o2. Relate the above log like-
lihood to the loss function discussed in Example 7.3.27. See Anderson (1984a) for a
discussion of this relationship.

Let Xi,..., X, be a random sample from a n(f,c?) population, 0% known. Consider
estimating 6 using squared error loss. Let 7(6) be a n(y, 7'2) prior distribution on 4 and
let 6™ be the Bayes estimator of 6. Verify the following formulas for the risk function
and Bayes risk.

(a) For any constants a and b, the estimator §(x) = aX + b has risk function

20'2

R(6,6) = a’— + (b~ (1 - a)6)?.
(b) Let n = 0%/(n7? + 0?). The risk function for the Bayes estimator is
w 20° 2 2
R(6,6") = (1 =m)"—+n"(0 - p)".
(c) The Bayes risk for the Bayes estimator is
B(m,67) = 2.

Let X ~ n(u,1). Let 6™ be the Bayes estimator of y for squared error loss. Compute and
graph the risk functions, R(u,8"), for m(u) ~ n(0,1) and w(u) ~ n(0,10). Comment
on how the prior affects the risk function of the Bayes estimator. '
Let Xi,...,X, be independent random variables, where X; has cdf F(z|6;). Show
that, for ¢ = 1,...,n, if §7°(X;) is a Bayes rule for estimating 6; using loss L(6;,q;)
and prior 7;(6;), then §"(X) = (6™ (X1),...,6™(X»)) is a Bayes rule for estimating
0 = (01,...,0n) using the loss > | L(6:,a:) and prior 7(6) = [ [\, m:(6:)-
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765 A loss function investigated by Zellner (1986) is the LINEX (LINear—EXponential)
loss, a loss function that can handle asymmetries in a smooth way. The LINEX loss is
given by

L(0,a) = e —¢(a—0) —1,

where c is a positive constant. As the constant ¢ varies, the loss function varies from
very asymmetric to almost symmetric.

(a) For ¢ =.2,.5, 1, plot L(f,a) as a function of a — 6.

(b) If X ~ F(z|0), show that the Bayes estimator of 6, using a prior 7, is given by
§™(X) = =Llog E(e™|X).

(c) Let X1,...,X, be iid n(d,0*), where o* is known, and suppose that § has the
noninformative prior 7(f) = 1. Show that the Bayes estimator versus LINEX loss
is given by 6%(X) = X — (ca?/(2n)).

(d) Calculate the posterior expected loss for §%(X) and X using LINEX loss.

(e) Calculate the posterior expected loss for §°(X) and X using squared error loss.

7.66 The jackknife is a general technique for reducing bias in an estimator (Quenouille,
1956). A one-step jackknife estimator is defined as follows. Let X1, ..., X, be arandom
sample, and let T,, = T,,(X1,...,Xn) be some estimator of a parameter . In order to
“jackknife” T;, we calculate the n statistics T, (i), i=1,...,n, where T,,¥) is calculated
just as T, but using the n — 1 observations with X; removed from the sample. The
jackknife estimator of 8, denoted by JK(T%), is given by

n—1« ;
JK(Tn) = nTn — T,
(Tn) = nTn — — Z
(In general, JK(T},) will have a smaller bias than T,,. See Miller 1974 for a good review
of the properties of the jackknife.)
Now, to be specific, let X1,..., X, be iid Bernoulli(§). The object is to estimate 6.

(a) Show that the MLE of 6%, (3 | X;/n)?, is a biased estimator of §°.

(b) Derive the one-step jackknife estimator based on the MLE.

(c) Show that the one-step jackknife estimator is an unbiased estimator of 6. (In
general, jackknifing only reduces bias. In this special case, however, it removes it
entirely.)

(d) Is this jackknife estimator the best unbiased estimator of 627 If so, prove it. If not,
find the best unbiased estimator.

7.5 Miscellanea

7.5.1 Moment Estimators and MLEs

In general, method of moments estimators are not functions of sufficient statistics;
hence, they can always be improved upon by conditioning on a sufficient statistic.
In the case of exponential families, however, there can be a correspondence between
a modified method of moments strategy and maximum likelihood estimation. This
correspondence is discussed in detail by Davidson and Solomon (1974), who also
relate some interesting history.
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Suppose that we have a random sample X = (Xi,...,X,) from a pdf in the
exponential family (see Theorem 5.2.11)

b
f(z]0) = h(z)c(0) exp (Z w; (0)1: (fv)) )
1=1

where the range of f(z|) is independent of §. (Note that & may be a vector.) The
likelihood function is of the form

k n
L(6]x) = H(x)[c(0)]"exp | Y wi(0) > ti(=;) | ,
i=1 j=1

and a modified method of moments would estimate w;(0),7 = 1,...,k, by w;(8),
the solutions to the k£ equations

n

S tilm) =EBe| > (X)) |, i=1,...,k
j=1

J=1

Davidson and Solomon, extending work of Huzurbazar (1949), show that the esti-
mators w;(0) are, in fact, the MLEs of w;(0). If we define n; = w;(0),i = 1,...,k,
then the MLE of g(n;) is equal to g(7;) = g(@;(0)) for any one-to-one function
g. Calculation of the above expectations may be simplified by using the facts
(Lehmann 1986, Section 2.7) that

0 . :
Eg(tZ(XJ))—_—mlOg(C(Q)), z:]-a"'aka .7=]-7?na

0? ,

COV@(tZ(XJ)7t'L’(XJ)) = aw(e)awl(e) log(c(@)), 7’)1' = 179k7 .7= 1)?”

7.5.2 Unbiased Bayes Estimates

As was seen in Section 7.2.3, if a Bayesian calculation is done, the mean of the
posterior distribution usually is taken as a point estimator. To be specific, if X
has pdf f(x|0) with E¢(X) = 6 and there is a prior distribution 7 (), then the
posterior mean, a Bayesian point estimator of 6, is given by

E(f)|z) = /071'(0|x)d9.

A question that could be asked is whether E(6|X) can be an unbiased estimator
of 6 and thus satisfy the equation

Fo[E(6]X)] = / [ / 6 (6]) d@] F(2(8) dz = 6.

The answer is no. That is, posterior means are never unbiased estimators. If they
were, then taking the expectation over the joint distribution of X and 6, we could
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write
E[(X - 6)?] = E[X® — 2X6 + 67] (expand the square)
=E (E(X? - 2X0 + 6°|9)) (iterate the expectation)
=E (E(X?|0) — 26% + 6°) (E(X1]0) = EpX = 6)
= E (E(X?6) — 6%)
= E(X?) - E(6%) (properties of expectations)

doing the conditioning one way, and conditioning on X, we could similarly calculate
E[(X —0)*] =E (E[X? — 2X0 + 6%| X))

=E (X? - 2X? + E(6%|X)) ( B(O1X) = X >

by assumption
= E(6?) — E(X?).

Comparing the two calculations, we see that the only way that there is no contra-
diction is if E(X?) = E(6?), which then implies that E(X — 6)? = 0, so X = 4.
This occurs only if P(X = 6) = 1, an uninteresting situation, so we have argued to
a contradiction. Thus, either E(X|6) # 6 or E(6|X) # X, showing that posterior
means cannot be unbiased estimators. Notice that we have implicitly made the
assumption that E(X?) < oo, but, in fact, this result holds under more general
conditions. Bickel and Mallows (1988) have a more thorough development of this
topic. At a more advanced level, this connection is characterized by Noorbaloochi
and Meeden (1983).

1.5.83 The Lehmann—Scheffé Theorem

The Lehmann—Scheffé Theorem represents a major achievement in mathematical
statistics, tying together sufficiency, completeness, and uniqueness. The develop-
ment in the text is somewhat complementary to the Lehmann-Schefté Theorem,
and thus we never stated it in its classical form (which is similar to Theorem
7.3.23). In fact, the Lehmann—Scheffé Theorem is contained in Theorems 7.3.19
and 7.3.23.

Theorem 7.5.1 (Lehmann—Scheffé) Unbiased estimators based on complete
sufficient statistics are unique.

Proof: Suppose T is a complete sufficient statistic, and ¢(7") is an estimator with
E¢¢p(T) = 7(0). From Theorem 7.3.23 we know that ¢(T') is the best unbiased
estimator of 7(6), and from Theorem 7.3.19, best unbiased estimators are unique.

O

This theorem can also be proved without Theorem 7.3.19, using just the conse-
quences of completeness, and provides a slightly different route to Theorem 7.3.23.
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7.5.4 More on the EM Algorithm

The EM algorithm has its roots in work done in the 1950s (Hartley 1958) but
really came into statistical prominence after the seminal work of Dempster, Laird,
and Rubin (1977), which detailed the underlying structure of the algorithm and
illustrated its use in a wide variety of applications.

Onec of the strengths of the EM algorithm is that conditions for convergence to the
incomplete-data MLEs are known, although this topic has obtained an additional
bit of folklore. Dempster, Laird, and Rubin’s (1977) original proof of convergence
had a flaw, but valid convergence proofs were later given by Boyles (1983) and Wu
(1983); see also Finch, Mendell, and Thode (1989).

In our development we stopped with Theorem 7.2.20, which guarantees that the
likelihood will increase at each iteration. However, this may not be enough to con-
clude that the sequence {#("} converges to a maximum likelihood estimator. Such
a guarantee requires further conditions. The following thcorem, due to Wu (1983),
guarantees convergence to a statzonary point, which may be a local maximum or
saddlepoint.

Theorem 7.5.2 If the expected complete-data log likelihood E [log L(Oly, )|9’ Y]
is continuous in both 8 and ', then all limit points of an EM sequence {6 )Y are
stationary points of L(8)y), and L(6M|y) converges monotonically to L(8|y) for
some stationary point 6.

In an exponential family computations become simplified because the log likelihood
will be linear in the missing data. We can write

E [log L(8ly,x)|9', ¥] = Eo {%g (’%y,X) 2 OB ) Jy]

— B [logh(y, X)) + 3 m(0)Eo [Tly] - B(O).

Thus, calculating the complete-data MLE involves only the simpler expectation
Eg/ [TZ|Y]
Good overviews of the EM algorithm are provided by Little and Rubin (1987),

Tanner (1996), and Shafer (1997); see also Lehmann and Casella (1998, Section
6.4). McLachlan and Krishnan (1997) provide a book-length treatment of EM.

5 Other Likelihoods

In this chapter we have used the method of maximum likelihood and seen that it
not only provides us with a method for finding estimators, but also brings along a
large-sample theory that is quite useful for inference.

Likelihood has many modifications. Some are used to deal with nuisance parameters
(such as profile likelihood); others are used when a more robust specification is
desired (such as quasi likelihood); and others are useful when the data are censored
(such as partial likelihood).
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There are many other variations, and they all can provide some improvement
over the plain likelihood that we have described here. Entries to this wealth of
likelihoods can be found in the review article of Hinkley (1980) or the volume of
review articles edited by Hinkley, Reid, and Snell (1991).

7.5.6 Other Bayes Analyses

1. Robust Bayes Analysis The fact that Bayes rules may be quite sensitive to the
(subjective) choice of a prior distribution is a cause of concern for many Bayesian
statisticians. The paper of Berger (1984) introduced the idea of a robust Bayes
analysis. This is a Bayes analysis in which estimators are sought that have good
properties for a range of prior distributions. That is, we look for an estimator
0* whose performance is robust in that it is not sensitive to which prior «, in a
class of priors, is the correct prior. Robust Bayes estimators can also have good
frequentist performance, making then rather attractive procedures. The review
papers by Berger (1990, 1994) and Wasserman (1992) provide an entry to this
topic.

2. Empirical Bayes Analysis In a standard Bayesian analysis, there are usually
parameters in the prior distribution that are to be specified by the experimenter.
For example, consider the specification

X6 ~ n(6,1),
f|7% ~ n(0, 7).

The Bayesian experimenter would specify a prior value for 72 and a Bayesian
analysis can be done. However, as the marginal distribution of X is n(0, 72 +1),
it contains information about 7 and can be used to estimate 7. This idea of esti-
mation of prior parameters from the marginal distribution is what distinguishes
empirical Bayes analysis. Empirical Bayes methods are useful in constructing
improved procedures, as illustrated in Morris (1983) and Casella and Hwang
(1987). Gianola and Fernando (1986) have successfully applied these types of
methods to solve practical problems. A comprehensive treatment of empirical

Bayes is Carlin and Louis (1996), and less technical introductions are found in
Casella (1985, 1992).

3. Hierarchical Bayes Analysis Another way of dealing with the specification
above, without giving a prior value to 72, is with a hierarchical specification,
that is, a specification of a second-stage prior on 72. For example, we could use

X0 ~n(8,1),

7% ~ uniform(0, co) (improper prior).
Hierarchical modeling, both Bayes and non-Bayes, is a very effective tool and
usually gives answers that are reasonably robust to the underlying model. Their
usefulness was demonstrated by Lindley and Smith (1972) and, since then, their
use and development have been quite widespread. The seminal paper of Gelfand
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and Smith (1990) tied hierarchical models to computing algorithms, and the ap-
plicability of Bayesian methods exploded. Lechmann and Casella (1998, Section
4.5) give an introduction to the theory of hierarchical Bayes, and Robert and
Casella (1999) cover applications and connections to computational algorithms.



