COURSE INFORMATION

Course Title	Creep, Fatigue and Fracture
Instructor	Dr. Ahmad Ghasemi Ghalebahman
Email Address	ghasemi@semnan.ac.ir
Telephone Number	+98 23 3153 3349
Office Location	Mechanical Engineering Department, Semnan University, Semnan, Iran
Duration	16-week period
Grading Policy	Midterm Exam: 35%,
	Final Exam: 45%,
	Homework: 12%
	Project: 8%
Textbook(s)	Fracture Mechanics: fundamentals and applications by T.L. Anderson, 3rd edition
	Fracture Mechanics: an introduction by E.E. Gdoutos, 2nd edition
	Metal Fatigue in Engineering by R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O Fuchs
	Multiaxial Fatigue by D.F. Socie and G.B. Marquis, 1st edition

COURSE OUTLINE

Topic	Week
Introduction	
Brittle and Ductile fracture	
Fracture Mechanics Approach to Design	_
Ductile-Brittle Transition	1
Modes of Fracture Failure	
Mixed-Mode Fracture	
Concept of Fatigue Crack Growth	
Linear Elastic Fracture Mechanics (LEFM)	
Atomic View of Fracture	
Griffith Energy Balance During Crack Growth	2
Energy Release Rate	
Crack Instability and the R Curves	
Compliance	
Singular Elasticity Problems (Wedge, Half-Plane, Contact, Dislocation, Crack) Michell-Based Solution	3
Williams-Asymptotic Solution for the Notched and Cracked Bodies	
T-Stress Concept0	4
Calculation of Coefficients of Singular and Non-Singular Terms	
Over-Deterministic (FEOD) Method	5
Displacement Extrapolation Method	3
Finite Element Modeling and Cohesive Zone Model	
Singular Elements at the Crack Tip	6
Extended Finite Element Method (XFEM)	ŭ
Fracture Criteria	
Fracture Locus and Crack Branching Angle in Mixed-Mode Fracture	7
Maximum Tangential Stress (MTS) Criterion	
Maximum Energy Release Rate (MERR) Criterion	
Strain Energy Density (SED) Criterion	8
Generalized (Modified) MTS Criterion/T-Stress Effect on Mixed-Mode Fracture	
Small Scale Yielding	
Crack Tip Plastic Zone	
Thickness Effect and Plane Strain Fracture Toughness	9
First-Order Uniaxial Stress Criterion	
Second- Order Uniaxial Stress Criterion: The Irwin Approach	
•	

Dugdale Criterion	
First-Order Multiaxial Yield Criterion	
ELASTIC PLASTIC FRACTURE MECHANICS (EPFM)	
Fracture Toughness Testing	10
ASTM Standard E399	
Test Procedure for Plane Strain Fracture Toughness	
Elastic-Plastic Fracture Mechanics(EPFM)	
J-Integral as the Nonlinear Energy Release Rate	11
Jas a Path Independent Line Integral	11
Crack Tip Opening Displacement (CTOD)	
Fatigue Failure	
Basic Concepts	
Life Prediction	
LCF and HCF Damages	12
Strain-Based Fatigue Models	12
Cyclic Stress-Strain Curve	
Coffin-Manson Law	
Influence of Mean Stress	
Stress-Based Fatigue Models	
Stress-life and Basquin's Law	
Fracture Mechanics-Based Fatigue Models	13
Paris-Erdoğan Law	
Other Rate Relations	
Fatigue Extension via Overload and Stop-Hole Techniques	
Multi-Axial Fatigue	14
Critical Plane Observations	
Recent Models	
Cyclic Plasticity	15
Non-Proportional Fatigue Models	
Creep	
Effects of Stress and Temperature on Creep	
Creep mechanisms	16
Power-Law Creep	
Larson-Miller parameter	