

# Comparing Massive MIMO at Sub-6 GHz and Millimeter Wave Using Stochastic Geometry

Robert W. Heath Jr., PhD, PE

Wireless Networking and Communications Group
Department of Electrical and Computer Engineering
The University of Texas at Austin
<a href="http://www.profheath.org">http://www.profheath.org</a>
Joint work with Tianyang Bai



### Going massive in 5G

Massive MIMO at sub 6 GHz

Massive MIMO at mmWave with small cells



Directional beamforming

10 to 30 users sharing same resources

Fewer than 4 users sharing same resources

Massive MIMO and small cells are a competing or complimentary technology depending on the carrier frequency

<sup>\*</sup> T. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Commun., Nov. 2011

<sup>\*\*</sup> T. Rappaport et al., "Millimeter wave mobile communications for 5G cellular: It will work!" IEEE Access, vol. 1, pp. 335–349, 2013.

<sup>\*\*\*</sup> W. Roh et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," IEEE Commun. Magazine, vol. 52, no. 2, pp. 106–113, February 2014.



#### **Outline**

◆ Features of massive MIMO at sub-6 GHz and mmWave

- Framework for comparison
- ◆ Analytical results with infinite & finite #s of antennas
- Visualizing the gains of going massive

Some results are described here:

Tianyang Bai and R.W. Heath, Jr., ``Asymptotic Coverage and Rate in Massive MIMO Networks," Proc. of the IEEE Global Signal and Information Processing Conference, Atlanta, GA, Dec. 3-5, 2014

Other results are in various submitted papers



### Massive MIMO at sub-6 GHz



### Features of massive MIMO & implications



**TDD** (time-division multiplexing) avoids **downlink** training overhead [Include pilot contamination]

Simple signal processing becomes near-optimal, with large arrays

[Assume matched filter beamforming]

© Robert W. Heath Jr. (2015)



### Massive MIMO at millimeter wave





- Huge amount of spectrum possibly available in mmWave bands
- Technology advances make mmWave possible for low cost consumer devices
- MmWave research is as old as wireless itself, e.g. Bose 1895 and Lebedow 1895



### Why large arrays at mmWave?



MIMO is a key feature of 5G mmWave systems

spatial multiplexing & beamforming

just beamforming





<sup>\*</sup> Shu Sun, T. Rappapport, R.W. Heath, Jr., A. Nix, and S. Rangan, `` MIMO for Millimeter Wave Wireless Communications: Beamforming, Spatial Multiplexing, or Both?," IEEE Communications Magazine, December 2014.



### Features of mmWave massive MIMO & implications



Exploit channel sparsity to reduce training overhead [Apply compressed sensing channel estimation (future work)]

Out-of-cell interference reduced due to directional transmission and blockage
[Incorporate blockages]

Need common framework to make a fair comparison



## Differentiating features between sub-6 GHz & mmWave included in the analysis



|                               | sub-6 GHz                                        | mmWave                                                        |  |
|-------------------------------|--------------------------------------------------|---------------------------------------------------------------|--|
| bandwidth                     | ~100 MHz                                         | 500 GHz @28 GHz<br>2 GHz @E-Band                              |  |
| small-scale fading            | correlated with high rank                        | correlated with low rank, varies with LOS or NLOS             |  |
| large-scale fading            | distant dependent pathloss                       | distant dependent with random blockage model and total outage |  |
| network deployment            | low BS density                                   | high BS density                                               |  |
| UE array configuration        | single antenna                                   | directional antenna with gain                                 |  |
| # users served simultaneously | higher (10 or more) I to 4 users (limited by har |                                                               |  |



### Comparisons built around a stochastic geometry framework



### Stochastic geometry in cellular systems



Shows reasonable fits with real BS distributions

Analyzes the system performance in large networks (in closed form for certain cases)

Extends to many applications: Heterogeneous, offloading, mmWave ...

Modeling base stations locations as Poisson point process

#### Apply stochastic geometry to compare massive MIMO @ sub-6 GHz and mmWave

[1] T. X Brown, "Practical Cellular Performance Bounds via Shotgun Cellular System," IEEE JSAC, Nov. 2000.

[2] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, "Stochastic geometry and random graph for the analysis and design of wireless networks", IEEEJSAC 09

[3] J. G. Andrews, F. Baccelli, and R. K. Ganti, "A tractable approach to coverage and rate in cellular networks", IEEE TCOM 2011.

& many more...

[4] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, "Modeling and analysis of K-tier downlink heterogeneous cellular networks", IEEE JSAC, 2012



### Challenges of analyzing massive MIMO using SG



| Most prior SG cellular models | Massive MIMO model               |
|-------------------------------|----------------------------------|
| Single user per cell          | Multiple user per cell           |
| Single base station antenna   | Massive base station antennas    |
| Rayleigh fading               | Correlated fading MIMO channel   |
| No channel estimation         | Pilot contamination              |
| Mainly focus on downlink      | Analyze both uplink and downlink |



### Sub-6 GHz massive MIMO: system model



### System model



- Base station w/ M antennas
- Ist scheduled user
- 2nd scheduled user

Presence of a "red" user in one cell prevents those of the other red

Base stations distributed as a PPP

Users PPP w/ high density BS randomly schedules K users

Scheduled users do not form a PPP (# of scheduled users fixed)

Use certain hardcore Matérn process



#### Channel model

Channel vector from BS I to user k in cell n

$$\mathbf{h}_{\ell n}^{(k)} = \left(\beta_{\ell n}^{(k)}\right)^{1/2} \mathbf{\Phi}_{\ell n}^{(k)1/2} \mathbf{w}_{\ell n}^{(k)}$$

Bounded path loss model

Path loss of a link with length R

$$C \max(\delta, R)^{-\alpha}$$

Address near-field effects in path loss

IID Gaussian vector for fading



Covariance matrix for correlated fading

Mean square of eigenvalues uniformly bounded

$$\lim \sup_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \lambda_{\ell n}^{(k)}[m] \le \gamma$$

Reasonable for rich scattering channel



### **Uplink channel estimation**



Channel estimate of  $\ell$ -th BS to its k-th user

$$\bar{\mathbf{h}}_{\ell\ell}^{(k)} = \mathbf{h}_{\ell\ell}^{(k)} + \sum_{\ell' \neq \ell} \mathbf{h}_{\ell\ell'}^{(k)}$$
 Error from pilot contamination

Need to incorporate pilot contamination in system analysis



### **Uplink data transmission**



BSs perform maximum ratio combining based on channel estimates

$$SIR_{U} = \frac{|\bar{\mathbf{h}}_{00}^{(1)*}\mathbf{h}_{00}^{(1)}|^{2}}{\sum_{\ell>0}|\bar{\mathbf{h}}_{00}^{(1)*}\mathbf{h}_{0\ell}^{(1)}|^{2} + \sum_{k>1}^{K}\sum_{\ell\geq0}|\bar{\mathbf{h}}_{0\ell}^{(k)}|^{2}}$$

As M grows large

Out-of-cell interference with different pilots disappears from expression



### **Downlink data transmission**



BSs perform match-filtering beamforming based on channel estimates

$$\mathrm{SIR_D} = \frac{|\mathbf{h}_{00}^{(1)*}\mathbf{f}_0^{(1)}|^2}{\sum_{\ell \neq 1} |\mathbf{h}_{\ell 0}^{(1)*}\mathbf{f}_{\ell}^{(1)}|^2 + \sum_{k=2}^{K} \sum_{\ell > \ell} \mathbf{f}_{\ell}^{(k)}|^2} \qquad \qquad \mathbf{f}_{\ell}^{(k)} = \frac{\bar{\mathbf{h}}_{\ell \ell}^{(k)}}{\|\bar{\mathbf{h}}_{\ell 0}^{(k)}\|^2}$$

As M grows large

Out-of-cell interference with different pilots disappears from expression



# Sub-6 GHz massive MIMO: asymptotic performance analysis when # of BS antennas goes to infinity



### Prior results assuming IID fading & finite # BSs



What about spatial correlation and infinite number of BSs??



### **Dealing with infinite interferers**

Difficulty: cannot swap limit and infinite sum directly, with infinite BSs

$$\sum_{\ell>0} \left( \frac{||\mathbf{h}_{0\ell}^{(1)}||^2}{M} - \beta_{0\ell}^{(1)} \right) = \sum_{\ell: ||Y_{\ell}^{(1)} - X_0|| \le R_0} \left( \frac{||\mathbf{h}_{0\ell}^{(1)}||^2}{M} - \beta_{0\ell}^{(1)} \right) + \sum_{\ell: ||Y_{\ell}^{(1)} - X_0|| > R_0} \left( \frac{||\mathbf{h}_{0\ell}^{(1)}||^2}{M} - \beta_{0\ell}^{(1)} \right)$$

Solution: use SG in proof

Interference from finite nodes Interference from infinite nodes inside the ball outside the ball Fixed ball with radius Ro Can show the infinite sum converges to 0 Converges as the by stochastic geometry BSs inside the ball finite I finite BS case almost surely BS X<sub>0</sub>

Use stochastic geometry to prove convergence of infinite sum



### **Asymptotic SINR results**

under the bounded spatial correlation model the following hold

| Compared with SISO: Path loss exponent doubles Fading vanishes | Asymptotic SINR expression                                                                      | CCDF of SINR                                                                                    |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Uplink                                                         | $\frac{\left(\beta_{00}^{(1)}\right)^2}{\sum_{\ell \neq 0} \left(\beta_{0\ell}^{(1)}\right)^2}$ | $1-\mathrm{e}^{-\left(rac{lpha-1}{T} ight)^{1/lpha}}$ DL and UL SIR distribution are different |  |
| Downlink                                                       | $\frac{\beta_{00}^{(1)2}/a_0^{(1)}}{\sum_{\ell \neq 0} \beta_{\ell 0}^{(1)2}/a_\ell^{(1)}}$     | $\min\left(1, \frac{\alpha \sin(\pi/\alpha)}{\pi T^{1/\alpha}}\right)$                          |  |

$$a_\ell^{(k)} = \sum_{\ell'} \beta_{\ell\ell'}^{(k)}$$
 due to power normalization in DL



### **Asymptotic uplink SIR plots**



Convergence to asymptotic SIR (IID fading, K=10,  $\alpha$ =4)



### Comparing UL and DL distribution



Indicate decoupled system design for DL and UL



### **MmWave massive MIMO**



### **MmWave massive MIMO network model**





### **MmWave asymptotic SINR results**

|                               | Asymptotic SINR expression                                                                                 | CCDF of SINR                                                                                                                            |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| Asymptotic mmWave uplink      | $\frac{Q^2\beta_{00}^{(1)2}}{\sum_{\ell\neq 0}D_{0\ell}^{(1)2}\beta_{0\ell}^{(1)2}}$ Directivity gain from | $A\sum_{n=1}^N \binom{N}{n} (-1)^n \times \int_0^\infty \mathrm{e}^{-W_n(T,t)-V_n(T,t)-\Xi(t)}\Xi(\mathrm{d}t)$ Can be computed through |  |
| Asymptotic<br>mmWave downlink | UE beamforming $Q^2 \beta_{00}^{(1)2}/a_0^{(1)}$                                                           | numerical integration $A\sum_{n=1}^{N} \binom{N}{n} (-1)^n \int_0^\infty \mathrm{e}^{-Z_n(T,t)-\Xi(t)} \Xi(\mathrm{d}t)$                |  |

LOS/ NLOS effects make expressions complicated



### **MmWave SINR sensitive to BS densities**



MmWave massive MIMO needs dense BS deployment

© Robert W. Heath Jr. (2015)



### Rate comparison



### Comparing sub-6 GHz and mmWave massive MIMO

| Carrier freq.                | 2 GHz      | 28 GHz                    | 73 GHz                           |
|------------------------------|------------|---------------------------|----------------------------------|
| bandwidth                    | 100 MHz    | Varies                    | Varies                           |
| # of scheduled user per cell | 10         | 4                         | 1                                |
| # of base station antennas   | 8X8        | 16X16<br>Keep the same ap | 40X40<br>erture in 28 and 73 GHz |
| # of UE antennas             | I          | 2X2                       | 5X5                              |
| TX power (DL/ UL)            | 46/ 20 dBm | 30/ 20 dBm                | 30/ 20 dBm                       |

- I. We vary the bandwidth of mmWave systems in the simulations
- 2. We assume the same amount of overhead for all systems
- 3. Use the parameters in the blockage model from [1] based on NYU measurements

 $200 \text{ m in ISD} = 32 \text{ BS/ km}^2$ 



### Comparison of average cell throughput



MmWave benefits more from network densifications



### Comparing massive MIMO w/ small cells

|                | Sub-6 GHz<br>massive<br>MIMO | 28 GHz<br>massive<br>MIMO | 73 GHz<br>massive<br>MIMO | Sub-6 GHz<br>Small cell<br>MIMO |
|----------------|------------------------------|---------------------------|---------------------------|---------------------------------|
| # user/ cell   | Varies                       | 4                         | I                         | I                               |
| # BS antenna   | 8×8                          | 16 x 16                   | 40 × 40                   | 2                               |
| # User antenna | I                            | 2×2                       | 5×5                       | 2                               |
| Bandwidth      | 100 MHz                      | varies                    | varies                    | 100 MHz                         |

- 1. Small cell serves its user by 2x2 spatial multiplexing or SISO
- 2. Assume perfect channel knowledge for small cell case
- 3. Assume user density 40x macro massive MIMO BS density

Compare throughput per unit area b/w massive MIMO and small cell



### Sub-6 GHz massive MIMO vs. Small cell



Sub 6-GHz massive MIMO achieves comparable area throughput using sparser BS deployment



### MmWave massive MIMO vs. Small cell



MmWave provides large gain in area throughput in small-cell regime



### **Conclusions**

go massive @ mmWave w/ small cells go massive @ sub-6 GHz w/ large cells