Comparing Massive MIMO at Sub-6 GHz and Millimeter Wave Using Stochastic Geometry Robert W. Heath Jr., PhD, PE Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University of Texas at Austin http://www.profheath.org Joint work with Tianyang Bai ### Going massive in 5G Massive MIMO at sub 6 GHz Massive MIMO at mmWave with small cells Directional beamforming 10 to 30 users sharing same resources Fewer than 4 users sharing same resources Massive MIMO and small cells are a competing or complimentary technology depending on the carrier frequency ^{*} T. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Commun., Nov. 2011 ^{**} T. Rappaport et al., "Millimeter wave mobile communications for 5G cellular: It will work!" IEEE Access, vol. 1, pp. 335–349, 2013. ^{***} W. Roh et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," IEEE Commun. Magazine, vol. 52, no. 2, pp. 106–113, February 2014. #### **Outline** ◆ Features of massive MIMO at sub-6 GHz and mmWave - Framework for comparison - ◆ Analytical results with infinite & finite #s of antennas - Visualizing the gains of going massive Some results are described here: Tianyang Bai and R.W. Heath, Jr., ``Asymptotic Coverage and Rate in Massive MIMO Networks," Proc. of the IEEE Global Signal and Information Processing Conference, Atlanta, GA, Dec. 3-5, 2014 Other results are in various submitted papers ### Massive MIMO at sub-6 GHz ### Features of massive MIMO & implications **TDD** (time-division multiplexing) avoids **downlink** training overhead [Include pilot contamination] Simple signal processing becomes near-optimal, with large arrays [Assume matched filter beamforming] © Robert W. Heath Jr. (2015) ### Massive MIMO at millimeter wave - Huge amount of spectrum possibly available in mmWave bands - Technology advances make mmWave possible for low cost consumer devices - MmWave research is as old as wireless itself, e.g. Bose 1895 and Lebedow 1895 ### Why large arrays at mmWave? MIMO is a key feature of 5G mmWave systems spatial multiplexing & beamforming just beamforming ^{*} Shu Sun, T. Rappapport, R.W. Heath, Jr., A. Nix, and S. Rangan, `` MIMO for Millimeter Wave Wireless Communications: Beamforming, Spatial Multiplexing, or Both?," IEEE Communications Magazine, December 2014. ### Features of mmWave massive MIMO & implications Exploit channel sparsity to reduce training overhead [Apply compressed sensing channel estimation (future work)] Out-of-cell interference reduced due to directional transmission and blockage [Incorporate blockages] Need common framework to make a fair comparison ## Differentiating features between sub-6 GHz & mmWave included in the analysis | | sub-6 GHz | mmWave | | |-------------------------------|--|---|--| | bandwidth | ~100 MHz | 500 GHz @28 GHz
2 GHz @E-Band | | | small-scale fading | correlated with high rank | correlated with low rank, varies with LOS or NLOS | | | large-scale fading | distant dependent pathloss | distant dependent with random blockage model and total outage | | | network deployment | low BS density | high BS density | | | UE array configuration | single antenna | directional antenna with gain | | | # users served simultaneously | higher (10 or more) I to 4 users (limited by har | | | ### Comparisons built around a stochastic geometry framework ### Stochastic geometry in cellular systems Shows reasonable fits with real BS distributions Analyzes the system performance in large networks (in closed form for certain cases) Extends to many applications: Heterogeneous, offloading, mmWave ... Modeling base stations locations as Poisson point process #### Apply stochastic geometry to compare massive MIMO @ sub-6 GHz and mmWave [1] T. X Brown, "Practical Cellular Performance Bounds via Shotgun Cellular System," IEEE JSAC, Nov. 2000. [2] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, "Stochastic geometry and random graph for the analysis and design of wireless networks", IEEEJSAC 09 [3] J. G. Andrews, F. Baccelli, and R. K. Ganti, "A tractable approach to coverage and rate in cellular networks", IEEE TCOM 2011. & many more... [4] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, "Modeling and analysis of K-tier downlink heterogeneous cellular networks", IEEE JSAC, 2012 ### Challenges of analyzing massive MIMO using SG | Most prior SG cellular models | Massive MIMO model | |-------------------------------|----------------------------------| | Single user per cell | Multiple user per cell | | Single base station antenna | Massive base station antennas | | Rayleigh fading | Correlated fading MIMO channel | | No channel estimation | Pilot contamination | | Mainly focus on downlink | Analyze both uplink and downlink | ### Sub-6 GHz massive MIMO: system model ### System model - Base station w/ M antennas - Ist scheduled user - 2nd scheduled user Presence of a "red" user in one cell prevents those of the other red Base stations distributed as a PPP Users PPP w/ high density BS randomly schedules K users Scheduled users do not form a PPP (# of scheduled users fixed) Use certain hardcore Matérn process #### Channel model Channel vector from BS I to user k in cell n $$\mathbf{h}_{\ell n}^{(k)} = \left(\beta_{\ell n}^{(k)}\right)^{1/2} \mathbf{\Phi}_{\ell n}^{(k)1/2} \mathbf{w}_{\ell n}^{(k)}$$ Bounded path loss model Path loss of a link with length R $$C \max(\delta, R)^{-\alpha}$$ Address near-field effects in path loss IID Gaussian vector for fading Covariance matrix for correlated fading Mean square of eigenvalues uniformly bounded $$\lim \sup_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \lambda_{\ell n}^{(k)}[m] \le \gamma$$ Reasonable for rich scattering channel ### **Uplink channel estimation** Channel estimate of ℓ -th BS to its k-th user $$\bar{\mathbf{h}}_{\ell\ell}^{(k)} = \mathbf{h}_{\ell\ell}^{(k)} + \sum_{\ell' \neq \ell} \mathbf{h}_{\ell\ell'}^{(k)}$$ Error from pilot contamination Need to incorporate pilot contamination in system analysis ### **Uplink data transmission** BSs perform maximum ratio combining based on channel estimates $$SIR_{U} = \frac{|\bar{\mathbf{h}}_{00}^{(1)*}\mathbf{h}_{00}^{(1)}|^{2}}{\sum_{\ell>0}|\bar{\mathbf{h}}_{00}^{(1)*}\mathbf{h}_{0\ell}^{(1)}|^{2} + \sum_{k>1}^{K}\sum_{\ell\geq0}|\bar{\mathbf{h}}_{0\ell}^{(k)}|^{2}}$$ As M grows large Out-of-cell interference with different pilots disappears from expression ### **Downlink data transmission** BSs perform match-filtering beamforming based on channel estimates $$\mathrm{SIR_D} = \frac{|\mathbf{h}_{00}^{(1)*}\mathbf{f}_0^{(1)}|^2}{\sum_{\ell \neq 1} |\mathbf{h}_{\ell 0}^{(1)*}\mathbf{f}_{\ell}^{(1)}|^2 + \sum_{k=2}^{K} \sum_{\ell > \ell} \mathbf{f}_{\ell}^{(k)}|^2} \qquad \qquad \mathbf{f}_{\ell}^{(k)} = \frac{\bar{\mathbf{h}}_{\ell \ell}^{(k)}}{\|\bar{\mathbf{h}}_{\ell 0}^{(k)}\|^2}$$ As M grows large Out-of-cell interference with different pilots disappears from expression # Sub-6 GHz massive MIMO: asymptotic performance analysis when # of BS antennas goes to infinity ### Prior results assuming IID fading & finite # BSs What about spatial correlation and infinite number of BSs?? ### **Dealing with infinite interferers** Difficulty: cannot swap limit and infinite sum directly, with infinite BSs $$\sum_{\ell>0} \left(\frac{||\mathbf{h}_{0\ell}^{(1)}||^2}{M} - \beta_{0\ell}^{(1)} \right) = \sum_{\ell: ||Y_{\ell}^{(1)} - X_0|| \le R_0} \left(\frac{||\mathbf{h}_{0\ell}^{(1)}||^2}{M} - \beta_{0\ell}^{(1)} \right) + \sum_{\ell: ||Y_{\ell}^{(1)} - X_0|| > R_0} \left(\frac{||\mathbf{h}_{0\ell}^{(1)}||^2}{M} - \beta_{0\ell}^{(1)} \right)$$ Solution: use SG in proof Interference from finite nodes Interference from infinite nodes inside the ball outside the ball Fixed ball with radius Ro Can show the infinite sum converges to 0 Converges as the by stochastic geometry BSs inside the ball finite I finite BS case almost surely BS X₀ Use stochastic geometry to prove convergence of infinite sum ### **Asymptotic SINR results** under the bounded spatial correlation model the following hold | Compared with SISO: Path loss exponent doubles Fading vanishes | Asymptotic SINR expression | CCDF of SINR | | |--|---|---|--| | Uplink | $\frac{\left(\beta_{00}^{(1)}\right)^2}{\sum_{\ell \neq 0} \left(\beta_{0\ell}^{(1)}\right)^2}$ | $1-\mathrm{e}^{-\left(rac{lpha-1}{T} ight)^{1/lpha}}$ DL and UL SIR distribution are different | | | Downlink | $\frac{\beta_{00}^{(1)2}/a_0^{(1)}}{\sum_{\ell \neq 0} \beta_{\ell 0}^{(1)2}/a_\ell^{(1)}}$ | $\min\left(1, \frac{\alpha \sin(\pi/\alpha)}{\pi T^{1/\alpha}}\right)$ | | $$a_\ell^{(k)} = \sum_{\ell'} \beta_{\ell\ell'}^{(k)}$$ due to power normalization in DL ### **Asymptotic uplink SIR plots** Convergence to asymptotic SIR (IID fading, K=10, α =4) ### Comparing UL and DL distribution Indicate decoupled system design for DL and UL ### **MmWave massive MIMO** ### **MmWave massive MIMO network model** ### **MmWave asymptotic SINR results** | | Asymptotic SINR expression | CCDF of SINR | | |-------------------------------|--|---|--| | Asymptotic mmWave uplink | $\frac{Q^2\beta_{00}^{(1)2}}{\sum_{\ell\neq 0}D_{0\ell}^{(1)2}\beta_{0\ell}^{(1)2}}$ Directivity gain from | $A\sum_{n=1}^N \binom{N}{n} (-1)^n \times \int_0^\infty \mathrm{e}^{-W_n(T,t)-V_n(T,t)-\Xi(t)}\Xi(\mathrm{d}t)$ Can be computed through | | | Asymptotic
mmWave downlink | UE beamforming $Q^2 \beta_{00}^{(1)2}/a_0^{(1)}$ | numerical integration $A\sum_{n=1}^{N} \binom{N}{n} (-1)^n \int_0^\infty \mathrm{e}^{-Z_n(T,t)-\Xi(t)} \Xi(\mathrm{d}t)$ | | LOS/ NLOS effects make expressions complicated ### **MmWave SINR sensitive to BS densities** MmWave massive MIMO needs dense BS deployment © Robert W. Heath Jr. (2015) ### Rate comparison ### Comparing sub-6 GHz and mmWave massive MIMO | Carrier freq. | 2 GHz | 28 GHz | 73 GHz | |------------------------------|------------|---------------------------|----------------------------------| | bandwidth | 100 MHz | Varies | Varies | | # of scheduled user per cell | 10 | 4 | 1 | | # of base station antennas | 8X8 | 16X16
Keep the same ap | 40X40
erture in 28 and 73 GHz | | # of UE antennas | I | 2X2 | 5X5 | | TX power (DL/ UL) | 46/ 20 dBm | 30/ 20 dBm | 30/ 20 dBm | - I. We vary the bandwidth of mmWave systems in the simulations - 2. We assume the same amount of overhead for all systems - 3. Use the parameters in the blockage model from [1] based on NYU measurements $200 \text{ m in ISD} = 32 \text{ BS/ km}^2$ ### Comparison of average cell throughput MmWave benefits more from network densifications ### Comparing massive MIMO w/ small cells | | Sub-6 GHz
massive
MIMO | 28 GHz
massive
MIMO | 73 GHz
massive
MIMO | Sub-6 GHz
Small cell
MIMO | |----------------|------------------------------|---------------------------|---------------------------|---------------------------------| | # user/ cell | Varies | 4 | I | I | | # BS antenna | 8×8 | 16 x 16 | 40 × 40 | 2 | | # User antenna | I | 2×2 | 5×5 | 2 | | Bandwidth | 100 MHz | varies | varies | 100 MHz | - 1. Small cell serves its user by 2x2 spatial multiplexing or SISO - 2. Assume perfect channel knowledge for small cell case - 3. Assume user density 40x macro massive MIMO BS density Compare throughput per unit area b/w massive MIMO and small cell ### Sub-6 GHz massive MIMO vs. Small cell Sub 6-GHz massive MIMO achieves comparable area throughput using sparser BS deployment ### MmWave massive MIMO vs. Small cell MmWave provides large gain in area throughput in small-cell regime ### **Conclusions** go massive @ mmWave w/ small cells go massive @ sub-6 GHz w/ large cells