Mathematica quick reference

Items marked with ▶ should be mastered within the first two weeks of the semester.

▶Arithmetic

Syntax	Read As	Example
-,+,*,/	subtraction, addition, multiplication, division	2*x-4/x
space	multiplication	k x is the same as k*x
\wedge	exponentiation	2^3

Common error: forgetting the space in multiplication: kx does not equal k times x.

▶Brackets

ſ	Sy	ntax	Read As	Use	Example
	[]	square brackets	enclosing arguments of functions	Sin[2.5]
Ì	()	parentheses	grouping terms algebraically	$(3x-x^3)^(7/2)$
ĺ	{	}	curly braces	lists, ordered pairs	Plot[f[x],{x,0,2}]

Common errors: missing parentheses in algebra: x/2+x is not the same as x/(2+x) using parentheses for functions

▶Built-in Functions

Function	Syntax	Function	Syntax	Function	Syntax
$\sin(x)$	Sin[x]	$\cos(x)$	Cos[x]	$\tan(x)$	Tan[x]
$\arcsin(x)$	ArcSin[x]	$\arccos(x)$	ArcCos[x]	$\arctan(x)$	ArcTan[x]
$\ln(x)$	Log[x]	$\log_a(x)$	Log[a,x]	e^x	Exp[x], E^x
\sqrt{x}	Sqrt[x], x^(1/2)	n!	n!	$\sqrt[3]{x}$	CubeRoot[x]
$\sqrt[n]{(-x)}$	Surd[-x,n]			$x^{3/5}$	Surd[x^3,5]

Common errors: capitalization. *Mathematica* is picky! All built-in functions begin with a capital letter. using exponentiation (e.g. $x^{3/5}$) for nth roots of negative numbers

▶Built-in Constants and Symbols

Constant	π	e	i	∞
Syntax	Pi, ESC p ESC	Е	I	Infinity, ESC inf ESC

Common error: using e instead of E, using I for ∞

Keyboard Shortcuts

Raised exponents use Ctrl+^ (or Ctrl+6)

Stacked fractions use Ctrl+/ Radical $(\sqrt{\ })$ use Ctrl+2

List commands type the first three letters and Cmd+k (Mac) or Ctrl+k (PC)

Make Template type full command name Cmd+Shift+k (Mac) or Ctrl+Shift+k (PC)

Symbolic vs Numeric output

Mathematica works symbolically (algebraically) and gives exact answers unless instructed otherwise. Use a decimal in a number (eg, Pi/3.0 instead of Pi/3) or the N[] command to get a decimal expansion. Use N[expr,n] or SetPrecision[expr,n] to display n significant digits.

Getting help

Use ?CommandName or the Documentation Center to get more information on specific commands.

▶Equal Signs

Syntax	Read As	Use	Example
=	set equal to	defining variables and some functions	a=3.2
:=	set delayed	defining functions	f[x_]:=3x-7
==	equal	equations	Solve[x^2==3,x]

► Solving Equations

Syntax	Use	Example
Solve[]	solves equation(s) exactly using algebra	Solve[$\{x==3y-2,x^2+y^4==3\},\{x,y\}$]
NSolve[]	decimal expansion of algebraic solution	NSolve[$\{x==3y-2,x^2+y^4==3\},\{x,y\}$]
FindRoot[]	numerically approximates ONE solution	FindRoot[x^2==3Sin[x],{x,x0}]
	returns solution near $x = x_0$	

Common errors: Using = instead of ==. May need to use Clear[] to recover.

Warning: Some versions of *Mathematica* will reformat == as ==, making this error hard to identify. Entering an interval instead of a single initial guess in FindRoot[].

▶Defining Your Own Functions

You tell Mathematica which variables are the independent variables using an underscore. Use := instead of = to enable syntactic color-coding.

 $f[x_]:=Sin[x^2+7x]+Cos[x]$

g[x_,t_]:=E^x Sin[t]

Plotting and Plot Options

Plot type	Syntax
ightharpoonup plot $f(x)$ on interval $[a,b]$	Plot[f[x],{x,a,b}]
ightharpoonup plot $f(x)$ and $g(x)$ together	Plot[{f[x],g[x]},{x,a,b}]
Implicit plot of $f(x,y) = 0$ in \mathbb{R}^2	$ContourPlot[f[x,y]==0,\{x,a,b\},\{y,c,d\}]$
over $a \le x \le b$ and $c \le y \le d$	
Parametric plot of $x = x(t), y = y(t)$	<pre>ParametricPlot[{x[t],y[t]},{t,a,b}]</pre>
with $a \le t \le b$	
plotting list of data points	ListPlot[{{1,2},{2,3},{3,6}},Joined->True]
Plotting in \mathbb{R}^3	<pre>Plot3D[], ParametricPlot3D[], ContourPlot3D[]</pre>
Plot $f(x)$ with thick curve	Plot[f[x],{x,-2,5},PlotStyle->Thick]
Plot f with displayed y-range to $3 \le y \le 7$	Plot[f[x],{x,-2,5},PlotRange->{{-2,5},{3,7}}]
shade between curve and axis	Plot[f[x],{x,-2,5},Filling->Axis]
shade between two curves	Plot[{f[x],g[x]},{x,-2,5},Filling->{1}]

Working with Functions

Mathematical Operation	usual notation	Syntax
evaluate a function	f(3)	f[3]
differentiate	$\frac{d}{dx}f(x)$ or $f'(x)$	D[f[x],x] or f'[x]
indefinite integral	$\int f(x) dx$	<pre>Integrate[f[x],x]</pre>
definite integral (exact)	$\int_a^b f(x) dx$	<pre>Integrate[f[x],{x,a,b}]</pre>
definite integral (approx)	$\int_a^b f(x) dx$	<pre>NIntegrate[f[x],{x,a,b}]</pre>

Other Useful Commands

Syntax	Use	Example
Simplify[]	attempts to simplify expression	Simplify[$x(2-x)-3x+1$]
Factor[]	attempts to factor expression	Factor[x^3+3x^2+3x+1]
Expand[]	multiplies out (expands)	Expand[(x-7)(x^2-11x-1)^3]
Apart[]	partial fraction decomposition of $\frac{f(x)}{g(x)}$	Apart[(3x-2)(x^2-1)]
Eliminate[]	eliminate a variable from set of equations	Eliminate[{x==t^2+1,y==5/t},t]
Reduce[]	symbolically solves equations giving conditions	Reduce[$\{x+Cos[x*y]==0\},\{x,y\}$]]