The Area of a Triangle Using Its Semi-perimeter and the Radius of the In-circle: An Algebraic and Geometric Approach

Lesson Summary:

This lesson is for more advanced geometry students. In this lesson, the students will algebraically prove that the area of a triangle is equal to its semi-perimeter times the radius of its in-circle (A=sr). Then, using Cabri Geometry II, the students will use rotations and translations to transform the triangle into a rectangle. They will then show that the area of the resulting rectangle is equal to the area of the original triangle.

Keywords:

In-circle, semi-perimeter, area of triangle

Existing Knowledge:

Students should have previous knowledge in constructing the in-center and in-circle of a triangle using Cabri Geometry II.

NCTM Standards:

Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships.

Learning Objectives:

Students will prove algebraically that the area of a triangle is equal to its semi-perimeter times the radius of its in-circle (A = sr)

Students will use Cabri Geometry II to transform a triangle into a rectangle that has an area equal to the area of the triangle.

Materials:

Cabri Geometry II or Geometer's Sketchpad

Procedure:

Students should complete Lab 1. The teacher could then have a classroom discussion about the results. Then the students should use Cabri Geometry II to complete Lab 2.

Team Members:	
File Name:	

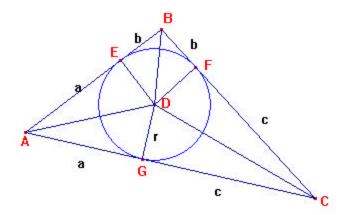
Activity Goals:

In this activity you will algebraically prove that the area of a triangle is equal to its semiperimeter times the radius of the inscribed circle (A=sr) Then in Laboratory Two, you will use Cabri Geometry II to transform the triangle, using rotations and translations, into a rectangle.

Laboratory One

Notes:

- 1. This lab involves using in-centers and in-circles of triangles. If you need a review on these topics, refer to the "In-centers and In-circles" lab.
- 2. The semi-perimeter of a triangle, s, is the same as half the perimeter, p, of the triangle.



Let D be the center of the in-circle of $\triangle ABC$. Let p be the perimeter of $\triangle ABC$. Let s be the semi-perimeter of $\triangle ABC$. Let r be the radius of circle p. Prove that the area of $\triangle ABC$ is equal to the length of its semi-perimeter times the radius of circle p. (A=sr)

- 1. What is the relationship between the radii of circle D and the tangent segments \overline{AB} , \overline{BC} and \overline{AC} ?
- 2. What can you conclude about the six triangles formed?
- 3. Are $\triangle AGD$ and $\triangle AED$ congruent? Why or why not? _____

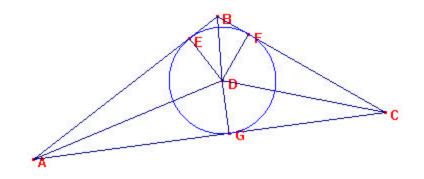
4.	Would this also be true for the other pairs of triangles shown? Why or why not?
5.	Why would the area of $\triangle ABC$ be equal to the sum of the areas of the six triangles?
6.	Write an equation for the area of $\triangle ABC$ using the sum of the areas of the six right triangles formed (in terms of a , b , c , and r).
7.	Using the space provided, simplify and factor your above equation and write the resulting equation here.
8.	What is the relationship of $(a + b + c)$ to the perimeter of $\triangle ABC$?
9.	In your own words, what is the area of $\triangle ABC$?

Laboratory Two

- 1. Construct $\triangle ABC$. (Triangle tool)
- 2. Construct the angle bisector of $\angle A$, $\angle B$ and $\angle C$, and label their intersection point D. (Angle bisector tool and point tool)
- 3. Construct \overline{AD} , \overline{BD} and \overline{CD} and then hide the angle bisectors.

(Segment tool and hide/show tool)

- 4. Construct perpendicular lines from point D to sides \overline{AB} , \overline{BC} and \overline{AC} and label the points of intersection as E, F, and G, respectively. (Perpendicular tool and point tool)
- 5. Construct \overline{DE} , \overline{DF} and \overline{DG} , then hide the perpendicular lines. (Segment tool and hide/show tool)
- 6. Construct a circle with center D and radius \overline{DE} . (circle tool)



- 7. Construct the midpoint of segments \overline{AD} , \overline{CD} and \overline{BD} . (Midpoint tool)
- 8. Construct $\triangle AGD$, $\triangle CGD$ and $\triangle BFD$. (Triangle tool)
- 9. Make a numerical edit of 180 degrees. (Numerical edit tool)
- 10. Rotate $\triangle AGD$ using the 180 degrees about the midpoint of \overline{AD} . Name the rotated triangle as $\triangle ADH$. (Rotation tool and label tool)
- 11. Rotate $\triangle CGD$ using the 180 degrees about the midpoint of \overline{CD} . Name the rotated triangle as $\triangle CDI$. (Rotation tool and label tool)
- 12. Rotate $\triangle BFD$ using the 180 degrees about the midpoint of \overline{BD} .

Name the rotated triangle as $\triangle BDJ$.

(Rotation tool and label tool)

13. Construct polygon BFDJ and then hide $\triangle BDJ$.

(polygon tool and hide/show tool)

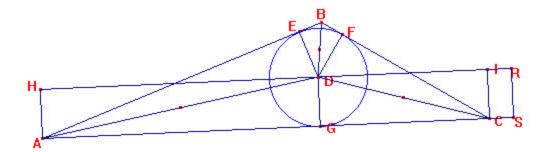
- 14. Construct vector *DI* and translate polygon *BFDJ* using vector *DI*. Name the translated polygon clockwise *IKLM*. (vector tool, translation tool, label tool)
- 15. Hide polygon *BFDJ* point *J*, and vector *DI*.

(hide/show tool)

- 16. Measure $\angle KID$ and rotate polygon IKLM using the measure of $\angle KID$ about point me. Name the new polygon clockwise INOP. (angle tool, rotation tool, label tool)
- 17. Hide polygon *IKLM* and points *K*, *L*, and *M*. Also hide the angle measure. (*Hide/show tool*)
- 18. Construct vector *NI* and translate polygon *INOP* using vector *NI*.

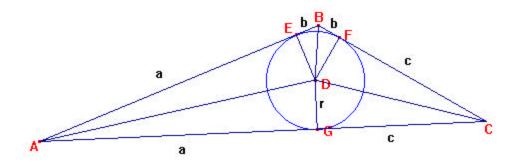
 Name the translated polygon clockwise *IPQR*. (Vector tool, translation tool, label tool)
- 19. Hide polygon *INOP*, vector *NI*, and points *N* and *O*. (hide/show tool)
- 20. Construct vector *IC* and translate polygon *IPQR* using vector *IC*.

 Name the new polygon *CIRS*. (*Vector tool, translation tool, label tool*)
- 21. Hide polygon *IPQR*, points *P* and *Q*, and vector *IC*. (hide/show tool)

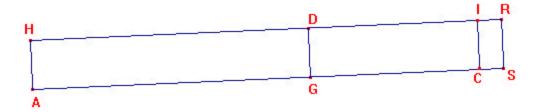


- 22. Construct polygon AHRS and find its area. Also find the area of $\triangle ABC$. [polygon tool and area tool]
- 23. What is the relationship of the area of polygon AHRS and the area of $\triangle ABC$?

24. Grab and move point *A*. Do the areas always stay equal? If not, when are they different?



25. The rectangle below is the transformation of the given $\triangle ABC$ above. Mark all the segments of the rectangle with the appropriate lengths.



26. What is the equation for the area of rectangle *AHRS*?

27. The equation for the area of $\triangle ABC$ was completed in Lab 1. What do you notice about the equation for the area of rectangle AHRS and the equation for the area of $\triangle ABC$?