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Abstract

We examine a graphical representation of uncertain knowledge called a Bayesian net-
work. The representation is easy to construct and interpret, yet has formal probabilistic
semantics making it suitable for statistical manipulation. We show how we can use the
representation to learn new knowledge by combining domain knowledge with statistical
data.

1 Introduction

Many techniques for learning rely heavily on data. In contrast, the knowledge encoded in
expert systems usually comes solely from an expert. In this paper, we examine a knowledge
representation, called a Bayesian network, that lets us have the best of both worlds. Namely,
the representation allows us to learn new knowledge by combining expert domain knowledge
and statistical data.

A Bayesian network is a graphical representation of uncertain knowledge that most peo-
ple find easy to construct and interpret. In addition, the representation has formal prob-
abilistic semantics, making it suitable for statistical manipulation (Howard, 1981; Pearl,
1988). Over the last decade, the Bayesian network has become a popular representation
for encoding uncertain expert knowledge in expert systems (Heckerman et al., 1995a). More
recently, researchers have developed methods for learning Bayesian networks from a com-
bination of expert knowledge and data. The techniques that have been developed are new
and still evolving, but they have been shown to be remarkably effective in some domains
(Cooper and Herskovits 1992; Aliferis and Cooper 1994; Heckerman et al. 1995b).

Using Bayesian networks, the learning process goes as follows. First, we encode the
existing knowledge of an expert or set of experts in a Bayesian network, as is done when
building a probabilistic expert system. Then, we use a database to update this knowl-
edge, creating one or more new Bayesian networks. The result includes a refinement of the
original expert knowledge and sometimes the identification of new distinctions and relation-
ships. The approach is robust to errors in the knowledge of the expert. Even when expert
knowledge is unreliable and incomplete, we can often use it to improve the learning process.

Learning using Bayesian networks is similar to that using neural networks. The process
employing Bayesian networks, however, has two important advantages. One, we can easily
encode expert knowledge in a Bayesian network and use this knowledge to increase the
efficiency and accuracy of learning. Two, the nodes and arcs in learned Bayesian networks
often correspond to recognizable distinctions and causal relationships. Consequently, we

can more easily interpret and understand the knowledge encoded in the representation.



This paper is a brief tutorial on Bayesian networks and methods for learning them from
data. In Sections 2 and 3 we discuss the Bayesian philosophy and the representation. In
Sections 4 through 7, we describe methods for learning the probabilities and structure of a
Bayesian network. In Sections 8 and 9, we discuss methods for identifying new distinctions
about the world and integrating these distinctions into a Bayesian network. We restrict
our discussion to Bayesian and quasi-Bayesian methods for learning. An interesting and
often effective non-Bayesian approach is given by Pearl and Verma (1991) and Spirtes et al.
(1993). Also, we limit our discussion to problem domains where variables take on discrete

states. More general techniques are given in Buntine (1994) and Heckerman et al. (1995b).

2 The Bayesian Philosophy

Before we discuss Bayesian networks and how to learn them from data, it will help to review
the Bayesian interpretation of probability. A primary element of the language of probability
(Bayesian or otherwise) is the event. By event, we mean a state of some part of our world
in some time interval in the past, present, or future. A classic example of an event is that a
particular flip of a coin will come up heads. A perhaps more interesting event is that gold
will close at more than $400 per ounce on January 1, 2001.

Given an event e, the prevalent conception of its probability is that it is a measure of the
frequency with which e occurs, when we repeat many times an experiment with possible
outcomes e and € (not e). A different notion is that the probability of e represents the
degree of belief held by a person that the event e will occur in a single experiment. If a
person assigns a probability of 1 to e, then he believes with certainty that e will occur. If
he assigns a probability of 0 to e, then he believes with certainty that e will not happen.
If he assigns a probability between 0 and 1 to e, then he is to some degree unsure about
whether or not e will occur.

The interpretation of a probability as a frequency in a series of repeat experiments
is traditionally referred to as the objective or frequentist interpretation. In contrast, the
interpretation of a probability as a degree of belief is called the subjective or Bayesian
interpretation, in honor of the Reverend Thomas Bayes, a scientist from the mid-1700s who
helped to pioneer the theory of probabilistic inference (Bayes 1958; Hacking, 1975). As
we shall see in Section 4, the frequentist interpretation is a special case of the Bayesian
interpretation.

In the Bayesian interpretation, a probability or belief will always depend on the state
of knowledge of the person who provides that probability. For example, if we were to give

someone a coin, he would likely assign a probability of 1/2 to the event that the coin would



show heads on the next toss. If, however, we convinced that person that the coin was
weighted in favor of heads, he would assign a higher probability to the event. Thus, we
write the probability of e as p(e|£), which is read as the probability of e given . The symbol
& represents the state of knowledge of the person who provides the probability.

Also, in this interpretation, a person can assess a probability based on information that
he assumes to be true. For example, our coin tosser can assess the probability that the coin
would show heads on the eleventh toss, under the assumption that the same coin comes up
heads on each of the first ten tosses. We write p(ez|er, &) to denote the probability of event
ey given that event e is true and given background knowledge &.

Many researchers have written down different sets of properties that should be satisfied
by degrees of belief (e.g., Cox 1946; Good 1950; Savage 1954; DeFinetti 1970) From each of
the lists of properties, these researchers have derived the same rules—the rules of probability.
Two basic rules, from which other rules may be derived, are the sum rule, which says that

for any event e and its complement e,

p(elé) +plelé) =1

and the product rule, which says that for any two events e; and e,

P(€1, €2|5) = P(€2|€175) P(€1|5)

where p(ey, €2|€) denotes the probability that e; and ey are true given &.

Other commonly used rules are often expressed in terms of variables rather than events.
A variable takes on values from a collection of mutually exclusive and collectively exhaustive
states, where each state corresponds to some event. A variable may be discrete, having a
finite or countable number of states, or it may be continuous. For example, a two-state
or binary variable can be used to represent the possible outcomes of a coin flip; whereas a
continuous variable can be used to represent the weight of the coin. In this paper, we use
lower-case letters (usually near the end of the alphabet) to represent single variables and
upper-case letters to represent sets of variables. We write = k to denote that variable
x is in state k. When we observe the state for every variable in set X, we call this set of
observations a state of X, and write X = k. Sometimes, we leave the state of a variable

or set of variables implicit. The probability distribution over a set of variables X, denoted
p(X]€), is the set of probabilities p(X = k|¢) for all states of X.!

"When X contains only continuous variables, p(X€) is sometimes called a probability density. When X
contains both discrete and continuous variables, p(X|¢) is sometimes called a generalized probability density.

We do not make these distinctions in this paper.



One common rule of probability is Bayes’ theorem:

: p(Y]X, )
p(X|Y, &) = —— =
Y=g
Here, p(X|€) is the probability distribution of X before we know Y, and p(X|Y, &) is the

probability distribution of X after we know Y. These distributions are sometimes called

p(X[E)  for p(Y]|§) > 0

the priors and posteriors of X, respectively. In many cases, only the relative posterior of

X is of interest. In this case, Bayes’ theorem is written

p(X]Y; &) = ¢ p(Y[X, §) p(XI[E)

where ¢ is a normalization constant. Another rule is the chain rule:
n
p(z1, .. zal8) = [ p(xiley, ... 21, €)
=1

We shall see that this rule is important in the definition of Bayesian networks. Also, we

have the generalized sum rule:
> (X, Y[E) = p(X[6)
Y

where "y is a generalized sum that includes integrals when some or all of the variables in

Y are continuous. Finally, we have the expansion rule:
p(X[§) = Zp

The Bayesian philosophy extends to decision making under uncertainty in a discipline

p(Y[€)

known as decision theory. In general, a decision has three components: what a decision
maker can do (his alternatives), what he knows (his beliefs), and what he wants (his prefer-
ences). In decision theory, we use a decision variable to represent a set of mutually exclusive
and exhaustive alternatives, Bayesian probabilities to represent a decision maker’s beliefs,
and utilities to represent a decision maker’s preferences. Decision theory has essentially
one rule: mazimize expected utility (MEU). This rules says that, given a set of mutually
exclusive and exhaustive alternatives, a decision maker should (1) assign a utility to every
possible outcome of every possible alternative, (2) assign (Bayesian) probabilities to every
possible outcome given every possible alternative, and (3) choose the alternative that max-
imizes his expected utility. Several researchers have shown that this rule follows from sets
of compelling axioms (e.g., von Neumann and Morgenstern 1947; Savage, 1954).

In practice, decision making under uncertainty can be a difficult task. In fact, researchers

have shown that people often violate the MEU rule (Tversky and Kahneman 1974). The



deviations are so significant and predictable that some researchers have come to reject the
rule (Kahneman et al., 1982). Many other researchers, however, argue that the axioms
used to derive the MEU rule are too compelling to reject, and argue further that people’s
deviations from the rule make the use of decision-theoretic concepts and representations all

the more important (Howard 1990). If there’s any doubt, this author has the latter view.

3 Bayesian Networks

A problem domain (or universe) is just a set of variables. A Bayesian network is a model of
the (usually uncertain) relationships among variables in a domain. More precisely, given a
domain of variables U = {21, ..., z,}, the joint probability distribution for U is a probability
distribution over all the states of U. A Bayesian network for U represents a joint probability
distribution for U. The representation consists of a set of local conditional probability
distributions, combined with a set of assertions of conditional independence that allow one
to construct the global joint distribution from the local distributions.

To illustrate the representation, let us consider the domain of troubleshooting a car that
won’t start. The first step in constructing a Bayesian network is to decide what variables
and states to model. One possible choice of variables for this domain is Battery (b) with
states good and bad, Fuel (f) with states not empty and empty, Gauge (g) with states not
empty and empty, Turn Over (t) with states yes and no, and Start (s) with states yes and
no. Of course, we could include many more variables (as we would in a real-world example).
Also, we could model the states of one or more of these variables at a finer level of detail.
For example, we could let Gauge be a continuous variable with states ranging from 0% to
100%.

The second step in constructing a Bayesian network is to construct a directed acyclic
graph that encodes assertions of conditional independence. We call this graph the Bayesian-
network structure. Given a domain U = {zy,...,z,}, we can write the joint probability

distribution of U using the chain rule of probability as follows:

p(xlv"'vxnlg):Hp(xi|x17"'7xi—17€)' (1)
=1
Now, for every x;, there will be some subset II; C {zy,...,2,} such that z; and {z,...,2,}

are conditionally independent given II;. That is,

p($i|$17---7$i—175):p(wilﬂiag) (2)

These conditional independencies define the Bayesian-network structure. The nodes in the



p(f=empty | &) = 0.05

p(b=bad | £) = 0.02

p(g=empty | b=good, f=not empty,&) = 0.04
p(g=empty | b=good, f=empty,&) = 0.97

p(g=empty | b=bad, f=not empty,¢) = 0.10
p(g=empty | b=bad, f=empty,&) = 0.99

\

p(t=no | b=good,&) = 0.03

p(t=no | b=bad,§) = 0.98 p(s=no | t=yes, f=not empty,§) = 0.01
p(s=no | t=yes, f=empty &) = 0.92
p(s=no | t=no, f=not empty ,§) = 1.0
p(s=no | t=no, f=empty ,§) = 1.0

Figure 1: A Bayesian-network for troubleshooting a car that won’t start. Arcs are drawn
from cause to effect. The local probability distribution(s) associated with a node are shown

adjacent to the node.

structure correspond to variables in the domain. The parents of x; correspond to the set
I1;.
In our example, using the ordering b, f, g, t, and s, we have the conditional indepen-

dencies

p(f16,8) = p(f1&)  p(Llb, f,9,8) = p(t|b, &) p(slb, f,9,t,8) = p(s[f, L, ) (3)

Consequently, we obtain the structure shown in Figure 1.

The final step in constructing a Bayesian network is to assess the local distributions
p(zi|11;, £)—one distribution for every state of II;. These distributions for our automobile
example are shown in Figure 1. Combining Equations 1 and 2, we see that a Bayesian
network for U always encodes the joint probability distribution for U.

A drawback of Bayesian networks as defined is that network structure depends on vari-
able order. If the order is chosen carelessly, the resulting network structure may fail to
reveal many conditional independencies in the domain. As an exercise, the reader should
construct a Bayesian network for the automobile troubleshooter domain using the ordering
(s,t, g, f,b). Fortunately, in practice, we can often readily assert causal relationships among
variables in a domain, and can use these assertions to construct a Bayesian-network struc-
ture without preordering the variables. Namely, to construct a Bayesian network for a given

set of variables, we draw arcs from cause variables to their immediate effects. In almost all



cases, doing so results in a Bayesian network whose conditional-independence implications
are accurate. For example, the network in Figure 1 was constructed using the assertions
that Gauge is the direct causal effect of Battery and Fuel, Turn Quver is the direct causal
effect of Batlery, and Start is the direct causal effect of Turn Over and Fuel.

Because a Bayesian network for any domain determines a joint probability distribution
for that domain, we can—in principle—use a Bayesian network to compute any probability
of interest. For example, suppose we want to compute the probability distribution of Fuel

given that the car doesn’t start. From the rules of probability we have

p(f7 5= HO|€) — Zb,g,tp(bv fvgv tv s= HO|€)
p(SI HO|€) Zb,f,g,tp(bvagvtvszn0|€)

In a real-world problem with n variables, this approach is not feasible, because it entails

p(fls =n0,§) = (4)

summing over 2" or more terms. Fortunately, we can exploit the conditional independencies
encoded in a Bayesian network to make this computation more efflicient. In this case, given

the conditional independencies in Equation 3, Equation 4 becomes

~ p(18) 22y p(b]€) 224 p(s = nolt, £, &) p(t]b, &) -, p(glb, [, €)
(1) 2y p(bI€) Yoy p(s = nolt, [,€)p(t[b,€) 32, p(glb, £, €)

That is, conditional independence produces a decomposition of the joint probability distri-

p(fls =no,¢) (5)

bution that can be used in conjunction with the distributive law to reduce the dimensionality
of the computations.

The general problem of computing probabilities of interest from a (possibly implicit)
joint probability distribution is called probabilistic inference. All exact algorithms for prob-
abilistic inference in Bayesian networks exploit conditional independence roughly as we have
described, although with different twists. For example, Howard and Matheson (1981), Olm-
sted (1983) , and Shachter (1988) developed an algorithm that reverses arcs in the network
structure until the answer to the given probabilistic query can be read directly from the
graph. In this algorithm, each arc reversal corresponds to an application of Bayes’ theorem.
Pearl (1986) developed a message-passing scheme that updates the probability distributions
for each node in a Bayesian network in response to observations of one or more variables.
Lauritzen and Spiegelhalter (1988) created an algorithm that first transforms the Bayesian
network into a tree where each node in the tree corresponds to a subset of variables in
the domain. The algorithm then exploits several mathematical properties of this tree to
perform probabilistic inference. Most recently, D’Ambrosio (1991) developed an inference
algorithm that simplifies sums and products symbolically, as in the transformation from
Equation 4 to Equation 5.

Although we can exploit assertions of conditional independence in a Bayesian network for

probabilistic inference, exact inference in an arbitrary Bayesian network is NP-hard (Cooper,

-~
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after d
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Figure 2: A influence diagram (structure) for a decision of whether to change the battery,

get fuel, or do nothing. The square node d represents our alternatives. The diamond node
u represents our utilities of all the possible outcomes. The double-line arc from Start to d

represents the assertion that we know whether or not the car starts when we make decision

d.

1990). Even approximate inference (for example, using Monte-Carlo methods) is NP-hard
(Dagum and Luby, 1994). For many applications, however, the networks are small enough
(or can be simplified sufficiently) so that these complexity results are not fatal. For those
applications where the usual inference methods are impractical, researchers are developing
techniques that are custom tailored to particular network topologies (Heckerman 1989;
Suermondt and Cooper, 1991), or particular inference queries (Ramamurthi and Agogino
1988; Shachter et al. 1990; Jensen and Andersen 1990) .

The influence diagram is an extension of the Bayesian-network representation to decision
problems. Like the Bayesian network, an influence diagram contains nodes representing un-
certain variables and arcs representing probabilistic dependence. In an influence diagram,
these constructs are called chance nodes and relevance arcs, respectively. In addition, influ-
ence diagrams may contain decision nodes, which represent decision variables, and at most
one ulilily node, which represents a decision maker’s preferences. Also, influence diagrams
may contain information arcs, which indicate what is known at the time a decision is made.

For example, in our troubleshooting domain, suppose we have the options to replace
the battery, get fuel for the car, or do nothing. An influence diagram for this decision is
shown in Figure 2. The square node d is a decision node and represents our alternatives.
The diamond node w is the utility node. The arcs pointing to the chance (oval) nodes are
relevance arcs. The arc from Start to d is an information arc. Its presence asserts that,

at the time we make the decision, we know whether or not the car starts. In general,
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Figure 3: (a) The outcomes of a thumbtack flip. (b) A probability distribution for 8, the
physical probability of heads.

information arcs point only to decision nodes, whereas relevance arcs point only to chance

nodes.

4 Learning Probabilities: The One-Variable Case

Because Bayesian networks have a probabilistic interpretation, we can use traditional tech-
niques from Bayesian statistics to learn these models from data. We discuss these techniques
in the remainder of the paper. Several of the techniques that we need can be discussed in
the context of learning the probability distribution of a single variable. In this section, we
examine this case.

Consider a common thumbtack—one with a round, flat head that can be found in most
supermarkets. If we throw the thumbtack up in the air and let in land on a hard, flat
surface, it will come to rest either on its point (heads) or on its head (lails), as shown in
Figure 3a.? Suppose we give the thumbtack to someone, who then flips it many times, and
measures the fraction of times the thumbtack comes up heads. A frequentist would say this
long-run fraction is a probability, and would observe flips of the thumbtack to estimate this
probability. In contrast, from the Bayesian perspective, we recognize the possible values of
this fraction as a variable—call it #—whose true value is uncertain. We can express our
uncertainty about § with a probability distribution p(6|£), and update this distribution as
we observe flips of the thumbtack.

We note that, although 6 does not represent a degree of belief, collections of long-run

fractions like @ satisfy the rules of probability. In this paper, we shall refer to 8 as a physical

2This example is taken from Howard (1970).



Figure 4: A Bayesian-network structure depicting the conditional independencies associated

with a binomial sample.

probability (after Good, 1959) to distinguish it from a degree of belief.? Figure 3 shows one
possible probability distribution for 6.

Now suppose we observe D = {zy,...,2,,}, the outcomes of m flips of the thumbtack.
We sometimes refer to this set of observations as a database. If we knew the value of 8, then
our probability for heads on any flip would be equal to 8, no matter how many outcomes
we observe. That is,

p(z; = heads|zy, ..., 211, D,§) =0 (6)
where z; is the outcome of the [th flip of the thumbtack. Similarly, we have
p(z; = tails|zy, ..., 21—, D, &) =1-190 (7)

In particular, the outcomes are mutually independent, given 8. We can represent this con-
ditional independence assertion using a Bayesian-network structure, as shown in Figure 4.
In reality, we are uncertain about the value of 8. In this case, we can use the expansion

rule to determine our probability that the next toss of the thumbtack will come up heads:

pla = headslé) = [ p( = heads|8,€) p(6l€) a8 = [ 6 p(el€) 48 = F(Bl¢)

where F/(6|£) denotes the expectation of 8 given . That is, our probability for heads on the
next toss is just the expectation of . Furthermore, suppose we flip the thumbtack once and

observe heads. Using Bayes’ theorem, the posterior probability distribution for # becomes

p(6l = heads,€) = ¢ p(z = heads|f, €) p(6]€) = ¢ 6 p(0]¢)

where ¢ is some normalization constant. That is, we obtain the posterior distribution for

¢ by multiplying its prior distribution by the function f(#) = 6 and renormalizing. This

3The variable 6 is also referred to as a frequency, objective probability, and true probability.
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p(BIc) p(Blheads,£)

Figure 5: A graphical depiction of the use of Bayes’ theorem to compute the posterior

probability distribution of the physical probability 6.

procedure is depicted graphically in Figure 5. As expected, the posterior is shifted to the

right and is slightly narrower. Similarly, if we observe a single tails, we obtain
p(Blz = tails, &) = ¢ (1 - 6) p(8]¢)
In general, if we observe h heads and ¢ tails in the database D, then we have
p(B|t heads, h tails, &) = ¢ 8" (1 — )! p(8]¢)

That is, once we have assessed a prior distribution for #, we can determine its posterior
distribution given any possible database. Note that the order in which we observe the
outcomes is irrelevant to the posterior—all that is relevant is the number of heads and
the number of tails in the database. We say that h and ¢ are a sufficient statistic for the
database.

In this simple example, our outcome variable has only two states (heads and tails).
Now, imagine we have a discrete outcome variable z with r > 2 states. For example,
this variable could represent the outcome of a roll of a loaded die (r = 6). As in the
thumbtack example, we can define the physical probabilities of each outcome, which we
denote ©, = {f,=1,...,0,=,}. We assume that each state is possible so that each 8, > 0.
In addition, we have ) ;_; #,=r = 1. Also, if we know these physical probabilities, then the

outcome of each “toss” of z will be conditionally independent of the other tosses, and

p('rl:k|$17"'7xl—17®z7€):0$:k (8)

Any database of outcomes {zy,...,,,} that satisfies these conditions is called an (r — 1)-
dimensional multinomial sample with physical probabilities ©, (Good, 1965). When r = 2,

as in the thumbtack example, the sequence is said to be a binomial sample. The concept

11



of a multinomial sample (and its generalization, the random sample) will be central to the
remaining discussions in this paper.

Analogous to the thumbtack example, we have

ple = kl€) = / Boei D(O,]€) dO, = E(B,—4l€) (9)

where p(z = k|€) is our probability that = k in the next case. Note that, because
> k=1 b= = 1, the distribution for O, is technically a distribution over the variables
2 \ {z=r} for some k (the symbol \ denotes set difference). Also, given any database D
of outcomes, we have
p(O.1D.€) = ¢ [T 4%, (0418 (10
k=1

where Ny is the number of times x = k in D, and ¢ is a normalization constant. Note that

the counts Ny,..., N, are a sufficient statistic for the multinomial sample.
Given a multinomial sample, a user is free to assess any probability distribution for ©,.
In practice, however, one often uses the Dirichlet distribution because it has several conve-
nient properties. The variables O, are said to have a Dirichlet distribulion with exponents

Ni,..., N/ when the probability distribution of ©, is given by

p(©,1¢) = Lh=1 N T 11 e NS0 (11)
[Tr=1 D(VE)

where I'(+) is the Gamma function, which satisfies I'(z + 1) = zI'(z) and ['(1) = 1. When
the variables ©, have a Dirichlet distribution, we also say that p(©;|€) is Dirichlet. The
exponents N; must be greater than 0 to guarantee that the distribution can be normalized.
Note that the exponents N; are a function of the user’s state of information {. When r = 2,
the Dirichlet distribution is also known as a beta distribution. The probability distribution
on the left-hand-side of Figure 5 is a beta distribution with exponents N;_ ,. = 3 and
N/ .. = 2. The probability distribution on the right-hand-side of the figure is a beta
distribution with exponents Nj_, ,. =4 and N ; = 2.

ails

From Equation 10, we see that if the prior distribution of ©, is Dirichlet, then the

posterior distribution of ©, given database D = {zy,...,2,,} is also Dirichlet:
(6. |D5—CH0N+Nk ! (12)

We say that the Dirichlet distribution is closed under multinomial sampling, or that the
Dirichlet distribution is a conjugate family of distributions for multinomial sampling. Also,

when O, has a Dirichlet distribution, the expectation of 8,—;—equal to the probability that

12



x = k in the first observation—has a simple expression:

!/
]\7 k

E(6:=4|8) = p(z = k|§) = =

(13)

where N/ = 377_; N/. As we shall see, these properties make the Dirichlet a useful prior
for learning.

A survey of methods for assessing a beta distribution is given by Winkler (1967). These
methods include the direct assessment of the probability distribution using questions re-
garding relative areas, assessment of the cumulative distribution function using fractiles,
assessing the posterior means of the distribution given hypothetical evidence, and assess-
ment in the form of an equivalent sample size. These methods can be generalized with
varying difficulty to the non-binary case.

The equivalent-sample-size method generalizes particularly well. The method is based
on Equation 13, which says that we can assess a Dirichlet distribution by assessing the
probability distribution p(z|¢) for the next observation, and N’. In so doing, we may

rewrite Equation 11 as

CHIERE | A (14)
k=1

where ¢ is a normalization constant. Assessing p(z|€) is straightforward. Furthermore, the
following two observations suggest a simple method for assessing N'.

The variance of a distribution for ©, is an indication of how much the mean of ©,
is expected to change, given new observations. The higher the variance, the greater the
expected change. It is sometimes said that the variance is a measure of a user’s confidence
in the mean for ©,. The variance of the Dirichlet distribution is given by

p(z = k[§) (1 — p(z = K[E))

Var(0:=x|€) = N1

(15)

Thus, N' is a reflection of the user’s confidence.

In addition, suppose we were initially completely ignorant about a domain—that is, our
distribution p(©,|¢) was given by Equation 11 with each exponent N/ = 0.* Suppose we
then saw N’ cases with sufficient statistics Ny,..., N.. Then, by Equation 12, our prior
would be the Dirichlet distribution given by Equation 11.

Thus, we can assess N’ as an equivalent sample size: the number of observations we
would have had to have seen starting from complete ignorance in order to have the same

confidence in ©, that we actually have. For example, we would obtain the probability

4This prior distribution cannot be normalized, and is sometimes called an improper prior. To be more

precise, we should say that each exponent is equal to some number close to zero.

13



distribution for # in Figure 3 if we assessed p(heads|{) to be 3/5 and the equivalent sample
size to be five.

So far, we have only considered a variable with discrete outcomes. In general, we
can imagine a physical probability distribution over a variable (discrete or continuous)
from which database cases are drawn at random. This physical probability distribution
typically can be characterized by a finite set of parameters. If the outcome variable is
discrete, then the physical probability distribution has a parameter corresponding to each
physical probability in the distribution (and, herein, we sometimes refer to these physical
probabilities as parameters). If the outcome variable is continuous, the physical probability
distribution may be (e.g.) a normal distribution. In this case, the parameters would be
the mean and variance of the distribution. A database of cases drawn from a physical
probability distribution is often called a random sample.

Given such a physical probability distribution with unknown parameters, we can up-
date our beliefs about these parameters given a random sample from this distribution using
techniques similar to those we have discussed. For random samples from many named
distributions—including normal, Gamma, and uniform distributions—there exist corre-
sponding conjugate priors that offer convenient properties for learning probabilities similar
to those properties of the Dirichlet. These priors are sometimes referred to collectively as
the exponential family. The reader interested in learning about these distributions should
read DeGroot (1970, Chapter 9).

5 Learning Probabilities: Known Structure

The notion of a random sample generalizes to domains containing more than one variable as
well. Given a domain U = {zy,...,z,}, we can imagine a multivariate physical probability
distribution for U. If U contains only discrete variables, this distribution is just a finite
collection of discrete physical probabilities. If U contains only continuous variables, this dis-
tribution could be (e.g.) a multivariate-normal distribution characterized by a mean vector
and covariance matrix. Given a random sample from a physical probability distribution, we
can update our priors about the parameters of the distribution. This updating is especially
simple when conjugate priors for the parameters are available (see DeGroot 1970).

Now, however, let us consider the following wrinkle. Suppose we know that this mul-
tivariate physical probability distribution can be encoded in some particular Bayesian-
network structure Bg. We may have gotten this information—for example—from our causal
knowledge about the domain. In this section, we consider the task of learning the param-

eters of Bg. We discuss only the special case where all the variables in U are discrete and
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where the random sample (i.e., database) D = {Cy,...,C},} contains no missing data—
that is, each case C] consists of the observation of all the variables in U (we say that D is
complete). In Section 8, we consider the more difficult problem where D contains missing
data. Buntine (1994) and Heckerman and Geiger (1994) discuss the case where U may
contain continuous variables.

When a database D is a random sample from a multivariate physical probability dis-
tribution that can be encoded in Bg, we simply say that D is a random sample from Bg.
As an example, consider the domain U consisting of two binary variables z and y. Let
Oy, 055, 0zy, and 6z5 denote the parameters (i.e., physical probabilities) for the joint space
of U, where 8,y is the physical probability of the event where z is true and y is false, and so
on. (Note that, in using the overbar, we are departing from our standard notation.) Then,
saying that D is a random sample from the network structure containing no arc between
x and y, is the assertion that the parameters of the joint space satisfy the independence
constraints 0., = 0.0,, 0.5 = 0,03, and so on, where—for example—0, = 0., + 0,5 is the
physical probability associated with the event where x is true. It is not difficult to show that
this assertion is equivalent to the assertion that the database D can be decomposed into
two multinomial samples: the observations of x are a multinomial sample with parameter
0., and the observations of y are a multinomial sample with parameter 6,.

As another example, suppose we assert that a database for our two variable domain is
a random sample from the network structure z — y. Here, there are no constraints on the
parameters of the joint space. Furthermore, this assertion implies that the database is made
up of at most three binomial samples: (1) the observations of & are a binomial sample with
parameter 6, (2) the observations of y in those cases (if any) where z is true are a binomial

sample with parameter ,,., and (3) the observations of y in those cases (if any) where

ylz»
is false are a binomial sample with parameter 6, z. Consequently, the occurrences of z in
D are conditionally independent given @., and y in case C' are conditionally independent

0

represent the conditional-independence assertions associated with these random samples

of the other occurrences of y in D given 6 and z in case C. We can graphically

ylzr Yylzs
using a Bayesian-network structure as shown in Figure 6a.

Given the collection of random samples shown in Figure 6a, it is tempting to apply our
one-variable techniques to learn each parameter separately. Unfortunately, this approach
is not correct when the parameters are dependent as shown in the figure. For example, as

we see occurrences of z and update our beliefs about 6, our beliefs about 6, and 6,

ylz
will also change. Suppose, however, that all of the parameters are independent, as shown
in Figure 6b. Then, provided the database is complete, we can update each parameter

separately.
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Figure 6: (a) A Bayesian-network structure for a two-binary-variable domain {z, y} showing
conditional independencies associated with the assertion that the database is a random
sample from the structure 2 — y. (b) Another Bayesian-network structure showing the

added assumption of parameter independence.

In the remainder of this section, we shall assume that all parameters are independent.
We call this assumption—introduced by Spiegelhalter and Lauritzen (1990)— parameter
independence. In Section 8, we discuss methods for handling dependent parameters.

To complete the discussion, we need some notation. Let Bg denote the assertion (or
hypothesis) that a database D is a random sample from a Bayesian network structure
Bs. Given this network structure, let r; be the number of states of variable z;; and let
¢ = [l;,en, i be the number of states of II;. Let 8;;; denote the physical probability of
x; = k given II; = j. In addition, let

0ij = U {05k }

OB, = U, U;;l 0;;

Note that the parameters © g, in conjunction with Bs determine all the physical probabil-
ities of the joint space.

Let us assume that each variable set ©;; has a Dirichlet distribution:

-1

where ¢ is a normalization constant. Then, if N;;; is the number of cases in database D in

which z; = k and II; = 7, we obtain

Nijp—
p(6:;|D, B €) = c- Hemj+ skl (17)
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where ¢ is some other normalization constant. Furthermore, applying Equation 13 to each
multinomial sample, we can compute the probability that each z; = k and II; = 7 in C,, 41,

the next case to be seen after the database D:

+ Nijk
Cyoy1|D, B € Nije & N 18
p(CoialD. 85,6 =TT 11 NI (18)

=1 7=1

! T ! R T .
where NZ»]- =2 Nk and Ng; =" Nijk.

6 Learning Structure

In the previous section, we considered the situation where we are uncertain about the phys-
ical probabilities, but certain about the network structure that encodes these probabilities.
Now, suppose we are not only uncertain about the probabilities, but also uncertain about
the structure that encodes them. As with any set of events, we can express this uncertainty
by assigning a prior probability p(BgE) to each possible hypothesis Bg. Furthermore, we
can update these probabilities as we see cases. In so doing, we learn about the structure of
the domain.

As in the previous section, let Bg denote the (now uncertain) hypothesis that the
database D is a random sample from the Bayesian network structure Bs. From Bayes’

theorem, we have
p(BS|D,€) = ¢ p(B§[€) p(D|BS; €) (19)

where c¢ is a normalization constant. Also, from the product rule, we have

p(D|BE, &) = [[ p(Ci|Ch, . ... Cizy, BE,€) (20)
(=1

We can evaluate each term on the right-hand-side of this equation using Equation 18, under
the assumption that the database D is complete. Thus, we obtain the posterior probability
of Bg given D:

N!. +1 + N;ip—1
h 171 2]1 2]1 i3
sl = cpbi I | 32 . -
i 1] 1 ANZ'/]' ]VZ'/]‘ + 1 ;NZ'/' + 1 2]1 — 1
NZ/]2 . ‘7\72/]2 +1 2]2 + NZJQ
AVZ']"|‘NZ' Nij‘|‘sz1‘|‘1‘”NZ’]“|‘i2j1‘|‘47vij2_1
l NL. NL, +1 Nl Nigr, — H
L+ St ”k N-’- + 0 Ny + 1 Nij + Nj; -
L(NG) ot D(NVije + Nije)
= c¢-p(BY¢) (21)
21_[1]1_[1 N’ + N”) kl_[1 F(NZ’]k)
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Using these posterior probabilities and Equation 18, we may compute the probability
distribution for the next case to be observed after we have seen a database. From the

expansion rule, we obtain

P(Crga|D,€) = Y p(Crga|D, BS, €) p(BE|D, €) (22)
By

There are three important points to be made about this approach. One, it can hap-
pen that two Bayesian-network structures represent exactly the same sets of probability
distributions. We say that the two structures are equivalent (Verma and Pearl, 1990). For
example, for the three variable domain {z,y, z}, each of the network structures z — y — z,
x Yy — z,and z < y  z represents the distributions where z and z are conditionally
independent of y. Consequently, these network structures are equivalent. As another ex-
ample, a complele network structure is one that has no missing edges—that is, it encodes
no assertions of conditional independence. A domain containing n variables has n! com-
plete network structures: one network structure for each possible ordering of the variables.
All complete network structures for a given domain represent the same joint probability
distributions—namely, all possible distributions—and are therefore equivalent.

In general, two network structures are equivalent if and only if they have the same
structure ignoring arc directions and the same v-structures (Verma and Pearl, 1990). A v-
structure is an ordered tuple (z,y, z) such that there is an arc from z to y and from z to y,
but no arc between z and y. Using this characterization of network-structure equivalence,
Chickering (1995) has created an efficient algorithm for identifying all Bayesian-network
structures that are equivalent to a given network structure.

Given that Bg is the assertion that the physical probabilities for the joint space of U
can be encoded in the network structure Bg, it follows that the hypotheses associated with
two equivalent network structures must be identical. Consequently, two equivalent network
structures must have the same (prior and posterior) probability. For example, in the two
variable domain {z,y}, the network structures  — y and y — z are equivalent, and will
have the same probability. In general, this property is called hypothesis equivalence. In light
of this property, we should associate each hypothesis with an equivalence class of structures
rather than a single network structure, and our methods for learning network structure
should actually be interpreted as methods for learning equivalence classes of network struc-

tures (although, for the sake of brevity, we often blur this distinction).?

SHypothesis equivalence holds provided we interpret Bayesian-network structures simply as representa-
tions of conditional independence. Nonetheless, stronger definitions of Bayesian networks exist where arcs
have a causal interpretation (e.g., Pearl and Verma, 1991). Heckerman et al. (1995b) argue that, although

it is unreasonable to assume hypothesis equivalence when working with causal Bayesian networks, it is often
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The second important point about this approach is that, in writing Equation 22, we
have assumed that the hypothesis equivalence classes are mutually exclusive. In reality,
these hypotheses are not mutually exclusive. For example, in our two-variable domain,
both network structures @ — y and the empty network structure can encode parameters
satisfying the equality 8, = 6,,. Therefore, the hypotheses associated with these non-
equivalent network structures overlap. Nonetheless, in this approach, we assume that the
priors on parameters for any given network structure have bounded densities, and hence
the overlap of hypotheses will be of measure zero.

Finally, in writing Equation 22, we have limited ourselves to hypotheses corresponding
to assertions that the physical probability distribution of the joint space comes from one
particular network structure. We can relax this assumption, assuming that the physical
probability distribution can be encoded in a set of network structures. In this paper,
however, we do not pursue this generalization.

In principle, the approach we have discussed in this section is essentially all there is to
learning network structure. In practice, when the user believes that only a few alternative
network structures are possible, he can directly assess the priors for the possible network
structures and their parameters, and subsequently use Equations 21 and 22 or their gen-
eralizations for continuous variables and missing data. For example, Buntine (1994) has
designed a software system whereby a user specifies his priors for a set of possible models
using Bayesian networks in a manner similar to that shown in Figure 6. The system then
compiles this specification into a computer program that learns from a database.

Nonetheless, the number of network structures for a domain containing n variables is
more than exponential in n. Consequently, when the user cannot exclude almost all of these
network structures, there are several issues that must be considered. In particular, compu-
tational constraints can prevent us from summing over all the hypotheses in Equation 22.
Can we approximate p(Cp,4+1|D, &) accurately by retaining only a small fraction of these
hypotheses in the sum? If so, which hypotheses should we include? In addition, how can we
efficiently assign prior probabilities to the many network structures and their parameters?

In the subsections that follow, we consider each of these issues.

6.1 Scoring Metrics

The most important issue is whether we can approximate p(C,41|D, &) well using just a
small number of network-structure hypotheses. This question is difficult to answer in the-

ory. Nonetheless, several researchers have shown experimentally that even a single “good”

reasonable to adopt a weaker assumption of likelihood equivalence, which says that the observations in a

database can not help to discriminate two equivalent network structures.
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network structure often provides an excellent approximation (Cooper and Herskovits 1992;
Aliferis and Cooper 1994; Heckerman et al., 1995b). We given an example in Section 7.
These results are somewhat surprising, and are largely responsible for the great deal of
recent interest in learning Bayesian networks.

Given this observation, another important consideration is how to identify “good” net-
work structures. The approach that has been adopted by many researchers is to use a
scoring melric in combination with a search algorithm. The scoring metric takes prior
knowledge, a database, and a set of network structures, and computes the goodness of fit of
those structures to the prior knowledge and data. The search algorithm identifies network
structures to be scored. In this section, we discuss scoring metrics. In Section 6.4, we
discuss search algorithms.

An obvious scoring metric for a single network-structure (equivalence class) is the rela-
tive posterior probability of that structure given the database. For example, we can compute
p(D, BYIE) = p(BLIE) p(DIBL, €) or compute a Bages factor: p(BAID,€)/p(Blo| D, €) where
Bgo is some reference network structure such as the empty network structure. When we use
Equation 21 to compute this relative posterior probability, the scoring metric is sometimes
called the Bayesian Dirichlet (BD) metric. A network structure with the highest posterior
probability is often called a mazimum a posteriori (MAP) structure. To score a set of dis-
tinct network structures S we can use ) p_cg p(D, Bg|€) Note that practitioners typically
compute logarithms of the probabilities to avoid numerical underflow.

Madigan and Raferty (1994) suggest an alternative scoring metric that uses relative
posterior probability in conjunction with heuristics based on the principle of Occam’s Razor.

Other scoring metrics approximate the posterior-probability metric. In Section 8, we
discuss algorithms that can find a local maximum in the probability p(D|B%, ©g.,&) as
a function of ©p, (the physical probabilities associated with network structure Bg). We
cannot use such a local maximum as a score for Bg, because it will always favor the most
complex network structures, which place no constraints on the parameters ©p,. Nonethe-
less, we can use a local maximum of p(D|BgL, OB, ) as a score for Bg if we also penalize

structures based on their complexity. Akaike (1974) suggests the scoring metric
logp(D|M, @st 5) + Dhn(M)

where M is a model, @Bs denotes the values of ©p, that maximize the probability, and
Dim(M) is the number of logically independent parameters in M. This scoring metric is
sometimes called the A information criterion (AIC). For a Bayesian network, the penalty is
given by

Dim(BS) = ﬁ l_l (]i(ri — 1)

i=17=1
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Schwarz (1978) suggests a similar scoring metric with a penalty term given by
(1/2)Dim(M) log(m), where m is the number of cases in the database. This metric is
sometimes called the Bayesian information criterion (BIC).

Another metric that approximates the posterior-probability metric is minimum descrip-
tion length (MDL) (Rissanen 1987). The MDL of a network structure is the sum of the
number of bits required to encode the model (which increases with increasing model com-
plexity) and the number of bits required to encode the database given the model (which
decreases with increasing model complexity) relative to a particular coding scheme. We note
that, in the limit, as the number of cases in the database approach infinity, the BD metric
with uniform priors on structures, BIC, and MDL give the same relative scores (Kass and
Raferty, 1993). Unfortunately, in practice, this asymptotic equivalence is rarely achieved.

Finally, we can score structures based on a decision model for the domain. In such cases,
we can score a network structure by extending that structure to an influence diagram, which
includes a decision model for the domain.

For example, suppose we wish to compute a score for the Bayesian network for medical
diagnosis shown in Figure 7a, given a complete database of disease and symptoms. To do
so, we extend this network to an influence diagram, such as the one shown in Figure 7b. The
decision model represented by this influence diagram includes a single treatment decision
and the assertion that the patient’s utility depends only on the disease and the treatment
decision. We compute a score for the Bayesian network by processing the cases sequentially.
Namely, for each case C} in the database, we use Equation 18 to predict the probability
distribution over diseases in that case, given the symptoms in that case and the previous
cases C',...,C_1. Then, we use the influence diagram to determine the optimal treatment.
Next, from the utilities encoded in the influence diagram, we determine the utility of the
outcome where the patient is given the chosen treatment, but has the disease recorded in
the database for case Cj. We compute the score for the Bayesian network structure by
summing these utilities over all cases. This metric can be generalized to score multiple
network structures. The advantage of this decision-theoretic approach is that it optimizes
what we indeed want to optimize: expected utility. The disadvantage is that it requires

that we construct an influence diagram (i.e., decision model) for the domain.

6.2 Priors on Structures

The posterior-probability and decision-theoretic metrics require that we assign priors to all
possible network structures. In this section, we present an efficient method for doing so
described by Heckerman et al. (1995b).

The approach requires that the user constructs a prior-network structure for the domain.
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Treatment

Figure 7: (a) A Bayesian network for medical diagnosis. (b) A corresponding influence

diagram for medical treatment.

The method assumes that this structure is a user’s “best guess” of the network structure
that encodes the physical probabilities.

Given a prior network structure P, we compute the prior probability of Bg as follows.
For every variable x; in U, let §; denote the number of nodes in the symmetric difference of
II;(Bs) and II;(P)—that is, (II;(Bs) ULL;(P)) \ (II;(Bs) N1L;(P)). Then, Bs and the prior
network differ by 6 = """ | 4; arcs. We compute the prior probability by penalizing Bg by

a constant factor 0 < k < 1 for each such arc. That is, we set

p(BYIE) = ¢ &’ (23)

where ¢ is a normalization constant, which we can ignore. Note that this approach assigns
equal priors to equivalent network structures only when the prior network structure is empty
(see Heckerman et al. [1995b] for a discussion of this point).

This formula is simple, as it requires only the assessment of a prior network structure
and a single constant x. Nonetheless, if the user is willing, he can provide more detailed
knowledge by assessing different penalties for different nodes z; and for different parent
configurations of each node (Buntine, 1991). Another variant of this approach is to allow
the user to categorically assert that some arcs in the prior network must be present. We
can again use Equation 23, except that we set to zero the priors of network structures that

do not conform to these constraints.

6.3 Priors on Network Parameters

The posterior-probability and decision-theoretic metrics also require that we assign priors

to network parameters for all possible network structures. We can also use this information
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to compute the AIC and BIC metrics more efficiently (see Section 8.3). Several authors
have discussed similar practical approaches for assigning these priors when many structures
are possible (Cooper and Herskovits, 1991, 1992; Buntine, 1991; Spiegelhalter et al., 1993;
Heckerman et al., 1995b). In this section, we describe the approach of Heckerman et al.
Their approach is based on a result from Geiger and Heckerman (1995). Namely, if
all allowed values of the physical probabilities are possible, then parameter independence
and hypothesis equivalence® imply that the physical probabilities for complete network

structures must have Dirichlet distributions as specified in Equation 16 with the constraint
Nl =N plz; = k,1I; = j|BS_,€) (24)

where N’ is the user’s equivalent sample size for the domain, Bgc is the hypothesis cor-
responding to any complete network structure, and p(z; = k,II; = j|Bgc,€) is the user’s
probability that z; = k and II; = 7 in the first case to be seen in the database.

Under these conditions, the priors on parameters for all complete network structures
may be determined by (1) constructing a prior network for the first case to be seen (from
which the probabilities in Equation 24 may be computed) and (2) assessing the equivalent
sample size (i.e., confidence) in that prior network. In Section 7, we give an example of a
prior network.

To determine priors for parameters of incomplete network structures, Heckerman et al.
(1995b) use the assumption of parameter modularity, which says that given two network

structures Bgy and Bgo, if 2; has the same parents in Bg; and Bgo, then
(04i]BS1,€) = p(O4;| By, €)
P %] S1» Y4 ¥ S2

for j = 1,...,¢. They call this property parameter modularity, because it says that the
distributions for parameters ©;; depend only on the structure of the network that is local
to variable z;—namely, ©;; only depends on z; and its parents. For example, consider

the network structure z — y and the empty structure for our two-variable domain with

h

oy and Bﬁy. In both structures,  has the same set of parents

corresponding hypotheses B
(the empty set). Consequently, by parameter modularity, p(0I|B£L_>y,€) = p(0$|B§y,€).
Given the assumptions of parameter modularity and independence, it is a simple matter
to construct priors for the parameters of an arbitrary network structure given the priors on
complete network structures. In particular, given parameter independence, we construct
the priors for the parameters of each node separately. Furthermore, if node z; has parents
IT; in the given network structure, we identify a complete network structure where z; has

these parents, and use parameter modularity to determine the priors for this node. The

5 Actually, Geiger and Heckerman (1995) proved this result using only likelihood equivalence.
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result is a special case of the BD metric, called the BDe metric, that assigns equal scores

to equivalent network structures. In Section 7, we illustrate the use of this metric.

6.4 Search Methods

In this section, we examine search methods for identifying network structures with high
scores. Essentially all such search methods make use of a property of the scoring metrics that
we call decomposability. Given a network structure for domain U, we say that a measure on
that structure is decomposable if it can be written as a product of measures, each of which
is a function only of one node and its parents. For example, from Equation 21, we see that
the probability p(D|B%, ) given by the BD metric is decomposable. Consequently, if the
prior probabilities of network structures are decomposable (as they are in Equation 23),
then so is the BD metric. Thus, we can write

n

p(D, BE&) =[] s(ailI;) (25)

=1

where s(z;|I1;) is only a function of z; and its parents. Most Bayesian and non-Bayesian
metrics are decomposable. Given a decomposable metric, we can compare the score for
two network structures that differ by the addition or deletion of arcs pointing to z;, by
computing only the term s(z;|Il;) for both structures.

First, let us consider the special case of finding the network structure with the highest
score among all structures in which every node has at most one parent. For each arc z; — z;
(including cases where z; is null), we associate a weight w(z;, 2;) = log s(xz;|z;) —log s(z;(0).

From Equation 25, we have

logp(D, BS) = ) logs(xilm) (26)

o
Il
—

w(xg, ™) + Z log s(z;|0)

=1

Il

o
Il
—

where 7; is the (possibly) null parent of z;. The last term in Equation 26 is the same for all
network structures. Thus, among the network structures in which each node has at most
one parent, ranking network structures by sum of weights " | w(z;, 7;) or by score has
the same result.

Finding the network structure with the highest weight is a special case of a well-known
problem of finding mazimum branchings described—for example—in Evans and Minieka
(1991). The problem is defined as follows. A tree-like nelwork is a connected directed
acyclic graph in which no two edges are directed into the same node. The root of a tree-like

network is a unique node that has no edges directed into it. A branching is a directed forest
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that consists of disjoint tree-like networks. A spanning branching is any branching that
includes all nodes in the graph. A mazimum branching is any spanning branching which
maximizes the sum of arc weights (in our case, Y ir, w(z;,7;)). An efficient polynomial
algorithm for finding a maximum branching was first described by Edmonds (1967), later
explored by Karp (1971), and made more efficient by Tarjan (1977) and Gabow et al. (1984).

These algorithms can be used to find the branching with the highest score regardless
of the metric we use, as long as one can associate a weight with every edge. Therefore,
this algorithm is appropriate for any decomposable metric. When using metrics that assign

equal scores to equivalent network structures, however, we have
s(zile;)s(z;|0) = s(xj]z)s(z:|0)

Thus, for any two edges z; — z; and z; ¢ x;, the weights w(z;, ;) and w(z;, z;) are equal.
Consequently, the directionality of the arcs plays no role for such metrics, and the problem
reduces to finding the undirected forest for which Y~ w(z;, z;) is a maximum. This search
can be done using a maximum spanning tree algorithm.

Now, let us consider the case where we find the best network from the set of all networks
in which each node has no more than k parents. Unfortunately, the problem for £ > 1 is
NP-hard (Chickering et al. 1995). Therefore, it is appropriate to use heuristic search
algorithms.

Most of the commonly discussed search methods for learning Bayesian networks make
successive arc changes to the network, and employ the property of decomposability to
evaluate the merit of each change. The possible changes that can be made are easy to
identify. For any pair of variables, if there is an arc connecting them, then this arc can
either be reversed or removed. If there is no arc connecting them, then an arc can be added
in either direction. All changes are subject to the constraint that the resulting network
contains no directed cycles. We use F to denote the set of eligible changes to a graph,
and A(e) to denote the change in log score of the network resulting from the modification
e € E. Given a decomposable metric, if an arc to z; is added or deleted, only s(z;|I1;) need
be evaluated to determine A(e). If an arc between z; and z; is reversed, then only s(z;|1L;)
and s(z;|I1;) need be evaluated.

One simple heuristic search algorithm is local search (e.g., Johnson, 1985). First, we
choose a graph. Then, we evaluate A(e) for all e € F, and make the change e for which
A(e) is a maximum, provided it is positive. We terminate search when there is no e with a
positive value for A(e). Using decomposable metrics, we can avoid recomputing all terms
Af(e) after every change. In particular, if neither z;, z;, nor their parents are changed, then

A(e) remains unchanged for all changes e involving these nodes as long as the resulting
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network is acyclic. Candidates for the initial graph include the empty graph, a random
graph, a graph determined by one of the polynomial algorithms described previously in this
section, and the prior network.

A potential problem with any local-search method is getting stuck at a local maximum.
Methods for escaping local maxima include iterated hill-climbing and simulated annealing.
In iterated hill-climbing, we apply local search until we hit a local maximum. Then, we ran-
domly perturb the current network structure, and repeat the process for some manageable
number of iterations.

In one variant of simulated annealing described by Metropolis et al. (1953), we initialize
the system at some temperature Ty. Then, we pick some eligible change e at random, and
evaluate the expression p = exp(A(e)/Tp). If p > 1, then we make the change e; otherwise,
we make the change with probability p. We repeat this selection and evaluation process «
times or until we make § changes. If we make no changes in « repetitions, then we stop
searching. Otherwise, we lower the temperature by multiplying the current temperature
Ty by a decay factor 0 < v < 1, and continue the search process. We stop searching if
we have lowered the temperature more than § times. Thus, this algorithm is controlled by
five parameters: Ty, o, 3,7 and §. To initialize this algorithm, we can start with the empty
graph, and make Tj large enough so that almost every eligible change is made, thus creating
a random graph. Alternatively, we may start with a lower temperature, and use one of the
initialization methods described for local search.

Other methods for escaping local maxima include best-first search (Korf, 1993) and

Gibbs’ sampling (see Section 8.2).

7 A Real-World Example

Figure 8 illustrates an application of these techniques to the real-world domain of ICU ven-
tilator management, taken from Heckerman et al. (1995b). Figure 8a is a hand-constructed
Bayesian network for this domain, called the Alarm network (Beinlich et al., 1989) (the
probabilities are not shown). Figure 8c is a database of 10,000 cases that is sampled from
the Alarm network. Figure 8b is a hypothetical prior network for the domain. Heckerman
et al. (1995b) constructed this network by adding, deleting, and reversing arcs in the Alarm
network and by adding noise to the probabilities of the Alarm network.

Figure 8d shows the most likely network structure found by local search initialized with
the prior network structure using the BDe metric, an equivalent sample size N’ = 64, and
priors on network structures determined by Equation 23 with x = 1/(N' 4 1). Comparing

the three network structures, we see that the learned network structure is much closer to that
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Figure 8: (a) The Alarm network structure. (b) A prior network encoding a user’s beliefs
about the Alarm domain. (c) A 10,000-case database generated from the Alarm network.
(d) The network learned from the prior network and a 10,000 case database generated from
the Alarm network. Arcs that are added, deleted, or reversed with respect to those in the

Alarm network are indicated with A, D, and R, respectively. (Taken from Heckerman et

al., 1995b.)
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of the Alarm network than that of the prior network. Furthermore, the joint distribution
encoded by the learned network is much closer to that of the Alarm network than that of
the prior network. In particular, whereas the cross entropy of the joint distributions of the
prior network with respect to that of the Alarm network is 5.6, the cross entropy of the
joint distribution of the learned network with respect to that of the Alarm network is 0.03.7
The learning algorithm has effectively used the database to “correct” the prior knowledge

of the user.

8 Missing Data

In real databases, observations of one or more variables in one or more cases are typically
missing. In this section, we consider extensions to previous methods that can handle missing
data. We caution the reader that the methods we discuss assume that whether or not an
observation is missing is independent of the actual states of the variables. For example,
these methods are not appropriate for a medical database where data about drug response
is missing in those patients who became too sick to take the drug. Methods for addressing
dependencies in omissions have been explored by (e.g.) Rubin (1978), Robins (1986), and
Pearl (1995).

8.1 Fill-In Methods

First, let us consider the simple situation where we observe a single incomplete case C' in
domain U. Let Y denote the variables not observed in the case. Under the assumption of

parameter independence, we can compute the posterior distribution of ©;; as follows:

p(©31C.€) = Y p(UIC, &) p(04]Y,C,¢)
U

= Y| 3 pUlc.|pO4Y.C.8)

zi, 1 LU\ ({z; JUIL;)

= > p(z, 1LC) p(©;Y,C,¢)
z4,I1;

= (1‘ —p(IL; = j|C,€)) {p(©4]€) } +
S plei = kAL = §IC,8) p(Ola; = k1L = O} (27)
k=1

Each term in curly brackets in Equation 27 is a Dirichlet distribution. Thus, unless both

x; and all the variables in II; are observed in case (', the posterior distribution of ©;; will

"By way of comparison, the cross entropy of an empty network whose probabilities are determined from

the marginals of the Alarm network with respect to that of the Alarm network is 13.6.
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be a linear combination of Dirichlet distributions. Such distributions are sometimes called
Dirichlet miztures; and the probabilities (1 —p(Il; = j|C,€)) and p(z; = k,1I; = j|C, &), k=
1,...,r; are called mizing coefficients.

If we observe two cases, then the situation becomes more complex, because the compu-
tation of the mixing coefficients involves finding the means of Dirichlet mixtures. In general,
as shown (e.g.) in Cooper and Herskovits (1992), the computational complexity of the exact
computation of p(D, Bg|€) can be exponential in the number of missing variable entries in
the database.

Thus, in practice, we require an approximation. One approach is to approximate each
correct posterior distribution ©;; with a single Dirichlet distribution, and continue to use
Equation 20 along with the formula for the mean of a Dirichlet distribution. Several such
approximations have been described in the literature. For example, Titterington (1976)
describes a method called fractional updating, wherein for each ©;;, we pretend that we
have observed a fractional number of observations corresponding to that parameter set. In

particular, he suggests the approximation
- z;=k,Il;=5|C,
(05108 ~ ¢ [T o =119 p(041¢) (28)
k=1

One drawback of this method is that it falsely increases the equivalent sample sizes of the
Dirichlet distributions associated with each ©;;, because it replaces each missing datum
with a fractional sample. Cowell et al. (1995) suggest an approach that does not have
this problem. Namely, they approximate ©;; by a single Dirichlet whose means and average
variance y_;* | Var(6;;;)/r; are the same as those for the correct Dirichlet mixture. We note
that Titterington’s approach—unlike Cowell et al.’s method—produces a scoring metric that
assigns equal scores to equivalent network structures.

These approximations process the data in the database sequentially, and make use of the
assumption of parameter independence and properties of the Dirichlet distribution. Other
methods—including Gibbs sampling, the EM algorithm, and gradient descent—process all

the data at once, and can handle continuous domain variables and dependent parameters.

8.2 Gibbs Sampling

Gibbs sampling, described—for example—by Geman and Geman (1984), is a special case
of Markov chain Monte Carlo methods for approximate inference (Hastings, 1970). Given
variables X = {1, ..., ,} with some joint distribution p(X|€), we can use a Gibbs sampler
to approximate the expectation of any function f(X) as follows. First, we choose an initial

state of each of the variables in X somehow. Next, we pick some variable z;, unassign its
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current state, and compute its probability distribution given the assignments to the other
n — 1 variables. Then, we sample a state for z; based on this probability distribution, and
compute f(X). Finally, we iterate the previous two steps, keeping track of the average
value of f(X). In the limit as the number of samples approach infinity, this average is equal
to E(f(X)|€) (the expectation of f(X) with respect to the distribution p(X|{)) provided
two conditions are met. First, the Gibbs sampler must be irreducible: The probability
distribution p(X') must be such that we can eventually sample any possible state of X given
any possible initial state of X. For example, if p(X) contains no zero probabilities, then
the Gibbs sampler will be irreducible. Second, each x; must be chosen infinitely often.
In practice, an algorithm for deterministically rotating through the variables is typically
used. Good introductions to Gibbs sampling—including methods for initialization and a
discussion of convergence—are given by York (1992) and Neal (1993).

Now, suppose we have a database D = {C,...,C,,} with missing data, and we want
to approximate p(©p/|BE, D,€). One variant of Gibbs sampling for performing this ap-
proximation goes as follows. First, we initialize the parameters © g, somehow. Second, for
each case C; in D containing missing data, we fill in the missing data using the assigned
values of ©p,. For example, suppose variables 3 and z7 are unobserved in case C;. We
fill in z3 by sampling from the distribution p(z3|Ci,©pB,, ), and then fill in z7 by sam-
pling from the distribution p(z7|zs,C1, OB, &). This step can be done using any standard
Bayesian network inference algorithm. Third, we reassign the parameters ©p_ according
to the posterior distribution p(©p.|D’, &), where D’ is the completed database. Finally, we
iterate the previous two steps, and use the sampled values of ©p, as an approximation for
p(©p.|BL D, &). Buntine (1994) discusses this approach in more detail.

Gibbs sampling can also be used in place of searching over network structures. Namely,
we can modify the Gibbs sampler described in the previous paragraph so that it can transi-
tion from one network structure to another. For example, after each sampling pass through
the parameters and database, the sampler can evaluate the p(Bg7 D|&) for every structure
that is “close” to the current network structure (e.g., within one arc addition, deletion, or
reversal) and sample a new network structure according to this distribution (see Madigan
and Raferty, 1994).

8.3 EM Algorithm

The expectation-maximization (EM) algorithm is an approximation algorithm that can
find a local maximum of a probability p(-|0,£) as a function of parameters © (Dempster
et al., 1977). Given a database D = {C4,...,C},} with missing data, we can approximate
p(D|BE, €) as the local maximum for p(D|B%, © ., ¢) found by the EM algorithm. Like the
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Gibbs sampler, the EM algorithm can handle models with missing data, continuous domain
variables, and dependent parameters. Although the EM algorithm tends to provide a less
accurate approximation, it typically converges more quickly than a Gibbs sampler.

The EM algorithm can be viewed as a deterministic version of the Gibbs sampler. Like
the Gibbs sampler, we begin the approximation of p(D|B%, &) by assigning values to Op,
somehow. Next, rather than sample a complete database D', we compute the expected
sufficient stalistics for the missing entries in the database. In particular, we compute

m

E(Nijl©8,,£) = > plz; = k,11; = j|C1, Op,, ) (29)
=1

When z; and all the variables in II; are observed in case C, the term for this case requires
a trivial computation: it is either zero or one. Otherwise, we can use any Bayesian network
inference algorithm to evaluate the term. This computation is called the ezpectation step
of the EM algorithm.

Next, rather than sample new values for ©p_, we use the expected sufficient statistics
as if they were actual sufficient statistics from a database D’, and set the new values of
Op. to be the modes of the posterior distribution p(©p.|D’, BE,€). For example, if the

parameters ©p, have a Dirichlet distribution, then we have

4 i/jk + E(; z’jk|®B57€) -1
N{;+ E(N;|©B4,§) — 1

Mode(8;;%|€) =

This mode exists provided N/, + E(N;jx|®ps, &) > 1,k=1,...,r;. (If not, we can use the
expectation of 6;;; in its place.) This assignment is called the mazimization step of the EM
algorithm.

Dempster (1977) showed that, under certain regularity conditions, iteration of the ex-

pectation and maximization steps will converge to a local maximum of the probability

p(D|Bgv®B57€)

8.4 General Optimization Methods

To use Gibbs sampling or the EM algorithm in practice, we need to compute the distribu-
tions p(©p| D', B%, £) efficiently. These computations are efficient provided the parameters
Op. have a Dirichlet distribution or some other distribution from the exponential family.
When the distributions do not have this form, we can use general optimization methods to
maximize p(D|B%, Op., &) (Gill et al. 1981; Press et al. 1992).

Many of these approaches—for example, gradient descent, conjugate gradient, and quasi-
Newton methods—exploit derivatives of the function to be maximized to speed up conver-

gence. In some situations, these derivatives can be computed efficiently in closed form.
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Buntine (1994) discusses such methods in detail. Here, we mention the case where all

variables in U are discrete. In this situation, Russell et al. (1994) have shown that

dlogp(D|B%,0©p,,&)  E(Nijx|Osg,£)

892']% eijk

where E(N;;1|Opg, &) is the expected sufficient statistic given by Equation 29. As noted
in the previous section, this term may be computed by any standard Bayesian network

inference algorithm.

9 Learning New Variables

In a database with missing data, a particular variable may be observed in some cases, or it
may never be observed. In the latter situation, we say that the variable is hidden.

Any of the methods described in the previous section can be used to learn Bayesian
networks containing identified hidden variables. The network structure may be fixed and
only the physical probabilities uncertain, or both the network structure and parameters
may be uncertain. One example of learning the probabilities of a fixed structure with hid-
den variables is the AutoClass algorithm of Cheeseman and Stutz (1995), which performs
unsupervised classification. The model underlying the algorithm is a Bayesian network with
a single hidden variable whose states correspond to the unknown classes. The number of
states of the hidden variable is uncertain and has a prior distribution. Also, this hidden vari-
able renders sets of observable variables conditionally independent. The algorithm searches
over variations of this model (including the number of states of the hidden variable), us-
ing a version of the EM algorithm to approximate the posterior probability of each model
variation.

In addition, we can use methods for learning with missing data to identify (under un-
certainty) the existence of new variables. Namely, we hypothesize a mutually exclusive and
exhaustive set of Bayesian-network structures, some containing hidden variables and some
not. We assign priors to each structure and its parameters, and then update these priors

with data using one of the described algorithms for handling missing data.

10 Pointers to the Literature

Like all tutorials, this tutorial is incomplete. For those readers interested in learning more
about graphical models and methods for learning them, we offer the following additional

references. A more detailed guide to the literature can be found in Buntine (1995).
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Charniak (1991) provides an easy-to-read introduction to the Bayesian-network repre-
sentation. Spiegelhalter et al. (1993) and Heckerman et al. (1995b) give simple discussions
of methods for learning Bayesian networks for domains containing only discrete variables.
Buntine (1994) and Heckerman and Geiger (1994) provide more detailed discussions. Exper-
imental comparisons of different learning approaches can be found in Cooper and Herskovits
(1992), Aliferis and Cooper (1994), Lauritzen et al. (1994), Cowell et al. (1995), and Heck-
erman et al. (1995b).

In addition to directed models, researchers have also explored graphs containing undi-
rected edges as a knowledge representation. These representations are discussed (e.g.) in
Lauritzen (1982), Verma and Pearl (1990), and Frydenberg (1990). Bayesian methods for
learning such models from data are described by Dawid and Lauritzen (1993) and Buntine
(1994).

Finally, several software systems for learning graphical models have been implemented.
Thomas, Spiegelhalter, and Gilks (1992) have created a system that takes a learning problem
specified as a Bayesian network and compiles this problem into a Gibbs-sampler computer
program. Badsberg (1992) and Hgjsgaard et al. (1994) have built systems that can learn

directed, undirected, and mixed graphical models using a variety of scoring metrics.
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