Introduction to Programming
using FORTRAN 95

http://www.fortrantutorial.com/

These worksheets aim to provide an introduction to
programming. The language chosen for this is FORTRAN 95. This
is because FORTRAN is particularly suitable for science and
engineering; it is also very widely available.

The skills you acquire working through these notes can be
applied to any computing language. The concepts you will learn
are shared in common with every other computing language.

This document and all the examples may be found online at:

http://www.fortrantutorial.com/

© Janet A Nicholson 2011

Copyright © Janet A Nicholson 2011 1 fortrantutorial.com

1 THE BASICS 3

S R N OO OO PO PPPUPTPPPPRRRPIRt 3
1.2 INSTALL FTINOS PERSONAL EDITION ...uuuuuuuuuuuuuueuuususueuessssssssssssssssssssssssssssssssssesseesesesesereserereereereerereeeeeseeeeeaeeeeeaeaens 3
1.3 YOUR FIRST PROGRAMMING SESSIONuuuuuuuusuuusnsnsssesseseeeseeemeremeeeeeeeteeeeeteeeteeeaeaesaaaanns 3

1.4 PLATO - APROGRAMMING ENVIRONMENT. ...3
1.5 RUNNING YOUR FIRST FORTRAN 95 PROGRAM.... .4
1.6 PROGRAM STRUCTURE.......ccrruvnus ...6
1.7 MORE ON INPUT AND OUTPUT ...evvvrvernrernnnnnnnns6
1.8 MORE DATA TYPES — INTEGER AND CHARACTER.......8
1.9 SAVING THE CONTENTS OF OUTPUT WINDOWuuuuuuururuuueuenuneneneneneseseseseseseeeessesseseseseseteetemeteeetememememememetemeseeeseeesens 10
2 IMAKING DECISIONSccttuuiiiiiiiitnnesisininmessessssssimssssssssssstnsssnns 11
200 Y11 PP PR
0 A N3 1] Y=\ PP
B T U1 1Y 13 o P PPPPPPPPTPTPP
2.4 INTRINSIC FUNCTIONS . utttteeetesuttieeeeseseiueseeessesureseeeesesesssseesesssssnseseesssasssssssessssssssssseesssssssseseesssssssssseesssnnassesnns
2.5 IVIAKING DECISIONS «..uvivvveeeeiesiirieeeesessittteeeesssureseeeesssussaeeeessssssseseeessasssssseesssssssssseeesssssssseseessssssssseeesssnsseeesnns
2.6 PROGRAM STYLE ..iiiiiiiiiiieeeeeeeee e e eeeeee s aaa e a s e aanaasasassssassassssssssssssssssssesnsasnsssnsssnnnnnnnnn aeaeaeaaanes
2.7 IVIORE ON DECISION IMAKING .eeeeeeeeeeeeeeesesesesesasssaasssasasasasnsnnsnnnnnnnnnnnsnsnsnsnsnsnnssssssssssssssnssssssssssssssssssssnsssnsnsnsnnnns
2.8 OTHER LOGICAL OPERATORS...
2.9 MuLTIPLE CONDITIONS............
2.10 THE SIMPLE IF STATEMENT ...ccvvvvveeenes
2.11 IMPORTANT NOTE — TESTING FOR ZERO
3 110 10] =N 17
0 1LY L PO PPPRTPPPPPRIN 17
3.2 IVIIXING VARIABLE TYPES ..vvteeetesurrreeeesesasureseeesssssssseesesssssssessesssssseseessssssssssessssssssssesesssssssseseesssssssssseessssnsnse ss 17
S0 T I3 0T 11 T - 2P PPPPRPRTRTP 18
3.4 NESTED DO LOOPS .. ceieiiieee e ettt ae b eaebabsss e sese e sssesssatatnenannnn aaaaaaeas 19
3.5 USING LOOPS TO DO SUMMATION ..eeeeiieeeeeeeesesesesesssassssssssssssssssssnssssssssnssssssansssnnnns 20
4 USING FILES AND EXTENDING PRECISION 22
L R Y Y RNt 22
4.2 READING FROM FILES .eeettttttreeteeeeeeeeseseeeseseeeaeeseseseseseseseseseseseeeesesssesesesesesesesesesssesesesessssssssssssssssssssssssssssasanssensnes 22
4.3 WWRITING TO FILES cettttteeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeseseseseseseseeeeessesesseesesesesesesesesesesesssssssssssssssssssssssssnssssssssssansesessnnnes 23
4.4 EXTENDING THE PRECISION. ...eeeteeessurrreeeerssasureseeesssssuseseesesssssssssesessssssssseessssssssssesssssssssssesssssssssesesssssssssasesssnnnnes 23
4.5 IMAGNITUDE LIMITATIONS .evveettrreeeereeeeeeeeeeeeeeeeeeeseeeseseseeeseeeseesaesseeeessssasssesseesesesssesesesssssssssssssssssssssssssssssssssssnnnns 25
4.6 CONVERGENCE — EXITING LOOPS ON A CONDITION ...ceevtrrrrreeeerreereeeeeeeeeeeeeeeeeeeesesesaseeeeeeseeseeseseseeeeesesesesssesesesssesasenes 25
5 ARRAYS AND FORMATTED I/0 27
5.1

5.2 ARRAYS....
5.3 ARRAY MAGIC
5.4 MULTI DIMENSIONAL ARRAYS

5.5 FORMATTING YOUR OUTPUT..ciietitieieeeseseeesesssessssssssssssssssssssssssssasssasssssasssssassnsssssnnnns
55,1 INt@GEr SPECIfICALIONeooneeeeeieeieeeeeeet ettt et et 32
5.5.2 Floating point SPECIfiCAtiONccceeevueeesieinieieieesieeee ettt 32
553 EXPONeNtiQl SPECIfICALIONccuueeeeeeeeeeee ettt eete e et e e staeeeaaeaeeeaens 32
554 CRAraCter SPECIfICALIONvveeeeeeeeeeeeeeee et e et e e e e etee et a e e st e e e aseaeeeases 33
5.6 IMPLIED DO LOOP TO WRITE ARRAYS .eeieiieieieeesesesesessssassassssaaasaaassnnssnnnnnnnnnnnnnnsnsnsnsnsssnsnssssssssssssssssssssssssnsssnsnnnne 33
6 SUBROUTINES AND FUNCTIONS 35
[0 Y 1LY LS PPPRPTPPPPPRN 35
6.2 RE-USING CODE — THE SUBROUTINE ...ceitiieeieeeieseseseeeeseseseseseaesaaesassnnnnnnnnnnnnnnnnnnsnnnsnsnsnsnsnsssssssssssssnssssssssssssssnsnsnne 35
6.3 ARGUMENTS TO SUBROUTINES . ..eeeteeeeeeeeeeeseseessaesessassasasasassnsnnsnnnnnnnnnnnnnnsnsnsnsnsnsnsnsnsnssssssssssssssssssssssssssssssnsssssnsnns 36
6.4 USER DEFINED FUNCTIONS «..ciieeieieeeeeeeeeieseseeeeeee s e ee s e e s e e e e s s e ssss sttt st e e sesnsnsnananennnennnnn 38
7 ADVANCED TOPICS ...cuuiiiiiiiennneiieiiiiennsiiiesitsssnssssssss 40
2 Y 1Y L PO PPRPPPPPPPRN 40
7 313V U Tt 1T L SPRRRRPIRt 40
7.3 WRITING REAL PROGRAMS = FLOW CHARTS ...iiiiiiiieieeeieieieeeeeeeeeeeseeeee e e e e e e e e s ssssssnssnsnnnsnnnnn 42

Copyright © Janet A Nicholson 2011 2 fortrantutorial.com

1 The Basics

1.1 Aims

By the end of this worksheet, you will be able to:

Q

[iy miy |

1.2

1.3

Create and run a FORTRAN 95 program

Understand basic program structure

Start to deal with programming errors

Start to understand real, integer and character variable types.
Save a copy of your output in Word.

Install FTN95 Personal Edition

Search for Silverfrost FTN5 personal edition or click this link

http://www.silverfrost.com/32/ftn95/ftn95 personal edition.aspx.

Download and install the software accepting all the defaults.

Your first programming session

Locate and double click the Plato icon

Click File, New

Select Free Format Fortran File

Click File, Save As

Create a directory called fortranprograms and open it
Type first.f95

1.4 Plato - a programming environment

Copyright © Janet A Nicholson 2011 3

fortrantutorial.com

Plato is a "programming environment". Within Plato, you can create and edit programs and get them
to run. Plato's editor is special — it understands the syntax of various programming languages. We tell
Plato which language we are using when we create our empty file and save it with a .f95 (FORTRAN
95) extension. Provided you have given your file the appropriate extension, Plato's editor will be able
to check the syntax of the program, highlighting the various keywords that it knows about using a
colour code to distinguish between the various elements of the language.

Always ensure that your program files have a .f95 extension

1.5 Running your first FORTRAN 95 Program

Exercise 1.1

e Type in the following exactly as shown:

IMy first program

program First

print *,"This is my Ffirst program
end program first

Copyright © Janet A Nicholson 2011 4 fortrantutorial.com

e C(Click the black » , (the Execute button).

e Plato will get FTN95 to check your program for errors. If it finds any problems, it will give you
the details. If you have typed in the program exactly as shown above, an executable file will
be generated (first.exe). Plato will then automatically get the program to start executing.

e A banner will appear for a couple of seconds and will then disappear (that"s the price we
have to pay for using the free software)

e A black console window will appear.

e Press Return to close the window. Do not click the X at the top right of the window.

Plato can get upset if you do not press Return to close the window, try this...

e Save your program first!

e Run the program again (click »)

e This time click the X at the top right of the window to close it.

e Make up your own mind about which is the better way to close this window in future!

Copyright © Janet A Nicholson 2011 5 fortrantutorial.com

1.6 Program Structure

Examine the following short program:

program sum la: name of program
Tan example of program structure lb: @ comment

real :: answer,X,y Ic: declarations

print *, "Enter two numbers*® Id: output

read *, X le: input

read *, y le: input

answer=x+y If :arithmetic

print *, "The total is ", answer lg: output

end program sum Ih: end of program

There are a number of general points here:

Q
Q

Q

The program is made up of a number of lines. Each line is called a statement.
Each statement is made up of

e variable names e.g. answer, X, Yy

e operatorse.g. +,- etc

e keywordse.g. read, print

The statements are executed sequentially.

Let's break the program down, line by line:

a)
b)

<)

The name of the program. Keep it reasonably short and meaningful.

A comment explaining the purpose of the program. Comments are indicated by an
exclamation mark. All text to the right of an exclamation mark is ignored by the compiler.
Programmers use comments to help them remember how a program works. Use of
appropriate comments in programs aids understanding and is good practice.

Variables - answer, X and Yy are used to store floating point numbers — we indicate
this by declaring them as real.

print *, outputs to the screen — the asterisk means use the default number of decimal
places when the number is written to the screen.

We read information from the keyboard and store the valuesin X andy.

Do some arithmetic and store the answer in answer.

Output the result to the screen

Conclude the program

1.7 More on Input and Output

Exercise 1.2

Q
Q

[iy my |

Open a new file and call it io.f95.
Type in the following program:
program io
real :: X,y,z
print *, “enter the values X,y and z*
read *, X,y,z
print *, “"the values you typed are for z,y,x are:
end program io

Execute it by pressing P>

You can enter the numbers one at a time and press the Enter key each time.
Execute the program again

This time type all three numbers on one line separated by commas.

Copyright © Janet A Nicholson 2011 6 fortrantutorial.com

Look at the print statement
print *, "the values you typed are for z,y,x are: ",z,y,X
In this statement, we are outputting four separate things, a literal string of characters,

"the values you typed are for z,y,x are: *

and the variables z, y, and x. We may output several items at one time, provided they are separated
by commas.

Exercise 1.3

The following program has a number of errors.
O Create a new file called bug.f95 and then type in the following program exactly as shown.
O You can also download this file from
http://fortrantutorial.com/fortrantutorial-example-programs/index.php
program bug
this program is full of errors
real -: a,b,c
a=b+c
read *,c
print *,a
end program simple

The compiler will report two error messages when it attempts to compile. Click on the details button.
Each error generates a message.

Double clicking on the message will
take you to the line in the program where the fault occurs.

Copyright © Janet A Nicholson 2011 7 fortrantutorial.com

Q Correct the two errors.

Click Execute

Q There is now one further error, Plato will provide a yellow warning alert. Watch the screen
carefully! The window will close and then the program will start to execute. Something is
not correct however... the program will "hang". It is actually waiting for you to input a value,
because of the line read *,c. To the user of the program, this is not at all obvious —they
may have thought that the program has crashed!

Q Typein a number then press enter

The program returns an strange value. This is an "execution time" error.

QO We need to find out what the warning message was. Click the "compile" button (to the right
of the binoculars). Then click the "details" button. Plato will tell you that the variable b has
not been given a value.

Q Correct the program to give b a value, and then execute the program again.

Q There is still a problem. This time, it is a problem with the program's logic.

O

O

Need a Hint? The program statements are executed sequentially.

a=b+c

read *, c

print *, a
The statement a=b+cC doesn't make sense, as at this stage of the program, we haven't yet given a
value to C.

Important points to note
Q There are two types of errors associated with this program: compiler errors and run-time
errors.
Q The program is also user-unfriendly. The program waits for input without telling the user
what is needed.
Fix the run time error by:

» readin avalueforb
» correct the order of the statements
» make the program more user-friendly,

then compare your program with the one called bugfixed.f95 at

http://fortrantutorial.com/fortrantutorial-example-programs/

1.8 More Data types — integer and character

So far, we have only used real (floating point numbers) in our programs. We can also specify that
numbers are integer and character. Program convert, below, demonstrates their use.

Within a given range, integers are always represented exactly whereas the precision of real numbers
is limited by the architecture of the machine. The real variable type gives us 6 figure decimal
precision. (If this doesn't seem enough — don't worry we'll come back later on when we examine how
to increase the number of digits of precision in Section 4).

Character variables hold strings of characters like
"A happy day was had by all*
"Yes”
"
"3 + 4 equals 7"

Copyright © Janet A Nicholson 2011 8 fortrantutorial.com

When the character variable is declared, we show the maximum length that the string can occupy by
following the name by a * then its maximum length. The example below has a maximum length of 10
characters allowed for a person's name — this might not always be enough! You have to make a
judgement here.

program convert
IThis example shows the use of integer and character variables.
implicit none
integer :: pounds,pence,total
character :: name*10
print *,"What is your name?"
read *,name
print *, "Hi ",name,"! Enter number of pounds and pence*
read *, pounds,pence
total =100 * pounds + pence
print *,"the total money iIn pence is ",total
end program convert

NOTE the inclusion of the line

implicit none

By including it in your program, FORTRAN will check that you have properly declared all your variable
types. In the bad old days of programming, declaration of variables was thought to be unnecessary
and the old FORTRAN compilers used an implicit convention that integers have names starting with
the letters in the range i — n, all the others being real. FORTRAN still allows you to do this if we don't
include the line, implicit none. Time has shown that one of the commonest reasons for error in a
program is the incorrect use of variables.

Always use implicit none at the start of every program.

Exercise 1.4

With the program convert in section 1.5 as a guide, write a program to test out everything you've
learned so far. You might include different types of variables, for example real, integer, and
character. Include input and output using read and print. An example might be a program that asks
people questions, including things like their age and name and so on. It could, for example, print out
their year of birth with a suitable message. It's up to you, just use your imagination.

Copyright © Janet A Nicholson 2011 9 fortrantutorial.com

1.9 Saving the contents of Output Window

Run your last program again. When the black output window opens right click on the
Plato icon in the top left corner

e Click on edit

e Click Select all

e Click copy

e Open anew document in Word or Notepad and click paste.

Copyright © Janet A Nicholson 2011 10 fortrantutorial.com

2 Making Decisions

2.1 Aims

By the end of this worksheet, you will be able to:

Q Do arithmetic
Start to use FORTRAN intrinsic functions
Begin to understand program flow and logic
Know how to test for zero — important!
Learn more about good programming style

000D

2.2 Assignment

When we start programming, the similarity between mathematical equations and FORTRAN
statements can be confusing.
Consider the following FORTRAN statements:

X =2 Store the value 2 in memory location x
y =3 Store the value 3 in memory location y
zZ=X+y Add the values stored in memory location

x and y and store the result in memory location z
In mathematics, “x = 2” means that the variable x is equal to 2. In FORTRAN it means “store the value
2 in the memory location that we have given the name x”.

The significance of this is made clearer by the following equation in mathematics:
X+y=z
In mathematics, this means that the left hand side of the equation is equal to the right hand side.

In FORTRAN, this expression is meaningless: there is no memory location "x+y" and so it would lead to
a compiler error.

Rule - there can only ever be ONE variable name on the left hand side of an equals sign

Exercise 2.1

Write a program which reads in two numbers a and b. Get the program to swap the values around so
that the value that was in a is now in b, and print out the result. Hint you need to declare a third
variable for intermediate storage of the data. (Check your program by examining program swap.f95 at
http://fortrantutorial.com/fortrantutorial-example-programs/

2.3 Arithmetic

The arithmetic operators are

+,- plus and minus
>,/ multiply and divide
*x exponentiation (raise to the power)

O brackets

The order of precedence in FORTRAN is identical to that of mathematics.
Unlike algebra, the operator must always be present xy is not the same as x*y
Where operations are of equal precedence they are evaluated left to right
Consecutive exponentiations are evaluated right to left

We can override the order of evaluation by use of brackets

Oo000D

Copyright © Janet A Nicholson 2011 11 fortrantutorial.com

Exercise 2.2

The following program is an example of the use of arithmetic.

program calculate
implicit none

I a simple calculator
real :: X,y,z,answer
X=1.5
y=2.5
z=3.5
answer=x+y/z
print *,"result is ",answer
end program calculate

Explore the use of arithmetic operators by modifying program calculate. Use it to calculate the values:

2.4 Intrinsic Functions

FORTRAN is especially useful for mathematical computation because of its rich library of inbuilt
functions (intrinsic functions). We shall mention a few briefly here:

function name type of argument type of result Definition
sin(x) real real sine

cos(x) real real cosine

tan(x) real real tangent
atan(x) real real arctangent
abs(x) real/integer real/integer absolute value
sqrt(x) real real square root
exp(x) real real e

log(x) real real Ioglox

Trigonometric functions are calculated in radians (1 radian = 180/Pi degrees).

There are, of course, many more, and this list doesn't cover all FORTRAN variable types. The following
example shows the use of some of the inbuilt functions.

program trig
implicit none

real :: a,pi
print *,"Enter an angle between 0 and 90"
read *, a

pi=4.0*atan(1.0)
print *,"the sine of ",a," is ",sin(a*pi/180)
end program trig

Copyright © Janet A Nicholson 2011 12 fortrantutorial.com

2.5 Making Decisions

So far, our programs have worked as little more than basic calculators. The power of programming
comes in when we have to make decisions. Copy the example program, test.f95, to your own file
space. See if you can understand what is going on.
program test
implicit none
Tuse of a simple menu
real :: X,y,answer
integer :: choice
Iset up the menu — the user may enter 1, 2 or 3
print *,"Choose an option”
print *,"1 Multiply”
print *,"2 Divide*
print *,"3 Add*"
read *,choice
x=3.4
y=2.9
Ithe following line has 2 consecutive
Tequals signs — (no spaces in between)
it (choice = = 1) then
answer=x*y
print *,"result = *,answer
end if
it (choice = = 2) then
answer=x/y
print *,"result = " ,answer
end if
it (choice = = 3) then
answer=x+y
print *,"result = " ,answer
end if
end program test

The bolded lines in the above program are called if ... end if statements. They work like this:

if (condition is true) then
execute this line
and this
and so on until we get to ...
end if

It follows that if the condition is NOT true then the code 'jumps' to the next statement following the
'end if'. The statements between the if and the end if are deliberately indented, this makes the
program easier to read.

We use two consecutive equals signs (no space in the middle) to test for equality. Compare
if (choice == 3) then test
choice = 3 assignment

Copyright © Janet A Nicholson 2011 13 fortrantutorial.com

Exercise 2.3

Examine program test above. The line

print *,"result = ", answer

is repeated several times. Is this a good idea? Can you modify the program to make it more efficient?

2.6 Program Style
A good program:

Uses comments appropriately to explain what is happening.
Uses indentation to make the program easier to read.

Uses meaningful variable names.

Uses sensible prompts to let the user know what is going on.
Uses implicit none at the start of every program.

Is efficient!

o000 0

If you want to get maximum marks for your assignments keep the above points firmly in mind. It is
not enough just to get a program to work!

2.7 More on decision making

In our test.f95 above, there was a problem if the user entered a value that wasn't catered for by the
program.

What happens if the user doesn't enter one of the values 1, 2 or 3?

We are going to look at a new structure, called if, else, endif that handles this situation. Examine the
following code snippet:

if (choice = = 1) then
do something
else if (choice = =2) then
do something else
else
do this if nothing else satisfies the conditions
end if

2.8 Other logical operators

So far, all our tests have been for equality. There are several tests we can make:

equal to (there is no space between the equals signs)

/= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Copyright © Janet A Nicholson 2011 14 fortrantutorial.com

2.9 Multiple Conditions

Suppose we need to test if x is greater than y and y is greater than z. There are different ways of doing
this:

if (x > y) then
if (y > z) then
do something
end if
end if

This can also be handled by the following:

tice the .and.
if (x >y .and. y > z) then notice the

do something

end if

If we wanted to check whether a number were less than a given value or greater than a given value
we could write:

ce the or.
if (x <10 .or. x > 20) then notice the .or

do something

end if

Exercise 2.4

Write a program that reads a number from the keyboard. Get the program to decide whether:

Q the value of the number is greater than 0 but less than 1
Q oris greater than 1 but less than 10
Q oris outside of both these ranges

Print out a suitable message to inform the user.

2.10 The simple if statement

There is a simpler, one line form of the if statement. Say we just wanted to print out a simple
message such as

print *, "enter a positive number*

read *, num

This snippet also
if (nhum <0) stop

introduces a useful,

if (hum < 10) print *, "less than 10° simple statement
if (hum > 10) print *, "greater than 10" stop — it simply
print *,"It is a positive number* stops the program.

Copyright © Janet A Nicholson 2011 15 fortrantutorial.com

2.11 Important note — testing for zero

Suppose that you wish to test whether a real variable is zero. The test

Make sure you
if (x ==0) then ... understand this !

is not a satisfactory test. Although integer numbers are held exactly
by the computer, real numbers are not.

The way around this is to test if the absolute value of the variable is less than some small predefined
value. For example:

if (abs(x) < .000001) then

print *,”No zero values! Please enter another number’
read *, X
end if

Copyright © Janet A Nicholson 2011 16 fortrantutorial.com

3 Loops

3.1 Aims

By the end of this worksheet, you will be able to:
O Understand more about the use of real and integer variables and how to use a mixture of
data types in expressions
O Understand how to re-use code by looping
Q Know how to control the number of times a section of code is executed by using a do loop

3.2 Mixing variable types

Exercise 3.1

Copy divide.f95

Make sure you understand this

program divide
thoroughly!

implicit none
integer :: X

real :: vy

x =1

y = x/3

print *, y

end program divide

And run it. This program produces the following output:

0.00000
Something odd is happening. The problem is the line:
y=x/3

FORTRAN evaluates the right hand side of the assignment first using integer arithmetic, because
both x and 3 are integer. 1 divided by 3 cannot be stored as an integer, and so the value 0 is returned.
The result, 0, is then converted to a real number and the assigned to y.

Replace the line in program divide

X =1 by
x = 10

Your output should now be:

3.00000

Can you see what is happening? FORTRAN is keeping the integer part of the answer and throwing the
rest away.

Copyright © Janet A Nicholson 2011 17 fortrantutorial.com

To get over this problem, we have to signal to FORTRAN that we want it to calculate the right hand
side of the expression using real arithmetic. If we want to keep x as integer data type, we could re-
write our expression as follows:

y=x/3.0

The presence of a real number on the right hand side causes the right hand side of the expression to
be evaluated using floating point arithmetic.

Actually, the problem is even more complicated! Where we have an expression like
y=x* ((2**i)/3)
where x and y are real and i is integer, FORTRAN computes the result in stages:

First it calculates (2**i)/3 and evaluates it as an integer number, then multiplies the result by x and
evaluates it as real.

Exercise 3.2

Copy check.f95 to your computer.

program check
TInteger and real arithmetic

implicit none

real :: X,y

integer i

x=2.0

=2

y=x*((2**1)/3)

print *,y

y=x*((2.0**1)/3)

print *,y

end program check

... and examine its output. Make sure you understand why this is happening.

3.3 Thedo loop

Unless we are able to re-execute code, we might as well use a calculator... Now we start to take
advantage of the power of the computer.

Exercise 3.3

Copy program loop.f95

program loop

implicit none

integer :: i

do 1=0,20
print *,i

end do

Copyright © Janet A Nicholson 2011 18 fortrantutorial.com

end program loop

Run the program. It prints out the numbers from 0 to 20 in steps of 1.

Note:

O

i is called a loop counter. In this example, it has a start value of zero.

Q All the statements within the do and end do are executed. In this example there is just the
one statement, ie print.

O Each time the statements are executed, the loop counter, i, is incremented by 1.

O When the value of i is 20, the loop terminates, and the program resumes after the end do.

Change the do statement in program loop as follows:

do i = 50,70,2

Run the program. What happens?

The third argument in the do statement, is the increment step. If omitted, the value is taken as 1.

Loops can also decrement: try this

Exercise 3.4

Using a do loop to generate integer values of x between —10 and 10 in steps of 1, write a program
that constructs a table of values of

y=1.0/x

What happened when x had the value zero? Use an if, end if to test for the condition that gives the
incorrect value, and print out an appropriate message. Compare your result with divbyzero.f95.

Division by zero is one of the commonest reasons for a program to fail.

3.4 Nested Do Loops

We want to construct a table of values for z where
Z=X

for values of X in the range 1 to 2 in steps of 0.5 and
y in the range 1 to 2 in steps of 0.5

Work through the next exercise which illustrates this:

Copyright © Janet A Nicholson 2011 19 fortrantutorial.com

Exercise 3.5

Copy program xytab.f95 to your filespace.

program xytab
implicit none
Iconstructs a table of z=x/y for values of x from 1 to 2 and

ly from 1 to 4 in steps of .5

real X, Y, Z
print *,' X y z'
do x = 1,2
doy =1,4,0.5
z = x/y
print *, x,y,z
end do
end do

end program xytab

Examine its output. Notice the use of the first print to give a heading to the table.

3.5 Using loops to do summation

Earlier on, we discussed the idea of assignments.
x=1.0
means store the value 1.0 in the memory location called x.
If we had the following code:
x=1.0
x=x+1.0
print *, x
Can you guess what value would be printed out for x?

The answer would be 2.0.

Bearing in mind the definition of an assignment, the statement Really important!

x=x+1.0

means “add 1.0 to the value currently stored in memory location x and then store the result in
memory location x”.

Copyright © Janet A Nicholson 2011 20 fortrantutorial.com

Exercise 3.6

Copy file increment.f95 to your file space and examine its output.

program increment
implicit none
integer :-: 1
real -: X
x=1.0
do i=1,10
Xx=x+1.0
print *, 1,X
end do
end program increment

O Note carefully that we have set the initial value of x outside of the do loop. Why have we
done this? If you aren't sure — change the code to put the line x = 1.0 inside the loop — then
examine the output.

Q Itis important to understand that if we use constructions such as x = x + 1.0, then it is vital to
initialise x to some value. If we don't, it is possible that the value might be set to any random
number. Run the program, make a note of the final value of x then put an exclamation mark
in front of the x = 1.0 statement and run the program again.

Exercise 3.7

Edit the line x = x + 1.0 in program increment.f95, and change it to x = x * i. Re-run the program and
examine the output. What is significant mathematically about the sequence of numbers that has been

generated?

Copyright © Janet A Nicholson 2011 21 fortrantutorial.com

4 Using Files and Extending Precision

4.1 Aims

By the end of this worksheet, you will be able to:
O Read from and write to files
O Use extended precision

4.2 Reading from files
In the real world, most of the data we use for our programs will be kept in files. We just need a
modification to the read statement that we are already familiar with to do this.
This program reads 3 numbers from a file called 'mydata.txt' into an array. Use Windows Notepad to
create such a file for yourself, or copy the file from mydata.txt which is on the website.
program readdata
implicit none
Treads data from a file called mydata.txt
real :: x,y,z
open(10,file="mydata.txt")
read(10,*) Xx,y,z
print *,x,y,z
end program readdata
The new material here are the lines
open(10,file="mydata.txt")
read(10,*) x,y,z
The open statement links the file called 'mydata.txt' with an input device numbered 10 (it doesn't

have to be 10, it could be any positive integer). To read from device 10, we just use it as the first
argument in the read statement.

Exercise 4.1

Use Notepad to create a file called evenodd.txt. In the file type 10 numbers, one per line. Write a
program that reads data from evenodd.txt one line at a time. Check if each number is even or odd and
print out a suitable message. One way to check if a number is even or odd is to use the mod intrinsic
function, like this...

it (mod(num,2)>0) then....

mod returns the remainder of the first argument divided by the second. If the return value is greater
than zero, then the number must be odd. Check program evenodd.f95 to see if you are correct.

Copyright © Janet A Nicholson 2011 22 fortrantutorial.com

4.3 Writing to files
This is a similar idea to reading from files. We need a new statement, though, instead of print, we use
write.
program i02
Tillustrates writing arrays to files
implicit none
real :: num
integer :: i
open(12,file="myoutput™)
do 1 = 1,100
num = 1/3.0
write(12,*) nums
end do
print *, "finished”
end program io2

Exercise 4.2

Write a program which reads in numbers from a file one at a time. If the number is positive, it should
store it in a file called 'positive.txt' and negative numbers in a file called 'negative.txt'.

4.4 Extending the precision

So far, we have used two types of variables, real and integer. The problem so far, as you will have
noticed on output, is that we are extremely limited by the number of significant digits that are
available for computation. Clearly, when we are dealing with iterative processes, this will lead rapidly
to errors. We can, however, extend the precision available from the single precision default, which
gives us 6 figure decimal precision to 15 figures by using a new specification for real numbers.

program extended
implicit none

integer, parameter :: ikind=selected real kind(p=15)
real (kind=ikind) :: sum,x
integer :: i
sum=0.0
do 1=1,100
X=1
sum = sum + 1.0/(xX**6)
end do

print *, sum
end program extended

produces the following output:
1.01734306196

Don't be put off by the odd looking code. In practice, the way of setting up this extended precision, is
pretty much the same for every program.

We state the precision we want by the argument p
integer, parameter :: ikind=selected_real_kind(p=15)

Copyright © Janet A Nicholson 2011 23 fortrantutorial.com

in this case, 15 decimal places. ikind is a new data type — a parameter. FORTRAN returns a value to
the parameter ikind that will be adequate to provide 15 digit precision. This code will work on any
machine irrespective of the architecture.

We declare that the variables are using extended precision by
real (kind=ikind) :: sum,x
Valid values for p are 6, 15 and 18. The default value for p is 6. If you ask for more precision than 18

digits, the compiler will complain with an error message. Try changing the values of p and see what
effect this has on the output.

The trouble with PRINT is that the programmer has no control over the number of digits output
irrespective of the selected precision .

Later on we'll come back to this when we learn about the WRITE statement, and output
formatting.

Note Unlike variables, parameters may not change once they are declared.

If we want to use constants in a program that uses extended precision, we have to tell FORTRAN that
they are also extended precision explicitly. This leads to the rather strange syntax you can see in the
following program.

program extendedconstants
Tdemonstrates use of extended precision
implicit none

integer, parameter :: ikind=selected_real_kind(p=18)

real (kind=ikind) :: val,x,y

val=10/3

print*,val 110/3 calculated as integer - wrong!
x=10.0

y=3.0

val=x/y Ix/y assigned to extended precision - right!
print*,val

val=10.0_ikind/3 Textend precision constant - right!
print*,val

val=10.0/3.0 Treal constants - wrong!
print*,val

val = .12345678901234567890 Treal constants - wrong!

print *, val

val = .12345678901234567890_ikind !ext precision consts - right!
print *, val

end program extendedconstants

You should run this program for yourself and think carefully about its implications. This program
demonstrates how easy it is to get calculations wrong. I'll leave this to you to experiment to ensure
that you fully understand the importance of properly declaring variables and the use of constants in
FORTRAN programming. A systematic approach to your programming will reduce the risk of errors as
will running programs with test data that have known solutions so that you can confirm that your
program is error free.

Copyright © Janet A Nicholson 2011 24 fortrantutorial.com

4.5 Magnitude limitations

We have already observed that there is a limitation of the accuracy with which we can do calculations
in FORTRAN (and indeed, any, computer language). There are also limitations on the magnitude of a
number. The various magnitude and precision limits are summarized in the following table:

Value of p Decimal places Range
6 6 (default) +10%
15 15 +10*”
18 18 +10%*

Exercise 5.3

To illustrate these limits copy file magnitude.f95 and run the program. Take a while to get a feel for
what is going on. Try inputting various values for the variable maxpower (eg 400). Can you confirm
that the table above is correct?

One interesting construct is
print *,i,2.0_ikind**i

Here, we are telling the compiler that the real constant 2.0 is also using extended precision. Check
what happens if you select extended precision (option 3) and enter a value of maxpower of 400. See
what happens if you rewrite the line to be

print *,i,2.0**i
Run the program again and enter the same values. Can you explain what is going on?

4.6 Convergence — exiting loops on a condition

In the program extended.f95, we found the sum of

x=10 1
6
x=1 X
It is useful to determine at what point such sums converge to a steady value — otherwise we may
make arbitrary assumptions about the summation range. Clearly, a point will be reached, within the
precision range that can be handled on our computer, that the term
1

6
X

will be too small to contribute to the sum. At this point we should exit the loop otherwise the
program will do more computation than is required.

One way to do this is to compare the value of the variable sum with its previous value, and if the
difference between the two is very small, then exit the loop.

Copyright © Janet A Nicholson 2011 25 fortrantutorial.com

program whileloop
implicit none
integer, parameter ::

ikind=selected_real_kind(p=15)

real (kind=ikind) :: sum,previoussum,x,smallnumber,error
integer :: i
sum=0.0

previoussum=0.0

smal Inumber = 10.0**(-15.0)

do 1=1,1000
X=1
sum = sum + 1.0 /(X**6)
error=abs(sum-previoussum)

it (error<smallnumber) then

print *,"sum ",sum,” number of loops

exit
end if
previoussum = sum
end do
end program whileloop

IMPORTANT NOTE

In the real world, we have to make choices about the amount of precision we need to work to. It is
pointless asking for 15 digits of precision if, for example, we can only take a measurement to + or —

1% accuracy!

It is not necessary to always use a loop counter in a do loop. If we don't actually specify a counter,

the program will loop forever. Constructs like this are OK:

smallnumber = _0000001_ikind

do
print *, "enter a positive number
read *, number
if (number <= smallnumber) exit
end do

The disadvantage is that, if you get the code wrong, you run the risk of the program looping forever —

generally it's safer to use a loop counter!

Copyright © Janet A Nicholson 2011 26

fortrantutorial.com

5 Arrays and Formatted 1/0

5.1 Aims

By the end of this worksheet you will be able to:
O Understand the use of arrays
O Improve the appearance of your output

5.2 Arrays

Let us imagine that we want to find the average of 10 numbers. One (crude) method is shown in the
next program.

program av

real :-: x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,average

read *, x1,x2,x3,x4,x5,%x6,x7,x8,x9,x10

average= (X1 + x2 + x3 + x4 + x5 + x6 + X7 + x8 + x9 + x10)/10

print *, “the average is ",average

print *, “the numbers are:*

print *, x1

print *, x2

print *, x3

print *, x4

print *, x5

print *, x6

print *, x7

print *, x8

print *, x9

print *, x10

end program av
This approach is messy, involves a lot of typing and is prone to error. Imagine if we had to deal with
thousands of numbers!

The way around this is to use arrays. An array is a list that we can access through a subscript. To
indicate to FORTRAN that we are using an array, we just specify its size when we declare it.

real, dimension(100) ::x

x(l)-= 3
x(66) = 4

This snippet of code allocates 100 memory locations to the array x. To access an individual location,
called an array element, we use a subscript — here we are assigning the number 4 to the 66" element
of array x and 3 to the 1% element.

Now let's return to program av at the start of this worksheet, we'll re-write it using an array.

Copyright © Janet A Nicholson 2011 27 fortrantutorial.com

program av2
implicit none

real ,dimension(10) :: X

real I: average,sum
integer el |

print *, “enter 10 numbers-®
sum=0.0

do i=1,10

read *, x(i)
sum=sum+x (i)
end do
average=sum/10
print *, "the average is
print *, "the numbers are®
print *,x
end program av2

,average

Notice that if we type

print*, x

the program will print out the entire contents of the array.

The additional benefit of this program is that with very few changes, we could make it deal with any
number of items in our list. We can improve on this still further by making use the parameter data

type:

program av3
=just change the value of the parameter to change the size of the
Tarra

implicit none

integer, parameter o imax = 10
real ,dimension(imax) :: X

real I: average,sum
integer e |

print *, "enter’ ,imax, ’ numbers*®
sum=0.0

do i=1,imax
read *, x(i)
sum=sum+x(i)
end do
average=sum/imax
print *, "the average is
print *, "the numbers are”
print *,x
end program av3

,average

Note this is an example of good programming. The code is easily maintainable — all we have to do to
find an average of a list of numbers of any size is just to change the size of the parameter imax. We
can also allocate the size of the array at run time by dynamically allocating memory.

Copyright © Janet A Nicholson 2011 28 fortrantutorial.com

The following program demonstrates the use of arrays where we do not know the size of the array.

program alloc

implicit none

integer, allocatable,dimension(:):: vector

Inote syntax - dimension(:)

integer :: elements,i

print *,"enter the number of elements in the vector”

read *,elements
allocate(vector(elements))
lallocates the correct amount of memory
print *," your vector is of size ",elements,”. Now enter each
element”
do i=1,elements
read *,vector(i)
end do
print *,"This is your vector”
do i=1,elements
print *,vector (i)
end do

deal locate(vector)
1tidies up the memory

end program alloc
The program is called alloc.f95 and can be copied from the web page. Note in particular the bolded
lines. The new way of declaring the array vector tells the compiler that it is allocatable — ie the size

will be determined at run time.

We shall look at this further in Section 7.

Exercise 5.1

Write a program that asks the user how many numbers they want to enter, call this value imax.
Allocate imax elements to two arrays, a and b. Read in imax numbers to a and do the same to b. Print
out the arrays a, b and print out the sum of a and b. Compare your attempt with sumalloc.f95.

5.3 Array magic

One of the benefits of arrays is that you can easily do operations on every element by using simple
arithmetic operators.

program ramagic

implicit none

real ,dimension(100) :: a,b,c,d
open(10,file="data.txt")
read(10,*) a

b=a*10

c=b-a

Copyright © Janet A Nicholson 2011 29 fortrantutorial.com

d=1

print *, "a= ",a

print *, b= ",b

print *, “"c= ",c
*

print *, *d= *,d
end program ramagic

Exercise 5.2

Copy program ramagic.f95 and file data.txt to your own filespace. Run the program and examine the
output.

Exercise 5.3

Write a program that fills a 10 element array x with values between 0 and .9 in steps of .1. Print the
values of sin(x) and cos(x) using the properties of arrays to simplify your program. Compare your
answer with ramagic2.f95.

5.4 Multi dimensional arrays

The arrays we have looked at so far have been one dimensional, that is a single list of numbers that
are accessed using a single subscript. In concept, 1 dimensional arrays work in a similar way to
vectors. We can also use two dimensional arrays which conceptually are equivalent to matrices.
So, for example,

Integer, dimension(5,5) :: a

sets up a storage space with 25 integer locations.

The next program creates a 2 dimensional array with 2 rows and 3 columns. It fills all locations in
column 1 with 1, columns 2 with 2, column 3 with 3 and so on.

program twodra
implicit none

integer,dimension(2,3) Il a
integer ::row,col,count
count = 0

Icreates an array with 3 cols and 2 rows
Isets col 1 to 1, col2 to 2 and so on
do row=1,2
count=0
do col =1,3
count=count+1
a(row,col)=count

end do
end do
do row=1,2
do col =1,3
print *,a(row,col)
end do
end do

end program twodra

Copyright © Janet A Nicholson 2011 30 fortrantutorial.com

FORTRAN actually allows the use of arrays of up to 7 dimensions, a feature which is rarely needed. To
specify a extended precision 3 dimensional array b with subscripts ranging from 1 to 10, 1to 20 and 1
to 30 we would write:

real (kind=ikind),dimension(10,20,30) :: b

Exercise 5.4

Using a 4*4 array create an identity matrix, that is, a matrix of the form:

1000
0100
0010
0001

and output it. Wouldn't it be nice if we could actually output the matrix elements in rows and
columns? At the end of this section we shall see exactly how to do this.

5.5 Formatting your output

You may now be wondering if there is any way to have better control over what your output looks
like. So far we have been using the default output option — that's what the *'s are for in the write and
print statements:

write(10,*) X,y,z
print *, "program finished"

Exercise 5.5

Copy format.f95, and run it
program format
implicit none
Idemonstrates use of the format statement

integer, parameter :: ikind=selected real kind(p=15)
real , dimension(4) IIX
integer, dimension(4) I nums
integer el |
real(kind=ikind) ,dimension(4) :: computed
IFill up the arrays with something

doi=1,4

nums(i) =i *10

computed (i) = cos(0.1*1)

x(1) = computed(1)
end do

print *,"nums - integer”
write(*,1) nums
1 format(2i10)
print *, "x - real”
write(™,2) x
2 format(f6.2)
print *, “computed - double precision®
write(*,3) computed
3 format(f20.7)

Copyright © Janet A Nicholson 2011 31 fortrantutorial.com

end program format

You can see that the write and format statements come in pairs.

write(output device,label) variable(s)
label format(specification)

We are using in this example a * as the output device — in other words, the screen.

The format statement can actually go anywhere in the program, but by convention we usually place
them just after the associated write or all together at the end of the program. It's just a matter of
taste.

The tricky part here is the specification. There are different specifications for integer, real, and
character variables.

5.5.1 Integer Specification

General form : nim

Right justified
m is the number of character spaces reserved for printing (including the sign if there is one)
If the actual width is less than m, blanks are printed

a
a
a
Q nisthe number of integers to output per line. If omitted, one number is output per line.

5.5.2 Floating point Specification

General form : nfm.d

O Right justified

O m s the number of character spaces reserved for printing (including the sign if there is one),
and the decimal point.

Q If the actual width is less than m, blanks are printed

Q nisthe number of real numbers to output per line. If omitted, one number is output per
line.

Q disthe number of spaces reserved for the fractional part of the number — filled with 0's if
fewer spaces are needed. If the fractional part is too wide it is rounded.

If the total width for output (m) is too small, FORTRAN will just output *'s.

Rule m >= width of the integer part plus
d plus
1 (space for decimal point) plus
1 (space for sign — if negative)

Essentially, make m nice and wide and you won't have any trouble!

5.5.3 Exponential Specification

General form nEm.d

O Alternative specification for outputting real

Q dis the number of decimal places

QO m is the total width of the field including the sign (if any), the character E and its sign, the
decimal point and the number of places of decimals. Again make m nice and wide to ensure
the field is properly printed out.

Q nisthe number of exponential numbers to output per line. If omitted, one number is output
per line.

Copyright © Janet A Nicholson 2011 32 fortrantutorial.com

Example

real :: a,b
a = sqrt(5.0)
b = -sqrt(a)

write(*,10) a,b
10 format(2E14.5)

produces:
0.22361E+01 -0.14953E+01

5.5.4 Character Specification

General form nAm
O nisthe number of strings to print
QO m s the maximum number of characters to output

Example:
program chars
implicit none
character :-:a*10,b*10
a="hello"
b="goodbye*
write(*,10) a,b

10 format(2al0)

end program chars

Exercise 5.6

Using the format specifications in format.f95 as a guide, produce a table of

x e

where 0< X <1, for values of x in increments of 0.1. Write your output to a file called myoutput.
Ensure that your output lines up neatly in columns. An example program is neatoutput.f95 is available
on the website.

5.6 Implied Do Loop to write arrays
So far, the method we have used for input and output of arrays is:
integer :: col,row
real :: ra(l10,10)
lusing do loop
do row = 1,10
do col = 1,10

read *, ra(row,col)
write(*,*) ra(row,col)
end do
end do

Copyright © Janet A Nicholson 2011 33 fortrantutorial.com

The trouble with this method is that the rows and columns are not preserved on output. An
alternative, and neater method is to use an implied do loop in the write statement.
real :: ra(l10,10)
integer :: row,col
Tuse implied do
do row = 1,10
do col = 1,10

read *, ra(row,col)
end do
end do
do row=1,10
write(*,10) (ra(row,col),col=1,10)
end do

10 format(10f5.1)

Exercise 5.7

In Exercise 5.4 you wrote a program to produce and identity matrix. Apply what you know about
formatting now to make a neatly formatted matrix onscreen. There is an example identity1.f95
available on the website.

Copyright © Janet A Nicholson 2011 34 fortrantutorial.com

6 Subroutines and Functions

6.1 Aims

By the end of this worksheet you will be able to:

O Understand the use of subroutines and functions to make your code more efficient and
easier to read.

6.2 Re-using code - the subroutine
Examine the following program

program output
implicit none

real ,dimension(3) :: a,b,c
character :: answer*1l
linitialise arrays

a=1.5

b =2.5

c = 3.5

write(*,1) "aT",a

print *, “"type y to continue or any other key to finish®
read *, answer

if (answer /= "y") stop

write(*,1) "b",b

print *, "type y to continue or any other key to finish*®
read *, answer

if (answer /= "y") stop

write(*,1) "c",c

print *, "type y to continue or any other key to finish*®
read *, answer

if (answer /= "y") stop

write(*,1) "a*b*c",a * b * c
1 format(a,3f8.3)

end program output

The program sets up some arrays and then outputs them. At three stages in the program (bolded), it
asks whether it should continue; it stops if the answer is not 'y'. Notice that the three bolded parts of
the code are identical.

Simple enough — but look at the amount of code! Most of it is the same — wouldn't it be nice to re-use
the code and cut down on the typing? The answer is to use subroutines.

Copyright © Janet A Nicholson 2011 35 fortrantutorial.com

program outputl

implicit none

real ,dimension(3) :: a,b,c
linitialise arrays

a=1.5

b=2.5

c = 3.5

write(*,1) "a",a

call prompt(Q)

write(*,1) "b",b

call prompt()

write(*,1) "c*",c

call prompt(Q)

write(*,1) "a*b*c",a * b * c
1 format(a,3f8.3)

end program outputl
I +++++++++++++H++H+

subroutine prompt()
Iprompts for a keypress

implicit none

character answer*1

print *, “"type y to continue or any other key to finish*

read *, answer

if (answer /= "y") stop

end subroutine prompt

Examine the code, each time we use type
call prompt()
the program jumps to the line
subroutine prompt()
then executes each line of the code it finds in the subroutine until it reaches the line
end subroutine prompt
and then returns to the main program and carries on where it left off.
The program is much easier to understand now. All the code for prompting is in one place. If we ever

need to change the code which prompts the user to continue, we will only ever need to change it
once. This makes the program more maintainable.

6.3 Arguments to subroutines

We have seen that subroutines are very useful where we need to execute the same bit of code
repeatedly.

The subroutine can be thought of as a separate program which we can call on whenever we wish to
do a specific task. It is independent of the main program — it knows nothing about the variables used
in the main program. Also, the main program knows nothing about the variables used in the
subroutine. This can be useful —we can write a subroutine using any variable names we wish and we
know that they will not interfere with anything we have already set up in the main program.

Copyright © Janet A Nicholson 2011 36 fortrantutorial.com

This immediately poses a problem — what if we want the subroutine to do calculations for us that we
can use in the main program? The following program uses arguments to do just that.

Example: a program that calculates the difference in volume between 2 spheres.

program vols
ICalculates difference in volume of 2 spheres
implicit none
real :: radl,rad2,voll,vol2
character :: response
do
print *, "Please enter the two radii”
read *, radl,rad2
call volume(radl,voll)
call volume(rad2,vol2)
write(*,10) "The difference in volumes is, ",abs(voll-vol2)
10 format(a,2f10.3)
print *, "Any more? - hit Y for yes, otherwise hit any key"
read *, response
if (response /= "Y" .and. response /= "y") stop
end do
end program vols

subroutine volume(rad,vol)
implicit none
real :: rad,vol,pi
Icalculates the volume of a sphere
pi=4.0*atan(1.0)
vol=4_/3_*pi*rad*rad*rad
I1t*s a little quicker in processing to do r*r*r than r**3!
end subroutine volume

When the program reaches the lines
call volume(radl,voll)

It jumps to the line
subroutine volume(rad,vol)

The values, radl and voll are passed to the subroutine. The subroutine calculates a value for the
volume and when the line :

end subroutine volume

is reached, the value of the volume is returned to the main program

Points to notice — these are very important — please read carefully

O You may have several subroutines in your program. ldeally, a subroutine should do a specific
task — reflected by its name.

Q All the variables in subroutines, apart from the ones passed as arguments, are 'hidden' from
the main program. That means that you can use the same names in your subroutine as in the
main program and the values stored in each will be unaffected — unless the variable is passed
as an argument to the subroutine.

Q Itisvery easy to forget to declare variables in subroutines. Always use implicit none in your
subroutines to guard against this.

Copyright © Janet A Nicholson 2011 37 fortrantutorial.com

Q All the variables in the subroutine must be declared.

O The positioning of the arguments (in this case, rad and vol) is important. The subroutine has
no knowledge of what the variables are called in the main program. It is vital that the
arguments agree both in position and type. So, if an argument to the subroutine is real in
the main program, it must also be real in the subroutine.

Q If an argument to the subroutine is an array, it must also be declared as an array in the
subroutine.

Exercise 6.1

Write a program that calculates the difference in area between two triangles. Your program should
prompt the user for the information it needs to do the calculation. Use a subroutine to calculate the
actual area. Pass information to the subroutine using arguments.

6.4 User Defined Functions

We have already met FORTRAN intrinsic functions like abs, cos, sqrt. We can also define our own
functions —they work in a similar way to subroutines.

As an example, let's write a program (func.f95) that does some trigonometry. As you know, the trig
routines in FORTRAN use radians, not degrees - so it would be nice to write a function that does all
the conversion for us.

print *,"Enter a number*

read *, a

pi=4_.0*atan(1.0)

print *,"the sine of ",a,” is ",sin(a*pi/180)
In this snippet, we are having to code the conversion from degrees to radians directly into the main
part of the program. That's OK for a 'one-off', but what if we needed to do the conversion several
times. Now look at this:

program func

ITdemonstrates use of user defined functions

implicit none

integer, parameter :: ikind=selected_real_kind(p=15)

real (kind=ikind):: deg,rads

print *, "Enter an angle in degrees”

read *, deg

write(*,10) "sin = " ,sin(rads(deg))
write(*,10) "tan = " ,tan(rads(deg))
write(*,10) "cos = ",cos(rads(deqg))

10 format(a,f10.8)
end program func

function rads(degrees)
implicit none

integer, parameter :: ikind=selected real kind(p=15)
! returns radians
real (kind=ikind) :: pi,degrees,rads

pi=4.0_ikind*atan(1.0_ikind)
rads=(degrees*pi/180.0_ikind)
end function rads

What we have done, in effect, is to create our own function rads, which is used in an identical way to
the intrinsic ones you have used already like sqrt, cos, and abs.

When the line

Copyright © Janet A Nicholson 2011 38 fortrantutorial.com

write(*,10) "sin = " ,sin(rads(deg))

is reached, the program jumps to

function rads(degrees)

the value, degrees, is passed to the function. The function does some computation, then finally
returns the calculated value to the main program with the line

rads=(degrees*pi/180.0_ikind)

Note carefully that it doesn't return the value in the argument list (as does a subroutine) but actually
assigns the value to its own name rads.

O The function rads converts the value of the argument, degrees, to radians.
O Notice that we must declare the data type of the function both in the main program, and in
the function itself as if it were a variable.
O Functions return one value. This value, when calculated, is assigned to the name of the
function as if it were a variable —
rads=(degrees*pi/180.0_ikind)

Exercise 6.2

Write a program that includes a function called
real function average(n,list)
where n is integer and is the number of items in the list, and list is a real array.

Write suitable code for reading the numbers from a file (or keyboard), and output the average of the
numbers.

Exercise 6.3

Write a program that allows a user to enter the size of a square matrix. In the program write a
subroutine to compute a finite difference matrix. Ensure your output is neatly formatted in rows and
columns.

So, for a 10 by 10 matrix, we expect output to look like this

2-1000000O00O
-12-10000000
0-12-1000000
00-12-100000
000-12-10000
000O0-12-1000
00000-12-100
00000O0-12-10
00000O0OO0-12-1
00000O0OO0OO0-12

Check your attempt with finite.diffs.f95 on the website.

Copyright © Janet A Nicholson 2011 39 fortrantutorial.com

7 Advanced Topics

7.1 Aims

By the end of this worksheet you will be able to:

Q Use array functions
Q Create larger programs aided by "Flow Charts"

7.2 Array Functions

FORTRAN provides a number of intrinsic functions that are useful for working with arrays. Among
these are some which are specifically aimed at working with matrices and vectors.

MATMUL Matrix/vector Matrix multiplication of two matrices or a matrix
and a vector.

DOT_PRODUCT Vector Scalar (dot) product of two vectors

TRANSPOSE Matrix Transpose of a matrix

MAXVAL Any array Maximum value of an array, or of all the elements
along a specified dimension of an array.

MINVAL Any array Minimum value of an array, or of all the elements
along a specified dimension of an array.

SUM Any array Sum of all the elements of an array, or of all the

elements along a specified dimension of an array.

Program matrixmul.f95, demonstrates the use of these functions. Additionally, it includes two
subroutines that are likely to be useful when handling matrix/array manipulations: fill_array which
fills the array elements and outputra which prints the values of the array elements to the screen. This
program is also an example of dynamic memory allocation.

program matrixmul
1
1

demonstrates use of matmul array function and dynamic
allocation of array

real, allocatable, dimension(:,:) :: ral,ra2,ra3
integer I: size

Tinitialize the arrays
print*, "Shows array manipulation using SQUARE arrays."
print*, "Allocate the space for the array at run time."
print*, "Enter the size of your array”
read *, size
allocate(ral(size,size),ra2(size,size),ra3(size,size))
print*, "enter matrix elements for ral row by row"
call fill _array(size,ral)
print*, “enter matrix elements for ra2 row by row"
call fill_array(size,ra?)

Techo the arrays
print *,"ral"
call outputra(size,ral)

Copyright © Janet A Nicholson 2011 40 fortrantutorial.com

print *,"ra2*
call outputra(size,ra?)

Idemonstrate the use of matmul and transpose intrinsic
Ifunctions

ra3=matmul(ral,ra2)

print *,"matmul of ral and ra2-
call outputra(size,ra3)
ra3=transpose(ral)

print *,"transpose of ral”

call outputra(size,ra3)
deallocate(ral,ra2,ra3)

end program matrixmul

subroutine outputra(size,ra)
implicit none
Iwill output a real square array nicely

integer :: size,row,col
real ,dimension(size,size) Il ra
character o reply*l

do row =1,size
write(*,10) (ra(row,col),col=1,size)
10 format(100F10.2)

Tas we don"t know how many numbers_are to be output, specify
Imore than we need - the rest are ignored

end do

print*,”
print*,"Hit a key and press enter to continue”
read *,reply
end subroutine outputra

subroutine fill_array(size,ra)
implicit none
Ifills the array by prompting from keyboard

integer :: row,col,size
real I num
real, dimension(size,size) Il ra

do row=1,size
do col=1,size
print *, row,col
read *,num
ra(row,col)=num
end do
end do
end subroutine fill_array

Copyright © Janet A Nicholson 2011 41 fortrantutorial.com

Exercise 7.1

Write a program to read in 2 square matrices (of any size). Confirm that the matrices obey the rule
(AB)) ~ B'A’

where A’ isthe transpose of matrix A.

Exercise 7.2

Write a program that will read a 3 X 3 matrix from a data file. In the program, include a subroutine
that will generate any cofactor cof of the matrix mat. Call the subroutine cofactor and use these
arguments:

subroutine cofactor(i,j,mat,cof)

implicit none

real :: mat(3,3),minor(2,2),cof

integer :: elrow,elcol

I cof — the cofactor of matrix mat for element 1i,j

Exercise 7.3

Use the program you developed Exercise 7.2 to calculate the determinant of a 3 X 3 matrix.

7.3 Writing REAL programs - Flow Charts

Now that you know all the main elements of FORTRAN 95, you are in a position to apply your skills to
writing REAL programs. Unlike most of the exercises in these worksheets, REAL programs tend to be
rather large. In large programs, the underlying logic can often be difficult to follow.

It helps, therefore, both in the devising of a program and later in its maintenance, to have a plan of
what you intend the program to do. Let’s take, as an example, a program that works like a calculator.

The flowchart is shown on the next page. The logic of the program, as a whole, is clear. Details like
what will happen in the subroutines is glossed over at this stage.

In commercial programming, flowcharts are usually formalized, with specific shapes for boxes that do

different things. That need not concern us here. Essentially, we use flowcharts to provide a ‘map’ of
the underlying logic flow in the program — what connects with what.

Copyright © Janet A Nicholson 2011 42 fortrantutorial.com

Start

4
L

\ 4

Display menu of choices
A,B,C,D

User chooses A

A 4

Subroutine Subtract

A 4

Subroutine multiply

A 4

Subroutine power

A

Sorry, bad input

A 4

Subroutine trig

No

A

Copyright © Janet A Nicholson 2011 43

Yes

Have you finished?

Stop

fortrantutorial.com

De-bugging Tips

7.4 Symptoms and probable causes

Have you got rounding errors?
e Don’t do floating point calculations using integers. Make sure your precision is consistent and
adequate. Make sure the precision of the right hand side of an equation matches the type of
variable you are assigning to.

Are your calculations completely wrong?
e Initialise all your variables — don’t forget arrays!
e Make sure your arrays are big enough to hold all the data.
e Check that arguments passed to subroutines agree exactly in size, type and position
e Isthe program’s logic working the way it should?

7.5 Wise precautions and time saving tips

e You must not test floating point numbers for equality. Example:
if (x == 1) then...

does not work.
e Should you be using the absolute value of a calculation? Example:
if (abs(x-y)<.00001) then
e Don't have overly elaborate logical tests. It's probably better to test one or two things at a
time rather than this sort of thing...
if (((X-AND.y).0OR.z > 10).0R.(-NOT. xx < 0)) then ..

you might think you understood it when you wrote it, but imagine trying to figure out what’s
happening if the program breaks!

e Don't try and write a complicated program all at once. Write it a piece at a time and check
that each piece is working correctly before doing the next bit.

e Use ‘implicit none’ at the start of all programs and subroutines.

e If your program needs data to be entered by the user, you will save hours of time by taking
the trouble to read in the data from a file while the program is in development.

e Always do a test for ‘division by zero’ when dividing.

e BE NEAT! Good programming is like plain speaking — there’s no mileage in tricky, difficult to
read code.

7.6 How to find the bugs

Use a print statement to print out the values within the program — take a look at this code...
X =x+1

print *, “debug statement 1 value of x,y,z“, X,y,z
do ii =1,10
= *

z X ii
if (ii == 5) then
print *, “debug do loop value of z when i1 = 57,z
end if
end do

if (z>2000) then
print *, “debug statement — z>2000 value of z “,z
stop

end if

Notice how we can print out values of specific variables, stopping the program if necessary.

Copyright © Janet A Nicholson 2011 44 fortrantutorial.com

ArithmetiC. . 11
arithmetic operatorsccoeeeveeivcieeiniien e, 11
ATTQYS oottt 27
ASSIZNMENT ..cciiiiiiiiiiiici . 11
Characterooceeeeciee e 8
Character Specification........ccccceeeveeerciveeennns 33
(0001 01V =T ¢ 0=T 4 (o - BT U 25
Debugging Tips.......ccccevvevvieeeeee e 44
De-bugging Tips........ccccevvevviieeeiiee e 44
dot product

dynamic memory allocation........cc.cccceuuee.ee. 40
dynamically allocating memory.................... 28
(=1 (o] £ TP U 8
EXErcise 1.1 ..ouuiiiiiiiiiiiiiierererenereeereeeeeeeeeeeeeeeeees 4
EXErcise 1.2....uuuuuueeeeeinininiennininrereeesereresereeenenens 6
EXercise 1.3 e 7
] ol T I PR 9
EXErcise 2. 1. uuuiieieiiiiiiiirireeennneneeeeeeeeeererenenenen. 11
EXErCiSE 2.2 uuiieieveieieieenrernenenneseseeeeeererenenenen 12
EXErCiSe 2.3 uuiiiiiiiiiiiiiiiiririveniveerseeeerererenenenen 14
EXErCiSE 2.4 . .uuveeveieieieiiinieivenevenereeereseresenenenen 15
EXErcise 3. 1. uuiiiiiiiiiiieiiieieeieieeeeeieeeeeeeeeeeeeeeeees 17
EXErcise 3.2 .o 18
EXErcise 3.3 e e ee e 18
EXErCiSE 3.4 uuiiiiiiiiieieiiiireeeeerereeeeeeeeeeeeeeeeeeees 19
EXErcise 3.5 it 20
EXErcise 3.6, uuuiiiiiiiiiiiiiiiiieiererenenereeesereseeeeeeens 21
EXErcCise 3.7 .coiiiiiiieeeee et 21
EXErcise 4.1..cccuviieeeiieiciiieee e 22
EXErCiSE 4.2 .iiiiieii e 23
EXErcise 5.1..ccoiiiiiiiieiiiieeee e 29
EXErCiSe 5.2 uuiiiiiiiiiiiiiiiiiiiininenseeeeeeeeeeerenenenen. 30
EXErcise 5.3 ... 25, 30
EXErCiSE 5.4 uuuuiiiiiiiiiiiiiiiiiirevirieeveneesneerennnennn 31
EXErcise 5.5. i 31
EXErCiSe 5.6.uuuuiiiiiiiiiiiiiiiriiiiiiieeeieeeeeeeeeeeeeeeeens 33
EXErCiSe 5.7 it 34
EXErcise 6.1 .ccccccviieeieieieiieeeee e 38
EXErCiSe 6.2 uuuuiiiiiiiiiiiieiiieiererererereresereseaeeenens 39
EXErcise 6.3....uuuiiiiiiiiieiiinieieinierereverererereneneeens 39
EXErCiSE 7.1 uuuiiiiiiiiiiiiiiiirinierenerererereseresenesenen 42
EXEIrCISE 7.2 uuiiieieiiieiiieinereierererererereseresenenenen 42
EXErCiSe 7.3 e 42

Copyright © Janet A Nicholson 2011

Index

45

eXiting l00PS . .ccuveee e 25
Exponential Specification..........cccecceerveenneen. 32
exponentiationscccevieeiniiiiiiniee e 11
finite differencecccccoveveeviiiiiicsececceee 39
floating point numbersccccceeeeiieeeneennn. 8
Floating point Specificationc.cccccevveenns 32
FIOW Chartscooevvveeeeeiieiniieeec e, 40, 42
Formatting your outputccccevviiiieerennnnnns 31
FUNCLION et 39
identity..oooeeceeee e, 31
TKIN oo 26
Implied Do Loop to write arrays 33
QLY=L= R STR 8
Integer Specificationcccccveeevieeeeccieeens 32
intrinsic functionsccovvvvvveveieienenens 11, 12,40
logical operatorscccocceeevceeeeeiieee e 14
[OOP ceetee e 18
[00P COUNEEN..cueiiiiiieiieieeee e 19
Magnitude......ccccoeeeiiiiieeieeeee e, 25
MaiNtainableoocveevniiiiinie e 36
MATFIX cee ittt eeee e 39
Matrix multiplicationccccceevcieeiccnenenee, 40
Mixing variable types......ccccccceercieeiecrerennnen 17
Multi dimensional arrayscccoeceeeencieennnns 30
Nested DO LOOPS.....ccceeevieerieeeriienieenieeeeene 19
OPErators .o, 6
PArAMEter oo 24
Plato ...veeeiieieeee e 3
o] =T =Yo =T o [o] S 11
ST E=Tol T[] o FO ST 8,23
programming style.......ccccovevieiiiiieeiniieees 11
Reading from filescoceeviiiieniiiiieneee 22
simple if statementcccoeeeiiiiiiiiee e, 15
statement. ... 6
STOP tiitiitiiitii e e 15
SEYIE e 14
SUDFOULING...cciieiee e 35
SUMMAtION oo 20
Transpose of @ MatriXccccceeeeveeeeereeeennnenn. 40
User Defined FUNCtions........cccccveecveeriieennenn. 38
Variable ..o 6
Writing to filescoooveeeeeeiiiiceeeeee, 23
fortrantutorial.com

	Front Page

	Worksheet 1

	Worksheet 2

	Worksheet 3

	Worksheet 4

	Worksheet 5

	Worksheet 6

	Worksheet 7

	Debugging tips

