
Chapter 11

Heron’s formula for the area of a
triangle

11.1 Heron: Metrica I.8
1

There is a general method for finding, without drawing a perpendicular, the area of
any triangle whose three sides are given.
For example, let the sides of the triangle be 7, 8 and 9.
Add together 7, 8 and 9; the result is 24.
Take half of this, which gives 12.
Take away 7; the remainder is 5.
Again, from 12 take away 8; the remainder is 4.
And again 9; the remainder is 3.
Multiply 12 by 5; the result is 60.
Multiply this by 4; the result is 240.
Multiply this by 3; the result is 720.
Take the square root of this and it will be the area of the triangle.

Let ABΓ be the given triangle, and let each of AB, BΓ, ΓA be given; to find the
area. Let the circle ΔEZ be inscribed in the triangle with center H (Euclid IV.4),
and let AH , BH , ΓH , EH , ZH be joined. Then

BΓ · EH =2 · triangle BHΓ,

ΓA · ZH =2 · triangle AHΓ,

AB ·ΔH =2 · triangle ABH.

Therefore the rectangle contained by the perimeter of the triangle ABΓ and
EH , that is the radius of the circle ΔEZ, is double of the triangle ABΓ. Let ΓB

1See Thomas, Greek Mathematical Works, II, 470–473. The dates of Heron are very uncertain,
between 150 B.C. and A.D. 250. From Arabic sources, it is known that Heron’s formula had been
discovered by Archimedes.
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be produced and let BΘ be placed equal to AΔ; then ΓBΘ is half of the perimeter
of the triangle ABΓ because AΔ = AZ, ΔB = BE, ZΓ = ΓE (by Euclid III.17).
Therefore,

ΓΘ · EH = triangle ABΓ.

But
ΓΘ =

√
ΓΘ2 · EH2;

therefore
(triangle ABΓ)2 = ΓΘ2 · EH2.

Let HΓ be drawn perpendicular to ΓH and BΛ perpendicular to ΓB, andlet ΓA be
joined. Then, since each of the angles ΓHΛ, ΓHΛ is right, a circle can be described
about the quadrilateral ΓHBΛ (Eucl. III.31); therefore the angles ΓHB,ΓΛB are
together equal to two right angles (Eucl. III.22). But the angles ΓHB, AHΔ are
together equal to two right angles because the angles at H are bisected by AH , BH ,
ΓH and the angles ΓHB, AHΔ together with AHΓ, ΔHB are equal to four right
angles; therefore the angle AHΔ is equal to the angle ΓAB. But the right angle
AΔH is equal to the right angle ΓBΛ; therefore the triangle AHΔ is similar to the
triangle ΓBΛ. Therefore,

BΓ : BΛ =AΔ : ΔH

=BΘ : EH,

and permutando,

ΓB : BΘ =BΛ : EH

=BK : KE,
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because BΛ is parallel to EH , and componendo,

ΓΘ : BΘ = BE : EK;

therefore,

ΓΘ2 =BE · EΓ : ΓE · EK

=BE · EΓ : EH2,

for in a right-angled triangle EH has been drawn from the right angle perpendicular
to the base; therefore ΓΘ2 ·EH2, whose square root is the area of the triangle ABΓ,
is equal to (ΓΘ ·ΘB)(ΓE · EB). And each of ΓΘ, ΘB, BE, ΓE is given; for ΓΘ
is half of the perimeter of the triangle ABΓ, while BΘ is the excess of half the
perimeter over ΓB, BE is the excess of half the perimeter over AΓ, and EΓ is the
excess of half the perimeter over AB, inasmuch as EΓ = ΓZ, BΘ = AΔ = AZ.
Therefore the area of the triangle ABΓ is given.

11.1.1 Heron’s formula

Denote the side lengths of a triangle by a, b, and c. Compute the semiperimeter
s = 1

2
(a+ b+ c). The area of the triangle is then given by the Heron formula:

� =
√

s(s− a)(s− b)(s− c).

11.1.2 Heron’s approximation of square root

. . . Since 720 has not a rational square root,
we shall make a close approximation to the root in this manner.
Since the square nearest to 720 is 729, having a root 27,
divide 27 into 720; the result is 262

3
;

add 27; the result is 532
3
.

Take half of this; the result is 261
2
+ 1

3
(= 265

6
).

Therefore the square root of 720 will be very nearly 265
6
.

For 265
6

multiplied by itself gives 720 1
36

,
so that the difference is 1

36
.

If we wish to make the difference less than 1
36

,
instead of 729 we shall take the number now found, 720 1

36
,

and by the same method we shall find an approximation
differing by much less than 1

36
.
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11.2 Other proofs of Heron’s formula

11.2.1 Newton and Euler

Newton 2 and Euler 3 have both given proofs of the Heron formula, essentially the
same as Heron’s. See also Heath, Euclid’s Elements, volume 2, pp. 87–88, and
Dunham, Journey through Genius, Chapter 5.

11.2.2 MEI Wending

MEI Wending’s (1633–1721) early work Elements of Plane Trigonometry 4 con-
tains a proof of the formula that the area of a triangle is the product of the inradius
and the semiperimeter, and the area formula in details.

11.2.3 A 13-th century Chinese example

Qin Jiushao (1202–1261) Shushu jiuzhang
III.2: A sand field has three sides:
the shortest 13 li,
the median one 14 li,
and the longest 15 li.

2D.T. Whiteside, The Mathematical Papers of Issac Newton, V, 1683 – 1684, pp. 50 – 53. This
is part of Newton’s preliminary notes and drafts for his Arithmetica. See also Problem 23 of his
Lectures on Algebra, ibid. pp.224 – 227.

3Variae Demonstrationes Geometriae, Opera Omnia, ser 1. vol. 26, pp.
4Ping sanjiao juyao.
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What is the area?

Answer: 84 square li
(= 84× 3002 square bu = 7560000 square bu = 31500 mu = 315 qing).

Method: Use the method of shaoguang.
Find the square of the shortest side,
add the square of the longest side,
subtract from the sum the square of median side.
Half the remainder, and square to form a number.
Multiply the square of the shortest side to the square of the longest side. Subtract
the previously found number, and divide by 4.
Extract the square root.
That is the area.

√√√√1

4

(
c2a2 −

(
a2 + c2 − b2

2

)2
)

11.2.4 Casey’s: A Sequel to Euclid

Casey’s proof makes use of an excircle. According to Court,5 “interest in the es-
cribed circles awakened only in the beginning of the 19th century.

5College Geometry, p.298.
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11.3 Heron’s Formula in Modern Textbooks

6

With usual notation, � = 1
2
bc sinA,

�2 =
1

4
b2c2 sin2 A =

1

4
b2c2(1− cos2 A)

=
1

4
b2c2(1 + cosA)(1− cosA)

=
1

4
b2c2 · 2bc+ (b2 + c2 − a2)

2bc
· 2bc− (b2 + c2 − a2)

2bc

=
1

4
b2c2 · (b+ c)2 − a2

2bc
· a

2 − (b− c)2

2bc

=
1

16
[(b+ c)2 − a2][a2 − (b− c)2]

=
1

16
[(b+ c) + a][(b+ c)− a][a− (b− c)][a+ (b− c)].

This result becomes much simpler if we employ the abbreviation s for the semi-

6L.E. Dickson, Plane Trigonometry, (1921), pp. 128 – 129, Chelsea Reprint. For an interesting
derivation making use of the symmetry of the formula in the sides of the triangle, see Alperin,
College Math. Journal, vol 18 (1987) p.137.
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perimeter. Then

a+ b+ c =2s,

b+ c− a =(b+ c+ a)− 2a = 2(s− a),

a− b+ c =2(s− b),

a+ b− c =2(s− c).

Thus we obtain Heron of Alexandria’s formula

� =
√

s(s− a)(s− b)(s− c).
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Chapter 12

Archimedes’ Book of Lemmas

Proposition 4

If AB be the diameter of a semicircle and N any point on AB, and if semicircles be
described within the first semicircle and having AN , BN as diameters respectively,
the figure included between the circumferences of the three semicircles is “what
Archimedes called an arbelos”; and its area is equal to the circle on PN as diameter,
where PN is perpendicular to AB and meets the original semicircle in P .

A N B

P

Figure 12.1:

Proposition 5

Let AB be the diameter of a semicircle C any point on AB, and CD perpendicular
to it, and let semicircles be described within the first semicircle and having AC,
AB as diameters. Then, if two circles be drawn touching CD on different sides and
each touching two of the semicircles, the circles so drawn will be equal.

Let one of the circles touch CD at E, the semicircle on AB in F , and the
semicircle on AC in G.

Draw the diameter EH of the circle, which will accordingly be perpendicular
to CD and therefore parallel to AB.
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Join FH , HA, and FE, FB. Then, by Proposition 1, 1 FHA, FEB are both
straight lines, since EH , AB are parallel.

For the same reason AGE, CGH are straight lines.
Let AF produced meet CD in D, and let AE produced meet the outer semicir-

cle in I . Join BI , ID.
Then since the angles AFB, ACD are right, the straight lines AD, AB are such

that the perpendiculars on each from the extremity of the other meet in the point E.
Therefore, by the properties of triangles, AE is perpendicular to the line joining B
to D.

But AE is perpendicular to BI .
Therefore BID is a straight line.
Now, since the angles at G, I are right, CH is parallel to BD.
Therefore,

AB : BC = AD : DH = AC : HE,

so that
AC · CB = AB ·HE.

In like manner, if d is the diameter of the other circle, we can prove that

AC · CB = AB · d.
Therefore, d = HE, and the circles are equal.

Proposition 6

Let AB, the diameter of a semicircle, be divided at C so that AC = 2
3
CB [or

in any ratio]. Describe semicircles within the first semicircle and on AC, CB as
diameters, and suppose a circle drawn touching all three semicircles. If GH be the
diameter of this circle, to find the relation between GH and AB.

1Proposition 1: IF two circles touch at A, and if BD, EF be parallel diameters in them, ADF
is a straight line.
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Let GH be that diameter of the circle which is parallel to AB, and let the circle
touch the semicircles on AB, AC, CB in D, E, F respectively.

Join AG, GD and BH , HD. Then by Proposition 1, AGD, BHD are straight
lines.

For like reason AEH , BFG are straight lines, as also are CEG, CFH .
Let AD meet the semicircle on AC in I , and let BD meet the semicircle on

CB in K. Join CI , CK meeting AE, BF respectively in L, M , and let GL, HM
produced meet AB in N , P respectively.

Now, in the triangle AGC, the perpendiculars from A, C on the opposite sides
meet in L. Therefore, by the properties of triangles, GLN is perpendicular to AC.

Similarly, HMP is perpendicular to CB.
Again, since the angles at I , K, D are right angles, CK is parallel to AD, and

CI to BD.
Therefore,

AC : CB = AL : LH = AN : NP,

and
BC : CA = BM : MG = BP : PN.

Hence,
AN : NP = NP : PB,

or AN , NP , PB are in continued proportion.
Now, in the case where AC = 3

2
CB,

AN =
3

2
NP =

9

4
PB,

whence BP : PN : NA : AB = 4 : 6 : 9 : 19. Therefore,

GH = NP =
6

19
AB.

And similarly GH can be found when AC : CB is equal to any other given ratio.
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Chapter 13

Diophantus

13.1 Diophantus of Alexandria

Problem (II.8). To divide a given square number into two squares.

Diophantus’ solution. Given square number 16.
x2 one of the required squares. Therefore 16− x2 must be equal to a square.
Take a square of the form (mx− 4)2, m being any integer and 4 the number which
is the square root of 16, e.g. take (2x− 4)2, and equate it to 16− x2.
Therefore 4x2 − 16x+ 16 = 16− x2,
or 5x2 = 16x, and x = 16

5
.

The required squares are therefore 256
25

, 144
25

.

Remark. This Diophantine problem is the historical origin of the famous Fermat
last theorem. Fermat appended here, in his copy of Arithmetica, his famous note

On the other hand it is impossible to separate a cube into two cubes,
or a biquadrate into two biquadrates, or generally any power except a
square into two powers with the same exponent. I have discovered a
truly marvelous proof of this, which however the margin is not large
enough to contain.

Thus, xn + yn = zn has no nonzero integer solutions. This was finally proved by
Andrew Wiles in 1995.

Problem (II.9). To divide a given number which is the sum of two squares into two
other squares.

Diophantus’ solution:
Given 13 = 22 + 32.
As the roots of these squares are 2, 3, take (x+2)2 as the first square and (mx−3)2

as the second (where m is an integer), say (2x− 3)2.
Therefore (x2 + 4x+ 4) + (4x2 + 9− 12x) = 13,
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or 5x2 + 13− 8x = 13.
Therefore x = 8

5
and the required squares are 324

25
, 1
25

.

Remark. This solution can be generalized to find rational points on a conic which
is known to contain one rational point. If (x0, y0) is a rational point on a conic is
represented by a quadratic equation in x and y with rational coefficients, then for an
arbitrary rational number m, the line through (x0, y0) with slope m will intersect the
conic again at a point whose x coordinate is a rational number. This is because the
substitution (x, y) = (x+x0,mx+ y0) into the equation of the conic leads to, after
simplification, a simple (linear) equation in x. For this value of x, (x+x0,mx+y0)
is a rational point on the conic.

Proposition. If a conic represented by an equation with rational coefficients con-
tains a rational point, then there is a parametrization of its rational points.

Problem (IV.24). To divide a given number into two parts such that the product is
a cube minus its side.

Diophantus’ solution. Given number 6. First part x; therefore second = 6−x, and
6x− x2 = a cube minus its side. Form a cube from a side of the form mx− 1, say,
2x−1, and equate 6x−x2 to this cube minus its side. Therefore, 8x3−12x2+4x =
6x−x2. Now, if the coefficient of x were the same on both sides, this would reduce
to a simple equation, and x would be rational. In order that this may be the case,
we must put m for 2 in our assumption, where 3m − m = 6 (the 6 being the
given number in the original hypothesis). Thus, m = 3. We therefore assume
(3x− 1)3 − (3x− 1) = 6x− x3, or 27x3 − 27x2 +6x = 6x− x2, and x = 26

27
. The

parts are 26
27

and 136
27

.

Remark. This problem seeks rational solutions of the equation y3 − y = 6x −
x2. Clearly, (0,−1) is a rational solution. The line through (0,−1) with slope m
(assumed rational) has equation y = mx− 1. This line cuts the curve E : y3 − y =
x2 − 6x at 3 points, one of which is (0,−1). In general, there is no guarantee that
any of the remaining two points is rational. However, if this line is tangent to E at
(0, 1), then (0, 1) being counted twice, it is clear that the remaining point is rational.
The tangent to E at (0,−1) turns out to be y = 3m− 1, and we obtain (26

27
, 136

27
) for

the third point.

Problem (V.29). To find three squares such that the sum of their squares is a square.

Diophantus’ solution. Let the squares be x2, 4, 9 respectively.
Therefore x4 + 97 = � = (x2 − 10)2, say;
whence x2 = 3

20
.

If the ratio of 3 to 20 were the ratio of a square to a square, the problem would be
solve; but it is not.
Therefore I have to find two squares (p2, q2, say) and a number (m say) such that
m2 − p4 − q4 has to 2m the ratio of a square to a square.
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Let p2 = z2, q2 = 4 and m = z2 + 4.
Therefore, m2 − p4 − q4 = (z2 + 4)2 − z4 − 16 = 8z2.

Hence,
8z2

2z2 + 8
or

4z2

z2 + 4
must be the ratio of a square to a square.

Put z2 + 4 = (z + 1)2, say;
therefore, z = 11

2
, and the squares are p2 = 21

4
, q2 = 4, while m = 61

4
;

or, if we take 4 times each, p2 = 9, q2 = 16, m = 25.
Starting again, we put for the square x2, 9, 16;
then the sum of the squares = x4 + 337 = (x2 − 25)2, and x = 12

5
.

The required squares are 144
25

, 9, 16.

Remark. This is the Diophantine equation x4 + y4 + z4 = w2.
Euler had conjectured that x4+ y4+ z4 = w4 has no nontrivial integer solution.

It was disproved by Noam Elkies in 1988, who found, among other things,

Exercise

Diophantus II.21. To find two numbers such that the square of either minus the
other number gives a square. 1

Diophantus II.22. To find two numbers such that the square of either added to
the sum of both gives a square. 2

Diophantus II.23. To find two numbers such that the square of either minus the
sum of both gives a square. 3

Diophantus II.24. To find two numbers such that either added to the square of
their sum gives a square. 4

Diophantus II.25. To find two numbers such that the square of their sum minus
either number gives a square. 5

Proposition (III.19). To find four numbers such that the square of their sum plus or
minus any one singly gives a square.

Since, in any right - angled triangle,
(sq. on hypotenuse) ± (twice product of perpendiculars) = a square,
we must seek four right - angled triangles [in rational numbers] having the same

hypotenuse,
or we must find a square which is divisible into two squares in four different

ways; and we saw how to divide a square into two squares in an infinite number of
ways. [II.8]

1Diophantus gave 8
5 , 11

5 .
2Diophantus gave 2

8 , 10
8 .

3Diophantus gave 21
2 , 3 1

2 .
4Diophantus gave 3

121 , 8
121 .

5Diophantus gave 192
361 , 112

361 .
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Take right - angled triangle in the smallest numbers, (3,4,5) and (5,12,13); and
multiply the sides of the first by the hypotenuse of the second and vice versa.

This gives the triangle (39,52,65) and (25,60,65); thus 652 is split up into two
squares in two ways.

Again, 65 is naturally divided into two squares in two ways, namely into 72+42

and 82+12, which is due to the fact that 65 is the product of 13 and 5, each of which
numbers is the sum of two squares.

Form now a right - angled triangle from 7, 4. The sides are (72−42, 2 ·7 ·4, 72+
42) or (33,56,65).

Similarly, forming a right - angled triangle from 8, 1, we obtain (2 · 8 · 1, 82 −
12, 82 + 12), or (16,63,65).

Thus, 65 is split into two squares in four ways.
Assume now as the sum of the numbers 65x and
as first number 2 · 39 · 52x2 = 4056x2,
as second number 2 · 25 · 60x2 = 3000x2,
as third number 2 · 33 · 56x2 = 3696x2,
as fourth number 2 · 16 · 63x2 = 2016x2,
the coefficients of x2 being four times the areas of the four right - angled trian-

gles respectively.
The sum 12768x2 = 65x, and x = 65

12768
. The numbers are

17136600

163021824
,

12675000

163021824
,

15615600

163021824
,

8517600

163021824
.

Proposition (VI.14). To find a right - angled triangle such that its area minus the
hypotenuse or minus one of the perpendiculars gives a square.

Let the triangle be (3x, 4x, 5x).
Therefore 6x2 − 5x, 6x2 − 3x are both squares.
Making the latter a square (= m2x2), we have x = 3

6−m2 , (m2 < 6).
The first equation then gives

54

m4 − 12m2 + 36
− 15

6−m2
= a square

or
15m2 − 36 = a square.

This equation we cannot solve because 15 is not the sum of two squares. There-
fore we must change the assumed triangle.

Now (with reference to the triangle 3,4,5), 15m2 = the continued product of a
square less than the area, the hypotenuse and one perpendicular;

while 36 = the continued product of the area, the perpendicular, and the differ-
ence between the hypotenuse and the perpendicular.
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Therefore we have to find a right - angled triangle (h, p, b, say) and a square
(m2) less than 6 such that

m2hp− 1

2
pb · p is a square.

The problem can be solved if X1, X2 are “similar plane numbers.”
From the auxiliary triangle from similar plane numbers accordingly, say, 4, 1

[The conditions are then satisfied].
[The equation for m then becomes

8 · 17m2 − 4 · 15 · 8 · 9 = a square,

or
136m2 − 4320 = a square.]

Let m2 = 36.[ This satisfies the equation, and 36 < area of triangle.]
The triangle formed from 4, 1 being (8,15,17), we assume 8x, 15x, 17x for the

original triangle.
We now put 60x2 − 8x = 26x2, and x = 1

3
.

The required triangle is therefore (8
3
, 5, 17

3
).

Exercise

Diophantus VI.16. To find a right - angled triangle such that the number represent-
ing the (portion intercepted within the triangle of the) bisector of an acute angle is
rational. 6

Exercise

(Heron) 7 In a right - angled triangle the sum of the area and the perimeter is 280
feet; to separate the sides and find the area. 8

13.2 Arithmetica, Book VI

To find a (rational) right-angled triangle such that

1. the hypotenuse minus each of the sides gives a cube,

2. the hypotenuse added to each side gives a cube,

3. its area added to a given number makes a square,

6Diophantus gave the triangle (28,96,100) and bisector 35.
7Geometrica 24,10.; see Thomas, II, pp. 506–509.
8Answer: (20,21,29;210).
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4. its area minus a given number makes a square,

5. if its area be subtracted from a given number, the remainder is a square,

6. its area be added to one of the perpendiculars makes a given number,

7. its area minus one of the perpendiculars is a given number,

8. the area added to the sum of the perpendiculars makes a given number,

9. the area minus the sum of the perpendiculars is a given number,

10. the sum of its area, the hypotenuse, and one of the perpendiculars is a given
number,

11. its area minus the sum of the hypotenuse and one of the perpendiculars is a
given number,

12. the area added to either of the perpendiculars gives a square,

13. the area minus either perpendicular gives a square,

14. its area minus the hypotenuse or minus one of the perpendiculars gives a
square,

15. the area added to either the hypotenuse or one of the perpendiculars gives a
square,

16. the [length of] bisector of an acute angle is rational,

17. the area added to the hypotenuse gives a square, while the perimeter is a cube,

18. the area added to the hypotenuse gives a cube, while the perimeter is a square,

19. its area added to one of the perpendiculars gives a square, while the perimeter
is a cube,

20. the sum of its area and one perpendicular is a cube, while its perimeter is a
square,

21. its perimeter is a square, while its perimeter added to its area gives a cube,

22. its perimeter is a cube, while the perimeter added to the area gives a square,

23. the square of its hypotenuse is also the sum of a different square and the
side of the square, while the quotient obtained by dividing the square of the
hypotenuse by one of the perpendiculars of the triangle is the sum of a cube
and the side of the cube,

24. one perpendicular is a cube, the other is the difference between a cube and its
side, and the hypotenuse is the sum of a cube and its side.


