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I. Synopsis of Riemann’s paper

Ueber die Anzahl der Primzahlen unter einer
gegebenen Grösse

( On the number of primes less than a given
magnitude )
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Figure: Riemann
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Figure: First page of Riemann’s paper
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What Riemann proves

Riemann begins with Euler’s observation that
∞∑

n=1

n−s =
∏

p

(1− p−s)−1 (s > 1).

But he lets s = σ + it be complex.

He denotes the common value by ζ(s) and proves:

ζ(s) has an analytic continuation to C, except for a simple pole
at s = 1. The only zeros in σ < 0 are simple zeros at
s = −2,−4,−6, ...

ζ(s) has a functional equation

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s)
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What Riemann claims

ζ(s) has infinitely many nontrivial zeros ρ = β + iγ in the “critical
strip” 0 ≤ σ ≤ 1.

If N(T ) denotes the number of nontrivial zeros ρ = β + iγ with
ordinates 0 < γ ≤ T ,

then as T →∞,

N(T ) =
T
2π

log
T
2π
− T

2π
+ O(log T ).

The function ξ(s) = 1
2s(s − 1)π−s/2Γ(s/2)ζ(s) is entire and has

the product formula

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
.

Here ρ runs over the nontrivial zeros of ζ(s).
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What Riemann claims

explicit formula
Let Λ(n) = log p if n = pk and 0 otherwise. Then

ψ(x) =
∑
n≤x

Λ(n) = x −
∑

ρ

xρ

ρ
+

∞∑
n=1

x−2n

2n
− ζ ′(0)

ζ(0)

(Riemann states this for π(x) =
∑

p≤x 1 instead.)

Note that from this one can see why the Prime Number Theorem,

ψ(x) ∼ x

might be true.
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The Riemann Hypothesis

Riemann also makes his famous conjecture.

Conjecture (The Riemann Hypothesis )

All the zeros ρ = β + iγ in the critical strip lie on the line σ = 1/2.
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II. Early developments after the paper
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Hadamard 1893

Hadamard developed the theory of entire functions (Hadamard product
formula) and proved the product formula for

ξ(s) =
1
2

s(s − 1)π−s/2Γ(s/2)ζ(s).

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
= ξ(0)

∏
Imρ>0

(
1− s + s2

ρ(1− ρ)

)
To do this he proved the estimate

N(T )� T log T ,

which is weaker than Riemann’s assertion about N(T ).

(University of Rochester) 10 / 51



Hadamard 1893

Hadamard developed the theory of entire functions (Hadamard product
formula) and proved the product formula for

ξ(s) =
1
2

s(s − 1)π−s/2Γ(s/2)ζ(s).

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
= ξ(0)

∏
Imρ>0

(
1− s + s2

ρ(1− ρ)

)
To do this he proved the estimate

N(T )� T log T ,

which is weaker than Riemann’s assertion about N(T ).

(University of Rochester) 10 / 51



Hadamard 1893

Hadamard developed the theory of entire functions (Hadamard product
formula) and proved the product formula for

ξ(s) =
1
2

s(s − 1)π−s/2Γ(s/2)ζ(s).

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
= ξ(0)

∏
Imρ>0

(
1− s + s2

ρ(1− ρ)

)

To do this he proved the estimate

N(T )� T log T ,

which is weaker than Riemann’s assertion about N(T ).

(University of Rochester) 10 / 51



Hadamard 1893

Hadamard developed the theory of entire functions (Hadamard product
formula) and proved the product formula for

ξ(s) =
1
2

s(s − 1)π−s/2Γ(s/2)ζ(s).

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
= ξ(0)

∏
Imρ>0

(
1− s + s2

ρ(1− ρ)

)
To do this he proved the estimate

N(T )� T log T ,

which is weaker than Riemann’s assertion about N(T ).

(University of Rochester) 10 / 51



Hadamard 1893

Hadamard developed the theory of entire functions (Hadamard product
formula) and proved the product formula for

ξ(s) =
1
2

s(s − 1)π−s/2Γ(s/2)ζ(s).

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
= ξ(0)

∏
Imρ>0

(
1− s + s2

ρ(1− ρ)

)
To do this he proved the estimate

N(T )� T log T ,

which is weaker than Riemann’s assertion about N(T ).

(University of Rochester) 10 / 51



von Mangoldt 1895

von Mangoldt proved Riemann’s explicit formula for π(x) and

ψ(x) =
∑
n≤x

Λ(n) = x −
∑

ρ

xρ

ρ
+

∞∑
n=1

x−2n

2n
− ζ ′(0)

ζ(0)
.
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Hadamard and de la Vallée Poussin 1896

Hadamard and de la Valleé Poussin independently proved the
asymptotic form of the Prime Number Theorem, namely

ψ(x) ∼ x

To do this, they both needed to prove that

ζ(1 + it) 6= 0
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de la Vallée Poussin 1899

de la Vallée Poussin proved the Prime Number Theorem with a
remainder term:

ψ(x) = x + O
(
xe−

√
c1 log x).

This required him to prove that there is a zero-free region

σ < 1− c0

log t
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von Mangoldt 1905

von Mangoldt proved Riemann’s formula for the counting function of
the zeros

N(T ) =
T
2π

log
T
2π
− T

2π
+ O(log T )
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von Koch 1905

von Koch showed that the Riemann Hypothesis implies the Prime
Number Theorem with a “small” remainder term

RH =⇒ ψ(x) = x + O(x1/2 log2 x)
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III. The order of ζ(s) in the critical strip

(University of Rochester) 16 / 51



ζ(s) in the critical strip

The critical strip is the most important (and mysterious) region for ζ(s).

By the functional equation, it suffices to focus on 1/2 ≤ σ ≤ 1.

A natural question is: how large can ζ(s) be as t grows?

This is important because

the growth of an analytic function and the distribution of its zeros
are intimately connected.

the distribution of primes depends on it.

answers to other arithmetical questions depend on it.
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Implications of the size of ζ(s)

Relation between growth and zeros:

Jensen’s Formula. Let f (z) be analytic for |z| ≤ R and f (0) 6= 0. If
z1, z2, . . . , zn are all the zeros of f (z) inside |z| ≤ R, then

log
(

Rn

|z1z2 · · · zn|

)
=

1
2π

∫ 2π

0
log |f (Reiθ)|dθ − log |f (0)|.

Example of an application to other problems: for 0 < c < 1

∑
n≤x

dk (n) = xPk−1(log x) +
1

2πi

∫ c+i∞

c−i∞
ζk (s)

xs

s
ds.
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Estimates at the edge of the strip

Upper bounds for ζ(s) near σ = 1 allow one to widen the zero-free
region.

This leads to improvements in the remainder term for the PNT.

For instance, we saw that de la Vallée Poussin showed that

ζ(σ + it)� log t in σ ≥ 1− c0

log t
,

and this implied that the O-term in the PNT is � xe−
√

c1 log x .
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Estimates at the edge of the strip

Littlewood 1922

ζ(σ + it)� log t
log log t

and no zeros in σ ≥ 1− c log log t
log t

=⇒ O-term in PNT � xe−c
√

log x log log x

The idea is to approximate

ζ(σ + it) ≈
N∑
1

1
nσ+it

then use Weyl’s method to estimate the exponential sums

b∑
a

n−it =
b∑
a

eif (n).
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Estimates at the edge of the strip

Vinogradov and Korobov 1958 (independently)

ζ(σ + it)� log2/3 t and no zeros in σ ≥ 1− c
log2/3 t

=⇒ O-term in PNT � xe−c log3/5−ε x

Where Littlewood used Weyl’s method to estimate the exponential
sums

b∑
a

n−it ,

Vinogradov and Korobov used Vinogradov’s method.
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Estimates at the edge of the strip

Here is a summary:

ζ(1 + it)� log t (de la Vallée Poussin)

ζ(1 + it)� log t
log log t

(Littlewood-Weyl)

ζ(1 + it)� log2/3 t (Vinogradov-Korobov)

What should the truth be? One can show that

(1 + o(1))eγ log log t ≤i.o. |ζ(1 + it)| ≤RH 2(1 + o(1))eγ log log t .
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Estimates inside the strip

Definition (Lindelöf 1908)

For a fixed σ let µ(σ) denote the lower bound of the numbers µ such
that

ζ(σ + it)� (1 + |t |)µ.

ζ(s) bounded for σ > 1 =⇒ µ(σ) = 0 for σ > 1.

|ζ(s)| ∼ (|t |/2π)1/2−σ|ζ(1− s)| =⇒ µ(σ) = 1/2− σ + µ(1− σ).

In particular, µ(σ) = 1/2− σ for σ < 0.
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Lindelöf’s µ-function

Lindelöf proved that µ(σ) is
continuous

nonincreasing
convex

These are in the same circle of ideas as the Phragmen-Lindelöf
theorems.

It follows that µ(1/2) ≤ 1/4, that is,

ζ(1/2 + it)� |t |1/4+ε.

This is a so called convexity bound .
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Breaking convexity

Using Weyl’s method of estimating exponential sums, Hardy and
Littlewood showed that

ζ(1/2 + it)� |t |1/6+ε.

The best results for µ(σ) since have come from exponential sum
methods: van der Corput, Vinogradov, Kolesnik, Bombieri-Iwaniec,
Huxley-Watt.

Huxley and Watt show that µ(σ) < 9/56.

Conjecture (Lindelöf)

µ(σ) = 0 for σ ≥ 1/2. That is, ζ(1/2 + it)� |t |ε for t large
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What we expect the order to be

The LH says that for large |t |

log |ζ(1/2 + it)| ≤ ε log |t |.

It is also known that√
c

log t
log log t

≤i.o. log |ζ(1/2 + it)| �RH
log t

log log t
.

Which bound, the upper or the lower, is closest to the truth is one of
the important open questions.
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IV. Mean value theorems
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Mean value theorems

Averages such as
∫ T

0 |ζ(σ + it)|2kdt have been another main focus of
research because

averages as well as pointwise upper bounds tell us about zeros
and have other applications.

mean values are easier to prove than point wise bounds.

the techniques developed to treat them have proved important in
other contexts.
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Mean value theorems

Landau 1908∫ T

0
|ζ(σ + it)|2dt ∼ ζ(2σ)T (σ > 1/2 fixed).

Hardy-Littlewood 1918∫ T

0
|ζ(1/2 + it)|2dt ∼ T log T .

For this H-L developed the approximate functional equation

ζ(s) =
∑

n≤
√

t/2π

n−s + χ(s)
∑

n≤
√

t/2π

ns−1 + O(...),

which has proved an extremely important tool ever since.
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Mean value theorems

Hardy-Littlewood 1918∫ T

0
|ζ(σ + it)|4dt ∼ ζ4(2σ)

ζ(4σ)
T (σ > 1/2 fixed).

Ingham 1926 ∫ T

0
|ζ(1/2 + it)|4dt ∼ T

2π2 log4 T .

This was done by using an approximate functional equation for ζ2(s).

When k is a positive integer Ramachandra showed that∫ T

0
|ζ(1/2 + it)|2kdt � T logk2

T .

This is believed to be the correct upper bound as well.
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Mean value theorems

This suggests the problem of determining constants Ck such that∫ T

0
|ζ(1/2 + it)|2kdt ∼ CkT logk2

T .

Conrey-Ghosh suggested that

Ck =
akgk

Γ(k2 + 1)
,

where

ak =
∏

p

((
1− 1

p

)k2 ∞∑
r=0

d2
k (pr )

pr

)
and gk is an integer.
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Mean value theorems

In ∫ T

0
|ζ(1/2 + it)|2kdt ∼ akgk

Γ(k2 + 1)
T logk2

T ,

g1 = 1 and g2 = 2 are known.
Conrey and Ghosh conjectured that g3 = 42.
Conrey and G conjecured that g4 = 24024.
Keating and Snaith used random matrix theory to conjecture the
value of gk for every value of k > −1/2.
Soundararajan has recently shown that on RH∫ T

0
|ζ(1/2 + it)|2kdt � T logk2+ε T .
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V. Zero-density estimates
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Zero-density estimates

Let N(σ,T ) denote the number of zeros of ζ(s) with abscissae to the
right of σ and ordinates between 0 and T .

Zero-density estimates are bounds for N(σ,T ) when σ > 1/2.

Bohr and Landau 1912 showed that for each fixed σ > 1/2,

N(σ,T )� T .

Since
N(T ) ∼ (T/2π) log T ,

this says the proportion of zeros to the right of σ > 1/2 tends to 0 as
T →∞.
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Zero-density estimates

Bohr and Landau used Jensen’s formula and∫ T

0
|ζ(σ + it)|2dt � T (σ > 1/2 fixed)

to prove this.

Today we have much better zero-density estimates of the form
N(σ,T )� T θ(σ) with θ(σ) strictly less than 1.

The conjecture that N(σ,T )� T 2(1−σ) log T is called the Density
Hypothesis.

Obviously RH implies the Density Hypothesis.

LH implies N(σ,T )� T 2(1−σ)+ε.
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VI. The distribution of a-values of ζ(s)
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The distribution of a-values of ζ(s)

What can we say about the distribution of non-zero values, a, of the
zeta-function?

A lovely theory due mostly to H. Bohr developed around this question.

Here are two results.

First, the curve f (t) = ζ(σ + it) (1/2 < σ ≤ 1 fixed, t ∈ R)
is dense in C. The idea is to

show that ζ(σ + it) ≈
∏

p≤N(1− p−σ−it)−1 for most t .

use Kronecker’s theorem to find a t so that the numbers p−it point
in such a way that

∏
p≤N(1− p−σ−it)−1 ≈ a.
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The distribution of a-values of ζ(s)

As a second result, let Na(σ1, σ2,T ) be the number of solutions of
ζ(s) = a in the rectangular area σ1 ≤ σ ≤ σ2, 0 ≤ t ≤ T .

Suppose that 1/2 < σ1 < σ2 ≤ 1.

Then there exists a positive constant c(σ1, σ2) such that

Na(σ1, σ2,T ) ∼ c(σ1, σ2)T .

Notice that this is quite different from the case a = 0, because modern
zero-density estimates imply

N0(σ1, σ2,T )� T θ (θ < 1).
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VII. Number of zeros on the line as T →∞
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Number of zeros on the line as T →∞

Let N0(T ) = #
{

1/2 + iγ
∣∣∣ ζ(1/2 + iγ) = 0, 0 < γ < T

}
denote the

number of zeros on the critical line up to height T .

The important estimates were

Hardy 1914 N0(T )→∞ (as T →∞)

Hardy-Littlewood 1921 N0(T ) > c T

Selberg 1942 N0(T ) > c N(T )

Levinson 1974 N0(T ) > 1
3 N(T )

Conrey 1989 N0(T ) > 2
5 N(T )

These all rely heavily on mean value estimates.
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Hardy’s idea

One can write the functional equation as ζ(s) = χ(s)ζ(1− s), or as

χ−1/2(s)ζ(s) = χ1/2(s)ζ(1− s).

Then
Z (t) = χ−1/2(1/2 + it)ζ(1/2 + it)

has the same zeros as ζ(s) on σ = 1/2 and is real.

If Z (t) had no zeros for t ≥ T0, the integrals∣∣∣ ∫ T

T0

Z (t)dt
∣∣∣ and

∫ T

T0

|Z (t)|dt

would be the same size as T →∞. But they are not.
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VIII. Calculations of zeros on the line
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Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15 ) are on the line and
simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele,
Odlyzko, Wedeniwski, ...

Gourdon-Demichel 2004 The first 1013 (ten trillion) zeros are on the
line. Moreover, billions of zeros near the 1024 zero are on the line.

(University of Rochester) 43 / 51



Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15 ) are on the line and
simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele,
Odlyzko, Wedeniwski, ...

Gourdon-Demichel 2004 The first 1013 (ten trillion) zeros are on the
line. Moreover, billions of zeros near the 1024 zero are on the line.

(University of Rochester) 43 / 51



Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15 ) are on the line and
simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele,
Odlyzko, Wedeniwski, ...

Gourdon-Demichel 2004 The first 1013 (ten trillion) zeros are on the
line. Moreover, billions of zeros near the 1024 zero are on the line.

(University of Rochester) 43 / 51



Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15 ) are on the line and
simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele,
Odlyzko, Wedeniwski, ...

Gourdon-Demichel 2004 The first 1013 (ten trillion) zeros are on the
line. Moreover, billions of zeros near the 1024 zero are on the line.

(University of Rochester) 43 / 51



Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15 ) are on the line and
simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele,
Odlyzko, Wedeniwski, ...

Gourdon-Demichel 2004 The first 1013 (ten trillion) zeros are on the
line. Moreover, billions of zeros near the 1024 zero are on the line.

(University of Rochester) 43 / 51



Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15 ) are on the line and
simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele,
Odlyzko, Wedeniwski, ...

Gourdon-Demichel 2004 The first 1013 (ten trillion) zeros are on the
line.

Moreover, billions of zeros near the 1024 zero are on the line.

(University of Rochester) 43 / 51



Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15 ) are on the line and
simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele,
Odlyzko, Wedeniwski, ...

Gourdon-Demichel 2004 The first 1013 (ten trillion) zeros are on the
line. Moreover, billions of zeros near the 1024 zero are on the line.

(University of Rochester) 43 / 51



IX. More recent developments
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Pair correlation

A major theme of research over the last 35 years has been to
understand the distribution of the zeros on the critical line assuming
that the Riemann Hypothesis is true.

In 1974 Montgomery conjectured that the zeros are distributed like
the eigenvalues of random Hermitian matrices.

From 1980 on Odlyzko did a vast amount of numerical calculation
that strongly supported Montgomery’s conjecture.
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New mean value theorems

G and Conrey, Ghosh, and G proved a number of discrete mean value
theorems of the type∑

0<γ≤T

|ζ(ρ+ iα)|2 and
∑

0<γ≤T

|ζ ′(ρ)MN(ρ)|2,

where ρ = 1/2 + iγ runs over the zeros.

Assuming RH and sometimes GLH and GRH, Conrey, Ghosh, and G
used these to prove that

there are large and small gaps between consecutive zeros.
over 70% of the zeros are simple.
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Random matrix models

A major development was Keating and Snaith’s modeling of ζ(s) by the
characteristic polynomials of random Hermitian matrices.

It allowed them to determine the constants gk in∫ T
0 |ζ(1/2 + it)|2kdt ∼ ak gk

Γ(k2+1)
T logk2

T .

It has had applications to elliptic curves, for example.

Hughes, Keating, O’Connell used it to conjecture the discrete
means

∑
0<γ≤T |ζ ′(ρ)|2k

Mezzadri used it to study the distribution of the zeros of ζ ′(s).
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Lower order terms and ratios

The Keating-Snaith results led to the quest for the lower order terms in
the asymptotic expansion of the moments.

This resulted in the discovery of new heuristics for the moments not
involving RMT.

It also led to heuristics for very general moment questions (the so
called “ratios conjecture”).

(Conrey, Farmer, Keating, Rubenstein, Snaith, Zirnbauer, ...)

(University of Rochester) 48 / 51



Lower order terms and ratios

The Keating-Snaith results led to the quest for the lower order terms in
the asymptotic expansion of the moments.

This resulted in the discovery of new heuristics for the moments not
involving RMT.

It also led to heuristics for very general moment questions (the so
called “ratios conjecture”).

(Conrey, Farmer, Keating, Rubenstein, Snaith, Zirnbauer, ...)

(University of Rochester) 48 / 51



Lower order terms and ratios

The Keating-Snaith results led to the quest for the lower order terms in
the asymptotic expansion of the moments.

This resulted in the discovery of new heuristics for the moments not
involving RMT.

It also led to heuristics for very general moment questions (the so
called “ratios conjecture”).

(Conrey, Farmer, Keating, Rubenstein, Snaith, Zirnbauer, ...)

(University of Rochester) 48 / 51



Lower order terms and ratios

The Keating-Snaith results led to the quest for the lower order terms in
the asymptotic expansion of the moments.

This resulted in the discovery of new heuristics for the moments not
involving RMT.

It also led to heuristics for very general moment questions (the so
called “ratios conjecture”).

(Conrey, Farmer, Keating, Rubenstein, Snaith, Zirnbauer, ...)

(University of Rochester) 48 / 51



Lower order terms and ratios

The Keating-Snaith results led to the quest for the lower order terms in
the asymptotic expansion of the moments.

This resulted in the discovery of new heuristics for the moments not
involving RMT.

It also led to heuristics for very general moment questions (the so
called “ratios conjecture”).

(Conrey, Farmer, Keating, Rubenstein, Snaith, Zirnbauer, ...)

(University of Rochester) 48 / 51



A hybrid formula

The Keating-Snaith model finds the moment constants gk , but the
arithmetical factors ak have to be inserted after the fact.

This led to the problem of finding a model for zeta incorporating
characteristic polynomials and arithmetical information.

G, Hughes, Keating found an unconditonal hybrid formula for ζ(s).

It says (roughly) that

ζ(s) =
∏

p≤X
(
1− p−s)−1 ∏

|s−ρ|≤1/ log X
(
1− X (ρ−s)eγ)

A heuristic calculation of moments using this leads to ak and gk
appearing naturally.

It also explains why the constant in the moment splits as ak gk
Γ(k2+1)

.
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The order of ζ(s) again

Finally, the hybrid formula has led to conjectural answers to the deep
question of the exact order of ζ(s) in the critical strip.

Recall that

(1 + o(1))eγ log log t ≤i.o. |ζ(1 + it)| ≤RH 2(1 + o(1))eγ log log t ,

so that a factor of 2 is in question.

Arguments from the hybrid model suggest that the 2 should be
dropped.
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The order of ζ(s) again

On the 1/2-line itself recall that√
c

log t
log log t

≤i.o. log |ζ(1/2 + it)| �RH
log t

log log t
.

Here Farmer, G, and Hughes have used the hybrid formula to suggest
that √

1/2(1 + o(1)) ≤i.o.
log |ζ(1/2 + it)|√

log t log log t
≤
√

1/2(1 + o(1)).
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