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abstract.

We employ the maximum entropy principle, in the context of Bayesian inference by the impersonal physical

interactions, together with the experimental Heisenberg's uncertainty principle for a simple construction of the

general wave mechanical static state of a single, interacting mass particle with no internal degrees of freedom.

Subsequently, this �rst principle approach allows to derive via Newtonian mechanics the dynamical equation of

motion in the realm of non-relativistic wave mechanics, i.e., the Schrödinger equation.
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1. introduction

Since the advent of the modern wave mechanics and Schrödinger's seminal papers [1], the
origins of the theory have been a subject of much discussion and several reasonable approaches
have been proposed over the years, including Ref. [2] where a particular form of the uncertainty
principle is assumed in order to derive the Schrödinger equation, that is, the fundamental
wave mechanical equation of an epistemic entity called wave function. The previous approach
to wave mechanics is quite compelling as it allows a proper extension of classical mechanics
based on a one new assumption, originally found in a conceptual form by Heisenberg [3].
Consequently, the uncertainty principle is at the heart of wave mechanics and it allows to isolate
the source of the new physical phenomena. In this presentation, that in a sense is analogous
with the statistical approach taken in Ref. [2], an experimentally inferred uncertainty principle
together with the maximum entropy principle [4] are used to construct the general static wave
function. Subsequently, Newtonian mechanics provides additional physical constraints to morph
the probabilistic ensemble, hence to obtain the corresponding dynamical equation of motion.

2. The wave mechanical model

The well-known single- or many-slit electron di�raction experiment illustrates a non-classical
phenomenon as individual electrons form a di�raction pattern as a collective behaviour [5].
Therefore, electrons, like other point-like particles with small mass, behave statistically: every
identical particle is observed at a random location but many observations form a probability
distribution that is similar to the optical phenomena where photons form an intensity pattern
that can be explained by the Huygens' principle and wave interference. Hence, we can conclude
that the motion of every electron is wave-like and therefore it is impossible for an individual
electron to travel along a classical path.2 However, classically the state of motion of a particle
is represented by its position x and momentum p, and we can further consider a statistical
version of classical mechanics where a state is a probabilistic variable. The wave-like interference
pattern implies that the classical statistical mechanics is inadequate, but we may still assume
that this peculiar distribution of microstates obeys the universal principle under which the
entropy of a physical system tends to be maximized [4]. Here the entropy is understood to be
the general measure of uncertainty of a probability distribution and every physical interaction
can contribute to the objective, i.e., global, knowledge about the system. We also recall that
in a thermodynamical system a pair (x,p) corresponds to an energy microstate, and physical
interactions dissipate kinetic energy and thus increase entropy in the surroundings. Analogously,
the macrostate of an interacting particle, i.e., the (x,p)-distribution, has a non-zero entropy.

Let us examine the single-slit electron di�raction experiment where the electrons arrive from
far away with a de�nite momentum. When the slit is made more narrow, so that the location
of those electrons that move through the slit become more accurate, we can observe that the
direction of motion becomes more uncertain and the momentum spreads. Hence, we may assume
that the kinematic system of a single particle is a joint distribution of position and momentum,
and the statistical behaviour is understood through a new physical constraint. In particular,
we adopt the well-known Heisenberg's uncertainty principle: if the position/momentum of a
particle becomes more localized, then its momentum/position becomes more spread out [5].
The content of information of the position of a particle around some point corresponds to how
much the information of momentum is uncertain. Thus, for every point in the position space we
can attach an in�nite array with elements representing probability for points in the momentum
space, implying the degree of dispersion. In the spirit of the maximum entropy principle [4] we
can model this by a function ψ(x), for x ∈ R3, that represents an unbiased estimation of the
momentum distribution and a convenient representation is a linear weighted sum

2Here we have two basic options: the interference of probabilities or the uncertainty relation of motion.
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(2.1) ψ(x) =
∑
p∈R3

a(p)u(p,x),

where the unspeci�ed vectors u(p,x) form an orthonormal basis, suitable inner-product 〈·, ·〉x
induces a norm and terms a(p) are scalars. We require that 〈ψ, ψ〉x =

∑
p |a(p)|2 = 1 and that

|a(p)|2 gives a probability for p. Now the function ψ(x) represents in a position-dependent way
the distribution of momentum. Similarly, we can assume that a change in the information of
momentum changes the position distribution, thus we have a function φ(p), for p ∈ R3, that
contains an unbiased estimation of the position distribution:

(2.2) φ(p) =
∑
x∈R3

b(x)v(x,p),

where the unspeci�ed vectors v(x,p) form an orthonormal basis, suitable inner-product 〈·, ·〉p
induces a norm and terms b(x) are scalars. Again, we have 〈φ, φ〉p =

∑
x |b(x)|2 = 1 and |b(x)|2

gives a probability for x. Since the both position and momentum are continuous variables, we
can conclude that both a(p) and b(x) are continuous functions that behave inversely to each
other: if a(p) vanishes outside of a narrow interval ∆p, then b(x) must be non-zero on a large
interval ∆x � vice versa. Hence, the state of motion of a wave-like mass particle is represented
by the following coupled, continuous and entropy driven �elds, here denoted as wave functions :

(2.3) ψ(x) =

∫
R3

a(p)u(p,x)dp and φ(p) =

∫
R3

b(x)v(x,p)dx.

From the previous assumptions and the theory of optical di�raction we may infer that a
suitable method to connect the wave functions ψ and φ is a unitary Fourier transform, where
the transformation pair contains both the spectrum and the intensity of the random variables.
Here we note that any vector f(x) in the in�nite-dimensional space L2(R3;C) can be projected

onto an orthonormal basis made of vectors exp(i 〈k,x〉)/
√

2π
3
or vectors exp(−i 〈k,x〉)/

√
2π

3
.

Since both the position and momentum of a physical particle are �nite, both functions a(p)
and b(x) must vanish as |x| , |p| → ∞, i.e., low entropy microstates are negligible, and we
may assume3 that ψ, φ ∈ L2(R3;C). Therefore, the wave function ψ can be represented by its
Fourier transform ψ̂ as follows, see Ref. [6]:

(2.4) ψ(x) =
1
√

2π
3

∫
R3

ψ̂(k) exp(i 〈k,x〉)dk,

where the components of k have the dimension of [1/length]. In addition, the wave function φ
can be represented by its inverse Fourier transform φ̌ as follows:

(2.5) φ(p) =
1
√

2π
3

∫
R3

φ̌(q) exp(−i 〈q,p〉)dq,

where the components of q have the dimension of [1/momentum]. Since ψ and φ contain the
probability distribution of both position and momentum, respectively, we assume that those

distributions correspond to the spectral densities |φ̌|
2
and |ψ̂|

2
. Now, due to the probability

conditions and Plancherel's theorem, we have

(2.6)
∫
R3

|ψ(x)|2 dx =

∫
R3

∣∣∣ψ̂(k)
∣∣∣2 dk = 1 and

∫
R3

|φ(p)|2 dp =

∫
R3

∣∣φ̌(q)
∣∣2 dq = 1.

3The choice of complex basis is due to its mathematical simplicity and the fact that we are only interested

of intensities, but we can always use the Euler's formula and choose a real two dimensional basis and represent

the intensity as a sum of two squares, e.g., |a1 + ia2|2 = a21 + a22.
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We note that the wave functions ψ and φ can be connected if we substitute p := Ck, where C
is an experimental constant that has the dimension of [length×momentum] = [time× energy].

We also need to substitute φ(p) := ψ̂(k)/
√
C

3
. The probability condition remains unchanged:∫

R3

|φ(p)|2 dp =

∫
R3

∣∣∣ψ̂(k)/
√
C

3
∣∣∣2C3dk =

∫
R3

∣∣∣ψ̂(k)
∣∣∣2 dk =

∫
R3

|ψ(x)|2 dx.

It turns out that the appropriate constant C is the reduced Planck's constant ~, see Ref. [5].
Along these lines, we have ended up with the following statistical model that describes the
intrinsically incomplete information content of a state of motion:

(2.7) ψ(x) =
1

√
2π~3

∫
R3

φ(p) exp(i 〈p,x〉 /~)dp;

(2.8) φ(p) =
1

√
2π~3

∫
R3

ψ(x) exp(−i 〈p,x〉 /~)dx,

where |ψ|2 and |φ|2 correspond respectively to position and momentum probability distribution.
The previous pair of ψ and φ satis�es the desired physical connection: if one changes, then
the other one changes as well, but the terms |ψ|2 and |φ|2 remain as well-de�ned distributions.
Furthermore, due to the Heisenberg's uncertainty principle it is impossible to localize both
distributions. To this end, we need to have a suitable model4 for the uncertainty:

If f belongs to L2(R3;C) and
∫
R3 |f(x)|2 dx = 1, then the standard deviation of the function

f about the point a ∈ R3 is

(2.9) 4a(f) :=

√∫
R3

|x− a|2 |f(x)|2 dx.

It is clear that the deviation 4a(f) is a measure of how much the function f is localized
around the point a ∈ R3, e.g., the term is small if f is non-zero only around the point a ∈ R3.
Thus, 4x′(ψ) is the standard deviation of the position distribution and 4p′(φ) is the standard
deviation of the momentum distribution, where the points x′ and p′ are the corresponding
expectation values. Moreover, using the fact p = ~k, we note that

(2.10) 4p′(φ) = ~4p′/~(ψ̂) = ~4k′(ψ̂).

Now we can introduce the mathematical Heisenberg's uncertainty principle, see Ref. [6]:

If f and every component of ∇f belong to L2(R3;C) and
∫
R3 |f(x)|2 dx = 1, then

(2.11) 4a(f)4b(f̂) ≥ 3

2
, for a,b ∈ R3.

We will �nd out below that the above condition ∇ψ ∈ L2(R3) implies that the expectation
value of momentum is �nite. As follows, we have the well-known formulation of the Heisenberg's
uncertainty principle that illustrates the central role of the strictly positive Planck's constant.
In the classical sense, the uncertainty principle can be seen as a statistical result for a very large
ensemble of identical particles with the identical wave function, that is, if we measure position of
one half of the particles and momentum of the other half, as accurately as technically possible,
then the product of standard deviations has the sharp and positive lower bound:

(2.12) 4x′(ψ)4p′(φ) ≥ 3

2
~, for x′,p′ ∈ R3.

4The physically most typical Gaussian distribution has the same value for mean, median and mode. Therefore,

the standard deviation is a natural measure of uncertainty when we consider a statistical physical phenomena.
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Both the position and momentum of a particle are described by statistical distributions
and due to the Heisenberg's uncertainty principle there are no well-de�ned values for both
position and momentum at the same moment of time. Hence, the position distribution can be
localized around multiple spatially distant points, rendering a very non-classical description of
the location of a mass particle that is always a single-valued observable quantity. A classical
(strong) measurement of the position equals the complete information and hence the term |ψ|2
will vanish outside the observed location. At the very same time, the momentum will appear
everywhere in the momentum space. Therefore, if the directly or indirectly gained information
changes the information content, then all distributions are updated in a non-local fashion in
order to preserve the natural probability condition, i.e., the sum of all probabilities remains a
unity (cf. objective Bayesian inference and also Ref. [7]). A related phenomenon that illustrates
the indirectly available information is the wave mechanical entangled state, see Ref. [5].

The peculiar fact that there is no de�nite value for the position of a particle allows to prevent
a hydrogen-like atom from collapsing, an inevitable and paradoxal consequence of electrostatic
forces in classical physics as the electron spirals into the nucleus and the atomic system releases
an in�nite amount of energy. Here the uncertainty principle predicts that there is a form of a
steady state equilibrium between the electron and the massive nucleus that is actively localizing
the electron by interaction that carries energy; the information content associated with the state
of motion causes an entropic pressure that counters the force due to the localizing interaction.

Having the probability distributions allows us to consider expectation values for observable
physical quantities that are dependent on position or momentum. In particular, the position x
of a particle, the real valued potential energy V (x) of a particle and the corresponding external
force F(x) acting on a particle have the following expectation values:

Eψ(x) =

∫
R3

x |ψ(x)|2 dx =

∫
R3

xψ(x)ψ(x)dx;(2.13)

Eψ(V ) =

∫
R3

V (x) |ψ(x)|2 dx =

∫
R3

V (x)ψ(x)ψ(x)dx;(2.14)

Eψ(F) = Eψ(−∇V ) = −
∫
R3

∇V (x)ψ(x)ψ(x)dx.(2.15)

Furthermore, as it is well-known, the expectation values of the momentum p and the kinetic
energy T can be represented in the position space, when we apply the Fourier transform of
derivative and Plancherel's theorem:

(2.16) Eφ(p) =

∫
R3

p |φ(p)|2 dp =

∫
R3

[pφ(p)]φ(p)dp =

∫
R3

[−i~∇ψ(x)]ψ(x)dx = Eψ(p);

(2.17) Eφ(T ) =

∫
R3

p2

2m
|φ(p)|2 dp =

1

2m

∫
R3

[
−~2∇2ψ(x)

]
ψ(x)dx = Eψ(T ).

We also have the expectation value of the total energy E that is the following:

(2.18) Eψ(E) =

∫
R3

(
− ~2

2m
∇2ψ(x) + V (x)ψ(x)

)
ψ(x)dx.

In classical mechanics the angular momentum for a point-like particle with respect to the
origin is L = x× p. Its component-wise representation is L1 = x2p3 − x3p2, L2 = x3p1 − x1p3
and L3 = x1p2 − x2p1. For example, the expectation value of x1p2 can be found if we consider
the inverse Fourier transform of p2φ(p) and then multiply both sides by x1. Hence,

−i~
(
x1

∂

∂x2
− x2

∂

∂x1

)
ψ(x) =

1
√

2π~3

∫
R3

(x1p2 − x2p1)φ(p) exp(i 〈p,x〉 /~)dp.
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Via the Plancherel's theorem we have the following expression for the expectation value:

(2.19) Eφ(L) =

∫
R3

(x× p) |φ(p)|2 dp =

∫
R3

[(−i~x×∇)ψ(x)]ψ(x)dx = Eψ(L).

From the previous considerations we can assume that every observable physical quantity O
corresponds to a linear self-adjoint operator Ô of L2(R3;C). This ensures that Eψ(O) is real and
the eigenvectors of Ô span an orthonormal basis of L2(R3;C), see Ref. [6]. In turn, this basis
allows us to represent the expectation value as a linear weighted sum of the corresponding real
eigenvalues. In particular, a classical measurement of O must realize only one of the possible
independent states, i.e., one of the eigenvectors of Ô, and the result is the corresponding
eigenvalue, see Ref. [5]. We also require that a physical expectation value must be �nite, thus
we can infer from the Schwarz's inequality that the domain of an operator Ô is a linear subspace
of L2(R3;C) where the expectation value integral exists, i.e.,

(2.20) D(Ô) := {ψ ∈ L2(R3;C) : Ôψ ∈ L2(R3;C)} ⊂ L2(R3;C).

For this reason we must assume that set D(Ô) is dense in L2(R3;C) in order to consider all the
physical systems. The analysis of previous classical operators can be found in Ref. [6].

Next we consider a situation where the probability distributions that express the state of
motion of a particle change in time, i.e., the wave function is of the form ψ(x, t). We note that
time is not an observable physical quantity that has a probability distribution such as variables
x and p, but it is only a classically progressive parameter assosiated to any evolving system.
We note also that we should avoid unnecessary constraints to keep the con�guration space as
free as possible and allow an entropy driven physical model to take its form. Now, in the case
of time-evolution, it is not obvious how to formulate the corresponding Liouville equation of
statistical classical mechanics for the wave mechanical phase space distribution, but we may
certainly assume that the expectation values obey the Newton's equations of motion:

m
d

dt
Eψ(x) = Eψ(p);(2.21)

d

dt
Eψ(p) = Eψ(F).(2.22)

We note that the statistical model must exist all the time (cf. Liouville's theorem), i.e., since
Eqs. (2.21) and (2.22) belong to the position space, via the crucial Eq. (2.16), we have

(2.23)
d

dt

∫
R3

|ψ(x, t)|2 dx = 0,

and the value of the integral is a unity, independently of time t ≥ 0. When we try to solve
ψ from the previous integral equations the task is not trivial, but, for historical reasons, we
have a guideline how to proceed, see the Ehrenfest's theorem in Refs. [5; 8]. Since we consider
a physical particle that is described by its wave function ψ, it is evident that the expectation
values of position, momentum, kinetic energy, potential energy and force exist, i.e., all the
following terms ψ, xψ, ∇ψ, ∇2ψ, V , V ψ and ∇V ψ are continuous and vanish as |x| → ∞.
Also, the statistical condition (2.23) demands a suitable expression for the continuous and
bounded5 time derivative ∂tψ. With these considerations, let us begin with the expectation
value of force and use partial integration when trying to solve the time derivative:

d

dt
Eψ(p) =

∫
R3

∂

∂t

(
(−i~∇ψ)ψ

)
dx =

∫
R3

(
−i~ ∂

∂t
ψ∇ψ − i~ψ ∂

∂t
(∇ψ)

)
dx

=

∫
R3

(
−i~ ∂

∂t
ψ∇ψ + i~

∂

∂t
ψ∇ψ

)
dx =

∫
R3

2Re

[
i~
∂

∂t
ψ∇ψ

]
dx.

5A physical process that updates the information content is not instant by its nature.
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On the other hand, in aiming to eliminate the variable term ∇ψ, we have

Eψ(F) = Eψ(−∇V ) =

∫
R3

−∇V |ψ|2 dx =

∫
R3

V∇ |ψ|2 dx

=

∫
R3

(
V ψ∇ψ + V ψ∇ψ

)
dx =

∫
R3

2Re
[
V ψ∇ψ

]
dx.

Thus, the equality holds in Eq. (2.22) if ∂tψ = −iV ψ/~ that represents the potential energy.

Next we consider the expectation value of the �rst component of the momentum vector:

m
d

dt
[Eψ(x)]1 =

∫
R3

m
∂

∂t

(
x1 |ψ|2

)
dx =

∫
R3

(
mx1ψ

∂

∂t
ψ +mx1ψ

∂

∂t
ψ

)
dx

=

∫
R3

2Re

[
mx1ψ

∂

∂t
ψ

]
dx.

On the other hand, we have

[Eψ(p)]1 =

∫
R3

(
−i~ ∂ψ

∂x1

)
ψdx

= −i~
2

∫
R3

(
ψ
∂ψ

∂x1
− ψ ∂ψ

∂x1

)
dx

= −i~
2

∫
R3

(
ψ
∂ψ

∂x1
− ψ ∂ψ

∂x1

)
dx +

i~
2

∫
R3

∇ ·
(
x1ψ∇ψ − x1ψ∇ψ

)
dx

= −i~
2

∫
R3

(
ψ
∂ψ

∂x1
− ψ ∂ψ

∂x1

)
dx

+
i~
2

∫
R3

(
x1∇ψ · ∇ψ + ψe1 · ∇ψ + x1ψ∇2ψ

)
dx

− i~
2

∫
R3

(
x1∇ψ · ∇ψ + ψe1 · ∇ψ + x1ψ∇2ψ

)
dx

=

∫
R3

(
i~
2
x1ψ∇2ψ − i~

2
x1ψ∇2ψ

)
dx

=

∫
R3

2Re

[
i~
2
x1ψ∇2ψ

]
dx.

Thus, the equality in Eq. (2.21) holds for every component if ∂tψ = i~∇2ψ/2m that represents
the kinetic energy. The additional integral over divergence is zero due to the Gauss' theorem
since the integrand vanishes outside some large sphere in R3.

Furthermore, if the time-evolution of a state depends only on a spatial position, then we can
infer that the e�ect of momentum is absent. Indeed, if ∂tψ = −iV ψ/~, then

m
d

dt
Eψ(x) =

∫
R3

(
mxψ

∂

∂t
ψ +mxψ

∂

∂t
ψ

)
dx =

∫
R3

(
mxψ

i

~
V ψ −mxψ

i

~
V ψ

)
dx = 0.

On the other hand, if the time-evolution of a state depends only on a spatial translation, then
we can infer that the e�ect of external force is absent. Thus, if ∂tψ = i~∇2ψ/2m, then we can
consider the expectation value of the �rst component of the force vector:

d

dt
[Eψ(p)]1 =

∫
R3

(
−i~ ∂

∂t
ψ
∂ψ

∂x1
+ i~

∂

∂t
ψ
∂ψ

∂x1

)
dx =

∫
R3

(
− ~2

2m
∇2ψ

∂ψ

∂x1
− ~2

2m
∇2ψ

∂ψ

∂x1

)
dx

= − ~2

2m

∫
R3

∇ ·
(
∇ψ ∂ψ

∂x1
+∇ψ ∂ψ

∂x1

)
dx = 0.
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The previous result is the same for the other components as well. Therefore, due to linearity,
a choice ∂tψ = i~∇2ψ/2m− iV ψ/~ satis�es the both Eqs. (2.21) and (2.22). Finally, with the
previous expression for the time derivative, Eq. (2.23) is also satis�ed:

d

dt

∫
R3

|ψ|2 dx =

∫
R3

(
ψ

(
−i~
2m
∇2ψ +

i

~
V ψ

)
+ ψ

(
i~
2m
∇2ψ − i

~
V ψ

))
dx

=
i~
2m

∫
R3

∇ ·
(
ψ∇ψ − ψ∇ψ

)
dx = 0.

To sum up, we have arrived to the following fundamental result:

(2.24) i~
∂ψ

∂t
(x, t) = − ~2

2m
∇2ψ(x, t) + V (x, t)ψ(x, t), for (x, t) ∈ R3 × [0,∞[.

This is the Schrödinger equation that describes the time-evolution of ψ when a mass particle
interacts with an external force �eld. The Heisenberg's uncertainty principle manifests itself as
follows: a binding force localizes the particle (the compression of ψ) but the momentum and
the kinetic energy will become more uncertain (the spread of φ). Therefore, ψ is in the sense
of maximum entropy the most probable state that satis�es the conservation of energy, i.e.,

(2.25) Eψ(E)− Eψ(T )− Eψ(V ) =

∫
R3

[
i~
∂ψ

∂t
+

~2

2m
∇2ψ − V ψ

]
ψdx = 0,

where the time derivative is associated with the total energy E. By de�nition, the epistemic
state ψ is a prior to any further interaction that may change the information content of the
system. Since the equation is of the �rst order in time, the initial condition ψ(x, t0) determines
the time-evolution of the probability distributions of observables. Every solution ψ(x, t) evolves
continuously and deterministically but a change in the information content can change the wave
function ψ(x, t) in a seemingly non-continuous fashion. In particular, a classical measurement
of the position equals the complete information and the associated physical process causes an
extremely rapid consentration of the wave function around the observed location. Consequently,
a new initial state ψ(x, t0) emerges that again evolves according to the Schrödinger equation.
The equation is also linear, building a far-reaching connection with the Huygens' principle that
describes the wave propagation and allows to explain interference-like observations. Lastly, if
the position distribution is time-independent, i.e., |ψ(x, t)|2 = |ψ(x)|2, then we can conclude
that there is no change in entropy of the joint state distribution, see the related stationary state

in Ref. [5] that allows to explain � to some extent � the atomic spectra and stability.

In wave mechanics the coupled position and momentum distributions are spread out around
the average values, like a statistical ensemble of particles, and an entropic force drives the joint
distribution towards the maximum randomness. Incidentally, the compression of ψ creates a
form of an internal kinetic energy, which increase equals to the work done by the enviroment in
gaining information via physical interactions. Conversely, the spread of ψ is an entropy driven
process that erases information by dissipating internal kinetic energy into the enviroment.
Along these lines, we have also noticed that the classical trajectory (x(t),p(t)) is replaced by
the wave function ψ(x, t) that contains all the position and momentum dependent observable
information. To this end, we have the expectation value of a generic observable O(x,p, t), i.e.,

(2.26) Eψ(O) =

∫
R3

ψ(x, t)Ôψ(x, t)dx,

and the related operators that correspond physical quantities in classical mechanics:

x̂ = x, p̂ = −i~∇, L̂ =− i~x×∇ and F̂ = −∇V (x, t);

V̂ = V (x, t), T̂ = − ~2

2m
∇2 and Ĥ = − ~2

2m
∇2 + V (x, t).
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3. Conclusion

Entropy can be understood as a measure of uncertainty, disorder or missing information
content of a system. E. T. Jaynes introduced the information theoretical maximum entropy
principle to have a least biased estimate possible on the given information in the framework
of statistical physics [4], i.e., the most probable statistical distribution of microstates is the
least biased estimate that is consistent with all the macroscopic constraints that determine
the particular physical model. Since the state of motion is an inherently probabilistic concept,
the maximized entropy corresponds to the most probable statistical distribution of microstates
before a measurement. Here we have obtained the non-relativistic wave mechanical description
of a single, interacting mass particle with no internal degrees of freedom by using the maximum
entropy principle as a basis of modelling together with a set of relevant physical constraints
that arise from the non-classical uncertainty principle and well-established classical theory.

There are also other probability estimation based approaches in the literature, but they di�er
from our quite straightforward presentation that is an amalgamation of many known results.
It is also worth mentioning that in the famous article, Ref. [3], W. Heisenberg addressed his
desire to derive the rules of wave mechanics directly from the physical foundations, i.e., from the
uncertainty principle. Here we have demonstrated that the Heisenberg's uncertainty principle,
in the context of information theory of partial knowledge, is the decisive ingredient that allows
to derive the dynamical law of motion in the wave mechanical theory. However, the intrinsically
random and non-local character of the theory remains an unexplained physical phenomenon.
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