
The Mathematica® Journal

Diffusion Modeling
Programming in Multiple Paradigms
George E. Hrabovsky

This article describes how to model diffusion using NDSolve,
and then compares that to constructing your own methods using
procedural, functional, rule-based, and modular programming.
While based on the diffusion equation, these techniques can be
applied to any partial differential equation.

‡ Introduction
Using the built-in Mathematica command NDSolve to solve partial differential equations
is very simple to do, but it can hide what is really going on. You can always consult refer-
ences about using Mathematica for differential equations [1, 2]. Exploring various pro-
gramming methods also lets you create your own procedures that can be incorporated into
NDSolve [1]. I chose the diffusion equation as the main example because there is so
much material available for it and because of its high level of interest [3, 4, 5]. In this
article I am using Mathematica 8.
Begin with a model of diffusion, in this case, the diffusion equation. The continuity equa-
tion is

¶∂ r

¶∂ t
- !Hr uiL = 0,

where r is the density, t is time, and ui is the ith component of velocity. We can assume
the rate of diffusion D is constant and write the diffusion equation,

(1)
¶∂ r

¶∂ t
= D !2 r.

For complete generality, we can write

¶∂ r

¶∂ t
= ¶∂iDi j ¶∂ j r,

where Di j is a positive-definite matrix of diffusion coefficients that may or may not de-
pend on position and time; this is the diffusion tensor.

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

‡ Building Up Your Program Idea in Small Steps
First, try built-in functions to see if they can solve your problem right away. The plan here
is to use DSolve and then, when it likely fails to solve the PDE, try NDSolve. We are
solving for a ring, so we will use only one spatial dimension. We begin by writing our dif-
fusion equation.

eq1 = ¶∂tr@x, tD == Dif ¶∂x,xr@x, tD;

Now we try DSolve.

DSolve@eq1, 8r@x, tD<, 8x, t<D

DSolveArH0,1L@x, tD ã Dif rH2,0L@x, tD, 8r@x, tD<, 8x, t<E

DSolve is unable to reach a solution to the naively formulated problem. We next provide
a set of initial conditions.

iv = r@x, 0D ã r0;

We incorporate the initial value and try again.

DSolve@8eq1, iv<, 8r@x, tD<, 8x, t<D

DSolveA9rH0,1L@x, tD ã Dif rH2,0L@x, tD, r@x, 0D ã r0=,

8r@x, tD<, 8x, t<E

Again it fails; we could play with the initial conditions until we found a set that worked,
or we could try NDSolve. Let us say that we want to investigate the diffusion in a tube of
gas. We consider this tube to be one dimensional to keep things simple. We assume our
ring has a fixed length 1. We then “unwrap” the ring, making it a line, which lets us plot re-
sults. We will solve the equation for 10 units of time. We also specify the rate of diffusion.

Dif = 0.

0.

Let us try changing the initial density value to 0.

iv = r@x, 0D ã 0;

bcs = 8r@0, tD ã 0, r@1, tD ã 0<;

2 George E. Hrabovsky

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

We put all of these elements together into NDSolve and get a solution in the form of an
interpolating function.

sl1 = NDSolve@8eq1, iv, bcs<, 8r@x, tD<, 8x, 0, 1<, 8t, 0, 10<D

88r@x, tD Ø
InterpolatingFunction@880., 1.<, 80., 10.<<, <>D@x, tD<<

We can plot this function.

Plot3D@r@x, tD ê. sl1, 8x, 0, 1<, 8t, 0, 10<D

Ú Figure 1. Solution to the diffusion equation with initial density of 0 in empty space.

Let us try another initial value, say a sinusoidal density wave.

iv = 8r@x, 0D ã 0, r@0, tD ã Sin@tD, r@1, tD ã 0<;

Now we try a solution.

sl2 = NDSolve@8eq1, iv<, 8r@x, tD<, 8x, 0, 1<, 8t, 0, 10<D

88r@x, tD Ø
InterpolatingFunction@880., 1.<, 80., 10.<<, <>D@x, tD<<

Diffusion Modeling 3

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

We can plot this.

Plot3D@r@x, tD ê. sl2, 8x, 0, 1<, 8t, 0, 10<D

Ú Figure 2. Solution to the diffusion equation with initial density based on a sine function. We have
not determined the rate of diffusion.

This does not seem realistic, as the density drops to zero immediately. Now we need to de-
termine what D is, say 1.

Dif = 1;

sl21 = NDSolve@8eq1, iv<, 8r@x, tD<, 8x, 0, 1<, 8t, 0, 10<D

88r@x, tD Ø
InterpolatingFunction@880., 1.<, 80., 10.<<, <>D@x, tD<<

4 George E. Hrabovsky

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

Here is the plot.

Plot3D@r@x, tD ê. sl21, 8x, 0, 1<, 8t, 0, 10<D

Ú Figure 3. Solution to the diffusion equation with sinusoidal boundary conditions.

This seems more realistic than Figure 2, but the boundary conditions do not match up. If
we think of this as a circle (wrapping the line to form a ring), we suddenly get a discontinu-
ity when we go from x = 1 to x = 0. We can repair our ring solution by using periodic
boundary conditions.

iv = 8r@x, 0D ã 1, r@0, tD ã Sin@tD, r@2 p, tD ã Sin@tD<;

We are forcing an initial uniform density of 1, despite the sinusoidal boundary conditions
in time, which would give us values of 0 density at the origin, and we do not want that.
We get the solution, along with a warning message about inconsistent boundary and initial
value conditions. Please ignore that in this case.

sl23 = NDSolve@8eq1, iv<, 8r@x, tD<, 8x, 0, 2 p<, 8t, 0, 10<D

‹NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent.à

88r@x, tD Ø InterpolatingFunction@
880., 6.28319<, 80., 10.<<, <>D@x, tD<<

Diffusion Modeling 5

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

We can plot this.

Plot3D@r@x, tD ê. sl23, 8x, 0, 2 p<, 8t, 0, 10<,
AxesLabel Ø 8x, t, r@x, tD<D

Ú Figure 4. A fairly good model of diffusion on a ring with sinusoidal boundary conditions.

This looks reasonable. The boundary conditions are now periodic, as on a ring. How do
we write a program to do this?

‡ Procedural Programming of Diffusion
Those of you who have programmed in languages like FORTRAN, C++, or Java are famil-
iar with the idea of procedural programming. Procedures are executed in looping struc-
tures. We implement a finite-difference scheme to solve our equation. NDSolve is able
to use finite differences as a specific method [1].
Begin by converting the diffusion equation to its finite-difference equivalent,

(2)
ri
n+1 - ri

n

Dt
= D

ri+1
n - 2 ri

n + ri-1
n

HDxL2
.

Here a ring is divided into X cells for N time steps. Specify a given cell’s density by con-
sidering the ith cell for the nth time step. So i extends from 0 to X, and time extends from 0
to N. For any specific time step,

ri
n+1

Dt
=

ri
n

Dt
+ D

ri+1
n - 2 ri

n + ri-1
n

HDxL2
.

6 George E. Hrabovsky

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

The stability condition [2] is

(3)
DDt

HDxL2
§

1

2
.

If this ratio is greater than 1/2, the solution becomes unstable in time. Write

(4)ri
n+1 = Dt ri

n + D
ri+1
n - 2 ri

n + ri-1
n

HDxL2
.

If r0 is some set of initial conditions for r, in the next time step we can use this equation
to get a set of values for r. We can then relabel these as the new r0 values and continue
the calculation. We have to establish the initial conditions and use the procedural iterator
Table@function, 8iterator<D to produce this result.

init@X_, inifun_D := Table@inifun, 8i, 0, X<D;

Choose this for positions 0 to 6.

ic = init@6, 1D

81, 1, 1, 1, 1, 1, 1<

We then develop the current time step as the initial conditions. This specifies the part of
the list considered, using listPindices of sublistT.

r0@x_D := ic@@xDD

Here are the periodic boundary conditions.

r0@1 - 1D = r0@Length@icDD

1

r0@Length@icD + 1D = r0@1D

1

This completes the initialization step, establishing the initial conditions.

Diffusion Modeling 7

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

We now construct a single time step by rewriting r@xD to include the boundary condi-
tions, using If@condition, condition is met, condition is not metD.

r@x_, t_, d_, Dx_, Dt_, X_, bc_D :=

IfBx ã 1 »» x ã X, bc,

Dt r0@xD +
d

Dx2
Hr0@x + 1D + r0@x - 1D - 2 r0@xDL F

We test this.

r@1, 1, 1, 1, 1, 6, Sin@tDD

Sin@tD

r@3, 1, 1, 1, 1, 6, Sin@tDD

1

r@6, 1, 1, 1, 1, 6, Sin@tDD

Sin@tD

Define a time step, again using Table to generate the list.

step@X_, t_, d_, Dx_, Dt_, bc_D :=
Table@r@i, t, d, Dx, Dt, X, bcD, 8i, 1, X, Dx<D

We check this.

step@6, 1, 1, 1, 1, Sin@tDD êê N

8Sin@tD, 1., 1., 1., 1., Sin@tD<

We now construct the solution in time, using Table.

run@X_, d_, Dx_, Dt_, N_, bc_D :=
Table@a = step@X, t, d, Dx, Dt, bcD; ic = a, 8t, 1, N, Dt<D

This completes the model development.

8 George E. Hrabovsky

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

Now we need to display the results. I make a test called run1.

run1 = run@6, 1, 1, 1, 10, Sin@tDD êê N

880.841471, 1., 1., 1., 1., 0.841471<,
80.909297, 0.841471, 1., 1., 0.841471, 0.909297<,
80.14112, 1.06783, 0.841471, 0.841471, 1.06783, 0.14112<,
8-0.756802, -0.0852354, 1.06783, 1.06783, -0.0852354,
-0.756802<, 8-0.958924, 0.396259, -0.0852354,
-0.0852354, 0.396259, -0.958924<, 8-0.279415,
-1.44042, 0.396259, 0.396259, -1.44042, -0.279415<,

80.656987, 1.55726, -1.44042, -1.44042, 1.55726, 0.656987<,
80.989358, -2.3407, 1.55726, 1.55726, -2.3407, 0.989358<,
80.412118, 4.88732, -2.3407, -2.3407, 4.88732, 0.412118<,
8-0.544021, -6.81589, 4.88732,
4.88732, -6.81589, -0.544021<<

Here is the plot of these results.

ListPlot3D@run1D

Ú Figure 5. A jumbled mess of a solution for diffusion, not much like Figure 4.

Diffusion Modeling 9

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

This distorts and gets noisy very fast; of course we violated the stability condition with
our choice of D, so let us try it again. We know from (3) that D § 1 ê 4. We need to reini-
tialize r0.

ic = init@6, 1D

81, 1, 1, 1, 1, 1, 1<

r0@x_D := ic@@xDD

Then we construct run using the correct value for D.

run2 = runB6,
1

4
, 1, 1, 10, Sin@tDF êê N

880.841471, 1., 1., 1., 1., 0.841471<,
80.909297, 0.960368, 1., 1., 0.960368, 0.909297<,
80.14112, 0.957508, 0.990092, 0.990092, 0.957508, 0.14112<,
8-0.756802, 0.761557, 0.981946, 0.981946, 0.761557,
-0.756802<, 8-0.958924, 0.437064, 0.926849,
0.926849, 0.437064, -0.958924<, 8-0.279415,
0.210513, 0.804403, 0.804403, 0.210513, -0.279415<,

80.656987, 0.236503, 0.65593, 0.65593, 0.236503, 0.656987<,
80.989358, 0.446481, 0.551074, 0.551074, 0.446481,
0.989358<, 80.412118, 0.608348, 0.524925, 0.524925,
0.608348, 0.412118<, 8-0.544021, 0.538435,
0.545781, 0.545781, 0.538435, -0.544021<<

10 George E. Hrabovsky

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

This produces the result.

ListPlot3D@run2D

Ú Figure 6. A better solution that looks like Figure 4.

That looks better. This looks like the result we got from NDSolve, with some extra noise.
We could use a finer grid and a better difference scheme if we wanted to get more precise
and accurate. That is, however, the subject for another article.

‡ Functional Programming
Another style of programming uses f HxL as the application of f to x. So we start by
establishing a function in the traditional way, using Function@bodyD@paraÖ
meter replacementD. Here we use the notation Ò to represent a formal argument.

FunctionB Ò3 F@xD

x3

Diffusion Modeling 11

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

We could write this in short form without the word Function, but then we need an am-
persand following the function statement so that Mathematica knows that the function
statement is complete.

Ò3 &@xD

x3

We write Ò1 and Ò2 for two arguments.

FunctionB Ò13 + Ò22 F@x, yD

x3 + y2

Or again we can write this in short form.

Ò13 + Ò22 &@x, yD

x3 + y2

We can apply a function to each element of a list by the use of the Map@funcÖ
tion, listD command.

Map@Sqrt, 81, 2, 3, 4<D

:1, 2 , 3 , 2>

We could also use the short form function êü.

Sqrt êü 81, 2, 3, 4<

:1, 2 , 3 , 2>

This is equivalent.

Sqrt@ÒD & êü 81, 2, 3, 4<

:1, 2 , 3 , 2>

12 George E. Hrabovsky

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

Say we want to program the diffusion equation using functional programming. We begin
by defining the list of cells in the ring. We use Range@max elementD to produce a list
from 1 to max element.

fcells@X_D := Range@XD

We decide we want to go from 1 to 6.

fcells@6D

81, 2, 3, 4, 5, 6<

We now define the initial conditions.

finit@X_, inifun_D := inifun êü fcells@XD

For our choice of initial conditions, we have 1 everywhere, so we just say to divide by it-
self at each location.

r0 = finit@6, Ò ê Ò &D

81, 1, 1, 1, 1, 1<

Now we specify the diffusion equation. Since we have periodic boundary conditions and a
list, we can just rotate the list right and left.

fr@d_, Dx_, Dt_D :=

Dt r0 +
d

Dx2
HRotateRight@r0D + RotateLeft@r0D - 2 r0L

We can test this. First, clear the procedural definition of r from the previous section.

Clear@rD; r = frB
1

4
, 1, 1F

81, 1, 1, 1, 1, 1<

We now need to impose our boundary conditions. Here we are replacing the end parts
with the boundary conditions, using ReplacePart@list, 8parts and replaceÖ
ments<D.

bc1@bc_, t_D := ReplacePart@r, 81 Ø bc@tD, Length@rD Ø bc@tD<D

Diffusion Modeling 13

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

We will test these.

r = bc1@Sin, 1D

8Sin@1D, 1, 1, 1, 1, Sin@1D<

So we construct a single step.

step@d_, Dx_, Dt_, bc_, t_D :=
fr@d, Dx, DtD êê

ReplacePart@Ò, 81 Ø bc@tD, Length@rD Ø bc@tD<D &

Let us try it.

stepB
1

4
, 1, 1, Sin, 1F

8Sin@1D, 1, 1, 1, 1, Sin@1D<

We can construct a table to produce the result.

frun@d_, Dx_, Dt_, bc_, N_D :=
Table@a = step@d, Dx, Dt, bc, tD; r0 = a, 8t, 1, N, Dt<D

We can try this.

testrun = frunB
1

4
, 1, 1, Sin, 10F êê N

880.841471, 1., 1., 1., 1., 0.841471<,
80.909297, 0.960368, 1., 1., 0.960368, 0.909297<,
80.14112, 0.957508, 0.990092, 0.990092, 0.957508, 0.14112<,
8-0.756802, 0.761557, 0.981946, 0.981946, 0.761557,
-0.756802<, 8-0.958924, 0.437064, 0.926849,
0.926849, 0.437064, -0.958924<, 8-0.279415,
0.210513, 0.804403, 0.804403, 0.210513, -0.279415<,

80.656987, 0.236503, 0.65593, 0.65593, 0.236503, 0.656987<,
80.989358, 0.446481, 0.551074, 0.551074, 0.446481,
0.989358<, 80.412118, 0.608348, 0.524925, 0.524925,
0.608348, 0.412118<, 8-0.544021, 0.538435,
0.545781, 0.545781, 0.538435, -0.544021<<

14 George E. Hrabovsky

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

We can plot this result.

ListPlot3D@testrunD

Ú Figure 7. Another solution that looks like Figure 4.

We have obtained the same result as with procedural programming.

‡ Rule-Based Programming and Pattern-Matching
Another style of programming uses the symbolic nature of Mathematica to transform ex-
pressions. Rule-based programming uses the notion of transformation rules, which rewrite

expressions based on their form. Take the expression b3 and apply a transformation
rule to it.

b3 ê. b Ø x

x3

Here is a more complicated example.

b3 ê. b Ø Ix2 - y2M êê PowerExpand

Ix2 - y2M3ê2

Diffusion Modeling 15

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

Coming back to the diffusion equation, we begin with the initial conditions.

rinit@X_, rule_D := Table@x, 8X<D ê. rule

Then we execute it.

ric = rinit@7, x Ø 1D

81, 1, 1, 1, 1, 1, 1<

Then we have the diffusion equation. Here the double underscore __ following the r0 sig-
nifies a list.

rr@r0__, Dt_, Dx_, d_D :=

Dt r0 +
d

Dx2
HRotateRight@r0D + RotateLeft@r0D - 2 r0L

For our example, define t1.

t1 = rr@rinit@7, x Ø 1D, 1, 1, 1 ê 4D

81, 1, 1, 1, 1, 1, 1<

Define the boundary conditions.

rstep@r0__, d_, Dx_, Dt_, bc_, t_D :=
rr@r0, d, Dx, DtD êê

ReplacePart@Ò, 81 Ø bc@tD, Length@r0D Ø bc@tD<D &

Test this for the first time step.

t1 = rstep@rinit@7, x Ø 1D, 1, 1, 1 ê 4, Sin, 1D êê N

80.841471, 1., 1., 1., 1., 1., 0.841471<

We can test this again.

rstep@rstep@rinit@7, x Ø 1D, 1, 1, 1 ê 4, Sin, 1D, 1, 1,
1 ê 4, Sin, 2D êê N

80.909297, 0.960368, 1., 1., 1., 0.960368, 0.909297<

16 George E. Hrabovsky

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

We need to include an intermediate function that specifies the values for our model for the
FoldList command.

rr1@r0__D := rrBr0, 1, 1,
1

4
F

We can then produce our model runt1.

runt1 =
FoldList@

ReplacePart@rr1@Ò1D,
81 Ø Sin@Ò2D, Length@Ò1D Ø Sin@Ò2D<D &, ric, Range@10DD êê

N

881., 1., 1., 1., 1., 1., 1.<,
80.841471, 1., 1., 1., 1., 1., 0.841471<,
80.909297, 0.960368, 1., 1., 1., 0.960368, 0.909297<,
80.14112, 0.957508, 0.990092, 1., 0.990092,
0.957508, 0.14112<, 8-0.756802, 0.761557,
0.984423, 0.995046, 0.984423, 0.761557, -0.756802<,

8-0.958924, 0.437684, 0.931362, 0.989734, 0.931362,
0.437684, -0.958924<, 8-0.279415, 0.211951,
0.822536, 0.960548, 0.822536, 0.211951, -0.279415<,

80.656987, 0.241756, 0.704393, 0.891542, 0.704393,
0.241756, 0.656987<, 80.989358, 0.461223,
0.635521, 0.797967, 0.635521, 0.461223, 0.989358<,

80.412118, 0.636831, 0.632558, 0.716744, 0.632558,
0.636831, 0.412118<, 8-0.544021, 0.579585,
0.654673, 0.674651, 0.654673, 0.579585, -0.544021<<

Diffusion Modeling 17

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

We can plot this.

ListPlot3D@runt1D

Ú Figure 8. Yet another solution that looks like Figure 4.

‡ Scoping Constructs
A scoping construct makes symbols local so that they do not create or redefine global val-
ues. We can make local object names using the command Module@8names<, exÖ
pressionD. We can temporarily assign values to variables with the command
Block@8variables<, expressionD. I will demonstrate the use of the Module
command.
We can build a module for what we have been doing.

mrun@r0__, bc_, d_, s_, t_D :=

ModuleB8Dt, Dx<, Dt = s; Dx = s;

FoldListB

ReplacePartB

Dt Ò1 +
d

Dx2
HRotateRight@Ò1D + RotateLeft@Ò1D - 2 Ò1L ,

81 Ø bc@Ò2D, Length@Ò1D Ø bc@Ò2D<F &, r0, Range@tDF êê

N êê ListPlot3D@ÒD &F

18 George E. Hrabovsky

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

We can run this and plot the result.

mrun@81, 1, 1, 1, 1, 1, 1<, Sin, 1 ê 4, 1, 10D

Ú Figure 9. Yet again another solution that looks like Figure 4.

‡ Conclusion
We have seen that we can apply the canonical programming paradigms of Mathematica to
the problem of diffusion. I have only scratched the surface of the diffusion problem. The
methods I have presented could easily form the template for new methods for NDSolve,
whose implementation is documented [1]. This flexibility in being able to introduce new
methods into the existing structure of a Mathematica function is extremely powerful. Of
course, the most powerful programming methods merge the paradigms.

‡ References
[1] M. Sofroniou and R. Knapp, Advanced Numerical Differential Equation Solving in Mathemat-

ica, Champaign, IL: Wolfram Research, Inc., 2008.
www.wolfram.com/learningcenter/tutorialcollection/
AdvancedNumericalDifferentialEquationSolvingInMathematica.

[2] V. G. Ganzha and E. V. Vorozhtsov, Numerical Solutions for Partial Differential Equations—
Problem Solving Using Mathematica, Boca Raton, FL: CRC Press, Inc., 1996.

[3] R. Ghez, A Primer of Diffusion Problems, New York: John Wiley and Sons, Inc., 1988.
onlinelibrary.wiley.com/book/10.1002/3527602836.

Diffusion Modeling 19

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

[4] E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 3rd ed., New York: Cambridge Uni-
versity Press, 2009.

[5] J. Crank, The Mathematics of Diffusion, 2nd ed., Oxford, England: Clarendon Press, 1975.

G. E. Hrabovsky, “Diffusion Modeling,” The Mathematica Journal, 2012. dx.doi.org/doi:10.3888/tmj.14-6.

About the Author

George Hrabovsky is the president and founder of Madison Area Science and Technol-
ogy, a nonprofit scientific research and education organization. He has been a Mathemat-
ica user and programmer for more than 20 years. He does research into theoretical
physics, atmospheric science, and computational physics.
George E. Hrabovsky
105 Alhambra Place #2
Madison, WI 53713
george@madscitech.org

20 George E. Hrabovsky

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.

http://www.mathematica-journal.com/2012/03/diffusion-modeling/

