High-level parallel programming
using Chapel

David Bunde, Knox College
Kyle Burke, Wittenberg University

Acknowledgements

 Material drawn from tutorials created with
contributions from Johnathan Ebbers, Maxwell
Galloway-Carson, Michael Graf, Ernest Heyder, Sung
Joo Lee, Andrei Papancea, and Casey Samoore

 Work partially supported by the SC Educator program
and NSF awards DUE-1044299 and CCF-0915805. Any
opinions, findings, and conclusions or
recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the
views of the National Science Foundation @

Schedule

 Partl: 1:30-3:00
— Introduction to Chapel and the Workshop

— Core Features of Chapel
— Hands-on Session 1

e Partll: 3:30-5:00

— Advanced Ranges and Domains
— Other Chapel Features

— Hands-on Session 2

— Using Chapel in the Classroom

Basic Facts about Chapel

Parallel programming language developed with
programmer productivity in mind

Originally Cray’s project under DARPA’s High
Productivity Computing Systems program
Suitable for shared- or distributed memory

systems; recent work on GPUs (see
Sidelnik et al., IPDPS 2012)

Supports (but doesn’t require) global-view
programming, in which programmers express
whole operation rather than specifying each
processor’s role

Why Chapel?

* Flexible syntax; only need to teach features
that you need

* Provides high-level operations
* Designed with parallelism in mind

Flexible Syntax

* Supports scripting-like programs:
writeln(“Hello World!”);

* Also provides objects and modules

Provides High-level Operations

* Reductions
Ex: x =+ reduce A //sets x to sum of elements of A
Also valid for other operators (min, max, *, ...)

* Scans
Like a reduction, but computes value for each prefix
A=][1,3,2,5];
B=+scan A; //setsBto[1l, 1+3=4, 4+2=6, 6+5=11]

Provides High-level Operations (2)

* Function promotion:
B =f(A); //applies f elementwise for any function f

* Includes built-in operators:
C=A+1;
D=A+B;
E=A*B;

Designed with Parallelism in Mind

* Operations on previous slides parallelized
automatically

* Create asynchronous task w/ single keyword
* Built-in synchronization for tasks and variables

Your Presenters are...

Enthusiastic Chapel users
Interested in high-level parallel programming
Educators who use Chapel with students

NOT connected to Chapel development team

Chapel Resources

Materials for this workshop
http://faculty.knox.edu/dbunde/teaching/chapel/SC12/

Our tutorials
http://faculty.knox.edu/dbunde/teaching/chapel/

http://www4.wittenberg.edu/academics/
mathcomp/kburke/chapelTutorial.html|

Chapel website (tutorials, papers, language specification)
http://chapel.cray.com
Mailing lists (on SourceForge)

Accessing Practice Systems
(during SC only)

* We have practice accounts set up for use
during the workshop

e Get handout from one of the instructors

Installing Chapel Yourself

* |nstructions (http://chapeI.cray.com/download.html)

— Download: http://sourceforge.net/projects/chapel

— Unzip file

— Enter chapel-1.6 directory and invoke make

— source util/setchplenv.csh or util/setchplenv.sh to
set environment variables

* For multiuser installations (e.g. in /usr/local):
http://faculty.knox.edu/dbunde/teaching/chapel/install.html

Core Features of Chapel

“Hello World” in Chapel

* Create file hello.chpl containing
writeln(“Hello World!”);

 Compile with
chpl —o hello hello.chpl

e Run with
./hello

Variables and Constants

Variable declaration can contain the following:
var/const identifier : type = initial_value;

var or const: variable or named constant

Basic types are int, real, boolean, string

Also supports imaginary and complex values:
var X : imag = 1.0i;
vary : complex =1.2 + 3.4i;

Type is optional if it can be inferred from initial
value

Config Variables

* Optionally set from the command line; they’re
Chapel’s alternative to command-line args

* Declared with config:
config var x = 0; //0 unless overridden on
// command line

 Set on command line with two dashes: --
./hello --x=23 //runs hello with x set to 23

Operators

Most operators are familiar: +, -, *, <, >, <=, ...
= for assignment, == for equality testing
/ is integer division if both arguments are int

Colon for casts:
var x = 3.14 :int; //casts to int (truncates)
vary = 2:real / 3; //promote 2 to 2.0 before division

** for exponentiation: 2**3 results in 23
<=> swaps value of two variables

Console |/0O

e QOutput uses write and writeln, which support
multiple arguments:

writeln(“The value of x is “ x);
* |nput uses stdin.read and stdin.readln, which
take type as argument:
X = stdin.read(int);

 When last of input is read, the built-in variable
eof is set to true

Example: Reading until eof

var X : int;

while(!eof) {
x = stdin.read(int);
writeln(“Read value “ x);

Serial Control Structures

* if statements, while loops, and do-while loops
are all pretty standard (we’ll get to for loops)

e Difference: Statement bodies must either use
braces or an extra keyword:
if(x >5) theny = 3;

while(x < 5) do x++;

* Select is multi-way selection (switch in C/Java)

Procedures/Functions

proc name([arg_type] argl : typel, ...) : return_type {
body (with return statement(s))

Omit return_type for a function with no return value
(or if the type can be inferred)

arg_type controls how arguments are passed:
— omitted: variable is constant within function (exceptions on ref sheet)

— in: pass by value (value copied into function)
— inout: pass by reference (value copied both in and out)
— out: final value copied back to calling block

Omit argument types to write generic functions

Procedures/Functions (2)

e Can include default values for arguments by
putting assignment in parameter list

proc f(x:int=5){... }

* Can have a main function w/o arguments as
program starting point

Ranges (Take 1)

[i..j] denotes the range containing i, i+1, ..., j
The endpoints can be variables
Range is empty if 2"9 value is less than 1t

Can declare ranges as variables:
var R : range = 1..10;

Arrays

Ranges can be used to declare arrays:
var A : [1..10] int; //declares A as array of 10 ints

Indices determined by the range:
var B : [-3..3]int; //has indices -3 thru 3

Array cells are accessed using indices:

A[l] = 23;

A[2] = A[1] + 3;
Arrays generate runtime out-of-bounds errors if invalid
indices are used

Can also create multi-dimensional arrays:
var C:[1..10, 1..10] int;

Domains

* Array creation actually requires a domain, which
is the set of valid indices

 Anonymous domains created by putting range in
brackets, but can also create domain variables:
var D : domain(1) = {1..10}; //domain of dimension 1
var Al : [D] int;

var D2 : domain(2) ={1..10,1..10}; //domain of dim 2
var A2 : [D2] int;

Domains vs. Ranges

* Despite how similar they seem so far, domains
and ranges are different

— Domains remain tied to arrays so that resizing the
domain resizes the array:

var R : range = 1..10; var D : domain(1) = {1..10};
var A : [R] int; var A : [D] int;

R =0..10; //no effectonarray D =0..10; //resizes array
A[0] = 5; //runtime error A[0] = 5; //ok

 Domains are more general; some are not sets of
integers

For Loops

* Ranges also used in for loops:
foriin[1..10] do statement;

foriin[1..10]{
loop body

}

* Can also use a domain, array, or anything
supporting iteration

Parallel Loops

* To run loop iterations in parallel change for
loop to forall or coforall:

foralliin {1..10} do statement; //omit do w/ braces
coforall iin {1..10} do statement;

* forall creates 1 task per processing unit

* coforall creates 1 per loop iteration

* Used when each iteration requires lots of work and/or
they must be done in parallel

Asynchronous Tasks

* Can also create a specific task with begin:
begin statement; //create task for statement
* Can also create group of tasks and wait for all of
them to finish (fork-join parallelism):
cobegin {
statementl;
statement?;

} //creates task for each statement and
//waits here for all to finish

Sync blocks

* sync blocks also wait for all tasks created
within the block

 Example with equivalent cobegin block:

sync { cobegin {
begin statementl; statementl,;
begin statement2; statement?;

Sync variables

* sync variables have value and empty/full state
— writing to an empty variable makes it full
— reading from full variable makes it empty
— attempt to write to a full variable blocks
— reading from empty variable blocks

 Can be used to create a lock:
var lock : sync int;
lock = 1; //acquires lock

var temp = lock; //releases the lock

Reductions

Express reduction operation in single line:
var s =+ reduce A; //Ais array, s gets sum
Supports +, *, N (xor), &&, | |, max, min, ...
Also minloc and maxloc, which return a tuple
with min/max value and index where it occurs:
var (val, loc) = minloc reduce A;

Can define custom reductions; need to define
class to store partial work

Reduction Example

* Can also use reduce on function plus a range
1
* Ex: Approximate 1/2 using f_l\/l-Xde ;

config const numRect = 10000000;

const width = 2.0 / numRect; //rectangle width

const baseX = -1 - width/2:

const halfPl = + reduce [i in {1..numRect}]
(width * sqrt(1.0 — (baseX + i*width)**2));

Scans

* Can also compute all partial results of a
reduction using scan operation:
const R: range =1..5;
const A: [R]int=[3, -1, 4, -2, 0];
var B : [R]int=+scan A; //Bsetto |3, 2,6, 4, 4]

Hands-on Session 1

Advanced Ranges and Domains

Chapel Ranges

* What is a range?
* How are ranges used?
* Range operations

Chapel Ranges

* What is a range?

— A range of values

— Ex: var someNaturals : range = 0..50;
* How are they used?

* Indexes for Arrays
* Iteration space in loops

* Are there cool operations?

Chapel Ranges

* What is a range?

— A range of values

— Ex: var someNaturals : range = 0..50;
* How are they used?

* Indexes for Arrays
* Iteration space in loops

* Are there cool operations?
Yes!

Range Operation Examples

var someNaturals: range = 0..50;
var someEvens = someNaturals by 2;
(someEvens: 0, 2, 4, ..., 48, 50)
var someOdds = someEvens align 1;
(someOdds: 1, 3,5, 7, ..., 47, 49)
var fewerOdds = someQOdds # 6;
(fewerOdds: 1, 3,5, 7,9, 11)

Other Cool Range Things

* Can create “infinite” ranges:
var naturals: range = 0..;

 Ranges in the “wrong order” are auto-empty:
var nothing: range = 2..-2;

* Otherwise, negatives are just fine

Chapel Domains

What is a domain?
How are domains used?
Operations on domains

Running example: Game of Life

Chapel Domains

* Domain: index set
— Used to simplify addressing
— Every array has a domain to hold its indices
— Can include ranges or be sparse

* Example:
var A: [1..10] int; //indices are 1, 2, ..., 10

foriin A.domain {
//do something with A[i]
}

Chapel Domains

Array (hierarchy)

Array
Domain Valtes
(indices)

Chapel Domains

Array (hierarchy)

Array
Values

Chapel Domains

Array (hierarchy)

A~

0,2,4,6, ..., 6000 Array
Values
(Range)

Chapel Domains

Array (hierarchy)

Array
Values

0,2,4,6,...,6000

. (Combo) °

Domain

Chapel Domains

* Domain Declaration:
— var D: domain(2) = {0..m, O..n};
* Dis 2-D domain with (m+1) x (n+1) entries
—var A: [D] int;

* Ais an array of integers with D as its domain

Chapel Domains

* Domain Declaration:
— var D: domain(2) = {0..m, O..n};
* Dis 2-D domain with (m+1) x (n+1) entries
—var A: [D] int;

* Ais an array of integers with D as its domain

Why is this useful?

Chapel Domains

* Changing D changes A automatically!
e D={1..m, 0..n+1}
decrements height; increments width!

(adds zeroes)

2

3

5

6

8

9

Domain Slices (Intersection)

domain0: [0..2, 1..3]

domainl: [1..3, 3..5]

Domain Slices (Intersection)

domain0: [0..2, 1..3]

domainl: [1..3, 3..5]

domain2:[1..2, 3..3]

Domain Slices (Intersection)

//domain2 is the intersection of domainl and domain0
var domain2 = domainl [domain0];

domain0

domain0: [0..2, 1..3]
domainl: [1..3, 3..5]

domain1

domain2

domain2:[1..2, 3..3]

Domain Slices (Intersection)

//domain2 is the intersection of domainl and domain0
var domain2 = domainl [domain0];

Domains: Unbounded Game of Life

e Example of
— Domain operations
— One domain for multiple arrays
— Changing domain for arrays

* Rules:
— Each cell is either dead or alive
— Adjacent to all 8 surrounding cells
— Dead cell =» Living if exactly 3 living neighbors

— Living cell =» Dead if not exactly 2 or 3 living
neighbors

Unbounded? How?

* Plan: board starts with small living area, but can grow!
— Start with 4x4 board

-, O O ¥
N T O

o O +» O
o O O ¥

Unbounded? How?

* Plan: board starts with small living area, but can grow!
— Start with 4x4 board
— Pad all sides with zeros

O 00 0ODO
0111 0j]0 1 1 1|0
1 001 0j]1 0 0 1|0
0 001 0j]0 0 0 1|0
0011 0j]0 0 1 1|0
O 00 O0OPO

Unbounded? How?

* Plan: board starts with small living area, but can grow!
— Start with 4x4 board
— Pad all sides with zeros
— |terate forward one round

O 00 0ODO 0O 00100
0111 0j]0 1 1 1|0 0j]0 1 1 1|0
1 001 0j]1 0 0 1|0 0j]0 1 0 1|1
0 001 0j]0 0 0 1|0 0j]0 0 0 1|1
0011 0j]0 0 1 1|0 0j]0 0 1 1|0
O 00 O0OPO O 00 0ODO

Unbounded? How?

* Plan: board starts with small living area, but can grow!
— Start with 4x4 board
— Pad all sides with zeros
— |terate forward one round
— Recalculate subboard with living cells

O 00 0ODO 0O 00100 0 001 0O
0111 0j]0 1 1 1|0 0j]0 1 1 1|0 00j1 110
1 001 0j]1 0 0 1|0 0j]0 1 0 1|1 0 0f1 011
0 001 0j]0 0 0 1|0 0j]0 0 0 1|1 0 00 011
0011 0j]0 0 1 1|0 0j]0 0 1 1|0 0 0j]01 10
O 00 O0OPO O 00 0ODO 0 00OODO

Unbounded? How?

* Plan: board starts with small living area, but can grow!
— Start with 4x4 board
— Pad all sides with zeros
— |terate forward one round
— Recalculate subboard with living cells
— (Un)Pad as necessary

0 00 0O

O 00 0ODO 0O 00100 0 001 0O 0j]0 1 0O

0111 0j]0 1 1 1|0 0j]0 1 1 1|0 00j1 110 Ol11 10
1 001 0j]1 0 0 1|0 0j]0 1 0 1|1 0 0f1 011 0|1 0 1 1
0 001 0j]0 0 0 1|0 0j]0 0 0 1|1 0 00 011 0j]0 0 11
0011 0j]0 0 1 1|0 0j]0 0 1 1|0 0 0j]01 10 0j]0 1 10
O 00 O0OPO O 00 0ODO 0 00OODO 0O 00 0O

o O O O » O O

Unbounded? How?

* Plan: board starts with small living area, but can grow!
— Start with 4x4 board
— Pad all sides with zeros
— |terate forward one round
— Recalculate subboard with living cells
— (Un)Pad as necessary

— Repeat

0O 00 0O

O OO0 OO0O 000100 0 001 00O 0Of0 1 0 O

0111 0Of0 1 1 1|0 0Of0 1 1 1|0 001110 011 1T 4 0
1 001 0(f1 0 O 1|0 0j]0 1 0 1|1 0 0|1 0 1 1 O([1 0 1 1
0O 0 01 O[O0 O O 1|0 O[O0 0 0 1|1 0 00O 11 0[O0 0 1 1
0 011 0Of0 01 1|0 0Of0 01 1|0 0 0J]01 10 0Of0 1 1 0
O 00 O0OO0O O 00 O0OO0O 0 00O0OO0DO 0O 00 0O

o O O O » O O

Game of Life: Setting the Domain

//set the bounds

var minLivingRow = 3;
var maxLivingRow = 6;
var minLivingColumn = 1;
var maxLivingColumn = 4;

Game of Life: Setting the Domain

//set the bounds

var minLivingRow = 3;
var maxLivingRow = 6;
var minLivingColumn = 1;
var maxLivingColumn = 4;

//ranges for the board size
var boardRows = (minLivingRow-1)..(maxLivingRow+1);
var boardColumns = (minLivingColumn-1)..(maxLivingColumn+1);

Game of Life: Setting the Domain

//set the bounds

var minLivingRow = 3;
var maxLivingRow = 6;
var minLivingColumn = 1;
var maxLivingColumn = 4;

//ranges for the board size
var boardRows = (minLivingRow-1)..(maxLivingRow+1);
var boardColumns = (minLivingColumn-1)..(maxLivingColumn+1);

//domain of the game board
//this will change every iteration of the simulation!
var gameDomain: domain(2) = [boardRows, boardColumns];

Game of Life: Setting the Domain

//set the bounds

var minLivingRow = 3;
var maxLivingRow = 6;
var minLivingColumn = 1;
var maxLivingColumn = 4;

//ranges for the board size
var boardRows = (minLivingRow-1)..(maxLivingRow+1);
var boardColumns = (minLivingColumn-1)..(maxLivingColumn+1);

//domain of the game board
//this will change every iteration of the simulation!
var gameDomain: domain(2) = [boardRows, boardColumns];

//alive: 1; dead: 0
var lifeArray: [gameDomain] int; //defaults to zeroes

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc lifeValueNextRound(x, y, currentBoard) {

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc lifeValueNextRound(x, y, currentBoard) {

How can we just focus on the neighboring cells?

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc lifeValueNextRound(x, y, currentBoard) {

How can we just focus on the neighboring cells?

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc lifeValueNextRound(x, y, currentBoard) {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = [x-1..x+1, y-1..y+1];

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc lifeValueNextRound(x, y, currentBoard) {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = [x-1..x+1, y-1..y+1];

How can we (easily) handle border cases?

(X.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc lifeValueNextRound(x, y, currentBoard) {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = [x-1..x+1, y-1..y+1];

How can we (easily) handle border cases?

(X.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc lifeValueNextRound(x, y, currentBoard) {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = [x-1..x+1, y-1..y+1];

//domain slicing!
var neighborDomain = adjacentDomain [currentBoard.domain];

(X.y)

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc lifeValueNextRound(x, y, currentBoard) {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = [x-1..x+1, y-1..y+1];

//domain slicing!
var neighborDomain = adjacentDomain [currentBoard.domain];

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc lifeValueNextRound(x, y, currentBoard) {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = [x-1..x+1, y-1..y+1];

//domain slicing!

var neighborDomain = adjacentDomain [currentBoard.domain];
var neighborSum = + reduce currentBoard[neighborDomain];
neighborSum = neighborSum - currentBoard|x, y];

Game of Life: Implementing Rules

//returns whether there will be life at (x, y) next round
//(0 means no life, 1 means life)
proc lifeValueNextRound(x, y, currentBoard) {

//the 9 cells adjacent to (x, y)

var adjacentDomain : domain(2) = [x-1..x+1, y-1..y+1];

//domain slicing!

var neighborDomain = adjacentDomain [currentBoard.domain];
var neighborSum = + reduce currentBoard[neighborDomain];
neighborSum = neighborSum - currentBoard|x, y];

//the survival/reproduction rules for the Game of Life

if 2 <= neighborSum && neighborSum <= 3 && currentBoard[x, y] == 1 {
return 1;

} else if currentBoard(x, y]== 0 && neighborSum == 3 {
return 1;

} else { return 0; }

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Also, want to easily determine bounds on where life is! How?

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Also, want to easily determine bounds on where life is! How?

110000

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Also, want to easily determine bounds on where life is! How? 1

FOWs

OPLOOOO
AL WOO
OCOWOO
OO OO0

110000 5

cols

SroX=X=X=][
NN~NOO
COWOO
OO O OO

0

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Also, want to easily determine bounds on where life is! How? 1 8 00 8
0000 rows
0330
1 8 00 8 5 g g 8 8 rowlfAliveArray
0000
0110
1100 6 9
110000
50100 S 060 ol
0780
5 8 ; 8 8 colifAliveArray
|

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Also, want to easily determine bounds on where life is! How? 1

FOWs

maxLivingRow =

max reduce rowlfAliveArray; 5
minLivingRow =

min reduce rowlfAliveArray;
maxLivingColumn =

max reduce columnlifAliveArray; 1
minLivingColumn =

min reduce columnlifAliveArray;

rowlfAliveArray

Oh~LOOOm®
AL WOO
OCOWOO
OO OO0

cols

collifAliveArray

SroX=X=X=][
N~N~NOO
CO®WOO
OO O OO

0

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Doesn’t work! Zeros! 6 9
110000
0000 rows
0330
maxLivingRow = 4400
max reduce rowlfAliveArray; 510600 rowlfAliveArray
minLivingRow =
min reduce rowlfAliveArray;
maxLivingColumn = o))
max reduce columnlifAliveArray; M0000
minLivingColumn = 0000 cols
min reduce columnifAliveArray; 0780
6700 colifAliveArray
50700

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Doesn’t work! Zeros! 6 9
110000
Solution: replace with middle index 0000 rFOWS
0330
maxLivingRow = 4400
max reduce rowlfAliveArray; 510600 rowlfAliveArray
minLivingRow =
min reduce rowlfAliveArray;
maxLivingColumn = o))
max reduce columnlifAliveArray; M0000
minLivingColumn = 0000 cols
min reduce columnifAliveArray; 0780
6700 colifAliveArray
50700

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

Doesn’t work! Zeros! 6 9
113333
Solution: replace with middle index 3333 rows
3333
maxLivingRow = 4433
max reduce rowlfAliveArray; 5|3 53 3| rowlfAliveArray
minLivingRow =
min reduce rowlfAliveArray;
maxLivingColumn = 6 9
max reduce columnlifAliveArray; N7 777
minLivingColumn = 7777 cols
min reduce columnifAliveArray; 7787
6777 colifAliveArray

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

//if life is here, it will contain its column index,
//otherwise, the board's middle column index
var columnlfAliveArray: [gameDomain] int;

//if life is here, it will contain its row index,
//otherwise, the board's middle row index
var rowlfAliveArray: [gameDomain] int;

Game of Life: Supporting Boards

//next turn's board
var nextLifeArray: [gameDomain] int;

//if life is here, it will contain its column index,
//otherwise, the board's middle column index
var columnlfAliveArray: [gameDomain] int;

//if life is here, it will contain its row index,
//otherwise, the board's middle row index
var rowlfAliveArray: [gameDomain] int;

//\ater on, use simple reductions:

maxLivingRow = max reduce rowlfAliveArray;
minLivingRow = min reduce rowlfAliveArray;
maxLivingColumn = max reduce columnlifAliveArray;
minLivingColumn = min reduce columnlifAliveArray;

Game of Life: Initial Life

//default values are 0 (no life) and 1 (life)

//following locations start alive:
lifeArray[minLivingRow, minLivingColumn + 1] = 1;
lifeArray[minLivingRow, minLivingColumn + 2] = 1;
lifeArray[minLivingRow, minLivingColumn + 3] = 1;
lifeArray[minLivingRow + 1, minLivingColumn] = 1;
lifeArray[minLivingRow + 1, minLivingColumn + 3] = 1;
lifeArray[minLivingRow + 2, minLivingColumn + 3] = 1;
lifeArray[minLivingRow + 3, minLivingColumn + 2] = 1;

lifeArray[minLivingRow + 3, minLivingColumn + 3] = 1;

Game of Life: “If Alive” Functions

/* If life exists in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */

proc rowlfAlive(x, y, array) {

Game of Life: “If Alive” Functions

* Easy: returning the row/column number

/* If life exists in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */

proc rowlfAlive(x, y, array) {
if array[x, y] ==1{
return x;

}

Game of Life: “If Alive” Functions

* Easy: returning the row/column number
e Less easy: getting the index of the middle row

/* If life exists in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */

proc rowlfAlive(x, y, array) {
if array[x, y] ==1{
return x;

}

Game of Life: “If Alive” Functions

* Easy: returning the row/column number

e Less easy: getting the index of the middle row
— Use dim domain method to get 1-D subrange

/* If life exists in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */

proc rowlfAlive(x, y, array) {
if array[x, y] ==1{
return x;

}

//determine and return the middle row index
var rowRange = array.domain.dim(1);

Game of Life: “If Alive” Functions

* Easy: returning the row/column number

e Less easy: getting the index of the middle row

— Use dim domain method to get 1-D subrange
— Use high and low range properties

/* If life exists in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */

proc rowlfAlive(x, y, array) {
if array[x, y] ==1{
return x;

}

//determine and return the middle row index
var rowRange = array.domain.dim(1);

var rowHigh = rowRange.high;

var rowLow = rowRange.low;

Game of Life: “If Alive” Functions

* Easy: returning the row/column number

e Less easy: getting the index of the middle row

— Use dim domain method to get 1-D subrange
— Use high and low range properties
— Calculate and return middle index

/* If life exists in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */

proc rowlfAlive(x, y, array) {
if array[x, y] ==1{
return x;

}

//determine and return the middle row index
var rowRange = array.domain.dim(1);

var rowHigh = rowRange.high;

var rowLow = rowRange.low;

return (rowLow + rowHigh)/2;

Game of Life: “If Alive” Functions

* Easy: returning the row/column number

e Less easy: getting the index of the middle row

— Use dim domain method to get 1-D subrange
— Use high and low range properties

— Calculate and return middle index

— (Doesn't work if the range is strided.)

/* If life exists in array at location (x, y), then this returns the index of the row (x). Otherwise, this returns the index of
the middle row of array. */

proc rowlfAlive(x, y, array) {
if array[x, y] ==1{
return x;

}

//determine and return the middle row index
var rowRange = array.domain.dim(1);

var rowHigh = rowRange.high;

var rowLow = rowRange.low;

return (rowLow + rowHigh)/2;

Game of Life: Main Loop

for round in 1..numRounds {
forall (i, j) in gameDomain {
//set the elements of the next life array
nextLifeArrayli,j] = lifeValueNextRound(i,j, lifeArray);

//set the “location if alive” arrays
rowlfAliveArray[i,j] = rowlfAlive(i,j, nextLifeArray);
columnlfAliveArrayl[i,j] = columnlifAlive(i,j, nextLifeArray);

//reset the bounds with reductions

maxLivingRow = max reduce rowlfAliveArray;
minLivingRow = min reduce rowlfAliveArray;
maxLivingColumn = max reduce columnlifAliveArray;
minLivingColumn = min reduce columnlifAliveArray;

//reset the game domain, including buffer of no life
gameDomain = [(minLivingRow-1)..(maxLivingRow+1),
(minLivingColumn-1)..(maxLivingColumn+1)];

lifeArray = nextLifeArray;

Game of Life: Add writeln and Go!

e Add print statements for each iteration of the
oop and watch it go

* | added a printLifeArray function

 Final version available at:

https://dl.dropbox.com/u/43416022/SC12/GameOfLife.chpl

Other Chapel Features

OO programming in Chapel

e Structures: Records and Classes
— Several named variables combined into one object
— Can have accompanying methods

— Difference: Assignment copies contents of a
record, but only a reference for a class

Circle as a Record

record Circle {
var radius : real;

proc area() : real {
return 3.14 * radius * radius;

}
}
var c1, c2 : Circle; //creates 2 Circle records
c1 = new Circle(10); /* uses system-supplied constructor

to initialize attribute in another
and copy values into c1 */
c2 =cl; //copies fields from c1 to c2

Circle as a Class

class Circle {
var radius : real;

proc area() : real {
return 3.14 * radius * radius;

}
}

var c1, c2 : Circle; //creates 2 Circle references

c1 = new Circle(10); /* uses system-supplied constructor
to create a Circle object
and makes c1 refer to it */

c2 =cl; //makes c2 refer to the same object

delete c1; //memory must be manually freed

Inheritance

class Circle : Shape{ //Circle inherits from Shape

var s : Shape;

s = new Circle(10.0); //automatic cast to base class

var area = s.area(); /* call recipient determined
by object’s dynamic type */

Defining a Custom Reduction

* Create object to represent intermediate state

* Must support
— accumulate: adds a single element to the state
— combine: adds another intermediate state
— generate: converts state object into final output

Example “Custom” Reduction

class MyMin{ //finds minimum element (equiv. to built-in reduction min)
type eltType; //type of elements
var soFar : eltType = max(eltType); //minimum so far

proc accumulate(val : eltType) {
if(val < soFar) { soFar = val; }

}

proc combine(other : MyMin) {
if(other.soFar < soFar) { soFar = other.soFar; }

}

proc generate() { return soFar; }

Hands-on Session 2

Using Chapel in the Classroom

Chapel in the Classroom

* Usein courses
— Analysis of Algorithms
— Programming Languages
— Other courses?

* Hurdles

— Still in development

* Discussion: How do you want to use Chapel?

Analysis of Algorithms

* Chapel material
— Assign basic tutorial
— Teach forall & cobegin (also algorithmic notation)

* Projects
— Partition integers
— BubbleSort
— MergeSort
— Nearest Neighbors

Algorithms Project: List Partition

Partition a list to two equal-summing halves.
Brute-force algorithm (don't know P vs NP yet)

Questions:
— What are longest lists you can test?
— What about in parallel?

Trick: enumerate possibilities and use forall

Algorithms Project: BubbleSort

* |Instead of left-to-right, test all pairs in two steps!

CLLLLLL LI LT LT
L L LT

* Two nested forall loops (in sequence) inside a for loop

Algorithms Project: MergeSort

Parallel divide-and-conquer: use cobegin
Elegant division: split the Domain

Speedup not as noticeable

Example of expensive parallel overhead

Algorithms Project: Nearest Neighbors

* Find closest pair of (2-D) points.

Two algorithms:
— Brute Force
e (use a forall like bubbleSort)
— Divide-and-Conquer
e (use cobegin)
e A bit tricky
* Value of parallelism: much easier to program
the brute-force method

Algorithms Takeaway

* Learning curve of Chapel is so low, students
can start using parallelism very quickly

Programming Languages

* High-Performance Computing as Paradigm

* Lots of design choices in Chapel to discuss:
— Task Creation (instead of Threads) with 'begin’.
— Task Synchronicity with 'sync' and cobegin
— Parallel loops: forall and coforall
— Thread safety using variable 'sync’
— reduce overcomes bottleneck

* Project:
— Matrix Multiplication (two different ways)

PL: Thread Generation

* Ex. Java: have to create an object

* Chapel: instead create tasks
— Chapel decides when to generate threads

— Basic keyword: begin
begin {
producer.run();

}

PL: Array Sum

e Divide between two tasks:
begin {
// save value in lowerHalfSum
}
//loop to find upperHalfSum
total = lowerHalfSum + upperHalfSum

* Problem: new task might not finish in time
— Solution: Chapel includes keyword 'sync'

PL: Synchronized Tasks

* Use sync:
sync {
begin {
//loop to find lowerHalfSum
}
begin {
//loop to find upperHalfSum
}
}

sum = lowerHalfSum + upperHalfSum
e Pattern used often; Chapel uses 'cobegin' to simplify.

PL: cobegin

* Use cobegin:
cobegin {
//loop to find lowerHalfSum
//loop to find upperHalfSum

* Much simpler!

PL: forall

e “forall”: common command in parallel
algorithm design
— Give example
— forall vs. coforall (data vs. task parallelism)

 Thread safety
— Write arraySum with forall
— Run it; get different results!
— Define thread safe
— Use 'sync' (for variables) to fix

PL: sync bottleneck and reduce

* sync causes a bottleneck:
— Threads may block; Running time still linear!

* Reductions:
— Divide-and-conquer solution
— Simplify with 'reduce’ keyword!

PL: Projects

* Matrix Multiplication
— Did matrix-vector multiplication in class

— Different algorithms:
* Column-by-column
* One entry at a time

* Collatz conjecture testing

— Generate lots of tasks (coforall)
— How to synchronize?

PL: Takeaways

* Lots of language features to discuss!
* Motivation is obvious

e Students love it!

How else might you use Chapel?

Parallel Computing

— Quick prototyping, easily-changed data distribution, ...
Operating Systems

— Easy thread generation for scheduling projects

Software Design

— Some parallel design patterns have lightweight Chapel
implementations

Artificial Intelligence
(or other courses w/ computationally-intense projects)

Independent Projects

Disclaimer!

e Still in development
— Error Messages thin
— Recursive functions can't return arrays
— Basic libraries missing
— (Students thought this was awesome!)

* No Development Environment
— Command-line compilation/running
— Linux learning curve?

Conclusions

Chapel is easy to pick up

Chapel can be used in many courses
Loads of features, but...

Flexible depth of material

Students will dig in!

Your Feedback

 What are your impressions of Chapel?

 How likely are you to adopt Chapel?
— What course(s) will you use it in?

 What resources would help you adopt it?

