Electric Vehicle Technology Explained

Electric Vehicle Technology Explained

James Larminie

Oxford Brookes University, Oxford, UK

John Lowry

Acenti Designs Ltd., UK

John Wiley & Sons, Ltd

Copyright © 2003

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SO, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85163-5

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Ac	knowle	edgments	xi
Ab	brevia	tions	xiii
Sy	mbols		XV
1	Intro	oduction	1
	1.1	A Brief History	1
		1.1.1 Early days	1
		1.1.2 The relative decline of electric vehicles after 1910	3
		1.1.3 Uses for which battery electric vehicles have remained popular	5
	1.2	Developments Towards the End of the 20th Century	5
	1.3	Types of Electric Vehicle in Use Today	7
		1.3.1 Battery electric vehicles	8
		1.3.2 The IC engine/electric hybrid vehicle	9
		1.3.3 Fuelled electric vehicles	15
		1.3.4 Electric vehicles using supply lines	18
		1.3.5 Solar powered vehicles	18
		1.3.6 Electric vehicles which use flywheels or super capacitors	18
	1.4	Electric Vehicles for the Future	20
		Bibliography	21
2	Batte	eries	23
	2.1	Introduction	23
	2.2	Battery Parameters	24
		2.2.1 Cell and battery voltages	24
		2.2.2 Charge (or Amphour) capacity	25
		2.2.3 Energy stored	26
		2.2.4 Specific energy	27
		2.2.5 Energy density	27
		2.2.6 Specific power	28
		2.2.7 Amphour (or charge) efficiency	28
		2.2.8 Energy efficiency	29

vi Contents

	2.2.9	Self-discharge rates	29
	2.2.10	Battery geometry	29
	2.2.11	Battery temperature, heating and cooling needs	29
	2.2.12	Battery life and number of deep cycles	29
2.3	Lead A	cid Batteries	30
	2.3.1	Lead acid battery basics	30
	2.3.2	Special characteristics of lead acid batteries	32
	2.3.3	Battery life and maintenance	34
	2.3.4	Battery charging	35
	2.3.5	Summary of lead acid batteries	35
2.4		based Batteries	35
2.1	2.4.1	Introduction	35
	2.4.2	Nickel cadmium	36
	2.4.3	Nickel metal hydride batteries	38
2.5		-based Batteries	41
2.3	2.5.1	Introduction	41
	2.5.2	Sodium sulphur batteries	41
	2.5.3	*	42
26		Sodium metal chloride (Zebra) batteries	42 44
2.6		Batteries	44 44
	2.6.1	Introduction	
	2.6.2	The lithium polymer battery	45
2.7	2.6.3	The lithium ion battery	45
2.7		Air Batteries	46
	2.7.1	Introduction	46
	2.7.2	The aluminium air battery	46
	2.7.3	The zinc air battery	47
2.8		Charging	48
	2.8.1	Battery chargers	48
	2.8.2	Charge equalisation	49
2.9	The De	signer's Choice of Battery	51
	2.9.1	Introduction	51
	2.9.2	Batteries which are currently available commercially	52
2.10	Use of	Batteries in Hybrid Vehicles	53
	2.10.1	Introduction	53
	2.10.2	Internal combustion/battery electric hybrids	53
	2.10.3	Battery/battery electric hybrids	53
	2.10.4	Combinations using flywheels	54
	2.10.5	Complex hybrids	54
2.11	Battery	Modelling	54
	2.11.1	The purpose of battery modelling	54
	2.11.2	Battery equivalent circuit	55
	2.11.3	Modelling battery capacity	<i>57</i>
	2.11.4	Simulation a battery at a set power	61
	2.11.5	Calculating the Peukert Coefficient	64
	2.11.6	Approximate battery sizing	65
		IIPPIONORUM OMINITY DIGITLY	

Contents

References 67 3 Alternative and Novel Energy Sources and Stores 69 3.1 Introduction 69 3.2 Solar Photovoltaics 69 3.3 Wind Power 71 3.4 Flywheels 72 3.5 Super Capacitors 74 3.6 Supply Rails 77 References 80 4 Fuel Cells 81 4.1 Fuel Cells, a Real Option? 81 4.2 Hydrogen Fuel Cells: Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 92 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 104 4.5.1		2.12	In Conclusion	66
3.1 Introduction 69 3.2 Solar Photovoltaics 69 3.3 Wind Power 71 3.4 Flywheels 72 3.5 Super Capacitors 74 3.6 Supply Rails 77 References 80 4 Fuel Cells 81 4.1 Fuel Cells a Real Option? 81 4.2 Hydrogen Fuel Cells: Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 <td></td> <td>2.12</td> <td></td> <td></td>		2.12		
3.2 Solar Photovoltaics 69 3.3 Wind Power 71 3.4 Flywheels 72 3.5 Super Capacitors 74 3.6 Supply Rails 77 References 80 4 Fuel Cells 81 4.1 Fuel Cells. Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.2 The electrolyte of a PEM fuel Cell 101 4.5.2 The electrolyte of a PEM fuel Cell 104 4.5 A Complete Fuel Cell System	3	Alter	native and Novel Energy Sources and Stores	69
3.3 Wind Power 71 3.4 Flywheels 72 3.5 Super Capacitors 74 3.6 Supply Rails 77 References 80 4 Fuel Cells 81 4.1 Fuel Cells, a Real Option? 81 4.2 Hydrogen Fuel Cells: Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and efficiency limits 89 4.3.1 Fuel cell effi		3.1	Introduction	69
3.4 Flywheels 72 3.5 Super Capacitors 74 3.6 Supply Rails 77 References 80 4 Fuel Cells 81 4.1 Fuel Cells; a Real Option? 81 4.2 Hydrogen Fuel Cells: Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 104 4.5		3.2	Solar Photovoltaics	69
3.5 Super Capacitors 74 3.6 Supply Rails 77 References 80 4 Fuel Cells 81 4.1 Fuel Cells, a Real Option? 81 4.2 Hydrogen Fuel Cells: Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.1 Fuel cell electrodes 94 4.3.2 Efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.1 Fuel cell effectorlyte of a PEM fuel cell 101 4.5 User Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 Th		3.3	Wind Power	71
3.6 Supply Rails 77 References 80 4 Fuel Cells 81 4.1 Fuel Cells, a Real Option? 81 4.2 Hydrogen Fuel Cells: Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel Cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107		3.4	Flywheels	72
References 80 4 Fuel Cells 81 4.1 Fuel Cells, a Real Option? 81 4.2 Hydrogen Fuel Cells: Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109		3.5	Super Capacitors	74
4 Fuel Cells 81 4.1 Fuel Cells, a Real Option? 81 4.2 Hydrogen Fuel Cells: Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.5 Water Management in the PEM Fuel Cell 101 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114		3.6		
4.1 Fuel Cells, a Real Option? 81 4.2 Hydrogen Fuel Cells: Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 104 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111			References	80
4.2.1 Hydrogen Fuel Cells: Basic Principles 83 4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 104 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 11 5.1 Introduction 111 5.2 Fuel Reforming 113	4			
4.2.1 Electrode reactions 83 4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117				
4.2.2 Different electrolytes 84 4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing: or mobile applications 118		4.2		
4.2.3 Fuel cell electrodes 87 4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen <td></td> <td></td> <td></td> <td></td>				
4.3 Fuel Cell Thermodynamics – an Introduction 89 4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltage 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 104 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal <td></td> <td></td> <td></td> <td></td>				
4.3.1 Fuel cell efficiency and efficiency limits 89 4.3.2 Efficiency and the fuel cell voltages 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile appl				
4.3.2 Efficiency and the fuel cell voltages 92 4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 104 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydr		4.3		
4.3.3 Practical fuel cell voltages 94 4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.2 Safety 120				
4.3.4 The effect of pressure and gas concentration 95 4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120			\mathcal{J}	
4.4 Connecting Cells in Series – the Bipolar Plate 96 4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 104 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120				
4.5 Water Management in the PEM Fuel Cell 101 4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120				
4.5.1 Introduction to the water problem 101 4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120				
4.5.2 The electrolyte of a PEM fuel cell 101 4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120		4.5		
4.5.3 Keeping the PEM hydrated 104 4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120			1	
4.6 Thermal Management of the PEM Fuel Cell 105 4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120			, J	
4.7 A Complete Fuel Cell System 107 References 109 5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120				
Feferences 109 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120				
5 Hydrogen Supply 111 5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120		4.7		
5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120			References	109
5.1 Introduction 111 5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120	5	Hvdr	rogen Supply	111
5.2 Fuel Reforming 113 5.2.1 Fuel cell requirements 113 5.2.2 Steam reforming 114 5.2.3 Partial oxidation and autothermal reforming 116 5.2.4 Further fuel processing: carbon monoxide removal 117 5.2.5 Practical fuel processing for mobile applications 118 5.3 Hydrogen Storage I: Storage as Hydrogen 119 5.3.1 Introduction to the problem 119 5.3.2 Safety 120 5.3.3 The storage of hydrogen as a compressed gas 120		•		111
5.2.1Fuel cell requirements1135.2.2Steam reforming1145.2.3Partial oxidation and autothermal reforming1165.2.4Further fuel processing: carbon monoxide removal1175.2.5Practical fuel processing for mobile applications1185.3Hydrogen Storage I: Storage as Hydrogen1195.3.1Introduction to the problem1195.3.2Safety1205.3.3The storage of hydrogen as a compressed gas120		5.2		
5.2.2Steam reforming1145.2.3Partial oxidation and autothermal reforming1165.2.4Further fuel processing: carbon monoxide removal1175.2.5Practical fuel processing for mobile applications1185.3Hydrogen Storage I: Storage as Hydrogen1195.3.1Introduction to the problem1195.3.2Safety1205.3.3The storage of hydrogen as a compressed gas120			<u> </u>	
5.2.3Partial oxidation and autothermal reforming1165.2.4Further fuel processing: carbon monoxide removal1175.2.5Practical fuel processing for mobile applications1185.3Hydrogen Storage I: Storage as Hydrogen1195.3.1Introduction to the problem1195.3.2Safety1205.3.3The storage of hydrogen as a compressed gas120				
5.2.4Further fuel processing: carbon monoxide removal				
5.2.5Practical fuel processing for mobile applications1185.3Hydrogen Storage I: Storage as Hydrogen1195.3.1Introduction to the problem1195.3.2Safety1205.3.3The storage of hydrogen as a compressed gas120				
5.3 Hydrogen Storage I: Storage as Hydrogen			<i>y</i> 1	
5.3.1 Introduction to the problem		5.3	3 1 00 11	
5.3.2 Safety				
5.3.3 The storage of hydrogen as a compressed gas 120			1	
			v .	

viii Contents

		5.3.5	Reversible metal hydride hydrogen stores	124	
		5.3.6	Carbon nanofibres	126	
		5.3.7	Storage methods compared	127	
	5.4	Hydro	gen Storage II: Chemical Methods	127	
		5.4.1	Introduction	127	
		5.4.2	Methanol	128	
		5.4.3	Alkali metal hydrides	130	
		5.4.4	Sodium borohydride	132	
		5.4.5	Ammonia	135	
		5.4.6	Storage methods compared	138	
		Refere	•		
_					
6			chines and their Controllers	141	
	6.1		Brushed' DC Electric Motor	141	
		6.1.1	Operation of the basic DC motor	141	
		6.1.2	Torque speed characteristics	143	
		6.1.3	Controlling the brushed DC motor	147	
		6.1.4	Providing the magnetic field for DC motors	147	
		6.1.5	DC motor efficiency	149	
		6.1.6	Motor losses and motor size	151	
		6.1.7	Electric motors as brakes	153	
	6.2		egulation and Voltage Conversion	155	
		6.2.1	Switching devices	155	
		6.2.2	Step-down or 'buck' regulators	157	
		6.2.3	Step-up or 'boost' switching regulator	159	
		6.2.4	Single-phase inverters	162	
		6.2.5	Three-phase	165	
	6.3	Brushl	ess Electric Motors	166	
		6.3.1	Introduction	166	
		6.3.2	The brushless DC motor	167	
		6.3.3	Switched reluctance motors	169	
		6.3.4	The induction motor	173	
	6.4	Motor	Cooling, Efficiency, Size and Mass	175	
		6.4.1	Improving motor efficiency	175	
		6.4.2	Motor mass	177	
	6.5	Electri	cal Machines for Hybrid Vehicles	179	
		Refere		181	
7	Electric Vehicle Modelling				
	7.1		action	183	
	7.2		ve Effort		
		7.2.1	Introduction	184	
		7.2.2	Rolling resistance force	184	
		7.2.3	Aerodynamic drag	185	
		7.2.4	Hill climbing force	185	

Contents ix

		7.2.5 Acceleration force	185
		7.2.6 Total tractive effort	187
	7.3		188
			188
			189
		y	193
	7.4		196
		\mathcal{E}	196
		0 ,	201
		0 0 0	206
			207
		J	208
		0 0 0	211
	7.5		212
	7.5	3	212
		References	.12
8	Desi	gn Considerations	213
	8.1	Introduction	213
	8.2	Aerodynamic Considerations	213
		8.2.1 Aerodynamics and energy	213
			217
	8.3		218
	8.4		220
	8.5		223
	8.6		226
		, ,	226
		8.6.2 Body/chassis layout	227
			228
		• 0 • 0 •	231
		0 00	231
		8.6.6 Examples of chassis used in modern battery and hybrid electric	
		1 3	232
			232
	8.7		234
		8	234
		0 1 0	234
9	Desi	gn of Ancillary Systems	237
	9.1	Introduction	
	9.2	Heating and Cooling Systems	
	9.3	c	240
	9.4		243
	9.5	Choice of Tyres	243
	9.6	Wing Mirrors, Aerials and Luggage Racks	
	9.7	Electric Vehicle Recharging and Refuelling Systems	244

x Contents

10	Elect	ric Vehicles and the Environment	245
	10.1	Introduction	245
	10.2	Vehicle Pollution: the Effects	245
	10.3	Vehicles Pollution: a Quantitative Analysis	248
	10.4	Vehicle Pollution in Context	251
	10.5	Alternative and Sustainable Energy Used via the Grid	254
		10.5.1 Solar energy	254
		10.5.2 Wind energy	255
		10.5.3 Hydro energy	255
		10.5.4 Tidal energy	255
		10.5.5 Biomass energy	256
		10.5.6 Geothermal energy	257
		10.5.7 Nuclear energy	257
		10.5.8 Marine current energy	257
		10.5.9 Wave energy	257
	10.6	Using Sustainable Energy with Fuelled Vehicles	258
		10.6.1 Fuel cells and renewable energy	258
		10.6.2 Use of sustainable energy with conventional IC engine vehicles	258
	10.7	The Role of Regulations and Law Makers	258
		References	260
11	Case	Studies	261
	11.1	Introduction	261
	11.2	Rechargeable Battery Vehicles	261
		11.2.1 Electric bicycles	261
			263
		11.2.3 Low speed vehicles	263
		11.2.4 Battery powered cars and vans	266
	11.3	Hybrid Vehicles	269
		11.3.1 The Honda Insight	269
		11.3.2 The Toyota Prius	271
	11.4	Fuel Cell Powered Bus	272
	11.5	Conclusion	275
		References	277
App	oendic	es: MATLAB® Examples	279
			279
			280
		Appendix 3: Simulating One Cycle	282
		Appendix 4: Range Simulation of the GM EV1 Electric Car	284
		Appendix 5: Electric Scooter Range Modelling	286
		Appendix 6: Fuel Cell Range Simulation	288
		Appendix 7: Motor Efficiency Plots	290
			200
Ind	ex .		293

Acknowledgments

The topic of electric vehicles is rather more interdisciplinary than a consideration of ordinary internal combustion engine vehicles. It covers many aspects of science and engineering. This is reflected in the diversity of companies that have helped with advice, information and pictures for this book. The authors would like to put on record their thanks to the following companies and organisations that have made this book possible.

Ballard Power Systems Inc., Canada DaimlerChrysler Corp., USA and Germany The Ford Motor Co., USA General Motors Corp., USA GfE Metalle und Materialien GmbH. Germany Groupe Enerstat Inc., Canada Hawker Power Systems Inc., USA The Honda Motor Co. Ltd. Johnson Matthey Plc., UK MAN Nutzfahrzeuge AG, Germany MES-DEA SA, Switzerland Micro Compact Car Smart GmbH National Motor Museum Beaulieu Parry People Movers Ltd., UK Paul Scherrer Institute, Switzerland Peugeot S.A., France Powabyke Ltd., UK Richens Mobility Centre, Oxford, UK Saft Batteries, France SR Drives Ltd., UK Toyota Motor Co. Ltd. Wamfler GmbH, Germany Zytek Group Ltd., UK

In addition we would like to thank friends and colleagues who have provided valuable comments and advice. We are also indebted to these friends and colleagues, and our families, who have helped and put up with us while we devoted time and energy to this project.

James Larminie, Oxford Brookes University, Oxford, UK John Lowry, Acenti Designs Ltd., UK

Abbreviations

AC Alternating current
BLDC Brushless DC (motor)
BOP Balance of plant

CARB California air resources board
CCGT Combined cycle gas turbine
CNG Compressed natural gas
CPO Catalytic partial oxidation

CVT Continuously variable transmission

DC Direct current

DMFC Direct methanol fuel cell

ECCVT Electronically controlled continuous variable transmission

ECM Electronically commutated motor

EMF Electromotive force

EPA Environmental protection agency

EPS Electric power steering

ETSU Energy technology support unit (a government organisation in the UK)

EUDC Extra-urban driving cycles

EV Electric vehicle FCV Fuel cell vehicle

FHDS Federal highway driving schedule FUDS Federal urban driving schedule

GM General Motors

GM EV1 General Motors electric vehicle 1

GNF Graphitic nanofibre GTO Gate turn off

HEV Hybrid electric vehicle HHV Higher heating value IC Internal combustion

ICE Internal combustion engine

IEC International Electrotechnical Commission

IGBT Insulated gate bipolar transistor

IMA Integrated motor assist IPT Inductive power transfer

xiv Abbreviations

kph Kilometres per hour LHV Lower heating value

LH₂ Liquid (cryogenic) hydrogen

LPG Liquid petroleum gas LSV Low speed vehicle

MeOH Methanol mph Miles per hour

MEA Membrane electrode assembly

MOSFET Metal oxide semiconductor field effect transistor NASA National Aeronautics and Space Administration

NiCad Nickel cadmium (battery)
NiMH Nickel metal hydride (battery)
NL Normal litre, 1 litre at NTP

NTP Normal temperature and pressure (20°C and 1 atm or 1.01325 bar)

NOX Nitrous oxides
OCV Open circuit voltage

PEM Proton exchange membrane or polymer electrolyte membrane: different

names for the same thing which fortunately have the same abbreviation

PEMFC Proton exchange membrane fuel cell or polymer electrolyte membrane

fuel cell

PM Permanent magnet or particulate matter

POX Partial oxidation
ppb Parts per billion
ppm Parts per million
PROX Preferential oxidation
PWM Pulse width modulation
PZEV Partial zero emission vehicle
SAE Society of Automotive Engineers

SFUDS Simplified federal urban driving schedule

SL Standard litre, 1 litre at STP

SOFC Solid oxide fuel cell SRM Switched reluctance motor

STP Standard temperature and pressure (= SRS)

SULEV Super ultra low emission vehicles TEM Transmission electron microscope

ULEV Ultra low emission vehicle VOC Volatile organic compounds

VRLA Valve regulated (sealed) lead acid (battery)

WTT Well to tank
WTW Well to wheel
WOT Wide open throttle

ZEBRA Zero emissions battery research association

ZEV Zero emission vehicle

Symbols

Letters are used to stand for variables, such as mass, and also as chemical symbols in chemical equations. The distinction is usually clear from the context, but for even greater clarity italics are use for variables, and ordinary text for chemical symbols, so H stands for enthalpy, whereas H stands for hydrogen.

In cases where a letter can stand for two or more variables, the context always makes it clear which is intended.

a	Acceleration
A	Area
B	Magnetic field strength
C_d	Drag coefficient
C	Amphour capacity of a battery OR capacitance of a capacitor
C_3	Amphour capacity of a battery if discharged in 3 hours, the '3 hour rate'
C_p	Peukert capacity of a battery, the same as the Amphour capacity if discharged at a current of 1 Amp
CR	Charge removed from a battery, usually in Amphours
CS	Charge supplied to a battery, usually in Amphours
d	Separation of the plates of a capacitor OR distance traveled
DoD	Depth of discharge, a ratio changing from 0 (fully charged) to 1 (empty)
E	Energy, or Young's modulus, or EMF (voltage)
E_b	Back EMF (voltage) of an electric motor in motion
E_s	Supplied EMF (voltage) to an electric motor
e^{-}	Magnitude of the charge on one electron, 1.602×10^{-19} Coulombs
f	Frequency
\overline{F}	Force or Faraday constant, the charge on one mole of electrons, 96 485 Coulombs
F_{rr}	Force needed to overcome the rolling resistance of a vehicle
F_{ad}	Force needed to overcome the wind resistance on a vehicle
F_{la}	Force needed to give linear acceleration to a vehicle
F_{hc}	Force needed to overcome the gravitational force of a vehicle down a hill
$F_{\omega a}$	Force at the wheel needed to give rotational acceleration to the rotating parts of a vehicle
F_{te}	Tractive effort, the forward driving force on the wheels
g	Acceleration due to gravity

xvi Symbols

G	Gear ratio OR rigidity modulus OR Gibbs free energy (negative
	thermodynamic potential)
H	Enthalpy
Ι	Current, OR moment of inertia, OR second moment of area, the context
_	makes it clear
I_m	Motor current
J	Polar second moment of area
k_c	Copper losses coefficient for an electric motor
k_i	Iron losses coefficient for an electric motor
k_w	Windage losses coefficient for an electric motor
KE	Kinetic energy
K_m	Motor constant
k	Peukert coefficient
L	Length
m	Mass
m	Mass flow rate
m_b	Mass of batteries
N	Avogadro's number, 6.022×10^{23} OR revolutions per second
n	Number of cells in a battery, OR a fuel cell stack, OR the number of moles of substance
P	Power OR pressure
P_{adw}	Power at the wheels needed to overcome the wind resistance on a vehicle
P_{adb}	Power from the battery needed to overcome the wind resistance on a vehicle
P_{hc}	Power needed to overcome the gravitational force of a vehicle down a hill
$P_{mot\text{-}in}$	Electrical power supplied to an electric motor
$P_{mot-out}$	Mechanical power given out by an electrical motor
P_{rr}	Power needed to overcome the rolling resistance of a vehicle
P_{te}	Power supplied at the wheels of a vehicle
Q	Charge, e.g. in a capacitor
q	Sheer stress
R	Electrical resistance, OR the molar gas constant 8.314 JK ⁻¹ mol ⁻¹
R_a	Armature resistance of a motor or generator
R_L	Resistance of a load
r	Radius, of wheel, axle, OR the rotor of a motor, etc.
r_i, r_o	Inner and outer radius of a hollow tube
S	Entropy
SE	Specific energy
T	Temperature, OR Torque, OR the discharge time of a battery in hours
T_1, T_2	Temperatures at different stages in a process
T_f	Frictional torque, e.g. in an electrical motor
t_{on}, t_{off}	On and off times for a chopper circuit
von, voji	Velocity
V	Voltage
•	Total

Symbols xvii

W	Work done
Z	Number of electrons transferred in a reaction
Φ	Total magnetic flux
δ	Deflection
δt	Time step in an iterative process
Δ	Change in, e.g. ΔH = change in enthalpy
σ	Bending stress
ε	Electrical permittivity
n	Efficiency
η	•
η_c	Efficiency of a DC/DC converter
η_{fc}	Efficiency of a fuel cell
η_m	Efficiency of an electric motor
η_g	Efficiency of a gearbox
η_0	Overall efficiency of a drive system
θ	Angle of deflection or bend
λ	Stoichiometric ratio
μ_{rr}	Coefficient of rolling resistance
ρ	Density
ψ	Angle of slope or hill
ω	Angular velocity