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Preface

Principles of Econometrics, 4th edition, is an introductory book for undergraduate students

in economics and finance, as well as for first-year graduate students in economics, finance,

accounting, agricultural economics, marketing, public policy, sociology, law, and political

science. It is assumed that students have taken courses in the principles of economics, and

elementary statistics. Matrix algebra is not used, and calculus concepts are introduced

and developed in the appendices.

A brief explanation of the title is in order. This work is a revision of Principles of

Econometrics, 3rd edition, byHill, Griffiths, and Lim (Wiley, 2008), whichwas a revision of

Undergraduate Econometrics, 2nd edition, by Hill, Griffiths, and Judge (Wiley, 2001). The

earlier title was chosen to clearly differentiate the book from other more advanced books by

the same authors. We made the title change because the book is appropriate not only for

undergraduates, but also for first-year graduate students in many fields, as well as MBA

students. Furthermore, naming it Principles of Econometrics emphasizes our belief that

econometrics should be part of the economics curriculum, in the sameway as the principles

of microeconomics and the principles of macroeconomics. Those who have been studying

and teaching econometrics as long as we have will remember that Principles of Econo-

metricswas the title that Henri Theil used for his 1971 classic, which was also published by

John Wiley and Sons. Our choice of the same title is not intended to signal that our book is

similar in level and content. Theil’s work was, and remains, a unique treatise on advanced

graduate level econometrics. Our book is an introductory-level econometrics text.

Book Objectives

Principles of Econometrics is designed to give students an understanding of why econo-

metrics is necessary, and to provide them with a working knowledge of basic econometric

tools so that

� They can apply these tools tomodeling, estimation, inference, and forecasting in the

context of real-world economic problems.

� They can evaluate critically the results and conclusions from others who use basic

econometric tools.

� They have a foundation and understanding for further study of econometrics.

� They have an appreciation of the range of more advanced techniques that exist and

that may be covered in later econometric courses.

The book is not an econometrics cookbook, nor is it in a theorem-proof format. It

emphasizes motivation, understanding, and implementation. Motivation is achieved by

introducing very simple economic models and asking economic questions that the student

can answer. Understanding is aided by lucid description of techniques, clear interpretation,
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and appropriate applications. Learning is reinforced by doing, with clear worked examples

in the text and exercises at the end of each chapter.

Overview of Contents

This fourth edition retains the spirit and basic structure of the third edition. Chapter 1

introduces econometrics and gives general guidelines forwriting an empirical research paper

and for locating economic data sources. The Probability Primer preceding Chapter 2

summarizes essential properties of random variables and their probability distributions,

and reviews summation notation. The simple linear regression model is covered in Chapters

2–4, while the multiple regression model is treated in Chapters 5–7. Chapters 8 and 9

introduce econometric problems that are unique to cross-sectional data (heteroskedasticity)

and time-series data (dynamic models), respectively. Chapters 10 and 11 deal with random

regressors, the failure of least squares when a regressor is endogenous, and instrumental

variables estimation, first in the general case, and then in the simultaneous equations model.

InChapter 12 the analysis of time-series data is extended todiscussions of nonstationarity and

cointegration. Chapter 13 introduces econometric issues specific to two special time-series

models, the vector error correction and vector autoregressive models, while Chapter 14

considers the analysis of volatility in data and the ARCH model. In Chapters 15 and 16 we

introduce microeconometric models for panel data, and qualitative and limited dependent

variables. In appendices A, B, and Cwe introduce math, probability, and statistical inference

concepts that are used in the book.

Summary of Changes and New Material

This edition includes a great deal of new material, including new examples and exercises

using real data, and some significant reorganizations. Important new features include:

� Chapter 1 includes a discussion of data types, and sources of economic data on the

Internet. Tips on writing a research paper are given up front so that students can

form ideas for a paper as the course develops.
� The Probability Primer precedes Chapter 2. This primer reviews the concepts of

random variables, and how probabilities are calculated given probability density

functions.Mathematicalexpectationandrulesofexpectedvaluesare summarized for

discrete randomvariables. These rules are applied to develop the concept of variance

and covariance. Calculations of probabilities using the normal distribution are

illustrated.
� Chapter 2 is expanded to include brief introductions to nonlinear relationships and

the concept of an indicator (or dummy) variable. A new section has been added on

interpreting a standard error. An appendix has been added on Monte Carlo

simulation and is used to illustrate the sampling properties of the least squares

estimator.
� Estimation and testing of linear combinations of parameters is now included in

Chapter 3. An appendix is added using Monte Carlo simulation to illustrate the

properties of interval estimators and hypothesis tests. Chapter 4 discusses in detail

nonlinear relationships such as the log-log, log-linear, linear-log, and polynomial

models. Model interpretations are discussed and examples given, along with an

introduction to residual analysis.
� The introductory chapter on multiple regression (Chapter 5) now includes material

on standard errors for both linear and nonlinear functions of coefficients, and how

they are used for interval estimation and hypothesis testing. The treatment of
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polynomial and log-linear models given in Chapter 4 is extended to the multiple

regression model; interaction variables are included and marginal effects are

described. An appendix on large sample properties of estimators has been added.
� Chapter 6 contains a new section on model selection criteria and a reorganization

of material on the F-test for joint hypotheses.
� Chapter 7 now deals exclusively with indicator variables. In addition to the

standard material, we introduce the linear probability model and treatment effect

models, including difference and difference-in-difference estimators.
� Chapter 8 has been reorganized so that testing for heteroskedasticity precedes

estimation with heteroskedastic errors. A section on heteroskedasticity in the linear

probability model has been added.
� Chapter 9 on regression with stationary time series data has been restructured to

emphasize autoregressive distributed lag models and their special cases: finite

distributed lags, autoregressive models, and the AR(1) error model. Testing for

serial correlation using the correlogram and Lagrange multiplier tests now

precedes estimation. Two new macroeconomic examples, Okun’s law and the

Phillips curve, are used to illustrate the various models. Sections on exponential

smoothing and model selection criteria have been added, and the section on

multiplier analysis has been expanded.
� Chapter 10 on endogeneity problems has been streamlined, using real data

examples in the body of the chapter as illustrations. New material on assessing

instrument strength has been added. An appendix on testing for weak instruments

introduces the Stock-Yogo critical values for the Cragg-Donald F-test. A Monte

Carlo experiment is included to demonstrate the properties of instrumental

variables estimators.
� Chapter 11 now includes an appendix describing two alternatives to two-stage least

squares: the limited information maximum likelihood and the k-class estimators.

The Stock-Yogo critical values for LIML and k-class estimator are provided.

Monte Carlo results illustrate the properties of LIML and the k-class estimator.
� Chapter 12 now contains a section on the derivation of the short-run error

correction model.
� Chapter 13 now contains an example and exercise using data which includes the

recent global financial crisis.
� Chapter 14 now contains a revised introduction to the ARCH model.
� Chapter 15 has been restructured to give more prominence to the fixed effects and

random effects models. New sections on cluster-robust standard errors and the

Hausman-Taylor estimator have been added.
� Chapter 16 includes more on post-estimation analysis within choice models. The

average marginal effect is explained and illustrated. The ‘‘delta method’’ is used to

create standard errors of estimated marginal effects and predictions. An appendix

gives algebraic detail on the ‘‘delta method.’’
� Appendix A now introduces the concepts of derivatives and integrals. Rules for

derivatives are given, and the Taylor series approximation explained. Both

derivatives and integrals are explained intuitively using graphs and algebra, with

each in separate sections.
� Appendix B includes a discussion and illustration of the properties of both discrete

and continuous random variables. Extensive examples are given, including

integration techniques for continuous random variables. The change-of-variable

technique for deriving the probability density function of a function of a

continuous random variable is discussed. The method of inversion for drawing
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random values is discussed and illustrated. Linear congruential generators for

uniform random numbers are described.
� Appendix C now includes a section on kernel density estimation.
� Brief answers to selected problems, along with all data files, will now be included

on the book website at www.wiley.com/college/hill.

Computer Supplement Books

The following books are offered by John Wiley and Sons as computer supplements to

Principles of Econometrics:

� Using EViews for Principles of Econometrics, 4th edition, by Griffiths, Hill and
Lim [ISBN 978-1-11803207-7 or at www.coursesmart.com]. This supple-
mentary book presents the EViews 7.1 [www.eviews.com] software
commands required for the examples in Principles of Econometrics in a clear
and concise way. It includes many illustrations that are student friendly. It is
useful not only for students and instructors who will be using this software as
part of their econometrics course, but also for those who wish to learn how to
use EViews.

� Using Stata for Principles of Econometrics, 4th edition, by Adkins and Hill
[ISBN 978-1-11803208-4 or at www.coursesmart.com]. This supplementary
book presents the Stata 11.1 [www.stata.com] software commands required
for the examples in Principles of Econometrics. It is useful not only for students
and instructors who will be using this software as part of their econometrics
course, but also for those who wish to learn how to use Stata. Screen shots
illustrate the use of Stata’s drop-down menus. Stata commands are explained
and the use of ‘‘do-files’’ illustrated.

� Using SAS for Econometrics by Hill and Campbell [ISBN 978-1-11803209-1 or
at www.coursesmart.com]. This stand-alone book gives SAS 9.2 [www.sas.
com] software commands for econometric tasks, following the general outline
of Principles of Econometrics. It includes enough background material on
econometrics so that instructors using any textbook can easily use this book
as a supplement. The volume spans several levels of econometrics. It is
suitable for undergraduate students who will use ‘‘canned’’ SAS statistical
procedures, and for graduate students who will use advanced procedures as
well as direct programming in SAS’s matrix language; the latter is discussed in
chapter appendices.

� Using Excel for Principles of Econometrics, 4th edition, by Briand and Hill
[ISBN 978-1-11803210-7 or at www.coursesmart.com]. This supplement
explains how to use Excel to reproduce most of the examples in Principles of

Econometrics. Detailed instructions and screen shots are provided explaining
both the computations and clarifying the operations of Excel. Templates are
developed for common tasks.

� Using GRETL for Principles of Econometrics, 4th edition, by Adkins. This
free supplement, readable using Adobe Acrobat, explains how to use the
freely available statistical software GRETL (download from http://gretl
.sourceforge.net). Professor Adkins explains in detail, using screen shots, how
to use GRETL to replicate the examples in Principles of Econometrics. The
manual is freely available at www.learneconometrics.com/gretl.html.
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Resources for Students

Available at both the book website, www.wiley.com/college/hill, and at the author website,

principlesofeconometrics.com, are
� Data files
� Answers to selected exercises

Data Files

Data files for the book are provided in a variety of formats at the book website www.wiley

.com/college/hill. These include
� ASCII format (*.dat). These are text files containing only data.
� Definition files (*.def). These are text files describing the data file contents, with a

listing of variable names, variable definitions, and summary statistics.
� EViews (*.wf1) workfiles for each data file
� Excel 2007 (*.xlsx) workbooks for each data file, including variable names in the

first row
� Stata (*.dta) data files
� SAS (*.sas7bdat) data files
� GRETL (*.gdt) data files

Resources for Instructors

For instructors, also available at the website www.wiley.com/college/hill are
� An Instructor’s Resources Guide with complete solutions, in both Microsoft Word

and *.pdf formats, to all exercises in the text
� PowerPoint Presentation Slides
� Supplementary exercises with solutions

Author Website

The authors’ website—principlesofeconometrics.com—includes
� Individual data files in each format, as well as Zip files containing data in

compressed format
� Book errata
� Links to other useful websites, including RATS and SHAZAM computer resources

for Principles of Econometrics, and tips on writing research papers
� Answers to selected exercises
� Hints and resources for writing
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C h a p t e r 1
An Introduction to
Econometrics

1.1 Why Study Econometrics?

Econometrics is fundamental for economic measurement. However, its importance extends

far beyond the discipline of economics. Econometrics is a set of research tools also

employed in the business disciplines of accounting, finance, marketing and management.

It is used by social scientists, specifically researchers in history, political science, and

sociology. Econometrics plays an important role in such diverse fields as forestry

and agricultural economics. This breadth of interest in econometrics arises in part because

economics is the foundation of business analysis and is the core social science. Thus

research methods employed by economists, which includes the field of econometrics, are

useful to a broad spectrum of individuals.

Econometrics plays a special role in the training of economists. As a student of

economics, you are learning to ‘‘think like an economist.’’ You are learning economic

concepts such as opportunity cost, scarcity, and comparative advantage. You are working

with economic models of supply and demand, macroeconomic behavior, and international

trade. Through this training you become a personwho better understands theworld inwhich

we live; you become someone who understands how markets work, and the way in which

government policies affect the marketplace.

If economics is your major or minor field of study, a wide range of opportunities is open

to you upon graduation. If you wish to enter the business world, your employer will want to

know the answer to the question, ‘‘What can you do for me?’’ Students taking a traditional

economics curriculum answer, ‘‘I can think like an economist.’’ While we may view such a

response to be powerful, it is not very specific, andmay not bevery satisfying to an employer

who does not understand economics.

The problem is that a gap exists between what you have learned as an economics student

and what economists actually do. Very few economists make their livings by studying

economic theory alone, and those who do are usually employed by universities. Most

economists, whether they work in the business world or for the government, or teach in

universities, engage in economic analysis that is in part ‘‘empirical.’’ By this we mean that

they use economic data to estimate economic relationships, test economic hypotheses, and

predict economic outcomes.

Studying econometrics fills the gap between being ‘‘a student of economics’’ and being

‘‘a practicing economist.’’ With the econometric skills you will learn from this book,

including how to work with econometric software, you will be able to elaborate on your

answer to the employer’s question above by saying ‘‘I can predict the sales of your product.’’
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‘‘I can estimate the effect on your sales if your competition lowers its price by $1 per

unit.’’ ‘‘I can test whether your new ad campaign is actually increasing your sales.’’ These

answers are music to an employer’s ears, because they reflect your ability to think like an

economist and to analyze economic data. Such pieces of information are keys to good

business decisions. Being able to provide your employer with useful information will make

you a valuable employee and increase your odds of getting a desirable job.

On the other hand, if you plan to continue your education by enrolling in graduate school

or law school, you will find that this introduction to econometrics is invaluable. If your goal

is to earn a master’s or Ph.D. degree in economics, finance, accounting, marketing,

agricultural economics, sociology, political science, or forestry, you will encounter

more econometrics in your future. The graduate courses tend to be quite technical

and mathematical, and the forest often gets lost in studying the trees. By taking this

introduction to econometrics you will gain an overview of what econometrics is about and

develop some ‘‘intuition’’ about how things work before entering a technically oriented

course.

1.2 What Is Econometrics About?

At this point we need to describe the nature of econometrics. It all begins with a theory from

your field of study—whether it is accounting, sociology or economics—about how

important variables are related to one another. In economics we express our ideas about

relationships between economic variables using themathematical concept of a function. For

example, to express a relationship between income and consumption, we may write

CONSUMPTION ¼ f ðINCOMEÞ

which says that the level of consumption is some function, f(�), of income.

The demand for an individual commodity—say, the Honda Accord—might be expressed as

Qd ¼ f ðP; Ps; Pc; INCÞ

which says that the quantity of Honda Accords demanded, Qd, is a function

f ðP; Ps; Pc; INCÞ of the price of Honda Accords P, the price of cars that are substitutes
Ps, the price of items that are complements Pc (like gasoline), and the level of income INC.

The supply of an agricultural commodity such as beef might be written as

Qs ¼ f ðP; Pc; Pf Þ

where Qs is the quantity supplied, P is the price of beef, Pc is the price of competitive

products in production (e.g., the price of hogs), and P f is the price of factors or inputs (e.g.,

the price of corn) used in the production process.

Each of the above equations is a general economicmodel that describes howwevisualize

the way in which economic variables are interrelated. Economic models of this type guide

our economic analysis.

For most economic decision or choice problems, it is not enough to know that certain

economic variables are interrelated, or even the direction of the relationship. In addition, we

must understand the magnitudes involved. That is, we must be able to say how much a

change in one variable affects another.
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Econometrics is about how we can use theory and data from economics, business, and the

social sciences, along with tools from statistics, to answer ‘‘how much’’ questions.

1.2.1 SOME EXAMPLES

As a case in point, consider the problem faced by a central bank. In the United States, this is

the Federal Reserve System, with Ben Bernanke as chairman of the Federal Reserve Board

(FRB).When prices are observed to rise, suggesting an increase in the inflation rate, the FRB

must make a decision about whether to dampen the rate of growth of the economy. It can do

so by raising the interest rate it charges its member banks when they borrow money (the

discount rate) or the rate on overnight loans between banks (the federal funds rate).

Increasing these rates sends a ripple effect through the economy, causing increases in other

interest rates, such as those faced bywould-be investors, whomay be firms seeking funds for

capital expansion or individuals who wish to buy consumer durables like automobiles and

refrigerators. This has the economic effect of increasing costs, and consumers react by

reducing the quantity of the durable goods demanded. Overall, aggregate demand falls,

which slows the rate of inflation. These relationships are suggested by economic theory.

The real question facing Chairman Bernanke is ‘‘How much should we increase the

discount rate to slow inflation and yetmaintain a stable and growing economy?’’ The answer

will depend on the responsiveness of firms and individuals to increases in the interest

rates and to the effects of reduced investment on gross national product (GNP). The key

elasticities and multipliers are called parameters. The values of economic parameters are

unknown and must be estimated using a sample of economic data when formulating

economic policies.

Econometrics is about how to best estimate economic parameters given the datawe have.

‘‘Good’’ econometrics is important, since errors in the estimates used by policymakers such

as the FRB may lead to interest rate corrections that are too large or too small, which has

consequences for all of us.

Every day, decision-makers face ‘‘how much’’ questions similar to those facing Chair-

man Bernanke:

� A city council ponders the question of how much violent crime will be reduced if an

additional million dollars is spent putting uniformed police on the street.

� The owner of a local Pizza Hut must decide how much advertising space to purchase

in the local newspaper, and thus must estimate the relationship between advertising

and sales.

� Louisiana State University must estimate how much enrollment will fall if tuition is

raised by $300 per semester, and thus whether its revenue from tuition will rise or fall.

� The CEO of Proctor & Gamble must estimate how much demand there will be in ten

years for the detergent Tide, and how much to invest in new plant and equipment.

� A real estate developer must predict by how much population and income

will increase to the south of Baton Rouge, Louisiana, over the next few years,

and whether it will be profitable to begin construction of a gambling casino and golf

course.

� You must decide how much of your savings will go into a stock fund, and how much

into themoneymarket. This requires you tomake predictions of the level of economic

activity, the rate of inflation, and interest rates over your planning horizon.

1 . 2 WHAT I S ECONOMETRICS ABOUT? 3



� Apublic transportation council inMelbourne, Australia, must decide how an increase

in fares for public transportation (trams, trains, and buses) will affect the number of

travelers who switch to car or bike, and the effect of this switch on revenue going to

public transportation.

To answer these questions of ‘‘how much,’’ decision-makers rely on information provided

by empirical economic research. In such research, an economist uses economic theory

and reasoning to construct relationships between the variables in question. Data on these

variables are collected and econometric methods are used to estimate the key underlying

parameters and to make predictions. The decision-makers in the above examples obtain

their ‘‘estimates’’ and ‘‘predictions’’ in different ways. The Federal Reserve Board has a

large staff of economists to carry out econometric analyses. The CEO of Proctor &

Gamble may hire econometric consultants to provide the firm with projections of sales.

You may get advice about investing from a stock broker, who in turn is provided with

econometric projections made by economists working for the parent company. Whatever

the source of your information about ‘‘how much’’ questions, it is a good bet that there is

an economist involved who is using econometric methods to analyze data that yield the

answers.

In the next section, we show how to introduce parameters into an economic model, and

how to convert an economic model into an econometric model.

1.3 The Econometric Model

What is an econometric model, and where does it come from? We will give you a general

overview, and we may use terms that are unfamiliar to you. Be assured that before you are

too far into this book, all the terminology will be clearly defined. In an econometric model

we must first realize that economic relations are not exact. Economic theory does not claim

to be able to predict the specific behavior of any individual or firm, but rather describes the

average or systematic behavior of many individuals or firms. When studying car sales we

recognize that the actual number of Hondas sold is the sum of this systematic part and a

random and unpredictable component e that we will call a random error. Thus, an

econometric model representing the sales of Honda Accords is

Qd ¼ f ðP; Ps; Pc; INCÞ þ e

The random error e accounts for themany factors that affect sales that we have omitted from

this simple model, and it also reflects the intrinsic uncertainty in economic activity.

To complete the specification of the econometric model, we must also say something

about the form of the algebraic relationship among our economic variables. For example, in

your first economics courses quantity demanded was depicted as a linear function of price.

We extend that assumption to the other variables as well, making the systematic part of the

demand relation

f ðP; Ps; Pc; INCÞ ¼ b1 þ b2Pþ b3P
s þ b4P

c þ b5INC

The corresponding econometric model is

Qd ¼ b1 þ b2Pþ b3P
s þ b4P

c þ b5INC þ e
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The coefficients b1; b2; . . . ;b5 are unknown parameters of the model that we estimate

using economic data and an econometric technique. The functional form represents a

hypothesis about the relationship between the variables. In any particular problem, one

challenge is to determine a functional form that is compatible with economic theory and the

data.

In every econometric model, whether it is a demand equation, a supply equation, or a

production function, there is a systematic portion and an unobservable random component.

The systematic portion is the part we obtain from economic theory, and includes an

assumption about the functional form. The random component represents a ‘‘noise’’

component, which obscures our understanding of the relationship among variables, and

which we represent using the random variable e.

We use the econometricmodel as a basis for statistical inference. Using the econometric

model and a sample of data, we make inferences concerning the real world, learning

something in the process. The ways in which statistical inference are carried out include

� Estimating economic parameters, such as elasticities, using econometric methods

� Predicting economic outcomes, such as the enrollment in two-year colleges in the

United States for the next ten years

� Testing economic hypotheses, such as the question of whether newspaper advertis-

ing is better than store displays for increasing sales

Econometrics includes all of these aspects of statistical inference. As we proceed through

this book, youwill learn how to properly estimate, predict, and test, given the characteristics

of the data at hand.

1.4 How Are Data Generated?

In order to carry out statistical inference we must have data. Where do data come from?

What type of real processes generate data? Economists and other social scientists work in

a complex world in which data on variables are ‘‘observed’’ and rarely obtained from a

controlled experiment. This makes the task of learning about economic parameters all the

more difficult. Procedures for using such data to answer questions of economic importance

are the subject matter of this book.

1.4.1 EXPERIMENTAL DATA

One way to acquire information about the unknown parameters of economic relationships

is to conduct or observe the outcome of an experiment. In the physical sciences and

agriculture, it is easy to imagine controlled experiments. Scientists specify the values of

key control variables and then observe the outcome. We might plant similar plots of

land with a particular variety of wheat, then vary the amounts of fertilizer and pesticide

applied to each plot, observing at the end of the growing season the bushels of wheat

produced on each plot. Repeating the experiment on N plots of land creates a sample of N

observations. Such controlled experiments are rare in business and the social sciences.

A key aspect of experimental data is that the values of the explanatory variables can be

fixed at specific values in repeated trials of the experiment.

One business example comes frommarketing research. Suppose we are interested in the

weekly sales of a particular item at a supermarket. As an item is sold it is passed over a
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scanning unit to record the price and the amount that will appear on your grocery bill. But at

the same time, a data record is created, and at every point in time the price of the item and the

prices of all its competitors are known, as well as current store displays and coupon usage.

The prices and shopping environment are controlled by store management, so this

‘‘experiment’’ can be repeated a number of days or weeks using the same values of the

‘‘control’’ variables.

There are some examples of planned experiments in the social sciences, but they are rare

because of the difficulties in organizing and funding them. A notable example of a planned

experiment is Tennessee’s Project Star.1 This experiment followed a single cohort of

elementary school children from kindergarten through the third grade, beginning in 1985

and ending in 1989. In the experiment children were randomly assigned within schools into

three types of classes: small classes with 13–17 students, regular-sized classes with 22–25

students, and regular-sized classes with a full-time teacher aide to assist the teacher. The

objective was to determine the effect of small classes on student learning, as measured by

student scores on achievement tests. We will analyze the data in Chapter 7, and show that

small classes significantly increase performance. This finding will influence public policy

towards education for years to come.

1.4.2 NONEXPERIMENTAL DATA

An example of nonexperimental data is survey data. The Public Policy Research Lab at

Louisiana State University (www.survey.lsu.edu/) conducts telephone and mail surveys for

clients. In a telephone survey, numbers are selected randomly and called. Responses to

questions are recorded and analyzed. In such an environment, data on all variables are

collected simultaneously, and the values are neither fixed nor repeatable. These are

nonexperimental data.

Such surveys are carried out on a massive scale by national governments. For

example, the Current Population Survey (CPS)2 is a monthly survey of about 50,000

households conducted by the U.S. Bureau of the Census. The survey has been conducted

for more than 50 years. The CPS web site says ‘‘CPS data are used by government

policymakers and legislators as important indicators of our nation’s economic situation

and for planning and evaluating many government programs. They are also used by the

press, students, academics, and the general public.’’ In Section 1.8 we describe some

similar data sources.

1.5 Economic Data Types

Economic data comes in a variety of ‘‘flavors.’’ In this section we describe and give an

example of each. In each example, be aware of the different data characteristics, such as the

following:

1. Data may be collected at various levels of aggregation:

� micro—data collected on individual economic decision-making units such as

individuals, households, and firms.

1 See www.heros-inc.org/star.htm for program description, public use data, and extensive literature.
2 www.census.gov/cps/
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� macro—data resulting from a pooling or aggregating over individuals, house-

holds, or firms at the local, state, or national levels.

2. Data may also represent a flow or a stock:

� flow—outcome measures over a period of time, such as the consumption of

gasoline during the last quarter of 2010.

� stock—outcome measured at a particular point in time, such as the quantity of

crude oil held by Exxon in its U.S. storage tanks on November 1, 2010, or the

asset value of the Wells Fargo Bank on July 1, 2009.

3. Data may be quantitative or qualitative:

� quantitative—outcomes such as prices or income that may be expressed as

numbers or some transformation of them, such as real prices or per capita income.

� qualitative—outcomes that are of an ‘‘either-or’’ situation. For example, a

consumer either did or did not make a purchase of a particular good, or a person

either is or is not married.

1.5.1 TIME-SERIES DATA

A time-series is data collected over discrete intervals of time. Examples include the

annual price of wheat in the United States and the daily price of General Electric stock

shares. Macroeconomic data are usually reported in monthly, quarterly, or annual terms.

Financial data, such as stock prices, can be recorded daily, or at even higher frequencies.

The key feature of time-series data is that the same economic quantity is recorded at a

regular time interval.

For example, the annual real gross domestic product (GDP) is depicted in Figure 1.1.

A few values are given in Table 1.1. For each year, we have the recorded value. The data

are annual, or yearly, and have been ‘‘deflated’’ by the Bureau of Economic Analysis to

billions of real 2005 dollars.
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FIGURE 1.1 Real U.S. GDP, 1980–2008.3

3 Source: www.bea.gov/national/index.htm#personal.
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1.5.2 CROSS-SECTION DATA

Across-section of data is collected across sample units in a particular time period. Examples

are income by counties in California during 2009 or high school graduation rates by state in

2008. The ‘‘sample units’’ are individual entities and may be firms, persons, households,

states, or countries. For example, the Current Population Survey reports results of personal

interviews on a monthly basis, covering such items as employment, unemployment,

earnings, educational attainment, and income. In Table 1.2 we report a few observations

from the August, 2009 survey on the variables RACE, EDUCATION, MARITIAL STATUS,

SEX, HOURS (usual number of hours worked), and WAGE (hourly wage rate).4 There are

many detailed questions asked of the respondents.

1.5.3 PANEL OR LONGITUDINAL DATA

A ‘‘panel’’ of data, also known as ‘‘longitudinal’’ data, has observations on individual

micro-units who are followed over time. For example, the Panel Study of IncomeDynamics

Ta b l e 1 . 1 Annual GDP (Billions

of Real 2005 Dollars)

Year GDP

2001 11347.2

2002 11553.0

2003 11840.7

2004 12263.8

2005 12638.4

2006 12976.2

2007 13254.1

2008 13312.2

Ta b l e 1 . 2 Cross Section Data: CPS August 2009

Variables

Individual RACE EDUCATION MARITAL_STATUS SEX HOURS WAGE

1 White 10th Grade Never Married Male 2 8.00

2 White Assoc Degree Married Male 40 10.81

3 Other Some College No Degree Divorced Male 38 10.23

4 White High School Grad or GED Married Female 32 11.50

5 White Some College No Degree Never Married Male 50 12.50

6 White High School Grad or GED Divorced Female 20 7.00

7 White High School Grad or GED Married Female 10 8.00

8 White 5th or 6th Grade Never Married Female 15 9.30

9 White High School Grad or GED Married Female 40 20.00

4 In the actual raw data the outcomes for each individual are given in numerical codes, which then have the

identifiers similar to those that we show.
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(PSID)5 describes itself as ‘‘a nationally representative longitudinal study of nearly 9000

U.S. families. Following the same families and individuals since 1969, the PSID collects

data on economic, health, and social behavior.’’ Other national panels exist and many are

described at ‘‘Resources for Economists,’’ at www.rfe.org.

To illustrate, data from two rice farms6 are given in Table 1.3. The data are annual

observations on rice farms (or firms) over the period 1990–1997.

The key aspect of panel data is that we observe eachmicro-unit, here a farm, for a number

of time periods. Here we have amount of rice produced, area planted, labor input and

fertilizer use. If we have the same number of time period observations for each micro-unit,

which is the case here, we have a balanced panel. Usually the number of time series

observations is small relative to the number of micro-units, but not always. The PennWorld

Table7 provides purchasing power parity and national income accounts converted to

international prices for 189 countries for some or all of the years 1950–2007.

1.6 The Research Process

Econometrics is ultimately a research tool. Students of econometrics plan to do research

or they plan to read and evaluate the research of others, or both. This section provides a

frame of reference and guide for future work. In particular, we show you the role of

econometrics in research.

Research is a process, and like many such activities, it flows according to an orderly

pattern. Research is an adventure, and can be fun! Searching for an answer to your question,

Ta b l e 1 . 3 Panel Data from Two Rice Farms

FIRM YEAR PROD AREA LABOR FERT

1 1990 7.87 2.50 160 207.5

1 1991 7.18 2.50 138 295.5

1 1992 8.92 2.50 140 362.5

1 1993 7.31 2.50 127 338.0

1 1994 7.54 2.50 145 337.5

1 1995 4.51 2.50 123 207.2

1 1996 4.37 2.25 123 345.0

1 1997 7.27 2.15 87 222.8

2 1990 10.35 3.80 184 303.5

2 1991 10.21 3.80 151 206.0

2 1992 13.29 3.80 185 374.5

2 1993 18.58 3.80 262 421.0

2 1994 17.07 3.80 174 595.7

2 1995 16.61 4.25 244 234.8

2 1996 12.28 4.25 159 479.0

2 1997 14.20 3.75 133 170.0

5 http://psidonline.isr.umich.edu/
6 These data were used by O’Donnell, C.J. andW.E. Griffiths (2006), Estimating State-Contingent Production

Frontiers, American Journal of Agricultural Economics, 88(1), 249–266
7 http://pwt.econ.upenn.edu/
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seeking new knowledge, is very addictive—for the more you seek, the more new questions

you will find.

A research project is an opportunity to investigate a topic that is important to you.

Choosing a good research topic is essential if you are to complete a project successfully. A

starting point is the question, ‘‘What are my interests?’’ Interest in a particular topic will add

pleasure to the research effort. Also, if you begin working on a topic, other questions will

usually occur to you. These newquestionsmay put another light on the original topic, ormay

represent new paths to follow that are evenmore interesting to you. The ideamay come after

lengthy study of all that has beenwritten on a particular topic. Youwill find that ‘‘inspiration

is 99% perspiration.’’ That means that after you dig at a topic long enough, a new and

interesting question will occur to you. Alternatively, you may be led by your natural

curiosity to an interesting question. Professor Hal Varian8 suggests that you look for ideas

outside academic journals—in newspapers, magazines, etc. He relates a story about a

research project that developed from his shopping for a new TV set.

By the time you have completed several semesters of economics classes, you will find

yourself enjoying some areas more than others. For each of us, specialized areas such as

health economics, economic development, industrial organization, public finance, resource

economics, monetary economics, environmental economics, and international trade hold a

different appeal. If you find an area or topic in which you are interested, consult the Journal

of Economic Literature (JEL) for a list of related journal articles. The JEL has a

classification scheme that makes isolating particular areas of study an easy task. Alter-

natively, type a few descriptivewords into your favorite search engine and seewhat pops up.

Once you have focused on a particular idea, begin the research process, which generally

follows steps like these:

1. Economic theory gives us a way of thinking about the problem. Which economic

variables are involved, and what is the possible direction of the relationship(s)?

Every research project, given the initial question, begins by building an economic

model and listing the questions (hypotheses) of interest. More questions will occur

during the research project, but it is good to list those that motivate you at the

project’s beginning.

2. The working economic model leads to an econometric model. We must choose a

functional form and make some assumptions about the nature of the error term.

3. Sample data are obtained and a desirablemethod of statistical analysis chosen, based

on initial assumptions and an understanding of how the data were collected.

4. Estimates of the unknown parameters are obtained with the help of a statistical

software package, predictions are made, and hypothesis tests are performed.

5. Model diagnostics are performed to check the validity of assumptions. For example,

were all of the right-hand-side explanatory variables relevant? Was an adequate

functional form used?

6. The economic consequences and the implications of the empirical results are

analyzed and evaluated. What economic resource allocation and distribution results

are implied, and what are their policy-choice implications? What remaining ques-

tions might be answered with further study or with new and better data?

8 ‘‘How to Build an Economic Model in Your Spare Time,’’ The American Economist, 41(2), Fall 1997,

pp. 3–10.
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These steps provide some direction for what must be done. However, research always

includes some surprises that may send you back to an earlier point in your research plan or

thatmay even cause you to revise it completely. Research requires a sense of urgency, which

keeps the project moving forward, the patience not to rush beyond careful analysis, and the

willingness to explore new ideas.

1.7 Writing An Empirical Research Paper

Research provides you the reward of new knowledge, but it is incomplete until a research

paper or report is written. The process of writing forces the distillation of ideas. In no other

way will your depth of understanding be so clearly revealed. When you have difficulty

explaining a concept or thought, it may mean that your understanding is incomplete.

Thus, writing is an integral part of research. We provide this section as a building block for

future writing assignments. Consult it as needed. You will find other tips on writing

economics papers on the book website, http://principlesofeconometrics.com.

1.7.1 WRITING A RESEARCH PROPOSAL

After you have selected a specific topic, it is a good idea towrite up a brief project summary,

or proposal. Writing it will help to focus your thoughts about what you really want to do.

Show it to your colleagues or instructor for preliminary comments. The abstract should be

short, usually no longer than 500 words, and should include

1. A concise statement of the problem

2. Comments on the information that is available, with one or two key references

3. A description of the research design that includes

(a) the economic model

(b) the econometric estimation and inference methods

(c) data sources

(d) estimation, hypothesis testing and prediction procedures, including econometric

software version

4. The potential contribution of the research

1.7.2 A FORMAT FORWRITING A RESEARCH REPORT

Economic research reports have a standard format in which the various steps of the research

project are discussed and the results interpreted. The following outline is typical.

1. Statement of the Problem The place to start your report is with a summary of the

questions you wish to investigate as well as why they are important and who should

be interested in the results. This introductory section should be nontechnical and

should motivate the reader to continue reading the paper. It is also useful to map out

the contents of the following sections of the report. This is the first section towork on,

and also the last. In today’s busy world, the reader’s attention must be garnered very

quickly. A clear, concise, well-written introduction is a must, and is arguably the

most important part of the paper.
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2. Review of the Literature Briefly summarize the relevant literature in the research

area you have chosen, and clarify how your work extends our knowledge. By all

means, cite the works of others who have motivated your research, but keep it brief.

You do not have to survey everything that has been written on the topic.

3. The Economic Model Specify the economic model that you used, and define the

economic variables. State themodel’s assumptions, and identify hypotheses that you

wish to test. Economicmodels can get complicated. Your task is to explain themodel

clearly, but as briefly and simply as possible. Don’t use unnecessary technical jargon.

Use simple terms instead of complicated ones when possible. Your objective is to

display the quality of your thinking, not the extent of your vocabulary.

4. The Econometric Model Discuss the econometric model that corresponds to the

economic model. Make sure you include a discussion of the variables in the model,

the functional form, the error assumptions, and any other assumptions that youmake.

Use notation that is as simple as possible, and do not clutter the body of the paperwith

long proofs or derivations; these can go into a technical appendix.

5. The Data Describe the data you used, as well as the source of the data and any

reservations you have about their appropriateness.

6. The Estimation and Inference Procedures Describe the estimation methods you

used and why they were chosen. Explain hypothesis testing procedures and their

usage. Indicate the software used and the version, such as Stata 11.1 or EViews 7.1

7. The Empirical Results and Conclusions Report the parameter estimates, their

interpretation, and the values of test statistics. Comment on their statistical sig-

nificance, their relation to previous estimates, and their economic implications.

8. Possible Extensions and Limitations of the Study Your research will raise questions

about the economic model, data, and estimation techniques. What future research is

suggested by your findings, and how might you go about performing it?

9. Acknowledgments It is appropriate to recognize those who have commented on

and contributed to your research. This may include your instructor, a librarian

who helped you find data, or a fellow student who read and commented on your

paper.

10. References An alphabetical list of the literature you cite in your study, as well as

references to the data sources you used.

Once you’ve written the first draft, use your computer’s software spelling checker to check

for errors. Have a friend read the paper,make suggestions for clarifying the prose, and check

your logic and conclusions. Before you submit the paper, you should eliminate as many

errors as possible. Yourwork should look good.Use aword processor, and be consistentwith

font sizes, section headings, style of footnotes, references, and so on. Often software

developers provide templates for term papers and theses. A little searching for a good paper

layout before beginning is a good idea. Typos, missing references, and incorrect formulas

can spell doom for an otherwise excellent paper. Some do’s and don’ts are summarized

nicely, and with good humor, by Deidre N. McClosky in Economical Writing, 2nd edition

(Prospect Heights, IL: Waveland Press, Inc., 1999).

While it is not a pleasant topic to discuss, you should be aware of the rules of plagiarism.

You must not use someone else’s words as if they were your own. If you are unclear about

what you can and cannot use, check with the style manuals listed in the next paragraph, or

consult your instructor.
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The paper should have clearly defined sections and subsections. The equations, tables

and figures should be numbered. References and footnotes should be formatted in an

acceptable fashion. A style guide is a good investment. Two classics are:

� The Chicago Manual of Style, 15th edition, is available online and in other formats.

� A Manual for Writers of Research Papers, Theses, and Dissertations: Chicago Style for

Students andResearchers, 7th edition, byKate L.Turabian; revised byWayneC.Booth,

Gregory G. Colomb, and Joseph M Williams (2007, University of Chicago Press).

1.8 Sources of Economic Data

Economic data are much easier to obtain since the development of the WorldWideWeb. In

this sectionwe direct you to some places on the Internetwhere economic data are accessible.

During your study of econometrics, browse some of the sources listed to gain some

familiarity with data availability.

1.8.1 LINKS TO ECONOMIC DATA ON THE INTERNET

There are a number of fantastic sites on the World Wide Web for obtaining economic data.

Resources for Economists (RFE)

www.rfe.org is a primary gateway to resources on the Internet for economists. This excellent

site is thework ofBillGoffe.Here youwill find links to sites for economic data and to sites of

general interest to economists. The Data link has these broad data categories:

� U.S. Macro and Regional DataHere you will find links to various data sources such
as theBureau of EconomicAnalysis, Bureau of Labor Statistics,Economic Reports of

the President, and the Federal Reserve Banks.

� OtherU.S. DataHere youwill find links to theU.S. Census Bureau, as well as links to
many panel and survey data sources. The gateway to U.S. government agencies is

FedStats [www.fedstats.gov/]. Once there, click onAgencies to see a complete list of

U.S. government agencies and links to their homepages.

� World and Non-U.S. Data Here there are links to world data, such as at the CIA

Factbook and the Penn World Tables, as well as international organizations such as

the Asian Development Bank, the International Monetary Fund, theWorld Bank, and

so on. There are also links to sites with data on specific countries and sectors of the

world.

� Finance and Financial Markets Here there are links to sources of U.S. and world

financial data on variables such as exchange rates, interest rates, and share prices.

� Journal Data and Program Archives Some economic journals post data used in

articles. Links to these journals are provided here. (Many of the articles in these

journals will be beyond the scope of undergraduate economics majors.)

National Bureau of Economic Research (NBER)

www.nber.org/data/ provides access to a great amount of data. There are headings for
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� Macro Data

� Industry Data

� International Trade Data

� Individual Data

� Hospital Data

� Demographic and Vital Statistics

� Patent and Scientific Papers Data

� Other Data

EconEdLink

www.econedlink.org/datalinks/ is provided by the Council for Economic Education. It

provides links to data and their explanation.

Economagic

Some Web sites make extracting data relatively easy. For example, Economagic [www

.economagic.com/] is an excellent and easy-to-use source of macro time series (some

100,000 series available). The data series are easily viewed in a copy and paste format, or

graphed.

1.8.2 INTERPRETING ECONOMIC DATA

In many cases it is easier to obtain economic data than it is to understand the meaning of the

data. It is essential when using macroeconomic or financial data that you understand the

definitions of the variables. Just what is the index of leading economic indicators? What is

included in personal consumption expenditures? You may find the answers to some

questions like these in your textbooks. Another resource you might find useful is A Guide

to Everyday Economic Statistics, 6th edition, by Gary E. Clayton and Martin Gerhard

Giesbrecht, (Boston: Irwin/McGraw-Hill 2003). This slender volume examines how

economic statistics are constructed, and how they can be used.

1.8.3 OBTAINING THE DATA

Finding a data source is not the same as obtaining the data. Although there are a great many

easy-to-use websites, ‘‘easy-to-use’’ is a relative term. The data will come packaged in a

variety of formats. It is also true that there are many, many variables at each of these

websites. A primary challenge is identifying the specific variables that you want, and what

exactly they measure. The following examples are illustrative.

The Federal Reserve Bank of St. Louis9 has a system called FRED (Federal Reserve

Economic Data). Under ‘‘Categories’’ there are links to Banking, Business/Fiscal, and so

on. Select Gross Domestic Product (GDP) and its Components.10 Select ‘‘DownloadData.’’

There are three ZIP (compressed) files available, one containing the data in Excel format,

another as space-delimited text, and a third comma-separated text. If the data are down-

loaded in either of the text formats, they must be read into your statistical software before

9 http://research.stlouisfed.org/fred2/
10 http://research.stlouisfed.org/fred2/categories/18
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analysis. For these steps you need specific knowledge for the software available to you.

Accompanying Principles of Econometrics, 4e, are computer manuals for Excel, EViews,

Stata, and SAS to aid this process. See the publisher website www.wiley.com/college/hill,

or the book website at http://principlesofeconometrics.com for a description of these aids.

The Current Population Survey (www.census.gov/cps/) has a tool called Data Ferrett.

This tool will help you find and download data series that are of particular interest to you.

There are tutorials that guide you through the process. Variable descriptions, as well as the

specific survey questions, are provided to aid in your selection. It is somewhat like an

Internet shopping site. Desired series are ‘‘ticked’’ and added to a ‘‘ShoppingBasket.’’ Once

you have filled your basket, you download the data to usewith specific software. OtherWeb-

based data sources operate in this same manner. One example is the Panel Study of Income

Dynamics (PSID).11

The Penn World Tables12 offer data downloads in Excel spreadsheets, as comma-

separated text files, and in SAS (a particular software) format.

You can expect to find massive amounts of readily available data at the various sites we

have mentioned, but there is a learning curve. You should not expect to find, download and

process the data without considerable work effort. Being skilled with Excel and statistical

software is a must if you plan to regularly use these data sources.

11 http://psidonline.isr.umich.edu/
12 http://pwt.econ.upenn.edu/
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Probability Primer

Learning Objectives

REMARK: Learning Objectives and Keywords sections will appear at the beginning of

each chapter. We urge you to think about, and possibly write out answers to the questions,

and make sure you recognize and can define the keywords. If you are unsure about the

questions or answers consult your instructor. When examples are requested in Learning

Objectives sections, you should think of examples not in the book.

Based on the material in this primer you should be able to

1. Explain thedifferencebetweena randomvariable and its values, andgive anexample.

2. Explain the difference between discrete and continuous random variables, and give

examples of each.

3. State the characteristics of a probability density function (pdf ) for a discrete

random variable, and give an example.

4. Compute probabilities of events, given a discrete probability function.

5. Explain the meaning of the following statement: ‘‘The probability that the discrete

random variable takes the value 2 is 0.3.’’

6. Explain how the pdf of a continuous random variable is different from the pdf of a

discrete random variable.

7. Show, geometrically, how to compute probabilities given a pdf for a continuous

random variable.

8. Explain, intuitively, theconceptof themean,orexpectedvalue,ofa randomvariable.

9. Use the definition of expected value for a discrete random variable to compute

expectations, given a pdf f(x) and a function g(X) of X.

10. Define the variance of a discrete random variable, and explain in what sense the

values of a random variable are more spread out if the variance is larger.

11. Use a joint pdf (table) for two discrete random variables to compute probabilities of

joint events and to find the (marginal) pdf of each individual random variable.

12. Find the conditional pdf for one discrete random variable given the value of another

and their joint pdf.

13. Work with single and double summation notation.

14. Give an intuitive explanation of statistical independence of two random variables,

and state the conditions that must hold to prove statistical independence. Give

17



examples of two independent random variables and two dependent random

variables.

15. Define the covariance and correlation between two random variables, and compute

these values given a joint probability function of two discrete random variables.

16. Find the mean and variance of a sum of random variables.

17. UseTable 1,CumulativeProbabilities for theStandardNormalDistribution, and your

computer software to compute probabilities involving normal random variables.

Weassumethatyouhavehadabasicprobabilityandstatisticscourse. In thisprimerwereview

some essential probability concepts. Section P.1 defines discrete and continuous random

variables. Probability distributions are discussed in Section P.2. Section P.3 introduces joint

probability distributions, defines conditional probability and statistical independence. In

Section P.4we digress and discuss operationswith summations. In Section P.5we review the

properties of probability distributions, paying particular attention to expected values and

variances. Section P.6 summarizes important facts about the normal probability distribution.

In Appendix B, ‘‘Probability Concepts,’’ are enhancements and additions to this material.

P.1 Random Variables

Benjamin Franklin is credited with the saying ‘‘The only things certain in life are death and

taxes.’’While not the original intent, this bit of wisdom points out that almost everythingwe

encounter in life is uncertain. We do not know how many games our football team will win

next season. You do not know what score you will make on the next exam. We don’t know

what the stock market index will be tomorrow. These events, or outcomes, are uncertain, or

random. Probability gives us a way to talk about possible outcomes.

Arandomvariableisavariablewhosevalueisunknownuntilit isobserved;inotherwordsit

is avariable that isnotperfectlypredictable.Each randomvariablehasa setofpossiblevalues it

cantake. IfWisthenumberofgamesourfootball teamwinsnextyear, thenWcantakethevalues

0,1, 2, . . . , 13, if there are amaximumof13games.This is adiscrete randomvariable since it

can take only a limited, or countable, number of values. Other examples of discrete random

variables are the number of computers owned by a randomly selected household, and the

number of times youwill visit your physician next year. A special case occurswhen a random

variablecanonlybeoneoftwopossiblevalues—forexample, inaphonesurvey, ifyouareasked

if youare a collegegraduateornot, your answercanonly be ‘‘yes’’ or ‘‘no.’’Outcomes like this

Keywords
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conditional pdf

conditional probability

continuous random variable

correlation

covariance

cumulative distribution

function

discrete random variable

expected value

experiment

indicator variable

joint probability density
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marginal distribution

mean

normal distribution

pdf

probability

probability density

function

random variable
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can be characterized by an indicator variable taking the values one if yes, or zero if no.

Indicator variables are discrete and are used to represent qualitative characteristics such as

gender (male or female), or race (white or nonwhite).

The U.S. GDP is yet another example of a random variable, because its value is unknown

until it is observed. In the fourthquarter of2010 it is calculated tobe$14,453.8billiondollars.

What the value will be in the second quarter of 2015 is unknown, and it cannot be predicted

perfectly.GDPismeasured indollarsand itcanbecounted inwholedollars, but thevalue is so

large that counting individual dollars servesnopurpose. For practical purposesGDPcan take

any value in the interval zero to infinity, and it is treated as a continuous random variable.
Other common macroeconomic variables, like interest rates, investment, and consumption

arealso treatedascontinuous randomvariables. Infinance, stockmarket indices, like theDow

Jones Industrial Index, are also treated as continuous.The keyattribute of thesevariables that

makes them continuous is that they can take any value in an interval.

P.2 Probability Distributions

Probability is usually defined in terms of experiments. Let us illustrate this in the context of

a simple experiment. Consider the values in Table P.1 to be a population of interest.

If we were to select one cell from the table at random (imagine cutting the table into 10

equally sized pieces of paper, stirring them up, and drawing one of the slips without

looking), thatwould constitute a randomexperiment. Based on this randomexperimentwe

can define several random variables. For example, let the random variable X be the

numerical value showing on a slip that we draw. (We use uppercase letters like X to

represent random variables in this primer). The term random variable is a bit odd, as it is
actually a rule for assigning numerical values to experimental outcomes. In the context of

Table P.1 the rule says, ‘‘Perform the experiment (stir the slips, and drawone) and for the slip

that you obtain assign X to be the number showing.’’ The values that X can take are denoted

by corresponding lower case letters, x, and in this case the values of X are x ¼ 1, 2, 3, or 4.

For the experiment using the population in Table P.1, we can create a number of random

variables. Let Y be a discrete random variable designating the color of the slip, with Y ¼ 1

denoting a shaded slip and Y ¼ 0 denoting a slip with no shading (white). The numerical

values that Y can take are y ¼ 0, 1.

Consider X, the numerical value on the slip. If the slips are equally likely to be chosen

after shuffling, then in a large number of experiments (i.e., shuffling and drawing one of the

ten slips), 10%of the timewewould observeX ¼ 1, 20%of the timeX ¼ 2, 30%of the time

X ¼ 3, and 40% of the time X ¼ 4. These are probabilities that the specific values will

occur.Wewould say, for example,P(X ¼ 3) ¼ 0.3. This interpretation is tied to the relative

frequency of a particular outcome’s occurring in a large number of random experiments.

We summarize the probabilities of possible outcomes using a probability density

function (pdf ). The pdf for a discrete random variable indicates the probability of

each possible value occurring. For a discrete random variable X the value of the proba-

bility density function f(x) is the probability that the random variable X takes the value x,

Ta b l e P. 1 A Population

1 2 3 4 4

2 3 3 4 4
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f(x) ¼ P(X ¼ x). Because f(x) is a probability, it must be true that 0� f(x)� 1 and, ifX takes

n possible values x1, . . . , xn, then the sum of their probabilities must be one

f ðx1Þ þ f ðx2Þ þ � � � þ f ðxnÞ ¼ 1 (P.1)

For discrete random variables the pdf might be presented as a table, such as in Table P.2.

As shown in Figure P.1, the probability density function may also be represented as a bar

graph, with the height of the bar representing the probability with which the corresponding

value occurs.

The cumulative distribution function (cdf ) is an alternative way to represent prob-

abilities. The cdf of the random variable X, denoted F(x), gives the probability that X is less

than or equal to a specific value x. That is,

F xð Þ ¼ P X � xð Þ (P.2)

Using the probabilities in Table P.2, we find that F 1ð Þ ¼ P X � 1ð Þ ¼ 0:1, F 2ð Þ ¼
P X � 2ð Þ ¼ 0:3, F 3ð Þ ¼ P X � 3ð Þ ¼ 0:6, and F 4ð Þ ¼ P X � 4ð Þ ¼ 1. For example, using

the pdf f(x) we compute the probability that X is less than or equal to 2 as

F 2ð Þ ¼ P X � 2ð Þ ¼ P X ¼ 1ð Þ þ P X ¼ 2ð Þ ¼ 0:1þ 0:2 ¼ 0:3

Ta b l e P. 2 Probability Density

Function of X

X f(x)

1 0.1

2 0.2

3 0.3

4 0.4

0.45

Pr
ob
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ty

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05
1 2 3 4

X value

FIGURE P.1 Probability density function for X.
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Since the sum of the probabilities P X ¼ 1ð Þ þ P X ¼ 2ð Þ þ P X ¼ 3ð Þ þ P X ¼ 4ð Þ ¼ 1,

we can compute the probability that X is greater than 2 as

P X > 2ð Þ ¼ 1�P X � 2ð Þ ¼ 1�F 2ð Þ ¼ 1� 0:3 ¼ 0:7

An important difference between the pdf and cdf for X is revealed by the question, ‘‘Using

the probability distribution in Table P.2, what is the probability that X ¼ 2.5?’’ This

probability is zero because X cannot take this value. The question ‘‘What is the probability

that X is less than or equal to 2.5?’’ does have an answer.

F 2:5ð Þ ¼ P X � 2:5ð Þ ¼ P X ¼ 1ð Þ þ P X ¼ 2ð Þ ¼ 0:1þ 0:2 ¼ 0:3

The cumulative probability can be calculated for any x between �1 and +1.

Continuous random variables can take any value in an interval and have an uncountable

number of values. Consequently the probability of any specific value is zero. For continuous

random variables we talk about outcomes being in a certain range. Figure P.2 illustrates the

pdf f(x) of a continuous random variableX that takes values of x from 0 to infinity. The shape

is representative of the distribution for an economic variable like an individual’s income or

wages. Areas under the curve represent probabilities that X falls in an interval. The

cumulative distribution function F(x) is defined as in (P.2). For this distribution,

P 100 � X � 200ð Þ ¼ Fð200Þ � Fð100Þ ¼ 0:90291� 0:72747 ¼ 0:17544 (P.3)

How are these areas obtained? The integral from calculus gives the area under a curve. We

will not compute many integrals in this book.1 Instead we will use the computer and

compute cdf values and probabilities using software commands.

P.3 Joint, Marginal and Conditional Probabilities

Workingwithmore than one randomvariable requires a joint probability density function.

For the population in Table P.1 we defined two random variables, X the numeric value of a

1 SeeAppendixA.4 for a brief explanation of integrals, and illustrations using integrals to compute probabilities

in Appendix B.2.1.

P(100 � X � 200)

x
0 100 200 300 400 500 600

FIGURE P.2 Probability density function for a continuous random variable.
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randomly drawn slip, and the indicator variable Y that equals 1 if the selected slip is shaded,

and 0 if it is not shaded.

Using the joint probability density function for X and Y we can say ‘‘The probability of

selecting a shaded 2 is 0.10.’’ This is a joint probability because we are talking about the

probability of two events occurring simultaneously; the selection takes the valueX ¼ 2 and

the slip is shaded so that Y ¼ 1. We can write this as

P X ¼ 2 and Y ¼ 1ð Þ ¼ P X ¼ 2; Y ¼ 1ð Þ ¼ f x ¼ 2; y ¼ 1ð Þ ¼ 0:1

The entries in Table P.3 are probabilities f x; yð Þ ¼ P X ¼ x; Y ¼ yð Þ of joint outcomes. Like

the pdf of a single random variable, the sum of the joint probabilities is 1.

P.3.1 MARGINAL DISTRIBUTIONS

Given a joint probability density function, we can obtain the probability distributions of

individual randomvariables, which are also known asmarginal distributions. In Table P.3,

we see that a shaded slip can be obtainedwith thevalues 1, 2, 3 and 4. The probability thatwe

select a shaded slip is the sum of the probabilities that we obtain a shaded 1, a shaded 2, a

shaded 3 and a shaded 4. The probability that Y ¼ 1 is

P Y ¼ 1ð Þ ¼ fY 1ð Þ ¼ 0:1þ 0:1þ 0:1þ 0:1 ¼ 0:4

This is the sum of the probabilities across the second row of the table. Similarly the

probability of drawing a white slip is the sum of the probabilities across the first row of

the table, and P Y ¼ 0ð Þ ¼ fY 0ð Þ ¼ 0þ 0:1þ 0:2þ 0:3 ¼ 0:6. The probabilities P(X ¼ x)

are computed similarly by summing down, across the values of Y. The joint and marginal

distributions are often reported as in Table P.4.2

P.3.2 CONDITIONAL PROBABILITY

What is the probability that a randomly chosen slip will take the value 2 given that it is

shaded? This question is about the conditional probability of the outcomeX ¼ 2 given that

the outcome Y ¼ 1 has occurred. The effect of the conditioning is to reduce the set of

possible outcomes. Conditional on Y ¼ 1 we only consider the 4 possible slips that are

shaded. One of them is a 2, so the conditional probability of the outcome X ¼ 2 given that

Y ¼ 1 is 0.25. There is a one in four chance of selecting a 2 given only the shaded slips.

Conditioning reduces the size of the population under consideration, and conditional

probabilities characterize the reduced population. For discrete random variables the

Ta b l e P. 3 Joint Probability Density Function for X and Y

x

y 1 2 3 4

0 0 0.1 0.2 0.3

1 0.1 0.1 0.1 0.1

2 Similar calculations for continuous random variables use integration. See Appendix B.2.3 for an illustration.
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probability that the random variable X takes the value x given that Y ¼ y is written

P X ¼ xjY ¼ yð Þ. This conditional probability is given by the conditional pdf f(xjy)

f ðxjyÞ ¼ PðX ¼ xjY ¼ yÞ ¼ PðX ¼ x; Y ¼ yÞ
P Y ¼ yð Þ ¼ f ðx; yÞ

fYðyÞ (P.4)

where fY (y) is the marginal pdf of Y.

Using the marginal probability P Y ¼ 1ð Þ ¼ 0:4, the conditional pdf of X given Y ¼ 1 is

obtained by using (P.4) for each value of X. For example,

f ðx ¼ 2jy ¼ 1Þ ¼ PðX ¼ 2jY ¼ 1Þ

¼ PðX ¼ 2; Y ¼ 1Þ
P Y ¼ 1ð Þ ¼ f ðx ¼ 2; y ¼ 1Þ

fYð1Þ
¼ 0:1

0:4
¼ 0:25

A key point to remember is that by conditioning we are considering only the subset of a

population for which the condition holds. Probability calculations are then based on the

‘‘new’’ population. We can repeat this process for each value of X to obtain the complete

conditional probability density function given in Table P.5.

P.3.3 STATISTICAL INDEPENDENCE

When selecting a shaded slip from Table P.1, the probability of selecting each possible

outcome, x ¼ 1, 2, 3 and 4 is 0.25. In the population of shaded slips the numeric values are

equally likely. The probability of randomly selecting X ¼ 2 from the entire population,

from the marginal pdf, is P X ¼ 2ð Þ ¼ fX 2ð Þ ¼ 0:2. This is different from the conditional

probability. Knowing that the slip is shaded tells us something about the probability of

obtaining X ¼ 2. Such random variables are dependent in a statistical sense. Two random

variables are statistically independent if the conditional probability that X ¼ x given that

Y ¼ y, is the same as the unconditional probability that X ¼ x. This means, if X and Y are

independent random variables, then

Ta b l e P. 4 Joint and Marginal Probabilities

y/x 1 2 3 4 f (y)

0 0 0.1 0.2 0.3 0.6

1 0.1 0.1 0.1 0.1 0.4

f(x) 0.1 0.2 0.3 0.4

Ta b l e P. 5 Conditional Probability of X given Y ¼ 1

x 1 2 3 4

f xjy ¼ 1ð Þ 0.25 0.25 0.25 0.25
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P X ¼ xjY ¼ yð Þ ¼ P X ¼ xð Þ (P.5)

Equivalently, if X and Y are independent, then the conditional pdf of X given Y ¼ y is the

same as the unconditional, or marginal, pdf of X alone,

f ðxjyÞ ¼ f ðx; yÞ
fYðyÞ ¼ fXðxÞ (P.6)

Solving (P.6) for the joint pdf, we can also say that X and Y are statistically independent if

their joint pdf factors into the product of their marginal pdf ’s

P X ¼ x; Y ¼ yð Þ ¼ f ðx; yÞ ¼ fXðxÞfYðyÞ ¼ P X ¼ xð Þ � P Y ¼ yð Þ (P.7)

If (P.5) or (P.7) is true for each and every pair of values x and y, then X and Y are

statistically independent. This result extends to more than two random variables. The rule

allows us to check the independence of random variables X and Y in Table P.4. If (P.7) is

violated for any pair of values, then X and Y are not statistically independent. Consider the

pair of values X ¼ 1 and Y ¼ 1.

P X ¼ 1; Y ¼ 1ð Þ ¼ f ð1; 1Þ ¼ 0:1 6¼ fXð1ÞfYð1Þ ¼ P X ¼ 1ð Þ � P Y ¼ 1ð Þ ¼ 0:1� 0:4

¼ 0:04

The joint probability is 0.1 and the product of the individual probabilities is 0.04. Since these

are not equal, we can conclude that X and Y are not statistically independent.

P.4 A Digression: Summation Notation

Throughout this book we will use a summation sign, denoted by the Greek symbol S, to

shorten algebraic expressions. Suppose the random variable X takes the values x1, x2, . . . ,

x15. The sum of these values is x1 þ x2 þ � � � þ x15. Rather than write this sum out each time

wewill represent it as �
15

i¼1
xi, so that �

15

i¼1
xi ¼ x1 þ x2 þ � � � þ x15. If we sum n terms, a general

number, then the summation will be �
n

i¼1
xi ¼ x1 þ x2 þ � � � þ xn. In this notation

� The symbol S is the capital Greek letter sigma, and means ‘‘the sum of.’’

� The letter i is called the index of summation. This letter is arbitrary and may also

appear as t, j, or k.

� The expression �
n

i¼1
xi is read ‘‘the sum of the terms xi, from i equal one to n.’’

� The numbers 1 and n are the lower limit and upper limit of summation.

The following rules apply to the summation operation.

Sum 1. The sum of n values x1, . . . , xn is

�
n

i¼1
xi ¼ x1 þ x2 þ � � � þ xn
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Sum 2. If a is a constant then

�
n

i¼1
axi ¼ a �

n

i¼1
xi

Sum 3. If a is a constant then

�
n

i¼1
a ¼ aþ aþ � � � þ a ¼ na

Sum 4. If X and Y are two variables, then

�
n

i¼1
ðxi þ yiÞ ¼ �

n

i¼1
xi þ �

n

i¼1
yi

Sum 5. If X and Y are two variables, then

�
n

i¼1
ðaxi þ byiÞ ¼ a �

n

i¼1
xi þ b �

n

i¼1
yi

Sum 6. The arithmetic mean (average) of n values of X is

x ¼
�
n

i¼1
xi

n
¼ x1 þ x2 þ � � � þ xn

n

Sum 7. A property of the average is that

�
n

i¼1
ðxi � xÞ ¼ �

n

i¼1
xi � �

n

i¼1
x ¼ �

n

i¼1
xi � nx ¼ �

n

i¼1
xi � �

n

i¼1
xi ¼ 0

Sum 8.We often use an abbreviated form of the summation notation. For example, if f(x)

is a function of the values of X,

�
n

i¼1
f ðxiÞ ¼ f ðx1Þ þ f ðx2Þ þ � � � þ f ðxnÞ

¼ �
i
f ðxiÞ (‘‘Sum over all values of the index i’’Þ

¼ �
x
f ðxÞ (‘‘Sum over all possible values of X’’Þ

Sum 9. Several summation signs can be used in one expression. Suppose the variable Y

takes n values and X takes m values, and let f x; yð Þ ¼ xþ y. Then the double

summation of this function is

�
m

i¼1
�
n

j¼1
f ðxi; yjÞ ¼ �

m

i¼1
�
n

j¼1
ðxi þ yjÞ
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To evaluate such expressionswork from the innermost sum outward. First set i ¼ 1 and sum

over all values of j, and so on. That is,

�
m

i¼1
�
n

j¼1
f ðxi; yjÞ ¼ �

m

i¼1
½ f ðxi; y1Þþf ðxi; y2Þ þ � � � þ f ðxi; ynÞ�

The order of summation does not matter, so

�
m

i¼1
�
n

j¼1
f ðxi; yjÞ ¼ �

n

j¼1
�
m

i¼1
f ðxi; yjÞ

P.5 Properties of Probability Distributions

Figures P.1 and P.2 give us a picture of how frequently values of the random variables will

occur. Two key features of a probability distribution are its center (location) and width

(dispersion). A key measure of the center is the mean, or expected value. Measures of

dispersion are variance, and its square root, the standard deviation.

P.5.1 EXPECTED VALUE OF A RANDOM VARIABLE

Themean of a random variable is given by itsmathematical expectation. If X is a discrete

random variable taking the values x1; . . . ; xn; then the mathematical expectation, or

expected value, of X is

E Xð Þ ¼ x1P X ¼ x1ð Þ þ x2P X ¼ x2ð Þ þ � � � þ xnP X ¼ xnð Þ (P.8)

The expected value, or mean, of X is a weighted average of its values, the weights being the

probabilities that the values occur. Themean is often symbolized bym ormX. It is the average

value of the random variable in an infinite number of repetitions of the underlying

experiment. The mean of a random variable is the population mean. We use Greek letters

for population parameters because later on we will use data to estimate these real world

unknowns. In particular, keep separate the population mean m and the arithmetic (or

sample) mean x that we introduced in Section P.4 as Sum 6. This can be particularly

confusing when a conversation includes the term ‘‘mean’’ without the qualifying term

‘‘population’’ or ‘‘arithmetic.’’ Pay attention to the usage context.

For the population in Table P.1, the expected value of X is

E Xð Þ ¼ 1� P X ¼ 1ð Þ þ 2� P X ¼ 2ð Þ þ 3� P X ¼ 3ð Þ þ 4� P X ¼ 4ð Þ
¼ 1� 0:1ð Þ þ 2� 0:2ð Þ þ 3� 0:3ð Þ þ 4� 0:4ð Þ ¼ 3

For a discrete random variable the probability that X takes the value x is given by its pdf f(x),

P X ¼ xð Þ ¼ f xð Þ. The expected value in (P.8) can be written equivalently as

mX ¼ E Xð Þ ¼ x1 f ðx1Þ þ x2 f ðx2Þ þ � � � þ xn f ðxnÞ
¼ �

n

i¼1
xi f ðxiÞ ¼ �

x
x f ðxÞ (P.9)
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Using (P.9), the expected value of X, the numeric value on a randomly drawn slip from

Table P.1 is

mX ¼ E Xð Þ ¼ �
4

x¼1
xf xð Þ ¼ 1� 0:1ð Þ þ 2� 0:2ð Þ þ 3� 0:3ð Þ þ 4� 0:4ð Þ ¼ 3

What does this mean?Draw one ‘‘slip’’ at random fromTable P.1, and observe its numerical

value X. This constitutes an experiment. If we repeat this experiment many times, the values

x ¼ 1, 2, 3, and 4 will appear 10%, 20%, 30%, and 40% of the time, respectively. The

arithmetic average of all the numerical values will approachmX ¼ 3, as the number of draws

becomes large. The key point is that the expected value of the random variable is the

average value that occurs in many repeated trials of an experiment.

For continuous random variables, the interpretation of the expected value of X is

unchanged—it is the average value of X if many values are obtained by repeatedly

performing the underlying random experiment.3

P.5.2 CONDITIONAL EXPECTATION

Many economic questions are formulated in terms of conditional expectation, or the

conditional mean. One example is, ‘‘What is the mean (expected value) wage of a person

who has 16 years of education?’’ In expected value notation, what is E WAGEjð
EDUCATION ¼ 16Þ? For a discrete random variable the calculation of conditional expected

value uses (P.9) with the conditional probability density function f xjyð Þ replacing f(x), so that

mXjY ¼ E XjY ¼ yð Þ ¼ �
x
xf ðxjyÞ

Using the population in Table P.1, what is the expected numerical value of X given that

Y ¼ 1, the slip is shaded? The conditional probabilities f xjY ¼ 1ð Þ are given in Table P.5.

The conditional expectation of X is

E XjY ¼ 1ð Þ ¼ �
4

x¼1
xf ðxj1Þ ¼ 1� f 1j1ð Þ þ 2� f 2j1ð Þ þ 3� f 3j1ð Þ þ 4� f 4j1ð Þ

¼ 1ð0:25Þ þ 2ð0:25Þ þ 3ð0:25Þ þ 4ð0:25Þ ¼ 2:5

The average value of X in many repeated trials of the experiment of drawing from the

shaded slips is 2.5. This example makes a good point about expected values in general,

namely that the expected value ofX does not have to be a value thatX can take. The expected

value of X is not the value that you expect to occur in any single experiment.

P.5.3 RULES FOR EXPECTED VALUES

Functions of random variables are also random. If g(X) is a function of the random variable

X, then g(X) is also random. If X is a discrete random variable, then the expected value of

g(X) is obtained using calculations similar to those in (P.9)

3 Since there are now an uncountable number of values to sum, mathematically we must replace the

‘‘summation over all possible values’’ in (P.9) by the ‘‘integral over all possible values.’’ See Appendix B.2.2

for a brief discussion.
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E g Xð Þ½ � ¼ �
x
g xð Þ f xð Þ (P.10)

For example, if a is a constant, then g(X) ¼ aX is a function of X, and

E aXð Þ ¼ E g Xð Þ½ � ¼ �
x
g xð Þ f xð Þ

¼ �
x
axf xð Þ ¼ a�

x
xf xð Þ

¼ aE Xð Þ

Similarly, if a and b are constants, then we can show that

E aX þ bð Þ ¼ aE Xð Þ þ b (P.11)

If g1(X) and g2(X) are functions of X, then

E g1 Xð Þ þ g2 Xð Þ½ � ¼ E g1 Xð Þ½ � þ E g2 Xð Þ½ � (P.12)

This rule extends to any number of functions. Remember the phrase ‘‘the expected value of

a sum is the sum of the expected values.’’

P.5.4 VARIANCE OF A RANDOM VARIABLE

The variance of a discrete or continuous random variable X is the expected value of

g Xð Þ ¼ X � E Xð Þ½ �2

The variance of a random variable is important in characterizing the scale of measurement

and the spread of the probability distribution. We give it the symbol s2, or s2
X, read ‘‘sigma

squared.’’ The variance s2 has a Greek symbol because it is a population parameter.

Algebraically, letting E(X) ¼ m, using the rules of expected values and the fact that

E(X) ¼ m is not random, we have

varðXÞ ¼ s2
X ¼ E X � mð Þ2

¼ E X2 � 2mX þ m2
� � ¼ E X2

� �� 2mE Xð Þ þ m2

¼ E X2
� �� m2

(P.13)

The calculation var Xð Þ ¼ E X2ð Þ � m2 is usually simpler than varðXÞ ¼ E X � mð Þ2, but the
solution is the same. For the population in Table P.1, we have shown that E Xð Þ ¼ m ¼ 3.

Using (P.10), the expectation of the random variable g Xð Þ ¼ X2 is

E X2
� � ¼ �

4

x¼1
g xð Þf xð Þ ¼ �

4

x¼1
x2f xð Þ

¼ 12 � 0:1
� �þ 22 � 0:2

� �þ 32 � 0:3
� �þ 42 � 0:4

� � ¼ 10

28 PROBAB I L ITY PR IMER



Then, the variance of the random variable X is

varðXÞ ¼ s2
X ¼ E X2

� �� m2 ¼ 10� 32 ¼ 1

The square root of the variance is called the standard deviation; it is denoted by s or

sometimes as sX if more than one random variable is being discussed. It also measures the

spread or dispersion of a probability distribution and has the advantage of being in the same

units of measure as the random variable.

A useful property of variances is the following. Let a and b be constants, then

varðaX þ bÞ ¼ a2varðXÞ (P.14)

An additive constant like b changes the mean (expected value) of a random variable, but it

does not affect its dispersion (variance). A multiplicative constant like a affects the mean,

and it affects the variance by the square of the constant.

To see this, let Y ¼ aX þ b. Using (P.11)

E Yð Þ ¼ mY ¼ aE Xð Þ þ b ¼ amX þ b

Then

var aX þ bð Þ ¼ var Yð Þ ¼ E Y � mYð Þ2
h i

¼ E
�
aX þ b� amX þ bð Þ�2h i

¼ E aX � amXð Þ2
h i

¼ E a2 X � mXð Þ2
h i

¼ a2E X � mXð Þ2
h i

¼ a2var Xð Þ

The variance of a random variable is the average squared difference between the random

variable X and its mean value mX. The larger the variance of a random variable, the more

‘‘spread out’’ the values of the randomvariable are. Figure P.3 shows two probability density

functions for a continuous random variable, both with mean m ¼ 3. The distribution with

the smaller variance (the solid curve) is less spread out about its mean.
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0.3
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0.0
�1 0 1 2 3

x
4 5 6 7
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x)

Smaller variance

Larger variance

FIGURE P.3 Distributions with different variances.
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P.5.5 EXPECTED VALUES OF SEVERAL RANDOM VARIABLES

Let X and Y be random variables. The rule ‘‘the expected value of the sum is the sum of the

expected values’’ applies. Then4

E X þ Yð Þ ¼ EðXÞ þ EðYÞ (P.15)

Similarly

EðaX þ bY þ cÞ ¼ aEðXÞ þ bEðYÞ þ c (P.16)

The product of random variables is not as easy. EðXYÞ ¼ EðXÞEðYÞ if X and Y are

independent. These rules can be extended to more random variables.

P.5.6 COVARIANCE BETWEEN TWO RANDOM VARIABLES

The covariance between X and Y is a measure of linear association between them. Think

about two continuous variables, such as heights and weights of children. We expect that

there is an association between height and weight, with taller than average children tending

to weigh more than the average. The product of Xminus its mean times Yminus its mean is

X � mXð Þ Y � mYð Þ (P.17)

In Figure P.4 we plot values (x and y) of X and Y that have been constructed so that

E Xð Þ ¼ E Yð Þ ¼ 0.

The x and y values of X and Y fall predominately in quadrants I and III, so that the

arithmetic average of the values ðx� mXÞðy� mYÞ is positive. We define the covariance

between two random variables as the expected (population average) value of the product

in (P.17),

covðX; YÞ ¼ sXY ¼ E X � mXð Þ Y � mYð Þ½ � ¼ E XYð Þ � mXmY (P.18)

4 These results are proven in Appendix B.1.4.

0
x

– 4 4
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IV
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– 
4

 4
 0y

FIGURE P.4 Correlated data.
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The covariance sXY of the random variables underlying Figure P.4 is positive, which tells

us that when the values x are greater than mX then the values y also tend to be greater

than mY ; and when the values x are below mX then the values y also tend to be less than mY.

If the random variables’ values tend primarily to fall in quadrants II and IV, then

ðx� mXÞðy� mYÞ will tend to be negative and sXY will be negative. If the random

variables’ values are spread evenly across the four quadrants, and show neither positive nor

negative association, then the covariance is zero. The sign of sXY tells us whether the two

random variables X and Y are positively associated or negatively associated.

Interpreting the actual value ofsXY is difficult becauseX andYmay have different units of

measurement. Scaling the covariance by the standard deviations of the variables eliminates

the units of measurement, and defines the correlation between X and Y

r ¼ cov X; Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi

varðYÞp ¼ sXY

sXsY

(P.19)

Aswith the covariance, the correlation r between two randomvariablesmeasures the degree

of linear association between them.However, unlike the covariance, the correlationmust lie

between –1 and 1. Thus the correlation between X and Y is 1 or –1 ifX is a perfect positive or

negative linear function of Y. If there is no linear association between X and Y, then

cov X; Yð Þ ¼ 0 and r ¼ 0. For other values of correlation the magnitude of the absolute

value rj j indicates the ‘‘strength’’ of the linear association between the values of the random
variables. In Figure P.4 the correlation between X and Y is r ¼ 0.5.

To illustrate the calculation, reconsider the population in Table P.1 with joint probability

density function given in Table P.4. The expected value of XY is

E XYð Þ ¼ �
1

y¼0
�
4

x¼1
xyf x; yð Þ ¼ 1� 0� 0ð Þ þ 2� 0� 0:1ð Þ þ 3� 0� 0:2ð Þ

þ 4� 0� 0:3ð Þ þ 1� 1� 0:1ð Þ þ 2� 1� 0:1ð Þ
þ 3� 1� 0:1ð Þ þ 4� 1� 0:1ð Þ

¼ 0:1þ 0:2þ 0:3þ 0:4
¼ 1

The random variable X has expected value E Xð Þ ¼ mX ¼ 3 and the random variable Y has

expected value E Yð Þ ¼ mY ¼ 0:4. Then the covariance between X and Y is

cov X; Yð Þ ¼ sXY ¼ E XYð Þ � mXmY ¼ 1� 3� 0:4ð Þ ¼ �0:2

The correlation between X and Y is

r ¼ cov X; Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi

varðYÞp ¼ �0:2ffiffiffi
1

p � ffiffiffiffiffiffiffiffiffi
0:24

p ¼ �0:4082

If X and Yare independent random variables then their covariance and correlation are zero.

The converse of this relationship is not true. Independent random variables X and Y have

zero covariance, indicating that there is no linear association between them. However, just

because the covariance or correlation between two random variables is zero does notmean

that they are necessarily independent. There may be more complicated nonlinear associ-

ations such as X2 þ Y2 ¼ 1.
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In (P.15) we obtain the expected value of a sum of random variables. We obtain similar

rules for variances. If a and b are constants, then

var aX þ bYð Þ ¼ a2var Xð Þ þ b2var Yð Þ þ 2abcov X; Yð Þ (P.20)

A significant point to note is that the variance of a sum is not just the sum of the variances.

There is a covariance term present. Two special cases of (P.20) are

var X þ Yð Þ ¼ var Xð Þ þ var Yð Þ þ 2cov X; Yð Þ (P.21)

var X � Yð Þ ¼ var Xð Þ þ var Yð Þ � 2cov X; Yð Þ (P.22)

To show that (P.22) is true, let Z ¼ X � Y. Using the rules of expected value

E Zð Þ ¼ mZ ¼ E Xð Þ � E Yð Þ ¼ mX � mY

The variance of Z ¼ X � Y is obtained using the basic definition of variance, with some

substituting,

var X � Yð Þ ¼ var Zð Þ ¼ E Z � mZð Þ2
h i

¼ E
�
X � Y � mX � mYð Þ�2h i

¼ E X � mXð Þ � Y � mYð Þ½ �2
n o

¼ E X � mXð Þ2 þ Y � mYð Þ2 � 2 X � mXð Þ Y � mYð Þ
n o

¼ E X � mXð Þ2
h i

þ E Y � mYð Þ2
h i

� 2E X � mXð Þ Y � mYð Þ½ �
¼ var Xð Þ þ var Yð Þ � 2cov X; Yð Þ

If X and Y are independent, or if cov X; Yð Þ ¼ 0, then

var aX þ bYð Þ ¼ a2var Xð Þ þ b2var Yð Þ (P.23)

var X � Yð Þ ¼ var Xð Þ þ var Yð Þ (P.24)

These rules extend to more random variables.

P.6 The Normal Distribution

In the previous sections we discussed random variables and their probability density

functions in a general way. In real economic contexts some specific probability density

functions have been found to be very useful. The most important is the normal distribution.

If X is a normally distributed random variable with mean m and variance s2, it can be

symbolized as X 	 N m;s2ð Þ. The pdf of X is given by the impressive formula

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp
�ðx� mÞ2

2s2

" #
;�1 < x < 1 (P.25)
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where exp að Þ denotes the exponential5 function ea. The mean m and variance s2 are

the parameters of this distribution and determine its center and dispersion. The range of the

continuous normal random variable is from minus infinity to plus infinity. Pictures of

the normal probability density functions are given in Figure P.5 for several values of the

mean and variance. Note that the distribution is symmetric and centered at m.
Like all continuous random variables, probabilities involving normal random variables

are found as areas under the probability density function. For calculating probabilities both

computer software and statistical tables values make use of the relation between a normal

random variable and its ‘‘standardized’’ equivalent. A standard normal random variable

is one that has a normal probability density function with mean 0 and variance 1. If

X 	 N m;s2ð Þ, then

Z ¼ X � m

s
	 Nð0; 1Þ (P.26)

The cdf for the standardized normal variable Z is so widely used that it is given its own

special symbol,FðzÞ ¼ P Z � zð Þ. Computer programs, and Table 1 at the end of this book,

give values of FðzÞ. To calculate normal probabilities remember that the distribution is

symmetric, so that P Z > að Þ ¼ P Z < �að Þ, and P Z > að Þ ¼ P Z 
 að Þ, since the prob-

ability of any one point is zero for a continuous random variable. If X 	 N m;s2ð Þ and a and
b are constants, then

P X � að Þ ¼ P
X � m

s
� a� m

s

� �
¼ P Z � a� m

s

	 

¼ F

a� m

s

	 

(P.27)

P X > að Þ ¼ P
X � m

s
>

a� m

s

� �
¼ P Z >

a� m

s

	 

¼ 1�F

a� m

s

	 

(P.28)

P a � X � bð Þ ¼ P
a� m

s
� Z � b� m

s

� �
¼ F

b� m

s

� �
�F

a� m

s

	 

(P.29)
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FIGURE P.5 Normal probability density functions N m;s2ð Þ.

5 See Appendix A.1.2 for a review of exponents.
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For example, if X 	 N 3; 9ð Þ, then

P 4 � X � 6ð Þ ¼ P 0:33 � Z � 1ð Þ ¼ F 1ð Þ �F 0:33ð Þ ¼ 0:8413� 0:6293 ¼ 0:2120

An interesting and useful fact about the normal distribution is that aweighted sumof normal

random variables has a normal distribution. That is, if X1 	 N m1;s
2
1ð Þ and X2 	 N m2;s

2
2ð Þ

then

Y ¼ a1X1 þ a2X2 	 N mY ¼ a1m1 þ a2m2;s
2
Y ¼ a21s

2
1 þ a22s

2
2 þ 2a1a2s12

� �
(P.30)

A number of important probability distributions are related to the normal distribution.

The t-distribution, the chi-square distribution, and the F-distribution are discussed in

Appendix B.

P.7 Exercises

Answers to exercises marked * appear on the web page www.wiley.com/college/hill.

P.1* You are organizing an outdoor concert for next week and believe attendance will

depend on the weather. You consider the following possibilities are appropriate:

(a) Let X denote the attendance. Why is X a random variable?

(b) What is the expected attendance?

(c) Suppose that each ticket costs $5 and that the total cost of giving the concert is

a fixed $2,000. Let Y ¼ profit ¼ total sales revenue – total cost ¼ 5X � 2000.

What is the expected profit?

(d) If the variance of attendance is s2
X ¼ 240,000, find the variance of profit Y.

P.2 As youwalk into your econometrics exam, a friend bets you $10 that shewill outscore

you on the exam. Let X be a random variable denoting your winnings. X can take

the values 10, 0 if there is a tie, or�10. You know that the probability distribution for

X, f(x), depends on whether she studied for the exam or not. Let Y ¼ 0 if she studied

and Y ¼ 1 if she did not study. Consider the following joint distribution table.

(a) Fill in the missing elements in the table.

(b) Compute E(X). Should you take the bet?

Weather Probability ¼ f (x) Attendance ¼ X

Terrible weather 0.2 500

Mediocre weather 0.6 1000

Great weather 0.2 2000

Y

f (x,y) 0 1 f (x)

�10 0.18 ? ?

X 0 0 ? 0.3

10 ? 0.45 ?

f (y) ? 0.75
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(c) What is the probability distribution of your winnings if you know that she did

not study?

(d) Find your expected winnings given that she did not study.

P.3* Afirm’smarketingmanager believes that total salesX can bemodeled using a normal

distribution with mean m ¼ $2.5 million and standard deviation s ¼ $300,000.

What is the probability that the firm’s sales will exceed $3 million? Draw a sketch to

illustrate your calculation.

P.4 In the U.S. the North and South are quite different. Below is the joint probability

distribution of political affiliation (R ¼ Republican, I ¼ Independent and D ¼
Democrat) for a Northern city and a Southern city.

(a) What is the probability of selecting a Republican given that we sample from the

Northern city? Show your calculation.

(b) Are political affiliation and region of residence statistically independent random

variables? Explain.

(c) Assign the values R ¼ 0, I ¼ 2 andD ¼ 5 to political affiliation (PA). That is, if

a citizen is selected at random, the variablePA can take the values 0, 2 and 5. Find

the mathematical expectation of the random variable PA.

(d) Find the expected value of X ¼ 2PAþ 2PA2, where PA is the random variable

political affiliation.

P.5* Before the 2009 Super Bowl there was a coin flip to determine who kicked off and

who received. The NFC (National Football Conference) had won 11 prior coin flips.

(a) Given that the NFC had won 11 straight flips, what is the probability that they

would win the 12th flip? Explain.

(b) Before the 2010 Super Bowl (won by the New Orleans Saints) the NFC won the

coin toss for the 13th consecutive time.What is the probability that the NFCwill

win the next two consecutive tosses?

P.6 At supermarkets in a Midwestern city the sales of canned tuna varies from week to

week. Marketing researchers have determined that there is a relationship between

sales of canned tuna and the price of canned tuna. Specifically, SALES ¼ 40710

� 430PRICE where SALES are cans sold per week and PRICE is measured in cents

per can. Suppose PRICE over the year can be considered (approximately) a normal

randomvariablewithmeanm ¼ 75 cents and standard deviations ¼ 5 cents. That is

PRICE ~ N(75, 25).

(a) What is the numerical expected value of SALES? Show your work.

(b) What is the numerical value of the variance of SALES? Show your work.

(c) Find the probability that more than 6,300 cans are sold in a week. Draw a sketch

illustrating the calculation.

P.7* ‘‘Charley Chicken’’ and ‘‘Bradley Bee’’ are brands of canned tuna. During a week

a certain amount of advertising appears for these products. There may be no

Political Affiliation (PA)

R I D

Southern 0.24 0.04 0.12

Northern 0.18 0.12 0.30
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advertising, one form of advertising (newspaper coupon), or two forms (coupon and a

special store display). Let C denote the level of advertising for Charley Chicken. It

can take the values c ¼ 0, 1 or 2. LetB denote the level of advertising of BradleyBee;

B can take the values b ¼ 0, 1 or 2. Suppose the following table represents the

joint probability distribution of the advertising levels for these two brands of

canned tuna.

(a) What is the marginal probability distribution of Charley Chicken advertising,C?

(b) What is the expected value of C? Show your work.

(c) What is the variance of C? Show your work.

(d) Are the two companies’ advertising strategies statistically independent?

Explain.

(e) Bradley Bee pays its advertising firm $5,000 per week plus $1,000 for each

level of advertising B. What is the probability distribution of Bradley Bee’s

advertising outlay, A?

(f) What is the correlation between Bradley Bee’s advertising level (B) and its

advertising expenditure (A)? Explain.

P.8 LetX be a discrete randomvariable that is thevalue shownon a single roll of a fair die.

(a) Represent the probability density function f(x) in tabular form.

(b) What is the probability that X ¼ 4? That X ¼ 4 or X ¼ 5?

(c) What is the expected value of X? Explain the meaning of E(X ) in this case.

(d) Find the expected value of X2.

(e) Find the variance of X.

(f) Obtain a die. Roll it 20 times and record the values obtained. What is the average

of the first 5 values? The first 10? What is the average of the 20 rolls?

P.9 Let X be a continuous random variable whose probability density function is

f ðxÞ ¼
2
3
� 2

9
x 0 � x � 3

0 otherwise

�

(a) Sketch the probability density function f(x). Is the area under the curve equal to

one?

(b) Geometrically calculate the probability that X falls between 0 and ½.

(c) Geometrically calculate the probability that X falls between ¼ and 3/4.

P.10 Suppose that X and Y are random variables with expected values mX ¼ mY ¼ m and

variances s2
X ¼ s2

Y ¼ s2. Let Z ¼ (X þ Y)/2.

(a) Find E(Z).

(b) Find varðZÞ assuming that X and Y are statistically independent.

(c) Find var(Z) assuming that cov(X, Y) ¼ 0.5s2.

B

0 1 2

0 0.05 0.05 0.05

C 1 0.05 0.20 0.15

2 0.05 0.25 0.15
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P.11* The length of life (in years) of a personal computer is approximately normally

distributed with mean 3.4 years and variance 1.6 years.

(a) What fraction of computers will fail in the first year?

(b) What fraction of computers will last 4 years or more?

(c) What fraction of computers will last at least 2 years?

(d) What fraction of computers will last more than 2.5 years but less than 4 years?

(e) If the manufacturer adopts a warranty policy in which only 5% of the computers

have to be replaced, what will be the length of the warranty period?

P.12 Based on many years of experience, an instructor in econometrics has determined

that the probability distribution ofX, the number of students absent onMondays, is as

follows:

(a) Sketch the probability function of X.

(b) Find the probability that on a given Monday either 2, or 3 or 4 students will be

absent.

(c) Find the probability that on a given Monday more than 3 students are absent.

(d) Compute the expected value of the random variable X. Interpret this expected

value.

(e) Compute the variance and standard deviation of the random variable X.

(f) Compute the expected value and variance of Y ¼ 7X þ 3.

P.13* Suppose a certain mutual fund has an annual rate of return that is approximately

normally distributedwithmean (expected value) 5% and standard deviation 4%. Use

Table 1, the table of cumulative probabilities for the standard normal distribution, for

parts (a)–(c).

(a) Find the probability that your 1-year return will be negative.

(b) Find the probability that your 1-year return will exceed 15%.

(c) If the mutual fund managers modify the composition of its portfolio, they can

raise its mean annual return to 7%, but will also raise the standard deviation of

returns to 7%. Answer parts (a) and (b) in light of these decisions. Would you

advise the fund managers to make this portfolio change?

(d) Verify your computations in (a)–(c) using your computer software.

P.14 An investor holding a portfolio consisting of two stocks invests 25%of assets in Stock

A and 75% into StockB. The returnRA fromStockAhas amean of 4% and a standard

deviation of sA ¼ 8%. Stock B has an expected return E(RB) ¼ 8% with a standard

deviation of sB ¼ 12%. The portfolio return is P ¼ 0:25RA þ 0:75RB.

(a) Compute the expected return on the portfolio.

(b) Compute the standard deviation of the returns on the portfolio assuming that the

two stocks’ returns are perfectly positively correlated.

(c) Compute the standard deviation of the returns on the portfolio assuming that the

two stocks’ returns have a correlation of 0.5.

(d) Compute the standard deviation of the returns on the portfolio assuming that the

two stocks’ returns are uncorrelated.

P.15* Let x1 ¼ 7, x2 ¼ 2, x3 ¼ 4, x4 ¼ �7, y1 ¼ 5, y2 ¼ 2, y3 ¼ 3, y4 ¼ 12. Calculate

the following:

x 0 1 2 3 4 5 6 7

f(x) 0.02 0.03 0.26 0.34 0.22 0.08 0.04 0.01
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(a) �
2

i¼1
xi

(b) x ¼ �
4

i¼1
xi

�
4 [Note: x is called the arithmetic average or arithmetic mean.]

(c) �
4

i¼1
xi � xð Þ

(d) �
4

i¼1
xi � xð Þ2

(e) �
4

i¼1
xi � xð Þ yi � yð Þ where y ¼ �

4

i¼1
yi

�
4

(f)

�
4

i¼1
xiyi

� �
� 4 � x � y

�
4

i¼1
x2i

� �
� 4 � x2

P.16 Express each of the following sums in summation notation:

(a) x1 þ x2 þ x3 þ x4
(b) x2 þ x3
(c) x1y1 þ x2y2 þ x3y3 þ x4y4
(d) x1y3 þ x2y4 þ x3y5 þ x4y6
(e) x3y

2
3 þ x4y

2
4

(f) x1 � y1ð Þ þ x2 � y2ð Þ þ x3 � y3ð Þ
P.17* Write out each of the following sums and compute where possible.

(a) �
4

i¼1
aþ bxið Þ

(b) �
3

i¼1
i2

(c) �
3

x¼0
x2 þ 2xþ 2ð Þ

(d) �
4

x¼2
f xþ 2ð Þ

(e) �
2

x¼0
f x; yð Þ

(f) �
4

x¼2
�
2

y¼1
xþ 2yð Þ

P.18 Let X take 4 values x1 ¼ 1; x2 ¼ 3; x3 ¼ 5; x4 ¼ 3.

(a) Calculate the arithmetic average x ¼ �4
i¼1xi

.
4

(b) Calculate �4
i¼1 xi � xð Þ

(c) Calculate �4
i¼1 xi � xð Þ2

(d) Calculate �4
i¼1x

2
i

	 

� 4x2

(e) Show algebraically that �
n

i¼1
xi � xð Þ2 ¼ �

n

i¼1
x2i

� �
� nx2

P.19 Show that �
n

i¼1
xi � xð Þ yi � yð Þ ¼ �

n

i¼1
xiyi

� �
� nx y
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C h a p t e r 2
The Simple Linear
Regression Model

Learning Objectives

REMARK: Learning Objectives and Keywords sections will appear at the beginning of

each chapter. We urge you to think about, and possibly write out answers to the questions,

and make sure you recognize and can define the keywords. If you are unsure about the

questions or answers consult your instructor. When examples are requested in Learning

Objectives sections, you should think of examples not in the book.

Based on the material in this chapter you should be able to

1. Explain the difference between an estimator and an estimate, and why the least

squares estimators are random variables, and why least squares estimates are not.

2. Discuss the interpretation of the slope and intercept parameters of the simple

regression model, and sketch the graph of an estimated equation.

3. Explain the theoretical decomposition of an observable variable y into its systema-

tic and random components, and show this decomposition graphically.

4. Discuss and explain each of the assumptions of the simple linear regression model.

5. Explain how the least squares principle is used to fit a line through a scatter plot of

data. Be able to define the least squares residual and the least squares fitted value of

the dependent variable and show them on a graph.

6. Define the elasticity of ywith respect to x and explain its computation in the simple

linear regression model when y and x are not transformed in any way, and when y

and/or x have been transformed to model a nonlinear relationship.

7. Explain the meaning of the statement ‘‘If regression model assumptions SR1–SR5

hold, then the least squares estimator b2 is unbiased.’’ In particular, what exactly

does ‘‘unbiased’’ mean?Why is b2 biased if an important variable has been omitted

from the model?

8. Explain the meaning of the phrase ‘‘sampling variability.’’

9. Explain how the factorss2,�(xi � x)2, andN affect the precisionwithwhichwe can

estimate the unknown parameter b2.

10. State and explain the Gauss–Markov theorem.

11. Use the least squares estimator to estimate nonlinear relationships and interpret the

results.
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Economic theory suggests many relationships between economic variables. In microeco-

nomics you considered demand and supply models in which the quantities demanded and

supplied of a good depend on its price. You considered ‘‘production functions’’ and ‘‘total

product curves’’ that explained the amount of a good produced as a function of the amount of

an input, such as labor, that is used. In macroeconomics you specified ‘‘investment

functions’’ to explain that the amount of aggregate investment in the economy depends

on the interest rate and ‘‘consumption functions’’ that related aggregate consumption to the

level of disposable income.

Each of these models involves a relationship between economic variables. In this

chapter we consider how to use a sample of economic data to quantify such relation-

ships. As economists, we are interested in questions such as the following: If one

variable (e.g., the price of a good) changes in a certain way, by how much will another

variable (the quantity demanded or supplied) change? Also, given that we know the

value of one variable, can we forecast or predict the corresponding value of another?We

will answer these questions by using a regression model. Like all models the regression

model is based on assumptions. In this chapter we hope to be very clear about these

assumptions, as they are the conditions under which the analysis in subsequent chapters

is appropriate.

2.1 An Economic Model

In order to develop the ideas of regression models we are going to use a simple, but

important, economic example. Suppose that we are interested in studying the relationship

between household income and expenditure on food. Consider the ‘‘experiment’’ of

randomly selecting households from a particular population. The population might

consist of households within a particular city, state, province, or country. For the present,

suppose that we are interested only in households with an income of $1,000 per week. In

this experiment we randomly select a number of households from this population and

interview them. We ask the question, ‘‘How much did you spend per person on food last

week?’’ Weekly food expenditure, which we denote as y, is a random variable since the

value is unknown to us until a household is selected and the question is asked and

answered.

Keywords

assumptions

asymptotic

BLUE

biased estimator

degrees of freedom

dependent variable

deviation from the mean

form

econometric model
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elasticity

Gauss–Markov theorem
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indicator variable
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REMARK: In the Probability Primer and Appendices B and C we distinguished random

variables from their values by using uppercase (Y ) letters for random variables and

lowercase (y) letters for their values. We will not make this distinction any longer because

it leads to complicated notation. We will use lowercase letters, like ‘y,’ to denote random

variables as well as their values, and we will make the interpretation clear in the

surrounding text.

The continuous random variable y has a probability density function (which we will

abbreviate as pdf) that describes the probabilities of obtaining various food expenditure

values. If you are rusty or uncertain about probability concepts see the Probability Primer

and Appendix B at the end of this book for a comprehensive review. The amount spent on

food per person will vary from one household to another for a variety of reasons: some

households will be devoted to gourmet food, somewill contain teenagers, somewill contain

senior citizens, somewill bevegetarian, and somewill eat at restaurantsmore frequently.All

of these factors and many others, including random, impulsive buying, will cause weekly

expenditures on food to vary from one household to another, even if they all have the same

income. The pdf f (y) describes how expenditures are ‘‘distributed’’ over the population and

might look like Figure 2.1.

The pdf in Figure 2.1a is actually a conditional probability density function since it is

‘‘conditional’’ upon household income. If x ¼ weekly household income ¼ $1,000, then

the conditional pdf is f (yjx ¼ $1;000). The conditional mean, or expected value, of y is

E(yjx ¼ $1,000) ¼ myjx and is our population’s mean weekly food expenditure per person.

REMARK: The expected value of a random variable is called its ‘‘mean’’ value, which

is really a contraction of population mean, the center of the probability distribution of the

random variable. This is not the same as the sample mean, which is the arithmetic average

of numerical values. Keep the distinction between these two usages of the term ‘‘mean’’ in

mind.

The conditional variance of y is var(yjx ¼ $1,000) ¼ s2, which measures the dispersion of

household expenditures y about their mean myjx. The parameters myjx and s2, if they were

known, would give us some valuable information about the population we are considering.

If we knew these parameters, and if we knew that the conditional distribution f (yjx ¼
$1; 000) was normal, N(myjx,s2), then we could calculate probabilities that y falls in

specific intervals using properties of the normal distribution. That is, we could compute the

y

f(y|x = 1000)
f(y|x = 1000)

μy|x

(a)

f(y|x) f(y|x = 1000) f(y|x = 2000)

μy|1000 μy|2000 y

(b)

FIGURE 2.1 (a) Probability distribution f (yjx ¼ 1000) of food expenditure y given income

x ¼ $1,000. (b) Probability distributions of food expenditure y given incomes x ¼ $1,000 and

x ¼ $2,000.
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proportion of the household population that spends between $50 and $75 per person on food,

given $1,000 per week income.

As economists we are usually more interested in studying relationships between

variables, in this case the relationship between y ¼ weekly food expenditure per person

and x¼weekly household income. Economic theory tells us that expenditure on economic

goods depends on income. Consequently we call y the ‘‘dependent variable’’ and x the

‘‘independent’’ or ‘‘explanatory’’ variable. In econometrics, we recognize that real-world

expenditures are random variables, and we want to use data to learn about the relationship.

An econometric analysis of the expenditure relationship can provide answers to some

important questions, such as: If weekly income goes up by $100, how much will average

weekly food expenditures rise? Or, could weekly food expenditures fall as income rises?

How much would we predict the weekly per person expenditure on food to be for a

household with an income of $2,000 per week? The answers to such questions provide

valuable information for decision makers.

Using . . . per person food spending information . . . one can determine the similarities

and disparities in the spending habits of households of differing sizes, races, incomes,

geographic areas, and other socioeconomic and demographic features. This

information is valuable for assessing existing market conditions, product distribution

patterns, consumer buying habits, and consumer living conditions. Combined with

demographic and income projections, this information may be used to anticipate

consumption trends. The information may also be used to develop typical market

baskets of food for special population groups, such as the elderly. These market baskets

may, in turn, be used to develop price indices tailored to the consumption patterns of

these population groups. [Blisard, Noel, Food Spending in American Households,

1997–1998, Electronic Report from the Economic Research Service, U.S. Department

of Agriculture, Statistical Bulletin Number 972, June 2001]

From a business perspective, if we are managers of a supermarket chain (or restaurant, or

health food store, etc.) we must consider long-range plans. If economic forecasters are

predicting that local income will increase over the next few years, then we must decide

whether, and how much, to expand our facilities to serve our customers. Or, if we plan to

open franchises in high-income and low-income neighborhoods, then forecasts of expen-

ditures on food per person, along with neighborhood demographic information, give an

indication of how large the stores in those areas should be.

In order to investigate the relationship between expenditure and incomewemust build an

economic model and then a corresponding econometric model that forms the basis for a

quantitative or empirical economic analysis. In our food expenditure example, economic

theory suggests that averageweekly per person household expenditure on food, represented

mathematically by the conditional mean E(yjx) ¼ myjx, depends on household income x. If

we consider households with different levels of income, we expect the average expenditure

on food to change. In Figure 2.1b we show the probability density functions of food

expenditure for two different levels of weekly income, $1,000 and $2,000. Each conditional

pdf f (yjx) shows that expenditures will be distributed about a mean value myjx, but the mean

expenditure by households with higher income is larger than themean expenditure by lower

income households.

In most economics textbooks ‘‘consumption’’ or ‘‘expenditure’’ functions relating

consumption to income are depicted as linear relationships, and wewill begin by assuming

the same thing. The mathematical representation of our economic model of household food

expenditure, depicted in Figure 2.2, is

EðyjxÞ ¼ myjx ¼ b1 þ b2x (2.1)
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The conditional mean E(yjx) in (2.1) is called a simple regression function. It is called

simple regression not because it is easy, but because there is only one explanatory variable on

the right-hand side of the equation. The unknown regression parameters b1 and b2 are the

intercept and slope of the regression function, respectively. If you need a review of

the geometry, interpretation, and algebra of linear functions see Appendix A.2 at the

end of the book. In our food expenditure example the intercept b1 represents the mean per

person weekly household expenditure on food by a household with no weekly income, x¼
$0. If income ismeasured in dollars, then the slopeb2 represents the change inE(yjx) given a
$1 change in weekly income; it could be called the marginal propensity to spend on food.

Algebraically,

b2 ¼ DEðyjxÞ
Dx

¼ dEðyjxÞ
dx

(2.2)

where D denotes ‘‘change in’’ and dE(yjx)=dx denotes the ‘‘derivative’’ of E(yjx) with
respect to x. We will not use derivatives to any great extent in this book, and if you are not

familiar with the concept, you can think of ‘‘d’’ as a ‘‘stylized’’ version of D and go on. See

Appendix A.3 for a discussion of derivatives.

The economic model (2.1) summarizes what theory tells us about the relationship

betweenweekly household income (x) and expected household expenditure on food,E(yjx).
The parameters of the model, b1 and b2, are quantities that help characterize economic

behavior in the population we are considering and are called population parameters.

In order to use data we must now specify an econometric model that describes how the

data on household income and expenditure are obtained, and that guides the econometric

analysis.

2.2 An Econometric Model

The model E(yjx) ¼ b1 þ b2x describes economic behavior, but it is an abstraction

from reality. If we take a random sample of households with weekly income x ¼
$1,000, we know the actual expenditure values will be scattered around the mean value

E(yjx ¼ 1000) ¼ myjx¼1000 ¼ b1 þ b2(1000), as shown in Figure 2.1. If we were to sample

household expenditures at other levels of income, we would expect the sample values to be

scattered around their mean value E(yjx) ¼ b1 þ b2x. In Figure 2.3 we arrange bell-shaped

figures like Figure 2.1, depicting the pdfs of food expenditure f (yjx), along the regression

line for each level of income.

x

A
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ra
ge

 e
xp

en
di

tu
re

Income

E(y|x) = β1 + β2 x

β2 =               =

β1

Δx Δx dx

ΔE(y|x) ΔE(y|x) dE(y|x)

E( y|x)

FIGURE 2.2 The economic model: a linear relationship between average per person food

expenditure and income.
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This figure shows that at each level of income the mean, or average, value of household

expenditure is given by the regression function E(yjx) ¼ b1 þ b2x. It also shows that we

assume values of household expenditures on food will be distributed around the mean value

E(yjx) ¼ b1 þ b2x at each level of income. This regression function is the foundation of an

econometric model for household food expenditure.

In order to make the econometric model complete we have to make some assumptions.

REMARK: You will hear a great deal about assumptions in this chapter and in the

remainder of the book. Assumptions are the ‘‘if’’ part of an ‘‘if–then’’ type statement. If

the assumptions we make are true, then certain things follow. And, as importantly, if the

assumptions do not hold, then the conclusions we draw may not hold. Part of the challenge

of econometric analysis is making realistic assumptions and then checking that they hold.

In Figure 2.1a we assumed that the dispersion of the values y about their mean is

var(yjx ¼ $1,000) ¼ s2. We must make a similar assumption about the dispersion of

values at each level of income. The basic assumption is that the dispersion of values y

about their mean is the same for all levels of income x. That is, var(yjx) ¼ s2 for all values of

x. In Figure 2.1b the pdfs for two different incomes have different means, but they have

identical variances. This assumption is also illustrated in Figure 2.3, as we have depicted the

‘‘spread’’ of each of the distributions, like Figure 2.1, to be the same.

The constant variance assumption var(yjx) ¼ s2 implies that at each level of income x

we are equally uncertain about how far values of y might fall from their mean value,

E(yjx) ¼ b1 þ b2x, and the uncertainty does not depend on income or anything else. Data

satisfying this condition are said to be homoskedastic. If this assumption is violated, so that

var(yjx) 6¼s2 for all values of income x, the data are said to be heteroskedastic.

We have described the sample as random. This description means that when data are

collected they are statistically independent. If yi and yj denote the per person food expen-

ditures of two randomly selected households, then knowing the value of one of these

(random) variables tells us nothing about the probability that the other will take a particular

value or range of values.

Mathematicians spend their lives (we exaggerate slightly) trying to prove the same

theorem with weaker and weaker sets of assumptions. This mindset spills over to

f(y)

Household income

Food expenditure

μy|1000 μy|2000

x

y

x =1000 x =
2000

f(y |x = 1000)

f(y |x = 2000)

β1 + β2x = E(y|x)

FIGURE 2.3 The probability density functions for y at two levels of income.
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econometricians to some degree. Consequently, econometric models often make an

assumption that is weaker than statistical independence. If yi and yj are the expenditures

of two randomly selected households, then we will assume that their covariance is zero, or

cov(yi,y j) ¼ 0. This is a weaker assumption than statistical independence (since indepen-

dence implies zero covariance, but zero covariance does not imply independence); it implies

only that there is no systematic linear association between yi and yj. Refer to the Probability

Primer, Sections P.3.3 and P.5.6 for more discussion of this difference.

In order to carry out a regression analysis, we must make two assumptions about the

values of the variable x. The idea of regression analysis is tomeasure the effect of changes in

one variable, x, on another, y. In order to do this x must take at least two values within the

sample of data. If all the observations on x within the sample take the same value, say

x ¼ $1,000, then regression analysis fails. Secondly, we will assume that the x-values are

given, and not random. All our results will be conditional on the given x-values. More will

be said about this assumption soon.

Finally, it is sometimes assumed that the values of y are normally distributed. The usual

justification for this assumption is that in nature the ‘‘bell-shaped’’ curve describes many

phenomena, ranging from IQs to the length of corn stalks to the birth weights of Australian

male children. It is reasonable, sometimes, to assume that an economic variable is normally

distributed about its mean.Wewill saymore about this assumption later, but for nowwewill

make it an ‘‘optional’’ assumption, sincewe do not need to make it in many cases, and it is a

very strong assumption when it is made.

These ideas, taken together, define our econometric model. They are a collection of

assumptions that describe the data.

ASSUMPTIONS OF THE SIMPLE LINEAR REGRESSION MODEL-I

� Themeanvalue of y, for each value of x, is given by the linear regression function

EðyjxÞ ¼ b1 þ b2x

� For each value of x, the values of y are distributed about their mean value,

following probability distributions that all have the same variance,

varðyjxÞ ¼ s2

� The sample values of y are all uncorrelated and have zero covariance, implying

that there is no linear association among them,

covðyi; y jÞ ¼ 0

This assumption can be made stronger by assuming that the values of y are all

statistically independent.

� The variable x is not random and must take at least two different values.

� (optional) The values of y are normally distributed about their mean for each

value of x,

y � N ðb1 þ b2xÞ;s2
� �
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2.2.1 INTRODUCING THE ERROR TERM

It is convenient to describe the assumptions of the simple linear regression model in terms

of y, which in general is called the dependent variable in the regression model. However,

for statistical purposes it is useful to characterize the assumptions another way.

The essence of regression analysis is that any observation on the dependent variable y can

be decomposed into two parts: a systematic component and a random component. The

systematic component of y is its mean, EðyjxÞ ¼ b1 þ b2x, which itself is not random since

it is amathematical expectation. The random component of y is the difference between y and

its conditional mean value EðyjxÞ. This is called a random error term, and it is defined as

e ¼ y� EðyjxÞ ¼ y� b1 � b2x (2.3)

If we rearrange (2.3) we obtain the simple linear regression model

y ¼ b1 þ b2xþ e (2.4)

The dependent variable y is explained by a component that varies systematically with the

independent variable x and by the random error term e.

Equation (2.3) shows that y and the error term e differ only by the term EðyjxÞ ¼
b1 þ b2x, which is not random. Since y is random, so is the error term e. Givenwhat we have

already assumed about y, the properties of the random error e can be derived directly from

(2.3). The expected value of the error term, given x, is

EðejxÞ ¼ EðyjxÞ � b1 � b2x ¼ 0

The mean value of the error term, given x, is zero.

Since y and e differ only by a constant (i.e., a factor that is not random), their variances

must be identical and equal to s2. Thus the probability density functions for y and e are

identical except for their location, as shown in Figure 2.4. Note that the center of the pdf for

the error term, f(e), is zero, which is its expected value, EðejxÞ ¼ 0.

We can now discuss a bit more the simplifying assumption that x is not random. The

assumption that x is not randommeans that its value is known. In statistics such x-values are

said to be ‘‘fixed in repeated samples.’’ If we could perform controlled experiments, as

described in Chapter 1, the same set of x-values could be used over and over, so that only the

outcomes y are random. As an example, suppose that we are interested in how price affects

the number of Big Macs sold weekly at the local McDonald’s. The franchise owner can

set the price (x) and then observe the number of Big Macs sold (y) during the week. The

f (e) f (y)
f (•)

0 β1 + β2x

FIGURE 2.4 Probability density functions for e and y.
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followingweek the price could be changed, and again the data on sales collected. In this case

x ¼ the price of a Big Mac is not random, but fixed.

The number of cases in which the x-values are fixed is small in the world of business and

economics. When we survey households we obtain the data on variables like food

expenditure per person and household income at the same time. Thus y and x are both

random in this case; their values are unknown until they are actually observed. However,

making the assumption that x is given, and not random, does not change the results we

will discuss in the following chapters. The additional benefit from the assumption is

notational simplicity. Since x is treated as a constant nonrandom term, we no longer need the

conditioning notation ‘‘j’’. So, instead of E(ejx) ¼ 0 you will see E(e) ¼ 0. There are some

important situations inwhich treating x as fixed is not acceptable, and thesewill be discussed

in Chapter 10.

It is customary in econometrics to state the assumptions of the regression model in terms

of the random error e. For future reference the assumptions are named SR1–SR6, ‘‘SR’’

denoting ‘‘simple regression.’’ Remember, since we are treating x as fixed, and not random,

henceforth we will not use the ‘‘conditioning’’ notation yjx.

ASSUMPTIONS OF THE SIMPLE LINEAR REGRESSION MODEL-II

SR1. The value of y, for each value of x, is

y ¼ b1 þ b2xþ e

SR2. The expected value of the random error e is

EðeÞ ¼ 0

which is equivalent to assuming that

EðyÞ ¼ b1 þ b2x

SR3. The variance of the random error e is

varðeÞ ¼ s2 ¼ varðyÞ

The randomvariables y and e have the samevariance because they differ only by

a constant.

SR4. The covariance between any pair of random errors ei and ej is

covðei; e jÞ ¼ covðyi; y jÞ ¼ 0

The stronger version of this assumption is that the random errors e are statistically

independent, in which case the values of the dependent variable y are also

statistically independent.

SR5. The variable x is not random and must take at least two different values.

SR6. (optional) The values of e are normally distributed about their mean

e � Nð0;s2Þ

if the values of y are normally distributed, and vice versa.
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The random error e and the dependent variable y are both random variables, and as we

have shown the properties of one can be determined from the properties of the other. There

is, however, one interesting difference between them: y is ‘‘observable’’ and e is ‘‘unob-

servable.’’ If the regression parameters b1 and b2 were known, then for any value of y we

could calculate e ¼ y� (b1 þ b2x). This is illustrated in Figure 2.5.Knowing the regression

function E(y) ¼ b1 þ b2x, we could separate y into its fixed and random parts. However,b1

and b2 are never known, and it is impossible to calculate e.

What comprises the error term e? The random error e represents all factors affecting y

other than x. These factors cause individual observations y to differ from the mean value

E(y) ¼ b1 þ b2x. In the food expenditure example, what factors can result in a difference

between household expenditure per person y and its mean, E(y)?

1. We have included income as the only explanatory variable in this model. Any other

economic factors that affect expenditures on food are ‘‘collected’’ in the error term.

Naturally, in any economic model, we want to include all the important and relevant

explanatory variables in the model, so the error term e is a ‘‘storage bin’’ for

unobservable and/or unimportant factors affecting household expenditures on food.

As such, it adds noise that masks the relationship between x and y.

2. The error term e captures any approximation error that arises because the linear

functional form we have assumed may be only an approximation to reality.

3. The error term captures any elements of randombehavior thatmay be present in each

individual. Knowing all the variables that influence a household’s food expenditure

might not be enough to perfectly predict expenditure.Unpredictable human behavior

is also contained in e.

If we have omitted some important factor, or made any other serious specification

error, then assumption SR2 E(e) ¼ 0 will be violated, which will have serious

consequences.

x

y

y4

e4

E(y) = β1 + β2 x

e3

e2

e1

y3

y2

y1

x1 x2 x3 x4

FIGURE 2.5 The relationship among y, e, and the true regression line.
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2.3 Estimating the Regression Parameters

The economic and econometric models we developed in the previous section are the basis

for using a sample of data to estimate the intercept and slope parameters, b1 and b2. For

illustration we examine typical data on household food expenditure and weekly income

from a random sample of 40 households. Representative observations and summary statis-

tics are given in Table 2.1. We control for household size by considering only three-person

households. The values of y are weekly food expenditures for a three-person household, in

dollars. Instead of measuring income in dollars, we measure it in units of $100, because a

$1 increase in income has a numerically small effect on food expenditure. Consequently, for

the first household, the reported income is $369 per week with weekly food expenditure of

$115.22. For the 40th household, weekly income is $3,340 and weekly food expenditure is

$375.73. The complete data set of observations is in the file food.dat.

REMARK: In this book, ASCII, or plain text, data files are referenced as *.dat; e.g.,

food.dat. Files in other formats will have the same name, but a different extension, such as

food.wf1, food.dta, and so on. The corresponding data definition file will be food.def.

These files are located at the book Web sites (www.wiley.com/college/hill) and

http://principlesofeconometrics.com.

We assume that the expenditure data in Table 2.1 satisfy the assumptions SR1–SR5.

That is, we assume that the expected value of household food expenditure is a linear

function of income. This assumption about the expected value of y is equivalent to

assuming that the random error has expected value zero, implying that we have not omitted

any important factors. The variance of y, which is the same as the variance of the random

error e, is assumed to be constant, implying that we are equally uncertain about the

relationship between y and x for all observations. The values of y for different households

are assumed to be uncorrelated with each other, which follows if we obtained the data by

Ta b l e 2 . 1 Food Expenditure and Income Data

Observation

(household)

Food

expenditure ($)

Weekly

income ($100)

i yi xi

1 115.22 3.69

2 135.98 4.39
..
.

39 257.95 29.40

40 375.73 33.40

Summary statistics

Sample mean 283.5735 19.6048

Median 264.4800 20.0300

Maximum 587.6600 33.4000

Minimum 109.7100 3.6900

Std. Dev. 112.6752 6.8478

2 . 3 E ST IMAT ING THE REGRESS ION PARAMETERS 49

www.wiley.com/college/hill
http://principlesofeconometrics.com


random sampling. The values of xwere actually obtained by random sampling, but we will

make the analysis conditional on the x values in the sample, which allows us to treat them as

nonrandom values that are fixed in repeated samples. At the end of the day, this

simplification does not change the analysis.

Given this theoretical model for explaining the sample observations on household food

expenditure, the problem now is how to use the sample information in Table 2.1, specific

values of yi and xi, to estimate the unknown regression parameters b1 and b2. These

parameters represent the unknown intercept and slope coefficients for the food expenditure–

income relationship. Ifwe represent the 40 data points as (yi, xi), i ¼ 1, . . . ,N ¼ 40, and plot

them, we obtain the scatter diagram in Figure 2.6.

REMARK: It will be our notational convention to use i subscripts for cross-sectional

data observations, with the number of sample observations being N. For time-series data

observations we use the subscript t and label the total number of observations T. In purely

algebraic or generic situations, we may use one or the other.

Our problem is to estimate the location of the mean expenditure line EðyÞ ¼ b1 þ b2x.

We would expect this line to be somewhere in the middle of all the data points since

it represents population mean, or average, behavior. To estimate b1 and b2 we could simply

draw a freehand line through themiddle of the data and thenmeasure the slope and intercept

with a ruler. The problem with this method is that different people would draw

different lines, and the lack of a formal criterion makes it difficult to assess the accuracy

of themethod. Another method is to draw a line from the expenditure at the smallest income

level, observation i ¼ 1, to the expenditure at largest income level, i ¼ 40. This approach

does provide a formal rule. However, it may not be a very good rule because it ignores

information on the exact position of the remaining 38 observations. It would be better if we

could devise a rule that uses all the information from all the data points.
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FIGURE 2.6 Data for the food expenditure example.
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2.3.1 THE LEAST SQUARES PRINCIPLE

To estimate b1 andb2 wewant a rule, or formula, that tells us how tomake use of the sample

observations. Many rules are possible, but the one that we will use is based on the least

squares principle. This principle asserts that to fit a line to the data values we should make

the sum of the squares of the vertical distances from each point to the line as small as

possible. The distances are squared to prevent large positive distances from being canceled

by large negative distances. This rule is arbitrary, but very effective, and is simply oneway to

describe a line that runs through the middle of the data. The intercept and slope of this line,

the line that best fits the data using the least squares principle, are b1 and b2, the least squares

estimates of b1 and b2. The fitted line itself is then

ŷi ¼ b1 þ b2xi (2.5)

The vertical distances from each point to the fitted line are the least squares residuals. They

are given by

êi ¼ yi � ŷi ¼ yi � b1 � b2xi (2.6)

These residuals are depicted in Figure 2.7a.

Now suppose we fit another line, any other line, to the data. Denote the new line as

ŷ�i ¼ b�1 þ b�2xi

where b�1 and b�2 are any other intercept and slope values. The residuals for this line,

ê�i ¼ yi � ŷ�i , are shown in Figure 2.7b. The least squares estimates b1 and b2 have the

property that the sum of their squared residuals is less than the sum of squared residuals for

any other line. That is, if

SSE ¼ �
N

i¼1
ê2i

is the sum of squared least squares residuals from (2.6) and

SSE� ¼ �
N

i¼1
ê�i

2 ¼ �
N

i¼1
ðyi � ŷ�i Þ2

is the sum of squared residuals based on any other estimates, then

SSE< SSE�

no matter how the other line might be drawn through the data. The least squares principle

says that the estimates b1 and b2 of b1 and b2 are the ones to use, since the line using them as

intercept and slope fits the data best.

The problem is to find b1 and b2 in a convenient way. Given the sample observations on y

and x, wewant to find values for the unknown parameters b1 and b2 that minimize the ‘‘sum

of squares’’ function

Sðb1;b2Þ ¼ �
N

i¼1
ðyi � b1 � b2xiÞ2

This is a straightforward calculus problem, the details of which are given inAppendix 2A, at

the end of this chapter. The formulas for the least squares estimates ofb1 andb2 that give the

minimum of the sum of squared residuals are
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THE LEAST SQUARES ESTIMATORS

b2 ¼ �ðxi � xÞðyi � yÞ
�ðxi � xÞ2 (2.7)

b1 ¼ y� b2x (2.8)

where y ¼ �yi=N and x ¼ � xi=N are the sample means of the observations on y and x.

The formula forb2 revealswhywehad to assume [SR5] that thevalues of xiwerenot the same

value for all observations. If xi ¼ 5, for example, for all observations, then b2 is mathematically

undefined and does not exist since the numerator and denominator of (2.7) are zero!

If we plug the sample values yi and xi into (2.7) and (2.8), then we obtain the least squares

estimates of the intercept and slope parametersb1 andb2. It is interesting, however, and very
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FIGURE 2.7 (a) The relationship among y, ê, and the fitted regression line. (b) The residuals

from another fitted line.
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important, that the formulas for b1 and b2 are perfectly general and can be used no matter

what the sample values turn out to be. This should ring a bell. When the formulas for b1 and

b2 are taken to be rules that are used whatever the sample data turn out to be, then b1 and b2
are random variables. When actual sample values are substituted into the formulas, we

obtain numbers that are the observed values of random variables. To distinguish these two

cases we call the rules or general formulas for b1 and b2 the least squares estimators. We

call the numbers obtainedwhen the formulas are usedwith a particular sample least squares

estimates.

� Least squares estimators are general formulas and are random variables.

� Least squares estimates are numbers that we obtain by applying the general formulas

to the observed data.

The distinction between estimators and estimates is a fundamental concept that is essential

to understand everything in the rest of this book.

2.3.2 ESTIMATES FOR THE FOOD EXPENDITURE FUNCTION

Using the least squares estimators (2.7) and (2.8), we can obtain the least squares estimates

for the intercept and slope parameters b1 and b2 in the food expenditure example using the

data in Table 2.1. From (2.7), we have

b2 ¼ �ðxi � xÞðyi � yÞ
�ðxi � xÞ2 ¼ 18671:2684

1828:7876
¼ 10:2096

and from (2.8)

b1 ¼ y� b2x ¼ 283:5735� ð10:2096Þð19:6048Þ ¼ 83:4160

A convenient way to report the values for b1 and b2 is to write out the estimated or fitted

regression line, with the estimates rounded appropriately:

ŷi ¼ 83:42þ 10:21xi

This line is graphed in Figure 2.8. The line’s slope is 10.21, and its intercept, where it crosses

the vertical axis, is 83.42. The least squares fitted line passes through the middle of the data

in a very precise way, since one of the characteristics of the fitted line based on the least

squares parameter estimates is that it passes through the point defined by the sample means,

ðx, yÞ ¼ ð19:6048, 283:5735Þ. This follows directly from rewriting (2.8) as y ¼ b1 þ b2x.

Thus the ‘‘point of the means’’ is a useful reference value in regression analysis.

2.3.3 INTERPRETING THE ESTIMATES

Once obtained, the least squares estimates are interpreted in the context of the economic

model under consideration. The value b2 ¼ 10:21 is an estimate of b2. Recall that x, weekly

household income, is measured in $100 units. The regression slope b2 is the amount by

which expected weekly expenditure on food per household increases when household

weekly income increases by $100. Thus, we estimate that if weekly household income goes

up by $100, expected weekly expenditure on food will increase by approximately $10.21.

A supermarket executive with information on likely changes in the income and the number
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of households in an area could estimate that it will sell $10.21 more per typical household

per week for every $100 increase in income. This is a very valuable piece of information for

long-run planning.

Strictly speaking, the intercept estimate b1 ¼ 83:42 is an estimate of the weekly food

expenditure for a household with zero income. In most economic models we must be very

carefulwhen interpreting the estimated intercept. The problem is thatwe usually do not have

any data points near x ¼ 0, something that is true for the food expenditure data shown

in Figure 2.8. If we have no observations in the region where income is zero, then our

estimated relationship may not be a good approximation to reality in that region. So,

although our estimated model suggests that a household with zero income is expected to

spend $83.42 per week on food, it might be risky to take this estimate literally. This is an

issue that you should consider in each economic model that you estimate.

2.3.3a Elasticities

Income elasticity is a useful way to characterize the responsiveness of consumer expen-

diture to changes in income. SeeAppendixA.2.2 for a discussion of elasticity calculations in

a linear relationship. The elasticity of a variable y with respect to another variable x is

e ¼ percentage change in y

percentage change in x
¼ Dy=y

Dx=x
¼ Dy

Dx
� x
y

In the linear economic model given by (2.1) we have shown that

b2 ¼ DEðyÞ
Dx
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FIGURE 2.8 The fitted regression.
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so the elasticity of mean expenditure with respect to income is

e ¼ DEðyÞ=EðyÞ
Dx=x

¼ DEðyÞ
Dx

� x

EðyÞ ¼ b2 � x

EðyÞ (2.9)

To estimate this elasticity we replace b2 by b2 ¼ 10.21. We must also replace ‘‘x’’ and

‘‘E(y)’’ by something, since in a linear model the elasticity is different on each point upon

the regression line. Most commonly the elasticity is calculated at the ‘‘point of the means’’

(x; y) ¼ (19:60; 283:57) because it is a representative point on the regression line. If we

calculate the income elasticity at the point of the means we obtain

ê ¼ b2
x

y
¼ 10:21� 19:60

283:57
¼ 0:71

This estimated income elasticity takes its usual interpretation. We estimate that a 1%

increase in weekly household income will lead, on average, to a 0.71% increase in weekly

household expenditure on food, when x and y take their sample mean values, (x; y) ¼
(19:60; 283:57). Since the estimated income elasticity is less than one, we would classify

food as a ‘‘necessity’’ rather than a ‘‘luxury,’’ which is consistent withwhatwewould expect

for an average household.

2.3.3b Prediction

The estimated equation can also be used for prediction or forecasting purposes. Suppose that

we wanted to predict weekly food expenditure for a household with a weekly income of

$2,000. This prediction is carried out by substituting x¼ 20 into our estimated equation to

obtain

ŷi ¼ 83:42þ 10:21xi ¼ 83:42þ 10:21ð20Þ ¼ 287:61

We predict that a household with a weekly income of $2,000 will spend $287.61 per week

on food.

2.3.3c Computer Output

Many different software packages can compute least squares estimates. Every software

package’s regression output looks different and uses different terminology to describe the

output. Despite these differences, the various outputs provide the same basic information,

which you should be able to locate and interpret. Thematter is complicated somewhat by the

fact that the packages also report various numbers whose meaning you may not know. For

example, using the food expenditure data, the output from the software package EViews is

shown in Figure 2.9.

In the EViews output the parameter estimates are in the ‘‘Coefficient’’ column, with

names ‘‘C,’’ for constant term (the estimate b1), and INCOME (the estimate b2). Software

programs typically name the estimates with the name of the variable as assigned in the

computer program (we named our variable INCOME) and an abbreviation for ‘‘constant.’’

The estimates that we report in the text are rounded to two significant digits. The

other numbers that you can recognize at this time are SSE ¼ �ê2i ¼ 304505:2, which is

called ‘‘Sum squared resid,’’ and the sample mean of y, y ¼ �yi=N ¼ 283:5735, which
is called ‘‘Mean dependent var.’’

We leave discussion of the rest of the output until later.
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2.3.4 OTHER ECONOMIC MODELS

We have used the household expenditure on food versus income relationship as an example

to introduce the ideas of simple regression. The simple regression model can be applied to

estimate the parameters of many relationships in economics, business, and the social

sciences. The applications of regression analysis are fascinating and useful. For example,

� If the hourly wage rate of electricians rises by 5%, how much will new house prices

increase?

� If the cigarette tax increases by $1, howmuch additional revenuewill be generated in

the state of Louisiana?

� If the central banking authority raises interest rates by one-half a percentage point,

how much will consumer borrowing fall within six months? How much will it fall

within one year?What will happen to the unemployment rate in themonths following

the increase?

� If we increase funding on preschool education programs in 2012, what will be the

effect on high school graduation rates in 2024? What will be the effect on the crime

rate by juveniles in 2019 and subsequent years?

The range of applications spans economics and finance, as well as most disciplines in the

social and physical sciences. Any time you ask how much a change in one variable will

affect another variable, regression analysis is a potential tool.

2.4 Assessing the Least Squares Estimators

Using the food expenditure data we have estimated the parameters of the regression model

yi ¼ b1 þ b2xi þ ei using the least squares formulas in (2.7) and (2.8).We obtained the least

squares estimates b1 ¼ 83:42 and b2 ¼ 10:21. It is natural, but, as we shall argue,

Dependent Variable: FOOD_EXP

Method: Least Squares

Sample: 1 40

Included observations: 40

Coefficient Std. Error t-Statistic Prob.

C 83.41600 43.41016 1.921578 0.0622

INCOME 10.20964 2.093264 4.877381 0.0000

R-squared 0.385002 Mean dependent var 283.5735

Adjusted R-squared 0.368818 S.D. dependent var 112.6752

S.E. of regression 89.51700 Akaike info criterion 11.87544

Sum squared resid 304505.2 Schwarz criterion 11.95988

Log likelihood �235.5088 Hannan-Quinn criter 11.90597

F-statistic 23.78884 Durbin-Watson stat 1.893880

Prob(F-statistic) 0.000019

FIGURE 2.9 EViews regression output.
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misguided, to ask the question ‘‘How good are these estimates?’’ This question is not

answerable.Wewill never know the true values of the population parametersb1 orb2, sowe

cannot say how close b1 ¼ 83:42 and b2 ¼ 10:21 are to the true values. The least squares

estimates are numbers that may ormay not be close to the true parameter values, andwewill

never know.

Rather than asking about the quality of the estimateswewill take a step back and examine

the quality of the least squares estimation procedure. The motivation for this approach

is this: if wewere to collect another sample of data, by choosing another set of 40 households

to survey, we would have obtained different estimates b1 and b2, even if we had care-

fully selected households with the same incomes as in the initial sample. This sampling

variation is unavoidable. Different samples will yield different estimates because house-

hold food expenditures, yi, i ¼ 1, . . . , 40, are random variables. Their values are not known

until the sample is collected. Consequently, whenviewed as an estimation procedure, b1 and

b2 are also random variables, because their values depend on the random variable y. In this

context we call b1 and b2 the least squares estimators.

We can investigate the properties of the estimators b1 and b2, which are called their

sampling properties, and deal with the following important questions:

1. If the least squares estimators b1 and b2 are random variables, then what are their

expected values, variances, covariances, and probability distributions?

2. The least squares principle is only oneway of using the data to obtain estimates of b1

and b2. How do the least squares estimators comparewith other procedures that might

be used, and how canwe compare alternative estimators? For example, is there another

estimator that has a higher probability of producing an estimate that is close to b2?

The answers to these questions will depend critically onwhether the assumptions SR1–SR5

are satisfied. In later chapters we will discuss how to check whether the assumptions we

make hold in a specific application, and what we might do if one or more assumptions are

shown not to hold.

REMARK: We will summarize the properties of the least squares estimators in the next

several sections. ‘‘Proofs’’ of important results appear in the appendices to this chapter. In

many ways it is good to see these concepts in the context of a simpler problem before

tackling them in the regression model. Appendix C covers the topics in this chapter, and the

next, in the familiar and algebraically easier problemof estimating themean of a population.

2.4.1 THE ESTIMATOR b2

Formulas (2.7) and (2.8) are used to compute the least squares estimates b1 and b2.

However, they are not well suited for examining theoretical properties of the estimators.

In this section we rewrite the formula for b2 to facilitate its analysis. In (2.7), b2 is

given by

b2 ¼ �ðxi � xÞðyi � yÞ
�ðxi � xÞ2

This is called the deviation from the mean form of the estimator because the data have

their sample means subtracted. Using assumption SR1 and a bit of algebra (Appendix 2C),

we can write b2 as a linear estimator,
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b2 ¼ �
N

i¼1
wiyi (2.10)

where

wi ¼ xi � x

�ðxi � xÞ2 (2.11)

The term wi depends only on xi that are not random, so that wi is not random either. Any

estimator that is a weighted average of yi’s, as in (2.10), is called a linear estimator. This is

an important classification that we will speak more of later. Then, with yet more algebra

(Appendix 2D) we can express b2 in a theoretically convenient way,

b2 ¼ b2 þ �wiei (2.12)

where ei is the random error in the linear regression model yi ¼ b1 þ b2xi þ ei. This

formula is not useful for computations, because it depends on b2, which we do not know,

and on the eis, which are unobservable. However, for understanding the sampling properties

of the least squares estimator, (2.12) is very useful.

2.4.2 THE EXPECTED VALUES OF b1 AND b2

The estimator b2 is a random variable since its value is unknown until a sample is collected.

What we will show is that if our model assumptions hold, then E(b2) ¼ b2; that is, the

expected value of b2 is equal to the true parameter b2. When the expected value of any

estimator of a parameter equals the true parameter value, then that estimator is unbiased.

SinceE(b2) ¼ b2, the least squares estimator b2 is an unbiased estimator ofb2. The intuitive

meaning of unbiasedness comes from the repeated sampling interpretation of mathematical

expectation. If many samples of size N are collected, and the formula for b2 is used to

estimate b2 in each of those samples, then if our assumptions are valid, the average value of

the estimates b2 obtained from all the samples will be b2.

We will show that this result is true so that we can illustrate the part played by the

assumptions of the linear regression model. In (2.12), what parts are random? The

parameter b2 is not random. It is a population parameter we are trying to estimate.

If assumption SR5 holds, then xi is not random. Then wi is not random either, as it depends

only on the values of xi. The only random factors in (2.12) are the random error terms ei.

We can find the expected value of b2 using the fact that the expected value of a sum is the

sum of the expected values:

Eðb2Þ ¼ Eðb2 þ �wieiÞ ¼ Eðb2 þ w1e1 þ w2e2 þ � � � þ wNeNÞ
¼ Eðb2Þ þ Eðw1e1Þ þ Eðw2e2Þ þ � � � þ EðwNeNÞ
¼ Eðb2Þ þ �EðwieiÞ
¼ b2 þ �wiEðeiÞ ¼ b2

(2.13)

The rules of expected values are fully discussed in the Probability Primer, Section P.5,

and Appendix B.1.1 at the end of the book. In the last line of (2.13) we use two assumptions.

First, E(wiei) ¼ wiE(ei); because wi is not random, and constants can be factored out of

expected values. Second, we have relied on the assumption that E(ei) ¼ 0. If E(ei) 6¼ 0, then

E(b2) 6¼b2, in which case b2 is a biased estimator of b2. Recall that ei contains, among
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other things, factors affecting yi that are omitted from the economic model. If we have

omitted anything that is important, we would expect that E(ei) 6¼ 0 and E(b2) 6¼b2. Thus,

having an economicmodel that is correctly specified, in the sense that it includes all relevant

explanatory variables, is a must in order for the least squares estimators to be unbiased.

The unbiasedness of the estimator b2 is an important sampling property. When sampling

repeatedly from a population the least squares estimator is ‘‘correct,’’ on average, and this is

one desirable property of an estimator. This statistical property by itself does not mean that

b2 is a good estimator of b2, but it is part of the story. The unbiasedness property depends on

having many samples of data from the same population. The fact that b2 is unbiased does

not imply anything about what might happen in just one sample. An individual estimate

(a number) b2 may be near to, or far from, b2. Since b2 is never known we will never

know, given only one sample, whether our estimate is ‘‘close’’ to b2 or not. Thus the

estimate b2 ¼ 10:21 may be close to b2 or not.

The least squares estimator b1 of b1 is also an unbiased estimator, and E(b1) ¼ b1 if the

model assumptions hold.

2.4.3 REPEATED SAMPLING

To illustrate the concept of unbiased estimation in a slightly different way, we present in

Table 2.2 least squares estimates of the food expenditure model from 10 random samples

(table2_2.dat) of size N ¼ 40 from the same population with the same incomes as the

households given in Table 2.1. In practicewewould use all available observations in one big

sample of size 400 to estimate the regression model. Here we have broken up the data into

samples of size 40 to illustrate repeated sampling properties. Note the variability of the

least squares parameter estimates from sample to sample. This sampling variation is due to

the fact that we obtained 40 different households in each sample, and their weekly food

expenditure varies randomly.

The property of unbiasedness is about the average values of b1 and b2 ifmany samples of

the same size are drawn from the same population. The average value of b1 in these 10

samples is b1 ¼ 78:74. The average value of b2 is b2 ¼ 9:68. If we took the averages of

estimates from many samples, these averages would approach the true parameter values b1

and b2. Unbiasedness does not say that an estimate from any one sample is close to the true

parameter value, and thus we cannot say that an estimate is unbiased. We can say that the

least squares estimation procedure (or the least squares estimator) is unbiased.

Ta b l e 2 . 2 Estimates from 10 Samples

Sample b1 b2

1 131.69 6.48

2 57.25 10.88

3 103.91 8.14

4 46.50 11.90

5 84.23 9.29

6 26.63 13.55

7 64.21 10.93

8 79.66 9.76

9 97.30 8.05

10 95.96 7.77
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2.4.4 THE VARIANCES AND COVARIANCE OF b1 AND b2

Table 2.2 shows that the least squares estimates of b1 and b2 vary from sample to sample.

Understanding this variability is a key to assessing the reliability and sampling precision of

an estimator.We nowobtain the variances and covariance of the estimators b1 and b2. Before

presenting the expressions for the variances and covariance, let us consider why they are

important to know. The variance of the random variable b2 is the average of the squared

distances between the possible values of the random variable and its mean, which we now

know is E(b2) ¼ b2. The variance of b2 is defined as

varðb2Þ ¼ E½b2 � Eðb2Þ�2

It measures the spread of the probability distribution of b2. In Figure 2.10 are graphs of two

possible probability distributions of b2, f1(b2) and f2(b2), that have the samemeanvalue but

different variances.

The probability density function f2(b2) has a smaller variance than f1(b2). Given a

choice, we are interested in estimator precision and would prefer that b2 have the pdf f2(b2)

rather than f1(b2).With the distribution f2(b2), the probability is more concentrated around

the true parameter value b2, giving, relative to f1(b2), a higher probability of getting an

estimate that is close to b2. Remember, getting an estimate close to b2 is our objective.

Thevariance of an estimatormeasures the precision of the estimator in the sense that it tells

us how much the estimates can vary from sample to sample. Consequently, we often refer to

the sampling variance or sampling precision of an estimator. The smaller the variance of an

estimator is, the greater the sampling precision of that estimator.One estimator ismore precise

than another estimator if its sampling variance is less than that of the other estimator.

We will now present and discuss the variances and covariance of b1 and b2. Appendix 2E

contains the derivation of thevariance of the least squares estimator b2. If the regressionmodel

assumptions SR1–SR5 are correct (assumption SR6 is not required), then the variances and

covariance of b1 and b2 are

varðb1Þ ¼ s2 � x2i

N�ðxi � xÞ2
" #

(2.14)

varðb2Þ ¼ s2

�ðxi � xÞ2 (2.15)

covðb1; b2Þ ¼ s2 �x

�ðxi � xÞ2
" #

(2.16)

β2

f1(b2)

f2(b2)

FIGURE 2.10 Two possible probability density functions for b2.
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At the beginning of this section we said that for unbiased estimators, smaller variances are

better than larger variances. Let us consider the factors that affect the variances and

covariance in (2.14)–(2.16).

1. The variance of the random error term, s2, appears in each of the expressions.

It reflects the dispersion of the values y about their expected value EðyÞ. The greater
the variance s2, the greater is that dispersion, and the greater is the uncertainty about

where the values of y fall relative to their mean EðyÞ. When s2 is larger, the

information we have about b1 and b2 is less precise. In Figure 2.3 the variance is

reflected in the spread of the probability distributions f ðyjxÞ. The larger the variance
term s2, the greater is the uncertainty in the statistical model, and the larger the

variances and covariance of the least squares estimators.

2. The sum of squares of the values of x about their sample mean, �ðxi � xÞ2; appears
in each of the variances and in the covariance. This expression measures how

spread out about their mean are the sample values of the independent or explanatory

variable x. The more they are spread out, the larger the sum of squares. The less

they are spread out, the smaller the sum of squares. You may recognize this sum of

squares as the numerator of the sample variance of the x-values. See Appendix C.4.

The larger the sum of squares, �ðxi � xÞ2, the smaller the variances of the least

squares estimators and the more preciselywe can estimate the unknown parameters.

The intuition behind this is demonstrated in Figure 2.11. In panel (b) is a data

scatter in which the values of x are widely spread out along the x-axis. In panel (a)

the data are ‘‘bunched.’’Which data scatter would you prefer given the task of fitting

a line by hand? Pretty clearly, the data in panel (b) do a better job of determining

where the least squares line must fall, because they are more spread out along the

x-axis.

3. The larger the sample size N, the smaller the variances and covariance of the least

squares estimators; it is better to havemore sample data than less. The sample sizeN

appears in each of the variances and covariance because each of the sums consists of

N terms. Also, N appears explicitly in varðb1Þ. The sum of squares term �ðxi � xÞ2

y

x

(a) (b)

xi xix

yi = b1 + b2 xi

y

∨

yiyi

FIGURE 2.11 The influence of variation in the explanatory variable x on precision of

estimation: (a) low x variation, low precision: (b) high x variation, high precision.
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gets larger as N increases because each of the terms in the sum is positive or zero

(being zero if x happens to equal its sample mean value for an observation).

Consequently, as N gets larger, both varðb2Þ and covðb1; b2Þ get smaller, since

the sum of squares appears in their denominator. The sums in the numerator and

denominator of varðb1Þboth get larger asN gets larger and offset one another, leaving

the N in the denominator as the dominant term, ensuring that varðb1Þ also gets

smaller as N gets larger.

4. The term� x2i appears in var(b1). The larger this term is, the larger the variance of the

least squares estimator b1. Why is this so? Recall that the intercept parameter b1 is

the expected value of y given that x¼ 0. The farther our data are from x¼ 0, themore

difficult it is to interpretb1, as in the food expenditure example, and themore difficult

it is to accurately estimate b1. The term � x2i measures the squared distance of the

data from the origin, x¼ 0. If the values of x are near zero then� x2i will be small, and

thiswill reduce var(b1). But if thevalues of x are large inmagnitude, either positive or

negative, the term � x2i will be large and var(b1) will be larger, other things being

equal.

5. The sample mean of the x-values appears in cov(b1; b2). The absolute magnitude of

the covariance increaseswith an increase inmagnitude of the samplemean x, and the

covariance has a sign opposite to that of x. The reasoning here can be seen from

Figure 2.11. In panel (b) the least squares fitted line must pass through the point of

the means. Given a fitted line through the data, imagine the effect of increasing the

estimated slope b2. Since the line must pass through the point of the means, the effect

must be to lower the point where the line hits the vertical axis, implying a reduced

intercept estimateb1. Thus,when the samplemean is positive, as shown inFigure 2.11,

there is a negative covariance between the least squares estimators of the slope and

intercept.

2.5 The Gauss–Markov Theorem

What can we say about the least squares estimators b1 and b2 so far?

� The estimators are perfectly general. Formulas (2.7) and (2.8) can be used to estimate

the unknown parameters b1 and b2 in the simple linear regression model, no matter

what the data turn out to be. Consequently, viewed in this way, the least squares

estimators b1 and b2 are random variables.

� The least squares estimators are linear estimators, as defined in (2.10). Both b1 and b2
can be written as weighted averages of the yi values.

� If assumptions SR1–SR5 hold then the least squares estimators are unbiased. This

means that Eðb1Þ ¼ b1 and Eðb2Þ ¼ b2.

� We have expressions for the variances of b1 and b2 and their covariance. Further-

more, we have argued that for any unbiased estimator, having a smaller variance is

better, as this implies we have a higher chance of obtaining an estimate close to the

true parameter value.

Now we will state and discuss the famous Gauss–Markov theorem, which is proven in

Appendix 2F.
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GAUSS–MARKOV THEOREM: Under the assumptions SR1–SR5 of the linear

regression model, the estimators b1 and b2 have the smallest variance of all linear and

unbiased estimators of b1 and b2. They are the best linear unbiased estimators (BLUE)

of b1 and b2.

Let us clarify what the Gauss–Markov theorem does, and does not, say.

1. The estimators b1 and b2 are ‘‘best’’ when compared to similar estimators, those that

are linear and unbiased. The theorem does not say that b1 and b2 are the best of all

possible estimators.

2. The estimators b1 and b2 are best within their class because they have the minimum

variance. When comparing two linear and unbiased estimators, we always want to

use the one with the smaller variance, since that estimation rule gives us the higher

probability of obtaining an estimate that is close to the true parameter value.

3. In order for theGauss–Markov theorem to hold, assumptions SR1–SR5must be true.

If any of these assumptions are not true, then b1 and b2 are not the best linear unbiased

estimators of b1 and b2.

4. The Gauss–Markov theorem does not depend on the assumption of normality

(assumption SR6).

5. In the simple linear regression model, if we want to use a linear and unbiased

estimator, then we have to do no more searching. The estimators b1 and b2 are the

ones to use. This explains why we are studying these estimators (we would not have

you study bad estimation rules, would we?) and why they are so widely used in

research, not only in economics but in all social and physical sciences as well.

6. The Gauss–Markov theorem applies to the least squares estimators. It does not apply

to the least squares estimates from a single sample.

2.6 The Probability Distributions of the Least
Squares Estimators

The properties of the least squares estimators that we have developed so far do not depend in

anyway on the normality assumption SR6. If we alsomake this assumption, that the random

errors ei are normally distributed with mean zero and variance s2, then the probability

distributions of the least squares estimators are also normal. This conclusion is obtained in

two steps. First, based on assumption SR1, if ei is normal then so is yi. Second, the least

squares estimators are linear estimators, of the form b2 ¼ �wiyi, and sums of normal

random variables are normally distributed themselves. Consequently, if we make the

normality assumption (assumption SR6 about the error term), then the least squares

estimators are normally distributed.

b1 � N b1;
s2� x2i

N�ðxi � xÞ2
 !

(2.17)

b2 � N b2;
s2

�ðxi � xÞ2
 !

(2.18)
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As you will see in Chapter 3, the normality of the least squares estimators is of great

importance in many aspects of statistical inference.

What if the errors are not normally distributed? Can we say anything about the

probability distribution of the least squares estimators? The answer is, sometimes, yes.

A CENTRAL LIMIT THEOREM: If assumptions SR1–SR5 hold, and if the sample

size N is sufficiently large, then the least squares estimators have a distribution that

approximates the normal distributions shown in (2.17) and (2.18).

The million-dollar question is ‘‘How large is sufficiently large?’’ The answer is that there is

no specific number. The reason for this vague and unsatisfying answer is that ‘‘how large’’

depends on many factors, such as what the distributions of the random errors look like (are

they smooth? symmetric? skewed?) and what the xi values are like. In the simple regression

model, somewould say thatN¼ 30 is sufficiently large. Others would say thatN¼ 50would

be a more reasonable number. The bottom line is, however, that these are rules of thumb,

and that the meaning of ‘‘sufficiently large’’ will change from problem to problem.

Nevertheless, for better or worse, this large sample, or asymptotic, result is frequently

invoked in regression analysis. This important result is an application of a central limit

theorem, like the one discussed in Appendix C.3.4. If you are not familiar with this

important theorem, you may want to review it now.

2.7 Estimating the Variance of the Error Term

The variance of the random error term, s2, is the one unknown parameter of the simple

linear regression model that remains to be estimated. The variance of the random error

ei is

varðeiÞ ¼ s2 ¼ E½ei � EðeiÞ�2 ¼ Eðe2i Þ

if the assumptionEðeiÞ ¼ 0 is correct. Since the ‘‘expectation’’ is an average valuewemight

consider estimating s2 as the average of the squared errors,

ŝ2 ¼ �e2i
N

This formula is unfortunately of no use since the random errors ei are unobservable!

However, although the random errors themselves are unknown, we do have an analog to

them—namely, the least squares residuals. Recall that the random errors are

ei ¼ yi � b1 � b2xi

From (2.6) the least squares residuals are obtained by replacing the unknown parameters by

their least squares estimates:

êi ¼ yi � ŷi ¼ yi � b1 � b2xi

It seems reasonable to replace the random errors ei by their analogs, the least squares

residuals, so that
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ŝ2 ¼ �ê2i
N

This estimator, though quite satisfactory in large samples, is a biased estimator of s2. But

there is a simple modification that produces an unbiased estimator:

ŝ2 ¼ �ê2i
N � 2

(2.19)

The 2 that is subtracted in the denominator is the number of regression parameters (b1, b2)

in the model, and this subtraction makes the estimator ŝ2 unbiased, so that Eðŝ2Þ ¼ s2.

2.7.1 ESTIMATING THE VARIANCES AND COVARIANCE OF THE

LEAST SQUARES ESTIMATORS

Having an unbiased estimator of the error variance means we can estimate the variances of

the least squares estimators b1 and b2, as well as the covariance between them. Replace the

unknown error variance s2 in (2.14)–(2.16) with ŝ2 to obtain

bvarðb1Þ ¼ ŝ2 � x2i

N�ðxi � xÞ2
" #

(2.20)

bvarðb2Þ ¼ ŝ2

�ðxi � xÞ2 (2.21)

bcovðb1; b2Þ ¼ ŝ2 �x

�ðxi � xÞ2
" #

(2.22)

The square roots of the estimated variances are the ‘‘standard errors’’ of b1 and b2. These

quantities are used in hypothesis testing and confidence intervals. They are denoted as se(b1)

and se(b2)

seðb1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb1Þq

(2.23)

seðb2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þq

(2.24)

2.7.2 CALCULATIONS FOR THE FOOD EXPENDITURE DATA

Let us make some calculations using the food expenditure data. The least squares estimates

of the parameters in the food expenditure model are shown in Figure 2.9. First we will

compute the least squares residuals from (2.6) and use them to calculate the estimate of

the error variance in (2.19). In Table 2.3 are the least squares residuals for the first five

households in Table 2.1.

Recall that we have estimated that for the food expenditure data the fitted least squares

regression line is ŷ ¼ 83:42þ 10:21x. For each observation we compute the least
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squares residual êi ¼ yi � ŷi. Using the residuals for all N ¼ 40 observations we estimate

the error variance to be

ŝ2 ¼ �ê2i
N � 2

¼ 304505:2

38
¼ 8013:29

The numerator, 304505.2, is the sum of squared least squares residuals, reported as ‘‘Sum

squared resid’’ inFigure2.9. Thedenominator is thenumberof sample observations,N ¼ 40,

minus the number of estimated regression parameters, 2; the quantity N � 2 ¼ 38 is often

called the ‘‘degrees of freedom’’ for reasons that will be explained inChapter 3. In Figure 2.9,

the value ŝ2 is not reported. Instead, EViews software reports ŝ ¼
ffiffiffiffiffi
ŝ2

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8013:29
p ¼

89:517, labeled ‘‘S.E. of regression,’’ which stands for ‘‘standard error of the regression.’’
It is typical for software not to report the estimated variances and covariance unless

requested. However, all software packages automatically report the standard errors. For

example, in the EViews output shown in Figure 2.9 the column labeled ‘‘Std. Error’’

contains seðb1Þ ¼ 43:410 and seðb2Þ ¼ 2:093. The entry called ‘‘S.D. dependent var’’ is the

sample standard deviation of y, that is �ðyi � yÞ2=ðN � 1Þ
h i1=2

¼ 112:6752.

The full set of estimated variances and covariances for a regression is usually obtained

by a simple computer command, or option, depending on the software being used. They are

arrayed in a rectangular array, or matrix, with variances on the diagonal and covariances

in the ‘‘off-diagonal’’ positions.

bvarðb1Þ bcovðb1; b2Þbcovðb1; b2Þbvarðb2Þ
" #

For the food expenditure data the estimated covariancematrix of the least squares estimators is

where C stands for the ‘‘constant term,’’ which is the estimated intercept parameter in the

regression, or b1; similarly, the software reports the variable name INCOME for the column

relating to the estimated slope b2. Thus

bvarðb1Þ ¼ 1884:442; bvarðb2Þ ¼ 4:381752; bcovðb1; b2Þ ¼ �85:90316

Ta b l e 2 . 0
C INCOME

C 1884.442 �85.90316

INCOME �85.90316 4.381752

Ta b l e 2 . 3 Least Squares Residuals

x y ŷ ê ¼ y� ŷ

3.69 115.22 121.09 �5.87

4.39 135.98 128.24 7.74

4.75 119.34 131.91 �12.57

6.03 114.96 144.98 �30.02

12.47 187.05 210.73 �23.68
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The standard errors are

seðb1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb1Þq

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1884:442

p
¼ 43:410

seðb2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þq

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:381752

p
¼ 2:093

These values will be used extensively in Chapter 3.

2.7.3 INTERPRETING THE STANDARD ERRORS

The standard errors of b1 and b2 are measures of the sampling variability of the least

squares estimates b1 and b2 in repeated samples. As illustrated inTable 2.2,whenwe collect

different samples of data the parameter estimates change from sample to sample. The

estimators b1 and b2 are general formulas that are used whatever the sample data turns out to

be. That is, the estimators are randomvariables. As such, they have probability distributions,

means, and variances. In particular, if assumption SR6 holds, and the random error terms ei
are normally distributed, then b2 � N

�
b2; varðb2Þ ¼ s2=�ðxi � xÞ2�. This probability

density function f(b2) is shown in Figure 2.12.

The estimator variance, var(b2), or its square root sb2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðb2Þ

p
, which we might call

the true standard deviation of b2, measure the sampling variation of the estimates b2, and

determine thewidth of the pdf in Figure 2.12. The biggersb2 is themorevariation in the least

squares estimates b2 we see from sample to sample. If sb2 is large then the estimates might

change a great deal from sample to sample. The parameter sb2 would be a valuable number

to know, because if it were large relative to the parameter b2 we would know that the least

squares estimator is not precise, and the estimate that we obtain may be far from the true

value b2 that we are trying to estimate. On the other hand, if sb2 is small relative to the

parameterb2, we know that the least squares estimatewill fall nearb2 with high probability.

Recall that for the normal distribution, 99.9% of values fall within the range of three

standard deviations from the mean, so that 99.9% of the least squares estimates will fall in

the range b2 � 3sb2 to b2 þ 3sb2 .

To put this in another context, in Table 2.2 we report estimates from 10 samples of data.

We noted in Section 2.4.3 that the average values of those estimates are b1 ¼ 78:74 and

b2 ¼ 9:68. The question we address with the standard error is ‘‘How much variation about

their means do the estimates exhibit from sample to sample?’’ For those 10 samples the

sample standard deviations are std.dev.(b1)¼ 30.80 and std.dev.(b2)¼ 2.16.What wewould

f (b2)

β2 b2

var(b2)

FIGURE 2.12 The probability density function of the least squares estimator b2.
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really like is the values of the standard deviations for a very large number of samples. Then

we would know how much variation the least squares estimates exhibit from sample to

sample. Unfortunately, we do not have a large number of samples, and because we do

not know the true value of the variance of the error term s2 we cannot know the true

value of sb2 .

Then what do we do? We estimate s2, and then estimate sb2 using

seðb2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þq

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2

Sðxi � xÞ2
s

The standard error of b2 is thus an estimate of what the standard deviation of many estimates

b2would be in a very large number of samples, and is an indicator of thewidth of the pdf of b2
shown in Figure 2.12. Using our one sample of data, food.dat, the standard error of b2 is

2.093, as shown in the computer output in Figure 2.9. This value is reasonably close to std.

dev. (b2)¼ 2.16 from the 10 samples inTable 2.2. To put this to a further test, inAppendix 2G

we perform a simulation experiment, called aMonteCarlo experiment, inwhichwe create

many artificial samples to demonstrate the properties of the least squares estimator and how

well se(b2) reflects the true sampling variation in the estimates.

2.8 Estimating Nonlinear Relationships

The world is not linear. Economic variables are not always related by straight-line

relationships; in fact, many economic relationships are represented by curved lines, and

are said to display curvilinear forms. Fortunately, the simple linear regression model

y ¼ b1 þ b2x þ e is muchmore flexible than it looks at first glance, because the variables y

and x can be transformations, involving logarithms, squares, cubes or reciprocals, of the

basic economic variables, or they can be indicator variables that take only the values zero

and one. Including these possibilities means the simple linear regression model can be used

to account for nonlinear relationships between variables.1

Nonlinear relationships can sometimes be anticipated. Consider amodel from real estate

economics in which the price (PRICE) of a house is related to the house size measured in

square feet (SQFT). As a starting point we might consider the linear relationship

PRICE ¼ b1 þ b2SQFT þ e (2.25)

In this model, b2 measures the increase in expected price given an additional square foot of

living area. In the linear specification the expected price per square foot is constant.

However it may be reasonable to assume that larger and more expensive homes have a

higher value for an additional square foot of living area than smaller, less expensive, homes.

How can we build this idea into our model? We will illustrate the use of two approaches:

first, a quadratic equation in which the explanatory variable is SQFT 2; and second, a log-
linear equation in which the dependent variable is ln (PRICE). In each casewewill find that

the slope of the relationship between PRICE and SQFT is not constant, but changes from

point to point.

1 The term linear in ‘‘linear regression’’ means that the parameters are not transformed in any way. In a

linear regression model the parameters must not be raised to powers or transformed, so expressions like

b1 b2 or b
b1
2 are not permitted.
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2.8.1 QUADRATIC FUNCTIONS

The quadratic function y ¼ a þ bx2 is a parabola.2 The y-intercept is a. The shape of the

curve is determined by b; if b> 0, then the curve is U-shaped; and if b< 0, then the curve has

an inverted-U shape. The slope of the function is given by the derivative3 dy/dx = 2bx,

which changes as x changes. The elasticity, or the percentage change in y given a 1% change

in x, is e ¼ slope� x=y ¼ 2bx2=y. If a and b are greater than zero, the curve resembles

Figure 2.13.

2.8.2 USING A QUADRATIC MODEL

A quadratic model for house prices includes the squared value of SQFT, giving

PRICE ¼ a1 þ a2SQFT
2 þ e (2.26)

This is a simple regression model, y ¼ a1 þ a2x þ e, with y ¼ PRICE and x ¼ SQRT 2.

Herewe switch from usingb to denote the parameters to usinga, because the parameters of

(2.26) are not comparable to the parameters of (2.25). In (2.25) b2 is a slope, but a2 is not a

slope. Because SQFT> 0, the house price model will resemble the right side of the curve in

Figure 2.13. Using ^ to denote estimated values, the least squares estimates â1 and â2, of a1

and a2, are calculated using the estimators in (2.7) and (2.8), just as before. The fitted

equation isbPRICE ¼ â1 þ â2SQFT
2. It has slope

dbPRICE� �
dSQFT

¼ 2â2SQFT (2.27)

y

0
x

FIGURE 2.13 A quadratic function.

2 This is a special case of the more general quadratic function y ¼ a þ bx þ cx2.
3 See Appendix A.3.1, Derivative Rules 1–5.
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If â2 > 0, then larger houses will have larger slope, and a larger estimated price per

additional square foot.

The file br.dat contains data on 1080 houses sold in Baton Rouge, LA during mid-2005.

Using these data the estimated quadratic equation isbPRICE ¼ 55776:56þ 0:0154SQFT2.

The data scatter and fitted quadratic relationship are shown in Figure 2.14.

The estimated slope isbslope ¼ 2ð0:0154ÞSQFT (estimated price per additional square

foot), which for a 2000-square-foot house is $61.69, for a 4000-square-foot house it is

$123.37, and for a 6000-square-foot house it is $185.05. The elasticity of house price with

respect to house size is the percentage increase in estimated price given a 1% increase in

house size. Like the slope, the elasticity changes at each point. In our example

ê ¼bslope� SQFT

PRICE
¼ ð2â2SQFTÞ � SQFT

PRICE

To compute an estimate we must select values for SQFT and PRICE. A common approach

is to choose a point on the fitted relationship. That is, we choose a value for SQFT

and choose for price the corresponding fitted valuebPRICE. For houses of 2000, 4000 and

6000 square feet, the estimated elasticities are 1.05 [usingbPRICE ¼ $117,461:77], 1.63
[usingbPRICE ¼ $302,517:39], and 1.82 [usingbPRICE ¼ $610,943:42], respectively. For
a 2000-square-foot house, we estimate that a 1% increase in house size will increase price

by 1.05%.

2.8.3 A LOG-LINEAR FUNCTION

The log-linear equation ln( y) = a þ bx has a logarithmic term on the left-hand side of the

equation and an untransformed (linear) variable on the right-hand side. Both its slope and

elasticity change at each point and are the same sign as b. Using the antilogarithmwe see that

exp[ln(y)] = y = exp(a þ bx), so that the log-linear function is an exponential function. The

function requires y > 0. The slope4 at any point is dy/dx = by, which for b > 0 means that
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FIGURE 2.14 A fitted quadratic relationship.

4 See Appendix A.3.1, Derivative Rule 6.
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themarginal effect increases for larger values of y. An economistmight say that this function

is increasing at an increasing rate, as shown in Figure 2.15.

The elasticity, the percentage change in y given a 1% increase in x, at a point on this curve

is e ¼ slope� x=y ¼ bx.

Using the slope expression, we can solve for a semi-elasticity, which tells us

the percentage change in y given a 1-unit increase in x. Divide both sides of the slope

dy/dx by y, then multiply by 100 to obtain

h ¼ 100ðdy=yÞ
dx

¼ 100b (2.28)

In this expression the numerator 100(dy/y) is the percentage change in y; dx represents the

change in x. If dx = 1, then a 1-unit change in x leads to a 100b percentage change in y. This

interpretation can sometimes be quite handy.

2.8.4 USING A LOG-LINEAR MODEL

The use of logarithms is very common in economic modeling. The log-linear model uses

the logarithm of a variable as the dependent variable, and an independent, explanatory

variable, that is not transformed, such as5

lnðPRICEÞ ¼ g1 þ g2 SQFT þ e (2.29)

What effects does this have? First, the logarithmic transformation can regularize data that is

skewedwith a long tail to the right. In Figure 2.16(a)we show the histogramofPRICE and in

Figure 2.16(b) the histogram of ln(PRICE). The median house price in this sample is

$130,000, and 95% of house prices are below $315,000, but there are 24 houses out of the

1080 with prices above $500,000, and an extreme value of $1,580,000. The extremely

skewed distribution of PRICE becomes more symmetric, if not bell-shaped, after taking the

logarithm. Many economic variables, including prices, incomes, and wages, have skewed

distributions, and the use of logarithms in models for such variables is common.

0
y

0
x

FIGURE 2.15 A log-linear function.

5 Once again we use different symbols for the parameters of this model, g1 and g2, as a reminder that these

parameters are not directly comparable to b’s in (2.25) or a’s in (2.26).
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Second, using a log-linear model allows us to fit regression curves like that shown in

Figure 2.15. Using the Baton Rouge data, the fitted log-linear model is

blnðPRICEÞ ¼ 10:8386þ 0:0004113SQFT

To obtain predicted price take the anti-logarithm,6 which is the exponential function

bPRICE ¼ exp½blnðPRICEÞ� ¼ expð10:8386þ 0:0004113SQFTÞ

0
10

20
30

40
Pe

rc
en

t

0 500000 1000000 1500000

sale price, dollars

(a)

(b)

0
5

10
15

20

Pe
rc

en
t

10 11 12 13 14

ln(PRICE)

FIGURE 2.16 (a) Histogram of PRICE (b) Histogram of ln(PRICE).

6 In Chapter 4 we present an improved predictor for this model.
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The fitted value of PRICE is shown in Figure 2.17.

The slope of the log-linear model is

dbPRICE� �
dSQFT

¼ ĝ2bPRICE ¼ 0:0004113bPRICE
For a house with a predicted PRICE of $100,000, the estimated increase in PRICE for an

additional square foot of house area is $41.13, and for a house with a predicted PRICE of

$500,000, the estimated increase in PRICE for an additional square foot of house area is

$205.63. The estimated elasticity is ê ¼ ĝ2 SQFT ¼ 0:0004113SQFT . For a house with

2000-square-feet, the estimated elasticity is 0.823: a 1% increase in house size is estimated

to increase selling price by 0.823%. For a house with 4000 square feet, the estimated

elasticity is 1.645: a 1% increase in house size is estimated to increase selling price by

1.645%.Using the ‘‘semi-elasticity’’ defined in (2.28) we can say that, for a one-square-foot

increase in size, we estimate a price increase of 0.04%. Or, perhaps more usefully, we

estimate that a 100-square-foot increase will increase price by approximately 4%.

2.8.5 CHOOSING A FUNCTIONAL FORM

For the Baton Rouge house price data, should we use the quadratic functional form, or the

log-linear functional form? This is not an easy question. Economic theory tells us that

house price should be related to the size of the house, and perhaps that larger, more

expensive homes have a higher price per square foot of living area. But economic theory

does not tell us what the exact algebraic form of the relationship should be. We should do

our best to choose a functional form that is consistent with economic theory, that fits the

data well, and that is such that the assumptions of the regression model are satisfied. In

real-world problems it is sometimes difficult to achieve all these goals. Furthermore, we

will never truly know the correct functional relationship, no matter how many years we

study econometrics. The truth is out there, but we will never know it. In applications of

econometrics we must simply do the best we can to choose a satisfactory functional form.
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FIGURE 2.17 The fitted log-linear model.

2 . 8 E ST IMAT ING NONL INEAR RELAT IONSH IP S 73



At this point we mention one dimension of the problem used for evaluating models with

the same dependent variable. By comparing the sum of squared residuals (SSE) of

alternative models, or, equivalently, ŝ2 or ŝ, we can choose the model that is a better

fit to the data. Smaller values of these quantities mean a smaller sum of squared residuals

and a better model fit. This comparison is not valid for comparing models with dependent

variables y and ln(y), or when other aspects of the models are different. We study the

choice among functions like these further in Chapter 4.

2.9 Regression with Indicator Variables

An indicator variable is a binary variable that takes the values zero or one; it is used to

represent a nonquantitative characteristic, such as gender, race, or location. For example,

in the data file utown.datwe have a sample of 1000 observations on house prices (PRICE, in

thousands of dollars) in two neighborhoods. One neighborhood is near a major university

and called University Town. Another similar neighborhood, called Golden Oaks, is a few

miles away from the university. The indicator variable of interest is

UTOWN ¼ 1 house is in University Town

0 house is in Golden Oaks

	

The histograms of the prices in these two neighborhoods, shown in Figure 2.18, are

revealing. The mean of the distribution of house prices in University Town appears to be

larger than themean of the distribution of house prices fromGoldenOaks. The samplemean

of the 519 house prices inUniversity Town is 277.2416, whereas the samplemean of the 481

Golden Oaks houses is 215.7325.

Ifwe includeUTOWN in a regressionmodel as an explanatory variable, what dowe have?

The simple regression model is

PRICE ¼ b1 þ b2UTOWN þ e
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FIGURE 2.18 Distributions of house prices.
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If the regression assumptions SR1–SR5 hold, then the least squares estimators in (2.7) and

(2.8) can be used to estimate the unknown parameters b1 and b2.

When an indicator variable is used in a regression, it is important to write out the

regression function for the different values of the indicator variable.

EðPRICEÞ ¼ b1 þ b2 UTOWN ¼ b1 þ b2 if UTOWN ¼ 1

b1 if UTOWN ¼ 0

	

In this case, we find that the ‘‘regression function’’ reduces to a model that implies that the

populationmean house prices in the two subdivisions are different. The parameterb2 is not a

slope in this model. Hereb2 is the difference between the populationmeans for house prices

in the two neighborhoods. The expected price in University Town is b1 þ b2, and the

expected price in Golden Oaks is b1. In our model there are no factors other than location

affecting price, and the indicator variable splits the observations into two populations.

The estimated regression is

bPRICE ¼ b1 þ b2UTOWN ¼ 215:7325þ 61:5091UTOWN

¼ 277:2416 if UTOWN ¼ 1

215:7325 if UTOWN ¼ 0

	

We see that the estimated price for the houses in University Town is $277,241.60, which is

also the samplemean of the house prices inUniversity Town. The estimated price for houses

outside University Town is $215,732.50, which is the sample mean of house prices in

Golden Oaks.

In the regression model approach we estimate the regression intercept b1, which is the

expected price for houses inGoldenOaks,whereUTOWN= 0, and the parameterb2which is

the difference between the populationmeans for house prices in the two neighborhoods. The

least squares estimators b1 and b2 in this indicator variable regression can be shown to be

b1 ¼ PRICEGolden Oaks

b2 ¼ PRICEUniversity Town � PRICEGolden Oaks

where PRICEGolden Oaks is the sample mean (average) price of houses in Golden Oaks and

PRICEUniversity Town is the sample mean price of houses from University Town.

In the simple regressionmodel, an indicator variable on the right-hand side gives us away

to estimate the differences between population means. This is a common problem in

statistics, and the direct approach using samples means is discussed in Appendix C.7.2.

Indicator variables are used in regression analysis very frequently in many creative ways.

See Chapter 7 for a full discussion.

2.10 Exercises

Answers to exercises marked * appear on the web page www.wiley.com/college/hill.

2.10.1 PROBLEMS

2.1 Consider the following five observations. You are to do all the parts of this exercise

using only a calculator.
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(a) Complete the entries in the table. Put the sums in the last row. What are the

sample means x and y?

(b) Calculate b1 and b2 using (2.7) and (2.8) and state their interpretation.

(c) Compute �5
i¼1x

2
i , �

5
i¼1xiyi. Using these numerical values, show that

�ðxi � xÞ2 ¼ � x2i � Nx2 and �ðxi � xÞðyi � yÞ ¼ � xiyi � Nxy

(d) Use the least squares estimates from part (b) to compute the fitted values of y, and

complete the remainder of the table below. Put the sums in the last row.

(e) On graph paper, plot the data points and sketch the fitted regression line

ŷi ¼ b1 þ b2xi.

(f) On the sketch in part (e), locate the point of the means ðx; yÞ. Does your fitted line
pass through that point? If not, go back to the drawing board, literally.

(g) Show that for these numerical values y ¼ b1 þ b2x.

(h) Show that for these numerical values ŷ ¼ y; where ŷ ¼ �ŷi=N.
(i) Compute ŝ2.

(j) Computebvarðb2Þ.
2.2 A household has weekly income of $2,000. The mean weekly expenditure for

households with this income is Eðyjx ¼ $2,000Þ ¼ myjx¼$2,000 ¼ $200, and expen-

ditures exhibit variance varðyjx ¼ $2,000Þ ¼ s2
yjx¼$2,000 ¼ 100.

(a) Assuming that weekly food expenditures are normally distributed, find the

probability that a household with this income spends between $180 and $215 on

food in a week. Include a sketch with your solution.

(b) Find the probability that a household with this income spends more than $250 on

food in a week. Include a sketch with your solution.

(c) Find the probability in part (a) if the variance of weekly expenditures is

varðyjx ¼ $2; 000Þ ¼ s2
yjx¼$2,000 ¼ 81.

(d) Find the probability in part (b) if the variance of weekly expenditures is

varðyjx ¼ $2,000Þ ¼ s2
yjx¼$2,000 ¼ 81.

x y x� x ðx� xÞ2 y� y ðx� xÞðy� yÞ
0 6

1 2

2 3

3 1

4 0

� xi ¼ �yi ¼ �ðxi � xÞ ¼ �ðxi � xÞ2 ¼ �ðyi � yÞ ¼ �ðxi � xÞðyi � yÞ ¼

xi yi ŷi êi ê2i xiêi

0 6

1 2

2 3

3 1

4 0

� xi ¼ � yi ¼ � ŷi ¼ � êi ¼ � ê2i ¼ � xiêi ¼
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2.3* Graph the following observations of x and y on graph paper.

(a) Using a ruler, draw a line that fits through the data. Measure the slope and

intercept of the line you have drawn.

(b) Use formulas (2.7) and (2.8) to compute, using only a hand calculator, the least

squares estimates of the slope and the intercept. Plot this line on your graph.

(c) Obtain the sample means of y ¼ � yi=N and x ¼ � xi=N. Obtain the predicted

value of y for x ¼ x and plot it on your graph. What do you observe about this

predicted value?

(d) Using the least squares estimates from (b), compute the least squares residuals êi.

Find their sum.

(e) Calculate � xiêi.

2.4 We have defined the simple linear regressionmodel to be y ¼ b1 þ b2xþ e. Suppose

however that we knew, for a fact, that b1 ¼ 0.

(a) What does the linear regression model look like, algebraically, if b1 ¼ 0?

(b) What does the linear regression model look like, graphically, if b1 ¼ 0?

(c) If b1 ¼ 0 the least squares ‘‘sum of squares’’ function becomes Sðb2Þ ¼
�N

i¼1ðyi � b2xiÞ2. Using the data,

plot the value of the sum of squares function for enough values of b2 for you to

locate the approximate minimum. What is the significance of the value of b2

that minimizes Sðb2Þ? (Hint: Your computations will be simplified if you

algebraically expand Sðb2Þ ¼ �N
i¼1ðyi � b2xiÞ2 by squaring the term in par-

entheses and carrying the summation operator through.)

(d)^Using calculus, show that the formula for the least squares estimate of b2 in this

model is b2 ¼ � xiyi=� x2i . Use this result to compute b2 and compare this value

to the value you obtained geometrically.

(e) Using the estimate obtained with the formula in (d), plot the fitted (estimated)

regression function. On the graph locate the point ðx; yÞ. What do you observe?

(f) Using the estimates obtained with the formula in (d), obtain the least squares

residuals, êi ¼ yi � b2xi. Find their sum.

(g) Calculate � xiêi.

2.5 Asmall business hires a consultant to predict thevalue ofweekly sales of their product

if their weekly advertising is increased to $750 per week. The consultant takes a

record of how much the firm spent on advertising per week and the corresponding

weekly sales over the past six months. The consultant writes ‘‘Over the past six

months the average weekly expenditure on advertising has been $500 and average

weekly sales have been $10,000. Based on the results of a simple linear regression, I

predict sales will be $12,000 if $750 per week is spent on advertising.’’

(a) What is the estimated simple regression used by the consultant to make this

prediction?

x 1 2 3 4 5 6

y 10 8 5 5 2 3

x 1 2 3 4 5 6

y 4 6 7 7 9 11
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(b) Sketch a graph of the estimated regression line. Locate the averageweekly values

on the graph.

2.6* A soda vendor at Louisiana State University football games observes that more sodas

are sold the warmer the temperature at game time is. Based on 32 home games

covering five years, the vendor estimates the relationship between soda sales and

temperature to be ŷ ¼ �240þ 8x, where y ¼ the number of sodas she sells and x ¼
temperature in degrees Fahrenheit,

(a) Interpret the estimated slope and intercept. Do the estimates make sense? Why,

or why not?

(b) On a day when the temperature at game time is forecast to be 808F, predict how
many sodas the vendor will sell.

(c) Below what temperature are the predicted sales zero?

(d) Sketch a graph of the estimated regression line.

2.7 You have the results of a simple linear regression based on state-level data and the

District of Columbia, a total of N ¼ 51 observations.

(a) The estimated error variance ŝ2 ¼ 2:04672.What is the sum of the squared least

squares residuals?

(b) The estimated variance of b2 is 0.00098. What is the standard error of b2? What

is the value of �ðxi � xÞ2?
(c) Suppose the dependent variable yi ¼ the state’s mean income (in thousands of

dollars) of males who are 18 years of age or older and xi the percentage of males

18 years or older who are high school graduates. If b2 ¼ 0:18, interpret this
result.

(d) Suppose x ¼ 69:139 and y ¼ 15:187, what is the estimate of the intercept

parameter?

(e) Given the results in (b) and (d), what is � x2i ?
(f) For the state of Arkansas the value of yi ¼ 12:274 and the value of xi ¼ 58:3:

Compute the least squares residual for Arkansas. (Hint: Use the information in

parts (c) and (d).).

2.8^ Professor E.Z. Stuff has decided that the least squares estimator is too much trouble.

Noting that two points determine a line, Dr. Stuff chooses two points from a sample of

size N and draws a line between them, calling the slope of this line the EZ estimator

of b2 in the simple regression model. Algebraically, if the two points are ðx1; y1Þ
and ðx2; y2Þ, the EZ estimation rule is

bEZ ¼ y2 � y1

x2 � x1

Assuming that all the assumptions of the simple regression model hold:

(a) Show that bEZ is a ‘‘linear’’ estimator.

(b) Show that bEZ is an unbiased estimator.

(c) Find the variance of bEZ.

(d) Find the probability distribution of bEZ.

(e) Convince Professor Stuff that the EZ estimator is not as good as the least squares

estimator. No proof is required here.

2.10.2 COMPUTER EXERCISES

2.9* The owners of a motel discovered that a defective product was used in its construc-

tion. It took seven months to correct the defects, during which 14 rooms in the
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100-unit motel were taken out of service for 1 month at a time. The motel lost

profits due to these closures, and the question of how to compute the losses was

addressed by Adams (2008).7 For this exercise use the data in motel.dat.

(a) The occupancy rate for the damaged motel isMOTEL_PCT, and the competitor

occupancy rate is COMP_PCT. On the same graph, plot these variables against

TIME. Which had the higher occupancy before the repair period?Which had the

higher occupancy during the repair period?

(b) Plot MOTEL_PCT against COMP_PCT. Does there seem to be a relationship

between these two variables? Explain why such a relationship might exist.

(c) Estimate a linear regression with y ¼ MOTEL_PCT and x ¼ COMP_PCT.

Discuss the result.

(d) Compute the least squares residuals from the regression results in (c). Plot these

residuals against time. Does the model overpredict, underpredict, or accurately

predict the motel’s occupancy rate during the repair period?

(e) Consider a linear regressionwith y¼MOTEL_PCTand x¼RELPRICE, which is

the ratio of the price per room charged by the motel in question relative to its

competitors. What sign do you predict for the slope coefficient? Why? Does the

sign of the estimated slope agree with your expectation?

(f) Consider the linear regression with y¼MOTEL_PCTand x¼ REPAIR, which is

an indicator variable, taking the value 1 during the repair period and 0 otherwise.

Discuss the interpretation of the least squares estimates. Does themotel appear to

have suffered a loss of occupancy, and therefore profits, during the repair period?

(g) Compute the average occupancy rate for the motel and competitors when the

repairs were not being made (call these MOTEL0 and COMP0), and when they

were being made (MOTEL1 and COMP1). During the nonrepair period, what

was the difference between the average occupancies,MOTEL0 � COMP0?Does

this comparison seem to support the motel’s claims of lost profits during the

repair period?

(h) Estimate a linear regressionmodel with y¼MOTEL_PCT–COMP_PCTand x¼
REPAIR. How do the results of this regression relate to the result in part (g)?

2.10 The capital asset pricingmodel (CAPM) is an important model in the field of finance.

It explains variations in the rate of return on a security as a function of the rate of

return on a portfolio consisting of all publicly traded stocks, which is called the

market portfolio. Generally the rate of return on any investment is measured relative

to its opportunity cost, which is the return on a risk free asset. The resulting difference

is called the risk premium, since it is the reward or punishment for making a risky

investment. The CAPM says that the risk premium on security j is proportional to the

risk premium on the market portfolio. That is,

rj � rf ¼ bjðrm � rf Þ,
where rj and rf are the returns to security j and the risk-free rate, respectively, rm is

the return on the market portfolio, and bj is the jth security’s ‘‘beta’’ value. A stock’s

beta is important to investors since it reveals the stock’s volatility. It measures the

sensitivity of security j’s return to variation in the whole stock market. As such,

values of beta less than 1 indicate that the stock is ‘‘defensive’’ since its variation is

7 A. Frank Adams (2008) ‘‘When a ‘Simple’ Analysis Won’t Do: Applying Economic Principles in a Lost

Profits Case,’’ The Value Examiner, May/June 2008, 22–28. The authors thank Professor Adams for the use of

his data.
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less than the market’s. A beta greater than 1 indicates an ‘‘aggressive stock.’’

Investors usually want an estimate of a stock’s beta before purchasing it. The CAPM

model shown above is the ‘‘economic model’’ in this case. The ‘‘econometric

model’’ is obtained by including an intercept in themodel (even though theory says it

should be zero) and an error term,

rj � rf ¼ aj þ bjðrm � rf Þ þ e

(a) Explain why the econometric model above is a simple regression model like

those discussed in this chapter.

(b) In the data file capm4.dat are data on themonthly returns of six firms (Microsoft,

GE, GM, IBM, Disney, and Mobil-Exxon), the rate of return on the market

portfolio (MKT ), and the rate of return on the risk free asset (RISKFREE). The

132 observations cover January 1998 to December 2008. Estimate the CAPM

model for each firm, and comment on their estimated beta values. Which firm

appears most aggressive? Which firm appears most defensive?

(c) Finance theory says that the intercept parameter aj should be zero. Does this

seem correct given your estimates? For the Microsoft stock, plot the fitted

regression line along with the data scatter.

(d) Estimate the model for each firm under the assumption that aj ¼ 0. Do the

estimates of the beta values change much?

2.11 The file br2.dat contains data on 1080 houses sold in Baton Rouge, Louisiana, during

mid-2005. The data include sale price, the house size in square feet, its age, whether it

has a pool or fireplace or is on the waterfront. Also included is an indicator variable

TRADITIONAL indicating whether the house style is traditional or not.8 Variable

descriptions are in the file br2.def.

(a) Plot house price against house size for houses with traditional style.

(b) For the traditional-style houses estimate the linear regression model PRICE ¼
b1 þ b2SQFT þ e. Interpret the estimates. Draw a sketch of the fitted line.

(c) For the traditional-style houses estimate the quadratic regression model

PRICE ¼ a1 þ a2SQFT
2 þ e. Compute the marginal effect of an additional

square foot of living area in a home with 2000 square feet of living space.

Compute the elasticity of PRICE with respect to SQFT for a home with 2000

square feet of living space. Graph the fitted line. On the graph, sketch the line that

is tangent to the curve for a 2000-square-foot house.

(d) For the regressions in (b) and (c) compute the least squares residuals and plot

them against SQFT. Do any of our assumptions appear violated?

(e) One basis for choosing between these two specifications is how well the data are

fit by the model. Compare the sum of squared residuals (SSE) from the models in

(b) and (c).Whichmodel has a lower SSE?Howdoes having a lower SSE indicate

a ‘‘better-fitting’’ model?

(f) For the traditional-style houses estimate the log-linear regression model

lnðPRICEÞ ¼ g1 þ g2SQFT þ e. Interpret the estimates. Graph the fitted line,

and sketch the tangent line to the curve for a house with 2000 square feet of

living area.

8 The data file br.datoffers awider range of style listings. Try this data set for amore detailed investigation of the

effect of style.
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(g) How would you compute the sum of squared residuals for the model in (f ) to

make it comparable to those from themodels in (b) and (c)? Compare this sum of

squared residuals to the SSE from the linear and quadratic specifications. Which

model seems to fit the data best?

2.12* The file stockton4.dat contains data on 15009 houses sold in Stockton, CA during

1996–1998. Variable descriptions are in the file stockton4.def.

(a) Plot house selling price against house living area for all houses in the sample.

(b) Estimate the regression model SPRICE ¼ b1 þ b2LIVAREA þ e for all the

houses in the sample. Interpret the estimates. Draw a sketch of the fitted line.

(c) Estimate the quadratic model SPRICE ¼ a1 þ a2LIVAREA
2 þ e for all the

houses in the sample. What is the marginal effect of an additional 100 square

feet of living area for a home with 1500 square feet of living area?

(d) In the same graph, plot the fitted lines from the linear and quadratic models.

Which seems to fit the data better? Compare the sum of squared residuals (SSE)

for the two models. Which is smaller?

(e) Estimate the regression model in (c) using only houses that are on large lots.

Repeat the estimation for houses that are not on large lots. Interpret the estimates.

How do the estimates compare?

(f) Plot house selling price against AGE. Estimate the linear model SPRICE ¼
d1 þ d2AGE þ e. Interpret the estimated coefficients. Repeat this exercise using

the log-linear model lnðSPRICEÞ ¼ u1 þ u2AGE þ e. Based on the plots and

visual fit of the estimated regression lines, which of these twomodels would you

prefer? Explain.

(g) Estimate a linear regression SPRICE ¼ h1 þ h2LGELOT þ e with dependent

variable SPRICE and independent variable the indicator LGELOTwhich ident-

ifies houses on larger lots. Interpret these results.

2.13 A longitudinal experiment was conducted in Tennessee beginning in 1985 and

ending in 1989. A single cohort of students was followed from kindergarten through

third grade. In the experiment children were randomly assigned within schools into

three types of classes: small classes with 13–17 students, regular-sized classes with

22–25 students, and regular-sized classes with a full-time teacher aide to assist the

teacher. Student scores on achievement tests were recorded as well as some

information about the students, teachers, and schools. Data for the kindergarten

classes are contained in the data file star.dat.

(a) Using children who are in either a regular-sized class or a small class, estimate

the regressionmodel explaining students’ combined aptitude scores as a function

of class size, TOTALSCOREi ¼ b1 þ b2SMALLi þ ei. Interpret the estimates.

Based on this regression result, what do you conclude about the effect of class

size on learning?

(b) Repeat part (a) using dependent variables READSCORE andMATHSCORE. Do

you observe any differences?

(c) Using childrenwho are in either a regular-sized class or a regular-sized classwith

a teacher aide, estimate the regression model explaining student’s combined

aptitude scores as a function of the presence of a teacher aide,

TOTALSCORE ¼ g1 þ g2AIDE þ e. Interpret the estimates. Based on this

9 The data set stockton3.dat has 2,610 observations on these same variables.
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regression result, what do you conclude about the effect on learning of adding a

teacher aide to the classroom?

(d) Repeat part (c) using dependent variables READSCORE and MATHSCORE.

Do you observe any differences?

2.14* Professor Ray C. Fair has for a number of years built and updatedmodels that explain

and predict the U.S. presidential elections. Visit his website at http://fairmodel.econ

.yale.edu/vote2004/index2.htm. See in particular his paper entitled ‘‘AVote Equation

for the 2004 Election.’’ The basic premise of the model is that the incumbent party’s

share of the two-party [Democratic and Republican] popular vote [incumbent means

the party in power at the time of the election] is affected by a number of factors

relating to the economy, and variables relating to the politics, such as how long the

incumbent party has been in power, and whether the President is running for

re-election. Fair’s data, 33 observations for the election years from 1880 to 2008,

are in the file fair4.dat. The dependent variable is VOTE ¼ percentage share of the

popular vote won by the incumbent party. Consider the explanatory variable

GROWTH ¼ growth rate in real per capita GDP in the first three quarters of the

election year (annual rate). One would think that if the economy is doing well, and

growth is high, the party in powerwould have a better chance ofwinning the election.

(a) Using the data for 1916–2008, plot a scatter diagram ofVOTE againstGROWTH.

Does there appear to be positive association?

(b) Estimate the regression VOTE ¼ b1 þ b2GROWTH þ e by least squares using

the data from 1916 to 2008. Report and discuss the estimation result. Sketch,

by hand, the fitted line on the data scatter from (a).

(c) Fit the regression in (b) using the data from 1916 to 2004. Predict theVOTE share

for the incumbent party based on the actual 2008 value forGROWTH. How does

the predicted vote for 2008 compare to the actual result?

(d) Economywide inflation may spell doom for the incumbent party in an election.

The variable INFLATION is the growth in prices over the first 15 quarters of an

administration. Using the data from 1916 to 2008, plot VOTE against

INFLATION. Using the same sample, report and discuss the estimation results

for the model VOTE ¼ a1 þ a2INFLATION þ e.

2.15 How much does education affect wage rates? The data file cps4_small.dat contains

1000 observations on hourlywage rates, education, and other variables from the 2008

Current Population Survey (CPS).

(a) Obtain the summary statistics and histograms for the variables WAGE and

EDUC. Discuss the data characteristics.

(b) Estimate the linear regression WAGE ¼ b1 þ b2EDUC þ e and discuss the

results.

(c) Calculate the least squares residuals and plot them against EDUC. Are any

patterns evident? If assumptions SR1–SR5 hold, should any patterns be evident

in the least squares residuals?

(d) Estimate separate regressions for males, females, blacks, and whites. Compare

the results.

(e) Estimate the quadratic regressionWAGE ¼ a1 þ a2EDUC
2 þ e and discuss the

results. Estimate the marginal effect of another year of education on wage for a

person with 12 years of education, and for a person with 14 years of education.

Compare these values to the estimated marginal effect of education from the

linear regression in part (b).
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(f) Plot the fitted linear model from part (b) and the fitted values from the quadratic

model from part (e) in the same graph with the data onWAGE and EDUC. Which

model appears to fit the data better?

(g) Construct a histogram of ln(WAGE). Compare the shape of this histogram to that

for WAGE from part (a). Which appears more symmetric and bell-shaped?

(h) Estimate the log-linear regression lnðWAGEÞ ¼ g1 þ g2EDUC þ e. Estimate

the marginal effect of another year of education on wage for a person with 12

years of education, and for a person with 14 years of education. Compare these

values to the estimatedmarginal effects of education from the linear regression in

part (b) and the quadratic equation in part (e).

Appendix 2A Derivation of the
Least Squares Estimates

Given the sample observations on y and x, we want to find values for the unknown

parameters b1 and b2 that minimize the ‘‘sum of squares’’ function

Sðb1;b2Þ ¼ �N
i¼1ðyi � b1 � b2xiÞ2 (2A.1)

Since the points (yi; xi) have been observed, the sum of squares function S depends only

on the unknown parameters b1 and b2. This function, which is a quadratic in terms of

the unknown parameters b1 and b2, is a ‘‘bowl-shaped surface’’ like the one depicted in

Figure 2A.1.

Our task is to find, out of all the possible values b1 and b2, the point (b1, b2) at which the

sum of squares function S is a minimum. This minimization problem is a common one in

calculus, and the minimizing point is at the ‘‘bottom of the bowl.’’

Those of you familiar with calculus and ‘‘partial differentiation’’ can verify that the

partial derivatives of S with respect to b1 and b2 are

@S

@b1

¼ 2Nb1 � 2�yi þ 2ð� xiÞb2

@S

@b2

¼ 2ð� x2i Þb2 � 2� xiyi þ 2ð� xiÞb1

(2A.2)

FIGURE 2A.1 The sum of squares function and the minimizing values b1 and b2.
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These derivatives are equations of the slope of the bowl-like surface in the directions of the

axes. Intuitively, the ‘‘bottom of the bowl’’ occurs where the slope of the bowl, in

the direction of each axis, @S=@b1 and @S=@b2, is zero.

Algebraically, to obtain the point (b1, b2) we set (2A.2) to zero and replaceb1 andb2 by b1
and b2, respectively, to obtain

2½�yi � Nb1 � ð�xiÞb2� ¼ 0

2½� xiyi � ð� xiÞb1 � ð� x2i Þb2� ¼ 0

Simplifying these gives equations usually known as the normal equations,

Nb1 þ ð� xiÞb2 ¼ � yi (2A.3)

ð� xiÞb1 þ ð� x2i Þb2 ¼ � xiyi (2A.4)

These two equations have two unknowns b1 and b2. We can find the least squares estimates

by solving these two linear equations for b1 and b2. To solve for b2 multiply (2A.3) by � xi,

multiply (2A.4) byN, then subtract the first equation from the second, and then isolate b2 on

the left-hand side.

b2 ¼ N� xiyi � � xi� yi

N� x2i � ð� xiÞ2
(2A.5)

This formula for b2 is in terms of data sums, cross-products, and squares. The deviation from

the mean form of the estimator is derived in Appendix 2B.

To solve for b1, given b2, divide both sides of (2A.3) by N and rearrange.

Appendix 2B Deviation from the Mean Form of b2

The first step in the conversion of the formula for b2 into (2.7) is to use some tricks involving

summation signs. The first useful fact is that

�ðxi � xÞ2 ¼ � x2i � 2x� xi þ N x2 ¼ � x2i � 2x N
1

N
� xi


 �
þ N x2

¼ � x2i � 2N x2 þ N x2 ¼ � x2i � N x2
(2B.1)

Shouldyoueverhave tocalculate�ðxi � xÞ2, using the shortcut formula�ðxi � xÞ2 ¼� x2i �
N x2 is much easier. Then

� ðxi � xÞ2 ¼ � x2i � N x2 ¼ � x2i � x� xi ¼ � x2i �
ð� xiÞ2

N
(2B.2)

To obtain this result we have used the fact that x ¼ � xi=N, so � xi ¼ N x.

The second useful fact is similar to the first, and it is

�ðxi � xÞðyi � yÞ ¼ � xiyi � N x y ¼ � xiyi � � xi� yi

N
(2B.3)

This result is proven in a similar manner.
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If the numerator and denominator of b2 in (2A.5) are divided by N, then using (2B.1)–

(2B.3) we can rewrite b2 in deviation from the mean form as

b2 ¼ �ðxi � xÞðyi � yÞ
�ðxi � xÞ2

This formula for b2 is one that you should remember, as wewill use it time and time again in

the next few chapters.

Appendix 2C b2 Is a Linear Estimator

In order to derive (2.10) we make a further simplification using another property of sums.

The sum of any variable about its average is zero; that is,

�ðxi � xÞ ¼ 0

Then, the formula for b2 becomes

b2 ¼ �ðxi � xÞðyi � yÞ
�ðxi � xÞ2 ¼ �ðxi � xÞyi � y�ðxi � xÞ

�ðxi � xÞ2

¼ �ðxi � xÞyi
�ðxi � xÞ2 ¼ �

ðxi � xÞ
�ðxi � xÞ2
" #

yi ¼ �wiyi

where wi is the constant given in (2.11).

Appendix 2D Derivation of Theoretical
Expression for b2

To obtain (2.12) replace yi in (2.10) by yi ¼ b1 þ b2xi þ ei and simplify:

b2 ¼ �wiyi ¼ �wiðb1 þ b2xi þ eiÞ
¼ b1�wi þ b2�wixi þ �wiei

¼ b2 þ �wiei

We used two more summation tricks to simplify this. First, �wi ¼ 0; this eliminates the

term b1�wi. Secondly, �wixi ¼ 1, so b2�wixi ¼ b2, and (2.10) simplifies to (2.12).

The term �wi ¼ 0 because

�wi ¼ �
ðxi � xÞ

�ðxi � xÞ2
" #

¼ 1

�ðxi � xÞ2 �ðxi � xÞ ¼ 0

where in the last step we used the fact that �ðxi � xÞ ¼ 0.

To show that�wixi ¼ 1we again use�ðxi � xÞ ¼ 0.Another expression for�ðxi � xÞ2 is

�ðxi � xÞ2 ¼ �ðxi � xÞðxi � xÞ
¼ �ðxi � xÞxi � x�ðxi � xÞ
¼ �ðxi � xÞxi
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Consequently,

�wixi ¼ �ðxi � xÞxi
�ðxi � xÞ2 ¼ �ðxi � xÞxi

�ðxi � xÞxi ¼ 1

Appendix 2E Deriving the Variance of b2

The starting point is (2.12), b2 ¼ b2 þ �wiei. The least squares estimator is a random

variable whose variance is defined to be

varðb2Þ ¼ E½b2 � Eðb2Þ�2

Substituting in (2.12) and using the unbiasedness of the least squares estimator,Eðb2Þ ¼ b2,

we have

varðb2Þ ¼ Eðb2 þ �wiei � b2Þ2

¼ E
�
�wiei

�2
¼ E

�
�w2

i e
2
i þ 2��

i 6¼ j
wiwjeiej

� ðsquare of bracketed termÞ

¼ �w2
i Eðe2i Þ þ 2��

i 6¼ j
wiwjEðeiejÞ ðbecausewi not randomÞ

¼ s2�w2
i

¼ s2

�ðxi � xÞ2

The next to last line is obtained by using two assumptions: First,

s2 ¼ varðeiÞ ¼ E½ei � EðeiÞ�2 ¼ Eðei � 0Þ2 ¼ Eðe2i Þ
Second, covðei; ejÞ ¼ E½ðei � EðeiÞÞðej � EðejÞÞ� ¼ EðeiejÞ ¼ 0. Then, the very last step

uses the fact that

�w2
i ¼ �

ðxi � xÞ2

�ðxi � xÞ2
n o2

2
64

3
75 ¼ �ðxi � xÞ2n

�ðxi � xÞ2
o2

¼ 1

�ðxi � xÞ2

Alternatively, we can employ the rule for finding the variance of a sum. If X and Y are

random variables, and a and b are constants, then

varðaX þ bYÞ ¼ a2varðXÞ þ b2varðYÞ þ 2ab covðX;YÞ

Appendix B.4 reviews all the basic properties of random variables. In the second line below

we use this rule extended to more than two random variables. Then,

varðb2Þ ¼ varðb2 þ �wieiÞ ¼ varð�wieiÞ ðsinceb2 is a constantÞ
¼ �w2

i varðeiÞþ ��
i 6¼ j

wiwj covðei; ejÞ ðgeneralizing the variance ruleÞ
¼ �w2

i varðeiÞ ðusing covðei; ejÞ ¼ 0Þ
¼ s2�w2

i ðusing varðeiÞ ¼ s2Þ

¼ s2

�ðxi � xÞ2
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Carefully note that the derivation of the variance expression for b2 depends on assumptions

SR3 and SR4. If covðei, ejÞ 6¼ 0, then we cannot drop out all those terms in the double

summation. If varðeiÞ 6¼s2 for all observations, then s2 cannot be factored out of the

summation. If either of these assumptions fails to hold then var(b2) is something else and is

not given by (2.15). The same is true for the variance of b1 and the covariance.

Appendix 2F Proof of the Gauss–Markov Theorem

Wewill prove the Gauss–Markov theorem for the least squares estimator b2 of b2. Our goal

is to show that in the class of linear and unbiased estimators the estimator b2 has the smallest

variance. Let b�2 ¼ �kiyi (where ki are constants) be any other linear estimator of b2. To

make comparison to the least squares estimator b2 easier, suppose that ki ¼ wi þ ci, where ci
is another constant and wi is given in (2.11). While this is tricky, it is legal, since for any ki
that someone might choosewe can find ci. Into this new estimator substitute yi and simplify,

using the properties of wi in Appendix 2D

b�2 ¼ �kiyi ¼ �ðwi þ ciÞyi ¼ �ðwi þ ciÞðb1 þ b2xi þ eiÞ
¼ �ðwi þ ciÞb1 þ �ðwi þ ciÞb2xi þ �ðwi þ ciÞei
¼ b1�wi þ b1�ci þ b2�wixi þ b2�cixi þ �ðwi þ ciÞei
¼ b1�ci þ b2 þ b2�cixi þ �ðwi þ ciÞei

(2F.1)

since �wi ¼ 0 and �wixi ¼ 1.

Take the mathematical expectation of the last line in (2F.1), using the properties of

expectation and the assumption that EðeiÞ ¼ 0:

Eðb�2Þ ¼ b1�ci þ b2 þ b2�cixi þ �ðwi þ ciÞEðeiÞ
¼ b1�ci þ b2 þ b2�cixi

(2F.2)

In order for the linear estimator b�2 ¼ �kiyi to be unbiased, it must be true that

�ci ¼ 0 and �cixi ¼ 0 (2F.3)

These conditions must hold in order for b�2 ¼ �kiyi to be in the class of linear and unbiased
estimators. So we will assume that conditions (2F.3) hold and use them to simplify

expression (2F.1):

b�2 ¼ �kiyi ¼ b2 þ �ðwi þ ciÞei (2F.4)

We can now find the variance of the linear unbiased estimator b�2 following the steps in

Appendix 2E and using the additional fact that

�ciwi ¼ �
ciðxi � xÞ
�ðxi � xÞ2
" #

¼ 1

�ðxi � xÞ2 �cixi �
x

�ðxi � xÞ2 �ci ¼ 0

APPENDIX 2F PROOF OF THE GAUSS–MARKOV THEOREM 87



Use the properties of variance to obtain

varðb�2Þ ¼ var½b2 þ �ðwi þ ciÞei� ¼ �ðwi þ ciÞ2varðeiÞ
¼ s2�ðwi þ ciÞ2 ¼ s2�w2

i þ s2�c2i
¼ varðb2Þ þ s2�c2i
	 varðb2Þ

The last line follows since�c2i 	 0 and establishes that for the family of linear and unbiased

estimators b�2, each of the alternative estimators has variance that is greater than or equal to

that of the least squares estimator b2. The only time that varðb�2Þ ¼ varðb2Þ is when all the

ci ¼ 0, in which case b�2 ¼ b2. Thus there is no other linear and unbiased estimator of b2

that is better than b2, which proves the Gauss–Markov theorem.

Appendix 2G Monte Carlo Simulation

The statistical properties of the least squares estimators arewell known if the assumptions in

Section 2.1 hold. In fact, we know that the least squares estimators are the best linear

unbiased estimators of the regression parameters under these assumptions. And if the

random errors are normal, then we know that the estimators themselves have normal

distributions in repeated experimental trials. The meaning of ‘‘repeated trials’’ is difficult

to grasp.Monte Carlo simulation experiments use random number generators to replicate

the random way that data are obtained. In Monte Carlo simulations we specify a data
generation process and create samples of artificial data. Then we ‘‘try out’’ estimation

methods on the data we have created. We create many samples of size N and examine the

repeated sampling properties of the estimators. In this way, we can study how statistical

procedures behave under ideal, as well as not so ideal, conditions. This is important because

economic, business, and social science data are not always (indeed, not usually) as nice as

the assumptions we make.

The data generation process for the simple linear regression model is given by

yi ¼ EðyijxiÞ þ ei ¼ b1 þ b2xi þ ei; i ¼ 1; . . . ;N

Each value of the dependent variable yi is obtained, or generated, by adding a random errorei
to the regression function E(yi jxi). To simulate values of yi we create values for the

systematic portion of the regression relationship E(yi jxi) and add to it the random error

ei. This is analogous to a physical experiment in which variable factors are set at fixed

levels and the experiment run. The outcome is different in each experimental trial because

of random uncontrolled errors.

2G.1 THE REGRESSION FUNCTION

The regression function E(yi jxi) ¼ b1 þ b2xi is the systematic portion of the regression

relationship. To create these values we must select

1. A sample size N. From the discussion in Section 2.4.4 we know that the larger the

sample size is, the greater is the precision of estimation of the least squares estimators
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b1 and b2. Following the numerical examples in the book, we chooseN ¼ 40. This is

not a large sample, but assuming SR1–SR5 are true, the least squares estimators’

properties hold for any sample of sizeN> 2 in the simple regression model. In more

complex situations, varying the sample size to see how estimators perform is an

important ingredient of the simulation.

2. We must choose xi values. We maintain the assumption of values of the explanatory

variable that are fixed in repeated experimental trials. Following the depiction in

Figure 2.110 we set the values x1, x2, . . ., x20 ¼ 10 and x21, x22, . . ., x40 ¼ 20, using

the chapter assumption that x is measured in 100s. Does it matter howwe choose the

xi values? Yes, it does. The variances and covariances of the least squares estimators

depend on the variation in xi,�ðxi � xÞ2, how far the values are from 0, as measured

by �x2i , and on the sample mean x. Thus, if the values xi change, the precision of

estimation of the least squares estimators will change.

3. We must choose b1 and b2. Interestingly, for the least squares estimator under

assumptions SR1–SR5, the actual magnitudes of these parameters do not matter a

great deal. The estimator variances and covariances do not depend on them.

The difference between the least squares estimator and the true parameter value,

E(b2)–b2 given in (2.13) does not depend on themagnitude ofb2, only on the xivalues

and the random errors ei. To roughly parallel the regression results we obtained in

Figure 2.9, we set b1 ¼ 100 and b2 ¼ 10.

Given the values above we can create N ¼ 40 values E(yi|xi) ¼ b1 þ b2xi. These values

are

Eðyijxi ¼ 10Þ ¼ 100þ 10xi ¼ 100þ 10� 10 ¼ 200; i ¼ 1; . . . ; 20

Eðyijxi ¼ 20Þ ¼ 100þ 10xi ¼ 100þ 10� 20 ¼ 300; i ¼ 21; . . . ; 40

2G.2 THE RANDOM ERROR

To be consistent with assumptions SR2–SR4 the random errors should have mean

zero, constant variance var(ei j xi) ¼ s2 and be uncorrelated with one another, so that

cov(ei,ej) ¼ 0. Researchers in the field of numerical analysis have studied how to simulate

random numbers from a variety of probability distributions, such as the normal distribution.

Of course the computer-generated numbers cannot be truly random, because they are

generated by a computer code. The random numbers created by computer software are

‘‘pseudorandom,’’ in that they behave like randomnumbers. The numbers createdwill begin

to recycle after about 1013 values are drawn, which is plenty for our uses. Each software

vender uses its own version of a random number generator. Consequently, you should not

expect to obtain exactly the same numbers that we have, and your replication will produce

slightly different results, even though themajor conclusions will be the same. See Appendix

B.4 for a discussion of how random numbers are created.

Following assumption SR6we assume the random error terms have a normal distribution

with mean 0 and a homoskedastic variance var(ei j xi) ¼ s2. The variance s2 affects the

precision of estimation through the variances and covariances of the least squares estimators

10 This design is used in Chapter 2.4 of Briand, G. & Hill, R. C. (2010). Using Excel 2007 for Principles of

Econometrics. John Wiley and Sons.
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in (2.14)–(2.16). The bigger the value of s2, the bigger the variances and covariances of

the least squares estimators, and the more spread out the probability distribution of the

estimators, as shown in Figure 2.10. We choose var(ei j xi) ¼ s2 ¼ 2500, which also means

that var(yi j xi) ¼ s2 ¼ 2500.

2G.3 THEORETICALLY TRUE VALUES

Using the values above we plot the theoretically true probability density functions for yi
in Figure 2G.1. The solid curve on the left is N(200, 2500 ¼ 502). The first 20 simulated

observations will follow this probability density function. The dashed curve on the right

is N(300, 2500 ¼ 502), which is the probability density function for the second 20

observations.

Given the parameter s2 ¼ 2500 and the xi values we can compute the true variances of

the estimators

varðb1Þ ¼ s2 �x2i
N�ðxi � xÞ2
" #

¼ 2500
10000

40� 1000

� 

¼ 625

varðb2Þ ¼ s2

�ðxi � xÞ2 ¼
2500

1000
¼ 2:50

covðb1; b2Þ ¼ s2 �x

�ðxi � xÞ2
" #

¼ 2500
�15

1000

� 

¼ �37:50

The true standard deviation of b2 is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðb2Þ

p ¼ ffiffiffiffiffiffiffiffiffi
2:50

p ¼ 1:5811. The true probability

density function of b2 isNðb2 ¼ 10; varðb2Þ ¼ 2:5Þ. Using the cumulative probabilities for

the standard normal distribution in Table 1 at the end of this book, we find that 98%of values

from a normal distribution fall within 2.33 standard deviations of the mean. Applying this

rule to the estimates b2 we have b2 
 2:33� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðb2Þ

p ¼ 10
 2:33� 1:5811 ¼
½6:316; 13:684�. We expect almost all values of b2 (98% of them) to fall in the range

f (y |x � 10) f (y|x � 20)

σ � 50

0 100 200 300 400 500

FIGURE 2G.1 The true probability density functions of the data.
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6.32–13.68. The plot of the true probability density function of the estimator b2 is shown in

Figure 2G.2.

2G.4 CREATING A SAMPLE OF DATA

Most software will automatically create random values, zi, from the standard normal

distribution, N(0, 1). To obtain a random value from a N(0, s2) distribution, we multiply zi
by the standard deviation s. That is ei ¼ s�zi. Given values zi from the standard

normal distribution, we obtain the N ¼ 40 sample values from the chosen data generation

process as

yi ¼ Eðyijxi ¼ 10Þ þ ei ¼ 200þ 50� zi i ¼ 1; . . . ; 20

yi ¼ Eðyijxi ¼ 20Þ þ ei ¼ 300þ 50� zi i ¼ 21; . . . ; 40

One sample of data is in the file mc1.dat. Using these values we obtain the least squares

estimates

ŷ ¼ 75:7679þ 11:9683xi

ðseÞ ð25:7928Þ ð1:6313Þ

and the estimate ŝ ¼ 51:5857. The estimated variances and covariances of b1 and b2 are

b1 b2

b1 665.2699 �39.9162

b2 �39.9162 2.6611

For this one sample the parameter estimates are reasonably near their true values.

However, what happens in one sample does not prove anything. The repeated sampling

properties of the least squares estimators are about what happens in many samples of data,

from the same data generation process.

4 6 8 10

E (b2) � β2 � 10

f (b2)

��� ���

12 14 16

var (b2) � 2.50 � 1.5811

FIGURE 2G.2 The true probability density functions of the estimator b2.
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2G.5 MONTE CARLO OBJECTIVES

What do we hope to achieve with a Monte Carlo experiment? After the Monte Carlo

experiment we will have many least squares estimates. If we obtain M ¼ 1000 samples11,

wewill have 1000 estimates b1,1, . . . , b1,M, 1000 estimates b2,1, . . . , b2,M and 1000 estimates

ŝ2
1; . . . ; ŝ

2
M .

� Wewould like to verify that under SR1–SR5 the least squares estimators are unbiased.

The estimator b2 is unbiased if E(b2) ¼ b2. Since an expected value is an average

in many repeated experimental trials, we should observe that the average value of

all the slope estimates, b2 ¼ �M
m¼1b2;m=M, is close to b2 ¼ 10.

� We would like to verify that under SR1–SR5 the least squares estimators have

sampling variances given by (2.14) and (2.16). The estimator variances measure

the sampling variation in the estimates. The sampling variation of the estimates in the

Monte Carlo simulation can be measured by their sample variance. For example, the

sample variance of the estimates b2,1, . . . , b2,M is s2b2 ¼ �M
m¼1 ðb2;m � b2Þ2=ðM � 1Þ.

This value should be close to var(b2) ¼ 2.50, and the standard deviation sb2 should be

close to the true standard deviation of the regression estimates 1.5811.

� Wewould like to verify that the estimator of the error variance (2.19) is an unbiased

estimator of s2 ¼ 2500, or that ŝ2 ¼ �M
m¼1ŝ

2
m=M is close to the true value.

� Because we have assumed the random errors are normal, SR6, we expect the least

squares estimates to have a normal distribution.

2G.6 MONTE CARLO RESULTS

The numerical results of the Monte Carlo experiment are shown Table 2G.1. The averages

(or ‘‘Sample Means’’) of the 1000 Monte Carlo estimates are close to their true values.

For example, the average of the slope estimates is b2 ¼ �M
m¼1b2;m=M ¼ 10:0143, com-

pared to the true value b2 ¼ 10. The sample variance of the estimates s2b2 ¼ �M
m¼1ðb2;m �

b2Þ2=ðM � 1Þ ¼ 2:3174 compared to the true value var(b2) ¼ 2.50. The standard deviation

of the estimates is sb2 ¼ 1:5223, compared to the true standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðb2Þ

p ¼ffiffiffiffiffiffiffiffiffi
2:50

p ¼ 1:5811. The theoretical 1st and 99th percentiles of b2 are [6.316, 13.684], which
is reflected by the estimates [6.3811, 13.5620]. If the number of Monte Carlo samples is

Ta b l e 2G . 1 Summary of 1,000 Monte Carlo Samples

Mean Variance Std. Dev. Minimum Maximum 1st Pct. 99th Pct.

b1 (100) 99.7581 575.3842 23.9872 25.8811 174.6061 42.1583 156.0710

b2 (10) 10.0143 2.3174 1.5223 5.1401 14.9928 6.3811 13.5620

ŝ2ð2,500Þ 2489.935 329909.9 574.3778 1024.191 5200.785 1360.764 4031.641

11 M ¼ 1000 is a moderate number of Monte Carlo samples. Depending upon the purpose of the Monte Carlo,

the number of samples may have to be larger. More will be said about this in an appendix to Chapter 3.
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increased to M ¼ 10,000, then the empirical Monte Carlo average values are even closer

to the true parameters.

As for the normality of the estimates, we see from the histogram in Figure 2G.3, that the

actual values follow the superimposed normal distribution very closely.
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FIGURE 2G.3 The sampling distribution of b2 in 1000 Monte Carlo samples.
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C h a p t e r 3
Interval Estimation and
Hypothesis Testing

Learning Objectives

Based on the material in this chapter, you should be able to

1. Discuss how ‘‘repeated sampling theory’’ relates to interval estimation and

hypothesis testing.

2. Explain why it is important for statistical inference that the least squares estimators

b1 and b2 are normally distributed random variables.

3. Explain the ‘‘level of confidence’’ of an interval estimator, and exactly what it

means in a repeated sampling context, and give an example.

4. Explain the difference between an interval estimator and an interval estimate.

Explain how to interpret an interval estimate.

5. Explain the terms null hypothesis, alternative hypothesis, and rejection region,

giving an example and a sketch of the rejection region.

6. Explain the logic of a statistical test, includingwhy it is important that a test statistic

have a known probability distribution if the null hypothesis is true.

7. Explain the term p-value and how to use a p-value to determine the outcome of a

hypothesis test; provide a sketch showing a p-value.

8. Explain the difference between one-tail and two-tail tests. Explain, intuitively, how

to choose the rejection region for a one-tail test.

9. ExplainType I error and illustrate it in a sketch.Define the level of significance of a test.

10. Explain the difference between economic and statistical significance.

11. Explain how to choose what goes in the null hypothesis, and what goes in the

alternative hypothesis.

Keywords

alternative hypothesis

confidence intervals

critical value

degrees of freedom

hypotheses

hypothesis testing

inference

interval estimation

level of significance

linear hypothesis

null hypothesis

one-tail tests

point estimates

probability value

p-value

rejection region

test of significance

test statistic

two-tail tests

Type I error

Type II error
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In Chapter 2 we used the least squares estimators to develop point estimates for the

parameters in the simple linear regression model. These estimates represent an inference

about the regression functionEðyÞ ¼ b1 þ b2x describing a relationship between economic

variables. Infermeans ‘‘to conclude by reasoning from something known or assumed.’’ This

dictionary definition describes statistical inference as well. We have assumed a relationship

between economic variables andmadevarious assumptions (SR1–SR5) about the regression

model. Based on these assumptions, and given empirical estimates of regression parameters,

we want to make inferences about the population from which the data were obtained.

In this chapter we introduce additional tools of statistical inference: interval estimation
and hypothesis testing. Interval estimation is a procedure for creating ranges of values,

sometimes called confidence intervals, in which the unknown parameters are likely to

be located. Hypothesis tests are procedures for comparing conjectures that we might have

about the regression parameters to the parameter estimates we have obtained from a sample

of data. Hypothesis tests allow us to say that the data are compatible, or are not compatible,

with a particular conjecture or hypothesis.

The procedures for hypothesis testing and interval estimation depend very heavily on

assumption SR6 of the simple linear regression model and the resulting normality of the

least squares estimators. If assumption SR6 does not hold, then the sample size must be

sufficiently large so that the distributions of the least squares estimators are approximately

normal. In this case the procedures we develop in this chapter can be used but are also

approximate. In developing the procedures in this chapter we will be using the ‘‘Student’s’’

t-distribution. You may want to refresh your memory about this distribution by reviewing

AppendixB.3.7. Also, it is sometimes helpful to see the concepts we are about to discuss in a

simpler setting. In Appendix C we examine statistical inference, interval estimation, and

hypothesis testing in the context of estimating the mean of a normal population. You may

want to review this material now, or read it along with this chapter as we proceed.

3.1 Interval Estimation

In Chapter 2 we estimated that household food expenditure would rise by $10.21 given a

$100 increase inweekly income. The estimate b2¼ 10.21 is a point estimate of the unknown

population parameter b2 in the regression model. Interval estimation proposes a range of

values in which the true parameter b2 is likely to fall. Providing a range of values gives a

sense of what the parameter valuemight be, and the precision with whichwe have estimated

it. Such intervals are often called confidence intervals. We prefer to call them interval

estimates because the term ‘‘confidence’’ is widely misunderstood andmisused. As wewill

see, our confidence is in the procedure we use to obtain the intervals, not in the intervals

themselves. This is consistent with how we assessed the properties of the least squares

estimators in Chapter 2.

3.1.1 THE t-DISTRIBUTION

Let us assume that assumptions SR1–SR6 hold for the simple linear regression model.

In this casewe know that the least squares estimators b1 and b2 have normal distributions, as

discussed in Section 2.6. For example, the normal distribution of b2, the least squares

estimator of b2, is

b2 �N b2;
s2

�ðxi � xÞ2
 !
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A standardized normal random variable is obtained from b2 by subtracting its mean and

dividing by its standard deviation:

Z ¼ b2 � b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=�ðxi � xÞ2

q �Nð0; 1Þ (3.1)

The standardized random variable Z is normally distributed with mean 0 and variance 1.

Using a table of normal probabilities (Table 1 at the end of the book), we know that

Pð�1:96 � Z � 1:96Þ ¼ 0:95

Substituting (3.1) into this expression, we obtain

P �1:96 � b2 � b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=�ðxi � xÞ2

q � 1:96

0
B@

1
CA ¼ 0:95

Rearranging gives us

P

 
b2 � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=�ðxi � xÞ2

q
� b2 � b2 þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=�ðxi � xÞ2

q !
¼ 0:95

This defines an interval that has probability 0.95 of containing the parameter b2. The two

endpoints b2 � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=�ðxi � xÞ2

q� �
provide an interval estimator. In repeated sam-

pling, 95% of the intervals constructed this way will contain the true value of the parameter

b2. This easy derivation of an interval estimator is based on both assumption SR6 and our

knowing the variance of the error term s2.

Althoughwedonot know thevalueofs2,wecan estimate it. The least squares residuals are

êi ¼ yi � b1� b2xi, and our estimator ofs2 is ŝ2¼ �ê2i =ðN� 2Þ. Replacings2 by ŝ2 in (3.1)

creates a random variable we can work with, but this substitution changes the probability

distribution from standard normal to a t-distribution with N � 2 degrees of freedom,

t ¼ b2 � b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2=�ðxi � xÞ2

q ¼ b2 � b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þq ¼ b2 � b2

seðb2Þ � tðN�2Þ (3.2)

The ratio t ¼ ðb2 � b2Þ=seðb2Þ has a t-distribution with N � 2 degrees of freedom, which

we denote as t� tðN�2Þ. A similar result holds for b1, so in general we can say, if assumptions

SR1–SR6 hold in the simple linear regression model, then

t ¼ bk � bk

seðbkÞ � tðN�2Þ for k ¼ 1; 2 (3.3)

This equation will be the basis for interval estimation and hypothesis testing in the simple

linear regression model. The statistical argument of how we go from (3.1) to (3.2) is in

Appendix 3A, at the end of this chapter.

When working with the t-distribution, remember that it is a bell-shaped curve centered at

zero. It looks like the standard normal distribution, except that it is more spread out, with a

larger variance and thicker tails. The shape of the t-distribution is controlled by a single

parameter called the degrees of freedom, often abbreviated as df. We use the notation tðmÞ to
specify a t-distributionwithm degrees of freedom. In Table 2 at the end of the book (and inside
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the front cover) are percentile values of the t-distribution for various degrees of freedom. For

m degrees of freedom the 95th percentile of the t-distribution is denoted tð0:95;mÞ. This value
has the property that 0.95 of the probability falls to its left, so P tðmÞ � tð0:95;mÞ

� � ¼ 0:95. For

example, if the degrees of freedom arem¼ 20, then, from Table 2, tð0:95;20Þ ¼ 1:725. Should
you encounter a problem requiring percentiles that we do not give, you can interpolate for an

approximate answer, or use your computer software to obtain an exact value.

3.1.2 OBTAINING INTERVAL ESTIMATES

From Table 2 we can find a ‘‘critical value’’ tc from a t-distribution such that Pðt� tcÞ ¼
Pðt � � tcÞ ¼ a=2, where a is a probability often taken to be a ¼ 0.01 or a ¼ 0.05. The

critical value tc for degrees of freedom m is the percentile value tð1�a=2;mÞ. The values tc and
�tc are depicted in Figure 3.1.

Each shaded ‘‘tail’’ area containsa=2 of the probability, so that 1�a of the probability is

contained in the center portion. Consequently, we can make the probability statement

Pð� tc � t � tcÞ ¼ 1� a (3.4)

For a 95% confidence interval the critical values define a central region of the t-distribution

containing probability 1� a ¼ 0:95. This leaves probability a ¼ 0:05 divided equally

between the two tails, so that a=2 ¼ 0:025. Then the critical value tc ¼ tð1�0:025;mÞ ¼
tð0:975;mÞ. In the simple regression model the degrees of freedom are m ¼ N � 2, so

expression (3.4) becomes

P � tð0:975;N�2Þ � t � tð0:975;N�2Þ
� � ¼ 0:95

We find the percentile values tð0:975;N�2Þ in Table 2.

Now, let us see how we can put all these bits together to create a procedure for interval

estimation. Substitute t from (3.3) into (3.4) to obtain

P �tc � bk � bk

seðbkÞ � tc

� �
¼ 1� a

Rearrange this expression to obtain

P½bk � tcseðbkÞ � bk � bk þ tcseðbkÞ� ¼ 1� a (3.5)

The interval endpoints bk � tcseðbkÞ and bk þ tcseðbkÞ are random because they vary from

sample to sample. These endpoints define an interval estimator of bk. The probability

α/2 α/2

tc�tc

f(t)

t0

(1 � α)

t(m)

FIGURE 3.1 Critical values from a t-distribution.
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statement in (3.5) says that the interval bk � tcseðbkÞ has probability 1�a of containing the

true but unknown parameter bk.

When bk and se(bk) in (3.5) are estimated values (numbers), based on a given sample of

data, then bk � tcseðbkÞ is called a 100(1�a)% interval estimate of bk. Equivalently it is

called a 100(1�a)% confidence interval. Usuallya ¼ 0:01 ora ¼ 0:05, so that we obtain
a 99% confidence interval or a 95% confidence interval.

The interpretation of confidence intervals requires a great deal of care. The properties of

the interval estimation procedure are based on the notion of repeated sampling. If we were

to select many random samples of size N, compute the least squares estimate bk and its

standard error se(bk) for each sample, and then construct the interval estimate bk � tcseðbkÞ
for each sample, then 100(1�a)% of all the intervals constructed would contain the true

parameter bk. In Appendix 3C we carry out a Monte Carlo simulation to demonstrate this

repeated sampling property.

Any one interval estimate, based on one sample of data, may or may not contain the true

parameter bk, and because bk is unknown, we will never know whether it does or does

not. When ‘‘confidence intervals’’ are discussed, remember that our confidence is in the

procedure used to construct the interval estimate; it is not in any one interval estimate

calculated from a sample of data.

3.1.3 AN ILLUSTRATION

For the food expenditure data,N ¼ 40 and the degrees of freedom areN � 2 ¼ 38. For a 95%

confidence interval a¼ 0:05. The critical value tc ¼ tð1�a=2;N�2Þ ¼ tð0:975;38Þ ¼ 2:024 is the

97.5 percentile from the t-distribution with 38 degrees of freedom. For b2 the probability

statement in (3.5) becomes

P½b2 � 2:024seðb2Þ � b2 � b2 þ 2:024seðb2Þ� ¼ 0:95 (3.6)

To construct an interval estimate for b2 we use the least squares estimate b2 ¼ 10:21 and its
standard error

seðb2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þq

¼
ffiffiffiffiffiffiffiffiffi
4:38

p
¼ 2:09

Substituting these values into (3.6) we obtain a ‘‘95% confidence interval estimate’’ for b2:

b2 � tcseðb2Þ ¼ 10:21� 2:024ð2:09Þ ¼ ½5:97; 14:45�

That is, we estimate ‘‘with 95% confidence’’ that from an additional $100 ofweekly income

households will spend between $5.97 and $14.45 on food.

Isb2 actually in the interval [5.97, 14.45]?We do not know, and wewill never know.What

we do know is that when the procedure we used is applied to many random samples of data

from the same population, then 95% of all the interval estimates constructed using this

procedurewill contain the true parameter. The interval estimation procedure ‘‘works’’ 95%of

the time.Whatwecan say about the interval estimatebasedonour one sample is that, given the

reliability of the procedure, wewould be ‘‘surprised’’ if b2 is not in the interval [5.97, 14.45].

What is the usefulness of an interval estimate ofb2?When reporting regression resultswe

always give a point estimate, such as b2¼ 10.21. However, the point estimate alone gives no

sense of its reliability. Thus, we might also report an interval estimate. Interval estimates

incorporate both the point estimate and the standard error of the estimate,which is ameasure

of the variability of the least squares estimator. The interval estimate includes an allowance
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for the sample size as well, because for lower degrees of freedom the t-distribution critical

value tc is larger. If an interval estimate is wide (implying a large standard error), it suggests

that there is not much information in the sample aboutb2. If an interval estimate is narrow, it

suggests that we have learned more about b2.

What is ‘‘wide’’ andwhat is ‘‘narrow’’depend on the problemat hand. For example, in our

model b2 ¼ 10.21 is an estimate of how much weekly household food expenditure will rise

givena$100 increase inweeklyhousehold income.ACEOofa supermarket chaincanuse this

estimate to plan future store capacity requirements, given forecasts of income growth in an

area. However, no decision will be based on this one number alone. The prudent CEO will

carry out a sensitivity analysis by considering values of b2 around 10.21. The question is

‘‘Which values?’’ One answer is provided by the interval estimate [5.97, 14.45]. Though b2

may or may not be in this interval, the CEO knows that the procedure used to obtain the

interval estimate ‘‘works’’ 95% of the time. If varying b2 within the interval has drastic

consequences on company sales and profits, then the CEO may conclude that there is

insufficientevidenceuponwhich tomakeadecisionandorderanewand larger sampleofdata.

3.1.4 THE REPEATED SAMPLING CONTEXT

In Section 2.4.3 we illustrated the sampling properties of the least squares estimators by

showing what would happen if we collected 10 additional samples of size N ¼ 40 from the

same population that gave us the food expenditure data. The data are in the file table2_2.dat.

In Table 3.1 we present the least squares estimates, the estimates of s2, and the coefficient

standard errors from each sample. Note the sampling variation illustrated by these estimates.

This variation is due to the simple fact that we obtained 40 different households in each

sample. The 95% confidence interval estimates for the parameters b1 and b2 are given in

Table 3.2 for the same samples.

Sampling variability causes the center of each of the interval estimates to changewith the

values of the least squares estimates, and it causes the widths of the intervals to change with

the standard errors. If we ask the question ‘‘How many of these intervals contain the true

parameters, and which ones are they?’’ wemust answer that we do not know. But since 95%

of all interval estimates constructed this way contain the true parameter values, we would

expect perhaps nine or 10 of these intervals to contain the true but unknown parameters.

Note the difference between point estimation and interval estimation. We have used the

least squares estimators to obtain point estimates of unknown parameters. The estimated

Ta b l e 3 . 1 Least Squares Estimates from 10 Random Samples

Sample b1 se(b1) b2 se(b2) ŝ2

1 131.69 40.58 6.48 1.96 7002.85

2 57.25 33.13 10.88 1.60 4668.63

3 103.91 37.22 8.14 1.79 5891.75

4 46.50 33.33 11.90 1.61 4722.58

5 84.23 41.15 9.29 1.98 7200.16

6 26.63 45.78 13.55 2.21 8911.43

7 64.21 32.03 10.93 1.54 4362.12

8 79.66 29.87 9.76 1.44 3793.83

9 97.30 29.14 8.05 1.41 3610.20

10 95.96 37.18 7.77 1.79 5878.71
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variancebvarðbkÞ, for k¼ 1 or 2, and its square root

ffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðbkÞq
¼ seðbkÞ provide information

about the sampling variability of the least squares estimator from one sample to another.

Interval estimators are a convenient way to report regression results because they combine

point estimationwith ameasure of sampling variability to provide a range of values inwhich

the unknown parameters might fall. When the sampling variability of the least squares

estimator is relatively small, then the interval estimates will be relatively narrow, implying

that the least squares estimates are ‘‘reliable.’’ If the least squares estimators suffer from

large sampling variability, then the interval estimates will be wide, implying that the least

squares estimates are ‘‘unreliable.’’

3.2 Hypothesis Tests

Many business and economic decision problems require a judgment as to whether or not a

parameter is a specific value. In the food expenditure example, it may make a good deal of

difference for decision purposes whether b2 is greater than 10, indicating that a $100

increase in income will increase expenditure on food by more than $10. Also, based on

economic theory, we believe that b2 should be positive. One check of our data and model is

whether this theoretical proposition is supported by the data.

Hypothesis testing procedures compare a conjecture we have about a population to the

information contained in a sample of data. Given an economic and statistical model,

hypotheses are formed about economic behavior. These hypotheses are then represented as

statements about model parameters. Hypothesis tests use the information about a parameter

that is contained in a sample of data, its least squares point estimate, and its standard error, to

draw a conclusion about the hypothesis.

In each and every hypothesis test five ingredients must be present:

COMPONENTS OF HYPOTHESIS TESTS

1. A null hypothesis H0

2. An alternative hypothesis H1

3. A test statistic

4. A rejection region

5. A conclusion

Ta b l e 3 . 2 Interval Estimates from 10 Random Samples

Sample b1 � tcseðb1Þ b1 þ tcseðb1Þ b2 � tcseðb2Þ b2 þ tcseðb2Þ
1 49.54 213.85 2.52 10.44

2 �9.83 124.32 7.65 14.12

3 28.56 179.26 4.51 11.77

4 �20.96 113.97 8.65 15.15

5 0.93 167.53 5.27 13.30

6 �66.04 119.30 9.08 18.02

7 �0.63 129.05 7.81 14.06

8 19.19 140.13 6.85 12.68

9 38.32 156.29 5.21 10.89

10 20.69 171.23 4.14 11.40
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3.2.1 THE NULL HYPOTHESIS

The null hypothesis, which is denoted by H0 (H-naught), specifies a value for a regression

parameter, which for generality we denote as bk, for k¼ 1 or 2. The null hypothesis is stated

as H0 :bk ¼ c, where c is a constant, and is an important value in the context of a specific

regression model. A null hypothesis is the belief wewill maintain until we are convinced by

the sample evidence that it is not true, in which case we reject the null hypothesis.

3.2.2 THE ALTERNATIVE HYPOTHESIS

Paired with every null hypothesis is a logical alternative hypothesis H1 that we will accept

if the null hypothesis is rejected. The alternative hypothesis is flexible and depends to

some extent on economic theory. For the null hypothesis H0 :bk ¼ c the three possible

alternative hypotheses are

� H1 :bk > c. Rejecting the null hypothesis thatbk ¼ c leads us to accept the conclusion

that bk > c. Inequality alternative hypotheses are widely used in economics because

economic theory frequently provides information about the signs of relationships

between variables. For example, in the food expenditure example we might well test

the null hypothesisH0 :b2 ¼ 0 againstH1 :b2 > 0 because economic theory strongly

suggests that necessities like food are normal goods, and that food expenditure will

rise if income increases.

� H1 :bk < c. Rejecting the null hypothesis thatbk¼ c in this case leads us to accept the

conclusion that bk < c.

� H1 :bk 6¼ c. Rejecting the null hypothesis thatbk ¼ c in this case leads us to accept the

conclusion that bk takes a value either larger or smaller than c.

3.2.3 THE TEST STATISTIC

The sample information about the null hypothesis is embodied in the sample value of a test

statistic. Based on the value of a test statistic we decide either to reject the null hypothesis or

not to reject it. A test statistic has a special characteristic: its probability distribution is

completely knownwhen the null hypothesis is true, and it has some other distribution if the

null hypothesis is not true.

It all starts with the key result in (3.3), t ¼ ðbk � bkÞ=seðbkÞ� tðN�2Þ. If the null

hypothesis H0 :bk ¼ c is true, then we can substitute c for bk and it follows that

t ¼ bk � c

seðbkÞ � tðN�2Þ (3.7)

If the null hypothesis is not true, then the t-statistic in (3.7) does not have a t-distribution

with N � 2 degrees of freedom. This point is elaborated in Appendix 3B.

3.2.4 THE REJECTION REGION

The rejection region depends on the form of the alternative. It is the range of values of the

test statistic that leads to rejection of the null hypothesis. It is possible to construct a rejection

region only if we have
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� A test statistic whose distribution is known when the null hypothesis is true

� An alternative hypothesis

� A level of significance

The rejection region consists of values that are unlikely and that have low probability of

occurringwhen the null hypothesis is true. The chain of logic is ‘‘If a value of the test statistic

is obtained that falls in a region of low probability, then it is unlikely that the test statistic has

the assumed distribution, and thus it is unlikely that the null hypothesis is true.’’ If the

alternative hypothesis is true, thenvalues of the test statisticwill tend to be unusually large or

unusually small. The terms ‘‘large’’ and ‘‘small’’ are determined by choosing a probability

a, called the level of significance of the test, which provides a meaning for ‘‘an unlikely

event.’’ The level of significance of the test a is usually chosen to be 0.01, 0.05 or 0.10.

If we reject the null hypothesis when it is true, then we commit what is called a Type I

error. The level of significance of a test is the probability of committing a Type I error, so

PðType I errorÞ ¼ a. Any time we reject a null hypothesis it is possible that we have made

such an error—there is no avoiding it. The good news is that we can specify the amount of

Type I error we will tolerate by setting the level of significance a. If such an error is costly,
then we make a small. If we do not reject a null hypothesis that is false, then we have

committed a Type II error. In a real-world situation we cannot control or calculate the

probability of this type of error, because it depends on the unknown true parameter bk. For

more about Type I and Type II errors, see Appendix C.6.9.

3.2.5 A CONCLUSION

When you have completed testing a hypothesis, you should state your conclusion. Do you

reject the null hypothesis, or do you not reject the null hypothesis? As we will argue

below, you should avoid saying that you ‘‘accept’’ the null hypothesis, which can be very

misleading. Also, we urge you tomake it standard practice to saywhat the conclusionmeans

in the economic context of the problem you areworking on and the economic significance of

the finding. Statistical procedures are not ends in themselves. They are carried out for a

reason and have meaning, which you should be able to explain.

3.3 Rejection Regions for Specific Alternatives

In this section we hope to be very clear about the nature of the rejection rules for each of the

three possible alternatives to the null hypothesis H0 :bk ¼ c. As noted in the previous

section, to have a rejection region for a null hypothesis, we need a test statistic, which we

have; it is given in (3.7). Second, we need a specific alternative, bk > c, bk < c, or bk 6¼ c.

Third, we need to specify the level of significance of the test. The level of significance of a

test, a, is the probability that we reject the null hypothesis when it is actually true, which is
called a Type I error.

3.3.1 ONE-TAIL TESTS WITH ALTERNATIVE ‘‘GREATER THAN’’ (>)

When testing the null hypothesis H0 :bk ¼ c, if the alternative hypothesis H1 :bk > c is

true, then the value of the t-statistic (3.7) tends to become larger than usual for the

t-distribution. We will reject the null hypothesis if the test statistic is larger than the critical

value for the level of significance a. The critical value that leaves probability a in the right

102 INTERVAL EST IMAT ION AND HYPOTHES I S TEST ING



tail is the (1�a)-percentile tð1�a;N�2Þ, as shown in Figure 3.2. For example, if a ¼ 0:05

and N � 2 ¼ 30, then from Table 2 the critical value is the 95th percentile value

tð0:95;30Þ ¼ 1:697.

The rejection rule is

When testing the null hypothesis H0 :bk ¼ c against the alternative hypothesis H1 :bk > c,

reject the null hypothesis and accept the alternative hypothesis if t� tð1�a;N�2Þ.

The test is called a ‘‘one-tail’’ test because unlikely values of the t-statistic fall only in one

tail of the probability distribution. If the null hypothesis is true, then the test statistic (3.7) has

a t-distribution, and its value would tend to fall in the center of the distribution, to the left of

the critical value, where most of the probability is contained. The level of significance a is

chosen so that if the null hypothesis is true, then the probability that the t-statistic value falls

in the extreme right tail of the distribution is small; an event that is unlikely to occur by

chance. Ifwe obtain a test statistic value in the rejection region,we take it as evidenceagainst

the null hypothesis, leading us to conclude that the null hypothesis is unlikely to be true.

Evidence against the null hypothesis is evidence in support of the alternative hypothesis.

Thus if we reject the null hypothesis then we conclude that the alternative is true.

If the null hypothesisH0 : bk ¼ c is true, then the test statistic (3.7) has a t-distribution and

its values fall in the nonrejection region with probability 1� a. If t< tð1�a;N�2Þ, then there is
no statistically significant evidence against the null hypothesis, and we do not reject it.

3.3.2 ONE-TAIL TESTS WITH ALTERNATIVE ‘‘LESS THAN’’ (<)

If the alternative hypothesisH1 : bk < c is true, then the value of the t-statistic (3.7) tends to

become smaller than usual for the t-distribution. We reject the null hypothesis if the test

statistic is smaller than the critical value for the level of significancea. The critical value that
leaves probability a in the left tail is the a-percentile tða;N�2Þ, as shown in Figure 3.3.

When using Table 2 to locate critical values, recall that the t-distribution is symmetric

about zero, so that the a-percentile tða;N�2Þ is the negative of the (1�a)-percentile

tð1�a;N�2Þ. For example, if a ¼ 0:05 and N � 2 ¼ 20, then from Table 2 the 95th percentile

of the t-distribution is tð0:95;20Þ ¼ 1:725 and the 5th percentile value is tð0:05;20Þ ¼ �1:725.
The rejection rule is:

When testing the null hypothesis H0 :bk ¼ c against the alternative hypothesis H1 :bk < c,

reject the null hypothesis and accept the alternative hypothesis if t � tða;N�2Þ.

t(m)

α

reject H0:
βk � c

do not
reject H0:
βk � c

0 tc � t(1�α, N�2)

FIGURE 3.2 Rejection region for a one-tail test of H0 :bk ¼ c against H1:bk > c.
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The nonrejection region consists of t-statistic values greater than tða;N�2Þ. When the null

hypothesis is true, the probability of obtaining such a t-value is 1�a, which is chosen to be
large. Thus if t> tða;N�2Þ then do not reject H0 :bk ¼ c.

Rememberingwhere the rejection region is locatedmaybe facilitatedby the following trick:

MEMORY TRICK: The rejection region for a one-tail test is in the direction of the

arrow in the alternative. If the alternative is>, then reject in the right tail. If the alternative

is <, reject in the left tail.

3.3.3 TWO-TAIL TESTS WITH ALTERNATIVE ‘‘NOT EQUAL TO’’ ( 6¼)

When testing the null hypothesisH0 :bk ¼ c, if the alternative hypothesisH1 :bk 6¼ c is true,

then the value of the t-statistic (3.7) tends to become either larger or smaller than usual for

the t-distribution. To have a test with level of significance awe define the critical values so

that the probability of the t-statistic falling in either tail is a=2. The left-tail critical value is
the percentile tða=2;N�2Þ and the right-tail critical value is the percentile tð1�a=2;N�2Þ. We

reject the null hypothesis thatH0 :bk ¼ c in favor of the alternative thatH1 :bk 6¼ c if the test

statistic t � tða=2;N�2Þ or t� tð1�a=2;N�2Þ, as shown in Figure 3.4. For example, if a ¼ 0:05

andN � 2 ¼ 30, then a=2 ¼ 0:025 and the left-tail critical value is the 2.5-percentile value

tð0:025;30Þ ¼ �2:042; the right-tail critical value is the 97.5-percentile tð0:975;30Þ ¼ 2:042. The

right-tail critical value is found in Table 2, and the left-tail critical value is found using the

symmetry of the t-distribution.

Reject H0:βk � c
Accept H1:βk � c

Reject H0:βk � c
Accept H1:βk � c

α/2 α/2

tc = t(α/2, N�2) tc = t(1�α/2, N�2)

Do not reject
H0:βk � c

f(t)

t

t(m)

FIGURE 3.4 Rejection region for a test of H0 :bk ¼ c against H1 :bk 6¼ c.

t(m)

Reject H0:βk � c

Do not reject H0:
βk � c

0tc � t(α, N�2)

α

FIGURE 3.3 The rejection region for a one-tail test of H0 :bk ¼ c against H1 :bk < c.
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Since the rejection region is composed of portions of the t-distribution in the left and right

tails, this test is called a two-tail test. When the null hypothesis is true, the probability of

obtaining a value of the test statistic that falls in either tail area is ‘‘small.’’ The sumof the tail

probabilities isa. Sample values of the test statistic that are in the tail areas are incompatible

with the null hypothesis and are evidence against the null hypothesis being true. On the other

hand, if the null hypothesisH0 :bk ¼ c is true, then the probability of obtaining a value of the

test statistic t in the central nonrejection region is high. Sample values of the test statistic in

the central nonrejection area are compatible with the null hypothesis and are not taken as

evidence against the null hypothesis being true. Thus the rejection rule is

When testing the null hypothesis H0 :bk ¼ c against the alternative hypothesis H1 :bk 6¼ c,

reject the null hypothesis and accept the alternative hypothesis if t � tða=2;N�2Þ or if

t� tð1�a=2;N�2Þ.

We do not reject the null hypothesis if tða=2;N�2Þ < t< tð1�a=2;N�2Þ.

3.4 Examples of Hypothesis Tests

We illustrate themechanics of hypothesis testing using the food expendituremodel.Wegive

examples of right-tail, left-tail, and two-tail tests. In each casewewill follow a prescribed set

of steps, closely following the list of required components for all hypothesis tests listed at the

beginning of Section 3.2. A standard procedure for all hypothesis-testing problems and

situations is

STEP-BY-STEP PROCEDURE FOR TESTING HYPOTHESES

1. Determine the null and alternative hypotheses.

2. Specify the test statistic and its distribution if the null hypothesis is true.

3. Select a and determine the rejection region.

4. Calculate the sample value of the test statistic.

5. State your conclusion.

3.4.1 RIGHT-TAIL TESTS

3.4.1a One-Tail Test of Signficance

Usually our first concern is whether there is a relationship between the variables, as we have

specified in our model. If b2 ¼ 0 then there is no linear relationship between food

expenditure and income. Economic theory suggests that food is a normal good, and that

as income increases food expenditure will also increase, and thus that b2 > 0. The least

squares estimate of b2 is b2 ¼ 10:21, which is certainly greater than zero. However, simply

observing that the estimate has the right sign does not constitute scientific proof.Wewant to

determinewhether there is convincing, or significant, statistical evidence that would lead us

to conclude that b2 > 0. When testing the null hypothesis that a parameter is zero, we are

asking if the estimate b2 is significantly different from zero, and the test is called a test of

significance.

A statistical test procedure cannot prove the truth of a null hypothesis. When we fail to

reject a null hypothesis, all the hypothesis test can establish is that the information in a

sample of data is compatiblewith the null hypothesis. Conversely, a statistical test can lead
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us to reject the null hypothesis, with only a small probability a of rejecting the null

hypothesis when it is actually true. Thus rejecting a null hypothesis is a stronger conclusion

than failing to reject it. For this reason the null hypothesis is usually stated in such away that

if our theory is correct, then we will reject the null hypothesis. In our example, economic

theory implies that there should be a positive relationship between income and food

expenditure. We would like to establish that there is statistical evidence to support this

theory using a hypothesis test. With this goal we set up the null hypothesis that there is no

relation between the variables, H0 :b2 ¼ 0. In the alternative hypothesis we put the

conjecture that we would like to establish, H1 :b2 > 0. If we then reject the null hypothesis

we can make a direct statement, concluding that b2 is positive, with only a small (a)
probability that we are in error.

The steps of this hypothesis test are as follows:

1. The null hypothesis is H0 :b2 ¼ 0. The alternative hypothesis is H1 :b2 > 0.

2. The test statistic is (3.7). In this case c ¼ 0, so t ¼ b2=seðb2Þ� tðN�2Þ if the null

hypothesis is true.

3. Let us select a ¼ 0:05. The critical value for the right-tail rejection region is the

95th percentile of the t-distribution with N � 2 ¼ 38 degrees of freedom,

tð0:95;38Þ ¼ 1:686. Thus we will reject the null hypothesis if the calculated value

of t� 1:686. If t < 1:686, we will not reject the null hypothesis.

4. Using the food expenditure data, we found that b2 ¼ 10:21 with standard error

seðb2Þ¼2:09. The value of the test statistic is

t ¼ b2

seðb2Þ ¼
10:21

2:09
¼ 4:88

5. Since t ¼ 4:88> 1:686, we reject the null hypothesis that b2 ¼ 0 and accept the

alternative that b2 > 0. That is, we reject the hypothesis that there is no relationship

between income and food expenditure, and conclude that there is a statistically

significant positive relationship between household income and food expenditure.

The last part of the conclusion is important.Whenyou report your results to an audience, you

will want to describe the outcome of the test in the context of the problem you are

investigating, not just in terms of Greek letters and symbols.

What if we had not been able to reject the null hypothesis in this example?Wouldwe have

concluded that economic theory is wrong and that there is no relationship between income

and food expenditure? No. Remember that failing to reject a null hypothesis does notmean

that the null hypothesis is true.

3.4.1b One-Tail Test of an Economic Hypothesis

Suppose that the economic profitability of a new supermarket depends on households

spending more than $5.50 out of each additional $100 weekly income on food and that

construction will not proceed unless there is strong evidence to this effect. In this case the

conjecture we want to establish, the one that will go in the alternative hypothesis, is that

b2 > 5:5. If b2 � 5:5, then the supermarket will be unprofitable and the owners would not

want to build it. The least squares estimate of b2 is b2 ¼ 10.21, which is greater than 5.5.

What we want to determine is whether there is convincing statistical evidence that would

lead us to conclude, based on the available data, that b2 > 5:5. This judgment is based not

only on the estimate b2, but also on its precision as measured by se(b2).
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What will the null hypothesis be? We have been stating null hypotheses as equalities,

such asb2 ¼ 5:5. This null hypothesis is too limited, because it is theoretically possible that

b2 < 5:5. It turns out that the hypothesis testing procedure for testing the null hypothesis

that H0 :b2 � 5:5 against the alternative hypothesis H1 :b2 > 5:5 is exactly the same as

testing H0 :b2 ¼ 5:5 against the alternative hypothesis H1 :b2 > 5:5. The test statistic and
rejection region are exactly the same. For a right-tail test you can form the null hypothesis in

either of these ways depending upon the problem at hand.

The steps of this hypothesis test are as follows:

1. The null hypothesis is H0 :b2 � 5:5. The alternative hypothesis is H1 :b2 > 5:5.

2. The test statistic t ¼ ðb2 � 5:5Þ=seðb2Þ� tðN�2Þ if the null hypothesis is true.

3. Let us select a ¼ 0:01. The critical value for the right-tail rejection region is the

99th percentile of the t-distribution with N � 2 ¼ 38 degrees of freedom,

tð0:99;38Þ ¼ 2:429. We will reject the null hypothesis if the calculated value of

t� 2:429. If t < 2:429, we will not reject the null hypothesis.

4. Using the food expenditure data, b2 ¼ 10:21 with standard error seðb2Þ ¼ 2:09.
The value of the test statistic is

t ¼ b2 � 5:5

seðb2Þ ¼ 10:21� 5:5

2:09
¼ 2:25

5. Since t ¼ 2:25< 2:429 we do not reject the null hypothesis that b2 � 5:5. We are

not able to conclude that the new supermarket will be profitable and will not begin

construction.

In this example we have posed a situation where the choice of the level of significance a
becomes of great importance. A construction project worth millions of dollars depends

on having convincing evidence that households will spend more than $5.50 out of each

additional $100 income on food. Although the ‘‘usual’’ choice isa ¼ 0:05, we have chosen a
conservative value of a ¼ 0:01 because we seek a test that has a low chance of rejecting the

null hypothesis when it is actually true. Recall that the level of significance of a test defines

whatwemeanbyanunlikely valueof the test statistic. In this example, if thenull hypothesis is

true, then building the supermarket will be unprofitable. Wewant the probability of building

an unprofitablemarket to bevery small, and thereforewewant the probability of rejecting the

null hypothesis when it is true to be very small. In each real-world situation, the choice of a
must bemadeon an assessment of risk and the consequences ofmaking an incorrect decision.

ACEO unwilling to make a decision based on the above evidence may well order a new

and larger sample of data to be analyzed. Recall that as the sample size increases, the least

squares estimator becomes more precise (as measured by estimator variance) and conse-

quently hypothesis tests become more powerful tools for statistical inference.

3.4.2 LEFT-TAIL TESTS

For completeness we will illustrate a test with the rejection region in the left tail. Consider

the null hypothesis that b2 � 15 and the alternative hypothesis b2 < 15. Recall our memory

trick for determining the location of the rejection region for a t-test. The rejection region is in

the direction of the arrow < in the alternative hypothesis. That tells us that the rejection

region is in the left tail of the t-distribution. The steps of this hypothesis test are as follows:

1. The null hypothesis is H0 :b2 � 15. The alternative hypothesis is H1 :b2 < 15.
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2. The test statistic t ¼ ðb2 � 15Þ=seðb2Þ� tðN�2Þ if the null hypothesis is true.

3. Let us select a ¼ 0:05. The critical value for the left-tail rejection region is the 5th

percentile of the t-distribution with N � 2 ¼ 38 degrees of freedom, tð0:05;38Þ ¼
�1:686. We will reject the null hypothesis if the calculated value of t � �1:686.
If t>� 1:686 we will not reject the null hypothesis. A left-tail rejection region is

illustrated in Figure 3.3.

4. Using the food expenditure data, b2 ¼ 10:21 with standard error seðb2Þ ¼ 2:09. The
value of the test statistic is

t ¼ b2 � 15

seðb2Þ ¼ 10:21� 15

2:09
¼ �2:29

5. Since t ¼ �2:29< � 1:686, we reject the null hypothesis that b2 � 15 and accept

the alternative that b2 < 15. We conclude that households spend less than $15 from

each additional $100 income on food.

3.4.3 TWO-TAIL TESTS

3.4.3a Two-Tail Test of an Economic Hypothesis

A consultant voices the opinion that based on other similar neighborhoods the households

near the proposed market will spend an additional $7.50 per additional $100 income. In

terms of our economicmodel, we can state this conjecture as the null hypothesisb2 ¼ 7:5. If
wewant to testwhether this is true or not, then the alternative is thatb2 6¼ 7:5.This alternative
makes no claim about whether b2 is greater than 7.5 or less than 7.5, simply that it is not 7.5.

In such cases we use a two-tail test, as follows:

1. The null hypothesis is H0 :b2 ¼ 7:5. The alternative hypothesis is H1 :b2 6¼ 7:5.

2. The test statistic t ¼ ðb2 � 7:5Þ=seðb2Þ� tðN�2Þ if the null hypothesis is true.

3. Let us select a ¼ 0:05. The critical values for this two-tail test are the 2.5-percentile
tð0:025;38Þ ¼ �2:024 and the 97.5-percentile tð0:975;38Þ ¼ 2:024. Thus we will reject

the null hypothesis if the calculated value of t� 2:024 or if t � �2:024. If

�2:024< t< 2:024 we will not reject the null hypothesis.

4. For the food expenditure data b2 ¼ 10.21 with standard error seðb2Þ ¼ 2:09. The
value of the test statistic is

t ¼ b2 � 7:5

seðb2Þ ¼ 10:21� 7:5

2:09
¼ 1:29

5. Since�2:204< t ¼ 1:29< 2:204we do not reject the null hypothesis that b2 ¼ 7:5.
The sample data are consistent with the conjecture households will spend an

additional $7.50 per additional $100 income on food.

We must avoid reading into this conclusion more than it means. We do not conclude from

this test that b2 ¼ 7:5, only that the data are not incompatible with this parameter value.

The data are also compatible with the null hypotheses H0 :b2 ¼ 8:5 (t ¼ 0:82), H0 :b2 ¼
6:5 (t ¼ 1:77), and H0 :b2 ¼ 12:5 (t ¼ �1:09). A hypothesis test cannot be used to prove

that a null hypothesis is true.

There is a trick relating two-tail tests and confidence intervals that is sometimes useful.

Let c be a value within a 100ð1� aÞ% confidence interval, so that if tc ¼ tð1�a=2;N�2Þ, then

bk � tcseðbkÞ � c � bk þ tcseðbkÞ
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If we test the null hypothesisH0 :bk ¼ c againstH1 :bk 6¼ c, when c is inside the confidence

interval, then we will not reject the null hypothesis at the level of significance a. If c is

outside the confidence interval, then the two-tail test will reject the null hypothesis. We do

not advocate using confidence intervals to test hypotheses, they serve a different purpose,

but if you are given a confidence interval, this trick is handy.

3.4.3b Two-Tail Test of Significance

While we are confident that a relationship exists between food expenditure and income,

models are often proposed that aremore speculative, and the purpose of hypothesis testing is

to ascertain whether a relationship between variables exists or not. In this case the null

hypothesis is b2¼ 0; that is, no linear relationship exists between x and y. The alternative is

b2 6¼ 0,whichwouldmean that a relationship exists, but that theremay be either a positive or

negative association between the variables. This is the most common form of a test of

significance. The test steps are as follows:

1. The null hypothesis is H0 :b2 ¼ 0. The alternative hypothesis is H1 :b2 6¼ 0.

2. The test statistic t ¼ b2=seðb2Þ� tðN�2Þ if the null hypothesis is true.

3. Let us select a ¼ 0:05. The critical values for this two-tail test are the 2.5-percentile
tð0:025;38Þ ¼ �2:024 and the 97.5-percentile tð0:975;38Þ ¼ 2:024. We will reject the

null hypothesis if the calculated value of t� 2:024 or if t � �2:024. If

�2:024 < t < 2:024, we will not reject the null hypothesis.

4. Using the food expenditure data, b2 ¼ 10.21 with standard error seðb2Þ ¼ 2:09.
The value of the test statistic is t ¼ b2=seðb2Þ ¼ 10:21=2:09 ¼ 4:88.

5. Since t ¼ 4:88> 2:024 we reject the null hypothesis that b2 = 0 and conclude that

there is a statistically significant relationship between income and food expenditure.

Two points should be made about this result. First, the value of the t-statistic we

computed in this two-tail test is the same as the value computed in the one-tail test of

significance in Section 3.4.1a. The difference between the two tests is the rejection region

and the critical values. Second, the two-tail test of significance is something that

should be done each time a regression model is estimated, and consequently computer

software automatically calculates the t-values for null hypotheses that the regression

parameters are zero. Refer back to Figure 2.9. Consider the portion that reports the

estimates:

Note that there is a column labeled t-Statistic. This is the t-statistic value for the null

hypothesis that the corresponding parameter is zero. It is calculated as t ¼ bk=seðbkÞ.
Dividing the least squares estimates (Coefficient) by their standard errors (Std. Error)

gives the t-statistic values (t-Statistic) for testing the hypothesis that the parameter is zero.

The t-statistic value for the variable INCOME is 4.877381, which is relevant for testing the

null hypothesis H0 :b2 ¼ 0. We have rounded this value to 4.88 in our discussions.

Ta b l e 3 .

Variable Coefficient Std. Error t-Statistic Prob.

C 83.41600 43.41016 1.921578 0.0622

INCOME 10.20964 2.093264 4.877381 0.0000
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The t-value for testing the hypothesis that the intercept is zero equals 1.92. The a¼ 0.05

critical values for these two-tail tests are tð0:025;38Þ ¼ �2:024 and tð0:975;38Þ ¼ 2:024 whether
we are testing a hypothesis about the slope or intercept, so we fail to reject the null

hypothesis that H0 :b1 ¼ 0 given the alternative H1 :b1 6¼ 0.

The final column, labeled ‘‘Prob.’’ is the subject of the next section.

REMARK: ‘‘Statistically significant’’ does not necessarily imply ‘‘economically sig-

nificant.’’ For example, suppose the CEO of a supermarket chain plans a certain course of

action if b2 6¼ 0. Furthermore, suppose a large sample is collected from which we obtain

the estimate b2 ¼ 0:0001with seðb2Þ ¼ 0:00001, yielding the t-statistic t ¼ 10.0. We

would reject the null hypothesis that b2 ¼ 0 and accept the alternative that b2 6¼ 0. Here

b2 ¼ 0:0001 is statistically different from zero. However, 0.0001 may not be ‘‘economic-

ally’’ different from zero, and the CEO may decide not to proceed with the plans. The

message here is that one must think carefully about the importance of a statistical analysis

before reporting or using the results.

3.5 The p-Value

When reporting the outcome of statistical hypothesis tests, it has become standard practice

to report the p-value (an abbreviation for probability value) of the test. If we have the

p-value of a test, p, we can determine the outcome of the test by comparing the p-value to

the chosen level of significance, a, without looking up or calculating the critical values.

The rule is

p-VALUE RULE: Reject the null hypothesis when the p-value is less than, or equal

to, the level of significance a. That is, if p�a then reject H0. If p>a then do not

reject H0.

If you have chosen the level of significance to be a ¼ 0:01; 0:05; 0:10, or any other value,
you can compare it to the p-value of a test and then reject, or not reject, without checking the

critical value. Inwrittenworks reporting the p-value of a test allows the reader to apply his or

her own judgment about the appropriate level of significance.

How the p-value is computed depends on the alternative. If t is the calculated value of the

t-statistic, then

� if H1 :bk > c; p ¼ probability to the right of t

� if H1 :bk < c; p ¼ probability to the left of t

� if H1 :bk 6¼ c; p ¼ sum of probabilities to the right of jtj and to the left of �jtj

MEMORY TRICK: The direction of the alternative indicates the tail(s) of the dis-

tribution in which the p-value falls.
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3.5.1 p-VALUE FOR A RIGHT-TAIL TEST

In Section 3.4.1b we tested the null hypothesis H0 :b2 � 5:5 against the one-sided

alternative H1 :b2 > 5:5. The calculated value of the t-statistic was

t ¼ b2 � 5:5

seðb2Þ ¼ 10:21� 5:5

2:09
¼ 2:25

In this case, since the alternative is ‘‘greater than’’ (>), the p-value of this test is the

probability that a t-random variable with N � 2 ¼ 38 degrees of freedom is greater than

2.25, or p ¼ P
�
tð38Þ � 2:25

� ¼ 0:0152.

This probability value cannot be found in the usual t-table of critical values, but it is

easily found using the computer. Statistical software packages, and spreadsheets such

as Excel, have simple commands to evaluate the cumulative distribution function

(cdf ) (see Appendix B.1) for a variety of probability distributions. If FXðxÞ is the cdf

for a random variable X, then for any value x ¼ c the cumulative probability is

P[X � c] ¼ FXðcÞ. Given such a function for the t-distribution, we compute the desired

p-value

p ¼ P
�
tð38Þ � 2:25

� ¼ 1� P
�
tð38Þ � 2:25

� ¼ 1� 0:9848 ¼ 0:0152

Following the p-value rule we conclude that at a ¼ 0:01 we do not reject the null hypo-

thesis. If we had chosen a ¼ 0:05, we would reject the null hypothesis in favor of the

alternative.

The logic of the p-value rule is shown in Figure 3.5. The probability of obtaining a t-value

greater than 2.25 is 0.0152, p ¼ P
�
tð38Þ � 2:25

� ¼ 0:0152. The 99th percentile tð0:99;38Þ,
which is the critical value for a right-tail test with level of significance ofa ¼ 0:01;must fall

to the right of 2.25. This means that t ¼ 2:25 does not fall in the rejection region ifa ¼ 0:01
and wewill not reject the null hypothesis at this level of significance. This is consistent with

the p-value rule: When the p-value (0.0152) is greater than the chosen level of significance

(0.01), we do not reject the null hypothesis.

On the other hand, the 95th percentile tð0:95;38Þ, which is the critical value for a right-tail

0 1 2 3 t

p � 0.0152

t � 2.25

t(38)

t(0.95,38) � 1.686 t(0.99,38) � 2.429

�3 �2 �1

FIGURE 3.5 The p-value for a right-tail test.
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test with a ¼ 0:05;must be to the left of 2.25. This means that t ¼ 2:25 falls in the rejection
region, and we reject the null hypothesis at the level of significance a ¼ 0:05. This is

consistent with the p-value rule: When the p-value (0.0152) is less than or equal to the

chosen level of significance (0.05) we will reject the null hypothesis.

3.5.2 p-VALUE FOR A LEFT-TAIL TEST

In Section 3.4.2 we carried out a test with the rejection region in the left tail of the

t-distribution. The null hypothesis was H0 :b2 � 15, and the alternative hypothesis was

H1 :b2 < 15. The calculated value of the t-statistic was t ¼ �2:29. To compute the p-value

for this left-tail test, we calculate the probability of obtaining a t-statistic to the left of�2.29.

Using your computer software you will find this value to be P
�
tð38Þ � �2:29

� ¼ 0:0139.

Following the p-value rulewe conclude that ata ¼ 0:01we do not reject the null hypothesis.
If we choose a ¼ 0:05, we will reject the null hypothesis in favor of the alternative. See

Figure 3.6 to see this graphically. Locate the 1st and 5th percentiles. Thesewill be the critical

values for left-tail testswitha ¼ 0:01 anda ¼ 0:05 levels of significance.When the p-value

(0.0139) is greater than the level of significance ða ¼ 0:01Þ, then the t-value�2.29 is not in

the test rejection region. When the p-value (0.0139) is less than or equal to the level of

significance ða ¼ 0:05Þ, then the t-value �2.29 is in the test rejection region.

3.5.3 p-VALUE FOR A TWO-TAIL TEST

For a two-tail test, the rejection region is in the two tails of the t-distribution, and the p-value

is similarly calculated in the two tails of the distribution. In Section 3.4.3a we tested the null

hypothesis thatb2 ¼ 7:5 against the alternative hypothesisb2 6¼ 7:5. The calculated value of
the t-statistic was t ¼ 1:29. For this two-tail test, the p-value is the combined probability to

the right of 1.29 and to the left of �1.29:

p ¼ P
�
tð38Þ � 1:29

�þ P
�
tð38Þ � �1:29

� ¼ 0:2033

This calculation is depicted in Figure 3.7. Once the p-value is obtained its use is unchanged.

If we choosea ¼ 0:05; a ¼ 0:10, or evena ¼ 0:20,wewill fail to reject the null hypothesis
because p>a:

p � 0.0139

t � �2.29

t(38)

�3 �2 �1 0 1 2 3 t

t(0.05,38) � �1.686t(0.01,38) � �2.429

FIGURE 3.6 The p-value for a left-tail test.
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At the beginning of this section we stated the following rule for computing p-values for

two-tail tests: ifH1 :bk 6¼ c; p ¼ sum of probabilities to the right of jtj and to the left of�jtj.
The reason for the use of absolute values in this rule is that it will apply equally well if the

value of the t-statistic turns out to be positive or negative.

3.5.4 p-VALUE FOR A TWO-TAIL TEST OF SIGNIFICANCE

All statistical software computes the p-value for the two-tail test of significance for each

coefficient when a regression analysis is performed. In Section 3.4.3b we discussed testing

the null hypothesis H0 :b2 ¼ 0 against the alternative hypothesis H1 :b2 6¼ 0. For the

calculated value of the t-statistic t ¼ 4:88 the p-value is

p ¼ P
�
tð38Þ � 4:88

�þ P
�
tð38Þ � �4:88

� ¼ 0:0000

Your software will automatically compute and report this p-value for a two-tail test of

significance. Refer back to Figure 2.9 and consider just the portion reporting the

estimates:

Next to each t-statistic value is the two-tail p-value, which is labeled ‘‘Prob.’’ by the

EViews software. Other software packages will use similar names. When inspecting com-

puter outputwe can immediately decide if an estimate is statistically significant (statistically

different from zero using a two-tail test) by comparing the p-value to whatever level of

significance we care to use. The estimated intercept has p-value 0.0622, so it is not

statistically different from zero at the level of significance a ¼ 0.05, but it is statistically

significant if a ¼ 0.10.

–3 –2 –1 0 1 2 3 t

p 2 =
0.10165 

p 2=
0.10165 

p = 0.2033 

t = 1.29

t(38)

t = – 1.29

t(0.975,38) = 2.024 t(0.025,38) = –2.024 

FIGURE 3.7 The p-value for a two-tail test of significance.
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Variable Coefficient Std. Error t-Statistic Prob.

C 83.41600 43.41016 1.921578 0.0622

INCOME 10.20964 2.093264 4.877381 0.0000



The estimated coefficient for income has a p-value that is zero to four places. Thus

p � a ¼ 0:01 or even a ¼ 0:0001; and thus we reject the null hypothesis that income has

no effect on food expenditure at these levels of significance. The p-value for this two-tail test

of significance is not actually zero. If more places are used, then p ¼ 0:00001946:
Regression software usually does not print out more than four places, because in practice

levels of significance less than a ¼ 0:001 are rare.

3.6 Linear Combinations of Parameters

So far we have discussed statistical inference (point estimation, interval estimation, and

hypothesis testing) for a single parameter,b1 orb2.More generally, wemaywish to estimate

and test hypotheses about a linear combination of parameters l ¼ c1b1 þ c2b2, where c1
and c2 are constants that we specify. One example is if we wish to estimate the expected

value of a dependent variable E(y) when x takes some specific value, such as x¼ x0. In this

case c1 ¼ 1 and c2 ¼ x0, so that, l ¼ c1b1 þ c2b2 ¼ b1 þ x0b2 ¼ E yjx ¼ x0ð Þ.
Under assumptions SR1–SR5 the least squares estimators b1 and b2 are the best linear

unbiased estimators of b1 and b2. It is also true that l̂ ¼ c1b1 þ c2b2 is the best linear

unbiased estimator of l ¼ c1b1 þ c2b2. The estimator l̂ is unbiased because

E l̂
	 
 ¼ E c1b1 þ c2b2ð Þ ¼ c1E b1ð Þ þ c2E b2ð Þ ¼ c1b1 þ c2b2 ¼ l

To find the variance of l̂, recall from the Probability Primer, Section P.5.6, that ifX and Yare

random variables, and if a and b are constants, then the variance var aX þ bYð Þ is given in
equation (P.20) as

var aX þ bYð Þ ¼ a2varðXÞ þ b2varðYÞ þ 2abcovðX; YÞ

In the estimator c1b1 þ c2b2ð Þ, both b1 and b2 are random variables, as we do not know what

their values will be until a sample is drawn and estimates calculated. Applying (P.20) we have

var l̂
	 
 ¼ var c1b1 þ c2b2ð Þ ¼ c21varðb1Þ þ c22varðb2Þ þ 2c1c2covðb1; b2Þ (3.8)

The variances and covariances of the least squares estimators are given in (2.14)–(2.16).We

estimate var l̂
	 
 ¼ var c1b1 þ c2b2ð Þ by replacing the unknown variances and covariances

with their estimated variances and covariances in (2.20)–(2.22). Then

b
varðl̂Þ ¼bvarðc1b1 þ c2b2Þ ¼ c21

b
varðb1Þ þ c22
b
varðb2Þ þ 2c1c2
b
covðb1; b2Þ (3.9)

The standard error of l̂ ¼ c1b1 þ c2b2 is the square root of the estimated variance,

se l̂
	 
¼ se c1b1 þ c2b2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib
var c1b1 þ c2b2ð Þ

q
(3.10)

If in addition SR6 holds, or if the sample is large, the least squares estimators b1 and b2 have

normal distributions. It is also true that linear combinations of normally distributed variables

are normally distributed, so that

l̂ ¼ c1b1 þ c2b2 � N l; var l̂
	 
� �
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Where var l̂
	 


is given in (3.8). Youmay be thinking of how long such calculations will take

using a calculator, but don’t worry.Most computer softwarewill do the calculations for you.

Now it’s time for an example.

3.6.1 ESTIMATING EXPECTED FOOD EXPENDITURE

An executive might ask of the research staff, ‘‘Give me an estimate of average weekly

food expenditure by households with $2,000 weekly income.’’ Interpreting the execu-

tive’s word ‘‘average’’ to mean ‘‘expected value,’’ for the food expenditure model this

means estimating

E FOOD EXPjINCOMEð Þ ¼ b1 þ b2INCOME

Recall that wemeasured income in $100 units in this example, so aweekly income of $2,000

corresponds to INCOME = 20. The executive is requesting an estimate of

E FOOD EXPjINCOME ¼ 20ð Þ ¼ b1 þ b220

which is a linear combination of the parameters.

Using the 40 observations in food.dat, in Chapter 2.3.2 we obtained the fitted regression,

b
FOOD EXP ¼ 83:4160þ 10:2096INCOME

The point estimate of average weekly food expenditure for a household with $2,000

income is

b
E FOOD EXPjINCOME ¼ 20ð Þ ¼ b1 þ b220 ¼ 83:4160þ 10:2096 20ð Þ ¼ 287:6089

We estimate that the expected food expenditure by a household with $2,000 income is

$287.61 per week.

3.6.2 AN INTERVAL ESTIMATE OF EXPECTED FOOD EXPENDITURE

If assumption SR6 holds, then the estimator l̂ has a normal distribution. We can form a

standard normal random variable as

Z ¼ l̂� lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var l̂
	 
q � N 0; 1ð Þ

Replacing the true variance in the denominator with the estimated variance we form a

t-statistic

t ¼ l̂� lffiffiffiffiffiffiffiffiffiffiffiffiffiffib
var l̂
	 
q ¼ l̂� l

se l̂
	 
 ¼ c1b1 þ c2b2ð Þ � c1b1 þ c2b2ð Þ

se c1b1 þ c2b2ð Þ � t N�2ð Þ (3.11)
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If tc is the 1 � a	2 percentile value from the t(N�2) distribution, then P �tc � t � tcð Þ ¼
1� a. Substitute (3.11) for t and rearrange to obtain

P½ðc1b1 þ c2b2Þ � tcseðc1b1 þ c2b2Þ � c1b1 þ c2b2 �
ðc1b1 þ c2b2Þ þ tcseðc1b1 þ c2b2Þ� ¼ 1� a

Thus a (1 � a)% interval estimate for c1b1 þ c2b2 is

c1b1 þ c2b2ð Þ � tcse c1b1 þ c2b2ð Þ

In Chapter 2.7.2 we obtained the estimated covariance matrix

b
var b1ð Þ bcov b1; b2ð Þb

cov b1; b2ð Þ bvar b2ð Þ

" #
¼

C INCOME

C 1884:442 �85:9032
INCOME �85:9032 4:3818

To obtain the standard error for
b
E FOOD EXPjINCOME ¼ 20ð Þ ¼ b1 þ b220 we first

calculate the estimated variance

b
var b1 þ 20b2ð Þ ¼bvarðb1Þ þ 202 
bvarðb2Þ þ 2
 20
bcovðb1; b2Þ

¼ 1884:442þ 202 
 4:3818 þ 2
 20
 �85:9032ð Þ
¼ 201:0169

Given
b
var b1 þ 20b2ð Þ ¼ 201:01691 the corresponding standard error is

se b1 þ 20b2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib
var b1 þ 20b2ð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
201:0169

p
¼ 14:1780

A 95% interval estimate ofE FOOD EXPjINCOME ¼ 20ð Þ ¼ b1 þ b220 is b1 þ b220ð Þ�
t 0:975;38ð Þse b1 þ b220ð Þ or

287:6089� 2:024 14:1780ð Þ; 287:6089þ2:024 14:1780ð Þ½ � ¼ 258:91; 316:31½ �
We estimate with 95% confidence that the expected food expenditure by a household with

$2,000 income is between $258.91 and $316.31.

3.6.3 TESTING A LINEAR COMBINATION OF PARAMETERS

So far we have tested hypotheses involving only one regression parameter at a time. That is,

our hypotheses have been of the form H0 : bk ¼ c. A more general linear hypothesis

involves both parameters and may be stated as

H0 : c1b1 þ c2b2 ¼ c0 (3.12a)

1 The value 201.0169 was obtained using computer software. If you do the calculation by hand using the

provided numbers you obtain 201.034. Do not be alarmed if you obtain small differences like this occasionally, as it

most likely is the difference between a computer generated solution and a hand-calculation.
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where c0, c1 and c2 are specified constants, with c0 being the hypothesized value. Despite the

fact that the null hypothesis involves both coefficients, it still represents a single hypothesis

to be tested using a t-statistic. Sometimes it is written equivalently in implicit form as

H0 : c1b1 þ c2b2ð Þ � c0 ¼ 0 (3.12b)

The alternative hypothesis for the null hypothesis in (3.12a) might be

(i) H1 : c1b1 þ c2b2 6¼ c0 leading to a two-tail t-test

(ii)H1 : c1b1 þ c2b2 > c0 leading to a right-tail t-test [Null may be ‘‘�’’]

(iii) H1 : c1b1 þ c2b2 < c0 leading to a left-tail t-test [Null may be ‘‘�’’]

If the implicit form is used, the alternative hypothesis is adjusted as well.

The test of the hypothesis (3.12) uses the t-statistic

t ¼ c1b1 þ c2b2ð Þ � c0

se c1b1 þ c2b2ð Þ � t N�2ð Þ if the null hypothesis is true (3.13)

The rejection regions for the one- and two-tail alternatives (i)–(iii) are the same as those

described in Section 3.3, and conclusions are interpreted the same way as well.

The form of the t-statistic is very similar to the original specification in (3.7). In the

numerator c1b1 þ c2b2ð Þ is the best linear unbiased estimator of c1b1 þ c2b2ð Þ, and if the

errors are normally distributed, or if we have a large sample, this estimator is normally

distributed as well.

3.6.4 TESTING EXPECTED FOOD EXPENDITURE

The food expendituremodel introduced inChapter 2.1 and used as an illustration throughout

provides an excellent example of how the linear hypothesis in (3.12) might be used in

practice. For most medium and larger cities there are forecasts of income growth for the

coming year. A supermarket or food retail store of any type will consider this before a new

facility is built. Their question is, if income in a locale is projected to grow at a certain rate,

how much of that will be spent on food items? An executive might say, based on years of

experience, ‘‘I expect that a household with $2,000 weekly income will spend, on average,

more than $250 a week on food.’’ How can we use econometrics to test this conjecture?

The regression function for the food expenditure model is

E FOOD EXPjINCOMEð Þ ¼ b1 þ b2INCOME

The executive’s conjecture is that

E FOOD EXPjINCOME ¼ 20ð Þ ¼ b1 þ b220 > 250

To test the validity of this statement we use it as the alternative hypothesis

H1 : b1 þ b220 > 250; or H1 : b1 þ b220� 250 > 0
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The corresponding null hypothesis is the logical alternative to the executive’s statement

H0 : b1 þ b220 � 250; or H1 : b1 þ b220� 250 � 0

Notice that the null and alternative hypothesis are in the same form as the general linear

hypothesis with c1 ¼ 1, c2 ¼ 20, and c0 ¼ 250.

The rejection region for a right-tail test is illustrated in Figure 3.2. For a right-tail test at

the a ¼ 0.05 level of significance the t-critical value is the 95th percentile of the t(38)
distribution, which is t(0.95,38)¼ 1.686. If the calculated t-statistic value is greater than 1.686,

wewill reject the null hypothesis and accept the alternative hypothesis, which in this case is

the executive’s conjecture.

Computing the t-statistic value

t ¼ b1 þ 20b2ð Þ � 250

se b1 þ 20b2ð Þ

¼ 83:4160þ 20
 10:2096ð Þ � 250

14:1780

¼ 287:6089� 250

14:1780
¼ 37:6089

14:1780
¼ 2:65

Since t ¼ 2:65 > tc ¼ 1:686, we reject the null hypothesis that a household with weekly

incomeof $2,000will spend $250 perweek or less on food, and conclude that the executive’s

conjecture that such households spend more than $250 is correct, with the probability of

Type I error 0.05.

In Section 3.6.1 we estimated that a household with $2,000 weekly income will spend

$287.6089, which is greater than the executive’s speculated value of $250. However, simply

observing that the estimated value is greater than $250 is not a statistical test. It might be

numerically greater, but is it significantly greater? The t-test takes into account the precision

with which we have estimated this expenditure level and also controls the probability of

Type I error.

3.7 Exercises

Answers to exercises marked * appear at www.wiley.com/college/hill.

3.7.1 PROBLEMS

3.1 Using the regression output for the food expenditure model shown in Figure 2.9:

(a) Construct a 95% interval estimate for b1 and interpret.

(b) Test the null hypothesis that b1 is zero against the alternative that it is not at the

5% level of significance without using the reported p-value. What is your

conclusion?

(c) Draw a sketch showing the p-value 0.0622 shown in Figure 2.9, the critical

value from the t-distribution used in (b), and how the p-value could have been

used to answer (b).

(d) Test the null hypothesis that b1 is zero against the alternative that it is positive

at the 5% level of significance. Drawa sketch of the rejection region and compute

the p-value. What is your conclusion?
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(e) Explain the differences and similarities between the ‘‘level of significance’’ and

the ‘‘level of confidence.’’

(f) The results in (d) show that we are 95% confident that b1 is positive. True, or

false? If false, explain.

3.2 The general manager of an engineering firmwants to knowwhether a technical artist’s

experience influences the quality of his or her work. A random sample of 24 artists

is selected and their years of work experience and quality rating (as assessed by

their supervisors) recorded. Work experience (EXPER) is measured in years and

quality rating (RATING) takes a value of 1 through 7, with 7 ¼ excellent and 1 ¼
poor: The simple regression model RATING ¼ b1 þ b2EXPERþ e is proposed.

The least squares estimates of the model, and the standard errors of the estimates, are

bRATING ¼ 3:204 þ 0:076EXPER
ðseÞ ð0:709Þ ð0:044Þ

(a) Sketch the estimated regression function. Interpret the coefficient of EXPER.

(b) Construct a 95% confidence interval forb2, the slope of the relationship between

quality rating and experience. In what are you 95% confident?

(c) Test the null hypothesis that b2 is zero against the alternative that it is not using a

two-tail test and the a ¼ 0:05 level of significance. What do you conclude?

(d) Test the null hypothesis that b2 is zero against the one-tail alternative that it is

positive at the a ¼ 0:05 level of significance. What do you conclude?

(e) For the test in part (c), the p-value is 0.0982. If we choose the probability of a

Type I error to bea ¼ 0:05; dowe reject the null hypothesis, or not, just based on
an inspection of the p-value? Show, in a diagram, how this p-value is computed.

3.3* In an estimated simple regression model, based on 24 observations, the estimated

slope parameter is 0.310 and the estimated standard error is 0.082.

(a) Test the hypothesis that the slope is zero against the alternative that it is not, at the

1% level of significance.

(b) Test the hypothesis that the slope is zero against the alternative that it is positive

at the 1% level of significance.

(c) Test the hypothesis that the slope is zero against the alternative that it is negative

at the 5% level of significance. Draw a sketch showing the rejection region.

(d) Test the hypothesis that the estimated slope is 0.5, against the alternative that it is

not, at the 5% level of significance.

(e) Obtain a 99% interval estimate of the slope.

3.4 Consider a simple regression in which the dependent variableMIM ¼mean income

of males who are 18 years of age or older, in thousands of dollars. The explanatory

variable PMHS ¼ percent of males 18 or older who are high school graduates. The

data consist of 51 observations on the 50 states plus the District of Columbia. Thus

MIM andPMHS are ‘‘state averages.’’ The estimated regression, along with standard

errors and t-statistics, is

bMIM ¼ ðaÞ þ 0:180PMHS

ðseÞ ð2:174Þ ðbÞ
ðtÞ ð1:257Þ ð5:754Þ

(a) What is the estimated equation intercept? Show your calculation. Sketch the

estimated regression function.
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(b) What is the standard error of the estimated slope? Show your calculation.

(c) What is the p-value for the two-tail test of the hypothesis that the equation

intercept is zero? Draw a sketch to illustrate.

(d) State the economic interpretation of the estimated slope. Is the sign of the

coefficient what you would expect from economic theory?

(e) Construct a 99% confidence interval estimate of the slope of this relationship.

(f) Test the hypothesis that the slope of the relationship is 0.2 against the alternative

that it is not. State in words the meaning of the null hypothesis in the context of

this problem.

3.7.2 COMPUTER EXERCISES

3.5 A life insurance company wishes to examine the relationship between the amount of

life insurance held by a family and family income. From a random sample of 20

households, the company collected the data in the file insur.dat. The data are in units

of thousands of dollars.

(a) Estimate the linear regression with dependent variable INSURANCE and inde-

pendent variable INCOME. Write down the fitted model and draw a sketch of the

fitted function. Identify the estimated slope and intercept on the sketch. Locate

the point of the means on the plot.

(b) Discuss the relationship you estimated in (a). In particular,

(i) What is your estimate of the resulting change in the amount of life

insurance when income increases by $1,000?

(ii) What is the standard error of the estimate in (i), and how do you use this

standard error for interval estimation and hypothesis testing?

(c) One member of the management board claims that for every $1,000 increase in

income, the amount of life insurance held will go up by $5,000. Choose an

alternative hypothesis and explain your choice. Does your estimated relationship

support this claim? Use a 5% significance level.

(d) Test the hypothesis that as income increases the amount of life insurance

increases by the same amount. That is, test the hypothesis that the slope of

the relationship is one.

(e) Write a short report (200–250 words) summarizing your findings about the

relationship between income and the amount of life insurance held.

3.6* In Exercise 2.9 we considered a motel that had discovered that a defective product

was used during construction. It took seven months to correct the defects, during

which approximately 14 rooms in the 100-unit motel were taken out of service for

one month at a time. The data are in motel.dat.

(a) In the linear regression model MOTEL PCT ¼ b1 þ b2COMP PCT þ e, test

the null hypothesis H0 : b2 � 0 against the alternative hypothesis H0 : b2 > 0 at

the a ¼ 0.01 level of significance. Discuss your conclusion. Include in your

answer a sketch of the rejection region and a calculation of the p-value.

(b) Consider a linear regressionwith y¼MOTEL_PCT and x¼RELPRICE, which is

the ratio of the price per room charged by the motel in question relative to its

competitors. Test the null hypothesis that there is no relationship between these

variables against the alternative that there is an inverse relationship between them,

at the a ¼ 0.01 level of significance. Discuss your conclusion. Include in your

answer a sketch of the rejection region, and a calculation of the p-value. In this

exercise follow and show all the test procedure steps suggested in Chapter 3.4.
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(c) Consider the linear regression MOTEL PCT ¼ d1 þ d2REPAIR þ e, where

REPAIR is an indicator variable taking the value 1 during the repair period

and 0 otherwise. Test the null hypothesis H0 : d2 � 0 against the alternative

hypothesis H1 : d2 < 0 at the a ¼ 0.05 level of significance. Explain the logic

behind stating the null and alternative hypotheses in this way. Discuss your

conclusions.

(d) Using the model given in part (c), construct a 95% interval estimate for the

parameter d2 and give its interpretation. Have we estimated the effect of the

repairs on motel occupancy relatively precisely, or not? Explain.

(e) Consider the linear regressionmodel with y¼MOTEL_PCT�COMP_PCT and

x ¼ REPAIR, that is MOTEL PCT � COMP PCTð Þ ¼ g1 þ g2REPAIRþ e.

Test the null hypothesis that g2 ¼ 0 against the alternative that g2 < 0 at the a¼
0.01 level of significance. Discuss the meaning of the test outcome.

(f) Using themodel in part (e), construct and discuss the 95% interval estimate of g2.

3.7 Consider the capital asset pricing model (CAPM) in Exercise 2.10. Use the data in

capm4.dat to answer each of the following:

(a) Test at the 5% level of significance the hypothesis that each stock’s ‘‘beta’’ value

is 1 against the alternative that it is not equal to 1. What is the economic

interpretation of a beta equal to 1?

(b) Test at the 5% level of significance the null hypothesis that Mobil-Exxon’s

‘‘beta’’ value is greater than or equal to 1 against the alternative that it is less than

1. What is the economic interpretation of a beta less than 1?

(c) Test at the 5% level of significance the null hypothesis that Microsoft’s ‘‘beta’’

value is less than or equal to 1 against the alternative that it is greater than 1.What

is the economic interpretation of a beta more than 1?

(d) Construct a 95% interval estimate ofMicrosoft’s ‘‘beta.’’ Assume that you are a

stockbroker. Explain this result to an investor who has come to you for advice.

(e) Test (at a 5% significance level) the hypothesis that the intercept term in the

CAPMmodel for each stock is zero, against the alternative that it is not.What do

you conclude?

3.8 The file br2.dat contains data on 1080 houses sold in Baton Rouge, Louisiana during

mid-2005. The data include sale price and the house size in square feet. Also included

is an indicator variable TRADITIONAL indicating whether the house style is

traditional or not.

(a) For the traditional-style houses estimate the linear regression model

PRICE ¼ b1 þ b2SQFT þ e. Test the null hypothesis that the slope is zero

against the alternative that it is positive, using the a¼ 0.01 level of significance.

Follow and show all the test steps described in Chapter 3.4.

(b) Using the linearmodel in (a), test the null hypothesis (H0) that the expected price

of a house of 2000 square feet is equal to, or less than, $120,000. What is the

appropriate alternative hypothesis?Use thea¼0.01 level of significance.Obtain

the p-value of the test and show its value on a sketch. What is your conclusion?

(c) Based on the estimated results from part (a), construct a 95% interval estimate of

the expected price of a house of 2000 square feet.

(d) For the traditional-style houses, estimate the quadratic regression model

PRICE ¼ a1 þ a2SQFT
2 þ e. Test the null hypothesis that the marginal effect

of an additional square foot of living area in a home with 2000 square feet of

living space is $75 against the alternative that the effect is less than $75. Use the
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a ¼ 0.01 level of significance. Repeat the same test for a home of 4000 square

feet of living space. Discuss your conclusions.

(e) For the traditional-style houses, estimate the log-linear regression model

ln PRICEð Þ ¼ g1 þ g2SQFT þ e. Test the null hypothesis that the marginal

effect of an additional square foot of living area in a home with 2000 square

feet of living space is $75 against the alternative that the effect is less than $75.

Use the a ¼ 0.01 level of significance. Repeat the same test for a home of 4000

square feet of living space. Discuss your conclusions.

3.9* Reconsider the presidential voting data (fair4.dat) introduced in Exercise 2.14. Use

the data from 1916 to 2008 for this exercise.

(a) Using the regression model VOTE ¼ b1 þ b2GROWTH þ e, test (at a 5%

significance level) the null hypothesis that economic growth has no effect on

the percentage vote earned by the incumbent party. Select an alternative

hypothesis and a rejection region. Explain your choice.

(b) Using the regression model in part (a), construct a 95% interval estimate for b2,

and interpret.

(c) Using the regression model VOTE ¼ b1 þ b2INFLATION þ e, test the null

hypothesis that inflation has no effect on the percentage vote earned by the

incumbent party. Select an alternative hypothesis, a rejection region, and a

significance level. Explain your choice.

(d) Using the regression model in part (c), construct a 95% interval estimate for b2,

and interpret.

(e) Test the null hypothesis that if INFLATION ¼ 0 the expected vote in favor of the

incumbent party is 50%, or more. Select the appropriate alternative. Carry out

the test at the 5% level of significance. Discuss your conclusion.

(f) Construct a 95% interval estimate of the expected vote in favor of the incumbent

party if INFLATION ¼ 2%. Discuss the interpretation of this interval estimate.

3.10 Reconsider Exercise 2.13, which was based on the experiment with small classes for

primary school students conducted in Tennessee beginning in 1985. Data for the

kindergarten classes is contained in the data file star.dat.

(a) Using children who are in either a regular-sized class or a small class, estimate

the regressionmodel explaining students’ combined aptitude scores as a function

of class size, TOTALSCORE ¼ b1 þ b2SMALL þ e. Test the null hypothesis

that b2 is zero, or negative, against the alternative that this coefficient is positive.

Use the 5% level of significance. Compute the p-value of this test, and show its

value in a sketch. Discuss the social importance of this finding.

(b) For the model in part (a), construct a 95% interval estimate of b2 and discuss.

(c) Repeat part (a) using dependent variablesREADSCORE andMATHSCORE. Do

you observe any differences?

(d) Using childrenwho are in either a regular-sized class or a regular-sized classwith

a teacher aide, estimate the regression model explaining students’ combined

aptitude scores as a function of the presence or absence of a teacher aide,

TOTALSCORE ¼ g1 þ g2AIDE þ e. Test the null hypothesis that g2 is zero or

negative against the alternative that this coefficient is positive. Use the 5% level

of significance. Discuss the importance of this finding.

(e) For the model in part (d), construct a 95% interval estimate of g2 and discuss.

(f) Repeat part (d) using dependent variables READSCORE and MATHSCORE.

Do you observe any differences?

122 INTERVAL EST IMAT ION AND HYPOTHES I S TEST ING



3.11 Howmuch does experience affect wage rates? The data file cps4_small.dat contains

1000 observations on hourly wage rates, experience and other variables from the

2008 Current Population Survey (CPS).

(a) Estimate the linear regression WAGE ¼ b1 þ b2EXPERþ e and discuss the

results. Using your software plot a scatter diagram with WAGE on the vertical

axis and EXPER on the horizontal axis. Sketch in by hand, or using your

software, the fitted regression line.

(b) Test the statistical significance of the estimated slope of the relationship at the

5% level. Use a one-tail test.

(c) Repeat part (a) for the sub-samples consisting of (i) females, (ii) males, (iii)

blacks, and (iv) white males. What differences, if any, do you notice?

(d) For each of the estimated regression models in (a) and (c), calculate the least

squares residuals and plot them against EXPER. Are any patterns evident?

3.12 Is the relationship between experience and wages constant over one’s lifetime? To

investigate we will fit a quadratic model using the data file cps4_small.dat, which

contains 1,000 observations on hourly wage rates, experience and other variables

from the 2008 Current Population Survey (CPS).

(a) Create a new variable called EXPER30 ¼ EXPER � 30. Construct a scatter

diagram with WAGE on the vertical axis and EXPER30 on the horizontal axis.

Are any patterns evident?

(b) Estimate by least squares the quadraticmodelWAGE ¼ g1 þ g2 EXPER30ð Þ2 þ e.

Are the coefficient estimates statistically significant? Test the null hypothesis that

g2� 0 against the alternative that g2< 0 at thea¼ 0.05 level of significance.What

conclusion do you draw?

(c) Using the estimation in part (b), compute the estimated marginal effect of

experience upon wage for a person with 10 years’ experience, 30 years’

experience, and 50 years’ experience. Are these slopes significantly different

from zero at the a ¼ 0.05 level of significance?

(d) Construct 95% interval estimates of each of the slopes in part (c). How precisely

are we estimating these values?

(e) Using the estimation result from part (b) create the fitted valuesbWAGE ¼ ĝ1 þ ĝ2 EXPER30ð Þ2, where the ^ denotes least squares estimates.

Plot these fitted values andWAGE on the vertical axis of the same graph against

EXPER30 on the horizontal axis. Are the estimates in part (c) consistent with the

graph?

(f) Estimate the linear regression WAGE ¼ b1 þ b2EXPER30þ e and the linear

regression WAGE ¼ a1 þ a2EXPERþ e. What differences do you observe

between these regressions and why do they occur? What is the estimated

marginal effect of experience on wage from these regressions? Based on your

work in parts (b)–(d), is the assumption of constant slope in this model a good

one? Explain.

(g) Use the larger data cps4.dat (4838 observations) to repeat parts (b), (c), and (d).

Howmuch has the larger sample improved the precision of the interval estimates

in part (d)?

3.13* Is the relationship between experience and ln(wages) constant over one’s lifetime?

To investigate wewill fit a log-linear model using the data file cps4_small.dat, which

contains 1000 observations on hourly wage rates, experience and other variables

from the 2008 Current Population Survey (CPS).
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(a) Create a new variable called EXPER30 ¼ EXPER � 30. Construct a scatter

diagramwith ln(WAGE) on thevertical axis andEXPER30 on the horizontal axis.

Are any patterns evident?

(b) Estimate by least squares the quadratic model ln WAGEð Þ ¼ g1þ
g2 EXPER30ð Þ2 þ e. Are the coefficient estimates statistically significant?

Test the null hypothesis that g2 � 0 against the alternative that g2 < 0 at the

a ¼ 0.05 level of significance. What conclusion do you draw?

(c) Using the estimation in part (b), compute the estimated marginal effect

of experience upon wage for a person with 10 years of experience, 30 years of

experience, and 50 years of experience. [Hint: If ln yð Þ ¼ aþ bx2 then

y ¼ exp aþ bx2ð Þ, and dy=dx ¼ exp aþ bx2ð Þ 
 2bx ¼ 2bxy]

(d) Using the estimation result from part (b) create the fitted valuesbWAGE ¼ exp ĝ1 þ ĝ2 EXPER30ð Þ2
� �

, where the ^ denotes least squares esti-

mates. Plot these fitted values and WAGE on the vertical axis of the same graph

against EXPER30 on the horizontal axis. Are the estimates in part (c) consistent

with the graph?

3.14 Data on theweekly sales of a major brand of canned tuna by a supermarket chain in a

largemidwestern U.S. city during amid-1990s calendar year are contained in the file

tuna.dat. There are 52 observations on the variables. The variable SAL1¼ unit sales

of brand no. 1 canned tuna, APR1¼ price per can of brand no. 1 canned tuna, APR2,

APR3 ¼ price per can of brands nos. 2 and 3 of canned tuna.

(a) Create the relative price variables RPRICE2 ¼ APR1/APR2 and RPRICE3 ¼
APR1/APR3. What do you anticipate the relationship between sales (SAL1) and

the relative price variables to be? Explain your reasoning.

(b) Estimate the log-linear model ln SAL1ð Þ ¼ b1 þ b2RPRICE2þ e. Interpret the

estimate of b2. Construct and interpret a 95% interval estimate of the parameter.

(c) Test the null hypothesis that the slope of the relationship in (b) is zero. Create the

alternative hypothesis based on your answer to part (a). Use the 1% level of

significance and draw a sketch of the rejection region. Is your result consistent

with economic theory?

(d) Estimate the log-linear model ln SAL1ð Þ ¼ g1 þ g2RPRICE3þ e. Interpret the

estimate of g2. Construct and interpret a 95% interval estimate of the parameter.

(e) Test the null hypothesis that the slope of this relationship is zero. Create the

alternative hypothesis based on your answer to part (a). Use the 1% level of

significance and draw a sketch of the rejection region. Is your result consistent

with economic theory?

3.15 What is the relationship between crime and punishment? This important question has

been examined by Cornwell and Trumbull2 using a panel of data from North

Carolina. The cross sections are 90 counties, and the data are annual for the years

1981–1987. The data are in the file crime.dat.

(a) Using the data from 1987, estimate the log-linear regression relating the log of the

crime rate to the probability of an arrest, LCRMRTE ¼ b1 þ b2PRBARRþ e.

The probability of arrest is measured as the ratio of arrests to offenses. If

we increase the probability of arrest by 10%, what will be the effect on the crime

rate? What is a 95% interval estimate of this quantity?

2 ‘‘Estimating the Economic Model of Crimewith Panel Data,’’ Review of Economics and Statistics, 76, 1994,

360–366. The data were kindly provided by the authors.
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(b) Test the null hypothesis that there is no relationship between the crime rate and

the probability of arrest against the alternative that there is an inverse relation-

ship. Use the 1% level of significance.

(c) Repeat parts (a) and (b) using the probability of conviction (PRBCONV) as the

explanatory variable. The probability of conviction is measured as the ratio of

convictions to arrests.

Appendix 3A Derivation of the t-Distribution

Interval estimation and hypothesis testing procedures in this chapter involve the t-distribution.

Here we develop the key result.

The first result that is needed is the normal distribution of the least squares estimator.

Consider, for example, the normal distribution of b2 the least squares estimator ofb2, which

we denote as

b2 �N b2;
s2

�ðxi � xÞ2
 !

A standardized normal random variable is obtained from b2 by subtracting its mean and

dividing by its standard deviation:

Z ¼ b2 � b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðb2Þ

p �Nð0; 1Þ (3A.1)

That is, the standardized random variable Z is normally distributed with mean 0 and

variance 1.

The second piece of the puzzle involves a chi-square randomvariable. If assumption SR6

holds, then the random error term ei has a normal distribution, ei �Nð0;s2Þ. Again, we can
standardize the randomvariable by dividing by its standard deviation so that ei=s�Nð0; 1Þ.
The square of a standard normal random variable is a chi-square random variable (see

Appendix B.5.2) with one degree of freedom, so ðei=sÞ2 � x2ð1Þ. If all the random errors are

independent, then

�
ei

s

� �2
¼ e1

s

� �2
þ e2

s

� �2
þ � � � þ eN

s

� �2
� x2ðNÞ (3A.2)

Since the true random errors are unobservable, we replace them by their sample counter-

parts, the least squares residuals êi ¼ yi � b1 � b2xi, to obtain

V ¼ �ê2i
s2

¼ ðN � 2Þŝ2

s2
(3A.3)

The random variable V in (3A.3) does not have a x2ðNÞ distribution, because the least squares
residuals are not independent random variables. All N residuals êi ¼ yi � b1 � b2xi depend

on the least squares estimators b1 and b2. It can be shown that onlyN � 2 of the least squares

residuals are independent in the simple linear regression model. Consequently, the random

variable in (3A.3) has a chi-square distribution with N � 2 degrees of freedom. That is,

when multiplied by the constant ðN � 2Þ=s2, the random variable ŝ2 has a chi-square

distribution with N � 2 degrees of freedom,
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V ¼ ðN � 2Þŝ2

s2
� x2ðN�2Þ (3A.4)

We have not established the fact that the chi-square random variable V is statistically

independent of the least squares estimators b1 and b2, but it is. The proof is beyond the scope

of this book. Consequently, V and the standard normal random variable Z in (3A.1) are

independent.

From the two random variables V and Z we can form a t-random variable. A t-random

variable is formed by dividing a standard normal random variable, Z �Nð0; 1Þ; by the

square root of an independent chi-square random variable, V � x2ðmÞ; that has been divided
by its degrees of freedom, m. That is,

t ¼ Zffiffiffiffiffiffiffiffiffiffi
V=m

p � tðmÞ

The t-distribution’s shape is completely determined by the degrees of freedom parameter,

m, and the distribution is symbolized by tðmÞ: See Appendix B.5.3. Using Z and V from

(3A.1) and (3A.4), respectively, we have

t ¼ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=ðN � 2Þp

¼
ðb2 � b2Þ

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=�ðxi � xÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 2Þŝ2=s2

N � 2

r

¼ b2 � b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

�ðxi � xÞ2
s ¼ b2 � b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þq ¼ b2 � b2

seðb2Þ � tðN�2Þ

(3A.5)

The last line is the key result that we state in (3.2), with its generalization in (3.3).

Appendix 3B Distribution of the t-Statistic under H1

To examine the distribution of the t-statistic in (3.7) when the null hypothesis is not true,

suppose that the trueb2 ¼ 1: Following the steps in (3A.5) in Appendix 3Awewould find that

t ¼ b2 � 1

seðb2Þ � tðN�2Þ

If b2 ¼ 1 and c 6¼ 1 then the test statistic in (3.7) does not have a t-distribution since, in its

formation, the numerator of (3A.5) is not standard normal. It is not standard normal because

the incorrect value b2 ¼ c is subtracted from b2.

Ifb2 ¼ 1 andwe incorrectly hypothesize thatb2 ¼ c; then the numerator in (3A.5) that is

used in forming (3.7) has the distribution

b2 � cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðb2Þ

p �N
1� cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðb2Þ

p ; 1

 !
(3B.1)
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where

varðb2Þ ¼ s2

�ðxi � xÞ2

Since its mean is not zero, the distribution of the variable in (3B.1) is not standard normal, as

required in the formation of a t-random variable.

Appendix 3C Monte Carlo Simulation

In Appendix 2Gwe introduced aMonte Carlo simulation to illustrate the repeated sampling

properties of the least squares estimators. In this appendix we use the same framework to

illustrate the repeated sampling performances of interval estimators and hypothesis tests.

Recall that the data generation process for the simple linear regressionmodel is given by

yi ¼ E yijxið Þ þ ei ¼ b1 þ b2xi þ ei; i ¼ 1; . . . ;N

TheMonte Carlo parameter values areb1¼ 100 andb2¼ 10. The value of xi is 10 for the first

20 observations and 20 for the remaining 20 observations, so that the regression functions are

E yijxi ¼ 10ð Þ ¼ 100þ 10xi ¼ 100þ 10
 10 ¼ 200; i ¼ 1; . . . ; 20

E yijxi ¼ 20ð Þ ¼ 100þ 10xi ¼ 100þ 10
 20 ¼ 300; i ¼ 21; . . . ; 40

The random errors are independently and normally distributed with mean 0 and variance

var eijxið Þ ¼ s2 ¼ 2; 500; or ei � N 0; 2500ð Þ.
When studying the performance of hypothesis tests and interval estimators it is necessary

to use enoughMonte Carlo samples so that the percentages involved are estimated precisely

enough to be useful. For tests with probability of Type I error a ¼ 0.05 we should observe

true null hypotheses being rejected 5% of the time. For 95% interval estimators we should

observe that 95% of the interval estimates contain the true parameter values. We use M ¼
10,000MonteCarlo samples so that the experimental error is very small. SeeAppendix 3C.3

for an explanation.

3C.1 REPEATED SAMPLING PROPERTIES OF INTERVAL ESTIMATORS

In Appendix 2G.4 we created one sample of data that is in the filemc1.dat. The least squares

estimates using these data values are

ŷ ¼ 75:7679þ 11:9683x

ðseÞ ð25:7928Þ ð1:6313Þ

A 95% interval estimate of the slope is b2 � t 0:975;38ð Þse b2ð Þ ¼ 8:6660; 15:2707½ �. We see

that for this sample, the 95% interval estimate contains the true slope parameter value

b2 ¼ 10.

We repeat the process of estimation and interval estimation 10,000 times. In these repeated

samples 95.18% of the interval estimates contain the true parameter. Table 3C.1 contains

results for the Monte Carlo samples 101–120 for illustration purposes. The estimates are B2,

the standard error is SE, the lower bound of the 95% interval estimate is LB and the upper
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bound is UB. The variable COVER ¼ 1 if the interval estimate contains the true parameter

value. All of these intervals contain the true parameter value b2 ¼ 10.

The lesson is, that in many repeated samples from the data generation process, and if

assumptions SR1–SR6 hold, the procedure for constructing 95% interval estimates

‘‘works’’ 95% of the time.

3C.2 REPEATED SAMPLING PROPERTIES OF HYPOTHESIS TESTS

The null hypothesis H0 : b2 ¼ 10 is true. If we use the one-tail alternativeH0 : b2 > 0, the

null hypothesis is rejected if the test statistic t ¼ b2 � 10ð Þ=se b2ð Þ > 1:685954, which
is the 95th percentile of the t-distribution with 38 degrees of freedom.3 For the sample

mc1.dat the calculated value of the t-statistic is 1.21, so we fail to reject the null hypothesis,

which in this case is the correct decision.

We repeat the process of estimation and hypothesis testing 10,000 times. In these

repeated samples, 4.73%of the tests reject the null hypothesis that the parameter value is 10.

In Table 3C.1, the t-statistic value is TSTAT and REJECT ¼ 1 if the null hypothesis is

rejected. We see that samples 103, 112 and 114 incorrectly reject the null hypothesis.

The lesson is that in many repeated samples from the data generation process, and if

assumptions SR1–SR6 hold, the procedure for testing a true null hypothesis at significance

level a ¼ 0.05 rejects the true null hypothesis 5% of the time. Or, stated positively, the test

procedure does not reject the true null hypothesis 95% of the time.

Ta b l e 3C . 1 Results of 10000 Monte Carlo Simulations

SAMPLE B2 SE TSTAT REJECT LB UB COVER

101 8.3181 1.5024 �1.1195 0 5.2767 11.3595 1

102 10.9564 1.5488 0.6175 0 7.8210 14.0918 1

103 13.3644 1.7085 1.9692 1 9.9057 16.8230 1

104 9.7406 1.8761 �0.1383 0 5.9425 13.5386 1

105 12.3402 1.6275 1.4379 0 9.0454 15.6350 1

106 11.9019 1.6031 1.1864 0 8.6567 15.1472 1

107 8.7278 1.2252 �1.0383 0 6.2475 11.2081 1

108 9.0732 1.6978 �0.5459 0 5.6361 12.5102 1

109 9.5502 1.4211 �0.3165 0 6.6734 12.4270 1

110 9.2007 1.4895 �0.5366 0 6.1854 12.2161 1

111 11.0090 1.5221 0.6629 0 7.9277 14.0903 1

112 12.7234 1.4783 1.8423 1 9.7308 15.7160 1

113 11.8995 1.7587 1.0801 0 8.3393 15.4597 1

114 12.9712 1.4679 2.0242 1 9.9997 15.9427 1

115 10.6347 1.6320 0.3889 0 7.3309 13.9385 1

116 10.0045 1.4179 0.0031 0 7.1341 12.8748 1

117 11.2658 1.5584 0.8123 0 8.1110 14.4206 1

118 11.4842 1.4449 1.0272 0 8.5592 14.4093 1

119 9.6915 1.7422 �0.1771 0 6.1647 13.2183 1

120 11.6990 1.5132 1.1228 0 8.6358 14.7623 1

3 Weuse a t-critical valuewithmore decimals, instead of the tabled value 1.686, to ensure accuracy in theMonte

Carlo experiment.
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3C.3 CHOOSING THE NUMBER OF MONTE CARLO SAMPLES

A 95% confidence interval estimator should contain the true parameter value 95% of the

time in repeated samples. The M repeated samples in a Monte Carlo experiment are

independent experimental trials in which the probability of a ‘‘success,’’ an interval

containing the true parameter value, is P ¼ 0.95. The number of successes follows a

binomial distribution. The proportion of successes P̂ inM trials is a random variable with

expectation P and variance P(1 � P)=M. If the number of Monte Carlo samplesM is large,

a 95% interval estimate of the proportion of Monte Carlo successes is

P� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P 1� Pð Þ=Mp

. If M ¼ 10,000, this interval is [0.9457, 0.9543]. We chose

M ¼ 10,000 so that this interval would be narrow, giving us confidence that if the true

probability of success is 0.95 we will obtain a Monte Carlo average close to 0.95 with a

‘‘high’’ degree of confidence. Our result, that 95.18% of our interval estimates contain the

true parameter b2 is ‘‘within’’ the margin of error for such Monte Carlo experiments. On

the other hand, if we had usedM ¼ 1000 Monte Carlo samples, the interval estimate of the

proportion of Monte Carlo successes would be, [0.9365, 0.9635]. With this wider interval,

the proportion of Monte Carlo successes could be quite different from 0.95, casting a

shadow of doubt on whether our method was working as advertised or not.

Similarly, for a test with probability of rejection a ¼ 0.05, the 95% interval estimate of

the proportion of Monte Carlo samples leading to rejection is a� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� að Þ=Mp

. If

M ¼ 10,000 this interval is [0.0457, 0.0543]. That our Monte Carlo experiments rejected

the null hypothesis 4.73% of the time is within this margin of error. If we had chose

M ¼ 1000, then the proportion of Monte Carlo rejections is estimated to be in the interval

[0.0365, 0.0635], which again leaves just a little too much wiggle room for comfort.

The point is that if fewerMonte Carlo samples are chosen the ‘‘noise’’ in theMonteCarlo

experiment can lead to a percent of successes or rejections that has toowide amargin of error

for us to tell whether the statistical procedure, interval estimation, or hypothesis testing, is

‘‘working’’ properly or not.4

4 Other details concerning Monte Carlo simulations can be found in Microeconometrics: Methods and

Applications, by A. Colin Cameron and Pravin K. Trivedi, (Cambridge University Press, 2005). The material

is advanced.
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C h a p t e r 4
Prediction,Goodness-of-Fit,
andModeling Issues

Learning Objectives

Based on the material in this chapter, you should be able to

1. Explain how to use the simple linear regressionmodel to predict the value of y for a

given value of x.

2. Explain, intuitively and technically, why predictions for x values further from x are

less reliable.

3. Explain the meaning of SST, SSR, and SSE, and how they are related to R2.

4. Define and explain the meaning of the coefficient of determination.

5. Explain the relationship between correlation analysis and R2.

6. Report the results of a fitted regression equation in such a way that confidence

intervals and hypothesis tests for the unknown coefficients can be constructed

quickly and easily.

7. Describe howestimated coefficients and other quantities froma regression equation

will change when the variables are scaled. Why would you want to scale the

variables?

8. Appreciate the wide range of nonlinear functions that can be estimated using a

model that is linear in the parameters.

9. Write down the equations for the log-log, log-linear, and linear-log functional

forms.

10. Explain the difference between the slope of a functional form and the elasticity

from a functional form.

11. Explain how you would go about choosing a functional form and deciding that a

functional form is adequate.

12. Explain how to test whether the equation ‘‘errors’’ are normally distributed.

13. Explain how to compute a prediction, a prediction interval, and a goodness-of-fit

measure in a log-linear model.
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In Chapter 3 we focused on making statistical inferences, constructing confidence

intervals, and testing hypotheses about regression parameters. Another purpose of the

regression model, and the one we focus on first in this chapter, is prediction. A prediction

is a forecast of an unknown value of the dependent variable y given a particular value of x.

A prediction interval, much like a confidence interval, is a range of values in which

the unknown value of y is likely to be located. Examining the correlation between

sample values of y and their predicted values provides a goodness-of-fit measure

called R2 that describes howwell our model fits the data. For each observation in the sample

the difference between the predicted value of y and the actual value is a residual. Diagnostic

measures constructed from the residuals allow us to check the adequacy of the functional

form used in the regression analysis and give us some indication of the validity of the

regression assumptions. We will examine each of these ideas and concepts in turn.

4.1 Least Squares Prediction

In Section 2.3.3b we briefly introduced the idea that the least squares estimates of

the linear regression model provide a way to predict the value of y for any value of x.

The ability to predict is important to business economists and financial analysts who

attempt to forecast the sales and revenues of specific firms; it is important to govern-

ment policy makers who attempt to predict the rates of growth in national income,

inflation, investment, saving, social insurance program expenditures, and tax revenues;

and it is important to local businesses who need to have predictions of growth in

neighborhood populations and income so that they may expand or contract their

provision of services. Accurate predictions provide a basis for better decision making

in every type of planning context. In this section, we explore the use of linear regression

as a tool for prediction.

Given the simple linear regression model and assumptions SR1–SR6, let x0 be a value of

the explanatory variable. Wewant to predict the corresponding value of y, which we call y0.

In order to use regression analysis as a basis for prediction,wemust assume that y0 and x0 are

related to one another by the same regression model that describes our sample of data, so

that, in particular, SR1 holds for these observations

y0 ¼ b1 þ b2x0 þ e0 (4.1)

where e0 is a random error. We assume that E(y0) ¼ b1 þ b2x0 and E(e0) ¼ 0. We also

assume that e0 has the same variance as the regression errors, var(e0) ¼ s2, and e0 is
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uncorrelated with the random errors that are part of the sample data, so that cov(e0, ei) ¼ 0

i ¼ 1, 2, . . . ,N.
The task of predicting y0 is related to the problem of estimating E y0ð Þ ¼ b1 þ b2x0

which we discussed in Chapter 3.6. The outcome y0 ¼ E y0ð Þ þ e0 ¼ b1 þ b2x0 þ e0 is

composed of two parts, the systematic, nonrandom part E y0ð Þ ¼ b1 þ b2x0 and a random

component e0. We estimate the systematic portion using dE y0ð Þ ¼ b1 þ b2x0 and add an

‘‘estimate’’ of e0 equal to its expected value, which is zero. Therefore ŷ0 ¼ dE y0ð Þ þ 0 ¼
b1 þ b2x0. Despite the fact that we use the same statistic for both ŷ0 and dE y0ð Þ, we distinguish
between them because, although E y0ð Þ ¼ b1 þ b2x0 is not random, the outcome y0 is

random. Consequently, as we will see, there is a difference between the interval estimate

of E y0ð Þ ¼ b1 þ b2x0 and the prediction interval for y0.

Following from the discussion in the previous paragraph, the least squares predictor

of y0 comes from the fitted regression line

ŷ0 ¼ b1 þ b2x0 (4.2)

That is, the predicted value ŷ0 is given by the point on the least squares fitted line where

x ¼ x0, as shown in Figure 4.1. How good is this prediction procedure? The least squares

estimators b1 and b2 are random variables—their values vary from one sample to another. It

follows that the least squares predictor ŷ0 ¼ b1 þ b2x0 must also be random. To evaluate

how well this predictor performs, we define the forecast error, which is analogous to the

least squares residual,

f ¼ y0 � ŷ0 ¼ ðb1 þ b2x0 þ e0Þ � ðb1 þ b2x0Þ (4.3)

We would like the forecast error to be small, implying that our forecast is close to the value

we are predicting. Taking the expected value of f, we find

Eð f Þ ¼ b1 þ b2x0 þ Eðe0Þ � ½Eðb1Þ þ Eðb2Þx0�
¼ b1 þ b2x0 þ 0� ½b1 þ b2x0�
¼ 0

which means, on average, the forecast error is zero, and ŷ0 is an unbiased predictor of y0.

However, unbiasedness does not necessarily imply that a particular forecast will be close to

the actual value. The probability of a small forecast error also depends on the variance of the

forecast error. Although we will not prove it, ŷ0 is the best linear unbiased predictor

(BLUP) of y0 if assumptions SR1–SR5 hold. This result is reasonable given that the least

squares estimators b1 and b2 are best linear unbiased estimators.

y0

x0

yi � b1 � b2 xi
∧

∧

FIGURE 4.1 A point prediction.
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Using (4.3) and what we know about the variances and covariance of the least squares

estimators, we can show (see Appendix 4A at the end of this chapter) that the variance of

the forecast error is

varð f Þ ¼ s2 1þ 1

N
þ ðx0 � xÞ2
�ðxi � xÞ2

" #
(4.4)

Notice that some of the elements of this expression appear in the formulas for the variances

of the least squares estimators and affect the precision of prediction in the same way that

they affect the precision of estimation. We would prefer that the variance of the forecast

error be small, which would increase the probability that the prediction ŷ0 is close to the

value y0 we are trying to predict. Note that the variance of the forecast error is smaller when

i. the overall uncertainty in the model is smaller, as measured by the variance of

the random errors s2

ii. the sample size N is larger

iii. the variation in the explanatory variable is larger

iv. the value of ðx0 � xÞ2 is small

The new addition is the term ðx0 � xÞ2, which measures how far x0 is from the center of the

x-values. The more distant x0 is from the center of the sample data the larger the forecast

variance will become. Intuitively, this means that we are able to do a better job predicting

in the region where we have more sample information, and we will have less accurate

predictions when we try to predict outside the limits of our data.

In practice we replace s2 in (4.4) by its estimator ŝ2 to obtain

bvarð f Þ ¼ ŝ2 1þ 1

N
þ ðx0 � xÞ2
�ðxi � xÞ2

" #

The square root of this estimated variance is the standard error of the forecast

seð f Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarð f Þq

(4.5)

Defining the critical value tc to be the 100(1�a=2)-percentile from the t-distribution,we can

obtain a 100(1�a)% prediction interval as

ŷ0 � tcseð f Þ (4.6)

See Appendix 4A for some details related to the development of this result.

Following our discussion of varð f Þ in (4.4), the farther x0 is from the sample mean x, the

larger the variance of the prediction error will be, and the less reliable the prediction is likely

to be. In other words, our predictions for values of x0 close to the sample mean x are more

reliable than our predictions for values of x0 far from the sample mean x. This fact shows up

in the size of our prediction intervals. The relationship between point and interval

predictions for different values of x0 is illustrated in Figure 4.2. A point prediction is given

by the fitted least squares line ŷ0 ¼ b1 þ b2x0. The prediction interval takes the form of two

bands around the fitted least squares line. Because the forecast variance increases the farther

x0 is from the sample mean x, the confidence bands are their narrowest when x0 ¼ x, and

they increase in width as jx0 � xj increases.
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4.1.1 PREDICTION IN THE FOOD EXPENDITURE MODEL

In Section 2.3.3b we predicted that a household with x0 ¼ $2,000 weekly income would

spend $287.61 on food using the calculation

ŷ0 ¼ b1 þ b2x0 ¼ 83:4160þ 10:2096ð20Þ ¼ 287:6089

Nowwe are able to attach a ‘‘confidence interval’’ to this prediction. The estimated variance

of the forecast error is

bvarð f Þ ¼ ŝ2 1þ 1

N
þ ðx0 � xÞ2
�ðxi � xÞ2

" #

¼ ŝ2 þ ŝ2

N
þ ðx0 � xÞ2 ŝ2

�ðxi � xÞ2

¼ ŝ2 þ ŝ2

N
þ ðx0 � xÞ2bvarðb2Þ

In the last linewe have recognized the estimated variance of b2 from (2.21). In Section 2.7.2

we obtained the values ŝ2 ¼ 8013:2941 andbvarðb2Þ ¼ 4:3818. For the food expenditure

data, N ¼ 40 and the sample mean of the explanatory variable is x ¼ 19:6048. Using these

values we obtain the standard error of the forecast seð f Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarð f Þq

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8214:31

p ¼
90:6328. If we select 1�a ¼ 0.95, then tc ¼ t(0:975,38) ¼ 2:0244 and the 95% prediction

interval for y0 is

ŷ0 � tcseð f Þ ¼ 287:6069� 2:0244ð90:6328Þ ¼ ½104:1323; 471:0854�

Our prediction interval suggests that a household with $2,000 weekly income will spend

somewhere between $104.13 and $471.09 on food. Such awide intervalmeans that our point

prediction $287.61 is not very reliable. We have obtained this wide prediction interval for

the value of x0 ¼ 20 that is close to the samplemean x ¼ 19:60. For values of x that aremore

extreme, the prediction interval would be even wider. The unreliable predictions may

be slightly improved if we collect a larger sample of data, which will improve the precision

with which we estimate the model parameters. However, in this example the magnitude of

x0

y0  � tc se( f ) 

y0
∧

∧

∧
y0 � tc se( f )

y0  � b1 � b2 x0

x

y

FIGURE 4.2 Point and interval prediction.
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the estimated error variance ŝ2 is very close to the estimated variance of the forecast

errorbvarð f Þ, indicating that the primary uncertainty in the forecast comes from large

uncertainty in the model. This should not be a surprise, since we are predicting household

behavior, which is a complicated phenomenon, on the basis of a single household charac-

teristic, income. Although income is a key factor in explaining food expenditure, we can

imagine that many other household demographic characteristics may play a role. To more

accurately predict food expenditure we may need to include these additional factors into

the regression model. Extending the simple regression model to include other factors will

begin in Chapter 5.

4.2 Measuring Goodness-of-Fit

Two major reasons for analyzing the model

yi ¼ b1 þ b2xi þ ei (4.7)

are to explain how the dependent variable (yi) changes as the independent variable (xi)

changes, and to predict y0 given an x0. These two objectives come under the broad headings

of estimation and prediction. Closely allied with the prediction problem discussed in the

previous section is the desire to use xi to explain as much of the variation in the dependent

variable yi as possible. In the regression model (4.7) we call xi the ‘‘explanatory’’ variable

because we hope that its variation will ‘‘explain’’ the variation in yi.

To develop a measure of the variation in yi that is explained by the model, we begin by

separating yi into its explainable and unexplainable components. We have assumed that

yi ¼ EðyiÞ þ ei (4.8)

where EðyiÞ ¼ b1 þ b2xi is the explainable, ‘‘systematic’’ component of yi, and ei is the

random, unsystematic and unexplainable component of yi. While both of these parts are

unobservable to us, we can estimate the unknown parameters b1 and b2 and, analogous to

(4.8), decompose the value of yi into

yi ¼ ŷi þ êi (4.9)

where ŷi ¼ b1 þ b2xi and êi ¼ yi � ŷi.

In Figure 4.3 the ‘‘point of the means’’ ðx; yÞ is shown, with the least squares fitted line

passing through it. This is a characteristic of the least squares fitted line whenever the

regression model includes an intercept term. Subtract the sample mean y from both sides of

the equation to obtain

yi � y ¼ ðŷi � yÞ þ êi (4.10)

As shown in Figure 4.3 the difference between yi and itsmeanvalue y consists of a part that is

‘‘explained’’ by the regression model ŷi � y and a part that is unexplained êi.

The breakdown in (4.10) leads to a decomposition of the total sample variability in y into

explained and unexplained parts. Recall fromyour statistics courses (seeAppendixC.4) that

if we have a sample of observations y1, y2, . . . , yN , two descriptive measures are the sample

mean y and the sample variance

s2y ¼ �ðyi � yÞ2
N � 1

The numerator of this quantity, the sum of squared differences between the sample values yi
and the sample mean y, is a measure of the total variation in the sample values. If we square
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and sum both sides of (4.10), and use the fact that the cross-product term �ðŷi � yÞêi ¼ 0

(see Appendix 4B), we obtain

�ðyi � yÞ2 ¼ �ðŷi � yÞ2 þ �ê2i (4.11)

Equation (4.11) gives us a decomposition of the ‘‘total sample variation’’ in y into explained

and unexplained components. Specifically, these ‘‘sums of squares’’ are

1. �ðyi � yÞ2 ¼ total sum of squares¼ SST: a measure of total variation in y about the

sample mean.

2. �ðŷi � yÞ2 ¼ sum of squares due to the regression¼ SSR: that part of total variation

in y, about the sample mean, that is explained by, or due to, the regression. Also

known as the ‘‘explained sum of squares.’’

3. � ê2i ¼ sum of squares due to error ¼ SSE: that part of total variation in y about its

mean that is not explained by the regression. Also known as the unexplained sum of

squares, the residual sum of squares, or the sum of squared errors.

Using these abbreviations (4.11) becomes

SST ¼ SSRþ SSE

This decomposition of the total variation in y into a part that is explained by the regression

model and a part that is unexplained allows us to define a measure, called the coefficient of
determination, or R2, that is the proportion of variation in y explained by x within the

regression model.

R2 ¼ SSR

SST
¼ 1� SSE

SST
(4.12)

The closer R2 is to 1, the closer the sample values yi are to the fitted regression equation

ŷi ¼ b1 þ b2xi. If R
2 ¼ 1, then all the sample data fall exactly on the fitted least squares

line, so SSE ¼ 0, and the model fits the data ‘‘perfectly.’’ If the sample data for y and x are

uncorrelated and show no linear association, then the least squares fitted line is ‘‘hori-

zontal,’’ and identical to y, so that SSR ¼ 0 and R2 ¼ 0. When 0<R2 < 1, it is interpreted

x xi x

y

y y

(x, y)

y � b1 � b2x

yi � y � explained component

ei � yi � yi = unexplained component

(xi, yi)

(xi, yi)

yi � y

∧ ∧

∧

∧

∧

FIGURE 4.3 Explained and unexplained components of yi.
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as ‘‘the proportion of the variation in y about its mean that is explained by the regression

model.’’

4.2.1 CORRELATION ANALYSIS

In Appendix B.1.5 we discuss the covariance and correlation between two random

variables x and y. The correlation coefficient rxy between x and y is defined in (B.21) as

rxy ¼ covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi

varðyÞp ¼ sxy

sxsy

(4.13)

In Appendix B we did not discuss estimating the correlation coefficient. We will do so now

to develop a useful relationship between the sample correlation coefficient and R2.

Given a sample of data pairs (xi, yiÞ, i ¼ 1, . . . ,N, the sample correlation coefficient is

obtained by replacing the covariance and standard deviations in (4.13) by their sample

analogs:

rxy ¼ sxy

sxsy

where

sxy ¼ �ðxi � xÞðyi � yÞ=ðN � 1Þ

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðxi � xÞ2=ðN � 1Þ

q

sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðyi � yÞ2=ðN � 1Þ

q

The sample correlation coefficient rxy has a value between �1 and 1, and it measures the

strength of the linear association between observed values of x and y.

4.2.2 CORRELATION ANALYSIS AND R2

There are two interesting relationships between R2 and rxy in the simple linear regression

model.

1. The first is that r2xy ¼ R2. That is, the square of the sample correlation coefficient

between the sample data values xi and yi is algebraically equal to R2 in a simple

regression model. Intuitively this relationship makes sense: r2xy falls between zero

and one and measures the strength of the linear association between x and y. This

interpretation is not far from that ofR2: the proportion of variation in y about itsmean

explained by x in the linear regression model.

2. The second, and more important, relation is that R2 can also be computed as the

square of the sample correlation coefficient between yi and ŷi ¼ b1 þ b2xi. That is,

R2 ¼ r2yŷ. As such it measures the linear association, or goodness-of-fit, between the

sample data and their predicted values. Consequently R2 is sometimes called a

measure of ‘‘goodness-of-fit.’’ This result is valid not only in simple regression

models but also in multiple regression models that we introduce in Chapter 5.

Furthermore, as you will see in Section 4.4, the concept of obtaining a goodness-of-

fit measure by predicting y as well as possible and finding the squared correlation
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coefficient between this prediction and the sample values of y can be extended to

situations in which the usual R2 does not strictly apply.

4.2.3 THE FOOD EXPENDITURE EXAMPLE

Look at the food expenditure example in Section 2.3.2, and in particular the data scatter and

fitted regression line in Figure 2.8, and the computer output Figure 2.9. Go ahead. I will wait

until you get back. The questionwewould like to answer is ‘‘Howwell does ourmodel fit the

data?’’ To compute the R2 we can use the sums of squares

SST ¼ �ðyi � yÞ2 ¼ 495132:160

SSE ¼ �ðyi � ŷiÞ2 ¼ �ê2i ¼ 304505:176

Then

R2 ¼ 1� SSE

SST
¼ 1� 304505:176

495132:160
¼ 0:385

We conclude that 38.5% of the variation in food expenditure (about its sample mean) is

explainedbyour regressionmodel,whichusesonly incomeasanexplanatoryvariable. Is this

a goodR2?Wewould argue that such a question is not useful. Althoughfinding and reporting

R2 provides information about the relative magnitudes of the different sources of variation,

debates about whether a particular R2 is ‘‘large enough’’ are not particularly constructive.

Microeconomic household behavior is very difficult to explain fully. With cross-sectional

dataR2 values from 0.10 to 0.40 are very common evenwithmuch larger regressionmodels.

Macroeconomic analyses using time-series data, which often trend together smoothly over

time, routinely reportR2 values of 0.90 and higher. You should not evaluate the quality of the

model based only on howwell it predicts the sample data used to construct the estimates. To

evaluate themodel it is as important toconsider factors suchas thesignsandmagnitudesof the

estimates, their statistical and economic significance, the precision of their estimation, and

the ability of the fitted model to predict values of the dependent variable that were not in the

estimation sample. Other model diagnostic issues will be discussed in the next section.

Correlation analysis leads to the same conclusions and numbers, but it is worthwhile to

consider this approach in more detail. The sample correlation between the y and x sample

values is

rxy ¼ sxy

sxsy
¼ 478:75

ð6:848Þð112:675Þ ¼ 0:62

The correlation is positive, indicating a positive association between food expenditure and

income. The sample correlation measures the strength of the linear association, with a

maximum value of 1. The value rxy ¼ 0:62 indicates a non-negligible but less than perfect
fit. As expected r2xy ¼ 0:622 ¼ 0:385 ¼ R2.

4.2.4 REPORTING THE RESULTS

In any paper where you write the results of a simple regression, with only one explanatory

variable, these results can be presented quite simply. The key ingredients are the coefficient

estimates, the standard errors (or t-values), an indication of statistical significance, and R2.
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Also, when communicating regression results, avoid using symbols like x and y. Use

abbreviations for the variables that are readily interpreted, defining the variables precisely

in a separate section of the report. For the food expenditure example, we might have the

variable definitions:

FOOD_EXP ¼ weekly food expenditure by a household of size 3, in dollars

INCOME ¼ weekly household income, in $100 units

Then the estimated equation results are

FOOD EXP ¼ 83:42þ 10:21 INCOME R2 ¼ 0:385

ðseÞ ð43:41Þ� ð2:09Þ���

Report the standard errors below the estimated coefficients. The reason for showing the

standard errors is that an approximate 95% interval estimate (if the degrees of freedom

N � 2 are greater than 30) is bk � 2� se. The reader may then divide the estimate by the

standard error to obtain the value of the t-statistic if desired. Furthermore, testing other

hypotheses is facilitated by having the standard error present. To test the null hypothesis

H0 :b2 ¼ 8:0, we can quickly construct the t-statistic t ¼ ½(10:21� 8)=2:09)� and proceed

with the steps of the test procedure.

Asterisks are often used to show the reader the statistically significant (that is,

significantly different from zero using a two-tail test) coefficients, with explanations in

a table footnote:

* indicates significant at the 10% level

** indicates significant at the 5% level

*** indicates significant at the 1% level

The asterisks are assigned by checking the p-values from the computer output, as in

Figure 2.9.

4.3 Modeling Issues

4.3.1 THE EFFECTS OF SCALING THE DATA

Data we obtain are not always in a convenient form for presentation in a table or use in a

regression analysis. When the scale of the data is not convenient, it can be altered without

changing any of the real underlying relationships between variables. For example, the real

personal consumption in the United States, as of the 4th quarter of 2009, was $9291.7 billion

annually. That is, written out, $9,291,700,000,000. While we could use the long form of the

number in a table or in a regression analysis, there is noadvantage todoing so.Bychoosing the

units of measurement to be ‘‘billions of dollars,’’ we have taken a long number and made it

comprehensible. What are the effects of scaling the variables in a regression model?

Consider the food expenditure model. In Table 2.1 we report weekly expenditures

in dollars but we report income in $100 units, so a weekly income of $2,000 is reported as

x ¼ 20. Why did we scale the data in this way? If we had estimated the regression using

income in dollars, the results would have been

FOOD EXP ¼ 83:42þ 0:1021 INCOMEð$Þ R2 ¼ 0:385
ðseÞ ð43:41Þ�ð0:0209Þ���
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There are two changes. First, the estimated coefficient of income is now 0.1021. The

interpretation is ‘‘If weekly household income increases by $1 then we estimate that weekly

food expenditure will increase by about 10 cents.’’ There is nothing mathematically wrong

with this, but it leads to a discussion of changes that are so small as to seem irrelevant. An

increase in income of $100 leads to an estimated increase in food expenditure of $10.21, as

before, but these magnitudes are more easily discussed.

The other change that occurs in the regression results when income is in dollars is that the

standard error becomes smaller, by a factor of 100. Since the estimated coefficient is smaller

by a factor of 100 also, this leaves the t-statistic and all other results unchanged.

Such a change in the units of measurement is called scaling the data. The choice of the

scale is made by the researcher to make interpretation meaningful and convenient.

The choice of the scale does not affect the measurement of the underlying relationship,

but it does affect the interpretation of the coefficient estimates and some summarymeasures.

Let us list the possibilities:

1. Changing the scale of x: In the linear regressionmodel y ¼ b1 þ b2xþ e, suppose

we change the units of measurement of the explanatory variable x by dividing it by

a constant c. In order to keep intact the equality of the left- and right-hand sides,

the coefficient of x must be multiplied by c. That is, y ¼ b1 þ b2xþ e ¼ b1þ
ðcb2Þðx=cÞ þ e ¼ b1 þ b�

2x
� þ e, where b�

2 ¼ cb2 and x� ¼ x=c. For example, if x

is measured in dollars, and c¼ 100, then x� is measured in hundreds of dollars. Then

b�
2 measures the expected change in y given a $100 increase in x, and b�

2 is 100 times

larger than b2. When the scale of x is altered, the only other change occurs in the

standard error of the regression coefficient, but it changes by the samemultiplicative

factor as the coefficient, so that their ratio, the t-statistic, is unaffected. All other

regression statistics are unchanged.

2. Changing the scale of y: If we change the units of measurement of y, but not x, then

all the coefficients must change in order for the equation to remain valid. That is,

y=c ¼ ðb1=cÞ þ ðb2=cÞxþ ðe=cÞ or y� ¼ b�
1 þ b�

2xþ e�. In this rescaled model b�
2

measures the change we expect in y� given a 1-unit change in x. Because the error

term is scaled in this process the least squares residuals will also be scaled. This

will affect the standard errors of the regression coefficients, but it will not affect

t-statistics or R2.

3. If the scale of y and the scale of x are changed by the same factor, then therewill be no

change in the reported regression results for b2, but the estimated intercept and

residuals will change; t-statistics and R2 are unaffected. The interpretation of the

parameters is made relative to the new units of measurement.

4.3.2 CHOOSING A FUNCTIONAL FORM

In our ongoing example, we have assumed that the mean household food expenditure is

a linear function of household income. That is, we assumed the underlying economic

relationship to be EðyÞ ¼ b1 þ b2x, which implies that there is a linear, straight-line

relationship between E(y) and x. Why did we do that? Although the world is not ‘‘linear,’’ a

straight line is a good approximation to many nonlinear or curved relationships over narrow

ranges. Also, in your principles of economics classes youmay have begunwith straight lines

for supply, demand, and consumption functions, and we wanted to ease you into the more

‘‘artistic’’ aspects of econometrics.
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The starting point in all econometric analyses is economic theory.What does economics

really say about the relation between food expenditure and income, holding all else

constant? We expect there to be a positive relationship between these variables because

food is a normal good. But nothing says the relationship must be a straight line. In fact,

we do not expect that as household income rises, food expenditures will continue to rise

indefinitely at the same constant rate. Instead, as income rises, we expect food expenditures

to rise, but we expect such expenditures to increase at a decreasing rate. This is a phrase that

is used many times in economics classes. What it means graphically is that there is not a

straight-line relationship between the two variables. For a curvilinear relationship like that

in Figure 4.4, themarginal effect of a change in the explanatory variable ismeasured by the

slope of the tangent to the curve at a particular point. The marginal effect of a change in x is

greater at the point (x1, y1) than it is at the point (x2, y2). As x increases, the value of y

increases, but the slope is becoming smaller. This is the meaning of ‘‘increasing at a

decreasing rate.’’ In the economic context of the food expenditure model, the marginal

propensity to spend on food is greater at lower incomes, and as income increases the

marginal propensity to spend on food declines.

The simple linear regression model is much more flexible than it appears at first glance.

By transforming the variables y and xwe can representmany curved, nonlinear relationships

and still use the linear regression model. In Chapter 2.8 we introduced the idea of using

quadratic and log-linear functional forms. In this and subsequent sections, we introduce

you to an array of other possibilities and give some examples.

Choosing an algebraic form for the relationship means choosing transformations of the

original variables. This is not an easy process, and it requires good analytic geometry skills

and some experience. It may not come to you easily. The variable transformations that we

begin with are

1. Power: If x is a variable, then xpmeans raising the variable to the power p; examples

are quadratic (x2) and cubic (x3) transformations.

2. The natural logarithm: If x is a variable, then its natural logarithm is ln(x).

Using just these three algebraic transformations there are amazing varieties of ‘‘shapes’’ that

we can represent, as shown in Figure 4.5.

A difficulty introduced when transforming variables is that regression result interpret-

ations change. For each different functional form, shown in Table 4.1, the expressions for

both the slope and elasticity change from the linear relationship case. This is so because

y

Slope at
point y1, x1

Slope at
point y2, x2

xx1 x2

FIGURE 4.4 A nonlinear relationship between food expenditure and income.
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the variables are related nonlinearly. What this means for the practicing economist is that

great attention must be given to result interpretation whenever variables are transformed.

Because you may be less familiar with logarithmic transformations, let us summarize the

interpretation in three possible configurations.

1. In the log-logmodel both the dependent and independent variables are transformed

by the ‘‘natural’’ logarithm. The model is lnðyÞ ¼ b1 þ b2 lnðxÞ. In order to use this
model both y and xmust be greater than zero, because the logarithm is defined only

for positive numbers. The parameter b2 is the elasticity of y with respect to x.

Referring to Figure 4.5, you can see why economists use the constant elasticity, log-

log model specification so frequently. In panel (c), if b2 > 1 the relation could depict

a supply curve, or if 0<b2 < 1 a production relation. In panel (d), if b2 < 0 it could

represent a demand curve. In each case interpretation is convenient because the

elasticity is constant. An example is given in Section 4.6.

2. In the log-linear model lnðyÞ ¼ b1 þ b2x only the dependent variable is trans-

formed by the logarithm. The dependent variable must be greater than zero to use

this form. In this model a one-unit increase in x leads to (approximately) a 100�
b2% change in y. The log-linear form is common; it was introduced in Chapter

Quadratic equations Cubic equations

(a) (b)

(c) (d)

(e) (f)

Log-log models Log-log models

Log-linear models Linear-log models

y � β1 � β2x2 y � β1 � β2x3

ln(y) � β1 � β2ln(x)

y � β1 � β2ln(x)ln(y) � β1 � β2x

ln(y) � β1 � β2ln(x)

y y

y y

y y

x x

x x

x x

β2 � 0

β2 � 1

0 � β2 � 1 �1 � β2 � 0

β2 � �1

β2 � �1

β2 � 0

β2 � 0

β2 � 0 β2 � 0

β2 � 0 β2 � 0

β2 � 0

FIGURE 4.5 Alternative functional forms.
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2.8.3–2.8.4 and will be further discussed in Section 4.5. Note its possible shapes in

Figure 4.5(e). Ifb2 > 0 the function increases at an increasing rate; its slope is larger

for larger values of y. If b2 < 0, the function decreases, but at a decreasing rate.

3. In the linear-log model y ¼ b1 þ b2 lnðxÞ the variable x is transformed by the

natural logarithm. See Figure 4.5(f). The slope of this function isDy=Dx ¼ b2=x, and
it changes at every point. We can interpret b2 by rewriting the slope expression as

Dy

100ðDx=xÞ ¼
b2

100

The term 100ðDx=xÞ is the percentage change in x. Thus, in the linear-logmodel we can say

that a 1% increase in x leads to ab2=100-unit change in y. An example of this functional form

is given in the next section.

4.3.3 A LINEAR-LOG FOOD EXPENDITURE MODEL

Suppose that in the food expenditure model, we wish to choose a functional form that is

consistent with Figure 4.4. One option is the linear-log functional form. A linear-log

equation has a linear, untransformed term on the left-hand side and a logarithmic term on the

right-hand side, or y ¼ b1 þ b2 ln xð Þ. Because of the logarithm, this function requires x> 0.

It is an increasing or decreasing function, depending upon the sign of b2. The slope of

the function is b2=x, so that as x increases, the slope decreases in absolute magnitude. If

b2> 0, then the function increases at a decreasing rate. Ifb2< 0, then the function decreases

at a decreasing rate. The function shapes are depicted in Figure 4.5(f). The elasticity of

y with respect to x in this model is e ¼ slope � x=y ¼ b2=y.
There is a convenient interpretation using approximations to changes in logarithms.

Consider a small increase in x from x0 to x1. Then y0 ¼ b1 þ b2 lnðx0Þ and

y1 ¼ b1 þ b2 lnðx1Þ. Subtracting the former from the latter, and using the approximation

developed in Appendix A, (A.3), gives

Dy¼ y1 � y0 ¼ b2 lnðx1Þ � lnðx0Þ½ �

¼ b2

100
� 100 lnðx1Þ � lnðx0Þ½ �

ffi b2

100
ð%DxÞ

Ta b l e 4 . 1 Some Useful Functions, their Derivatives, Elasticities and Other

Interpretation

Name Function Slope ¼ dy/dx Elasticity

Linear y ¼ b1 þ b2x b2 b2

x

y

Quadratic y ¼ b1 þ b2x
2 2b2x 2b2xð Þ x

y

Cubic y ¼ b1 þ b2x
3 3b2x

2 3b2x
2

� � x
y

Log-Log ln(y) ¼ b1 þ b2ln(x) b2

y

x
b2

Log-Linear ln(y) ¼ b1 þ b2x b2y b2x

or, a 1 unit change in x leads to (approximately) a 100 b2% change in y

Linear-Log y ¼ b1 þ b2ln(x) b2

1

x
b2

1

y
or, a 1% change in x leads to (approximately) a b2/100 unit change in y
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The change in y, represented in its units of measure, is approximately b2=100 times the

percentage change in x.

Using a linear-log equation for the food expenditure relation results in the regression

model

FOOD EXP ¼ b1 þ b2 lnðINCOMEÞ þ e

For b2 > 0 this function is increasing, but at a decreasing rate. As INCOME increases

the slope b2=INCOME decreases. In this context the slope is the marginal propensity to

spend on food from additional income. Similarly, the elasticity, b2=FOOD EXP, becomes

smaller for larger levels of food expenditure. These results are consistentwith the idea that at

high incomes, and large food expenditures, the effect of an increase in income on food

expenditure is small.

The estimated linear-log model using the food expenditure data is

bFOOD EXP ¼ �97:19 þ 132:17 ln INCOMEð Þ R2 ¼ 0:357

ðseÞ ð84:24Þ ð28:80Þ��� (4.14)

The fitted model is shown in Figure 4.6.

As anticipated, the fitted function is not a straight line. The fitted linear-log model is

consistent with our theoretical model that anticipates declining marginal propensity to

spend additional income on food. For a household with $1,000 weekly income, we estimate

that the household will spend an additional $13.22 on food from an additional $100 income,

whereaswe estimate that a householdwith $2,000 per week incomewill spend an additional

$6.61 froman additional $100 income. Themarginal effect of incomeon food expenditure is

smaller at higher levels of income. This is a change from the linear, straight-line relationship

we originally estimated, in which the marginal effect of a change in income of $100 was

$10.21 for all levels of income.

Alternatively, we can say that a 1% increase in incomewill increase food expenditure by

approximately $1.32 per week, or that a 10% increase in income will increase food

expenditure by approximately $13.22. Although this interpretation is conveniently simple

to state, the diminishing marginal effect of income on food expenditure is somewhat
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FIGURE 4.6 The fitted linear-log model.
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disguised, though still implied. At $1,000 per week income, a 10% increase is $100, while at

$2,000 income a 10% increase is $200. At higher levels of income a larger dollar increase in

income is required to elicit an additional $13.22 expenditure on food.

In terms of how well the model fits the data, we see that R2 ¼ 0.357 for the linear-log

model, as compared to R2 ¼ 0.385 for the linear, straight-line relationship. Since these two

models have the same dependent variable, FOOD_EXP, and each model has a single

explanatory variable, a comparison of R2 values is valid. However there is a very small

difference in the fit of the twomodels, and in any case a model should not be chosen only on

the basis of model fit with R2 as the criterion.

REMARK: Given alternative models, that involve different transformations of the

dependent and independent variables, and some of which have similar shapes, what are

some guidelines for choosing a functional form?

1. Choose a shape that is consistent with what economic theory tells us about the

relationship.

2. Choose a shape that is sufficiently flexible to ‘‘fit’’ the data.

3. Choose a shape so that assumptions SR1–SR6 are satisfied, ensuring that the

least squares estimators have the desirable properties described in Chapters 2

and 3.

Although these objectives are easily stated, the reality of model building is much more

difficult. You must recognize that we never know the ‘‘true’’ functional relationship

between economic variables; also, the functional form that we select, no matter how

elegant, is only an approximation. Our job is to choose a functional form that satisfactorily

meets the three objectives stated above.

4.3.4 USING DIAGNOSTIC RESIDUAL PLOTS

When specifying a regression model, we may inadvertently choose an inadequate or

incorrect functional form. Even if the functional form is adequate, one or more of the

regression model assumptions may not hold. There are two primary methods for detecting

such errors. First, examine the regression results. Finding an incorrect sign or a theoretically

important variable that is not statistically significant may indicate a problem. Second,

evidence of specification errors can reveal themselves in an analysis of the least squares

residuals. We should ask whether there is any evidence that assumptions SR3 (homo-

skedasticity), SR4 (no serial correlation), and SR6 (normality) are violated. Usually

heteroskedasticitymight be suspected in cross-sectional data analysis, and serial correlation

is a potential time series problem. In both cases diagnostic tools focus on the least squares

residuals. In Chapters 8 and 9 we will provide formal tests for homoskedasticity and serial

correlation. In addition to formal tests, residual plots of all types are useful as diagnostic

tools. In this section residual analysis reveals potential heteroskedasticity and serial

correlation problems, and also flawed choices of functional forms.

What should a scatter plot of least squares residuals look like if all model assumptions

hold? The idea of simulation, or Monte Carlo simulation, is introduced in Appendix 2G and

Appendix 3C.Herewe simulate 300 data pairs (x, y), using themodel y ¼ 1 þ x þ e, where

x is simulated, using a random number generator, to be evenly, or uniformly, distributed
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between zero and 10. The error term e is simulated to be uncorrelated, homoskedastic, and

from a standard normal distribution, or e � N(0, 1). These simulated observations can be

found in ch4sim1.dat. We apply the least squares estimator and compute the least squares

residuals. In a graphical residual analysis the least squares residuals are plotted against x, y,

or the predicted y. In a time series framework, the residuals can be plotted against ‘‘time.’’ If

all the model assumptions hold, as they do here for the simulated data, the residuals plot

should resemble Figure 4.7, where we have plotted the residuals against x values. The

residual pattern is random, with no obvious trends or shapes. This is what we hope to see

when residuals are plotted. The existence of patterns is an indication of an assumption

violation or another problem.

4.3.4a Heteroskedastic Residual Pattern

The least squares residuals from the linear-log food expenditure model in (4.14) are plotted

in Figure 4.8. These exhibit an expanding variation pattern with more variation in the

residuals as INCOME becomes larger, which may suggest heteroskedastic errors. A similar

residual plot is implied by Figure 2.8.

We must conclude that at this point we do not have a satisfactory model for the food

expenditure data. The linear and linear-log models have different shapes, and different

implied marginal effects. The two models fit the data equally well, but both models exhibit

least squares residual patterns consistent with heteroskedastic errors. This example will be

considered further in Chapter 8.
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FIGURE 4.7 Randomly scattered residuals.
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FIGURE 4.8 Residuals from linear-log food expenditure model.
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4.3.4b Detecting Model Specification Errors

To give one other example, suppose that the functional relationship between y and x is

quadratic, like the dashed curve shown in Figure 4.5(a), and yet we decide to fit a straight-

line regression model. Again we simulate data, this time using as the true model

y ¼ 15� 4x2 þ e, with e � N(0, 4). These data are in the file ch4sim2.dat. The plot of

the least squares residuals from a linear relationship is presented in Figure 4.9.

Thewell-defined quadratic pattern in the least squares residuals indicates that something

is wrong with the linear model specification. The linear model has ‘‘missed’’ a curvilinear

aspect of the relationship. An alternative interpretation could be that there is perhaps some

dependence in the regression. Recall Assumption SR4, that the regression errors are

assumed to be uncorrelated. The least squares residuals in Figure 4.9 show a long group

of negative residuals, then a group of positive ones, then negative again. If the regression

errors are uncorrelated, we do not expect such patterns if our model is well specified. This

reveals that analyzing residual patterns is often not a clear-cut process. Model misspecifica-

tions and error assumption violations commingle, leading to multiple potential interpret-

ations from analysis of least squares residuals. Nevertheless, residual diagnostics are a key

aspect of regression analysis.

4.3.5 ARE THE REGRESSION ERRORS NORMALLY DISTRIBUTED?

Recall that hypothesis tests and interval estimates for the coefficients rely on the assumption

that the errors, and hence the dependent variable y, are normally distributed. Though our

tests and confidence intervals are valid in large samples whether the data are normally

distributed or not, it is nevertheless desirable to have a model in which the regression errors

are normally distributed, so that we do not have to rely on large sample approximations. If

the errors are not normally distributed, we might be able to improve our model by

considering an alternative functional form or transforming the dependent variable. As

noted in the last ‘‘Remark,’’ when choosing a functional form, one of the criteria we might

examine is whether amodel specification satisfies regression assumptions, and in particular,

whether it leads to errors that are normally distributed (SR6). How do we check out the

assumption of normally distributed errors?

Wecannot observe the true randomerrors, sowemust base our analysis of their normality

on the least squares residuals, êi ¼ yi � ŷi. Most computer software will create a histogram

of the residuals for this purpose andmay also give statistics that can be used to formally test a

null hypothesis that the residuals (and thus the true errors) come from a normal distribution.
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FIGURE 4.9 Least squares residuals from a linear equation fit to quadratic data.
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The relevant EViews output for the food expenditure example, using the linear relationship

with no transformation of the variables, appears in Figure 4.10. What does this histogram

tell us? First, notice that it is centered at zero. This is not surprising, because the mean of the

least squares residuals is always zero if the model contains an intercept, as shown in

Appendix 4B. Second, it seems symmetrical, but there are some large gaps, and it does

not really appear bell-shaped. However, merely checking the shape of the histogram,

especially when the number of observations is relatively small, is not a statistical ‘‘test.’’

There are many tests for normality. The Jarque–Bera test for normality is based on two

measures, skewness and kurtosis. In the present context, skewness refers to how symmetric

the residuals are around zero. Perfectly symmetric residuals will have a skewness of zero.

The skewness value for the food expenditure residuals is �0.097. Kurtosis refers

to the ‘‘peakedness’’ of the distribution. For a normal distribution the kurtosis value is

3. Formore on skewness and kurtosis seeAppendices B.1.2 andC.4.2. FromFigure 4.10, we

see that the food expenditure residuals have a kurtosis of 2.99. The skewness and kurtosis

values are close to the values for the normal distribution. So, the question we have to ask is

whether 2.99 is sufficiently different from 3, and�0.097 sufficiently different from zero, to

conclude the residuals are not normally distributed. The Jarque–Bera statistic is given by

JB ¼ N

6
S2 þ ðK � 3Þ2

4

 !

where N is the sample size, S is skewness, and K is kurtosis. Thus, large values of the

skewness, and/or values of kurtosis quite different from 3, will lead to a large value of

the Jarque–Bera statistic. When the residuals are normally distributed, the Jarque–Bera

statistic has a chi-squared distributionwith twodegrees of freedom.We reject the hypothesis

of normally distributed errors if a calculated value of the statistic exceeds a critical value

selected from the chi-squared distribution with two degrees of freedom. The 5% critical

value from a x2-distribution with two degrees of freedom is 5.99, and the 1% critical value

is 9.21.

Applying these ideas to the food expenditure example, we have

JB ¼ 40

6
�0:0972 þ ð2:99� 3Þ2

4

 !
¼ 0:063

Because 0.063 < 5.99 there is insufficient evidence from the residuals to conclude that the

normal distribution assumption is unreasonable at the 5% level of significance. The same

Series: Residuals
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FIGURE 4.10 EViews output: residuals histogram and summary statistics for food expenditure

example.
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conclusion could have been reached by examining the p-value. The p-value appears in

Figure 4.10 described as ‘‘Probability.’’ Thus, we also fail to reject the null hypothesis on

the grounds that 0.9688 > 0.05.

For the linear-log model of food expenditure reported in Section 4.3.3, the Jarque-Bera

test statistic value is 0.1999 with a p-value of 0.9049. We cannot reject the null hypothesis

that the regression errors are normally distributed, and this criterion does not help us choose

between the linear and linear-log functional forms for the food expenditure model.

4.4 Polynomial Models

In Chapter 2.8.1–2.8.2 we introduced the use of quadratic polynomials to capture curvi-

linear relationships. Economics students will have seen many average and marginal cost

curves (U-shaped) and average and marginal product curves (inverted-U shaped) in their

studies. Higher order polynomials, such as cubic equations, are used for total cost and total

product curves. A familiar example to economics students is the total cost curve, shaped

much like the solid curve in Figure 4.5(b). In this section, we review quadratic and cubic

equations and give an empirical example.

4.4.1 QUADRATIC AND CUBIC EQUATIONS

The general form of a quadratic equation y ¼ a0 þ a1xþ a2x
2 includes a constant term a0, a

linear term a1x, and a squared term a2x
2. Similarly, the general form of a cubic equation is

y ¼ a0 þ a1xþ a2x
2 þ a3x

3. In Chapter 5.6 we consider multiple regression models using

the general forms of quadratic and cubic equations. For now, however, because we are

working with ‘‘simple’’ regression models that include only one explanatory variable, we

consider the quadratic and cubic forms, y ¼ b1 þ b2x
2 and y ¼ b1 þ b2x

3, respectively.

The properties of the simple quadratic function are discussed in Chapter 2.8.1.

The simple cubic equation y ¼ b1 þ b2x
3 has possible shapes shown in Figure 4.5(b).

Using Derivative Rules 4 and 5 from Appendix A, the derivative, or slope, of the cubic

equation is dy=dx ¼ 3b2x
2. The slope of the curve is always positive if b2> 0, except when

x ¼ 0, yielding a direct relationship between y and x like the solid curve shown in Figure 4.5

(b). If b2 < 0 then the relationship is an inverse one like the dashed curve in Figure 4.5(b).

The slope equation shows that the slope is zero only when x ¼ 0. The term a is the y-

intercept. The elasticity of y with respect to x is e ¼ slope� x=y ¼ 3b2x
2 � x=y. Both the

slope and elasticity change along the curve.

4.4.2 AN EMPIRICAL EXAMPLE

Figure 4.11 describes a plot of averagewheat yield (in tonnes per hectare—a hectare is about

2.5 acres, and a tonne is a metric ton that is 1000 kg or 2205 lb—we are speaking Australian

here!) for the Greenough Shire in Western Australia, against time. The observations are for

the period 1950–1997, and time ismeasured using thevalues 1, 2, . . . , 48. These data can be
found in the file wa_wheat.dat. Notice in Figure 4.11 that wheat yield fluctuates quite a bit,

but overall, it tends to increase over time, and the increase is at an increasing rate,

particularly toward the end of the time period. An increase in yield is expected because

of technological improvements, such as the development of varieties of wheat that are

higher yielding and more resistant to pests and diseases. Suppose that we are interested

in measuring the effect of technological improvement on yield. Direct data on changes in
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technology are not available, but we can examine howwheat yield has changed over time as

a consequence of changing technology. The equation of interest relates YIELD to TIME,

where TIME = 1, . . . , 48. One problem with the linear equation

YIELDt ¼ b1 þ b2TIMEt þ et

is that it implies that yield increases at the same constant rate b2, when, from Figure 4.11,

we expect this rate to be increasing. The least squares fitted line (standard errors in

parentheses) is

bYIELDt ¼ 0:638þ 0:0210 TIMEt R2 ¼ 0:649
ðseÞ ð0:064Þ ð0:0022Þ

The residuals from this regression are plotted against time in Figure 4.12.Notice that there is

a concentration of positive residuals at each end of the sample and a concentration of

negative residuals in the middle. These concentrations are caused by the inability of a

straight line to capture the fact that yield is increasing at an increasing rate.What alternative

can we try? Two possibilities are TIME2 and TIME3. It turns out that TIME3 provides the

better fit, and so we consider instead the functional form

YIELDt ¼ b1 þ b2TIME3
t þ et
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FIGURE 4.12 Residuals from a linear yield equation.
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FIGURE 4.11 Scatter plot of wheat yield over time.
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The slope of the expected yield function is 3b2TIME2. Thus, so long as the estimate of b2

turns out to be positive, the function will be increasing. Furthermore, the slope is increasing

as well. Thus the function itself is ‘‘increasing at an increasing rate.’’ Before estimating the

cubic equation, note that the values of TIME3 can get very large. This variable is a good

candidate for scaling. Ifwe defineTIMECUBEt ¼ TIME3
t =1000000 the estimated equation is

bYIELDt ¼ 0:874þ 9:68 TIMECUBEt R2 ¼ 0:751
ðseÞ ð0:036Þ ð0:822Þ

The residuals from this cubic equation are plotted in Figure 4.13. The predominance of

positive residuals at the ends and negative residuals in the middle no longer exists.

Furthermore, the R2 value has increased from 0.649 to 0.751, indicating that the equation

with TIMECUBE fits the data better than the onewith just TIME. Both these equations have

the same dependent variable and the same number of explanatory variables (only 1). In these

circumstances the R2 can be used legitimately to compare goodness of fit. What lessons

have we learned from this example? First, a plot of the original dependent variable series y

against theexplanatoryvariablex is auseful startingpoint fordecidingona functional formin

a simple regression model. Secondly, examining a plot of the residuals is a useful device for

uncovering inadequacies in any chosen functional form. Runs of positive and/or negative

residuals can suggest an alternative. In this example, with time-series data, plotting the

residuals against time was informative. With cross-sectional data, using plots of residuals

against both independent and dependent variables is recommended. Ideally we will see no

patterns, and the residual histogram and Jarque–Bera test will not rule out the assumption of

normality. As we travel through the book, youwill discover that patterns in the residuals can

also mean many other specification inadequacies, such as omitted variables, heteroskedas-

ticity, and autocorrelation. Thus, as you becomemore knowledgeable and experienced, you

should be careful to consider other options. For example, wheat yield inWesternAustralia is

heavily influenced by rainfall. Inclusion of a rainfall variable might be an option worth

considering. Also, it makes sense to include TIME and TIME2 in addition to TIME-cubed. A

further possibility is the constant growth rate model that we consider in the next section.

4.5 Log-Linear Models

Econometric models that employ natural logarithms are very common.We first introduced the

log-linear model in Chapter 2.8.3. Logarithmic transformations are often used for variables
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FIGURE 4.13 Residuals from a cubic yield equation.
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that are monetary values, such as wages, salaries, income, prices, sales, and expenditures,

and in general for variables that measure the ‘‘size’’ of something. These variables have the

characteristic that they are positive and often have distributions that are positively skewed,

with a long tail to the right. Figure P.2 in the Probability Primer is representative of the

income distribution in the United States. In fact, the probability density function f ðxÞ
shown is called the ‘‘log-normal,’’ because lnðxÞ has a normal distribution. Because the

transformation lnðxÞ has the effect of making larger values of x less extreme, lnðxÞ will

often be closer to a normal distribution for variables of this kind. The log-normal distribution

is discussed in Appendix 4C.

The log-linear model, ln(y) ¼ b1 þ b2x, has a logarithmic term on the left-hand side

of the equation and an untransformed (linear) variable on the right-hand side. Both its

slope and elasticity change at each point and are the same sign as b2. Using the

antilogarithm we obtain exp lnðyÞ½ � ¼ y ¼ expðb1 þ bxÞ, so that the log-linear function is
an exponential function. The function requires y> 0. The slope at any point is b2y, which

for b2 > 0 means that the marginal effect increases for larger values of y. An economist

might say that this function is increasing at an increasing rate. The shapes of the log-

linear model are shown in Figure 4.5(e), and its derivative and elasticity given in Table

4.1. To make discussion relevant in a specific context, the slope can be evaluated at the

sample mean y, or the elasticity b2x can be evaluated at the sample mean x, or other

interesting values can be chosen.

An easier interpretation can be obtained by using the properties of logarithms. In the log-

linear model, a one-unit increase in x leads, approximately, to a 100b2% change in y. This

interpretation was given in Chapter 2, (2.28), and used in the discussions and examples in

Chapters 2.8.3–2.8.4.

Using the properties of logarithms, we can see this another way. Consider an increase in x

from x0 to x1. The change in the log-linear model is from lnðy0Þ ¼ b1 þ b2x0 to

lnðy1Þ ¼ b1 þ b2x1. Subtracting the first equation from the second gives

lnðy1Þ � lnðy0Þ ¼ b2 x1 � x0ð Þ ¼ b2Dx. Multiply by 100, and use the approximation intro-

duced in Appendix A, (A.3) to obtain

100 lnðy1Þ � lnðy0Þ½ � ffi %Dy ¼ 100b2ðx1 � x0Þ ¼ ð100b2Þ � Dx

A 1-unit increase in x leads approximately, to, a 100 � b2% change in y.

4.5.1 A GROWTH MODEL

Earlier in this chapter, in Section 4.4.2, we considered an empirical example in which the

production of wheat was tracked over time, with improvements in technology leading to

wheat production increasing at an increasing rate. Another way to represent such a

relationship is using a log-linear model. To see how, suppose that due to advances in

technology the yield of wheat produced (tonnes per hectare) is growing at approximately

a constant rate per year. Specifically, suppose that the yield in year t is YIELDt ¼
ð1þ gÞYIELDt�1, with g being the fixed growth rate in 1 year. By substituting repeatedly

we obtain YIELDt ¼ YIELD0ð1þ gÞt. Here YIELD0 is the yield in year ‘‘0,’’ the year before

the sample begins, so it is probably unknown. Taking logarithms, we obtain

lnðYIELDtÞ ¼ lnðYIELD0Þ þ ½lnð1þ gÞ��t

¼ b1 þ b2t
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This is simply a log-linear model with dependent variable lnðYIELDtÞ and explanatory

variable t, or time. We expect growth to be positive, so that b2 > 0, in which case the plot of

YIELD against time looks like the upward-sloping curve in Figure 4.5(c), which closely

resembles the scatter diagram in Figure 4.11.

Estimating the log-linear model for yield, we obtain

blnðYIELDtÞ ¼ �0:3434 þ 0:0178t
ðseÞ ð0:0584Þ ð0:0021Þ

The estimated coefficient b2 ¼blnð1þ gÞ ¼ 0:0178. Using the property that ln(1þ x)ffi x if

x is small [see Appendix A, (A.4) and the discussion following it], we estimate that the

growth rate in wheat yield is approximately ĝ ¼ 0:0178, or about 1.78% per year, over

the period of the data.

4.5.2 AWAGE EQUATION

The relationship between wages and education is a key relationship in labor economics

(and, no doubt, in your mind). Suppose that the rate of return to an extra year of education

is a constant r. That is, in the first year after an additional year of education, your wage rate

rises from an initial valueWAGE0 toWAGE1 ¼ ð1þ rÞWAGE0. For an extra two years of

education, this becomes WAGE2 ¼ ð1þ rÞ2WAGE0, and so on. Taking logarithms, we

have a relationship between lnðWAGEÞ and years of education (EDUC)

lnðWAGEÞ ¼ lnðWAGE0Þ þ ½lnð1þ rÞ��EDUC

¼ b1 þ b2EDUC

An additional year of education leads to an approximate 100b2% increase in wages.

Data on hourly wages, years of education, and other variables are in the file cps4_small.

dat. These, data consist of 1000 observations from the 2008 Current Population Survey

(CPS). The CPS is a monthly survey of about 50000 households conducted in the United

States by the Bureau of the Census for the Bureau of Labor Statistics. The survey has been

conducted for more than 50 years. Using this data, the estimated log-linear model is

blnðWAGEÞ ¼ 1:6094þ 0:0904� EDUC

ðseÞ ð0:0864Þ ð0:0061Þ

We estimate that an additional year of education increases the wage rate by approximately

9%. A 95% interval estimate for the value of an additional year of education is 7.8% to

10.2%.

4.5.3 PREDICTION IN THE LOG-LINEAR MODEL

You may have noticed that when reporting regression results in this section, we did not

include an R2 value. In a log-linear regression the R2 value automatically reported by

statistical software is the percent of the variation in ln(y) explained by the model. However,

our objective is to explain the variations in y, not ln(y). Furthermore, the fitted regression

line predictsblnðyÞ ¼ b1 þ b2x, whereas we want to predict y. The problems of obtaining
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a useful measure of goodness-of-fit and prediction are connected, as we discussed in

Section 4.2.2.

How shall we obtain the predicted value of y? A first inclination might be to take the

antilog ofblnðyÞ¼ b1 þ b2x. For the natural logarithm the antilog is the exponential function,

so that a natural choice for prediction is

ŷn ¼ expðblnðyÞÞ¼ expðb1 þ b2xÞ

In the log-linearmodel this is not necessarily the best we can do. Using properties of the log-

normal distribution it can be shown (see Appendix 4C) that an alternative predictor is

ŷc ¼bEðyÞ ¼ expðb1 þ b2xþ ŝ2=2Þ ¼ ŷne
ŝ2=2

If the sample size is large, the ‘‘corrected’’ predictor ŷc is, on average, closer to the actual value

of y and should be used. In small samples (less than 30) the ‘‘natural’’ predictormay actually be

a better choice. The reason for this incongruous result is that the estimated value of the error

variance ŝ2 adds a certain amount of ‘‘noise’’ when using ŷc, leading it to have increased

variability relative to ŷn that can outweigh the benefit of the correction in small samples.

The effect of the correction can be illustrated using the wage equation. What would we

predict the wage to be for a worker with 12 years of education? The predicted value of

ln(WAGE) is

blnðWAGEÞ ¼ 1:6094þ 0:0904� EDUC ¼ 1:6094þ 0:0904 � 12 ¼ 2:6943

Then the value of the natural predictor is ŷn ¼ expðblnðyÞÞ¼ expð2:6943Þ ¼ 14:7958. The
value of the corrected predictor, using ŝ2 ¼ 0:2773 from the regression output, is

ŷc ¼bEðyÞ ¼ ŷne
ŝ2=2 ¼ 14:7958� 1:1487 ¼ 16:9964

We predict that the wage for a worker with 12 years of education will be $14.80 per hour if

we use the natural predictor, and $17.00 if we use the corrected predictor. In this case the

sample is large (N ¼ 1000), so we would use the corrected predictor. Among the 1000

workers there are 328 with 12 years of education. Their average wage is $15.99, so the

corrected predictor is consistent with the sample of data.

How does the correction affect our prediction? Recall that ŝ2 must be greater than zero

and e0 ¼ 1. Thus, the effect of the correction is always to increase the value of the

prediction, because eŝ
2=2 is always greater than one. The natural predictor tends to

systematically underpredict the value of y in a log-linear model, and the correction offsets

the downward bias in large samples. The ‘‘natural’’ and ‘‘corrected’’ predictions are shown

in Figure 4.14.

4.5.4 A GENERALIZED R2 MEASURE

It is a general rule that the squared simple correlation between y and its fitted value ŷ, where ŷ

is the ‘‘best’’ prediction one can obtain, is a valid measure of goodness-of-fit that we can use

as an R2 in many contexts. As we have seen, what wemay consider the ‘‘best’’ predictor can

change depending upon the model under consideration. That is, a general goodness-of-fit

measure, or general R2, is
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R2
g ¼ ½corrðy; ŷÞ�2 ¼ r2yŷ

In the wage equation R2
g ¼ ½corrðy; ŷcÞ�2 ¼ 0:43122 ¼ 0:1859, as compared to the reported

R2 ¼ 0.1782 from the regression of ln(WAGE) on EDUC. (In this case since the corrected

and natural predictors differ only by a constant factor, the correlation is the same for both.)

TheseR2 values are small, but we repeat our earlier message:R2 values tend to be small with

microeconomic, cross-sectional data, because the variations in individual behavior are

difficult to fully explain.

4.5.5 PREDICTION INTERVALS IN THE LOG-LINEAR MODEL

We have a corrected predictor ŷc for y in the log-linear model. It is the ‘‘point’’ predictor, or

point forecast, that is relevant if we seek the single number that is our best prediction of y.

If we prefer a prediction or forecast interval for y, then we must rely on the natural predictor

ŷn.
1 Specifically we follow the procedure outlined in Section 4.1, and then take antilogs.

That is, computeblnðyÞ¼ b1 þ b2x and thenblnðyÞ� tcseð f Þ, where the critical value tc is

the 100(1�a=2)-percentile from the t-distribution and seð f Þ is given in (4.5). Then a

100(1�a)% prediction interval for y is

exp blnðyÞ� tcseð f Þ
� �

; exp blnðyÞ þ tcseð f Þ
� �h i

For the wage data, a 95% prediction interval for the wage of a worker with 12 years of

education is

½expð2:6943� 1:96� 0:5270Þ; expð2:6943þ 1:96� 0:5270Þ� ¼ ½5:2604; 41:6158�

The interval prediction is $5.26–$41.62, which is so wide that it is basically useless. What

does this tell us? Nothingwe did not already know.Ourmodel is not an accurate predictor of

individual behavior in this case. In later chapterswewill see if we can improve thismodel by

adding additional explanatory variables, such as experience, that should be relevant. The

prediction interval is shown in Figure 4.15

1 See Appendix 4A. The corrected predictor includes the estimated error variance, making the t-distribution no

longer relevant in (4A.1).
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FIGURE 4.14 The natural and corrected predictors of wage.
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4.6 Log-Log Models

The log-log function, ln(y) ¼ b1 þ b2ln(x), is widely used to describe demand equations

and production functions. The name ‘‘log-log’’ comes from the fact that the logarithm

appears on both sides of the equation. In order to use this model, all values of y and xmust be

positive. The slopes of these curves change at every point, but the elasticity is constant and

equal tob2. A usefulway to think about the log-log function comes from closer inspection of

its slope dy=dx ¼ b2 y=xð Þ. Rearrange this so that b2 ¼ ðdy=yÞ=ðdx=xÞ. Thus, the slope of
the log-log function exhibits constant relative change, whereas the linear function displays

constant absolute change. The log-log function is a transformation of the equation y ¼ Axb2 ,

with b1 ¼ ln(A). The various shape possibilities for log-log models are depicted in Figure

4.5(c), for b2 > 0 and Figure 4.5(d), for b2 < 0.

If b2> 0, then y is an increasing function of x. If b2> 1, then the function increases at an

increasing rate. That is, as x increases the slope increases as well. If 0 < b2 < 1, then the

function is increasing, but at a decreasing rate; as x increases, the slope decreases.

Ifb2< 0, then there is an inverse relationship between y and x. If, for example,b2 ¼ �1,

then y ¼ Ax�1 or xy ¼ A. This curve has ‘‘unit’’ elasticity. If we let y ¼ quantity demanded

and x ¼ price, then A ¼ total revenue from sales. For every point on the curve xy ¼ A, the

area under the curve A (total revenue for the demand curve) is constant. By definition, unit

elasticity implies that a 1% increase in x (price, for example) is associatedwith a1%decrease

in y (quantity demanded), so that the product xy (price times quantity) remains constant.

4.6.1 A LOG-LOG POULTRY DEMAND EQUATION

The log-log functional form is frequently used for demand equations. Consider, for

example, the demand for edible chicken, which the U.S. Department of Agriculture calls

‘‘broilers.’’ The data for this exercise is in the file newbroiler.dat, which is adapted from

the data provided by Epple and McCallum (2006).2 The scatter plot of Q ¼ per capita

consumption of chicken, in pounds, versus P ¼ real price of chicken is shown in

Figure 4.16 for 52 annual observations, 1950–2001. It shows the characteristic hyperbolic

shape that was displayed in Figure 4.5(d).

2 ‘‘Simultaneous Equation Econometrics: The Missing Example,’’ Economic Inquiry, 44(2), 374–384.
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The estimated log-log model is

bln Qð Þ ¼ 3:717� 1:121� ln Pð Þ R2
g ¼ 0:8817

ðseÞ ð0:022Þ ð0:049Þ (4.15)

We estimate that the price elasticity of demand is 1.121: a 1% increase in real price is

estimated to reduce quantity consumed by 1.121%.

The fitted line shown in Figure 4.16 is the ‘‘corrected’’ predictor discussed in Section

4.5.3. The corrected predictor Q̂c is the natural predictor Q̂n adjusted by the factor

exp ŝ2
�
2

� �
. That is, using the estimated error variance ŝ2 ¼ 0:0139, the predictor is

Q̂c ¼ Q̂ne
ŝ2=2 ¼ expbln Qð Þ

� �
eŝ

2=2 ¼ exp
�
3:717� 1:121� ln Pð Þ�e0:0139=2

The goodness-of-fit statisticR2
g ¼ 0:8817 is the generalized R2 discussed in Section 4.5.4. It

is the squared correlation between the predictor Q̂c and the observations Q

R2
g ¼ corr Q; Q̂c

� �� 	2 ¼ 0:939½ �2 ¼ 0:8817

4.7 Exercises

Answer to exercises marked * appear www.wiley.com/college/hill.

4.7.1 PROBLEMS

4.1* (a) Supposing that a simple regression has quantities �ðyi � yÞ2 ¼ 631:63 and

�ê2i ¼ 182:85, find R2.

(b) Suppose that a simple regression has quantities N ¼ 20, �y2i ¼ 5930:94,
y ¼ 16:035, and SSR ¼ 666:72, find R2.

(c) Suppose that a simple regression has quantitiesR2 ¼ 0:7911, SST ¼ 552:36, and
N ¼ 20, find ŝ2.
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4.2* Consider the following estimated regression equation (standard errors in parenth-

eses):

ŷ ¼ 5:83þ 0:869x R2 ¼ 0:756
ðseÞ ð1:23Þ ð0:117Þ

Rewrite the estimated equation that would result if

(a) All values of x were divided by 20 before estimation

(b) All values of y were divided by 50 before estimation

(c) All values of y and x were divided by 20 before estimation

4.3 Using the data in Exercise 2.1 and only a calculator (show your work) compute

(a) The predicted value of y for x0 ¼ 4

(b) The seð f Þ corresponding to part (a)

(c) A 95% prediction interval for y given x0 ¼ 4

(d) A 95%prediction interval for y given x ¼ x. Compare thewidth of this interval to

the one computed in part (c)

4.4 The general manager of an engineering firm wants to know whether a technical

artist’s experience influences the quality of his or her work. A random sample of 50

artists is selected and their years ofwork experience and quality rating (as assessed by

their supervisors) recorded. Work experience (EXPER) is measured in years and

quality rating (RATING) takes a value in the interval one to four, with 4 ¼ very good

and 1 ¼ very poor. Two models are estimated by least squares. The estimates and

standard errors are

Model 1 :bRATING ¼ 3:4464� 0:001459 EXPER� 35ð Þ2 N ¼ 50

ðseÞ ð0:0375Þ ð0:0000786Þ

Model 2 :bRATING ¼ 1:4276þ 0:5343 ln EXPERð Þ N ¼ 49

ðseÞ ð0:1333Þ ð0:0433Þ

(a) For each model, sketch the estimated regression function for EXPER ¼ 10 to 40

years.

(b) Using each model, predict the rating of a worker with 10 years’ experience.

(c) Using each model, find the marginal effect of another year of experience on the

expected worker rating for a worker with 10 years’ experience.

(d) Using each model, construct a 95% interval estimate for the marginal effect

found in (c). Note that Model 2 has one fewer observations due to 1 worker

having EXPER ¼ 0.

4.5 Suppose you are estimating a simple linear regression model.

(a) If you multiply all the x values by 20, but not the y values, what happens to the

parameter values b1 and b2? What happens to the least squares estimates b1 and

b2? What happens to the variance of the error term?

(b) Suppose you are estimating a simple linear regression model. If you multiply all

the y values by 50, but not the x values, what happens to the parameter values
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b1 and b2?What happens to the least squares estimates b1 and b2?What happens

to the variance of the error term?

4.6 The fitted least squares line is ŷi ¼ b1 þ b2xi.

(a) Algebraically, show that the fitted line passes through the point of the means,

ðx; yÞ.
(b) Algebraically show that the average value of ŷi equals the sample average of y.

That is, show that ŷ ¼ y; where ŷ ¼ �ŷi=N.

4.7 In a simple linear regression model suppose we know that the intercept parameter is

zero, so the model is yi ¼ b2xi þ ei. The least squares estimator of b2 is developed in

Exercise 2.4.

(a) What is the least squares predictor of y in this case?

(b) When an intercept is not present in a model, R2 is often defined to be

R2
u ¼ 1� SSE=�y2i , where SSE is the usual sum of squared residuals. Compute

R2
u for the data in Exercise 2.4.

(c) Compare the value of R2
u in part (b) to the generalized R2 ¼ r2yŷ, where ŷ is the

predictor based on the restricted model in part (a).

(d) Compute SST ¼ �ðyi � yÞ2 and SSR ¼ �ðŷi � yÞ2, where ŷ is the predictor

based on the restricted model in part (a). Does the sum of squares decomposition

SST ¼ SSR þ SSE hold in this case?

4.7.2 COMPUTER EXERCISES

4.8 The first three columns in the filewa_wheat.dat contain observations on wheat yield

in the Western Australian shires Northampton, Chapman Valley, and Mullewa,

respectively. There are 48 annual observations for the years 1950–1997. For the

Chapman Valley shire, consider the three equations

yt ¼ b1 þ b2t þ et

yt ¼ a1 þ a2lnðtÞ þ et

yt ¼ g1 þ g2t
2 þ et

(a) Using data from 1950–1996, estimate each of the three equations.

(b) Taking into consideration (i) plots of the fitted equations, (ii) plots of the

residuals, (iii) error normality tests, and (iv) values for R2, which equation do

you think is preferable? Explain.

4.9* For each of the three functions in Exercise 4.8

(a) Find the predicted value and a 95% prediction interval for yield when t¼ 48. Is

the actual value within the prediction interval?

(b) Find estimates of the slopes dyt=dt at the point t ¼ 48.

(c) Find estimates of the elasticities ðdyt=dtÞðt=ytÞ at the point t ¼ 48.

(d) Comment on the estimates you obtained in parts (b) and (c). What is their

importance?

4.10 The file london.dat is a cross section of 1519 households drawn from the 1980–1982

British Family Expenditure Surveys. Data have been selected to include only

households with one or two children living in Greater London. Self-employed

and retired households have been excluded. Variable definitions are in the file

london.def. The budget share of a commodity, say food, is defined as
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WFOOD ¼ expenditure on food

total expenditure

A functional form that has been popular for estimating expenditure functions for

commodities is

WFOOD ¼ b1 þ b2 lnðTOTEXPÞ þ e

(a) Estimate this function for households with one child and households with two

children. Report and comment on the results. (You may find it more convenient

to use the files lon1.dat and lon2.dat that contain the data for the one and two

children households, with 594 and 925 observations, respectively.)

(b) It can be shown that the expenditure elasticity for food is given by

e ¼ b1 þ b2½lnðTOTEXPÞ þ 1�
b1 þ b2lnðTOTEXPÞ

Find estimates of this elasticity for one- and two-child households, evaluated at

average total expenditure in each case. Do these estimates suggest food is a

luxury or a necessity? (Hint: Are the elasticities greater than one or less than

one?)

(c) Analyze the residuals from each estimated function. Does the functional form

seem appropriate? Is it reasonable to assume that the errors are normally

distributed?

(d) Using the data on households with two children, lon2.dat, estimate budget share

equations for fuel (WFUEL) and transportation (WTRANS). For each equation

discuss the estimate of b2 and carry out a two-tail test of statistical significance.

(e) Using the regression results from part (d), compute the elasticity e for fuel and
transportation first at the median of total expenditure (90), and then at the 95th

percentile of total income (180). What differences do you observe? Are any

differences you observe consistent with economic reasoning?

4.11* Reconsider thepresidential votingdata (fair4.dat) introduced inExercises2.14and3.9.

(a) Using the data from 1916 to 2008, estimate the regression model

VOTE ¼ b1 þ b2GROWTH þ e. Based on these estimates, what is the predicted

value of VOTE in 2008? What is the least squares residual for the 2008 election

observation?

(b) Estimate the regression in (a) using the data from1916–2004. Predict thevalue of

VOTE in 2008 using the actual value of GROWTH for 2008, which was 0.22%.

What is the prediction error in this forecast? Is it larger or smaller than the error

computed in part (a)?

(c) Using the regression results from (b), construct a 95% prediction interval for

the 2008 value of VOTE using the actual value of GROWTH ¼ 0.22%. Is the

actual 2008 outcome within the prediction interval?

(d) Using the estimation results in (b), what value of GROWTH would have led to a

prediction that the incumbent party [Republicans] would havewon 50.1% of the

vote?

4.12 In Chapter 4.6 we considered the demand for edible chicken, which the U.S.

Department of Agriculture calls ‘‘broilers.’’ The data for this exercise are in the

file newbroiler.dat.
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(a) Using the 52 annual observations, 1950–2001, estimate the reciprocal model

Q ¼ a1 þ a2ð1=PÞ þ e. Plot the fitted value ofQ ¼ per capita consumption of

chicken, in pounds, versus P ¼ real price of chicken. How well does the

estimated relation fit the data?

(b) Using the estimated relation in part (a), compute the elasticity of per capita

consumption with respect to real price when the real price is its median, $1.31,

and quantity is taken to be the corresponding value on the fitted curve. [Hint: The

derivative (slope) of reciprocal model y ¼ a þ b(1=x) is dy=dx ¼ �b(1=x2)].
Compare this estimated elasticity to the estimate found in Chapter 4.6 where the

log-log functional form was used.

(c) Estimate the poultry demand using the linear-log functional form

Q ¼ g1 þ g2 lnðPÞ þ e. Plot the fitted values of Q ¼ per capita consumption

of chicken, in pounds, versus P ¼ real price of chicken. How well does the

estimated relation fit the data?

(d) Using the estimated relation in part (c), compute the elasticity of per capita

consumption with respect to real price when the real price is its median, $1.31.

Compare this estimated elasticity to the estimate from the log-log model and

from the reciprocal model in part (b).

(e) Evaluate the suitability of the log-log, linear-log, and reciprocal models for fitting

the poultry consumption data. Which of them would you select as best, and why?

4.13* The file stockton2.dat contains data on 880 houses sold in Stockton, CA, duringmid-

2005. Variable descriptions are in the file stockton2.def. These data were considered

in Exercises 2.12 and 3.11.

(a) Estimate the log-linear model lnðPRICEÞ ¼ b1 þ b2SQFT þ e. Interpret the

estimated model parameters. Calculate the slope and elasticity at the sample

means, if necessary.

(b) Estimate the log-log model lnðPRICEÞ ¼ b1 þ b2lnðSQFTÞ þ e. Interpret the

estimated parameters. Calculate the slope and elasticity at the sample means, if

necessary.

(c) Compare the R2-value from the linear model PRICE ¼ b1 þ b2SQFT þ e to the

‘‘generalized’’ R2 measure for the models in (b) and (c).

(d) Construct histograms of the least squares residuals from each of the models in

(a), (b), and (c) and obtain the Jarque–Bera statistics. Based on your obser-

vations, do you consider the distributions of the residuals to be compatible with

an assumption of normality?

(e) For each of the models (a)–(c), plot the least squares residuals against SQFT. Do

you observe any patterns?

(f) For each model in (a)–(c), predict the value of a house with 2700 square feet.

(g) For each model in (a)–(c), construct a 95% prediction interval for the value of a

house with 2700 square feet.

(h) Based on your work in this problem, discuss the choice of functional form.

Which functional form would you use? Explain.

4.14 How much does education affect wage rates? This question will explore the issue

further. The data file cps4_small.dat contains 1000 observations on hourly wage

rates, education, and other variables from the 2008Current Population Survey (CPS).

(a) Construct histograms of theWAGE variable and its logarithm, ln(WAGE).Which

appears more normally distributed?

(b) Estimate the linear regression WAGE ¼ b1 þ b2EDUC þ e and log-linear

regression lnðWAGEÞ ¼ b1 þ b2EDUC þ e. What is the estimated return to
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education in each model? That is, for an additional year of education, what

percentage increase in wages can the average worker expect?

(c) Construct histograms of the residuals from the linear and log-linear models in

(b), and the Jarque–Bera test for normality. Does one set of residuals appearmore

compatible with normality than the other?

(d) Compare the R2 of the linear model to the ‘‘generalized’’ R2 for the log-linear

model. Which model fits the data better?

(e) Plot the least squares residuals from each model against EDUC. Do you observe

any patterns?

(f) Using each model, predict the wage of a worker with 16 years of education.

Compare these predictions to the actual averagewage of all workers in the sample

with 16 years of education.

(g) Based on the results in parts (a)–(f), which functional form would you use?

Explain.

4.15 Does the return to education differ by race and gender? For this exercise, use the file

cps4.dat. (This is a large file with 4,838 observations. If your software is a student

version, you can use the smaller file cps4_small.dat.) In this exercise you will extract

subsamples of observations consisting of (i) all males, (ii) all females, (iii) all whites,

(iv) all blacks, (v) white males, (vi) white females, (vii) black males, and (viii) black

females.

(a) For each sample partition, obtain the summary statistics of WAGE.

(b) A variable’s coefficient of variation is 100 times the ratio of its sample standard

deviation to its sample mean. For a variable y, it is

CV ¼ 100�sy

y

It is ameasure of variation that takes into account the size of the variable.What is

the coefficient of variation for WAGE within each sample partition?

(c) For each sample partition, estimate the log-linear model

lnðWAGEÞ ¼ b1 þ b2EDUC þ e

What is the approximate percentage return to another year of education for each

group?

(d) Does the model fit the data equally well for each sample partition?

(e) For each sample partition, test the null hypothesis that the rate of return to

education is 10% against the alternative that it is not, using a two-tail test at the

5% level of significance.

4.16 In Chapter 4.3.5 and 4.4 we examined models for wheat yield in Western Australia

over the period 1950–1997. The yield is ‘‘averagewheat yield’’ in tonnes per hectare.

These data can be found in the file wa_wheat.dat.

(a) How would you interpret the variable RYIELD ¼ 1/YIELD?

(b) For each shire, plot the reciprocal of yield against time. What anomalies, if any,

do you observe? Using your favorite Internet search engine, discover what

conditions may have affected Australian wheat production during any unusual

periods that you may find.

(c) Estimate the reciprocal of yield equation RYIELD ¼ a1 þ a2TIME þ e for

each shire. Interpret the estimated coefficient of TIME and test its significance

using a one-tail test and a 5% level of significance.
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(d) Plot the least squares residuals from part (c) against TIME. Locate the unusual

observations using the least squares residuals.

(e) Discarding correct data is hardly ever a good idea, and we recommend that you

not do it. Later in this book you will discover other methods for addressing such

problems—such as adding addition explanatory variables—but for now let us

experiment. For each shire, identify the most unusual observation (with the

largest least squares residual). Re-estimate the reciprocal yield equations for

each shire, omitting themost unusual data point. How sensitive are the regression

results?

Appendix 4A Development of a Prediction Interval

The forecast error is f ¼ y0 � ŷ0 ¼ ðb1 þ b2x0 þ e0Þ � ðb1 þ b2x0Þ. To obtain its var-

iance, let us first obtain the variance of ŷ0 ¼ b1 þ b2x0. The variances and covariance of the

least squares estimators are given in Section 2.4.4. Using them, we obtain

varðŷ0Þ ¼ varðb1 þ b2x0Þ ¼ varðb1Þ þ x20varðb2Þ þ 2x0covðb1; b2Þ

¼ s2�x2i
N�ðxi � xÞ2 þ x20

s2

�ðxi � xÞ2 þ 2x0s
2 �x

�ðxi � xÞ2

Nowweuse a trick.Add the terms2Nx2=N�ðxi � xÞ2 after the first term (inside braces below)

and subtract the same term at the end. Then combine the terms in brackets, as shown below:

varðŷ0Þ ¼ s2�x2i
N�ðxi � xÞ2 �

s2Nx2

N�ðxi � xÞ2
( )" #

þ s2x20

�ðxi � xÞ2 þ
s2ð�2x0xÞ
�ðxi � xÞ2 þ

s2Nx2

N�ðxi � xÞ2
( )" #

¼ s2 �x2i � Nx2

N�ðxi � xÞ2 þ
x20 � 2x0xþ x2

�ðxi � xÞ2
" #

¼ s2 �ðxi � xÞ2
N�ðxi � xÞ2 þ

ðx0 � xÞ2
�ðxi � xÞ2

" #

¼ s2 1

N
þ ðx0 � xÞ2
�ðxi � xÞ2

" #

Taking into account that x0 and the unknown parameters b1 and b2 are not random, you

should be able to show that varð f Þ ¼ varðŷ0Þ þ varðe0Þ ¼ varðŷ0Þ þ s2. A little factoring

gives the result in (4.4). We can construct a standard normal random variable as

fffiffiffiffiffiffiffiffiffiffiffiffi
varðf Þp eNð0; 1Þ
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If the forecast error variance in (4.4) is estimated by replacing s2 by its estimator ŝ2,

bvarð f Þ ¼ ŝ2 1þ 1

N
þ ðx0 � xÞ2
�ðxi � xÞ2

" #

then

fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarð f Þq ¼ y0 � ŷ0

seð f Þ e tðN�2Þ (4A.1)

where the square root of the estimated variance is the standard error of the forecast given

in (4.5).

Using these results, we can construct an interval prediction procedure for y0 just as we

constructed confidence intervals for the parametersbk. If tc is a critical value from the tðN�2Þ-
distribution such that Pðt	 tcÞ ¼ a=2, then

Pð�tc 
 t 
 tcÞ ¼ 1� a (4A.2)

Substitute the t-random variable from (4A.1) into (4A.2) to obtain

P �tc 
 y0 � ŷ0

seð f Þ 
 tc


 �
¼ 1� a

Simplify this expression to obtain

P½ŷ0 � tcseð f Þ 
 y0 
 ŷ0 þ tcseð f Þ� ¼ 1� a

A 100(1�a)% confidence interval, or prediction interval, for y0 is given by (4.6).

Appendix 4B The Sum of Squares Decomposition

To obtain the sum of squares decomposition in (4.11), we square both sides of (4.10)

ðyi � yÞ2 ¼ ½ðŷi � yÞ þ êi�2 ¼ ðŷi � yÞ2 þ ê2i þ 2ðŷi � yÞêi

Then sum

�ðyi � yÞ2 ¼ �ðŷi � yÞ2 þ �ê2i þ 2�ðŷi � yÞêi

Expanding the last term, we obtain

�ðŷi � yÞêi ¼ �ŷiêi � y�êi ¼ �ðb1 þ b2xiÞêi � y�êi
¼ b1�êi þ b2� xiêi � y�êi

Consider first the term �êi

�êi ¼ �ðyi � b1 � b2xiÞ ¼ �yi � Nb1 � b2�xi ¼ 0
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This last expression is zero because of the first normal equation, (2A.3). The first normal

equation is valid only if the model contains an intercept. The sum of the least squares

residuals is always zero if the model contains an intercept. It follows, then, that the sample

mean of the least squares residuals is also zero (since it is the sum of the residuals divided by

the sample size) if the model contains an intercept. That is, ê ¼ �êi=N ¼ 0.

The next term � xiêi ¼ 0, because

� xiêi ¼ � xiðyi � b1 � b2xiÞ ¼ � xiyi � b1� xi � b2� x2i ¼ 0

This result follows from the second normal equation, (2A.4). This result always holds for

the least squares estimator and does not depend on the model having an intercept. See

Appendix 2A for discussion of the normal equations. Substituting �êi ¼ 0 and � xiêi ¼ 0

back into the original equation, we obtain �ðŷi � yÞêi ¼ 0.

Thus, if the model contains an intercept, it is guaranteed that SST ¼ SSR þ SSE. If,

however, the model does not contain an intercept, then �êi 6¼ 0 and SST 6¼ SSR þ SSE.

Appendix 4C The Log-Normal Distribution

Suppose that the variable y has a normal distribution, with meanm and variance s2. By now

you are familiar with this bell-shaped distribution. If we consider w ¼ ey, then y ¼
lnðwÞ eNðm;s2Þ and w is said to have a log-normal distribution. The question then is,

what are the mean and variance ofw? Recall that the ‘‘expected value of a sum is the sum of

the expected values.’’ But unfortunately, the exponential function is nonlinear, and the

expected value of nonlinear function of y is not just the same function of E(y). That is,

if g(y) is some function of y, then in general E[g(y)] 6¼ g[E(y)]. So the expectation

E(w) ¼ E(ey) 6¼ eE(y). Happily, the expected value and variance of w have been worked

out, and are

EðwÞ ¼ emþs2=2

and

varðwÞ ¼ e2mþs2

es
2 � 1

� �

These results relate to the log-linear regression model in several ways. First, given the log-

linear model ln(y) ¼ b1 þ b2xþ e, if we assume that e eN(0,s2), then

EðyiÞ ¼ E eb1þb2xiþei
� � ¼ E eb1þb2xieei

� � ¼ eb1þb2xiEðeeiÞ ¼ eb1þb2xies
2=2 ¼ eb1þb2xiþs2=2

Consequently, if we want to predict E(y), we should use

bEðyiÞ ¼ eb1þb2xiþŝ2=2

where b1, b2, and ŝ2 are from the log-linear regression.

The second implication comes from the growth and wage equations discussed in

Section 4.4. For example, in the wage equation we estimated b2 ¼ ln(1þ r). Solving
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for r, we obtain r ¼ eb2 � 1. If assumption SR6 holds, then the least squares estimator is

normally distributed b2 eN b2; var(b2) ¼ s2=�(xi � x)2
� �

. Then

E½eb2 � ¼ eb2þvarðb2Þ=2

Therefore, an estimator of the rate of return r is

r̂ ¼ eb2�bvarðb2Þ=2 � 1

wherebvar(b2) ¼ ŝ2=�(xi � x)2.
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C h a p t e r 5
The Multiple Regression
Model

Learning Objectives

Based on the material in this chapter, you should be able to

1. Recognize a multiple regression model and be able to interpret the coefficients in

that model.

2. Understand and explain themeanings of the assumptions for themultiple regression

model.

3. Use your computer to find least squares estimates of the coefficients in a multiple

regression model, and interpret those estimates.

4. Explain the meaning of the Gauss–Markov theorem.

5. Use your computer to obtain variance and covariance estimates, and standard

errors, for the estimated coefficients in a multiple regression model.

6. Explain the circumstances under which coefficient variances (and standard errors)

are likely to be relatively high, and those under which they are likely to be

relatively low.

7. Find interval estimates for single coefficients and linear combinations of coeffi-

cients, and interpret the interval estimates.

8. Test hypotheses about single coefficients and about linear combinations of coeffi-

cients in a multiple regression model. In particular,

(a) What is the difference between a one-tail and a two-tail test?

(b) How do you compute the p-value for a one-tail test, and for a two-tail test?

(c) What is meant by ‘‘testing the significance of a coefficient’’?

(d) What is the meaning of the t-values and p-values that appear in your computer

output?

(e) How do you compute the standard error of a linear combination of coefficient

estimates?

9. Use your computer to compute the standard error of a nonlinear function of

estimators. Use that standard error to find interval estimates and to test hypotheses

about nonlinear functions of coefficients.

10. Estimate and interpret multiple regression models with polynomial and interaction

variables.
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11. Find point and interval estimates and test hypotheses for marginal effects in

polynomial regressions and models with interaction variables.

12. Compute and explain the meaning of R2 in a multiple regression model.

The model in Chapters 2–4 is called a simple regression model because the dependent

variable y is related to only one explanatory variable x. Although this model is useful for a

range of situations, in most economic models there are two or more explanatory variables

that influence the dependent variable y. For example, in a demand equation the quantity

demanded of a commodity depends on the price of that commodity, the prices of substitute

and complementary goods, and income.Output in a production functionwill be a function of

more than one input. Aggregate money demand will be a function of aggregate income and

the interest rate. Investment will depend on the interest rate and on changes in income.

When we turn an economic model with more than one explanatory variable into its

corresponding econometric model, we refer to it as amultiple regression model. Most of

the results we developed for the simple regression model in Chapters 2–4 can be extended

naturally to this general case. There are slight changes in the interpretation of the b
parameters, the degrees of freedom for the t-distribution will change, and we will need to

modify the assumption concerning the characteristics of the explanatory (x) variables. These

and other consequences of extending the simple regression model to a multiple regression

model are described in this chapter.

As an example for introducing and analyzing the multiple regression model, we begin

with a model used to explain sales revenue for a fast-food hamburger chain with outlets in

small U.S. cities.

5.1 Introduction

5.1.1 THE ECONOMIC MODEL

We will set up an economic model for a hamburger chain that we call Big Andy’s Burger

Barn.1 Important decisions made by the management of Big Andy’s include its pricing

policy for different products and how much to spend on advertising. To assess the effect of

different price structures and different levels of advertising expenditure, Big Andy’s Burger

Barn sets different prices, and spends varying amounts on advertising, in different cities.

Keywords

BLU estimator

covariance matrix of

least squares estimator

critical value

delta method

error variance estimate

error variance estimator

goodness-of-fit

interaction variable

interval estimate

least squares estimates

least squares estimation

least squares estimators

linear combinations

marginal effect

multiple regression model

nonlinear functions

one-tail test

p-value

polynomial

regression coefficients

standard errors

sum of squared errors

sum of squares of regression

testing significance

total sum of squares

two-tail test

1 The data we use reflect a real fast-food franchise whose identity we disguise under the name Big Andy’s.
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Of particular interest tomanagement is how sales revenue changes as the level of advertising

expenditure changes. Does an increase in advertising expenditure lead to an increase in

sales? If so, is the increase in sales sufficient to justify the increased advertising expenditure?

Management is also interested in pricing strategy.Will reducing prices lead to an increase or

decrease in sales revenue? If a reduction in price leads only to a small increase in the quantity

sold, sales revenuewill fall (demand is price-inelastic); a price reduction that leads to a large

increase in quantity sold will produce an increase in revenue (demand is price-elastic). This

economic information is essential for effective management.

The first step is to set up an economic model in which sales revenue depends on one or

more explanatory variables.We initially hypothesize that sales revenue is linearly related to

price and advertising expenditure. The economic model is

SALES ¼ b1 þ b2PRICE þ b3ADVERT (5.1)

where SALES represents monthly sales revenue in a given city, PRICE represents price in

that city, and ADVERT is monthly advertising expenditure in that city. Both SALES and

ADVERT are measured in terms of thousands of dollars. Because sales in bigger cities will

tend to be greater than sales in smaller cities, we focus on smaller cities with comparable

populations.

Since a hamburger outlet sells a number of products—burgers, fries, and shakes—and

each product has its own price, it is not immediately clear what price should be used in (5.1).

What we need is some kind of average price for all products and information on how this

average price changes from city to city. For this purpose management has constructed a

single price index PRICE, measured in dollars and cents, that describes overall prices in

each city.

The remaining symbols in (5.1) are the unknown parameters b1, b2, and b3 that describe

the dependence of sales (SALES) on price (PRICE) and advertising (ADVERT). Mathe-

matically, the intercept parameter b1 is the value of the dependent variablewhen each of the

independent, explanatory variables takes the value zero. However, in many cases this

parameter has no clear economic interpretation. In this particular case, it is not realistic to

have a situation in which PRICE ¼ ADVERT ¼ 0. Except in very special circumstances,

we always include an intercept in themodel, even if it has no direct economic interpretation.

Omitting it can lead to a model that fits the data poorly and that does not predict well.

The other parameters in the model measure the change in the value of the dependent

variable given a unit change in an explanatory variable, all other variables held constant.

For example, in (5.1),

b2 ¼ the change in monthly SALES ($1,000) when the price index PRICE is increased by

one unit ($1) and advertising expenditure ADVERT is held constant

¼ DSALES

DPRICEðADVERT held constantÞ
¼ qSALES

qPRICE

The symbol ‘‘q’’ stands for ‘‘partial differentiation.’’ Those of you familiar with calculusmay

have seen this operation. In the context above, the partial derivative of SALESwith respect to

PRICE is the rate of change of SALES as PRICE changes, with other factors, in this case

ADVERT, held constant. Further details can be found in SectionA.3.3 ofAppendixA.Wewill

occasionally use partial derivatives, but not to an extent that will disadvantage you if you have

not had a course in calculus. Rules for differentiation are provided in Appendix A.3.1.

5 . 1 INTRODUCTION 169



The sign of b2 could be positive or negative. If an increase in price leads to an increase in

sales revenue, then b2 > 0, and the demand for the chain’s products is price-inelastic.

Conversely, a price-elastic demand exists if an increase in price leads to a decline in revenue,

in which case b2 < 0. Thus, knowledge of the sign of b2 provides information on the price-

elasticity of demand. The magnitude of b2 measures the amount of change in revenue for a

given price change.

The parameter b3 describes the response of sales revenue to a change in the level of

advertising expenditure. That is,

b3 ¼ the change in monthly SALES ($1,000) when advertising expenditure ADVERT is

increased by one unit ($1,000) and the price index PRICE is held constant

¼ DSALES

DADVERT ðPRICE held constantÞ
¼ qSALES

qADVERT

We expect the sign of b3 to be positive. That is, we expect that an increase in advertising

expenditure, unless the advertising is offensive, will lead to an increase in sales revenue.

Whether or not the increase in revenue is sufficient to justify the added advertising

expenditure, as well as the added cost of producing more hamburgers, is another question.

With b3 < 1, an increase of $1,000 in advertising expenditure will yield an increase in

revenue that is less than $1,000. For b3 > 1, it will be greater. Thus, in terms of the chain’s

advertising policy, knowledge of b3 is very important.

The next step along the road to learning about b1, b2, and b3 is to convert the economic

model into an econometric model.

5.1.2 THE ECONOMETRIC MODEL

The economic model (5.1) describes the expected or average behavior of many individual

franchises thatmake up the complete chain run byBigAndy’sBurgerBarn. Thus, we should

write it as E(SALES) ¼ b1 þ b2PRICE þ b3ADVERT , where E(SALES) is the ‘‘expected

value’’ of sales revenue. Data for sales revenue, price, and advertising for different cities

will not follow an exact linear relationship. Equation (5.1) describes not a line as in Chapters

2–4, but a plane. As illustrated in Figure 5.1, the plane intersects the vertical axis at b1. The

parametersb2 andb3 measure the slope of the plane in the directions of the ‘‘price axis’’ and

the ‘‘advertising axis,’’ respectively. Representative observations for sales revenue, price,

and advertising for some cities are displayed in Table 5.1. The complete set of observations

can be found in the file andy.dat and is represented by the dots in Figure 5.1. These data do

not fall exactly on a plane, but instead resemble a ‘‘cloud.’’

To allow for a difference between observable sales revenue and the expected value of

sales revenue, we add a random error term, e ¼ SALES� E(SALES). This random error

represents all factors, other than price and advertising revenue, which cause sales revenue to

differ from its expected value. These factors might include the weather, the behavior of

competitors, a new SurgeonGeneral’s report on the deadly effects of fat intake, and so on, as

well as differences in burger-buying behavior across cities. Including the error term gives

the model

SALES ¼ EðSALESÞ þ e ¼ b1 þ b2PRICE þ b3ADVERT þ e (5.2)
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The economic model in (5.1) describes the average, systematic relationship between the

variables SALES, PRICE, and ADVERT. The expected value E(SALES) is the nonrandom,

systematic component, to which we add the random error e to determine SALES. Thus,

SALES is a randomvariable.We do not knowwhat the value of sales revenuewill be until we

observe it.

Ta b l e 5 . 1 Observations on Monthly Sales, Price, and Advertising in Big

Andy’s Burger Barn

City

SALES

$1,000 units

PRICE

$1 units

ADVERT

$1,000 units

1 73.2 5.69 1.3

2 71.8 6.49 2.9

3 62.4 5.63 0.8

4 67.4 6.22 0.7

5 89.3 5.02 1.5

. . . .

. . . .

. . . .

73 75.4 5.71 0.7

74 81.3 5.45 2.0

75 75.0 6.05 2.2

Summary statistics

Sample mean 77.37 5.69 1.84

Median 76.50 5.69 1.80

Maximum 91.20 6.49 3.10

Minimum 62.40 4.83 0.50

Std. Dev. 6.49 0.52 0.83

β3 = slope in ADVERT direction

E(SALES) = β1 + β2PRICE + β3 ADVERT

β2 = slope in PRICE direction

SALES

ADVERT

PRICE

β1

FIGURE 5.1 The multiple regression plane.
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The introduction of the error term and assumptions about its probability distribution turn

the economicmodel into the econometric model in (5.2). The econometric model provides

a more realistic description of the relationship between the variables as well as a framework

for developing and assessing estimators of the unknown parameters.

5.1.2a The General Model

It is useful to digress for a moment and summarize how the concepts developed so far relate

to the general case. In a general multiple regression model, a dependent variable y is related

to a number of explanatory variables x2, x3, . . . , xK through a linear equation that can be

written as

y ¼ b1 þ b2x2 þ b3x3 þ � � � þ bKxK þ e (5.3)

The coefficients b2,b3, . . . ,bK are unknown coefficients corresponding to the explanatory

variables x2, x3, . . . , xK . A single parameter, call it bk, measures the effect of a change in the

variable xk upon the expected value of y, all other variables held constant. In terms of partial

derivatives,

bk ¼ DEðyÞ
Dxk

����
other xs held constant

¼ @EðyÞ
@xk

The parameter b1 is the intercept term. We can think of it as being attached to a variable x1
that is always equal to 1. That is, x1 ¼ 1. We use K to denote the number of unknown

coefficients in (5.3).

The equation for sales revenue can be viewed as a special case of (5.3) where

K ¼ 3, y ¼ SALES, x1 ¼ 1, x2 ¼ PRICE and x3 ¼ ADVERT . Thus we rewrite (5.2) as

y ¼ b1 þ b2x2 þ b3x3 þ e (5.4)

In this chapter we introduce point and interval estimation in terms of thismodel withK ¼ 3.

The results hold generally for models with more explanatory variables (K > 3).

5.1.2b The Assumptions of the Model

To make the econometric model in (5.4) complete, assumptions about the probability

distribution of the random errors e need to bemade. The assumptions that we introduce for e

are similar to those introduced for the simple regression model in Chapter 2. They are

1. E(e) ¼ 0. Each random error has a probability distribution with zero mean. Some

errors will be positive, some will be negative; over a large number of observations,

they will average out to zero.

2. var(e) ¼ s2. Each random error has a probability distribution with variance s2. The

variances2 is an unknown parameter and itmeasures the uncertainty in the statistical

model. It is the same for each observation, so that for no observations will the model

uncertainty bemore, or less, nor is it directly related to any economic variable. Errors

with this property are said to be homoskedastic.

3. cov(ei,ej) ¼ 0. The covariance between the two random errors corresponding to any

two different observations is zero. The size of an error for one observation has no

bearing on the likely size of an error for another observation. Thus, any pair of errors

is uncorrelated.
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4. Wewill sometimes further assume that the random errors e have normal probability

distributions. That is, e�N(0,s2).

Because each observation on the dependent variable y depends on the random error term e,

each y is also a random variable. The statistical properties of y follow from those of e. These

properties are

1. E(y) ¼ b1 þ b2x2 þ b3x3. The expected (average) value of y depends on the values

of the explanatory variables and the unknown parameters. It is equivalent to

E(e) ¼ 0. This assumption says that the average value of y changes for each

observation and is given by the regression function E(y) ¼ b1 þ b2x2 þ b3x3.

2. var(y) ¼ var(e) ¼ s2. The variance of the probability distribution of y does not

change with each observation. Some observations on y are not more likely to be

further from the regression function than others.

3. cov(yi, yj) ¼ cov(ei, ej) ¼ 0. Any two observations on the dependent variable are

uncorrelated. For example, if one observation is above E(y), a subsequent observa-

tion is not more or less likely to be above E(y).

4. We sometimes will assume that the values of y are normally distributed about their

mean. That is, y�N[(b1 þ b2x2 þ b3x3),s
2], which is equivalent to assuming that

e�N(0;s2).

In addition to the above assumptions about the error term (and hence about the dependent

variable), we make two assumptions about the explanatory variables. The first is that

the explanatory variables are not random variables. Thus we are assuming that the values

of the explanatory variables are known to us prior to our observing the values of the

dependent variable. This assumption is realistic for our hamburger chain, where a decision

about prices and advertising is made for each city and values for these variables are set

accordingly. For cases in which this assumption is untenable, our analysis will be

conditional upon the values of the explanatory variables in our sample, or further assump-

tions must be made. This issue is taken up further in Chapters 9 and 10.

The second assumption is that any one of the explanatory variables is not an exact linear

functionof theothers.This assumption is equivalent to assuming that novariable is redundant.

Aswewill see, if this assumption isviolated—aconditioncalledexactcollinearity—the least

squares procedure fails.

To summarize, we construct a list of the assumptions for the general multiple regression

model in (5.3)—much as we have done in the earlier chapters—to which we can refer as

needed. We use the subscript i to denote the ith value of variables to be observed in a

sample of size N.

ASSUMPTIONS OF THE MULTIPLE REGRESSION MODEL

MR1. yi ¼ b1 þ b2xi2 þ � � � þ bKxiK þ ei; i ¼ 1; . . . ;N

MR2. EðyiÞ ¼ b1 þ b2xi2 þ � � � þ bKxiK ,EðeiÞ ¼ 0

MR3. varðyiÞ ¼ varðeiÞ ¼ s2

MR4. covðyi; yjÞ ¼ covðei; e jÞ ¼ 0 ði 6¼ jÞ
MR5. The values of each xik are not random and are not exact linear functions of the other

explanatory variables

MR6. yi �N ðb1 þ b2xi2 þ � � � þ bKxiKÞ;s2½ �, ei �Nð0;s2Þ
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5.2 Estimating the Parameters of the Multiple
Regression Model

In this section we consider the problem of using the least squares principle to estimate

the unknown parameters of the multiple regressionmodel.Wewill discuss estimation in the

context of the model in (5.4), which we repeat here for convenience, with i denoting the ith

observation.

yi ¼ b1 þ b2xi2 þ b3xi3 þ ei (5.4)

This model is simpler than the full model, yet all the results we present carry over to the

general case with only minor modifications.

5.2.1 LEAST SQUARES ESTIMATION PROCEDURE

To find an estimator for estimating the unknown parameters we follow the least squares

procedure that was first introduced in Chapter 2 for the simple regression model. With the

least squares principle we find those values of (b1, b2, b3) that minimize the sum of squared

differences between the observed values of yi and their expected values

E(yi) ¼ b1 þ xi2b2 þ xi3b3. Mathematically we minimize the sum of squares function

S(b1,b2,b3), which is a function of the unknown parameters, given the data

Sðb1; b2; b3Þ ¼ �
N

i¼1

�
yi � EðyiÞ

�2

¼ �
N

i¼1

�
yi � b1 � b2xi2 � b3xi3

�2
(5.5)

Given the sample observations yi, minimizing the sum of squares function is a straightfor-

ward exercise in calculus. Details of this exercise are given in Appendix 5A at the end of this

chapter. The solutions give us formulas for the least squares estimators for theb coefficients

in a multiple regression model with two explanatory variables. They are extensions of those

given in (2.7) and (2.8) for the simple regressionmodelwith one explanatory variable. There

are three reasons for relegating these formulas to Appendix 5A instead of inflicting them on

you here. First, they are complicated formulas that we do not expect you to memorize.

Second, we never use these formulas explicitly; computer software uses the formulas to

calculate least squares estimates. Third, we frequently have models with more than two

explanatory variables, in which case the formulas become even more complicated. If you

proceed with more advanced study in econometrics, you will discover that there is one

relatively simple matrix algebra expression for the least squares estimator that can be used

for all models, irrespective of the number of explanatory variables.

Although we always get the computer to do thework for us, it is important to understand

the least squares principle and the difference between least squares estimators and least

squares estimates. Looked at as a general way to use sample data, formulas for

b1, b2, and b3, obtained by minimizing (5.5), are estimation procedures, which are called

the least squares estimators of the unknown parameters. In general, since their values are

not known until the data are observed and the estimates calculated, the least squares

estimators are random variables. Computer software applies the formulas to a specific

sample of data producing least squares estimates, which are numeric values. To avoid too

much notation, we use b1, b2, and b3 to denote both the estimators and the estimates.
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5.2.2 LEAST SQUARES ESTIMATES USING HAMBURGER CHAIN DATA

Table 5.2 contains the least squares results for the sales equation for Big Andy’s Burger

Barn. The least squares estimates are

b1 ¼ 118:91 b2 ¼ �7:908 b3 ¼ 1:863

Following Chapter 4.2.4, these estimates along with their standard errors and the equation’s

R2 are typically reported in equation format as

bSALES ¼ 118:91� 7:908 PRICE þ 1:863ADVERT R2 ¼ 0:448

ðseÞ ð6:35Þ ð1:096Þ ð0:683Þ (5.6)

From the information in this equation one can readily construct interval estimates or test

hypotheses for each of the bk in a manner similar to that described in Chapter 3, but with a

change in the number of degrees of freedom for the t-distribution. Like before, the t-values

and p-values in Table 5.2 relate to testing H0 :bk ¼ 0 against the alternative H :bk 6¼ 0 for

k ¼ 1, 2, 3.

We proceed by first interpreting the estimates in (5.6). Then, to explain the degrees of

freedomchange that arises fromhavingmore than one explanatory variable, and to reinforce

earlier material, we go over the sampling properties of the least squares estimator, followed

by interval estimation and hypothesis testing.

What can we say about the coefficient estimates in (5.6)?

1. The negative coefficient onPRICE suggests that demand is price elastic; we estimate

that, with advertising held constant, an increase in price of $1 will lead to a fall in

monthly revenue of $7,908. Or, expressed differently, a reduction in price of $1 will

lead to an increase in revenue of $7,908. If such is the case, a strategy of price

reduction through the offering of specials would be successful in increasing sales

revenue. We do need to consider carefully the magnitude of the price change,

however. A $1 change in price is a relatively large change. The sample mean of price

is 5.69 and its standard deviation is 0.52. A 10-cent change ismore realistic, in which

case we estimate the revenue change to be $791.

2. The coefficient on advertising is positive; we estimate that with price held constant,

an increase in advertising expenditure of $1,000 will lead to an increase in sales

revenue of $1,863.We can use this information, alongwith the costs of producing the

additional hamburgers, to determinewhether an increase in advertising expenditures

will increase profit.

Ta b l e 5 . 2 Least Squares Estimates for Sales Equation for Big Andy’s

Burger Barn

Variable Coefficient Std. Error t-Statistic Prob.

C 118.9136 6.3516 18.7217 0.0000

PRICE �7.9079 1.0960 �7.2152 0.0000

ADVERT 1.8626 0.6832 2.7263 0.0080

R2 ¼ 0:4483 SSE ¼ 1718:943 ŝ ¼ 4:8861 sy ¼ 6:48854.
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3. The estimated intercept implies that if both price and advertising expenditure

were zero the sales revenue would be $118,914. Clearly, this outcome is not

possible; a zero price implies zero sales revenue. In this model, as in many others,

it is important to recognize that themodel is an approximation to reality in the region

for which we have data. Including an intercept improves this approximation even

when it is not directly interpretable.

In addition to providing information about how sales change when price or advertising

change, the estimated equation can be used for prediction. Suppose Big Andy is interested

in predicting sales revenue for a price of $5.50 and an advertising expenditure of $1,200.

Including extra decimal places to get an accurate hand calculation, this prediction is

SALES ¼ 118:91� 7:908PRICE þ 1:863ADVERT

¼ 118:914� 7:9079�5:5þ 1:8626�1:2

¼ 77:656

The predicted value of sales revenue for PRICE ¼ 5:5 and ADVERT ¼ 1:2 is $77,656.

REMARK: A word of caution is in order about interpreting regression results: The

negative sign attached to price implies that reducing the price will increase sales revenue.

If taken literally, why should we not keep reducing the price to zero? Obviously that would

not keep increasing total revenue. This makes the following important point: Estimated

regression models describe the relationship between the economic variables for values

similar to those found in the sample data. Extrapolating the results to extreme values is

generally not a good idea. Predicting the value of the dependent variable for values of the

explanatory variables far from the sample values invites disaster. Refer to Figure 4.2 and

the surrounding discussion.

5.2.3 ESTIMATION OF THE ERROR VARIANCE s2

There is one remaining parameter to estimate—the variance of the error term. For this

parameter we follow the same steps that were outlined in Section 2.7. We know that

s2 ¼ varðeiÞ ¼ E e2i
� �

Thus, we can think of s2 as the expectation or population mean of the squared errors e2i .

A natural estimator of this population mean is the sample mean ŝ2 ¼ �e2i =N. However, the
squared errors e2i are unobservable, so we develop an estimator for s2 that is based on

the squares of the least squares residuals. For the model in (5.4), these residuals are

êi ¼ yi � ŷi ¼ yi � ðb1 þ b2xi2 þ b3xi3Þ
An estimator for s2 that uses the information from ê2i and has good statistical properties is

ŝ2 ¼ �N
i¼1ê

2
i

N � K
(5.7)

where K is the number of b parameters being estimated in the multiple regression model.

We can think of ŝ2 as an average of ê2i with the denominator in the averaging process being
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N � K instead ofN. It can be shown that replacing e2i by ê
2
i requires the use ofN � K instead

of N for ŝ2 to be unbiased. Note that in Chapter 2, (2.19), where there was one explanatory

variable and two coefficients, we had K ¼ 2.

To appreciate further why êi provide information about s2, recall that s2 measures

the variation in ei or, equivalently, the variation in yi around the mean function

b1 þ b2xi2 þ b3xi3. Since êi are estimates of ei, big values of êi suggest s
2 is large while

small êi suggest s
2 is small. When we refer to ‘‘big’’ values of êi, we mean big positive ones

or big negative ones. Using the squares of the residuals ê2i means that positive values do not

cancel with negative ones; thus, ê2i provide information about the parameter s2.

In the hamburger chain example we have K ¼ 3. The estimate for our sample of data in

Table 5.1 is

ŝ2 ¼ �75
i¼1ê

2
i

N � K
¼ 1718:943

75� 3
¼ 23:874

Go back and have a look at Table 5.2. There are two quantities in this table that relate to the

above calculation. The first is the sum of squared errors

SSE ¼ �
N

i¼1
ê2i ¼ 1718:943

The second is the square root of ŝ2, given by

ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23:874

p
¼ 4:8861

Both these quantities typically appear in the output from your computer software. Different

software refer to it in different ways. Sometimes ŝ is referred to as the standard error of the

regression. Sometimes it is called the root mse (short for mean squared error).

A major reason for estimating the error variance is to enable us to get an estimate of the

unknownvariances and covariances for the least squares estimators.We now consider those

variances and covariances in the context of the overall properties of the least squares

estimator.

5.3 Sampling Properties of the Least Squares Estimator

In a general context, the least squares estimators (b1, b2, b3) are random variables; they take

on different values in different samples, and their values are unknown until a sample is

collected and their values computed. The sampling properties of a least squares estimator

tell us how the estimates vary from sample to sample. They provide a basis for assessing the

reliability of the estimates. In Chapter 2 we found that the least squares estimator was

unbiased, and that there is no other linear unbiased estimator that has a smaller variance, if

the model assumptions are correct. This result remains true for the general multiple

regression model that we are considering in this chapter.

THE GAUSS–MARKOV THEOREM: For the multiple regression model, if

assumptions MR1–MR5 listed at the beginning of the chapter hold, then the least squares

estimators are the best linear unbiased estimators (BLUE) of the parameters.

If we are able to assume that the errors are normally distributed, then y will also be a

normally distributed random variable. The least squares estimators will also have normal
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probability distributions, since they are linear functions of y. If the errors are not normally

distributed, then the least squares estimators are approximately normally distributed in large

samples. What constitutes ‘‘large’’ is tricky. It depends on a number of factors specific to

each application. Frequently, N � K ¼ 50 will be large enough. See Appendices 5B.2 and

5B.3 for further details and a simulation experiment. Having least squares estimators with

normal or approximately normal distributions is important for the construction of interval

estimates and the testing of hypotheses about the parameters of the regression model.

5.3.1 THE VARIANCES AND COVARIANCES OF THE LEAST SQUARES ESTIMATORS

The variances and covariances of the least squares estimators give us information about the

reliability of the estimators b1, b2, and b3. Since the least squares estimators are unbiased,

the smaller their variances, the higher the probability that they will produce estimates

‘‘near’’ the true parameter values. For K ¼ 3 we can express the variances and covariances

in an algebraic form that provides useful insights into the behavior of the least squares

estimator. For example, we can show that

varðb2Þ ¼ s2

ð1� r223Þ�N
i¼1ðxi2 � x2Þ2

(5.8)

where r23 is the sample correlation coefficient between the values of x2 and x3; see Section

4.2.1. Its formula is given by

r23 ¼ �ðxi2 � x2Þðxi3 � x3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðxi2 � x2Þ2�ðxi3 � x3Þ2

q (5.9)

For the other variances and covariances, there are formulas of a similar nature. It is important

to understand the factors affecting the variance of b2:

1. Larger error variancess2 lead to larger variances of the least squares estimators. This

is to be expected, since s2 measures the overall uncertainty in the model specifica-

tion. If s2 is large, then data values may be widely spread about the regression

function E(yi) ¼ b1 þ b2xi2 þ b3xi3 and there is less information in the data about

the parameter values. If s2 is small, then data values are compactly spread about the

regression functionE(yi) ¼ b1 þ b2xi2 þ b3xi3, and there is more information about

what the parameter values might be.

2. Larger sample sizes N imply smaller variances of the least squares estimators. A

larger value ofNmeans a larger value of the summation�(xi2 � x2)
2. Since this term

appears in the denominator of (5.8), when it is large, var(b2) is small. This outcome is

also an intuitive one; more observations yield more precise parameter estimation.

3. More variation in an explanatory variable around its mean, measured in this case by

�(xi2 � x2)
2, leads to a smaller variance of the least squares estimator. To estimateb2

precisely, we prefer a large amount of variation in xi2. The intuition here is that if the

variation or change in x2 is small, it is difficult to measure the effect of that change.

This difficulty will be reflected in a large variance for b2.

4. A larger correlation between x2 and x3 leads to a larger variance of b2. Note that

1� r223 appears in the denominator of (5.8). Avalue of jr23j close to 1 means 1� r223
will be small, which in turnmeans var(b2)will be large. The reason for this fact is that

variation in xi2 about its mean adds most to the precision of estimation when it is not
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connected to variation in the other explanatory variables. When the variation in one

explanatory variable is connected to variation in another explanatory variable, it is

difficult to disentangle their separate effects. In Chapter 6 we discuss ‘‘collinearity,’’

which is the situationwhen the explanatory variables are correlatedwith one another.

Collinearity leads to increased variances of the least squares estimators.

Although our discussion has been in terms of a model where K ¼ 3, these factors affect the

variances of the least squares estimators in the same way in larger models.

It is customary to arrange the estimated variances and covariances of the least squares

estimators in a square array, which is called a matrix. This matrix has variances on its

diagonal and covariances in the off-diagonal positions. It is called a variance–covariance

matrix or, more simply, a covariance matrix. When K ¼ 3, the arrangement of the

variances and covariances in the covariance matrix is

covðb1; b2; b3Þ ¼
varðb1Þ covðb1; b2Þ covðb1; b3Þ

covðb1; b2Þ varðb2Þ covðb2; b3Þ
covðb1; b3Þ covðb2; b3Þ varðb3Þ

2
4

3
5

Using the estimate ŝ2 ¼ 23:874 and our computer software package, the estimated

variances and covariances for b1, b2, and b3 in the Big Andy’s Burger Barn example are

bcovðb1; b2; b3Þ ¼ 40:343 �6:795 �0:7484
�6:795 1:201 �0:0197
�0:7484 �0:0197 0:4668

2
4

3
5 (5.10)

Thus, we have

bvarðb1Þ ¼ 40:343bcovðb1; b2Þ ¼ �6:795

bvarðb2Þ ¼ 1:201 bcovðb1; b3Þ ¼ �0:7484

bvarðb3Þ ¼ 0:4668bcovðb2; b3Þ ¼ �0:0197

Table 5.3 shows how this information is typically reported in the output from computer

software.

Of particular relevance are the standard errors of b1, b2, and b3; they are given by the

square roots of the corresponding estimated variances. That is,

seðb1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb1Þq

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40:3433

p
¼ 6:3516

seðb2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þq

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2012

p
¼ 1:0960

seðb3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb3Þq

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4668

p
¼ 0:6832

Ta b l e 5 . 3 Covariance Matrix for Coefficient Estimates

C PRICE ADVERT

C 40.3433 �6.7951 �0.7484

PRICE �6.7951 1.2012 �0.0197

ADVERT �0.7484 �0.0197 0.4668
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Again, it is time to go back and look at Table 5.2. Notice that these values appear in the

standard error column.

These standard errors can be used to say something about the range of the least squares

estimates if we were to obtain more samples of 75 Burger Barns from different cities. For

example, the standard error of b2 is approximately se(b2) ¼ 1:1. We know that the least

squares estimator is unbiased, so its mean value is E(b2) ¼ b2. If b2 is normally distributed,

then based on statistical theory we expect 95% of the estimates b2, obtained by applying the

least squares estimator to other samples, to bewithin approximately two standard deviations

of the mean b2. Given our sample, 2�se(b2) ¼ 2:2, sowe estimate that 95% of the b2 values

would lie within the interval b2 � 2:2. It is in this sense that the estimated variance of b2, or

its corresponding standard error, tells us something about the reliability of the least squares

estimates. If the difference between b2 andb2 can be large, b2 is not reliable; if the difference

between b2 andb2 is likely to be small, then b2 is reliable.Whether a particular difference is

‘‘large’’ or ‘‘small’’ will depend on the context of the problem and the use to which

the estimates are to be put. This issue is considered again in later sections when we use the

estimated variances and covariances to test hypotheses about the parameters and to

construct interval estimates.

5.3.2 THE DISTRIBUTION OF THE LEAST SQUARES ESTIMATORS

We have asserted that, under the multiple regression model assumptions MR1–MR5, listed

at the end of Section 5.1, the least squares estimator bk is the best linear unbiased estimator of

the parameter bk in the model

yi ¼ b1 þ b2xi2 þ b3xi3 þ � � � þ bKxiK þ ei

If we add assumptionMR6, that the random errors ei have normal probability distributions,

then the dependent variable yi is normally distributed,

yi �N
�
ðb1 þ b2xi2 þ � � � þ bKxiKÞ;s2

�
, ei �Nð0;s2Þ

Since the least squares estimators are linear functions of dependent variables, it follows that

the least squares estimators are also normally distributed,

bk �N
�
bk; varðbkÞ

�

That is, each bk has a normal distribution with mean bk and variance var(bk). By subtracting

itsmean and dividing by the square root of its variance, we can transform the normal random

variable bk into the standard normal variable Z,

Z ¼ bk � bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðbkÞ

p �Nð0; 1Þ; for k ¼ 1; 2; . . . ;K (5.11)

that has mean zero and a variance of 1. The variance of bk depends on the unknown

variance of the error term, s2, as illustrated in (5.8) for the K ¼ 3 case. When we replace

s2 by its estimator ŝ2, from (5.7), we obtain the estimated var(bk) which we denote as
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bvarðbkÞ. Replacing var(bk) bybvarðbkÞ in (5.11) changes the N(0,1) random variable to a t-

random variable. That is,

t ¼ bk � bkffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðbkÞq ¼ bk � bk

seðbkÞ � tðN�KÞ (5.12)

One difference between this result and that in Chapter 3, (3.2), is the degrees of freedom of

the t-random variable. In Chapter 3, where there were two coefficients to be estimated, the

number of degrees of freedomwasN � 2. In this chapter there areKunknown coefficients in

the general model, and the number of degrees of freedom for t-statistics is N � K.

The result in (5.12) extends to a linear combination of coefficients that was introduced in

Chapter 3.6. Suppose thatwe are interested in estimating or testing hypotheses about a linear

combination of coefficients that in the general case is given by

l ¼ c1b1 þ c2b2 þ � � � þ cKbK ¼ �K
k¼1ckbk

Then,

t ¼ l̂� l

se l̂
� � ¼ �ckbk � �ckbk

se �ckbkð Þ � tðN�KÞ (5.13)

This expression is a little intimidating, mainly because we have included all coefficients

to make it general, and because hand calculation of se �ckbkð Þ is onerous if more than 2

coefficients are involved. For example, if K ¼ 3, then

se c1b1 þ c2b2 þ c3b3ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvar c1b1 þ c2b2 þ c3b3ð Þ

q

where

bvar c1b1 þ c2b2 þ c3b3ð Þ ¼ c21
bvar b1ð Þ þ c22
bvar b2ð Þ þ c23
bvar b3ð Þ þ 2c1c2bcov b1; b2ð Þ

þ 2c1c3bcov b1; b3ð Þ þ 2c2c3bcov b2; b3ð Þ
(5.14)

In many instances some of the ck will be zero, which can simplify the expressions and the

calculations considerably. If one ck is equal to one, and the rest are zero, (5.13) simplifies to

(5.12).

What happens if the errors are not normally distributed? Then the least squares estimator

will not be normally distributed and (5.11), (5.12), and (5.13) will not hold exactly.

They will, however, be approximately true in large samples. Thus, having errors that

are not normally distributed does not stop us from using (5.12) and (5.13), but it does mean

we have to be cautious if the sample size is not large. A test for normally distributed errors

was given in Chapter 4.3.5. An example of errors that are not normally distributed can be

found in Appendix 5B.3.

We now examine how the results in (5.12) and (5.13) can be used for interval estimation

and hypothesis testing. The procedures are identical to those described in Chapter 3, except

that the degrees of freedom change.
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5.4 Interval Estimation

5.4.1 INTERVAL ESTIMATION FOR A SINGLE COEFFICIENT

Suppose we are interested in finding a 95% interval estimate for b2, the response of sales

revenue to a change in price at BigAndy’s Burger Barn. Following the procedures described

in Section 3.1, and noting that we have N � K ¼ 75� 3 ¼ 72 degrees of freedom, the first

step is to find a value from the tð72Þ-distribution, call it tc, such that

Pð�tc < tð72Þ < tcÞ ¼ 0:95 (5.15)

Using the notation introduced in Section 3.1, tc ¼ tð0:975,N�KÞ is the 97.5-percentile of the
tðN�KÞ-distribution (the area or probability to the left of tc is 0.975), and�tc ¼ tð0:025,N�KÞ is
the 2.5-percentile of the tðN�KÞ-distribution (the area or probability to the left of �tc

is 0.025). Consulting the t-table, we discover there is no entry for 72 degrees of freedom, but,

from the entries for 70 and 80 degrees of freedom, it is clear that, correct to two decimal

places, tc ¼ 1:99. If greater accuracy is required, your computer software can be used to find

tc ¼ 1:993. Using this value, and the result in (5.12) for the second coefficient (k ¼ 2), we

can rewrite (5.15) as

P �1:993 � b2 � b2

seðb2Þ � 1:993

� 	
¼ 0:95

Rearranging this expression, we obtain

P

�
b2 � 1:993�seðb2Þ � b2 � b2 þ 1:993�seðb2Þ

	
¼ 0:95

The interval endpoints �
b2 � 1:993�seðb2Þ; b2 þ 1:993�seðb2Þ

�
(5.16)

define a 95% interval estimator ofb2. If this interval estimator is used inmany samples from

the population, then 95% of them will contain the true parameter b2. We can establish this

fact before any data are collected, based on themodel assumptions alone. Before the data are

collected we have confidence in the interval estimation procedure (estimator) because of

its performance when used repeatedly.

A 95% interval estimate for b2 based on our particular sample is obtained from (5.16) by

replacing b2 and se(b2) by their values b2 ¼ �7:908 and se(b2) ¼ 1:096. Thus, our 95%
interval estimate for b2 is given by2

ð�7:9079� 1:9335� 1:096; 7:9079þ 1:9335� 1:096Þ ¼ ð10:093; �5:723Þ

This interval estimate suggests that decreasing price by $1will lead to an increase in revenue

somewhere between $5,723 and $10,093. Or, in terms of a price changewhosemagnitude is

more realistic, a 10-cent price reduction will lead to a revenue increase between $572 and

$1,009. Based on this information, and the cost of making and selling more burgers, Big

Andy can decide whether to proceed with a price reduction.

2 For this and the next calculation we used more digits so that it would match the more accurate computer

output. You may see us do this occasionally.
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Following a similar procedure forb3, the response of sales revenue to advertising,we find

a 95% interval estimate is given by

ð1:8626� 1:9935�0:6832; 1:8626þ 1:9935�0:6832Þ ¼ ð0:501; 3:225Þ
We estimate that an increase in advertising expenditure of $1,000 leads to an increase in sales

revenueof between$501and $3,225. This interval is a relativelywideone; it implies that extra

advertising expenditure could be unprofitable (the revenue increase is less than $1,000) or

could lead to a revenue increasemore than three times the cost of the advertising.Anotherway

of describing this situation is to say that the point estimate b3 ¼ 1:8626 is not very reliable, as
its standard error (which measures sampling variability) is relatively large.

In general, if an interval estimate is uninformative because it is too wide, there is nothing

immediate that can be done. Awide interval for the parameterb3 arises because the estimated

sampling variability of the least squares estimator b3 is large. In the computation of an interval

estimate, a large sampling variability is reflected by a large standard error. A narrower interval

can only be obtained by reducing the variance of the estimator. Based on the variance

expression in (5.8), one solution is to obtainmore and better data exhibitingmore independent

variation. Big Andy could collect data from other cities and set a wider range of price and

advertising combinations. It might be expensive to do so, however, and so he would need to

assesswhether the extra information isworth the extra cost. This solution is generally not open

to economists, who rarely use controlled experiments to obtain data. Alternatively, we might

introduce some kind of nonsample information on the coefficients. The question of how to use

both sample and nonsample information in the estimation process is taken up in Chapter 6.

We cannot say, in general, what constitutes an interval that is too wide, or too

uninformative. It depends on the context of the problem being investigated, and on how

the information is to be used.

To give a general expression for an interval estimate, we need to recognize that the

critical value tc will depend on the degree of confidence specified for the interval estimate

and the number of degrees of freedom. We denote the degree of confidence by 1� a; in
the case of a 95% interval estimate a ¼ 0:05 and 1� a ¼ 0:95. The number of degrees

of freedom is N � K; in Big Andy’s Burger Barn example this value was 75� 3 ¼ 72.

The value tc is the percentile value t(1�a=2,N�K), which has the property that

P tðN�KÞ � tð1�a=2;N�KÞ

 �¼ 1� a=2. In the case of a 95% confidence interval,

1� a=2 ¼ 0:975; we use this value becausewe require 0.025 in each tail of the distribution.

Thus, we write the general expression for a 100(1� a)% confidence interval as�
bk � tð1�a=2;N�KÞ � seðbkÞ; bk þ tð1�a=2;N�KÞ � seðbkÞ

�

5.4.2 INTERVAL ESTIMATION FOR A LINEAR COMBINATION OF COEFFICIENTS

Big Andy wants to make next week a big sales week. He plans to increase advertising

expenditure by $800 and drop the price by 40 cents. If the current price is PRICE0 and the

current advertising level is ADVERT0, then the change in expected sales from Andy’s

planned strategy is

l ¼ E SALES1ð Þ � E SALES0ð Þ
¼ b1 þ b2 PRICE0 � 0:4ð Þ þ b3 ADVERT0 þ 0:8ð Þ½ �

� b1 þ b2PRICE0 þ b3ADVERT0½ �
¼ �0:4b2 þ 0:8b3
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Andy would like a point estimate and a 90% interval estimate for l.
A point estimate is given by

l̂ ¼ �0:4b2 þ 0:8b3 ¼ �0:4� ð�7:9079Þ þ 0:8� 1:8626 ¼ 4:6532

Our estimate of the expected increase in sales from Big Andy’s strategy is $4,653.

From (5.13), we can derive a 90% interval estimate for l ¼ �0:4b2 þ 0:8b3 as

ðl̂� tc � seðl̂Þ; l̂þ tc � seðl̂ÞÞ
¼

�
ð�0:4b2 þ 0:8b3Þ � tc � seð�0:4b2 þ 0:8b3Þ;

ð�0:4b2 þ 0:8b3Þ þ tc � seð�0:4b2 þ 0:8b3Þ
�

where tc ¼ tð0:95; 72Þ ¼ 1:666. To calculate the standard error se �0:4b2 þ 0:8b3ð Þ, we use
the result in (5.14) with c1 ¼ 0; c2 ¼ �0:4 and c3 ¼ 0.8, and the covariance matrix of the

coefficient estimates in Table 5.3:

se �0:4 b2 þ 0:8 b3ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvar �0:4 b2 þ 0:8 b3ð Þ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�0:4Þ2bvar b2ð Þ þ ð0:8Þ2bvar b3ð Þ � 2� 0:4� 0:8�bcov b1; b2ð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:16� 1:2012þ 0:64� 0:4668� 0:64� ð�0:0197Þ

p
¼ 0:7096

Thus, a 90% interval estimate is

ð4:6532� 1:666� 0:7096; 4:6532þ 1:666� 0:7096Þ ¼ ð3:471; 5:835Þ

We estimate, with 90% confidence, that the expected increase in sales from Big Andy’s

strategy will lie between $3,471 and $5,835.

5.5 Hypothesis Testing

Aswell as being useful for interval estimation, the t-distribution result in (5.12) provides the

foundation for testing hypotheses about individual coefficients. As you discovered in

Chapter 3, hypotheses of the form H0 :b2 ¼ c versus H1 :b2 6¼ c, where c is a specified

constant, are called two-tail tests. Hypotheses with inequalities such as H0 : b2 � c versus

H1 :b2 > c are called one-tail tests. In this section we consider examples of each type of

hypothesis. For a two-tail test, we consider testing the significance of an individual

coefficient; for one-tail tests some hypotheses of economic interest are considered. Using

the result in (5.13), one- and two-tail tests can also be used to test hypotheses about linear

combinations of coefficients. An example of this type follows those for testing hypotheses

about individual coefficients. We will follow the step-by-step procedure for testing

hypotheses that was introduced in Section 3.4. To refresh your memory, here are the steps

again:
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STEP-BY-STEP PROCEDURE FOR TESTING HYPOTHESES

1. Determine the null and alternative hypotheses.

2. Specify the test statistic and its distribution if the null hypothesis is true.

3. Select a and determine the rejection region.

4. Calculate the sample value of the test statistic and, if desired, the p-value.

5. State your conclusion.

At the time these steps were introduced, in Chapter 3, you had not discovered p-values.

Knowing about p-values (see Section 3.5)means that steps 3–5 can be framed in terms of the

test statistic and its value and/or the p-value. We will use both.

5.5.1 TESTING THE SIGNIFICANCE OF A SINGLE COEFFICIENT

When we set up a multiple regression model, we do so because we believe the explanatory

variables influence the dependent variable y. If we are to confirm this belief, we need to

examine whether or not it is supported by the data. That is, we need to ask whether the data

provide any evidence to suggest that y is related to each of the explanatory variables. If a

given explanatory variable, say xk, has no bearing on y, then bk ¼ 0. Testing this null

hypothesis is sometimes called a test of significance for the explanatory variable xk. Thus, to

find whether the data contain any evidence suggesting y is related to xk, we test the null

hypothesis

H0 :bk ¼ 0

against the alternative hypothesis

H1 :bk 6¼ 0

To carry out the test, we use the test statistic (5.12), which, if the null hypothesis is true, is

t ¼ bk

se bkð Þ � tðN�KÞ

For the alternative hypothesis ‘‘not equal to,’’ we use a two-tail test, introduced in Section

3.3.3, and reject H0 if the computed t-value is greater than or equal to tc (the critical value

from the right side of the distribution) or less than or equal to�tc (the critical value from the

left side of the distribution). For a test with level of significance a, tc ¼ t(1�a=2,N�K)

and�tc ¼ t(a=2,N�K). Alternatively, if we state the acceptance–rejection rule in terms of the

p-value, we reject H0 if p � a and do not reject H0 if p>a.
In the Big Andy’s Burger Barn example, we test, following our standard testing format,

whether sales revenue is related to price:

1. The null and alternative hypotheses are H0 :b2 ¼ 0 and H1 :b2 6¼ 0.

2. The test statistic, if the null hypothesis is true, is t ¼ b2=se(b2)� t(N�K).

3. Using a 5% significance level (a ¼ 0:05), and noting that there are 72 degrees of

freedom, the critical values that lead to a probability of 0.025 in each tail of the

distribution are tð0:975;72Þ ¼ 1:993 and tð0:025;72Þ ¼ �1:993. Thus we reject the null

hypothesis if the calculated value of t from step 2 is such that t	 1:993 or t � �1:993.
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If �1:993< t< 1:993, we do not reject H0. Stating the acceptance–rejection rule in

terms of the p-value, we reject H0 if p � 0:05 and do not reject H0 if p> 0:05.

4. The computed value of the t-statistic is

t ¼ �7:908

1:096
¼ �7:215

From your computer software, the p-value in this case can be found as

P t 72ð Þ > 7:215
� �þ P t 72ð Þ < � 7:215

� � ¼ 2� ð2:2� 10�10Þ ¼ 0:000

Correct to three decimal places the result is p-value ¼ 0:000.

5. Since �7:215< � 1:993, we reject H0 :b2 ¼ 0 and conclude that there is evidence

from the data to suggest that sales revenue depends on price. Using the p-value to

perform the test, we reject H0 because 0:000< 0:05.

For testing whether sales revenue is related to advertising expenditure, we have

1. H0 :b3 ¼ 0 and H1 :b3 6¼ 0.

2. The test statistic, if the null hypothesis is true, is t ¼ b3=se(b3)� t(N�K).

3. Using a 5% significance level, we reject the null hypothesis if t	 1:993 or

t � �1:993. In terms of the p-value, we reject H0 if p � 0:05. Otherwise, we do

not reject H0.

4. The value of the test statistic is

t ¼ 1:8626

0:6832
¼ 2:726

The p-value is given by

P t 72ð Þ > 2:726
� �þ P t 72ð Þ < � 2:726

� � ¼ 2� 0:004 ¼ 0:008

5. Because 2:726> 1:993, we rejectH0; the data support the conjecture that revenue is

related to advertising expenditure. The same test outcome can be obtained using the

p-value. In this case, we reject H0 because 0:008< 0:05.

Note that the t-values �7:215 and 2.726 and their corresponding p-values 0.000 and 0.008
were reported in Table 5.2 at the same time that we reported the original least squares

estimates and their standard errors. Hypothesis tests of this kind are carried out routinely by

computer software, and their outcomes can be read immediately from the computer output

that will be similar to Table 5.2.

Significance of a coefficient estimate is desirable—it confirms an initial prior belief that a

particular explanatory variable is a relevant variable to include in the model. However, as

mentioned in Section 3.4.3, statistical significance should not be confused with economic

importance. If the estimated response of sales revenue to advertising had been b3 ¼ 0:01
with a standard error of se(b3) ¼ 0:005, then we would have concluded b3 is significantly

different from zero; but, since the estimate implies increasing advertising by $1,000

increases revenue by only $10, we would not conclude advertising is important. We should

also be cautious about concluding that statistical significance implies precise estimation.
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The advertising coefficient b3 ¼ 1:8626 was found to be significantly different from zero,

but we also concluded the corresponding 95% interval estimate (0:501, 3:224) was too

wide to be very informative. In other words, wewere not able to get a precise estimate ofb3.

5.5.2 ONE-TAIL HYPOTHESIS TESTING FOR A SINGLE COEFFICIENT

In Section 5.1 we noted that two important considerations for the management of Big

Andy’s Burger Barn were whether demand was price-elastic or price-inelastic and whether

the additional sales revenue from additional advertising expenditure would cover the costs

of the advertising. We now are in a position to state these questions as testable hypotheses,

and to ask whether the hypotheses are compatible with the data.

5.5.2a Testing for Elastic Demand

With respect to demand elasticity, we wish to know whether


 b2 	 0: a decrease in price leads to a change in sales revenue that is zero or negative

(demand is price-inelastic or has an elasticity of unity)


 b2 < 0: a decrease in price leads to an increase in sales revenue (demand is price-

elastic)

If we are not prepared to accept that demand is elastic unless there is strong evidence from

the data to support this claim, it is appropriate to take the assumption of an inelastic demand

as our null hypothesis. Following our standard testing format, we first state the null and

alternative hypotheses:

1. H0 :b2 	 0 (demand is unit-elastic or inelastic).

H1 :b2 < 0 (demand is elastic).

2. To create a test statistic, we act as if the null hypothesis is the equality b2 ¼ 0.

Doing so is valid because if we reject H0 for b2 ¼ 0, we also reject it for any b2 > 0.

Then, assuming that H0:b2 ¼ 0 is true, from (5.12) the test statistic is

t ¼ b2=se(b2)� t N�Kð Þ.
3. The rejection region consists of values from the t-distribution that are unlikely to

occur if the null hypothesis is true. If we define ‘‘unlikely’’ in terms of a 5%

significance level, then unlikely values of t are those less than the critical value

t(0.05,72)¼ �1:666. Thus, we reject H0 if t � �1:666 or if the p-value < 0.05.

4. The value of the test statistic is

t ¼ b2

se b2ð Þ ¼
�7:908

1:096
¼ �7:215

The corresponding p-value is P
�
t(72)< � 7:215

� ¼ 0:000.

5. Since �7:215< � 1:666, we reject H0 :b2 	 0 and conclude that H1 :b2 < 0

(demand is elastic) is more compatible with the data. The sample evidence supports

the proposition that a reduction in pricewill bring about an increase in sales revenue.

Since 0:000< 0:05, the same conclusion is reached using the p-value.

Note the similarities and differences between this test and the two-tail test of significance

performed in Section 5.5.1. The calculated t-values are the same, but the critical t-values
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are different. Not only are the values themselves different, but with a two-tail test there are

also two critical values, one from each side of the distribution. With a one-tail test there is

only one critical value, from one side of the distribution. Also, the p-value from the one-tail

test is usually half that of the two-tail test, although this fact is harder to appreciate from this

example because both p-values are essentially zero.

5.5.2b Testing Advertising Effectiveness

The other hypothesis of interest is whether an increase in advertising expenditure will bring

an increase in sales revenue that is sufficient to cover the increased cost of advertising. Since

such an increase will be achieved if b3 > 1, we set up the hypotheses:

1. H0 :b3 � 1 and H1 :b3 > 1.

2. Treating the null hypothesis as the equalityH0: b3 ¼ 1, the test statistic that has the t-

distribution when H0 is true is, from (5.12),

t ¼ b3 � 1

seðb3Þ � t N�Kð Þ

3. Choosing a ¼ 0:05 as our level of significance, the relevant critical value is

t(0.95,72) ¼ 1.666. We reject H0 if t	 1:666 or if the p-value � 0:05.

4. The value of the test statistic is

t ¼ b3 � b3

se b3ð Þ ¼ 1:8626� 1

0:6832
¼ 1:263

The p-value of the test is P
�
t(72)> 1:263

� ¼ 0:105.

5. Since 1:263< 1:666, we do not reject H0. There is insufficient evidence in our

sample to conclude that advertising will be cost effective. Using the p-value to

perform the test, we again conclude thatH0 cannot be rejected, because 0:105> 0:05.
Another way of thinking about the test outcome is as follows: Because the estimate

b2 ¼ 1:8626 is greater than one, this estimate by itself suggests advertising will be

effective. However, whenwe take into account the precision of estimation, measured

by the standard error,we find that b2 ¼ 1:8626 is not significantly greater than one. In
the context of our hypothesis-testing framework, we cannot conclude with a

sufficient degree of certainty that b3 > 1.

5.5.3 HYPOTHESIS TESTING FOR A LINEAR COMBINATION OF COEFFICIENTS

Big Andy’s marketing adviser claims that dropping the price by 20 cents will be more

effective for increasing sales revenue than increasing advertising expenditure by $500. In

other words, she claims that �0:2b2 > 0:5b3. Andy does not wish to accept

this proposition unless it can be verified by past data. He knows that the estimated

change in expected sales from the price fall is �0:2 b2 ¼ �0:2� ð�7:9079Þ ¼ 1:5816,
and that the estimated change in expected sales from the extra advertising is

0:5 b3 ¼ 0:5� 1:8626 ¼ 0:9319, so the marketer’s claim appears to be correct. However,

he wants to establish whether the difference 1.5816 � 0.9319 could be attributable

188 THE MULT IPLE REGRESS ION MODEL



to sampling error, or whether it constitutes proof, at a 5% significance level, that

�0:2b2 > 0:5b3. This constitutes a test about a linear combination of coefficients.

Since�0:2b2 > 0:5b3 can bewritten as�0:2b2 � 0:5b3 > 0, we are testing a hypothesis

about the linear combination �0:2b2 � 0:5b3.

Following our hypothesis testing steps, we have

1. H0 : �0:2b2 � 0:5b3 � 0 (the marketer’s claim is not correct)

H1 : �0:2b2 � 0:5b3 > 0 (the marketer’s claim is correct)

2. Using (5.13) with c2 ¼ �0.2, c3 ¼ 0.5 and all other ck’s equal to zero, and assuming

that the equality in H0 holds (�0:2b2 � 0:5b3 ¼ 0), the test statistic and its

distribution when H0 is true is

t ¼ �0:2 b2 � 0:5 b3
se �0:2 b2 � 0:5 b3ð Þ � tð72Þ

3. For a one-tail test and a 5% significance level, the critical value is tð0:95; 72Þ ¼ 1:666.
We reject H0 if t 	 1.666 or if the p-value < 0.05.

4. To find the value of the test statistic, we first compute

seð�0:2 b2 � 0:5 b3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarð�0:2 b2 � 0:5 b3Þ

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�0:2Þ2bvarðb2Þ þ ð�0:5Þ2bvarðb3Þ
þ2� ð�0:2Þ � ð�0:5Þ �bcovðb1; b2Þ

vuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:04� 1:2012þ 0:25� 0:4668þ 0:2� ð�0:0197Þ

p
¼ 0:4010

Then, the value of the test statistic is

t ¼ �0:2 b2 � 0:5 b3
se �0:2 b2 � 0:5 b3ð Þ ¼

1:58158� 0:9319

0:4010
¼ 1:622

The corresponding p-value is P tð72Þ > 1:622
� � ¼ 0:055.

5. Since 1.622 < 1.666, we do not reject H0. At a 5% significance level, there is not

enough evidence to support the marketer’s claim. Alternatively, we reach the same

conclusion using the p-value, because 0.055 > 0.05.

5.6 Polynomial Equations

The multiple regression model that we have studied so far has the form

y ¼ b1 þ b2x2 þ � � � þ bKxK þ e (5.17)

It is a linear function of variables (the x’s) and of the coefficients (the b’s). However, (5.17)
is much more flexible than it at first appears. Although the assumptions of the multiple

regression model require us to retain the property of linearity in the b’s, many different

nonlinear functions of variables can be specified by defining the x’s and/or y as
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transformations of original variables. Several examples of such transformations have

already been encountered for the simple regression model. In Chapter 2 the quadratic model

y ¼ a1 þ a2x
2 þ e and the log-linearmodel lnðyÞ ¼ g1 þ g2xþ ewereestimated.Adetailed

analysis of these and other nonlinear simple regressionmodels—a linear-logmodel, a log-log

model and a cubicmodel—was given inChapter 4. The samekind of variable transformations

and interpretations of their coefficients carryover tomultiple regressionmodels. In this section

we are particularly interested in polynomial equations such as the quadratic y ¼ b1 þ b2xþ
b3x

2 þ e or the cubic y ¼ a1 þ a2xþ a3x
2 þ a4x

3 þ e. When we studied these models as

examples of the simple regression model, we were constrained by the need to have only one

right-hand-side variable, such as y ¼ b1 þ b3x
2 þ e or y ¼ a1 þ a4x

3 þ e. Now that we are

workingwithintheframeworkofthemultipleregressionmodel,wecanconsiderunconstrained

polynomials with all their terms included. Polynomials are a rich class of functions that can

parsimoniously describe relationships that are curved,with one ormore peaks and valleys.We

begin with some examples from economics.

5.6.1 COST AND PRODUCT CURVES

In microeconomics you studied ‘‘cost’’ curves and ‘‘product’’ curves that describe a firm.

Total cost and total product curves are mirror images of each other, taking the standard

‘‘cubic’’ shapes shown in Figure 5.2.

Average andmarginal cost curves, and theirmirror images, average andmarginal product

curves, take quadratic shapes, usually represented as shown in Figure 5.3.

The slopes of these relationships are not constant and cannot be represented by regression

models that are ‘‘linear in the variables.’’ However, these shapes are easily represented by

polynomials. For example, if we consider the average cost relationship in Figure 5.3(a), a

suitable regression model is

AC ¼ b1 þ b2Qþ b3Q
2 þ e (5.18)

This quadratic function can take the ‘‘U’’ shape we associate with average cost functions.

For the total cost curve in Figure 5.2(a), a cubic polynomial is in order,

TC ¼ a1 þ a2Qþ a3Q
2 þ a4Q

3 þ e (5.19)

These functional forms, which represent nonlinear shapes, can still be estimated using the

least squares methods we have studied. The variables Q2 and Q3 are explanatory variables

that are treated no differently from any others.

Cost Product

Q Input

TP

TC

(a) (b)

FIGURE 5.2 (a) Total cost curve and (b) total product curve.
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A difference in models of nonlinear relationships is in the interpretation of the

parameters, which are not themselves slopes. To investigate the slopes, and how we can

interpret the parameters, we need a little calculus. For the general polynomial function

y ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ � � � þ apx
p

the slope or derivative of the curve is

dy

dx
¼ a1 þ 2a2xþ 3a3x

2 þ � � � þ papx
p�1 (5.20)

This slope changes depending on the value of x. Evaluated at a particular value, x ¼ x0, the

slope is

dy

dx

����
x¼x0

¼ a1 þ 2a2x0 þ 3a3x
2
0 þ � � � þ papx

p�1
0 (5.21)

For more on rules of derivatives, see Appendix A.3.1.

Using the general rule in (5.20), the slope of the average cost curve (5.18) is

dEðACÞ
dQ

¼ b2 þ 2b3Q

The slope of the average cost curve changes for every value of Q and depends on the

parameters b2 and b3. For this U-shaped curve, we expect b2 < 0 and b3 > 0.

The slope of the total cost curve (5.19), which is the marginal cost, is

dEðTCÞ
dQ

¼ a2 þ 2a3Qþ 3a4Q
2

The slope is a quadratic function of Q, involving the parameters a2, a3, and a4. For a U-

shaped marginal cost curve, we expect the parameter signs to be a2> 0, a3< 0, and a4> 0.

Using polynomial terms is an easy and flexible way to capture nonlinear relationships

between variables. As we have shown, care must be taken when interpreting the parameters

of models that contain polynomial terms. Their inclusion does not complicate least squares

estimation—with one exception. It is sometimes true that having a variable and its square or

cube in the same model causes collinearity problems. (See Chapter 6.4.)

Cost Product

Q Input

AP

MP

MC

AC

(a) (b)

FIGURE 5.3 Average and marginal (a) cost curves and (b) product curves.
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5.6.2 EXTENDING THE MODEL FOR BURGER BARN SALES

In the Burger Barn model SALES ¼ b1 þ b2PRICE þ b3ADVERT þ e, it is worth ques-

tioning whether the linear relationship between sales revenue, price, and advertising

expenditure is a good approximation of reality. Having a linear model implies that increasing

advertising expenditurewill continue to increase sales revenue at the same rate irrespective of

the existing levels of sales revenue and advertising expenditure—that is, that the coefficient

b3, whichmeasures the response ofE(SALES) to a change inADVERT, is constant; it does not

dependon the level ofADVERT. In reality, as the level of advertisingexpenditure increases,we

would expect diminishing returns to set in. To illustratewhat is meant by diminishing returns,

consider the relationship between sales and advertising (assuming a fixed price) graphed in

Figure 5.4. The figure shows the effect on sales of an increase of $200 in advertising

expenditure when the original level of advertising is (a) $600 and (b) $1,600. Note that the

units in the graph are thousands of dollars, so these points appear as 0.6 and 1.6. At the smaller

level of advertising, sales increase from $72,400 to $74,000, whereas at the higher level of

advertising, the increase is a much smaller one, from $78,500 to $79,000. The linear model

with the constant slope b3 does not capture the diminishing returns.

What is required is a model where the slope changes as the level of ADVERT increases.

One such model having this characteristic is obtained by including the squared value of

advertising as another explanatory variable, making the new model

SALES ¼ b1 þ b2PRICE þ b3ADVERT þ b4ADVERT
2 þ e (5.22)

Adding the term b4ADVERT
2 to our original specification yields a model in which the

response of expected revenue to a change in advertising expenditure depends on the level of

advertising. Specifically, by applying the polynomial derivative rule in (5.20), and holding

PRICE constant, the response of E(SALES) to a change in ADVERT is

DEðSALESÞ
DADVERT

����ðPRICE held constantÞ
¼ @EðSALESÞ

@ADVERT
¼ b3 þ 2b4ADVERT (5.23)

The partial derivative sign ‘‘@’’ is used in place of the derivative sign ‘‘d’’ that we used in

(5.20) because SALES depends on two variables, PRICE and ADVERT, and we are holding

PRICE constant. See Appendix A.3.3 for further details about partial derivatives.
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FIGURE 5.4 A model where sales exhibits diminishing returns to advertising expenditure.

192 THE MULT IPLE REGRESS ION MODEL



We refer to @EðSALESÞ=@ADVERT in (5.23) as the marginal effect of advertising on

sales. In linear functions, the slope or marginal effect is constant. In nonlinear functions, it

varieswith one ormore of thevariables. Tofind the expected signs forb3 andb4, note thatwe

expect the response of sales revenue to a change in advertising to be positive when

ADVERT ¼ 0. That is, we expectb3> 0. Also, to achieve diminishing returns, the response

must decline as ADVERT increases. That is, we expect b4 < 0.

Using least squares to estimate (5.22) yields

bSALES ¼ 109:72� 7:640PRICE þ 12:151ADVERT � 2:768ADVERT2

ðseÞ ð6:80Þ ð1:046Þ ð3:556Þ ð0:941Þ (5.24)

What can we say about the addition of ADVERT 2 to the equation? Its coefficient has the

expected negative sign and is significantly different from zero at a 5% significance level.

Moreover, the coefficient of ADVERT has retained its positive sign and continues to be

significant. The estimated response of sales to advertising is

b@SALES
@ADVERT

¼ 12:151 � 5:536ADVERT

Substituting into this expressionwe find that when advertising is at its minimum value in the

sample of $500 (ADVERT ¼ 0.5), themarginal effect of advertising on sales is 9.383.When

advertising is at a level of $2,000 (ADVERT ¼ 2), the marginal effect is 1.079. Thus,

allowing for diminishing returns to advertising expenditure has improved our model both

statistically and in terms of meeting our expectations about how sales will respond to

changes in advertising.

^5.6.3 THE OPTIMAL LEVEL OF ADVERTISING: INFERENCE FOR A NONLINEAR

COMBINATION OF COEFFICIENTS
3

Economic theory tells us to undertake all those actions for which the marginal benefit is

greater than themarginal cost. This optimizing principle applies to Big Andy’s Burger Barn

as it attempts to choose the optimal level of advertising expenditure. Recalling that SALES

denotes sales revenue or total revenue, the marginal benefit in this case is the marginal

revenue from more advertising. From (5.23), the required marginal revenue is given by the

marginal effect of more advertising b3 þ 2b4ADVERT. The marginal cost of $1 of

advertising is $1 plus the cost of preparing the additional products sold due to effective

advertising. If we ignore the latter costs, themarginal cost of $1 of advertising expenditure is

$1. Thus, advertising should be increased to the point where

b3 þ 2b4ADVERT0 ¼ 1

with ADVERT0 denoting the optimal level of advertising. Using the least squares estimates

for b3 and b4 in (5.24), a point estimate for ADVERT0 is

bADVERT0 ¼ 1� b3

2b4
¼ 1� 12:1512

2� ð�2:76796Þ ¼ 2:014

implying that the optimal monthly advertising expenditure is $2,014.

3 This section contains advanced material.
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To assess the reliability of this estimate, we need a standard error and an interval estimate

for (1 � b3)=2b4. This is a tricky problem, and one that requires the use of calculus to solve.

What makes it more difficult than what we have done so far is the fact that it involves a

nonlinear function of b3 and b4. Variances of nonlinear functions are hard to derive. Recall

that the variance of a linear function, say, c3b3 þ c4b4, is given by

var c3b3 þ c4b4ð Þ ¼ c23var b3ð Þ þ c24var b4ð Þ þ 2c3c4cov b3; b4ð Þ (5.25)

Finding the variance of 1� b3ð Þ=2b4 is less straightforward. The best we can do is find an
approximate expression that is valid in large samples. Suppose l ¼ 1� b3ð Þ=2b4 and

l̂ ¼ 1� b3ð Þ=2b4; then, the approximate variance expression is

var l̂
� � ¼ @l

@b3

� 	2

var b3ð Þ þ @l

@b4

� 	2

var b4ð Þ þ 2
@l

@b3

� 	
@l

@b4

� 	
cov b3; b4ð Þ (5.26)

This expression holds for all nonlinear functions of two estimators, not just

l̂ ¼ 1� b3ð Þ=2b4. Also, note that for the linear case, where l ¼ c3b3 þ c4b4 and

l̂ ¼ c3b3 þ c4b4, (5.26) reduces to (5.25). Using (5.26) to find an approximate expression

for a variance is called the delta method. For further details, consult Appendix 5B.5.

We will use (5.26) to estimate the variance of l̂ ¼bADVERT0 ¼ 1� b3ð Þ=2b4, get its
standard error, and use that to get an interval estimate forl ¼ ADVERT0 ¼ 1� b3ð Þ=2b4. If

the use of calculus in (5.26) frightens you, take comfort in the fact that most software will

automatically compute the standard error for you.

The required derivatives are

@l

@b3

¼ � 1

2b4

;
@l

@b4

¼ � 1� b3

2b2
4

To estimate var l̂
� �

we evaluate these derivatives at the least squares estimates b3 and b4.

Thus, for the estimated variance of the optimal level of advertising, we have

b
var l̂

� � ¼ � 1

2b4

� 	2bvar b3ð Þ þ � 1� b3

2b24

� 	2bvar b4ð Þ þ 2 � 1

2b4

� 	
� 1� b3

2b24

� 	bcov b3; b4ð Þ

¼ 1

2� 2:768

� 	2

� 12:646þ 1� 12:151

2� 2:7682

� 	2

� 0:88477

þ 2
1

2� 2:768

� 	
1� 12:151

2� 2:7682

� 	
� 3:2887

¼ 0:016567

and

se l̂
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:016567
p

¼ 0:1287

We are now in a position to get a 95% interval estimate for l ¼ ADVERT0. When dealing

with a linear combination of coefficients in (5.13), and Section 5.4.2, we used the result

l̂� l
� ��

se l̂
� � � tðN�KÞ. This result can be used in exactly the same way for nonlinear

functions, but a difference is that the result is only an approximate one for large samples,
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even when the errors are normally distributed. Thus, an approximate 95% interval estimate

for ADVERT0 is

l̂� tð0:975; 71Þse l̂
� �

; l̂þ tð0:975; 71Þse l̂
� �� �

¼ 2:014� 1:994� 0:1287; 2:014þ 1:994� 0:1287ð Þ
¼ ð1:757; 2:271Þ

We estimate with 95% confidence that the optimal level of advertising lies between $1,757

and $2,271.

5.7 Interaction Variables

In the last sectionwe saw how the inclusion ofADVERT2 in the regressionmodel for SALES

has the effect of making the marginal effect of ADVERT on SALES depend on the level of

ADVERT. What if we wanted the marginal effect of one variable to depend on the level

of another variable? How do we model this effect? To illustrate this idea we will consider a

life-cycle model for pizza consumption. Suppose that we are economists for Gutbusters

Pizza, and that wewish to study the effect of income and age on an individual’s expenditure

on pizza. For that purposewe take a random sample of 40 individuals, age 18 and older, and

record their annual expenditure on pizza (PIZZA), their income in thousands of dollars

(INCOME) and age (AGE). The first five observations are shown in Table 5.4. The full data

set is contained in the file pizza4.dat.

As an initial model, let us consider

PIZZA ¼ b1 þ b2AGE þ b3INCOME þ e (5.27)

The implications of this specification are as follows:

1. @EðPIZZAÞ=@AGE ¼ b2: For a given level of income, the expected expenditure on
pizza changes by the amount b2 with an additional year of age. What would you

expect here? Based on our casual observation of college students, who appear to

consume massive quantities of pizza, we expect the sign of b2 to be negative. With

the effects of income removed, we expect that as a person ages his or her pizza

expenditure will fall.

2. @EðPIZZAÞ=@INCOME ¼ b3: For individuals of a given age, an increase in income

of $1,000 increases expected expenditures on pizza by b3. Since pizza is probably a

normal good, we expect the sign of b3 to be positive. The parameter b3 might be

called the marginal propensity to spend on pizza.

Ta b l e 5 . 4 Pizza Expenditure Data

PIZZA INCOME AGE

109 19.5 25

0 39.0 45

0 15.6 20

108 26.0 28

220 19.5 25
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Estimates of (5.27), with t-statistics in parentheses, are

bPIZZA ¼ 342:88� 7:576AGE þ 1:832INCOME

(tÞ ð� 3:27Þ ð3:95Þ
The signs of the estimated parameters are as we anticipated. Both AGE and INCOME have

significant coefficients, based on their t-statistics.

These are the implications of themodel in (5.27). However, is it reasonable to expect that,

regardless of the age of the individual, an increase in income by $1,000 should lead to an

increase in pizza expenditure by $1.83? Probably not. It would seem more reasonable to

assume that as a person grows older, his or her marginal propensity to spend on pizza

declines. That is, as a person ages, less of each extra dollar is expected to be spent on pizza.

This is a case in which the effect of income depends on the age of the individual. That is, the

effect of one variable is modified by another. Oneway of accounting for such interactions is

to include an interaction variable that is the product of the two variables involved. Since

AGEand INCOMEare thevariables that interact,wewill add thevariable (AGE � INCOME)

to the regression model. The result is

PIZZA ¼ b1 þ b2AGE þ b3INCOME þ b4ðAGE � INCOMEÞ þ e (5.28)

In this revised model, the effects of INCOME and AGE are

1. @EðPIZZAÞ=@AGE ¼ b2 þ b4INCOME: The effect of AGE now depends on

income. As a person ages, his or her pizza expenditure is expected to fall, and,

because b4 is expected to be negative, the greater the income, the greater will be the

fall attributable to a change in age.

2. @EðPIZZAÞ=@INCOME ¼ b3 þ b4AGE : The effect of a change in income on

expected pizza expenditure, which is the marginal propensity to spend on pizza,

now depends on AGE. If our logic concerning the effect of aging is correct, then b4

should be negative. Then, asAGE increases, thevalue of the partial derivative declines.

The estimated model (5.28) that includes the product (AGE � INCOME) is

bPIZZA ¼ 161:47� 2:977AGE þ 6:980 INCOME � 0:1232 ðAGE � INCOMEÞ
ðtÞ ð� 0:89Þ ð2:47Þ ð� 1:85Þ

The estimated coefficient of the interaction term is negative and significant at the a ¼ .05

level using a one-tail test. The signs of other coefficients remain the same, butAGE, by itself,

no longer appears to be a significant explanatory factor. This suggests thatAGE affects pizza

expenditure through its interaction with income—that is, on the marginal propensity to

spend on pizza.

Using these estimates, let us estimate the marginal effect of age upon pizza expenditure

for two individuals—one with $25,000 income and one with $90,000 income.

b
@EðPIZZAÞ

@AGE
¼ b2 þ b4INCOME

¼ �2:977� 0:1232INCOME

¼ � 6:06 for INCOME ¼ 25

�14:07 for INCOME ¼ 90

(
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That is, we expect that an individual with $25,000 incomewill reduce pizza expenditures by

$6.06 per year, whereas the individual with $90,000 incomewill reduce pizza expenditures

by $14.07 per year.

5.7.1 LOG-LINEAR MODELS

In Chapter 4.5.1 we studied the simple log-linear model ln(y) ¼ b1 þ b2x and discovered

a useful interpretation of the coefficient of x: for a one-unit change in x the approximate

percentage change in y is 100b2%. This result extends naturally to the multiple regression

model and to models with interaction and squared variables. Consider a wage equation

where ln(WAGE) depends on years of education (EDUC) and years of experience

(EXPER)

lnðWAGEÞ ¼ b1 þ b2EDUC þ b3EXPER þ e (5.29)

In this model the approximate percentage change inWAGE for an extra year of experience,

with education held constant, is 100b3%. Similarly, the approximate percentage change

in WAGE for an extra year of education, with experience held constant, is 100b2%. If we

believe the effect of an extra year of experience on wages will depend on the level of

education, then we can add an interaction variable

lnðWAGEÞ ¼ b1 þ b2EDUC þ b3EXPERþ b4ðEDUC � EXPERÞ þ e (5.30)

In this case the effect of another year of experience, holding education constant, is

roughly

D lnðWAGEÞ
DEXPER

����
EDUC fixed

¼ b3 þ b4EDUC

Since 100 times the log difference is approximately the percentage difference (see Chap-

ter 4.5), the approximate percentage change inwage given a one-year increase in experience

is 100(b3 þ b4EDUC)%. Using the Current Population Survey data (cps4_small.dat),

we estimate (5.30) to obtain

blnðWAGEÞ ¼ 1:392þ 0:09494EDUC þ 0:00633EXPER

� 0:0000364 ðEDUC � EXPERÞ

This result suggests that the greater the number of years of education, the less valuable

is an extra year of experience. Similarly, the greater the number of years of experience,

the less valuable is an extra year of education. For a person with 8 years of education, we

estimate that an additional year of experience leads to an increase inwages of approximately

100(0.00633 – 0.0000364 � 8)% ¼ 0.60%, whereas for a person with 16 years of educa-

tion, the approximate increase in wages from an extra year of education is 100

(0.00633 � 0.0000364 � 16)% ¼ 0.57%.

If there is a quadratic term on the right-hand side, as in

lnðWAGEÞ ¼ b1 þ b2EDUC þ b3EXPERþ b4 EDUC � EXPERð Þ þ b5EXPER
2 þ e
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then, using a little calculus, we find that a one-year increase in experience leads to an

approximate percentage wage change of

%DWAGE ffi 100 b3 þ b4EDUC þ 2b5EXPERð Þ%
The percentage wage change from an extra year of experience depends on both the level of

education and the level of experience.

5.8 Measuring Goodness-of-Fit

For the simple regression model studied in Chapter 4, we introduced the coefficient of

determinationR2 as ameasure of the proportion of variation in the dependent variable that is

explained by variation in the explanatory variable. In themultiple regressionmodel the same

measure is relevant and the same formulas are valid, but now we talk of the proportion of

variation in the dependent variable explained by all the explanatory variables included in the

linear model. The coefficient of determination is

R2 ¼ SSR

SST
¼ �N

i¼1ðŷi � yÞ2
�N

i¼1ðyi � yÞ2

¼ 1� SSE

SST
¼ 1� �N

i¼1ê
2
i

�N
i¼1ðyi � yÞ2

(5.31)

where SSR is thevariation in y ‘‘explained’’ by themodel (sumof squares of regression), SST

is the total variation in y about its mean (sum of squares total), and SSE is the sum of squared

least squares residuals (errors) and is the portion of the variation in y that is not explained by

the model.

The notation ŷi refers to the predicted value of y for each of the sample values of the

explanatory variables. That is,

ŷi ¼ b1 þ b2xi2 þ b3xi3 þ � � � þ bKxiK

The samplemean y is both themean of yi and themean of ŷi, so long as themodel includes an

intercept (b1 in this case).

The value for SSE will be reported by almost all computer software, but sometimes

SST is not reported. Recall, however, that the sample standard deviation for y, which is

readily computed by most software, is given by

sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
�
N

i¼1
yi � yð Þ2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
SST

N � 1

r

and so

SST ¼ ðN � 1Þs2y
In the original model for Big Andy’s Burger Barn (see Table 5.2), we find that SST ¼ 74�
6:4885372 ¼ 3115:482 and SSE ¼ 1718:943. Using these sums of squares, we have

R2 ¼ 1� �N
i¼1ê

2
i

�N
i¼1 yi � yð Þ2 ¼ 1� 1718:943

3115:482
¼ 0:448
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The interpretation of R2 is that 44.8% of the variation in sales revenue is explained by

the variation in price and by the variation in the level of advertising expenditure. It means

that, in our sample, 55.2% of the variation in revenue is left unexplained and is due to

variation in the error term or to variation in other variables that implicitly form part of the

error term. Adding the square of advertising to the Burger Barnmodel (see (5.24)) increased

theR2 to 0.508. Thus an additional 6% of the variation in sales is explained by including this

variable.

As mentioned in Section 4.2.2, the coefficient of determination is also viewed as a

measure of the predictive ability of the model over the sample period or as a measure of

how well the estimated regression fits the data. The value of R2 is equal to the squared

sample correlation coefficient between ŷi and yi. Since the sample correlation measures

the linear association between two variables, if R2 is high, it means that there is a

close association between the values of yi and the values predicted by the model, ŷi. In

this case the model is said to ‘‘fit’’ the data well. If R2 is low, there is not a close association

between the values of yi and the values predicted by the model, ŷi, and the model does not fit

the data well.

One final note is in order. The intercept parameter b1 is the y-intercept of the regression

‘‘plane,’’ as shown in Figure 5.1. If, for theoretical reasons, you are certain that the

regression plane passes through the origin, then b1 ¼ 0 and can be omitted from the model.

While this is not a common practice, it does occur, and regression software includes an

option that removes the intercept from the model. If the model does not contain an intercept

parameter, then the measure R2 given in (5.31) is no longer appropriate. The reason it is no

longer appropriate is that without an intercept term in the model,

�
N

i¼1
yi � yð Þ2 6¼ �

N

i¼1
ŷi � yð Þ2þ�

N

i¼1
ê2i

or SST 6¼ SSRþ SSE. To understand why, go back and check the proof in Appendix 4B of

Chapter 4. In the sum of squares decomposition the cross-product term �N
i¼1( ŷi � y)êi no

longer disappears. Under these circumstances it does not make sense to talk of the

proportion of total variation that is explained by the regression. Thus, when your model

does not contain a constant, it is better not to report R2, even if your computer displays one.

5.9 Exercises

Answers to exercises marked * appear at www.wiley.com/college/hill.

5.9.1 PROBLEMS

5.1* Consider the multiple regression model

yi ¼ xi1b1 þ xi2b2 þ xi3b3 þ ei

with the nine observations on yi, xi1, xi2 and xi3 given in Table 5.5.

Use a hand calculator to answer the following questions:

(a) Calculate the observations in terms of deviations from their means. That is, find

x�i2 ¼ xi2 � x2; x
�
i3 ¼ xi3 � x3; and y�i ¼ yi � y:

(b) Calculate �y�i x�i2, �x�2i2 , �y�i x�i3, �x�i2x�i3, and �x�2i3 .
(c) Use the expressions inAppendix 5A to find least squares estimates b1, b2, and b3.
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(d) Find the least squares residuals ê1, ê2, . . . , ê9.
(e) Find the variance estimate ŝ2.

(f) Use (5.9) to find the sample correlation between x2 and x3.

(g) Find the standard error for b2.

(h) Find SSE, SST, SSR, and R2.

5.2* Use your answers to Exercise 5.1 to

(a) Compute a 95% interval estimate for b2

(b) Test the hypothesis H0 :b2 ¼ 1 against the alternative that H1 :b2 6¼ 1

5.3 Consider the following model that relates the proportion of a household’s budget

spent on alcohol WALC to total expenditure TOTEXP, age of the household head

AGE, and the number of children in the household NK.

WALC ¼ b1 þ b2lnðTOTEXPÞ þ b3AGE þ b4NK þ e

The data in the file london.datwere used to estimate thismodel. See Exercise 4.10 for

more details about the data. Note that only households with one or two children are

being considered. Thus,NK takes only the values one or two. Output from estimating

this equation appears in Table 5.6.

Ta b l e 5 . 5 Data for Exercise 5.1

yi xi1 xi2 xi3

1 1 0 1

2 1 1 �2

3 1 2 1

�1 1 �2 0

0 1 1 �1

�1 1 �2 �1

2 1 0 1

1 1 �1 1

2 1 1 0

Ta b l e 5 . 6 Output for Exercise 5.3

Dependent Variable: WALC

Included observations: 1519

Variable Coefficient Std. Error t-Statistic Prob.

C 0.0091 0.0190 0.6347

ln(TOTEXP) 0.0276 6.6086 0.0000

AGE 0.0002 �6.9624 0.0000

NK �0.0133 0.0033 �4.0750 0.0000

R-squared Mean dependent var 0.0606

S.E. of regression S.D. dependent var 0.0633

Sum squared resid 5.752896
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(a) Fill in the following blank spaces that appear in this table.

(i) The t-statistic for b1
(ii) The standard error for b2
(iii) The estimate b3
(iv) R2

(v) ŝ
(b) Interpret each of the estimates b2, b3, and b4.

(c) Compute a 95% interval estimate for b3. What does this interval tell you?

(d) Test the hypothesis that the budget proportion for alcohol does not depend on the

number of children in thehousehold.Canyou suggest a reason for the test outcome?

5.4* The data set used in Exercise 5.3 is used again. This time it is used to estimate how the

proportion of the household budget spent on transportation WTRANS depends on

the log of total expenditure ln(TOTEXP), AGE, and number of children NK. The

output is reported in Table 5.7.

(a) Write out the estimated equation in the standard reporting format with standard

errors below the coefficient estimates.

(b) Interpret the estimates b2, b3, and b4. Do you think the resultsmake sense from an

economic or logical point of view?

(c) Are there any variables that you might exclude from the equation? Why?

(d) What proportion of variation in the budget proportion allocated to transport is

explained by this equation?

(e) Predict the proportion of a budget that will be spent on transportation, for both

one- and two-children households, when total expenditure and age are set at their

sample means, which are 98.7 and 36, respectively.

5.5 This question is concerned with the value of houses in towns surrounding Boston. It

uses the data of Harrison, D., and D. L. Rubinfeld (1978), ‘‘Hedonic Prices and the

Demand for Clean Air,’’ Journal of Environmental Economics and Management, 5,

81–102. The output appears in Table 5.8. The variables are defined as follows:

VALUE ¼ median value of owner-occupied homes in thousands of dollars

CRIME ¼ per capita crime rate

NITOX ¼ nitric oxide concentration (parts per million)

ROOMS ¼ average number of rooms per dwelling

AGE ¼ proportion of owner-occupied units built prior to 1940

Ta b l e 5 . 7 Output for Exercise 5.4

Dependent Variable: WTRANS

Included observations: 1519

Variable Coefficient Std. Error t-Statistic Prob.

C �0.0315 0.0322 �0.9776 0.3284

ln(TOTEXP) 0.0414 0.0071 5.8561 0.0000

AGE �0.0001 0.0004 �0.1650 0.8690

NK �0.0130 0.0055 �2.3542 0.0187

R-squared 0.0247 Mean dependent var 0.1323

S.D. dependent var 0.1053
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DIST ¼ weighted distances to five Boston employment centers

ACCESS ¼ index of accessibility to radial highways

TAX ¼ full-value property-tax rate per $10,000

PTRATIO ¼ pupil–teacher ratio by town

(a) Report briefly on how each of the variables influences the value of a home.

(b) Find 95% interval estimates for the coefficients of CRIME and ACCESS.

(c) Test the hypothesis that increasing the number of rooms by one increases the

value of a house by $7,000.

(d) Test as an alternative hypothesis H1 that reducing the pupil–teacher ratio by 10

will increase the value of a house by more than $10,000.

5.6 Suppose that from a sample of 63 observations, the least squares estimates and the

corresponding estimated covariance matrix are given by

b1
b2
b3

2
4

3
5 ¼

2

3

�1

2
4

3
5; bcov bð Þ ¼

3 �2 1

�2 4 0

1 0 3

2
4

3
5

Test each of the following hypotheses and state the conclusion:

(a) b2 ¼ 0

(b) b1 þ 2b2 ¼ 5

(c) b1 � b2 þ b3 ¼ 4

5.7 What are the standard errors of the least squares estimates b2 and b3 in the regres-

sion model y ¼ b1 þ b2x2 þ b3x3 þ e where N ¼ 202, SSE ¼ 11.12389, r23 ¼
�0.114255, �N

i¼1 xi2 � x2ð Þ2 ¼ 1210:178, and �N
i¼1 xi3 � x3ð Þ2 ¼ 30307:57?

5.8* An agricultural economist carries out an experiment to study the production

relationship between the dependent variable YIELD ¼ peanut yield (pounds per

acre) and the production inputs

NITRO ¼ amount of nitrogen applied (hundreds of pounds per acre)

PHOS ¼ amount of phosphorus fertilizer (hundreds of pounds per acre)

Ta b l e 5 . 8 Output for Exercise 5.5

Dependent Variable: VALUE

Included observations: 506

Variable Coefficient Std. Error t-Statistic Prob.

C 28.4067 5.3659 5.2939 0.0000

CRIME �0.1834 0.0365 �5.0275 0.0000

NITOX �22.8109 4.1607 �5.4824 0.0000

ROOMS 6.3715 0.3924 16.2378 0.0000

AGE �0.0478 0.0141 �3.3861 0.0008

DIST �1.3353 0.2001 �6.6714 0.0000

ACCESS 0.2723 0.0723 3.7673 0.0002

TAX �0.0126 0.0038 �3.3399 0.0009

PTRATIO �1.1768 0.1394 �8.4409 0.0000
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A total N ¼ 27 observations were obtained using different test fields. The estimated

quadratic model, with an interaction term, is

bYIELD ¼ 1:385þ 8:011NITROþ 4:800PHOS� 1:944NITRO2

� 0:778PHOS 2 � 0:567NITRO� PHOS

(a) Find equations describing the marginal effect of nitrogen on yield and the

marginal effect of phosporus on yield. What do these equations tell you?

(b) What are themarginal effects of nitrogen and of phosphoruswhen (i)NITRO and

PHOS ¼ 1 and (ii) when NITRO ¼ 2 and PHOS ¼ 2? Comment on your

findings.

(c) Test the hypothesis that the marginal effect of nitrogen is zero, when

(iv) PHOS ¼ 1 and NITRO ¼ 1

(v) PHOS ¼ 1 and NITRO ¼ 2

(vi) PHOS ¼ 1 and NITRO ¼ 3

Note: The following information may be useful:

bvar b2 þ 2b4 þ b6ð Þ ¼ 0:233bvar b2 þ 4b4 þ b6ð Þ ¼ 0:040bvar b2 þ 6b4 þ b6ð Þ ¼ 0:233

(d) ^[This part requires the use of calculus] For the function estimated, what levels

of nitrogen and phosphorus give maximum yield? Are these levels the optimal

fertilizer applications for the peanut producer?

5.9 When estimating wage equations, we expect that young, inexperienced workers will

have relatively low wages and that with additional experience their wages will rise,

but then begin to decline after middle age, as the worker nears retirement. This life-

cycle pattern of wages can be captured by introducing experience and experience

squared to explain the level of wages. If we also include years of education, we have

the equation

WAGE ¼ b1 þ b2EDUC þ b3EXPERþb4EXPER
2 þ e

(a) What is the marginal effect of experience on wages?

(b) What signs do you expect for each of the coefficients b2, b3, and b4? Why?

(c) After how many years of experience do wages start to decline? (Express your

answer in terms of b’s.)
(d) The results from estimating the equation using 1000 observations in the file

cps4c_small.dat aregiven inTable 5.9onpage204. Find95%interval estimates for

(i) The marginal effect of education on wages

(ii) The marginal effect of experience on wages when EXPER ¼ 4

(iii) The marginal effect of experience on wages when EXPER ¼ 25

(iv) The number of years of experience after which wages decline

5.9.2 COMPUTER EXERCISES

5.10 Use a computer to verify your answers to Exercise 5.1, parts (c), (e), (f), (g), and (h).
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5.11 (a) The file lond_small.dat contains a subset of 500 observations from the bigger

file london.dat. Use the data in the file lond_small.dat to estimate budget share

equations of the form

W ¼ b1 þ b2lnðTOTEXPÞ þ b3AGE þ b4NK þ e

for all budget shares (food, fuel, clothing, alcohol, transportation, and other) in

the data set. Report and discuss your results. In your discussion, comment on how

total expenditure, age, and number of children influence the various budget

proportions. Also comment on the significance of your coefficient estimates.

(b) Commodities are regarded as luxuries if b2 > 0 and necessities if b2 < 0. For

each commodity group test H0 :b2 � 0 against H1 :b2 > 0 and comment on the

outcomes.

5.12 The file cocaine.dat contains 56 observations on variables related to sales of cocaine

powder in northeastern California over the period 1984–1991. The data are a subset

of those used in the study Caulkins, J. P. and R. Padman (1993), ‘‘Quantity

Discounts and Quality Premia for Illicit Drugs,’’ Journal of the American Statistical

Association, 88, 748–757. The variables are

PRICE ¼ price per gram in dollars for a cocaine sale

QUANT ¼ number of grams of cocaine in a given sale

QUAL ¼ quality of the cocaine expressed as percentage purity

TREND ¼ a time variable with 1984 ¼ 1 up to 1991 ¼ 8

Consider the regression model

PRICE ¼ b1 þ b2QUANT þ b3QUALþ b4TREND þ e

(a) What signs would you expect on the coefficients b2;b3, and b4?

(b) Use your computer software to estimate the equation. Report the results and

interpret the coefficient estimates. Have the signs turned out as you expected?

(c) What proportion of variation in cocaine price is explained jointly by variation in

quantity, quality, and time?

(d) It is claimed that the greater the number of sales, the higher the risk of getting

caught. Thus, sellers are willing to accept a lower price if they can make sales in

larger quantities. Set up H0 and H1 that would be appropriate to test this

hypothesis. Carry out the hypothesis test.

Ta b l e 5 . 9 Wage Equation with Quadratic Experience

Variable Coefficient Std. Error t-Stat Prob.

C �13.4303 2.0285 �6.621 0.000

EDUC 2.2774 0.1394 16.334 0.000

EXPER 0.6821 0.1048 6.507 0.000

EXPER2 �0.0101 0.0019 �5.412 0.000

Covariance Matrix for Least Squares Estimates

C EDUC EXPER EXPER2

C 4.114757339 �0.215505842 �0.124023160 0.001822688

EDUC �0.215505842 0.019440281 �0.000217577 0.000015472

EXPER �0.124023160 �0.000217577 0.010987185 �0.000189259

EXPER2 0.001822688 0.000015472 �0.000189259 0.000003476
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(e) Test the hypothesis that the quality of cocaine has no influence on price against

the alternative that a premium is paid for better-quality cocaine.

(f) What is the average annual change in the cocaine price? Can you suggest why

price might be changing in this direction?

5.13 The file br2.dat contains data on 1,080 houses sold in Baton Rouge, Louisiana,

duringmid-2005.Wewill be concernedwith the selling price (PRICE), the size of the

house in square feet (SQFT), and the age of the house in years (AGE).

(a) Use all observations to estimate the following regression model and report the

results

PRICE ¼ b1 þ b2SQFT þ b3AGE þ e

(i) Interpret the coefficient estimates.

(ii) Find a 95% interval estimate for the price increase for an extra square foot

of living space—that is, @PRICE=@SQFT .
(iii) Test the hypothesis that having a house a year older decreases price by

1000 or less H0 : b3 	 �1000ð Þ against the alternative that it decreases

price by more than 1000 H1 : b3 < �1000ð Þ.
(b) Add the variables SQFT2 and AGE2 to the model in part (a) and re-estimate the

equation. Report the results.

(i) Find estimates of the marginal effect @PRICE=@SQFT for the smallest

house in the sample, the largest house in the sample, and a house with 2300

SQFT. Comment on these values. Are they realistic?

(ii) Find estimates of the marginal effect @PRICE=@AGE for the oldest house

in the sample, the newest house in the sample, and a house that is 20 years

old. Comment on these values. Are they realistic?

(iii) Find a 95% interval estimate for the marginal effect @PRICE=@SQFT for a

house with 2300 square feet.

(iv) For a house that is 20 years old, test the hypothesis

H0 :
@PRICE

@AGE
	 �1000 against H1 :

@PRICE

@AGE
< �1000

(c) Add the interaction variable SQFT � AGE to the model in part (b) and re-

estimate the equation. Report the results. Repeat parts (i), (ii), (iii), and (iv) from

part (b) for this new model. Use SQFT ¼ 2300 and AGE ¼ 20.

(d) From your answers to parts (a), (b), and (c), comment on the sensitivity of the

results to the model specification.

5.14 The file br2.dat contains data on 1,080 houses sold in Baton Rouge, Louisiana,

duringmid-2005.Wewill be concernedwith the selling price (PRICE), the size of the

house in square feet (SQFT), and the age of the house in years (AGE). Define a new

variable that measures house size in terms of hundreds of square feet,

SQFT100 ¼ SQFT=100.
(a) Estimate the following equation and report the results:

lnðPRICEÞ ¼ a1 þ a2SQFT100þ a3AGE þ a4AGE
2 þ e

(b) Interpret the estimate for a2.

(c) Find and interpret estimates for @ lnðPRICEÞ=@AGE when AGE ¼ 5 and

AGE ¼ 20.
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(d) Find expressions for @PRICE=@AGE and @PRICE=@SQFT100. (Ignore the

error term.)

(e) Estimate @PRICE=@AGE and @PRICE=@SQFT100 for a 20-year-old housewith
a living area of 2300 square feet.

(f) Find the standard errors of your estimates in (e).

(g) Find a 95% interval estimate for the marginal effect @PRICE=@SQFT100 for a

20-year-old house with 2300 square feet.

(h) For a 20-year-old house with 2300 square feet, test the hypothesis

H0 :
@PRICE

@AGE
	 �1000 against H1 :

@PRICE

@AGE
< �1000

5.15* Reconsider the presidential voting data (fair4.dat) introduced in Exercise 2.14.

(a) Estimate the regression model

VOTE ¼ b1 þ b2GROWTH þ b3INFLATION þ e

Report the results in standard format.Are the estimates forb2 andb3 significantly

different from zero at a 10% significance level? Did you use one-tail tests or two-

tail tests? Why?

(b) Assume the inflation rate is 4%. Predict the percentage vote for the incumbent

party when the growth rate is (i) �3%, (ii) 0%, and (iii) 3%.

(c) Test, as an alternative hypothesis, that the incumbent party will get the majority

of the expected votewhen the growth rate is (i)�3%, (ii) 0%, and (iii) 3%. Use a

1% level of significance. If you were the president seeking re-election, why

might you set up each of these hypotheses as an alternative rather than a null

hypothesis?

5.16 Data on theweekly sales of a major brand of canned tuna by a supermarket chain in a

largemidwesternU.S. city during amid-1990’s calendar year are contained in the file

tuna.dat. There are 52 observations on the variables. SAL1 ¼ unit sales of brand no.

1 canned tuna; APR1 ¼ price per can of brand no. 1 canned tuna; APR2, APR3 ¼
price per can of brands no. 2 and 3 of canned tuna.

(a) The prices APR1, APR2, and APR3 are expressed in dollars. Multiply the

observations on each of these variables by 100 to express them in terms of

cents; call the new variables PR1, PR2, and PR3. Estimate the following

regression model and report the results:

SAL1 ¼ b1 þ b2PR1þ b3PR2þ b4PR3þ e

(b) Interpret the estimates b2, b3, and b4. Do they have the expected signs?

(c) Using suitable one-tail tests and a 5% significance level, test whether each of the

coefficients b2, b3, and b4 are significantly different from zero.

(d) Using a 5% significance level, test the following hypotheses:

(i) A 1-cent increase in the price of brand one reduces its sales by 300 cans.

(ii) A 1-cent increase in the price of brand two increases the sales of brand one

by 300 cans.

(iii) A 1-cent increase in the price of brand three increases the sales of brand

one by 300 cans.
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(iv) The effect of a price increase in brand two on sales of brand one is the

same as the effect of a price increase in brand three on sales of brand

one. Does the outcome of this test contradict your findings from parts (ii)

and (iii)?

(v) If prices of all 3 brands go up by 1 cent, there is no change in sales.

5.17 (a) Reconsider the model SAL1 ¼ b1 þ b2PR1þ b3PR2þ b4PR3þ e from Exer-

cise 5.16. Estimate this model if you have not already done so, and find a 95%

interval estimate for expected sales when PR1 ¼ 90; PR2 ¼ 75, and PR3 ¼ 75.

What is wrong with this interval?

(b) Estimate the alternativemodel lnðSAL1Þ ¼ a1 þ a2PR1þ a3PR2þ a4PR3þ e,

and find a 95% interval estimate for expected log of sales when

PR1 ¼ 90; PR2 ¼ 75, and PR3 ¼ 75. Convert this interval into one for sales,

and compare it with what you got in part (a).

(c) How does the interpretation of the coefficients in the model with ln(SAL1) as the

dependent variable differ from that for the coefficients in the model with SAL1 as

the dependent variable?

5.18 What is the relationship between crime and punishment? This important question has

been examined by Cornwell and Trumbull4 using a panel of data from North

Carolina. The cross sections are 90 counties, and the data are annual for the years

1981–1987. The data are in the file crime.dat.

Using the data from 1987, estimate a regression relating the log of the crime rate

LCRMRTE to the probability of an arrest PRBARR (the ratio of arrests to offenses),

the probability of conviction PRBCONV (the ratio of convictions to arrests), the

probability of a prison sentence PRBPRIS (the ratio of prison sentences to convic-

tions), the number of police per capita POLPC, and the weekly wage in construction

WCON.Write a report of your findings. In your report, explain what effect youwould

expect each of the variables to have on the crime rate and note whether the estimated

coefficients have the expected signs and are significantly different from zero. What

variables appear to be the most important for crime deterrence? Can you explain the

sign for the coefficient of POLPC?

5.19 Use the data in cps4_small.dat to estimate the following wage equation

lnðWAGEÞ ¼ b1 þ b2EDUC þ b3EXPER þ b4HRSWK þ e

(a) Report the results. Interpret the estimates for b2, b3, and b4. Are these estimates

significantly different from zero?

(b) Test the hypothesis that an extra year of education increases the wage rate by at

least 10% against the alternative that it is less than 10%.

(c) Find a 90% interval estimate for the percentage increase in wage from working

an additional hour per week.

(d) Re-estimate the model with the additional variables EDUC � EXPER, EDUC2,

and EXPER2. Report the results. Are the estimated coefficients significantly

different from zero?

(e) For the new model, find expressions for the marginal effects @ lnðWAGEÞ=
@EDUC and @ lnðWAGEÞ=@EXPER:

4 ‘‘Estimating the EconomicModel of Crimewith Panel Data,’’ Review of Economics and Statistics, 76, 1994,

360–366. The data was kindly provided by the authors.

5 . 9 EXERCI SES 207



(f) Estimate the marginal effect @ lnðWAGEÞ=@EDUC for two workers Jill and

Wendy; Jill has 16 years of education and 10 years of experience, while Wendy

has 12 years of education and 10 years of experience.What can you say about the

marginal effect of education as education increases?

(g) Test, as an alternative hypothesis, that Jill’s marginal effect of education is

greater than that of Wendy. Use a 5% significance level.

(h) Estimate the marginal effect @ lnðWAGEÞ=@EXPER for two workers Chris and

Dave; Chris has 16 years of education and 20 years of experience, whileDave has

16 years of education and 30 years of experience. What can you say about the

marginal effect of experience as experience increases?

(i) For someone with 16 years of education, find a 95% interval estimate for the

number of years of experience after which the marginal effect of experience

becomes negative.

5.20 In Section 5.6.3 we discovered that the optimal level of advertising for Big Andy’s

Burger Barn, ADVERT0, satisfies the equation b3 þ 2b4ADVERT0 ¼ 1. Using a 5%

significance level, test whether each of the following levels of advertising could be

optimal: (a)ADVERT0 ¼ 1:75, (b)ADVERT0 ¼ 1:9, and (c) ADVERT0 ¼ 2:3.What

are the p-values for each of the tests?

5.21 Each morning between 6:30AM and 8:00AM Bill leaves the Melbourne suburb of

Carnegie to drive to work at the University of Melbourne. The time it takes Bill to

drive to work (TIME) depends on the departure time (DEPART), the number of red

lights that he encounters (REDS), and the number of trains that he has towait for at the

Murrumbeena level crossing (TRAINS). Observations on these variables for the 231

working days in 2006 appear in the file commute.dat. TIME is measured in minutes.

DEPART is the number of minutes after 6:30AM that Bill departs.

(a) Estimate the equation

TIME ¼ b1 þ b2DEPART þ b3REDSþ b4TRAINSþ e

Report the results and interpret each of the coefficient estimates, including the

intercept b1.

(b) Find 95% interval estimates for each of the coefficients. Have you obtained

precise estimates of each of the coefficients?

(c) Using a 5% significance level, test the hypothesis that each red light delays

Bill by two minutes or more against the alternative that the delay is less than 2

minutes.

(d) Using a 10% significance level, test the hypothesis that each train delays Bill by

3 minutes.

(e) Using a 5% significance level, test the null hypothesis that leaving at 7:30AM

instead of 7:00AM will make the trip at least 10 minutes longer (other things

equal).

(f) Using a 5% significance level test the hypothesis that the minimum time it takes

Bill is less than or equal to 20 minutes against the alternative that it is more than

20 minutes. What assumptions about the true values of b2, b3, and b4 did you

have to make to perform this test?

5.22 Reconsider the commuting time model estimated in Exercise 5.21 using the data file

commute.dat

TIME ¼ b1 þ b2DEPARTSþ b3REDSþ b4TRAINSþ e
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(a) Using a 5% significance level, test the hypothesis that the delay from a train is

equal to 3 times the delay from a red light.

(b) Using a 5% significance level, test the null hypothesis that the delay from a train

is at least 3 times greater than the delay from a red light against the alternative

that it is less than 3 times greater.

(c) Worried that he may miss an important meeting if there are 3 trains, Bill leaves

for work at 7:10AM instead of 7:15AM. Using a 5% significance level, test the null

hypothesis that leaving 5 minutes earlier is enough time to allow for 3 trains

against the alternative that it is not enough time.

(d) Suppose that Bill encounters no red lights and no trains. Using a 5% significance

level, test the hypothesis that leaving Carnegie at 7:15AM is early enough to get

him to the university before 8:00AM against the alternative it is not. (Carry out the

test in terms of the expected time E(TIME).)

5.23* Lion Forest has been a very successful golf professional. However, at age 45 his game

is not quitewhat it used to be. He started the pro-tour when hewas only 20 and he has

been looking back examining how his scores have changed as he got older. In the file

golf.dat, the first column contains his final score (relative to par) for 150 tournaments.

The second column contains his age (in units of 10 years). There are scores for 6

major tournaments in each year for the last 25 years. Denoting his score by SCORE

and his age by AGE, estimate the following model and obtain the within-sample

predictions:

SCORE ¼ b1 þ b2AGE þ b3AGE
2 þ b4AGE

3 þ e

(a) Test the null hypothesis that a quadratic function is adequate against the cubic

function as an alternative. What are the characteristics of the cubic equation that

might make it appropriate?

(b) Use the within-sample predictions to answer the following questions:

(i) At what age was Lion at the peak of his career?

(ii) When was Lion’s game improving at an increasing rate?

(iii) When was Lion’s game improving at a decreasing rate?

(iv) At what age did Lion start to play worse than he had played when hewas 20

years old?

(v) When could he no longer score less than par (on average)?

(c) When he is aged 70, will he be able to break 100? Assume par is 72.

5.24* The file rice.dat contains 352 observations on 44 rice farmers in the Tarlac region of

the Philippines for the 8 years 1990 to 1997. Variables in the data set are tonnes of

freshly threshed rice (PROD), hectares planted (AREA), person-days of hired and

family labor (LABOR), and kilograms of fertilizer (FERT). Treating the data set as

one sample with N ¼ 352, proceed with the following questions:

(a) Estimate the production function

lnðPRODÞ ¼ b1 þ b2lnðAREAÞ þ b3lnðLABORÞ þ b4lnðFERTÞ þ e

Report the results, interpret the estimates, and comment on the statistical

significance of the estimates.

(b) Using a 1% level of significance, test the hypothesis that the elasticity of

production with respect to land is equal to 0.5.
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(c) Find a 95% interval estimate for the elasticity of production with respect to

fertilizer. Has this elasticity been precisely measured?

(d) Using a 5% level of significance, test the hypothesis that the elasticity of

production with respect to labor is less than or equal to 0.3 against the alter-

native that it is greater than 0.3. What happens if you reverse the null and

alternative hypotheses?

5.25 Consider the following aggregate production function for the U.S. manufacturing

sector:

Y ¼ aKb2Lb3Eb4Mb5expfeg

where Y is gross output, K is capital, L is labor, E is energy, and M denotes other

intermediatematerials. The data underlying thesevariables are given in index form in

the file manuf.dat.

(a) Show that taking logarithms of the production function puts it in a form suitable

for least squares estimation.

(b) Estimate the unknown parameters of the production function and find the

corresponding standard errors.

(c) Discuss the economic and statistical implications of these results.

Appendix 5A Derivation of Least Squares Estimators

In Appendix 2A we derived expressions for the least squares estimators b1 and b2 in the

simple regressionmodel. In this appendixweproceedwith a similar exercise for themultiple

regression model; we describe how to obtain expressions for b1, b2, and b3 in a model with

two explanatory variables. Given sample observations on y, x2, and x3, the problem is to find

values for b1, b2, and b3 that minimize

Sðb1;b2;b3Þ ¼ �
N

i¼1
ðyi � b1 � b2xi2 � b3xi3Þ2

The first step is to partially differentiate S with respect to b1,b2, and b3 and to set the first-

order partial derivatives to zero. This yields

qS
qb1

¼ 2Nb1 þ 2b2�xi2 þ 2b3�xi3 � 2�yi

qS
qb2

¼ 2b1�xi2 þ 2b2�x2i2 þ 2b3�xi2xi3 � 2�xi2yi

qS
qb3

¼ 2b1�xi3 þ 2b2�xi2xi3 þ 2b3�x2i3 � 2�xi3yi

Setting these partial derivatives equal to zero, dividing by 2, and rearranging yields

Nb1 þ �xi2b2 þ �xi3b3 ¼ �yi
�xi2b1 þ �x2i2b2 þ �xi2xi3b3 ¼ �xi2yi
�xi3b1 þ �xi2xi3b2 þ �x2i3b3 ¼ �xi3yi

(5A.1)
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The least squares estimators for b1, b2, and b3 are given by the solution of this set of three

simultaneous equations, known as the normal equations. To write expressions for this

solution it is convenient to express the variables as deviations from their means. That is, let

y�i ¼ yi � y; x�i2 ¼ xi2 � x2; x�i3 ¼ xi3 � x3

Then the least squares estimates b1, b2, and b3 are

b1 ¼ y� b2x2 � b3x3

b2 ¼ �y�i x�i2ð Þ �x�2i3ð Þ � �y�i x�i3ð Þ �x�i2x�i3ð Þ
�x�2i2
� �

�x�2i3
� �� �x�i2x�i3

� �2
b3 ¼ �y�i x�i3ð Þ �x�2i2ð Þ � �y�i x�i2ð Þ �x�i3x�i2ð Þ

�x�2i2
� �

�x�2i3
� �� �x�i2x�i3

� �2
Formodelswithmore than three parameters the solutions become quitemessywithout using

matrix algebra; we will not show them. Computer software used for multiple regression

computations solves normal equations like those in (5A.1) to obtain the least squares

estimates.

Appendix 5B Large Sample Analysis

In the multiple regression model, if assumptions MR1–MR5 hold (or SR1–SR5 in the

simple regression model) we are able to show that the least squares estimators are Best,

Linear, Unbiased Estimators (BLUE). These properties are called ‘‘finite sample’’ proper-

ties because they do not depend on the sample size N, and will hold if the sample is any size

N > K. In this sectionwe discuss additional properties of the least squares estimator that can

be established if samples are imagined becoming infinitely large. In econometrics and

statistics these are called asymptotic properties, with the term asymptotic implying

the analysis of limiting behavior, here as N ! 1. First we describe and discuss the

properties, and then extend the Monte Carlo simulations from Appendices 2G and 3C to

illustrate them.

5B.1 CONSISTENCY

When choosing econometric estimators, we do sowith the objective inmind of obtaining an

estimate that is close to the true but unknown parameter with high probability. Consider

the simple linear regression model yi ¼ b1 þ b2xi þ ei; i ¼ 1; . . . ;N. Suppose that for

decision-making purposes we consider that obtaining an estimate of b2 within ‘‘epsilon’’ of

the true value is satisfactory. The probability of obtaining an estimate ‘‘close’’ to b2 is

P b2 � e � b2 � b2 þ eð Þ (5B.1)

An estimator is said to be consistent if this probability converges to 1 as the sample size

N ! 1. Or, using the concept of a limit, the estimator b2 is consistent if

lim
N!1

P b2 � e � b2 � b2 þ eð Þ ¼ 1 (5B.2)
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What does this mean? In Figure 5B.1 we depict the probability density functions f bNi

� �
for the least squares estimator b2 based on samples sizes N4>N3>N2>N1. As the sample size

increases, the probability density function becomes narrower.Why is that so? First of all, the

least squares estimator is unbiased if MR1–MR5 hold, so that E b2ð Þ ¼ b2. This property is

true in samples of all sizes. As the sample size changes, the center of the pdfs remains at b2.

The variance of the least squares estimator b2 in the simple regression model is given in

(2.15), and for themultiple regressionmodel in (5.8). In each case, we established that as the

sample size N gets larger, the variance of the estimator b2 becomes smaller. As N increases,

the center of the pdf remains fixed at E b2ð Þ ¼ b2, and the variance decreases, resulting in

probability density functions such as f bNi

� �
. The probability that b2 falls in the interval

b2 � e � b2 � b2 þ e is the area under the pdf between these limits. As the sample size

increases, the probability of b2 falling within the limits increases toward 1. In large samples

we can say that the least squares estimator will provide an estimate close to the true

parameter with high probability.

The property of consistency applies tomany estimators, even ones that are biased in finite

samples. For example, the estimator b̂2 ¼ b2 þ 1=N is a biased estimator. The amount of the

bias is

bias b̂2

� � ¼ E b̂2

� �� b2 ¼ 1

N

For the estimator b̂2 the bias converges to zero as N ! 1. That is

lim
N!1

bias b̂2

� � ¼ lim
N!1

E b̂2

� �� b2


 � ¼ 0 (5B.3)

In this case the estimator is said to be asymptotically unbiased. Consistency for an

estimator can be established by showing that the estimator is either unbiased or asympto-

tically unbiased, and that its variance converges to zero as N ! 1,

lim
N!1

var b̂2

� � ¼ 0 (5B.4)

Conditions (5B.3) and (5B.4) are intuitive, and sufficient to establish an estimator to be

consistent.

β2β2 � ε β2 � ε

f(bN2
)

f(bN3
)

f(bN4
) N4 � N3 � N2 � N1

f(bN1
)

FIGURE 5B.1 An illustration of consistency.
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Because the probability density function of a consistent estimator collapses around the

true parameter, and the probability that an estimator b2 will be close to the true parameterb2

approaches one, the estimator b2 is said to ‘‘converge in probability’’ to b2, with the ‘‘in

probability’’ part reminding us that it is the probability of being ‘‘close’’ in (5B.2) that is the

key factor. Several notations are used for this type of convergence.One is b2 !p b2, with the p

over the arrow indicating ‘‘probability.’’ A second is plim
N!1

b2ð Þ ¼ b2, with ‘‘plim’’ being

short for ‘‘probability limit.’’

5B.2 ASYMPTOTIC NORMALITY

In most cases econometric estimators in models satisfying MR1–MR5 (SR1–SR5) can be

shown to have an approximate normal distribution in large samples. As N ! 1 the

probability density function of the standardized estimator has a distribution that approaches

the standard normal

bk � bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bkð Þp �a N 0; 1ð Þ

We say in this case that the estimator is asymptotically normal and generally write

bk �a N bk; var bkð Þð Þ

This result is similar to the Central Limit Theorem given in Appendix C.3.4.

The consequence of this powerful result is that we can apply t-tests, F-tests and the usual

interval estimation and prediction interval procedures even if MR6 (SR6) does not hold, as

long as the sample is sufficiently large. ‘‘How large?’’ is a tricky question, because we

cannot provide a single number. In each application the answer depends on the nature of the

data and the error term. The more complicated the model, the larger the sample likely to

be required for the approximate normality to hold. In section 5B.3, we carry out some

Monte Carlo simulations so that you can see for yourself how many observations are

required before the normal approximation becomes satisfactory.

5B.3 MONTE CARLO SIMULATION

InAppendices 2G and 3C, we introduced aMonte Carlo simulation to illustrate the repeated

sampling properties of the least squares estimators. In this appendix we use the same

framework to illustrate the repeated sampling performances of interval estimators and

hypothesis tests when the errors are not normally distributed.

Recall that the data generation process for the simple linear regression model is given

by

yi ¼ E yijxið Þ þ ei ¼ b1 þ b2xi þ ei; i ¼ 1; . . . ;N

The Monte Carlo parameter values are b1 ¼ 100 and b2 ¼ 10. The value of xi is 10 for the

first N=2 observations and 20 for the remaining N=2 observations, so that the regression

functions are

E yijxi ¼ 10ð Þ ¼ 100þ 10xi ¼ 100þ 10� 10 ¼ 200; i ¼ 1; . . . ;N=2

E yijxi ¼ 20ð Þ ¼ 100þ 10xi ¼ 100þ 10� 20 ¼ 300; i ¼ N=2ð Þ þ 1; . . . ;N
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In this appendix we modify the simulation in an important way. The random errors are

independently distributed but with normalized chi-square distributions. In Figure B.7 the

pdfs of several chi-square distributions are shown. We will use the x2
4ð Þ in this simulation,

which is skewed with a long tail to the right. Let vi � x2
4ð Þ. The expected value and

variance of this random variable are E við Þ ¼ 4 and var við Þ ¼ 8, respectively, so that zi ¼
vi � 4ð Þ� ffiffiffi

8
p

has mean zero and variance one. The random errors we employ are ei ¼ 50zi
so that var eijxið Þ ¼ s2 ¼ 2500, as in earlier appendices.

As before we useM ¼ 10000 Monte Carlo simulations, using the sample sizes N ¼ 20,

40 (as before), 100, 200, 500, and 1000. Our objectives are to illustrate that the least squares

estimators of b1, b2, and the estimator ŝ2 are unbiased, and to investigate whether

hypothesis tests and interval estimates perform as they should, even though the errors

are not normally distributed. As in Appendix 3C we


 Test the null hypothesis H0 : b2 ¼ 10 using the one-tail alternative H0 : b2 > 0.

The critical value for the test is the 95th percentile of the t-distribution with

N – 2 degrees of freedom, t 0:95;N�2ð Þ. We report the percentage of rejections from

this test (REJECT).


 Construct a 95% interval estimate for b2 and report the percentage of the estimates

(COVER) that contain the true parameter, b2 ¼ 10.


 Compute the percentage of the time (CLOSE) that the estimates b2 are in the interval

b2 � 1, or between 9 and 11. Based on our theory, this percentage should increase

toward 1 as N increases.

The Monte Carlo simulation results are summarized in Table 5B.1.

The unbiasedness of the least squares estimators is verified by the average values of

the estimates’ being very close to the true parameter values for all sample sizes. The

percentage of estimates that are ‘‘close’’ to the true parameter value rises as the sample

size N increases, verifying the consistency of the estimator. Because the rejection rates

from the t-test are close to 0.05 and the coverage of the interval estimates is close to 95%,

the approximate normality of the estimators is very good. To illustrate, in Figure 5B.2

we present the histogram of the estimates b2 for N ¼ 40. It is very bell-shaped, with

the superimposed normal density function fitting it very well. The non-normality of the

errors does not invalidate inferences in this model, even with only N ¼ 40 sample

observations.

Ta b l e 5 B . 1 The least squares estimators, tests, and interval estimators

N b1 b2 ŝ2 REJECT COVER CLOSE

20 99.4368 10.03317 2496.942 0.0512 0.9538 0.3505

40 100.0529 9.99295 2498.030 0.0524 0.9494 0.4824

100 99.7237 10.01928 2500.563 0.0518 0.9507 0.6890

200 99.8427 10.00905 2497.473 0.0521 0.9496 0.8442

500 100.0445 9.99649 2499.559 0.0464 0.9484 0.9746

1,000 100.0237 9.99730 2498.028 0.0517 0.9465 0.9980
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^5B.4 THE DELTA METHOD
5

In Chapters 3.6, 5.3, 5.4, and 5.5 we discussed estimating and testing linear combinations of

parameters. If the regression errors are normal, the results discussed there hold in finite

samples. If the regression errors are not normal, then those results hold in large samples, as

we discussed in the previous section. You will be surprised in the subsequent chapters how

many times we become interested in nonlinear functions of regression parameters. For

example, we may find ourselves interested in functions such as g1 b2ð Þ ¼ exp b2=10ð Þ or
g2 b1;b2ð Þ ¼ b1=b2. The first function g1 b2ð Þ is a function of the single parameter b2.

Intuitively, we would estimate this function of b2 using g1 b2ð Þ. The second function

g2 b1;b2ð Þ is a function of two parameters, and, similarly, g2 b1; b2ð Þ seems like a reasonable

estimator.Workingwith nonlinear functions of the estimated parameters requires additional

tools, because even if the regression errors are normal, nonlinear functions of them are not

normally distributed in finite samples, and usual variance formulas do not apply.

5B.4.1 Nonlinear Functions of a Single Parameter

The key to working with nonlinear functions of a single parameter is the Taylor series

approximation discussed in Appendix A, Derivative Rule 9. It is stated there as

f xð Þ ffi f að Þ þ df xð Þ
dx

����
x¼a

x� að Þ ¼ f að Þ þ f 0 að Þ x� að Þ

The value of a function at x is approximately equal to the value of the function at x = a, plus

the derivative of the function evaluated at x ¼ a, times the difference x–a. This approx-

imation works well when the function is smooth and the difference x–a is not too large. We

will apply this rule to g1 b2ð Þ replacing x with b2 and a with b2

g1 b2ð Þ ffi g1 b2ð Þ þ g01 b2ð Þ b2 � b2ð Þ (5B.5)
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FIGURE 5B.2 Histogram of the estimates b2 for N ¼ 40.

5 This section contains advanced material.
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This Taylor series expansion of g1(b2) shows the following:

1. If E b2ð Þ ¼ b2 then E g1 b2ð Þ½ � ffi g1 b2ð Þ.
2. If b2 is a biased but consistent estimator, so that b2 !p b2, then g1 b2ð Þ!p g1 b2ð Þ.
3. The variance of g1 b2ð Þ is given by var g1 b2ð Þ½ � ffi g01 b2ð Þ½ �2var b2ð Þ, which is known

as the delta method. The delta method follows from working with the Taylor series

approximation

var g1 b2ð Þ½ � ffi var g1 b2ð Þ þ g01 b2ð Þ b2 � b2ð Þ½ �
¼ var g01 b2ð Þ b2 � b2ð Þ½ � because g1 b2ð Þ is not random
¼ g01 b2ð Þ½ �2var b2 � b2ð Þ because g01 b2ð Þ is not random
¼ g01 b2ð Þ½ �2var b2ð Þ because b2 is not random

4. The estimator g1 b2ð Þ has an approximate normal distribution in large samples,

g1 b2ð Þ�a N g1 b2ð Þ; g01 b2ð Þ½ �2var b2ð Þ
h i

(5B.6)

The asymptotic normality of g1 b2ð Þ means that we can test nonlinear hypotheses

about b2, such asH0 : g1 b2ð Þ ¼ c, and we can construct interval estimates of g1 b2ð Þ
in the usual way. To implement the delta method we replace b2 by its estimate

b2 and the true variance var b2ð Þ by its estimatebvarðb2Þ which, for the simple

regression model, is given in (2.21).

5B.4.2 The Delta Method Illustrated

To illustrate the delta method calculations, we use one sample from the N ¼ 20 simulation,

stored as mc2.dat. For these data values the fitted regression is

ŷ ¼ 87:44311þ 10:68456x

ðseÞ ð33:8764Þ ð2:1425Þ

The nonlinear function we consider is g1 b2ð Þ ¼ exp b2=10ð Þ. In the simulation we know the

value of b2 ¼ 10, so the value of the function is g1 b2ð Þ ¼ exp b2=10ð Þ ¼ e1 ¼ 2:71828. To
apply the delta method we need the derivative, g01 b2ð Þ ¼ exp b2=10ð Þ � 1=10ð Þ (see

Appendix A, Derivative Rule 7), and the estimated covariance matrix in Table 5B.2.

The estimated value of the nonlinear function is

g1 b2ð Þ ¼ exp b2=10ð Þ ¼ exp 10:68456=10ð Þ ¼ 2:91088

Ta b l e 5 B . 2 Estimated covariance matrix

b1 b2

b1 1147.61330 –68.85680

b2 –68.85680 4.59045
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The estimated variance is

bvar½g1ðb2Þ� ¼ g01 b2ð Þ½ �2bvarðb2ÞÞ ¼ exp b2=10ð Þ � 1=10ð Þ½ �2bvarðb2ÞÞ
¼ exp 10:68456=10ð Þ � 1=10ð Þ½ �24:59045 ¼ 0:38896

and se g1 b2ð Þ½ � ¼ 0:62367. The 95% interval estimate is

g1 b2ð Þ � t 0:975;20�2ð Þse g1 b2ð Þ½ � ¼ 2:91088� 2:10092� 0:62367 ¼ 1:60061; 4:22116½ �

5B.4.3 Monte Carlo Simulation of the Delta Method

In this Monte Carlo simulation, again using 10,000 samples, we compute the value of the

nonlinear function estimator g1 b2ð Þ ¼ exp b2=10ð Þ for each sample, andwe test the true null

hypothesisH0 : g1 b2ð Þ ¼ exp b2=10ð Þ ¼ e1 ¼ 2:71828 using a two-tail test at the 5% level

of significance.We are interested in howwell the estimator does in finite samples (recall that

the random errors are not normally distributed and that the function is nonlinear), and how

well the test performs. In Table 5B.3 we report the average of the parameter estimates for

each sample size. Note that the mean estimate converges towards the true value as N

becomes larger. The test at the 5% level of significance rejects the true null hypothesis about

5% of the time. The test statistic is

t ¼ g1 b2ð Þ � 2:71828

se g1 b2ð Þ½ � � t N�2ð Þ

The fact that the t-test rejects the correct percentage of the time implies not only that the

estimates arewell behaved, but that the standard error in the denominator is correct, and that

the distribution of the statistic is ‘‘close’’ to its limiting standard normal distribution.

The histogram of the estimates for sample size N ¼ 40 in Figure 5B.3 shows only the

very slightest deviation from normality, which is why the t-test performs so well.

^^5B.5 THE DELTA METHOD EXTENDED
6

When working with functions of two (or more) parameters, the approach is much the same,

but the Taylor series approximation changes to a more general form. For a function of two

parameters the Taylor series approximation is

Ta b l e 5 B . 3 Estimates and tests of g1 b2ð Þ ¼ exp b2=10ð Þ
N exp b2=10ð Þ REJECT

20 2.79647 0.0556

40 2.75107 0.0541

100 2.73708 0.0485

200 2.72753 0.0503

500 2.72001 0.0522

1000 2.71894 0.0555

6 This section contains advancedmaterial. For an advanced discussion (requires matrix algebra) of the general case

see William Greene, Econometric Analysis 6e, (Upper Saddle River, NJ: Pearson Prentice-Hall, 2008), 1055–1056.
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g2 b1; b2ð Þ ffi g2 b1;b2ð Þ þ @g2 b1;b2ð Þ
@b1

b1 � b1ð Þ þ @g2 b1;b2ð Þ
@b2

b2 � b2ð Þ (5B.7)

1. If E b1ð Þ ¼ b1 and E b2ð Þ ¼ b2 then E g2 b1; b2ð Þ½ � ffi g2 b1;b2ð Þ.
2. If b1 and b2 are consistent estimators, so that b1 !p b1 and b2 !p b2, then

g2 b1; b2ð Þ!p g2 b1;b2ð Þ.
3. The variance of g2 b1; b2ð Þ is given by the delta method as

var g2 b1; b2ð Þ½ � ffi @g2 b1;b2ð Þ
@b1


 �2
var b1ð Þ þ @g2 b1;b2ð Þ

@b2


 �2
var b2ð Þ

þ 2
@g2 b1;b2ð Þ

@b1


 �
@g2 b1;b2ð Þ

@b2


 �
cov b1; b2ð Þ

(5B.8)

4. The estimator g2 b1; b2ð Þ has an approximate normal distribution in large samples,

g2 b1; b2ð Þ�a N
�
g2 b1;b2ð Þ; var g2 b1; b2ð Þ½ �� (5B.9)

The asymptotic normality of g2 b1; b2ð Þmeans that we can test nonlinear hypotheses

such as H0 : g2 b1;b2ð Þ ¼ c, and we can construct interval estimates of g2 b1;b2ð Þ
in the usual way. In practice we evaluate the derivatives at the estimates b1 and b2,

and the variances and covariances by their usual estimates from equations like those

for the simple regression model in (2.20)–(2.22).

5B.5.1 The Delta Method Illustrated: Continued

The nonlinear function of two parameters that we consider is g2 b1;b2ð Þ ¼ b1=b2. To employ

the delta method we require the derivatives (see Appendix A, Derivative Rules 3 and 6)
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FIGURE 5B.3 Histogram of g1 b2ð Þ ¼ exp b2=10ð Þ.
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@g2 b1;b2ð Þ
@b1

¼ 1

b2

and

@g2 b1;b2ð Þ
@b2

¼ �b1

b2
2

The estimate g2 b1; b2ð Þ ¼ b1=b2 ¼ 87:44311=10:68456 ¼ 8:18406 and its estimated

variance is

bvar g2 b1; b2ð Þ½ � ¼ 1

b2


 �2bvarðb1Þ þ � b1

b22


 �2bvarðb2Þ þ 2
1

b2


 �
� b1

b22


 � bcovðb1; b2Þ
¼ 22:61857

The resulting 95% interval estimate for b1=b2 is �1:807712; 18:17583½ �. While all this

seems incredibly complicated, most software packages will compute at least the estimates

and standard errors automatically. And now that you understand the calculations, you can be

confident when you use the ‘‘canned’’ routines.

5B.5.2 Monte Carlo Simulation of the Extended Delta Method

The mean estimates in Table 5B.4 show that there is some bias in the estimates for small

samples sizes. However, the bias diminishes as the sample size increases and is close to the

true value, 10, when N ¼ 100.

The Monte Carlo simulated values of g2 b1; b2ð Þ ¼ b1=b2 are shown in Figure 5B.4a and
5B.4b from the experiments with N ¼ 40, and N ¼ 200. With sample size N ¼ 40 there is

pronounced skewness. With N ¼ 200 the distribution of the estimates is much more

symmetric and bell-shaped.

Ta b l e 5 B . 4 Estimates g2 b1; b2ð Þ ¼ b1=b2

N b1=b2

20 11.50533

40 10.71856

100 10.20997

200 10.10097

500 10.05755

1000 10.03070
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FIGURE 5B.4b Histogram of g2(b1,b2) ¼ b1=b2, N ¼ 200.
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FIGURE 5B.4a Histogram of g2ðb1; b2Þ ¼ b1=b2; N ¼ 40.
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C h a p t e r 6
Further Inference in the
Multiple Regression Model

Learning Objectives

Based on the material in this chapter, you should be able to

1. Explain the concepts of restricted and unrestricted sums of squared errors and how

they are used to test hypotheses.

2. Use the F-test to test single null hypotheses or joint null hypotheses.

3. Use your computer to perform an F-test.

4. Test the overall significance of a regression model, and identify the components of

this test from your computer output.

5. From output of your computer software, locate (a) the sum of squared errors, (b) the

F-value for the overall significance of a regression model, (c) the estimated

covariance matrix for the least squares estimates, and (d) the correlation matrix

for the explanatory variables.

6. Obtain restricted least squares estimates that include nonsample information in the

estimation procedure.

7. Explain the properties of the restricted least squares estimator. In particular, how

do its bias and variance compare with those of the unrestricted least squares

estimator?

8. Explain the issues that need to be considered when choosing a regression model.

9. Explain what is meant by (a) an omitted variable and (b) an irrelevant variable.

Explain the consequences of omitted and irrelevant variables for the properties of

the least squares estimator.

10. Explain what the Akaike information criterion and the Schwarz criterion are

used for.

11. Explain what is meant by collinearity and the consequences for least squares

estimation.

12. Explain how RESET can pick up model misspecification.
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Economists develop and evaluate theories about economic behavior. Hypothesis testing

procedures are used to test these theories. In Chapter 5 we developed t-tests for null

hypotheses consisting of a single restriction on one parameter bk from the multiple

regression model, and null hypotheses consisting of a single restriction that involves

more than one parameter. In this chapter we extend our earlier analysis to testing a null

hypothesis with two or more restrictions on two or more parameters. An important new

development for such tests is the F-test.

The theories that economists develop sometimes provide nonsample information that

can be used along with the information in a sample of data to estimate the parameters of a

regression model. A procedure that combines these two types of information is called

restrictedleastsquares. Itcanbeauseful techniquewhenthedataarenot information-rich—

a condition called collinearity—and the theoretical information is good. The restricted least

squares procedure also plays a useful practical role when testing hypotheses. In addition to

these topics,wediscussmodelspecificationfor themultipleregressionmodel,prediction,and

the construction of prediction intervals. Model specification involves choosing a functional

formandchoosing a set of explanatory variables. In this chapter,we focus on issues related to

variable choice.What happens ifwe omit a relevant variable?What happens ifwe include an

irrelevant one? We also discuss the problems that arise if our data are not sufficiently rich

because the variables are collinear or lack adequate variation.

The assumptions MR1–MR6 listed in Section 5.1 are adopted throughout this chapter.

In particular, we assume the errors are normally distributed. This assumption is needed for

the t- and F-test statistics to have their required distributions in samples of all sizes. If the

errors are not normal, then the results presented in this chapter are still valid in the sense that

they hold approximately if the sample size is large.

6.1 Testing Joint Hypotheses

In Chapter 5 we showed how to use one- and two-tail t-tests to test hypotheses involving

1. A single coefficient

2. A linear combination of coefficients

3. A nonlinear combination of coefficients

The test for a single coefficient was the most straightforward, requiring only the estimate

of the coefficient and its standard error. For testing a linear combination of coefficients,

computing the standard error of the estimated linear combination brought added complex-

ity. It uses the variances and covariances of all estimates in the linear combination and
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can be computationally demanding if done on a hand calculator, especially if there are

three or more coefficients in the linear combination. Software will perform the test

automatically, however, yielding the standard error, the value of the t-statistic, and the

p-value of the test.

For testing a nonlinear combination of coefficients, one must rely on large sample

approximations for the test statistic and for the delta method used to compute the standard

error. Derivatives of the nonlinear function and the covariance matrix of the coefficients

are required, but as with a linear combination, software will perform the test

automatically, computing the standard error for you, as well as the value of the t-statistic

and itsp-value. InChapter5wegaveanexampleofanintervalestimate rather thanahypothesis

test for a nonlinear combination, but that example—the optimal level of advertising—showed

how to obtain all the ingredients needed for a test. For both hypothesis testing and interval

estimation of a nonlinear combination, it is the standard error that requires more effort.

A characteristic of all the t tests in Chapter 5 is that they involve a single conjecture about

one ormore of the parameters—or, put another way, there is only one ‘‘equal sign’’ in the null

hypothesis. In this chapter, we are interested in extending hypothesis testing to null hypo-

theses that involve multiple conjectures about the parameters. A null hypothesis with

multiple conjectures, expressed with more than one equal sign, is called a joint hypothesis.

An example of a joint hypothesis is testing whether a group of explanatory variables should

be included in a particular model. Should variables on socioeconomic background, along

with variables describing education and experience, be used to explain a person’s wage?

Does the quantity demanded of a product depend on the prices of substitute goods, or only

on its own price? Economic hypotheses such as these must be formulated into statements

about model parameters. To answer the first of the two questions, we set up a null hypothesis

where the coefficients of all the socioeconomic variables are equal to zero. For the second

question the null hypothesis would equate the coefficients of prices of all substitute goods to

zero. Both are of the form

H0 : b4 ¼ 0; b5 ¼ 0; b6 ¼ 0 (6.1)

where b4, b5, and b6 are the coefficients of the socioeconomic variables, or the coefficients

of the prices of substitute goods. The joint null hypothesis in (6.1) contains three conjectures

(three equal signs):b4 ¼ 0, b5 ¼ 0, and b6 ¼ 0. A test of H0 is a joint test for whether all

three conjectures hold simultaneously.

It is convenient to develop the test statistic for testing hypotheses such as (6.1) within the

context of an example. We return to Big Andy’s Burger Barn.

6.1.1 TESTING THE EFFECT OF ADVERTISING: THE F-TEST

The test used for testing a joint null hypothesis is the F-test. To introduce this test and

concepts related to it, consider the Burger Barn sales model given in (5.22):

SALES ¼ b1 þ b2PRICE þ b3ADVERT þ b4ADVERT
2 þ e (6.2)

Suppose nowwewish to test whether SALES is influenced by advertising. Since advertising

appears in (6.2) as both a linear term ADVERT and as a quadratic term ADVERT 2,

advertising will have no effect on sales if b3 ¼ 0 and b4 ¼ 0; advertising will have an

effect if b3 6¼ 0 or b4 6¼ 0 or if both b3 and b4 are nonzero. Thus, for this test our null and

alternative hypotheses are
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H0 : b3 ¼ 0; b4 ¼ 0

H1 : b3 6¼ 0 or b4 6¼ 0 or both are nonzero

Relative to the null hypothesis H0 : b3 ¼ 0; b4 ¼ 0, the model in (6.2) is called the

unrestricted model; the restrictions in the null hypothesis have not been imposed on

the model. It contrasts with the restricted model, which is obtained by assuming the

parameter restrictions inH0 are true.WhenH0 is true,b3 ¼ 0 andb4 ¼ 0, andADVERTand

ADVERT 2 drop out of the model. It becomes

SALES ¼ b1 þ b2PRICE þ e (6.3)

The F-test for the hypothesis H0 : b3 ¼ 0; b4 ¼ 0 is based on a comparison of the sums of

squared errors (sums of squared least squares residuals) from the unrestrictedmodel in (6.2)

and the restrictedmodel in (6.3). Our shorthand notation for these two quantities is SSEU and

SSER, respectively.

Adding variables to a regression reduces the sum of squared errors—more of the

variation in the dependent variable becomes attributable to the variables in the regression

and less of its variation becomes attributable to the error. In terms of our notation,

SSER � SSEU � 0. Using the data in the file andy.dat to estimate (6.2) and (6.3), we

find that SSEU ¼ 1532:084 and SSER ¼ 1896:391. Adding ADVERT and ADVERT 2 to the

equation reduces the sum of squared errors from 1896.391 to 1532.084.

What the F-test does is to assess whether this reduction is sufficiently large to be

significant. If adding the extra variables has little effect on the sum of squared errors, then

thosevariables contribute little to explaining variation in the dependent variable, and there is

support for a null hypothesis that drops them.On the other hand, if adding the variables leads

to a big reduction in the sum of squared errors, those variables contribute significantly to

explaining the variation in the dependent variable, and we have evidence against the

null hypothesis. The F-statistic determines what constitutes a large reduction or a small

reduction in the sum of squared errors. It is given by

F ¼ SSER � SSEUð Þ=J
SSEU= N � Kð Þ (6.4)

where J is the number of restrictions, N is the number of observations and K is the number

of coefficients in the unrestricted model.

If the null hypothesis is true, then the statisticF haswhat is called anF-distributionwith

J numerator degrees of freedom and N � K denominator degrees of freedom. Some details

about this distribution are given in Appendix B.3.8, with its typical shape illustrated in

Figure B.9; the reason why the expression in (6.4) has an F-distribution is given in an

appendix to this chapter, Appendix 6A. If the null hypothesis is not true, then the

difference between SSER and SSEU becomes large, implying that the restrictions placed on

themodel by the null hypothesis significantly reduce the ability of themodel to fit the data.A

largevalue for SSER � SSEUmeans that the value ofF tends to be large, so that we reject the

null hypothesis if the value of the F-test statistic becomes too large. What is too large is

decided by comparing the value ofF to a critical valueFc, which leaves a probabilitya in the

upper tail of the F-distribution with J and N � K degrees of freedom. Tables of critical

values fora ¼ 0.01 and a ¼ 0.05 are provided in Tables 4 and 5 at the end of the book. The

rejection region F > Fc is illustrated in Figure B.9.
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Using the hypothesis testing steps introduced in Chapter 3, the F-test procedure for

testing whether ADVERT and ADVERT 2 should be excluded from the sales equation is as

follows:

1. Specify the null and alternative hypotheses: The joint null hypothesis is

H0 : b3 ¼ 0; b4 ¼ 0. The alternative hypothesis is H1 : b3 6¼ 0 or b4 6¼ 0 or

both are nonzero.

2. Specify the test statistic and its distribution if the null hypothesis is true: Having two

restrictions in H0 means J ¼ 2. Also, recall that N ¼ 75, so the distribution of the

F-test statistic when H0 is true is

F ¼ SSER � SSEUð Þ=2
SSEU= 75� 4ð Þ � Fð2;71Þ

3. Set the significance level and determine the rejection region: Using a ¼ 0.05, the

critical value from theF(2,71)-distribution isFc ¼ F(0.95, 2,71), giving a rejection region

of F � 3:126. Alternatively, H0 is rejected if p-value � 0.05.

4. Calculate the sample value of the test statistic and, if desired, the p-value:The value

of the F-test statistic is

F ¼ SSER � SSEUð Þ=J
SSEU= N � Kð Þ ¼ 1896:391� 1532:084ð Þ=2

1532:084= 75� 4ð Þ ¼ 8:44

The corresponding p-value is p ¼ P Fð2;71Þ > 8:44
� � ¼ 0:0005.

5. State your conclusion: Since F ¼ 8:44 > Fc ¼ 3:126, we reject the null hypothesis
that both b3 ¼ 0 and b4 ¼ 0, and conclude that at least one of them is not zero.

Advertising does have a significant effect upon sales revenue. The same conclusion

is reached by noting that p-value ¼ 0:0005 < 0:05.

Youmight ask where the valueFc ¼ Fð0:95; 2; 71Þ ¼ 3:126 came from. TheF critical values in

Tables 4 and 5 at the end of the book are reported for only a limited number of degrees of

freedom. However, exact critical values such as the one for this problem can be obtained for

any number of degrees of freedom using your econometric software.

6.1.2 TESTING THE SIGNIFICANCE OF THE MODEL

An important application of the F-test is for what is called testing the overall significance of

amodel. InChapter 5.5.1we testedwhether the dependent variable y is related to a particular

explanatory variable xk using a t-test. In this section we extend this idea to a joint test of the

relevance of all the included explanatory variables. Consider again the general multiple

regression model with (K � 1) explanatory variables and K unknown coefficients

y ¼ b1 þ x2b2 þ x3b3 þ � � � þ xKbK þ e (6.5)

To examine whether we have a viable explanatory model, we set up the following null and

alternative hypotheses:

H0 : b2 ¼ 0; b3 ¼ 0; � � � ; bK ¼ 0

H1 : At least one of the bk is nonzero for k ¼ 2; 3; . . . ;K
(6.6)
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The null hypothesis is a joint one because it has K � 1 components. It conjectures that each

and every one of the parametersbk, other than the intercept parameterb1, are simultaneously

zero. If this null hypothesis is true, none of the explanatory variables influence y, and thus our

model is of little or no value. If the alternative hypothesis H1 is true, then at least one of the

parameters is not zero, and thus one or more of the explanatory variables should be included

in the model. The alternative hypothesis does not indicate, however, which variables those

might be. Sincewe are testingwhether or notwe have a viable explanatorymodel, the test for

(6.6) is sometimes referred to as a test of the overall significance of the regression model.

Given that the t-distribution can only be used to test a single null hypothesis,we use theF-test

for testing the joint null hypothesis in (6.6). The unrestrictedmodel is that given in (6.5). The

restricted model, assuming the null hypothesis is true, becomes

yi ¼ b1 þ ei (6.7)

The least squares estimator ofb1 in this restrictedmodel is b�1 ¼ �N
i¼1yi=N ¼ y, which is the

sample mean of the observations on the dependent variable. The restricted sum of squared

errors from the hypothesis (6.6) is

SSER ¼ �
N

i¼1
ðyi � b�1Þ2 ¼ �

N

i¼1
ðyi � yÞ2 ¼ SST

In this one case, in whichwe are testing the null hypothesis that all themodel parameters are

zero except the intercept, the restricted sum of squared errors is the total sum of squares

(SST) from the full unconstrained model. The unrestricted sum of squared errors is the sum

of squared errors from the unconstrained model—that is, SSEU ¼ SSE. The number of

restrictions is J ¼ K � 1. Thus, to test the overall significance of amodel, but not in general,

the F-test statistic can be modified and written as

F ¼ ðSST � SSEÞ=ðK � 1Þ
SSE=ðN � KÞ (6.8)

The calculated value of this test statistic is compared to a critical value from the FðK�1;N�KÞ
distribution. It is used to test the overall significance of a regression model. The outcome of

the test is of fundamental importance when carrying out a regression analysis, and it is

usually automatically reported by computer software as the F-value.

To illustrate, we test the overall significance of the regression, (6.2), used to explain Big

Andy’s sales revenue. We want to test whether the coefficients of PRICE, ADVERT, and

ADVERT 2 are all zero, against the alternative that at least one of these coefficients is not zero.

Recalling that the model is SALES ¼ b1 þ b2PRICE þ b3ADVERT þ b4ADVERT
2 þ e,

the hypothesis testing steps are as follows:

1. We are testing

H0 : b2 ¼ 0; b3 ¼ 0; b4 ¼ 0

against the alternative

H1 : At least one of b2 or b3 or b4 is nonzero

2. If H0 is true, F ¼ ðSST � SSEÞ=ð4� 1Þ
SSE=ð75� 4Þ � Fð3;71Þ.

226 FURTHER INFERENCE IN THE MULT IPLE REGRESS ION MODEL



3. Using a 5% significance level, we find the critical value for theF-statistic with (3,71)

degrees of freedom is Fc ¼ 2:734. Thus, we reject H0 if F � 2:734.

4. The required sums of squares are SST ¼ 3115.482 and SSE ¼ 1532.084 which give

an F-value of

F ¼ ðSST � SSEÞ=ðK � 1Þ
SSE=ðN � KÞ ¼ ð3115:482� 1532:084Þ=3

1532:084=ð75� 4Þ ¼ 24:459

Also, p-value ¼ P F � 24:459ð Þ ¼ 0:0000, correct to four decimal places.

5. Since 24.459 > 2.734, we reject H0 and conclude that the estimated relationship is

a significant one. A similar conclusion is reached using the p-value. We conclude

that at least one of PRICE, ADVERT, or ADVERT 2 have an influence on sales. Note

that this conclusion is consistent with conclusions that would be reached using

separate t-tests for the significance of each of the coefficients in (5.24).

Go back and check the output from your computer software. Can you find the F-value

24.459 and the corresponding p-value of 0.0000 that form part of the routine output?

6.1.3 THE RELATIONSHIP BETWEEN t - AND F-TESTS

In Section 6.1.1, we tested whether advertising affects sales by using an F-test to test

whether b3 ¼ 0 and b4 ¼ 0 in the model

SALES ¼ b1 þ b2PRICE þ b3ADVERT þ b4ADVERT
2 þ e (6.9)

Suppose now we want to test whether PRICE affects SALES. Following the same F-testing

procedure, we have H0 : b2 ¼ 0, H1 : b2 6¼ 0, and the restricted model

SALES ¼ b1 þ b3ADVERT þ b4ADVERT
2 þ e (6.10)

Estimating (6.9) and (6.10) gives SSEU ¼ 1532.084 and SSER ¼ 2683.411, respectively.

The required F-value is

F ¼ SSER � SSEUð Þ=J
SSEU= N � Kð Þ ¼ 2683:411� 1532:084ð Þ=1

1532:084= 75� 4ð Þ ¼ 53:355

The 5% critical value is Fc ¼ Fð0:95; 1; 71Þ ¼ 3:976. Thus, we reject H0 : b2 ¼ 0.

You might be wondering why we have used an F-test to testH0 : b2 ¼ 0 when we could

have used the t-test for significance of an individual coefficient described in Chapter 5.5.1.

There is only one conjecture in the null hypothesis. It is not a joint hypothesis. Will the two

tests give the same result? What is the relationship between the t- and F-tests?

When testing a single ‘‘equality’’ null hypothesis (a single restriction) against a ‘‘not

equal to’’ alternative hypothesis, either a t-test or an F-test can be used; the test outcomes

will be identical. The reason for this correspondence is an exact relationship between the

t- and F-distributions. The square of a t random variable with df degrees of freedom is an F

random variablewith 1 degree of freedom in the numerator and df degrees of freedom in the

denominator. It has distribution F 1;dfð Þ.
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To use a t-test for testing H0 : b2 ¼ 0 against H1 : b2 6¼ 0, we return to (5.24), which

presented the results from estimating (6.9). It is given by

bSALES ¼ 109:72� 7:640PRICE þ 12:151ADVER� 2:768ADVER2

ðseÞ ð6:80Þ ð1:046Þ ð3:556Þ ð0:941Þ

The t-value for testing H0 : b2 ¼ 0 against H1 : b2 6¼ 0 is t ¼ 7:640=1:045939 ¼ 7:30444.
Its square is t2 ¼ ð7:30444Þ2 ¼ 53:355, which is identical to the F-value calculated above.
The 5% critical value for the t-test is tc ¼ tð0:975; 71Þ ¼ 1:9939, whose square is t2c ¼
1:99392 ¼ 3:976 ¼ Fc, the critical value for theF-test. Because of these exact relationships,

the p-values for the two tests are identical, meaning that we will always reach the same

conclusion whichever approach we take. However, there is no equivalence when using a

one-tail t-test, since the F-test is not appropriate when the alternative is an inequality such

as> or<. The equivalence between t-tests and F-tests also does not carry over when a null
hypothesis consists of more than a single restriction. Under these circumstances, where

J � 2, the t-test cannot be used, but an F-test is available.

We can summarize the elements of an F-test as follows:

1. The null hypothesis H0 consists of one or more equality restrictions on the model

parameters bk. The number of restrictions is denoted by J. When J ¼ 1, the null

hypothesis is called a single null hypothesis. When J � 2, it is called a joint null

hypothesis. The null hypothesis may not include any ‘‘greater than or equal to’’ or

‘‘less than or equal to’’ hypotheses.

2. The alternative hypothesis states that one or more of the equalities in the null

hypothesis is not true. The alternative hypothesismay not include any ‘‘greater than’’

or ‘‘less than’’ options.

3. The test statistic is the F-statistic in (6.4).

4. If the null hypothesis is true, F has the F-distribution with J numerator degrees of

freedom andN � K denominator degrees of freedom.The null hypothesis is rejected

if F > Fc, where F ¼ F(1-a,J,N�K) is the critical value that leaves a percent of the

probability in the upper tail of the F-distribution.

5. When testing a single equality null hypothesis, it is perfectly correct to use either the

t- or F-test procedure: they are equivalent. In practice, it is customary to test single

restrictions using a t-test. The F-test is usually reserved for joint hypotheses.

6.1.4 MORE GENERAL F-TESTS

So far we have discussed the F-test in the context of whether a variable or a group of

variables could be excluded from the model. The conjectures made in the null hypothesis

were that particular coefficients are equal to zero. TheF-test can also be used formuchmore

general hypotheses. Any number of conjectures (�K) involving linear hypotheses with

equal signs can be tested. Deriving the restrictedmodel implied byH0 can be trickier, but the

same general principles hold. The restricted sum of squared errors is still greater than

the unrestricted sum of squared errors. In the restricted model, least squares estimates

are obtained by minimizing the sum of squared errors subject to the restrictions on the

parameters being true, and the unconstrained minimum (SSEU) is always less than

the constrained minimum (SSER). If SSEU and SSER are substantially different, assuming
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that the null hypothesis is true significantly reduces the ability of the model to fit the data;

in other words, the data do not support the null hypothesis, and it is rejected by the F-test.

On the other hand, if the null hypothesis is true, we expect the data to be compatible with

the conditions placed on the parameters. We expect little change in the sum of squared

errors, in which case the null hypothesis will not be rejected by the F-test.

For an example we return to Chapter 5.6.3, where we found that the optimal amount for

Andy to spend on advertising, ADVERT0, is such that

b3 þ 2b4ADVERT0 ¼ 1 (6.11)

Now suppose that Big Andy has been spending $1,900 per month on advertising and he

wants to know whether this amount could be optimal. Does the information from the

estimated equation provide sufficient evidence to reject a hypothesis that $1,900 per month

is optimal? The null and alternative hypotheses for this test are

H0 : b3 þ 2� b4 � 1:9 ¼ 1 H1 : b3 þ 2� b4 � 1:9 6¼ 1

After carrying out the multiplication, these hypotheses can be written as

H0 : b3 þ 3:8 b4 ¼ 1 H1 : b3 þ 3:8 b4 6¼ 1

How dowe obtain the restricted model implied by the null hypothesis? Note that whenH0 is

true, b3 ¼ 1� 3:8b4. Substituting this restriction into the unrestricted model in (6.9) gives

SALES ¼ b1 þ b2PRICE þ ð1� 3:8b4ÞADVERT þ b4ADVERT
2 þ e

Collecting terms and rearranging this equation to put it in a form convenient for estimation

yields

ðSALES� ADVERTÞ ¼ b1 þ b2PRICE þ b4ðADVERT2 � 3:8ADVERTÞ þ e (6.12)

Estimating this model by least squares with dependent variable y ¼ SALES�ADVERT and

explanatory variables x2 ¼ PRICE and x3 ¼ ADVERT2 � 3:8ADVERT yields the restricted

sum of squared errors SSER ¼ 1552:286. The unrestricted sum of squared errors is the same

as before, SSEU ¼ 1532:084. We also have one restriction (J ¼ 1) and N�K ¼ 71 degrees

of freedom. Thus, the calculated value of the F-statistic is

F ¼ ð1552:286� 1532:084Þ=1
1532:084=71

¼ 0:9362

For a ¼ 0.05, the critical value is Fc ¼ 3.976. Since F ¼ 0:9362 < Fc ¼ 3:976, we do not
rejectH0.We conclude that Andy’s conjecture, that an advertising expenditure of $1,900 per

month is optimal is compatible with the data.

Because there is only one conjecture in H0, you can also carry out this test using the

t-distribution.Check itout.For the t-valueyoushouldfind t ¼ 0.9676.ThevalueF ¼ 0.9362

is equal to t2 ¼ ð0:9676Þ2, obeying the relationship between t- and F-random variables that

we mentioned previously. You will also find that the p-values are identical. Specifically,

p-value ¼ P Fð1;71Þ > 0:9362
� � ¼ P tð71Þ > 0:9676

� �þ P tð71Þ < �0:9676
� � ¼ 0:3365
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The result 0.3365 > 0.05 leads us to conclude that ADVERT0 ¼ 1.9 is compatible with

the data.

Youmay have noticed that our description of this test has deviated slightly from the step-

by-step hypothesis testing format introduced in Chapter 3 and used so far in the book. The

same ingredients were there, but the arrangement of them varied. From now on, we will be

less formal about following these steps. By being less formal, we can expose you to the type

of discussion you will find in research reports, but please remember that the steps were

introduced for a purpose: to teach you good habits. Following the steps ensures that you

include a description of all the relevant components of the test and that you think about the

steps in the correct order. It is not correct, for example, to decide on the hypotheses or

the rejection region after you observe the value of the statistic.

6.1.4a A One-Tail Test

Suppose that instead ofwanting to test whether the conjecture ‘‘ADVERT ¼ 1.9 is optimal’’

is supported by the data, Big Andy wants to test whether the optimal value of ADVERT is

greater than 1.9. If he has been spending $1,900 per month on advertising, and he does not

want to increase this amount unless there is convincing evidence that the optimal amount is

greater than $1,900, he will set up the hypotheses

H0 : b3 þ 3:8 b4 � 1 H1 : b3 þ 3:8 b4 > 1 (6.13)

In this case, we can no longer use the F-test. Because F ¼ t2, the F-test cannot distinguish

between the left and right tails as is needed for a one-tail test. We restrict ourselves to the

t-distribution when considering alternative hypotheses that have inequality signs such as

< or>. If you proceed with a t-test for (6.13), your calculations will reveal t ¼ 0.9676. The

rejection region for a 5% significane level is as follows: Reject H0 if t � 1.667. Because

0.9676 < 1.667,we do not rejectH0. There is not enough evidence in the data to suggest that

the optimal level of advertising expenditure is greater than $1,900.

6.1.5 USING COMPUTER SOFTWARE

Though it is possible and instructive to compute an F-value by using the restricted and

unrestricted sums of squares, it is often more convenient to use the power of econometric

software. Most software packages have commands that will automatically compute t- and

F-values and their corresponding p-values when provided with a null hypothesis. You

should check your software. Can you work out how to get it to test null hypotheses such as

thosewe constructed? These tests belong to a class of tests calledWald tests; your software

might refer to them in this way. Can you reproduce the answers we got for all the tests in

Chapters 5 and 6?

We conclude this section with a joint test of two of BigAndy’s conjectures. In addition to

proposing that the optimal level of monthly advertising expenditure is $1,900, Big Andy is

planning staffing and purchasing of inputs on the assumption that when PRICE ¼ $6 and

ADVERT ¼ 1.9, sales revenue will be $80,000 on average. That is, in the context of our

model, and in terms of the regression coefficients bk, the conjecture is

EðSALESÞ ¼ b1 þ b2PRICE þ b3ADVERT þ b4ADVERT
2

¼ b1 þ 6b2 þ 1:9b3 þ 1:92 b4

¼ 80
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Are the conjectures about sales and optimal advertising compatible with the evidence

contained in the sample of data? We formulate the joint null hypothesis

H0 : b3 þ 3:8b4 ¼ 1 and b1 þ 6b2 þ 1:9b3 þ 3:61b4 ¼ 80

The alternative is that at least one of these restrictions is not true. Because there are

J ¼ 2 restrictions to test jointly, we use an F-test. A t-test is not suitable. Note also that

this is an example of a test with two restrictions that are more general than simply

omitting variables. Constructing the restricted model requires substituting both of these

restrictions into our extended model, which is left as an exercise. Using instead

computer output obtained by supplying the two hypotheses directly to the software,

we obtain a computed value for the F-statistic of 5.74 and a corresponding p-value of

0.0049. At a 5% significance level, the joint null hypothesis is rejected. As another

exercise, use the least squares estimates to predict sales revenue for PRICE ¼ 6 and

ADVERT ¼ 1.9. Has Andy been too optimistic about the level of sales, or too

pessimistic?

6.2 The Use of Nonsample Information

In many estimation problems we have information over and above the information con-

tained in the sample observations. This nonsample information may come from many

places, such as economic principles or experience. When it is available, it seems intuitive

that we should find a way to use it. If the nonsample information is correct, and if we

combine it with the sample information, the precision with which we can estimate the

parameters is improved.

To illustrate how we might go about combining sample and nonsample information,

consider a model designed to explain the demand for beer. From the theory of consumer

choice in microeconomics, we know that the demand for a good will depend on the price of

that good, on the prices of other goods—particularly substitutes and complements—and on

income. In the case of beer, it is reasonable to relate the quantity demanded (Q) to the price of

beer (PB), the price of liquor (PL), the price of all other remaining goods and services (PR),

and income (I). To estimate this demand relationship, we need a further assumption about

the functional form. Using ‘‘ln’’ to denote the natural logarithm, we assume, for this case,

that the log-log functional form is appropriate:

lnðQÞ ¼ b1 þ b2 lnðPBÞ þ b3 lnðPLÞ þ b4 lnðPRÞ þ b5 lnðIÞ (6.14)

This model is a convenient one because it precludes infeasible negative prices, quantities, and

income, and because the coefficients b2, b3, b4, and b5 are elasticities. See Chapter 4.6.

A relevant piece of nonsample information can be derived by noting that if all prices

and income go up by the same proportion, we would expect there to be no change in

quantity demanded. For example, a doubling of all prices and income should not change

the quantity of beer consumed. This assumption is that economic agents do not suffer from

‘‘money illusion.’’ Let us impose this assumption on our demand model and see what

happens. Having all prices and income change by the same proportion is equivalent to

multiplyingeachprice and incomebyaconstant.Denoting this constantbylandmultiplying

each of the variables in (6.14) by l yields
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lnðQÞ ¼ b1 þ b2lnðlPBÞ þ b3lnðlPLÞ þ b4lnðlPRÞ þ b5lnðlIÞ
¼ b1 þ b2lnðPBÞ þ b3lnðPLÞ þ b4lnðPRÞ þ b5lnðIÞ

þðb2 þ b3 þ b4 þ b5ÞlnðlÞ
(6.15)

Comparing (6.14) with (6.15) shows that multiplying each price and income by lwill give a
change in ln(Q) equal to (b2þ b3þ b4þ b5) ln(l). Thus, for there to be no change in ln(Q)
when all prices and income go up by the same proportion, it must be true that

b2 þ b3 þ b4 þ b5 ¼ 0 (6.16)

Thus, we can say something about how quantity demanded should not change when prices

and income change by the same proportion, and this information can be written in terms of

a specific restriction on the parameters of the demand model. We call such a restriction

nonsample information. If we believe that this nonsample information makes sense, and

hence that the parameter restriction in (6.16) holds, then it seems desirable to be able to

obtain estimates that obey this restriction.

To obtain estimates that obey (6.16), we begin with the multiple regression model

lnðQÞ ¼ b1 þ b2 lnðPBÞ þ b3 lnðPLÞ þ b4 lnðPRÞ þ b5 lnðIÞ þ e (6.17)

and a sample of data consisting of 30 years of annual data on beer consumption collected

from a randomly selected household. These data are stored in the file beer.dat.

To introduce the nonsample information, we solve the parameter restriction b2 þ b3 þ
b4 þ b5 ¼ 0 for one of thebk’s.Which one is not important mathematically, but for reasons

explained below we solve for b4:

b4 ¼ �b2 � b3 � b5

Substituting this expression into the original model in (6.17) gives

lnðQÞ ¼ b1 þ b2 lnðPBÞ þ b3 lnðPLÞ þ ð�b2 � b3 � b5ÞlnðPRÞ þ b5 lnðIÞ þ e

¼ b1 þ b2

�
lnðPBÞ � lnðPRÞ�þ b3

�
lnðPLÞ � lnðPRÞ�

þb5

�
lnðIÞ � lnðPRÞ�þ e

¼ b1 þ b2 ln
PB

PR

� �
þ b3 ln

PL

PR

� �
þ b5 ln

I

PR

� �
þ e

(6.18)

We have used the parameter restriction to eliminate the parameter b4, and in so doing, and

using the properties of logarithms, we have constructed the new variables ln(PB=PR),
ln(PL=PR), and ln(I=PR). The last line in (6.18) is our restricted model. To get least squares

estimates that satisfy the parameter restriction, called restricted least squares estimates,

we apply the least squares estimation procedure directly to the restricted model in (6.18).

The estimated equation is

blnðQÞ ¼ �4:798� 1:2994 ln
PB

PR

� �
þ 0:1868 ln

PL

PR

� �
þ 0:9458 ln

I

PR

� �
ðseÞ ð0:166Þ ð0:284Þ ð0:427Þ

(6.19)
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Let the restricted least squares estimates in (6.19) be denoted by b�1, b
�
2, b

�
3, and b

�
5. To obtain

an estimate for b4, we use the restriction

b�4 ¼ �b�2 � b�3 � b�5 ¼ �ð�1:2994Þ � 0:1868� 0:9458 ¼ 0:1668

By using the restriction within the model, we have ensured that the estimates obey the

constraint, so that b�2 þ b�3 þ b�4 þ b�5 ¼ 0. Though it is always possible to obtain restricted

estimates by substituting the constraints into the model, it may become messy if there are a

number of restrictions or if the restrictions involve several parameters. Some software

packages have commands that automatically compute the restricted least squares estimates

when provided with the constraints. You should check out the commands available in your

software.

What are the properties of this restricted least squares estimation procedure? First, the

restricted least squares estimator is biased, E(b�k) 6¼bk, unless the constraints we impose are

exactly true. This result makes an important point about econometrics. A good economist

will obtainmore reliable parameter estimates than a poor one, because a good economistwill

introduce better nonsample information. This is true at the time of model specification as

well as later, when constraints might be applied to the model. Nonsample information is not

restricted to constraints on the parameters; it is also used for model specification. Good

economic theory is a very important ingredient in empirical research.

The second property of the restricted least squares estimator is that its variance is smaller

than the variance of the least squares estimator,whether the constraints imposed are true or

not. By combining nonsample information with the sample information, we reduce the

variation in the estimation procedure causedby randomsampling. This reduction invariance

obtained by imposing restrictions on the parameters is not at odds with the Gauss–Markov

theorem.TheGauss–Markov result that the least squares estimator is the best linear unbiased

estimator applies to linear and unbiased estimators that use data alone, and no constraints on

the parameters. Including additional information with the data gives the added reward of a

reduced variance. If the additional nonsample information is correct, we are unambiguously

better off; the restricted least squares estimator is unbiased and has lower variance. If the

additional nonsample information is incorrect, the reduced variance comes at the cost of

bias. This bias can be a big price to pay if it leads to estimates substantially different from

their corresponding true parameter values. Evidence on whether or not a restriction is true

can be obtained by testing the restriction along the lines of the previous section. In the case of

this particular demand example, the test is left as an exercise.

6.3 Model Specification

In what has been covered so far, we have generally taken the role of the model as given.

Questions have been of the following type: Given a particular regression model, what is the

best way to estimate its parameters? Given a particular model, how do we test hypotheses

about the parameters of that model? How do we construct interval estimates for the

parameters of a model? What are the properties of estimators in a given model? Given that

all these questions require knowledge of the model, it is natural to ask where the model

comes from. In any econometric investigation, choice of themodel is one of the first steps. In

this section, we focus on the following questions: What are the important considerations

when choosing a model? What are the consequences of choosing the wrong model? Are

there ways of assessing whether a model is adequate?
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Three essential features of model choice are (1) choice of functional form, (2) choice of

explanatory variables (regressors) to be included in the model, and (3) whether the multiple

regression model assumptions MR1–MR6, listed in Chapter 5, hold. Later chapters on

heteroskedasticity, autocorrelation, and random regressors deal with violations of the

assumptions. For choice of functional form and regressors, economic principles and logical

reasoning play a prominent and vital role. We need to ask: What variables are likely to

influence the dependent variable y? How is y likely to respond when these variables change:

at a constant rate? at a decreasing rate? Is it reasonable to assume constant elasticities over

the whole range of the data? The answers to these questions have a bearing on regressor

choice and choice of a suitable functional form. Alternative functional forms were

considered in Chapters 2.8, 4.3 to 4.6, and 5.6 to 5.7. We turn now to consider the

consequences of choosing the wrong set of regressors and some questions about regressor

choice.

6.3.1 OMITTED VARIABLES

It is possible that a chosen model may have important variables omitted. Our economic

principles may have overlooked a variable, or lack of data may lead us to drop a variable even

when it is prescribed by economic theory. To introduce the omitted-variable problem, we

consider a sampleofmarried couples such that both husbands andwiveswork.This samplewas

used by labor economist TomMroz in a classic paper on female labor force participation. The

variables from this sample that we use in our illustration are stored in the file edu_inc.dat.

The dependent variable is annual family income FAMINC defined as the combined income of

husband and wife. We are interested in the impact of level of education—both the husband’s

years of education (HEDU) and the wife’s years of education (WEDU)—on family income.

The estimated relationship is

bFAMINC ¼ �5534 þ 3132HEDU þ 4523WEDU

ðseÞ ð11230Þ ð803Þ ð1066Þ
ð p-valueÞ ð0:622Þ ð0:000Þ ð0:000Þ

(6.20)

We estimate that an additional year of education for the husbandwill increase annual income

by $3,132, and an additional year of education for the wife will increase income by $4,523.

What happens if we now incorrectly omit wife’s education from the equation? The

estimated equation becomes

bFAMINC ¼ �26191 þ 5155HEDU

ðseÞ ð8541Þ ð658Þ
ð p-valueÞ ð0:002Þ ð0:000Þ

(6.21)

Relative to (6.20), omitting WEDU leads us to overstate the effect of an extra year of

education for the husband by about $2,000. This change in the magnitude of a coefficient is

typical of the effect of incorrectly omitting a relevant variable. Omission of a relevant

variable (defined as one whose coefficient is nonzero) leads to an estimator that is biased.

Naturally enough, this bias is known as omitted-variable bias. To give a general expression

for this bias for the case in which one explanatory variable is omitted from amodel with two

explanatory variables, we write the underlying model for (6.20) as

y ¼ b1 þ b2x2 þ b3x3 þ e (6.22)
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where y ¼ FAMINC, x2 ¼ HEDU, and x3 ¼ WEDU. Omitting x3 from the equation is

equivalent to imposing the restrictionb3¼ 0. It can be viewed as an example of imposing an

incorrect constraint on the parameters. As discussed in the previous section, the implications

of an incorrect constraint are biased coefficient estimates, but a reduced variance. Let b�2 be
the least squares estimator forb2 when x3 is omitted from the equation. In an appendix to this

chapter, Appendix 6B, we show that

biasðb�2Þ ¼ Eðb�2Þ � b2 ¼ b3

bcovðx2; x3Þbvarðx2Þ (6.23)

Knowing the sign of b3 and the sign of the covariance between x2 and x3 tells us the direction

of the bias.Also,while omitting a variable from the regression usually biases the least squares

estimator, if the sample covariance (or sample correlation) between x2 and the omitted

variable x3 is zero, then the least squares estimator in themisspecifiedmodel is still unbiased.

To analyze (6.23) in the context of our example, first note that b3> 0 because husband’s

education has a positive effect on family income. Also, from Table 6.1,bcov( x2, x3)> 0

because husband’s and wife’s levels of education are positively correlated. Thus, the bias

exhibited in (6.21) is positive. There are, of course, other variables that could be included in

(6.20) as explanators of family income. In the following equation we include KL6, the

number of children less than six years old. The larger the number of young children,

the fewer the number of hours likely to be worked; hence, a lower family income would

be expected.

bFAMINC ¼ �7755 þ 3212HEDU þ 4777WEDU � 14311KL6

ðseÞ ð11163Þ ð797Þ ð1061Þ ð5004Þ
ð p-valueÞ ð0:488Þ ð0:000Þ ð0:000Þ ð0:004Þ

(6.24)

We estimate that a child under six reduces family income by $14,311. Notice that compared

to (6.20), the coefficient estimates forHEDU andWEDU have not changed a great deal. This

outcome occurs because KL6 is not highly correlated with the education variables. From

a general modeling perspective, it means that useful results can still be obtained when a

relevant variable is omitted if that variable is uncorrelated with the included variables and

our interest is on the coefficients of the included variables. (Such instances can arise, for

example, if data are not available for the relevant omitted variable.)

6.3.2 IRRELEVANT VARIABLES

The consequences of omitting relevant variables may lead you to think that a good strategy

is to include as many variables as possible in your model. However, doing so will not only

Ta b l e 6 . 1 Correlation Matrix for Variables Used in Family Income Example

FAMINC HEDU WEDU KL6 X5 X6

FAMINC 1.000

HEDU 0.355 1.000

WEDU 0.362 0.594 1.000

KL6 �0.072 0.105 0.129 1.000

X5 0.290 0.836 0.518 0.149 1.000

X6 0.351 0.821 0.799 0.160 0.900 1.000
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complicate your model unnecessarily, but may also inflate the variances of your estimates

because of the presence of irrelevant variables. To see the effect of irrelevant variables,

we add two artificially generated variables X5 and X6 to (6.24). These variables were

constructed so that they are correlated with HEDU and WEDU (see Table 6.1) but are not

expected to influence family income. The resulting estimated equation is

bFAMINC ¼ �7759þ 3340HEDU þ 5869WEDU � 14200KL6þ 889X5 � 1067X6

ðseÞ ð11195Þ ð1250Þ ð2278Þ ð5044Þ ð2242Þ ð1982Þ
ð p-valueÞ ð0:500Þ ð0:008Þ ð0:010Þ ð0:005Þ ð0:692Þ ð0:591Þ

What can we observe from these estimates? First, as expected, the coefficients of X5 and X6

have p-values greater than 0.05. They do indeed appear to be irrelevant variables. Also, the

standard errors of the coefficients estimated for all other variables have increased, with

p-values increasing correspondingly. The inclusion of irrelevant variables has reduced the

precision of the estimated coefficients for other variables in the equation. This result follows

because by the Gauss–Markov theorem, the least squares estimator of the correct model is

the minimum variance linear unbiased estimator.

6.3.3 CHOOSING THE MODEL

The possibilities of omitted-variable bias or inflated variances from irrelevant variables

mean that it is important to specify an appropriate set of explanatory variables. Unfortu-

nately, doing so is often not an easy task. There is no one set of mechanical rules that can be

applied to come up with the best model. What is needed is an intelligent application of both

theoretical knowledge and the outcomes of various statistical tests. Better choices come

with experience. What is important is to recognize ways of assessing whether a model is

reasonable or not. Some points worth keeping in mind are as follows:

1. Choose variables and a functional form on the basis of your theoretical and general

understanding of the relationship.

2. If an estimated equation has coefficients with unexpected signs, or unrealistic

magnitudes, they could be caused by a misspecification such as the omission of

an important variable.

3. One method for assessing whether a variable or a group of variables should be

included in an equation is to perform significance tests. That is, t-tests for hypotheses

such as H0 :b3 ¼ 0 or F-tests for hypotheses such as H0 :b3 ¼ b4 ¼ 0. Failure to

reject hypotheses such as these can be an indication that the variable(s) are irrelevant.

However, it is important to remember that failure to reject a null hypothesis can also

occur if the data are not sufficiently rich to disprove the hypothesis.Morewill be said

about poor data in the next section. For the moment we note that, when a variable has

an insignificant coefficient, it can either be (a) discarded as an irrelevant variable or

(b) retained because the theoretical reason for its inclusion is a strong one.

4. At different times in the history of econometrics and statistics, various model

selection criteria have been introduced based on maximizing R2 or minimizing the

sum of squared errors (SSE) subject to a penalty for too many variables. We will

describe three of these in Section 6.3.4: an adjusted R2, the Akaike information

criterion (AIC), and the Schwarz criterion (SC), also known as the Bayesian

information criterion (BIC).
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5. The adequacy of a model can be tested using a general specification test known as

RESET. This test is described in Section 6.3.5.

6.3.4 MODEL SELECTION CRITERIA

In this section we consider three model selection criteria: R
2
, AIC, and SC (BIC).

Throughout the section you should keep in mind that we are not recommending blind

application of any of these criteria; they should be treated as devices that provide additional

information about the relative merits of alternative models, and they should be used in

conjunction with the other considerations listed in Section 6.3.3 and the introduction to

Section 6.3.

A common feature of the criteria we describe is that they are suitable only for comparing

models with the same dependent variable, not models with different dependent variables

like y and ln(y). More general versions of the AIC and SC, based on likelihood functions,1

are available for models with transformations of the dependent variable, but we do not

consider them here.

6.3.4a The Adjusted Coefficient of Determination

In Chapters 4 and 5 we introduced the coefficient of determination R2 ¼ 1� SSE=SST as a

measure of goodness of fit. It shows the proportion of variation in a dependent variable

explained by variation in the explanatory variables. Since it is desirable to have amodel that

fits the data well, there can be a tendency to think that the best model is the one with the

highest R2. Although this line of thinking is legitimate if we are comparing models with

the same number of explanatory variables, it breaks down when we are adding or deleting

variables. The problem is thatR2 can bemade large by addingmore andmorevariables, even

if the variables added have no justification. Algebraically, it is a fact that as variables are

added the sum of squared errors SSE goes down, and thus R2 goes up. If the model contains

N � 1 variables, then R2 ¼ 1.

An alternative measure of goodness of fit called the adjusted-R2, denoted as R
2
, has been

suggested to overcome this problem. It is computed as

R
2 ¼ 1� SSE=ðN � KÞ

SST=ðN � 1Þ (6.25)

This measure does not always go up when a variable is added, because of the degrees of

freedom term N � K in the numerator. As the number of variables K increases, SSE goes

down, but so doesN � K. The effect onR
2
depends on the amount bywhich SSE falls.While

solving one problem, this corrected measure of goodness of fit unfortunately introduces

other problems. It loses its interpretation; R
2
is no longer the proportion of explained

variation. Also, it can be shown that if a variable is added to an equation, saywith coefficient

bK, then R
2
will increase if the t-value for testing the hypothesisH0 : bK ¼ 0 is greater than

one. Thus, using R
2
as a device for selecting the appropriate set of explanatory variables

is like using a hypothesis test for significance of a coefficient with a critical value of one, a

value much less than that typically used with 5% and 10% levels of significance. Because of

these complications, we prefer to report the unadjustedR2 as a goodness-of-fit measure, and

caution is required if R
2
is used for model selection. Nevertheless, you should be familiar

with R
2
. You will see it in research reports and on the output of software packages.

1 An introduction to maximum likelihood estimation can be found in Appendix C8.
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6.3.4b Information Criteria

Selecting variables to maximize R
2
can be viewed as selecting variables to minimize SSE,

subject to a penalty for introducing too many variables. Both the AIC and the SC work in a

similar way, but with different penalties for introducing too many variables. The Akaike

information criterion (AIC) is given by

AIC ¼ ln
SSE

N

� �
þ 2K

N
(6.26)

and the Schwarz criterion (SC), also known as theBayesian information criterion (BIC),

is given by

SC ¼ ln
SSE

N

� �
þ K lnðNÞ

N
(6.27)

In each case, the first term becomes smaller as extra variables are added, reflecting the

decline in the SSE, but the second term becomes larger, because K increases. Because

K lnðNÞ=N > 2K=N forN � 8, in reasonable sample sizes the SC penalizes extra variables

more heavily than does theAIC.Using these criteria, themodelwith the smallest AIC, or the

smallest SC, is preferred.

To get values of the more general versions of these criteria based onmaximized values of

the likelihood function, you need to add ½1þ lnð2pÞ	 to (6.26) and (6.27). It is good to be

aware of this fact in case your computer software reports the more general versions.

However, although it obviously changes the AIC and SC values, adding a constant does not

change the choice of variables that minimize the criteria.

6.3.4c An Example

To illustrate the different criteria, we have computed the R2, R
2
, AIC, and SC for the diff-

erent family income equations that were estimated earlier in this section. They are pres-

ented in Table 6.2. Notice that adding more variables always increases the R2, whether they

are relevant or not. The R
2
increases when relevant variables are added, but declines in the

last casewhen the irrelevant variablesX5 andX6 are added. TheAIC and SC are smallest for

the model with variablesHEDU,WEDU, and KL6. Thus, in this case, but not necessarily in

general, maximizing R
2
, minimizing AIC, and minimizing SC all lead to selection of the

same model.

6.3.5 RESET

Testing for model misspecification is a way of asking whether our model is adequate, or

whether we can improve on it. It could be misspecified if we have omitted important

Ta b l e 6 . 2 Goodness-of-Fit and Information Criteria for Family Income

Example

Included Variables R2 R
2

AIC SC

HEDU 0.1258 0.1237 21.262 21.281

HEDU;WEDU 0.1613 0.1574 21.225 21.253

HEDU;WEDU;KL6 0.1771 0.1714 21.211 21.248

HEDU;WEDU;KL6;X5;X6 0.1778 0.1681 21.219 21.276
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variables, included irrelevant ones, chosen a wrong functional form, or have a model that

violates the assumptions of the multiple regression model. RESET (REgression Specifica-

tion Error Test) is designed to detect omitted variables and incorrect functional form.

It proceeds as follows.

Suppose that we have specified and estimated the regression model

y ¼ b1 þ b2x2 þ b3x3 þ e

Let (b1, b2, b3) be the least squares estimates, and let

ŷ ¼ b1 þ b2x2 þ b3x3 (6.28)

be the predicted values of y. Consider the following two artificial models:

y ¼ b1 þ b2x2 þ b3x3 þ g1ŷ
2 þ e (6.29)

y ¼ b1 þ b2x2 þ b3x3 þ g1ŷ
2 þ g2ŷ

3 þ e (6.30)

In (6.29) a test for misspecification is a test of H0 :g1 ¼ 0 against the alternative

H1 :g1 6¼ 0. In (6.30), testing H0 :g1 ¼ g2 ¼ 0 against H1 :g1 6¼ 0 and/or g2 6¼ 0 is a

test for misspecification. In the first case a t- or an F-test can be used. An F-test

is required for the second equation. Rejection of H0 implies that the original model is

inadequate and can be improved.A failure to rejectH0 says that the test has not been able to

detect any misspecification.

To understand the idea behind the test, note that ŷ2 and ŷ3 will be polynomial

functions of x2 and x3. If you square and cube both sides of (6.28), you will get terms

such as x22, x
3
3, x2x3, x2x

2
3, and so on. Since polynomials can approximate many different

kinds of functional forms, if the original functional form is not correct, the polynomial

approximation that includes ŷ2 and ŷ3 may significantly improve the fit of the model.

If it does, this fact will be detected through nonzero values of g1 and g2. Furthermore,

if we have omitted variables and these variables are correlated with x2 and x3, then they are

also likely to be correlated with terms like x22 and x
2
3, so some of their effect may be picked

up by including the terms ŷ2 and/or ŷ3. Overall, the general philosophy of the test is: If we

can significantly improve the model by artificially including powers of the predictions of

the model, then the original model must have been inadequate.

Applying the two forms of RESET in (6.26) and (6.27) to the family income equation in

(6.24) yields the following results:

H0 :g1 ¼ 0 F ¼ 5:984 p-value ¼ 0:015

H0 :g1 ¼ g2 ¼ 0 F ¼ 3:123 p-value ¼ 0:045

In both cases the null hypothesis of nomisspecification is rejected at a 5% significance level.

So although this equationwas a useful one for illustrating the effect of omitted-variable bias,

it could be improved upon as a model for explaining family income. Perhaps age and

experience could be included in the model, along with whether the household is in a city or

the country. Perhaps the linear functional form is inappropriate.

Although RESET is often useful for picking up poorly specified models, keep in mind

that it will not always discriminate between alternativemodels. For example, if two different

functional forms are being considered for a particular relationship, it is possible for RESET

to reject neither of them.
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6.4 Poor Data, Collinearity, and Insignificance

Most economic data that are used for estimating economic relationships are nonexperi-

mental. Indeed, in most cases they are simply ‘‘collected’’ for administrative or other

purposes. They are not the result of a planned experiment inwhich an experimental design is

specified for the explanatory variables. In controlled experiments the right-hand-side

variables in the model can be assigned values in such a way that their individual effects

can be identified and estimated with precision. When data are the result of an uncontrolled

experiment, many of the economic variables may move together in systematic ways. Such

variables are said to be collinear, and the problem is labeled collinearity. In this case there
is no guarantee that the data will be ‘‘rich in information,’’ nor that it will be possible to

isolate the economic relationship or parameters of interest.

As an example, consider the problem faced by the marketing executives at Big

Andy’s Burger Barn when they try to estimate the increase in sales revenue attributable

to advertising that appears in newspapers and the increase in sales revenue attributable to

coupon advertising. Suppose that it has been common practice to coordinate these two

advertising devices, so that at the same time that advertising appears in the newspapers there

are flyers distributed containing coupons for price reductions on hamburgers. If variables

measuring the expenditures on these two forms of advertising appear on the right-hand side

of a sales revenue equation such as (5.2), then the data on these variables will show a

systematic, positive relationship; intuitively, it will be difficult for such data to reveal the

separate effects of the two types of ads. Although it is clear that total advertising expenditure

increases sales revenue, because the two types of advertising expenditure move together, it

may be difficult to sort out their separate effects on sales revenue.

As a second example, consider a production relationship explaining output over time as a

function of the amounts of various quantities of inputs employed. There are certain factors of

production (inputs), such as labor and capital, that are used in relatively fixed proportions.

As production increases, the changing amounts of two or more such inputs reflect equi-

proportionate increases. Proportional relationships between variables are the very sort of

systematic relationships that epitomize ‘‘collinearity.’’ Any effort to measure the individual

or separate effects (marginal products) of various mixes of inputs from such data will be

difficult.

It is not just relationships between variables in a sample of data that make it difficult to

isolate the separate effects of individual explanatory variables. If the values of an

explanatory variable do not vary or change much within a sample of data, then it is clearly

difficult to use that data to estimate a coefficient that describes the effect of change in that

variable. It is hard to estimate the effect of change if there has been no change.

6.4.1 THE CONSEQUENCES OF COLLINEARITY

The consequences of collinearity and/or lack of variation depend onwhetherwe are examin-

ing an extreme case in which estimation breaks down or a bad, but not extreme, case in

which estimation can still proceed but our estimates lack precision. In Section 5.3.1, we

considered the model

yi ¼ b1 þ b2x2 þ b3x3 þ ei

and wrote the variance of the least squares estimator for b2 as

varðb2Þ ¼ s2�
1� r223

�
�N

i¼1ðx2 � x2Þ2
(6.31)
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where r23 is the correlation between x2 and x3. Exact or extreme collinearity exists when x2
and x3 are perfectly correlated, inwhich case r23¼ 1 and var(b2) goes to infinity. Similarly, if

x2 exhibits novariation�(x2 � x2)
2 equals zero and var(b2) again goes to infinity. In this case

x2 is collinear with the constant term. In general, whenever there are one or more exact
linear relationships among the explanatory variables, then the condition of exact colli-

nearity exists. In this case the least squares estimator is not defined. We cannot obtain

estimates of bk’s using the least squares principle. One of our least squares assumptions

MR5, which says that the values of xik are not exact linear functions of the other explanatory

variables, is violated.

The more usual case is one in which correlations between explanatory variables might

be high, but not exactly one; variation in explanatory variables may be low but not zero; or

linear dependencies between more than two explanatory variables could be high but not

exact. These circumstances do not constitute a violation of least squares assumptions. By the

Gauss–Markov theorem, the least squares estimator is still the best linear unbiased

estimator. We might still be unhappy, however, if the best we can do is constrained by

the poor characteristics of our data. From (6.31) we can see that when r23 is close to one

or�(x2 � x2)
2 is close to zero, thevariance of b2will be large.A largevariancemeans a large

standard error, whichmeans the estimatemay not be significantly different from zero and an

interval estimate will be wide. The sample data have provided relatively imprecise

information about the unknown parameters. The effects of this imprecise information

can be summarized as follows:

1. When estimator standard errors are large, it is likely that the usual t-tests will lead to

the conclusion that parameter estimates are not significantly different from zero.

This outcome occurs despite possibly high R2- or F-values indicating significant

explanatory power of themodel as awhole. The problem is that collinear variables do

not provide enough information to estimate their separate effects, even though theory

may indicate their importance in the relationship.

2. Estimators may be very sensitive to the addition or deletion of a few observations, or

to the deletion of an apparently insignificant variable.

3. Despite the difficulties in isolating the effects of individual variables from such a

sample, accurate forecasts may still be possible if the nature of the collinear

relationship remains the same within the out-of-sample observations. For example,

in an aggregate production function where the inputs labor and capital are nearly

collinear, accurate forecasts of output may be possible for a particular ratio of inputs

but not for various mixes of inputs.

6.4.2 AN EXAMPLE

The file cars.dat contains observations on the following variables for 392 cars:

MPG ¼ miles per gallon

CYL ¼ number of cylinders

ENG ¼ engine displacement in cubic inches

WGT ¼ vehicle weight in pounds

Suppose we are interested in estimating the effect of CYL, ENG, andWGTonMPG. All the

explanatory variables are related to the power and size of the car. Although there are
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exceptions, overall wewould expect the values forCYL, ENG, andWGT to be large for large

cars and small for small cars. They are variables that are likely to be highly correlated and

whose separate effect on MPG may be difficult to estimate. A regression of MPG on CYL

yields

bMPG ¼ 42:9 � 3:558CYL

ðseÞ ð0:83Þ ð0:146Þ
ð p-valueÞ ð0:000Þ ð0:000Þ

We estimate that an additional cylinder reduces the gasoline consumption by 3.6 miles per

gallon, and the significance of its coefficient suggests that it is an important variable. Now,

observe what happens when ENG and WGT are included. The estimated model becomes

bMPG ¼ 44:4 � 0:268CYL � 0:0127ENG � 0:00571WGT

ðseÞ ð1:5Þ ð0:413Þ ð0:0083Þ ð0:00071Þ
ð p-valueÞ ð0:000Þ ð0:517Þ ð0:125Þ ð0:000Þ

The estimated coefficient on CYL has changed dramatically, and although we know that

number of cylinders and engine size are important variables, when considered separately,

their coefficients are not significantly different from zero at a 5% significance level. The null

hypotheses H0 :b2 ¼ 0 and H0 :b3 ¼ 0 are not rejected by separate t-tests, where b2 is the

coefficient of CYL and b3 is the coefficient of ENG. What is happening is that the high

correlation between CYL and ENG (r ¼ 0.95) is making it difficult to accurately estimate

the effects of each variable. When we test the null hypothesis H0 :b2 ¼ b3 ¼ 0 against the

alternative H1 :b2 6¼ 0 and/or b3 6¼ 0, we obtain an F-value of 4.30 with corresponding

p-value of 0.014. The null hypothesis is firmly rejected. The data are telling us that together

CYL and ENG influence MPG, but it is difficult to sort out the influence of each. If

one coefficient is free to take any value, the data are not good enough to prove that the

other coefficient must be nonzero. Should you drop one of the insignificant variables, say,

CYL? Doing sowill reduce the variances of the remaining estimates, but given thatCYL is an

important variable that is highly correlated with ENG andWGT, it is also likely to introduce

omitted-variable bias.

6.4.3 IDENTIFYING AND MITIGATING COLLINEARITY

Because nonexact collinearity is not a violation of least squares assumptions, it does not

make sense to go looking for a problem if there is no evidence that one exists. If you have

estimated an equation where the coefficients are precisely estimated and significant, they

have the expected signs and magnitudes, and they are not sensitive to adding or deleting a

few observations, or an insignificant variable, then there is no reason to try and identify or

mitigate collinearity. If there are highly correlated variables, they are not causing you a

problem. However, if you have a poorly estimated equation that does not live up to

expectations, it is useful to establish why the estimates are poor.

One simple way to detect collinear relationships is to use sample correlation coefficients

between pairs of explanatory variables. These sample correlations are descriptive measures

of linear association. However, in some cases in which collinear relationships involve more

than two of the explanatory variables, the collinearity may not be detected by examining

pairwise correlations. In such instances, a second simple and effective procedure for

identifying the presence of collinearity is to estimate the so-called auxiliary regressions.
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In these least squares regressions, the left-hand-side variable is one of the explanatory

variables and the right-hand-side variables are all the remaining explanatory variables. For

example, a general auxiliary regression for x2 is

x2 ¼ a1x1 þ a3x3 þ � � � þ aKxK þ error

IfR2 from this artificial model is high, above 0.80, say, the implication is that a large portion of

the variation in x2 is explained by variation in the other explanatory variables. In Section 5.3.1

we made the point that it is variation in a variable that is not associated with any other

explanatory variable that is valuable for improving the precision of the least squares estimator

b2. IfR
2 from the auxiliary regression is not high, then the variation in x2 is not explained by the

other explanatory variables, and the estimator b2’s precision is not affected by this problem.

The collinearity problem is that the data do not contain enough ‘‘information’’ about the

individual effects of explanatory variables to permit us to estimate all the parameters of

the statistical model precisely. Consequently, one solution is to obtainmore information and

include it in the analysis. One form the new information can take is more, and better, sample

data. Unfortunately, in economics, this is not always possible. Cross-sectional data are

expensive to obtain, and, with time-series data, one must wait for the data to appear.

Alternatively, if new data are obtained via the same nonexperimental process as the original

sample of data, then the new observations may suffer the same collinear relationships and

provide little in the way of new, independent information. Under these circumstances the

new data will help little to improve the precision of the least squares estimates.

A second way of adding new information is to introduce, as we did in Section 6.2,

nonsample information in the form of restrictions on the parameters. This nonsample

information may then be combined with the sample information to provide restricted least

squares estimates. The good news is that using nonsample information in the form of linear

constraints on the parameter values reduces estimator sampling variability. The bad news is

that the resulting restricted estimator is biased unless the restrictions are exactly true. Thus it

is important to use good nonsample information, so that the reduced sampling variability is

not bought at a price of large estimator biases.

6.5 Prediction

The prediction or forecasting problem for a linear model with one explanatory variable was

covered in depth in Section 4.1. That material extends naturally to the more general model

that has more than one explanatory variable.

To describe the extensions, consider a model with an intercept term and two explanatory

variables x2 and x3. That is,

yi ¼ b1 þ x2b2 þ x3b3 þ e (6.32)

where the ei are uncorrelated random variables with mean 0 and variance s2. Given a set of

values for the explanatory variables, say, (1, x02, x03), the prediction problem is to predict

the value of the dependent variable y0, which is given by

y0 ¼ b1 þ x02b2 þ x03b3 þ e0

If the data are time-series data, (1; x02; x03) will be future values for the explanatory

variables; for cross-section data they represent values for an individual or some other

economic unit thatwas not sampled.We are assuming that the parameter values determining

y0 are the same as those in the model (6.32) describing how the original sample of data was
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generated. Also, we assume the random error e0 to be uncorrelated with each of the sample

errors ei and to have the samemean zero and variance s2. Under these assumptions, the best

linear unbiased predictor of y0 is given by

ŷ0 ¼ b1 þ x02b2 þ x03b3

where bk’s are the least squares estimators. This predictor is unbiased in the sense that

the average value of the forecast or prediction error is zero. That is, if f ¼ (y0 � ŷ0) is the

forecast error, then E( f ) ¼ 0. The predictor is best in the sense that the variance of

the forecast error for all other linear andunbiasedpredictors ofy0 is not less thanvar(y0 � ŷ0).

The variance of forecast error var(y0 � ŷ0) contains two components. One component

occurs because b1, b2, and b3 are estimates of the true parameters, and the other component is

a consequence of the unknown random error e0. The expression for var(y0 � ŷ0) is given by

varð f Þ ¼ var½ðb1 þ b2x02 þ b3x03 þ e0Þ � ðb1 þ b2x02 þ b3x03Þ	
¼ varðe0 � b1 � b2x02 � b3x03Þ
¼ varðe0Þ þ varðb1Þ þ x202varðb2Þ þ x203varðb3Þ
þ 2x02 covðb1; b2Þ þ 2x03 covðb1; b3Þ þ 2x02x03 covðb2; b3Þ

(6.33)

To obtain var( f ) we recognized that the unknown parameters and the values of the

explanatory variables are constants, and that e0 is uncorrelated with the sample data and

thus is uncorrelated with the least squares estimators (b1, b2, b3). The remaining terms in the

last line of (6.33) are obtained using the rule for calculating the variance of a weighted sum in

(P.20) of the Probability Primer.

Each of the terms in the expression for var( f ) involves s2. To obtain the estimated

variance of the forecast errorbvar( f ), we replace s2 with its estimator ŝ2. The standard error

of the forecast is given by se( f ) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffibvar( f )p

. If the random errors ei and e0 are normally

distributed, or if the sample is large, then

f

seð f Þ ¼
y0 � ŷ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðy0 � ŷ0Þ

q e tðN�KÞ

Following the steps we have used many times, a 100(1�a)% interval predictor for y0 is

ŷ0 
 tcse( f ), where tc is a critical value from the tðN�KÞ-distribution.
Thus, the methods for prediction in the model with K¼ 3 are straightforward extensions

of the results from the simple linear regression model. For K > 3, the methods extend in a

similar way.

6.5.1 AN EXAMPLE

As an examplewefind a 95%prediction interval for SALES at BigAndy’sBurgerBarnwhen

PRICE0 ¼ 6, ADVERT0 ¼ 1.9, and ADVERT2
0 ¼ 3:61. These are the values considered by

Big Andy in Section 6.1.5. The point prediction is

bSALES0 ¼ 109:719� 7:640PRICE0 þ 12:1512ADVERT0 � 2:768ADVERT2
0

¼ 109:719� 7:640 � 6þ 12:1512 � 1:9� 2:768 � 3:61

¼ 76:974

With the settings proposed by Big Andy, we forecast that sales will be $76,974.

244 FURTHER INFERENCE IN THE MULT IPLE REGRESS ION MODEL



To obtain a prediction interval, we first need to compute the estimated variance of the

forecast error. Extending (6.33) to accommodate four unknown coefficients, and using

the covariance matrix values in Table 6.3, we have

bvarðf Þ ¼ ŝ2 þbvarðb1Þ þ x202
bvarðb2Þ þ x203

bvarðb3Þ þ x204
bvarðb4Þ

þ 2x02bcovðb1; b2Þ þ 2x03bcovðb1; b3Þ þ 2x04bcovðb1; b4Þ
þ 2x02x03bcovðb2; b3Þ þ 2x02x04bcovðb2; b4Þ þ 2x03x04bcovðb3; b4Þ

¼ 21:57865þ 46:22702þ 62 � 1:093988þ 1:92 � 12:6463þ 3:612 � 0:884774

þ 2� 6� ð�6:426113Þ þ 2� 1:9� ð�11:60096Þ þ 2� 3:61� 2:939026

þ 2� 6� 1:9� 0:300406þ 2� 6� 3:61� ð�0:085619Þ
þ 2� 1:9� 3:61� ð�3:288746Þ

¼ 22:4208

The standard error of the forecast error is seð f Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22:4208

p ¼ 4:7351, and the relevant t-
value is tð0:975; 71Þ ¼ 1:9939, giving a 95% prediction interval of

ð76:974� 1:9939� 4:7351; 76:974þ 1:9939� 4:7351Þ ¼ ð67:533; 86:415Þ

We predict, with 95% confidence, that Big Andy’s settings for price and advertising

expenditure will yield SALES between $67,533 and $86,415.

It is useful to distinguish between forecasting SALES in a given week, and estimating

average sales over a number of weeks, given particular settings ofPRICE andADVERT. The

point forecast and the point estimate are both the same

bSALES0 ¼bEðSALES0Þ ¼ 76:974

However, the standard error forbEðSALES0Þ is much less than that for the forecast error

from forecasting for a single week, f ¼ SALES0 �bSALES0. The difference arises becausebvarðf Þ includes an estimate of the error variance ŝ2, and it is this value that contributes most

tobvarðf Þ. Using the expression forbvarðf Þ and the results given above, we can write

sebEðSALES0Þ	 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðf Þ � ŝ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22:4208� 21:5786

p
¼ 0:9177

Thus, a 95% interval estimate forbEðSALES0Þ is
ð76:974� 1:9939� 0:9177; 76:974þ 1:9939� 0:9177Þ ¼ ð75:144; 78:804Þ

Ta b l e 6 . 3 Covariance Matrix for Andy’s Burger Barn Model

b1 b2 b3 b4

b1 46.227019 �6.426113 �11.600960 2.939026

b2 �6.426113 1.093988 0.300406 �0.085619

b3 �11.600960 0.300406 12.646302 �3.288746

b4 2.939026 �0.085619 �3.288746 0.884774
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With 95% confidence we estimate that average sales over many weeks will lie between

$75,144 and $78,804, but in any single week we forecast sales will be between $67,533 and

$86,415.

6.6 Exercises

Answers to exercises marked * appear at www.wiley.com/college/hill.

6.6.1 PROBLEMS

6.1 When using N ¼ 40 observations to estimate the model

y ¼ b1 þ b2xþ b3zþ e

you obtain SSE ¼ 979:830 and sy ¼ 13:45222. Find
(a) R2

(b) The value of the F-statistic for testingH0 :b2 ¼ b3 ¼ 0 (Do you reject or fail to

reject H0?)

6.2 Consider again the model in Exercise 6.1. After augmenting this model with the

squares and cubes of predictions ŷ2 and ŷ3, we obtain SSE ¼ 696:5357. Use RESET
to test for misspecification.

6.3* Consider the model
y ¼ b1 þ x2b2 þ x3b3 þ e

and suppose that application of least squares to 20 observations on these variables

yields the following results
�bcov (b) denotes the estimated covariance matrix

�
:

b1
b2
b3

2
4

3
5 ¼

0:96587
0:69914
1:7769

2
4

3
5; bcovðbÞ ¼ 0:21812 0:019195 �0:050301

0:019195 0:048526 �0:031223
�0:050301 �0:031223 0:037120

2
4

3
5

ŝ2 ¼ 2:5193 R2 ¼ 0:9466

(a) Find the total variation, unexplained variation, and explained variation for thismodel.

(b) Find 95% interval estimates for b2 and b3.

(c) Use a t-test to test the hypothesis H0 :b2 � 1 against the alternative H1 :b2 < 1.

(d) Use your answers in part (a) to test the joint hypothesis H0 :b2 ¼ 0;b3 ¼ 0.

(e) Test the hypothesis H0 :2b2 ¼ b3.

6.4 Consider the wage equation

lnðWAGEÞ ¼ b1 þ b2EDUC þ b3EDUC
2 þ b4EXPERþ b5EXPER

2

þb6ðEDUC � EXPERÞ þ b7HRSWK þ e

where the explanatory variables are years of education, years of experience and hours

worked per week. Estimation results for this equation, and for modified versions of it

obtained by dropping some of the variables, are displayed in Table 6.4. These results

are from the 1000 observations in the file cps4c_small.dat.

(a) Using an approximate 5% critical value of tc ¼ 2, what coefficient estimates are

not significantly different from zero?

(b) What restriction on the coefficients of Eqn (A) gives Eqn (B)? Use an F-test to

test this restriction. Show how the same result can be obtained using a t-test.
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(c) What restrictions on the coefficients of Eqn (A) give Eqn (C)? Use an F-test to

test these restrictions. What question would you be trying to answer by

performing this test?

(d) What restrictions on the coefficients of Eqn (B) give Eqn (D)? Use an F-test to

test these restrictions. What question would you be trying to answer by

performing this test?

(e) What restrictions on the coefficients of Eqn (A) give Eqn (E)? Use an F-test to

test these restrictions. What question would you be trying to answer by

performing this test?

(f) Based on your answers to parts (a) to (e), which model would you prefer? Why?

(g) Compute the missing AIC value for Eqn (D) and the missing SC value for Eqn

(A). Which model is favored by the AIC? Which model is favored by the SC?

6.5* Consider the wage equation

lnðWAGEÞ ¼ b1 þ b2EDUC þ b3EDUC
2 þ b4EXPERþ b5EXPER

2

þ b6HRSWK þ e

(a) Suppose you wish to test the hypothesis that a year of education has the same

effect on ln (WAGE) as a year of experience. What null and alternative hypoth-

eses would you set up?

(b) What is the restricted model, assuming that the null hypothesis is true?

(c) Given that the sum of squared errors from the restricted model is SSER ¼
254.1726, test the hypothesis in (a). (For SSEU use the relevant value from

Table 6.4. The sample size is N ¼ 1,000.)

Ta b l e 6 . 4 Wage Equation Estimates for Exercises 6.4 and 6.5

Variable Coefficient Estimates and (Standard Errors)

Eqn (A) Eqn (B) Eqn (C) Eqn (D) Eqn (E)

C 1.055 1.252 1.573 1.917 0.904

(0.266) (0.190) (0.188) (0.080) (0.096)

EDUC 0.0498 0.0289 0.0366 0.1006

(0.0397) (0.0344) (0.0350) (0.0063)

EDUC2 0.00319 0.00352 0.00293

(0.00169) (0.00166) (0.00170)

EXPER 0.0373 0.0303 0.0279 0.0295

(0.0081) (0.0048) (0.0054) (0.0048)

EXPER2 �0.000485 �0.000456 �0.000470 �0.000440

(0.000090) (0.000086) (0.000096) (0.000086)

EXPER� EDUC �0.000510

(0.000482)

HRSWK 0.01145 0.01156 0.01345 0.01524 0.01188

(0.00137) (0.00137) (0.00136) (0.00151) (0.00136)

SSE 222.4166 222.6674 233.8317 280.5061 223.6716

AIC �1.489 �1.490 �1.445 �1.488

SC �1.461 �1.426 �1.244 �1.463
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6.6 RESET suggests augmenting an existing model with the squares of the predictions

ŷ2, or with their squares and cubes (ŷ2; ŷ3). What would happen if you augmented

the model with the predictions themselves ŷ?

6.7 Table 6.5 contains output for the two models

y ¼ b1 þ b2xþ b3wþ e

y ¼ b1 þ b2xþ e

obtained using N ¼ 35 observations. RESET applied to the second model yields

F-values of 17.98 (for ŷ2) and 8.72 (for ŷ2 and ŷ3). The correlation between x andw is

rxw ¼ 0:975. Discuss the following questions:

(a) Should w be included in the model?

(b) What can you say about omitted-variable bias?

(c) What can you say about the existence of collinearity and its possible effect?

6.8 In Section 6.1.5 we tested the joint null hypothesis

H0 :b3 þ 3:8b4 ¼ 1 and b1 þ 6b2 þ 1:9b3 þ 3:61b4 ¼ 80

in the model

SALES ¼ b1 þ b2PRICE þ b3ADVERT þ b4ADVERT
2 þ e

By substituting the restrictions into the model and rearranging variables, show how

the model can be written in a form in which least squares estimation will yield

restricted least squares estimates.

6.6.2 COMPUTER EXERCISES

6.9 In Exercise 5.25 we expressed the model

Y ¼ aKb2Lb3Eb4Mb5expfeg

in terms of logarithms and estimated it using data in the file manuf.dat. Use the data

and results from Exercise 5.25 to test the following hypotheses:

(a) H0 :b2 ¼ 0 against H1 :b2 6¼ 0:
(b) H0 :b2 ¼ 0,b3 ¼ 0 against H1 :b2 6¼ 0 and/orb3 6¼ 0.

(c) H0 :b2 ¼ 0,b4 ¼ 0 against H1 :b2 6¼ 0 and/orb4 6¼ 0:
(d) H0 :b2 ¼ 0,b3 ¼ 0; b4 ¼ 0 against H1 :b2 6¼ 0 and/orb3 6¼ 0 and/orb4 6¼ 0.

(e) H0 :b2 þ b3 þ b4 þ b5 ¼ 1 against H1 :b2 þ b3 þ b4 þ b5 6¼ 1.

(f) Analyze the impact of collinearity on this model.

Ta b l e 6 . 5 Output for Exercise 6.7

Variable Coefficient Std. Error t-value Coefficient Std. Error t-value

C 3.6356 2.763 1.316 �5.8382 2.000 �2.919

X �0.99845 1.235 �0.8085 4.1072 0.3383 12.14

W 0.49785 0.1174 4.240
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6.10* Use the sample data for beer consumption in the file beer.dat to

(a) Estimate the coefficients of the demand relation (6.14) using only sample

information. Compare and contrast these results to the restricted coefficient

results given in (6.19).

(b) Does collinearity appear to be a problem?

(c) Test the validity of the restriction that implies that demand will not change if

prices and income go up in the same proportion.

(d) Use model (6.19) to construct a 95% prediction interval for Q when

PB ¼ 3:00,PL ¼ 10,PR ¼ 2:00, and I ¼ 50000. (Hint: Construct the interval

for ln(Q) and then take antilogs.)

(e) Repeat part (d) using the unconstrained model from part (a). Comment.

6.11 Consider production functions of the formQ¼ f (L,K),whereQ is the outputmeasure

andL andK are labor and capital inputs, respectively.Apopular functional form is the

Cobb–Douglas equation

lnðQÞ ¼ b1 þ b2 lnðLÞ þ b3 lnðKÞ þ e

(a) Use the data in the file cobb.dat to estimate the Cobb–Douglas production

function. Is there evidence of collinearity?

(b) Re-estimate the model with the restriction of constant returns to scale—that is,

b2 þ b3 ¼ 1—and comment on the results.

6.12* Using data in the file beer.dat, apply RESET to the two alternative models

lnðQÞ ¼ b1 þ b2 lnðPBÞ þ b3 lnðPLÞ þ b4 lnðPRÞ þ b5 lnðIÞ þ e

Q ¼ b1 þ b2PBþ b3PLþ b4PRþ b5I þ e

Which model seems to better reflect the demand for beer?

6.13 The file toodyay.dat contains 48 annual observations on a number of variables related

towheat yield in the Toodyay Shire ofWestern Australia, for the period 1950–1997.

Those variables are

Y ¼ wheat yield in tonnes per hectare,

t ¼ trend term to allow for technological change,

RG ¼ rainfall at germination (May–June),

RD ¼ rainfall at development stage (July–August), and

RF ¼ rainfall at flowering (September–October).

The unit of measurement for rainfall is centimeters. Amodel that allows for the yield

response to rainfall to be different for the three different periods is

Y ¼ b1 þ b2t þ b3RGþ b4RDþ b5RF þ e

(a) Estimate this model. Report the results and comment on the signs and signifi-

cance of the estimated coefficients.

(b) Test the hypothesis that the response of yield to rainfall is the same irrespective of

whether the rain falls during germination, development, or flowering.

(c) Estimate themodel under the restriction that the three responses to rainfall are the

same. Comment on the results.

6.14 Following on from the example in Section 6.3, the file hwage.dat contains another

subset of the data used by labor economist TomMroz. The variables with which we

are concerned are
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HW ¼ husband’s wage in 2006 dollars

HE ¼ husband’s education attainment in years

HA ¼ husband’s age

CIT ¼ a variable equal to one if living in a large city, otherwise zero

(a) Estimate the model

HW ¼ b1 þ b2HE þ b3HAþ e

What effects do changes in the level of education and age have on wages?

(b) Does RESET suggest that the model in part (a) is adequate?

(c) Add the variablesHE2 andHA2 to the original equation and re-estimate it. Describe

the effect that education and age have on wages in this newly estimated model.

(d) Does RESET suggest that the model in part (c) is adequate?

(e) Reestimate the model in part (c) with the variable CIT included. What can you

say about the level of wages in large cities relative to outside those cities?

(f) Do you think CIT should be included in the equation?

(g) For both the model estimated in part (c) and the model estimated in part (e),

evaluate the following four derivatives:

(i)
qHW
qHE

for HE ¼ 6 and HE ¼ 15

(ii)
qHW
qHA

for HA ¼ 35 and HA ¼ 50

Does the omission of CIT lead to omitted-variable bias? Can you suggest why?

6.15 The file stockton4.dat contains data on 1500 houses sold in Stockton, California,

during 1996–1998. Variable descriptions are in the file stockton4.def.

(a) Estimate the following model and report the results:

SPRICE ¼ b1 þ b2LIVAREAþ b3AGE þ b4BEDS þ b5BATHSþ e

(b) Xiaohui wants to buy a house. She is considering two that have the same living

area, the same number of bathrooms, and the same number of bedrooms. One is

two years old and the other is ten years old. What price difference can she

expect between the two houses? What is a 95% interval estimate for this

difference?

(c) Wanling’s house has a living area of 2000 square feet. She is planning to extend

her living roomby 200 square feet.What is the expected increase in price shewill

get from this extension? Test as an alternative hypothesis that the increase in

price will be at least $20,000. Use a ¼ 0.05.

(d) Xueyan’s house has a living area of 1800 square feet. She is planning to add

another bedroom of size 200 square feet. What is the expected increase in price

she will get from this extension? Find a 95% interval estimate for the expected

price increase.

(e) Does RESET suggest that the model is a reasonable one?

6.16 Reconsider the data and model estimated in Exercise 6.15.

(a) Add the variables LIVAREA2 and AGE2 to the model, re-estimate it, and report

the results.
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(b) Does an F-test suggest that the addition of LIVAREA2 and AGE2 has improved

the model? Use a ¼ 0.05.

(c) Answer parts (b)–(e) of Exercise 6.15 using the new specification.

6.17 The file stockton4.dat contains data on 1500 houses sold in Stockton, CA during

1996–1998. Variable descriptions are in the file stockton4.def.

(a) Estimate the following model and report the results

lnðSPRICEÞ ¼ b1 þ b2LIVAREAþ b3LIVAREA
2 þ b4AGE þ b5AGE

2

þ b6BEDSþ e

(b) Using a 5% significance level, test whether living area helps explain selling

price.

(c) Using a 5% significance level, test whether age helps explain selling price.

(d) Predict the price of 10-year-old house with a living area of 2000 square feet, and

three bedrooms. Find predictions using both (1) the natural predictor, and (2) the

corrected predictor. (See Chapter 4.5.3.)

(e) Find a 95%prediction interval for a housewith the characteristics specified in (d).

(f) After extending her living room by 200 square feet, Wanling’s 10-year old,

3-bedroom house has a living area of 2200 square feet. Ignoring the error term,

estimate the price of Wanling’s house after the extension.

(g) Test, as an alternative hypothesis, that the extension toWanling’s living roomhas

increased the price of the house by at least $20,000. Use a ¼ 0.10.

(h) Does RESET suggest that the model is a reasonable one?

6.18 The file stockton4.dat contains data on 1,500 houses sold in Stockton, CA during

1996–1998. Variable descriptions are in the file stockton4.def.

(a) Estimate the following model

lnðSPRICEÞ ¼ b1 þ b2LIVAREAþ b3LIVAREA
2 þ b4AGE þ b5AGE

2

þ b6BEDSþ b7ðLIVAREA� BEDSÞ þ b8ðLIVAREA2 � BEDSÞ
þ b9ðAGE � BEDSÞ þ b10ðAGE2 � BEDSÞ þ e

Report the estimated relationship between ln(SPRICE), LIVAREA and AGE for

two-, three- and four-bedroom houses.

(b) Test the null hypothesis H0:b6 ¼ 0, b8 ¼ 0, b9 ¼ 0, b10 ¼ 0. Use a ¼ 0.05.

(c) Estimate the model implied by the test result in (b). Report the estimated

relationship between ln(SPRICE), LIVAREA and AGE for two-, three- and

four-bedroom houses.

(d) Which of the two models in parts (a) and (c) is favored by, (1) the AIC?

(2) the SC?

6.19 Reconsider the commuting time model estimated in Exercise 5.21 using the data file

commute.dat:

TIME ¼ b1 þ b2DEPARTSþ b3REDSþ b4TRAINSþ e

Find a 95% interval estimates for the time Bill arrives at the University when:

(a) He leaves Carnegie at 7:00 AM and encounters six red lights and one train.

(b) He leaves Carnegie at 7:45 AM and encounters ten red lights and four trains.
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6.20* Reconsider the production function for rice estimated in Exercise 5.24 using data in

the file rice.dat:

lnðPRODÞ ¼ b1 þ b2 lnðAREAÞ þ b3 lnðLABORÞ þ b4 lnðFERTÞ þ e

(a) Using a 5% level of significance, test the hypothesis that the elasticity of

production with respect to land is equal to the elasticity of production with

respect to labor.

(b) Using a 10% level of significance, test the hypothesis that the production

function exhibits constant returns to scale—that is, H0:b2 þ b3 þ b4 ¼ 1.

(c) Using a 5% level of significance, jointly test the two hypotheses in parts (a) and

(b)—that is, H0:b2 ¼ b3 and b2 þ b3 þ b4 ¼ 1.

(d) Find restricted least squares estimates for each of the restricted models implied

by the null hypotheses in parts (a), (b) and (c). Compare the different estimates

and their standard errors.

6.21* Re-estimate the model in Exercise 6.20 with (i) FERT omitted, (ii) LABOR omitted,

and (iii) AREA omitted. In each case, discuss the effect of omitting a variable on the

estimates of the remaining two elasticities. Also, in each case, check to see if RESET

has picked up the omitted variable.

6.22* In Chapter 5.7 we used the data in file pizza4.dat to estimate the model

PIZZA ¼ b1 þ b2AGE þ b3INCOME þ b4ðAGE � INCOMEÞ þ e

(a) Test the hypothesis that age does not affect pizza expenditure—that is, test the

joint hypothesis H0:b2 ¼ 0, b4 ¼ 0. What do you conclude?

(b) Construct point estimates and 95% interval estimates of the marginal propensity

to spend on pizza for individuals of ages 20, 30, 40, 50, and 55. Comment on

these estimates.

(c) Modify the equation to permit a ‘‘life-cycle’’ effect in which the marginal effect

of income on pizza expenditure increases with age, up to a point, and then falls.

Do so by adding the term (AGE2 � INC) to the model. What sign do you

anticipate on this term? Estimate the model and test the significance of the

coefficient for this variable. Did the estimate have the expected sign?

(d) Using the model in (c), construct point estimates and 95% interval estimates of

the marginal propensity to spend on pizza for individuals of ages 20, 30, 40, 50

and 55. Comment on these estimates. In light of these values, and of the range of

age in the sample data, what can you say about the quadratic function of age that

describes the marginal propensity to spend on pizza?

(e) Forthemodelinpart(c),areeachofthecoefficientestimatesforAGE, (AGE� INC)

and(AGE2� INC)significantlydifferentfromzeroata5%significancelevel?Carry

out a joint test for the significance of these variables. Comment on your results.

(f) Check the model used in part (c) for collinearity. Add the term (AGE3 � INC) to

the model in (c) and check the resulting model for collinearity.

6.23 Use the data in cps4_small.dat to estimate the following wage equation:

lnðWAGEÞ ¼ b1 þ b2EDUC þ b3EDUC
2 þ b4EXPER

þb5EXPER
2 þ b6ðEDUC � EXPERÞ þ e
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(a) Find 95% interval estimates for:

(i) The approximate percentage change in WAGE from an extra year of

education for someone with 10 years of education and 10 years of

experience.

(ii) The approximate percentage change in WAGE from an extra year of

experience for someone with 10 years of education and 10 years

of experience.

(iii) The approximate percentage change in WAGE from an extra year of

education for someone with 20 years of education and 20 years

of experience.

(iv) The approximate percentage change in WAGE from an extra year of

experience for someone with 20 years of education and 20 years

of experience.

(b) Test the joint hypothesis that the change in (i) is 10% and the change in (ii) is 4%.

(c) Test the joint hypothesis that the change in (iii) is 12%, and the change in

(iv) is 1%.

(d) Test the joint hypothesis that the change in (i) is 10%, the change in (ii) is 4%, the

change in (iii) is 12%, and the change in (iv) is 1%.

(e) Find and report restricted least squares estimates under the assumption that the

joint hypothesis in (c) is true.

6.24 Data on theweekly sales of a major brand of canned tuna by a supermarket chain in a

largemidwestern U.S. city during amid-1990s calendar year are contained in the file

tuna.dat. There are 52 observations on the variables. The variable SAL1 ¼ unit sales

of brand no. 1 canned tuna,APR1 ¼ price per can of brand no. 1 canned tuna,APR2,

APR3 ¼ price per can of brands nos. 2 and 3 of canned tuna.

(a) Interpret the coefficients in the following equation. What are their expected

signs?

lnðSAL1Þ ¼ b1 þ b2 lnðAPR1Þ þ b3 lnðAPR2Þ þ b4 lnðAPR3Þ þ e

(b) Estimate the equation and report the results. Do the estimates have the expected

signs? Are they significantly different from zero at a 5% significance level?

(c) The marketing manager for no. 1 brand of tuna claims that it is the price of

brand 1 relative to the prices of brands 2 and 3 that is important. She suggests the

model

lnðSAL1Þ ¼ a1 þ a2 ln
APR1

APR2

� �
þ a3 ln

APR1

APR3

� �
þ e

Show that this model is a restricted version of the original model where

b2 þ b3 þ b4 ¼ 0, with a2 ¼ �b3 and a3 ¼ �b4.

(d) Using a 10% significance level, test whether the data supports the marketing

manager’s claim.

(e) Estimate the restricted model given in part (c). Report the results. Interpret the

estimates. Are the estimates significantly different from zero?

(f) Which brand, no. 2 or no. 3, is the strongest competitor to brand no. 1? Why?

(g) Does a hypothesis test confirm your answer to part (f)? Do the test twice: once

using the model in part (a) and once using the model in part (c).
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6.25 Consider again the data in the file tuna.dat used in Exercise 6.24. Carry out the

following data transformations:

SALES ¼ SAL1/1000 ¼ sales measured in thousands of units

PR1 ¼ APR1 � 100 ¼ price of brand no. 1 in cents

PR2 ¼ APR2 � 100 ¼ price of brand no. 2 in cents

PR3 ¼ APR3 � 100 ¼ price of brand no. 3 in cents

(a) Estimate each of the following three equations and explain the relationship

between the estimated coefficients:

SAL1 ¼ b1 þ b2APR1þ b3APR2þ b4APR3þ e

SAL1 ¼ a1 þ a2PR1þ a3PR2þ a4PR3þ e

SALES ¼ g1 þ g2PR1þ g3PR2þ g4PR3þ e

(b) Estimate each of the following equations and explain the relationship between

the estimated coefficients:

lnðSAL1Þ ¼ b1 þ b2APR1þ b3APR2þ b4APR3þ e

lnðSAL1Þ ¼ a1 þ a2PR1þ a3PR2þ a4PR3þ e

lnðSALESÞ ¼ g1 þ g2PR1þ g3PR2þ g4PR3þ e

(c) Estimate each of the following equations and explain the relationship between

the estimated coefficients:

lnðSAL1Þ ¼ b1 þ b2 lnðAPR1Þ þ b3 lnðAPR2Þ þ b4 lnðAPR3Þ þ e

lnðSAL1Þ ¼ a1 þ a2 lnðPR1Þ þ a3 lnðPR2Þ þ a4 lnðPR3Þ þ e

lnðSALESÞ ¼ g1 þ g2 lnðPR1Þ þ g3 lnðPR2Þ þ g4 lnðPR3Þ þ e

Appendix 6A Chi-Square and F-tests: More Details

This appendix has two objectives. The first is to explain why the statistic

F ¼ ðSSER � SSEUÞ=J
SSEU=ðN � KÞ (6A.1)

has an FðJ,N�KÞ-distribution when a specified null hypothesis is true. The other is to

introduce a x2 (chi-square) statistic that is also used for testing null hypotheses containing
single or joint hypotheses about the coefficients in a regression relationship. You may

already have noticed and wondered about computer output that gives a x2-value and

corresponding p-value in addition to the F-value and its p-value.

The starting point is the following result that holds when the null hypothesis being tested

is true

V1 ¼ ðSSER � SSEUÞ
s2

� x2ðJÞ (6A.2)

In otherwords,V1 has ax
2-distributionwith J degrees of freedom. Ifs2was known,V1 could

be used to test the null hypothesis. There are two ways of overcoming the problem of an
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unknown s2: one leads to the F-statistic in (6A.1); the other yields the x2-statistic you may

have been wondering about. Considering the second one first, one way to obtain a workable

test statistic is to replace s2 in (6A.2) with its estimate ŝ2 from the unrestricted model. If

sample size is sufficiently large, it will be approximately true that

V̂1 ¼ ðSSER � SSEUÞ
ŝ2

� x2ðJÞ (6A.3)

This statistic can be used to test hypotheses about the unknown regression coefficients.

At a 5% significance level we reject H0 if V̂1 is greater than the critical value x
2
ð0:95, JÞ, or if

the p-value P[x2ðJÞ > V̂1] is less than 0.05.

To describe the second way of eliminating the unknown s2 we introduce the result

V2 ¼ ðN � KÞŝ2

s2
� x2ðN�KÞ (6A.4)

This result is themultiple regression extension of the simple regression result given in (3A.4) of

the appendix to Chapter 3. We are now in a position to use the result that the ratio of two

independent x2 random variables, each divided by their respective degrees of freedom, is an F

random variable. That is, from (B.49) in Appendix B at the end of the book,

F ¼ V1=m1

V2=m2

�Fðm1;m2Þ

In the context of our problem,

F ¼
ðSSER � SSEUÞ

s2

�
J

ðN � KÞŝ2

s2

�
ðN � KÞ

¼ ðSSER � SSEUÞ=J
ŝ2

�FðJ;N�KÞ

(6A.5)

The two s2’s in V1 and V2 cancel. Also, although we have not done so, it is possible to prove

that V1 and V2 are independent.

Noting that ŝ2 ¼ SSEU=(N � K), we can see that (6A.5) and (6A.1) are identical.

The F-statistic in (6A.5) is the one we have used throughout this chapter for testing

hypotheses.

What is the relationship between V̂1 and F given in (6A.3) and (6A.5), respectively? A

moment’s thought reveals that

F ¼ V̂1

J

The F-value is equal to the x2-value divided by the number of restrictions in the null

hypothesis. We can confirm this relationship by reexamining some examples.

When testing H0 :b3 ¼ b4 ¼ 0 in the equation

SALES ¼ b1 þ b2PRICE þ b3ADVERT þ b4ADVERT
2 þ e
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we obtain

F ¼ 8:44 p-value ¼ 0:0005

x2 ¼ 16:88 p-value ¼ 0:0002

Because there are two restrictions (J¼ 2), the F-value is half the x2-value. The p-values are
different because the tests are different.

For testing H0 :b3 þ 3:8b4 ¼ 1 (see Section 6.1.4), we obtain

F ¼ 0:936 p-value ¼ 0:3365

x2 ¼ 0:936 p-value ¼ 0:3333

The F- and x2-values are equal because J ¼ 1, but again the p-values are different.

Appendix 6B Omitted-Variable Bias: A Proof

Consider the model

yi ¼ b1 þ b2xi2 þ b3xi3 þ ei

Suppose that we incorrectly omit x3 from the model and estimate instead

yi ¼ b1 þ b2xi2 þ vi

where vi ¼ b3xi3 þ ei. Then, the estimator used for b2 is

b�2 ¼
�ðxi2 � x2Þðyi � yÞ

�ðxi2 � x2Þ2
¼ b2 þ �wivi (6B.1)

where

wi ¼ ðxi2 � x2Þ
�ðxi2 � x2Þ2

The second equality in (6B.1) follows fromAppendix 2D in Chapter 2. Substituting for vi in

(6B.1) yields

b�2 ¼ b2 þ b3�wixi3 þ �wiei

Hence, the mean of b�2 is

Eðb�2Þ ¼ b2 þ b3�wixi3

¼ b2 þ b3

�ðxi2 � x2Þxi3
�ðxi2 � x2Þ2

¼ b2 þ b3

�ðxi2 � x2Þðxi3 � x3Þ
�ðxi2 � x2Þ2

¼ b2 þ b3

bcovðx2; x3Þbvarðx2Þ 6¼b2

Thus, the restricted estimator is biased. Knowing the sign of b3 and the sign of the

covariance between x2 and x3 tells us the direction of the bias. Also, although omitting a

variable from the regression usually biases the least squares estimator, if the sample

covariance (or the simple correlation) between x2 and the omitted variable x3 is zero, then the
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least squares estimator in the misspecified model is still unbiased. In Section 2.2,

we suggested that omitting an important factor will lead to violation of the assumption

SR2 E(e)¼ 0 and that such a violation can have serious consequences.We can now bemore

precise about that statement. Omitting an important variable that is correlatedwith variables

included in the equation yields an error that we have called vi in the above discussion. This

error will have a nonzero mean, and the consequences are biased estimates for the

coefficients of the remaining variables in the model.
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C h a p t e r 7
Using Indicator Variables

Learning Objectives

Based on the material in this chapter you should be able to explain

1. The difference between qualitative and quantitative economic variables.

2. How to include a 0–1 indicator variable on the right-hand side of a regression, how

this affects model interpretation, and give an example.

3. How to interpret the coefficient on an indicator variable in a log-linear equation.

4. How to include a slope-indicator variable in a regression, how this affects model

interpretation, and give an example.

5. How to include a product of two indicator variables in a regression, and how this

affects model interpretation, giving an example.

6. How to model qualitative factors with more than two categories (like region of the

country), and how to interpret the resulting model, giving an example.

7. The consequences of ignoring a structural change in parameters during part of the

sample.

8. How to test the equivalence of two regression equations using indicator variables.

9. How to estimate and interpret a regression with an indicator dependent variable.

10. The difference between a randomized controlled experiment and a natural exper-

iment.

Keywords

annual indicator variables

Chow test

dichotomous variable

difference estimator

differences-in-differences

estimator

dummy variable

dummy variable trap

exact collinearity

hedonic model

indicator variable

interaction variable

intercept indicator

variable

log-linear models

linear probability model

natural experiment

quasi-experiment

reference group

regional indicator variable

seasonal indicator variables

slope-indicator variable

treatment effect
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7.1 Indicator Variables

Indicator variables, which were first introduced in Chapter 2.9, allow us to construct models

in which some or all regression model parameters, including the intercept, change for some

observations in the sample. To make matters specific, let us consider an example from real

estate economics. Buyers and sellers of homes, tax assessors, real estate appraisers, and

mortgage bankers are interested in predicting the current market value of a house. A

commonway to predict the value of a house is to use a hedonic model, in which the price of

the house is explained as a function of its characteristics, such as its size, location, number of

bedrooms, age, and so on. The idea is to break down a good into its component pieces, and

then estimate the value of each characteristic.1

For the present, let us assume that the size of the house, measured in square feet, SQFT,

is the only relevant variable in determining house price, PRICE. Specify the regression

model as

PRICE ¼ b1 þ b2SQFT þ e (7.1)

In this model b2 is the value of an additional square foot of living area, and b1 is the value of

the land alone.

In real estate the three most important words are ‘‘location, location, and location.’’ How

can we take into account the effect of a property’s being in a desirable neighborhood, such

as one near a university, or near a golf course? Thought of this way, location is a

‘‘qualitative’’ characteristic of a house.

Indicator variables are used to account for qualitative factors in econometric models.

They are often called dummy, binary or dichotomous variables, because they take just two

values, usually one or zero, to indicate the presence or absence of a characteristic or

to indicate whether a condition is true or false. They are also called dummy variables, to

indicate thatwe are creating a numeric variable for a qualitative, non-numeric characteristic.

We use the terms indicator variable and dummy variable interchangeably. Using zero and

one for the values of these variables is arbitrary, but very convenient, as we will see.

Generally, we define an indicator variable D as

D ¼ 1 if characteristic is present

0 if characteristic is not present

�
(7.2)

Thus, for the house price model, we can define an indicator variable, to account for

a desirable neighborhood, as

D ¼ 1 if property is in the desirable neighborhood

0 if property is not in the desirable neighborhood

�

Indicator variables can be used to capture changes in the model intercept, or slopes, or both.

We consider these possibilities in turn.

1 Such models have been used for many types of goods, including personal computers, automobiles and wine.

This famous idea was introduced by Sherwin Rosen (1978) ‘‘Hedonic Prices and Implicit Markets,’’ Journal of

Political Economy, 82, 357–369. The ideas are summarized and applied to asparagus and personal computers in

Ernst Berndt (1991) The Practice of Econometrics: Classic and Contemporary, Reading, MA: Addison-Wesley,

Chapter 4.
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7.1.1 INTERCEPT INDICATOR VARIABLES

The most common use of indicator variables is to modify the regression model intercept

parameter. Adding the indicator variable D to the regression model, along with a new

parameter d, we obtain

PRICE ¼ b1 þ dDþ b2SQFT þ e (7.3)

The effect of the inclusion of an indicator variableD into the regressionmodel is best seen by

examining the regression function, E(PRICE), in the two locations. If the model in (7.3) is

correctly specified, then E(e) ¼ 0 and

EðPRICEÞ ¼
ðb1 þ dÞ þ b2SQFT whenD ¼ 1

b1 þ b2SQFT whenD ¼ 0

(
(7.4)

In the desirable neighborhoodD¼ 1, and the intercept of the regression function is (b1 þ d).
In other areas the regression function intercept is simply b1. This difference is depicted in

Figure 7.1, assuming that d > 0.

Adding the indicator variable D to the regression model causes a parallel shift in the

relationship by the amount d. In the context of the house price model the interpretation of

the parameter d is that it is a location premium, the difference in house price due to the

houses being located in the desirable neighborhood. An indicator variable like D that is

incorporated into a regression model to capture a shift in the intercept as the result of some

qualitative factor is called an intercept indicator variable, or an intercept dummy

variable. In the house price example, we expect the price to be higher in a desirable

location, and thus we anticipate that d will be positive.

The least squares estimator’s properties are not affected by the fact that one of the

explanatory variables consists only of zeros and ones��D is treated as any other explanatory

variable. We can construct an interval estimate for d, or we can test the significance of its

least squares estimate. Such a test is a statistical test of whether the neighborhood effect on

house price is ‘‘statistically significant.’’ If d ¼ 0, then there is no location premium for the

neighborhood in question.

E (PRICE) = (β1 + δ) + β2 SQFT

E (PRICE) = β1 + β2 SQFT

SQFT

PRICE

β1 + δ

β1

δ

FIGURE 7.1 An intercept indicator variable.
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7.1.1a Choosing the Reference Group

The convenience of the values D ¼ 0 and D ¼ 1 is seen in (7.4). The value D ¼ 0 defines

the reference group, or base group, of houses that are not in the desirable neighborhood.

The expected price of these houses is simply E(PRICE) ¼ b1 þ b2SQFT. Using (7.3) we

are comparing the house prices in the desirable neighborhood to those in the base group.

A researcher can choose whichever neighborhood is most convenient, for expository

purposes, to be the reference group. For example, we can define the indicator variable LD to

denote the less desirable neighborhood:

LD ¼ 1 if property is not in the desirable neighborhood

0 if property is in the desirable neighborhood

�

This indicator variable is defined just the opposite from D, and LD ¼ 1� D. If we include

LD in the model specification

PRICE ¼ b1 þ lLDþ b2SQFT þ e

then we make the reference group, LD ¼ 0, the houses in the desirable neighborhood.

You may be tempted to include both D and LD in the regression model to capture the

effect of each neighborhood on house prices. That is, you might consider the model

PRICE ¼ b1 þ dDþ lLDþ b2SQFT þ e

In this model the variablesD and LD are such thatDþ LD ¼ 1. Since the intercept variable

x1 ¼ 1,we have created amodelwith exact collinearity, and as explained in Section 6.4, the

least squares estimator is not defined in such cases. This error is sometimes described as

falling into the dummy variable trap. By including only one of the indicator variables,

eitherD or LD, the omitted variable defines the reference group, and we avoid the problem.2

7.1.2 SLOPE-INDICATOR VARIABLES

Instead of assuming that the effect of location on house price causes a change in the

intercept of the hedonic regression (7.1), let us assume that the change is in the slope of

the relationship. We can allow for a change in a slope by including in the model an

additional explanatory variable that is equal to the product of an indicator variable and a

continuous variable. In our model the slope of the relationship is the value of an additional

square foot of living area. If we assume that this is one value for homes in the desirable

neighborhood, and another value for homes in other neighborhoods, we can specify

PRICE ¼ b1 þ b2SQFT þ gðSQFT�DÞ þ e (7.5)

The new variable (SQFT�D) is the product of house size and the indicator variable, and is

called an interaction variable, as it captures the interaction effect of location and size on

house price. Alternatively, it is called a slope-indicator variable or a slope dummy

variable, because it allows for a change in the slope of the relationship. The slope-indicator

variable takes a value equal to SQFT for houses in the desirable neighborhood, whenD¼ 1,

and it is zero for homes in other neighborhoods. Despite its unusual nature, a slope-indicator

2 Another way to avoid the dummy variable trap is to omit the intercept from the model.
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variable is treated just like any other explanatory variable in a regressionmodel. Examining

the regression function for the two different locations best illustrates the effect of the

inclusion of the slope-indicator variable into the economic model,

EðPRICEÞ ¼ b1 þ b2SQFT þ gðSQFT�DÞ ¼ b1 þ ðb2 þ gÞSQFT whenD ¼ 1

b1 þ b2SQFT whenD ¼ 0

�

In the desirable neighborhood, the price per additional square foot of a home is (b2 þ g); it is
b2 in other locations. Wewould anticipate g> 0 if price per additional square foot is higher

in the more desirable neighborhood. This situation is depicted in Figure 7.2a.

Another way to see the effect of including a slope-indicator variable is to use calculus.

The partial derivative of expected house pricewith respect to size (measured in square feet),

which gives the slope of the relation, is

qEðPRICEÞ
qSQFT

¼ b2 þ g whenD ¼ 1

b2 whenD ¼ 0

�

If the assumptions of the regression model hold for (7.5), then the least squares estimators

have their usual good properties, as discussed in Section 5.3. A test of the hypothesis that the

value of an additional square foot of living area is the same in the two locations is carried

E (PRICE) = β1 + (β2 + γ) SQFT

E (PRICE) = β1 + β2 SQFT

SQFT

PRICE

β1

γ

Slope = β2 

Slope = β2 + γ 

(a)

E (PRICE) = (β1 + δ) + (β2 + γ) SQFT

E (PRICE) = (β1 + δ) + β2 SQFT

E (PRICE) = β1 + β2 SQFT

SQFT

PRICE

β1 + δ

β1

γ

δ

(b)

FIGURE 7.2 (a) A slope-indicator variable. (b) Slope- and intercept-indicator variables.
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out by testing the null hypothesis H0 :g ¼ 0 against the alternative H1 :g 6¼ 0. In this case,

we might test H0 :g ¼ 0 against H1 :g> 0, since we expect the effect to be positive.

If we assume that house location affects both the intercept and the slope, then both

effects can be incorporated into a single model. The resulting regression model is

PRICE ¼ b1 þ dDþ b2SQFT þ gðSQFT�DÞ þ e (7.6)

In this case the regression functions for the house prices in the two locations are

EðPRICEÞ ¼ ðb1 þ dÞ þ ðb2 þ gÞSQFT whenD ¼ 1

b1 þ b2SQFT whenD ¼ 0

�

In Figure 7.2b we depict the house price relations assuming that d> 0 and g> 0.

7.1.3 AN EXAMPLE: THE UNIVERSITY EFFECT ON HOUSE PRICES

A real estate economist collects information on 1000 house price sales from two similar

neighborhoods, one called ‘‘University Town’’ bordering a large state university, and one

a neighborhood about three miles from the university. A few of the observations are shown

in Table 7.1. The complete data file is utown.dat.

House prices are given in $1,000; size (SQFT ) is the number of hundreds of square feet of

living area. For example, the first house sold for $205,452 and has 2346 square feet of living

area. Also recorded are the house AGE (in years), location (UTOWN ¼ 1 for homes near the

university, 0 otherwise), whether the house has a pool (POOL ¼ 1 if a pool is present, 0 other-

wise) andwhether the house has a fireplace (FPLACE ¼ 1 if a fireplace is present, 0 otherwise).

The economist specifies the regression equation as

PRICE ¼ b1 þ d1UTOWN þ b2SQFT þ gðSQFT�UTOWNÞ
þ b3AGE þ d2POOLþ d3FPLACE þ e

(7.7)

We anticipate that all the coefficients in this model will be positive except b3, which is an

estimate of the effect of age, or depreciation, on house price. Note that POOL and FPLACE

are intercept dummy variables. By introducing these variables we are asking whether, and

by how much, these features change house price. Because these variables stand alone, and

are not interacted with SQFT, we are assuming that they affect the regression intercept, but

not the slope. The estimated regression results are shown in Table 7.2. The goodness-of-fit

statistic is R2 ¼ 0:8706, indicating that the model fits the data well. The slope-indicator

Ta b l e 7 . 1 Representative Real Estate Data Values

PRICE SQFT AGE UTOWN POOL FPLACE

205.452 23.46 6 0 0 1

185.328 20.03 5 0 0 1

248.422 27.77 6 0 0 0

287.339 23.67 28 1 1 0

255.325 21.30 0 1 1 1

301.037 29.87 6 1 0 1
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variable is SQFT�UTOWN. Based on one-tail t-tests of significance,3 at the a ¼ 0:05 level

we reject zero null hypotheses for each of the parameters and accept the alternatives that they

are positive, except for the coefficient onAGE, which we accept to be negative. In particular,

based on these t-tests, we conclude that houses near the university have a significantly higher

base price, and that their price per additional square foot is significantly higher than in the

comparison neighborhood.

The estimated regression function for the houses near the university is

bPRICE ¼ ð24:5þ 27:453Þ þ ð7:6122þ 1:2994ÞSQFT � 0:1901AGE

þ 4:3772POOLþ 1:6492FPLACE

¼ 51:953þ 8:9116SQFT � 0:1901AGE þ 4:3772POOLþ 1:6492FPLACE

For houses in other areas, the estimated regression function is

bPRICE ¼ 24:5þ 7:6122SQFT � 0:1901AGE þ 4:3772POOLþ 1:6492FPLACE

Based on the regression results in Table 7.2, we estimate that

� The location premium for lots near the university is $27,453

� The change in expected price per additional square foot is $89.12 for houses near the

university and $76.12 for houses in other areas

� Houses depreciate $190.10 per year

� A pool increases the value of a home by $4,377.20

� A fireplace increases the value of a home by $1,649.20

7.2 Applying Indicator Variables

Indicator variables can be used to ask and answer a rich variety of questions. In this section

we consider some common applications.

Ta b l e 7 . 2 House Price Equation Estimates

Variable Coefficient Std. Error t-Statistic Prob.

C 24.5000 6.1917 3.9569 0.0001

UTOWN 27.4530 8.4226 3.2594 0.0012

SQFT 7.6122 0.2452 31.0478 0.0000

SQFT�UTOWN 1.2994 0.3320 3.9133 0.0001

AGE �0.1901 0.0512 �3.7123 0.0002

POOL 4.3772 1.1967 3.6577 0.0003

FPLACE 1.6492 0.9720 1.6968 0.0901

R2 ¼ 0:8706 SSE ¼ 230184:4

3 Recall that the p-value for a one-tail test is half of the reported two-tail p-value.
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7.2.1 INTERACTIONS BETWEEN QUALITATIVE FACTORS

We have seen how indicator variables can be used to represent qualitative factors in a

regression model. Intercept indicator variables for qualitative factors are additive. That is,

the effect of each qualitative factor is added to the regression intercept, and the effect of any

indicator variable is independent of any other qualitative factor. Sometimes, however, we

might question whether the effects of qualitative factors are independent.

For example, supposewe are estimating awage equation, in which an individual’s wages

are explained as a function of their experience, skill, and other factors related to productivity.

It is customary to include indicator variables for race and gender in such equations. If we

have modeled productivity attributes well, and if wage determination is not discriminatory,

then the coefficients of the race and gender indicator variables should not be significant.

Including just race and gender indicator variables, however, will not capture interactions

between these qualitative factors. Is there a differential in wages for blackwomen? Separate

indicator variables for being ‘‘black’’ and ‘‘female’’ will not capture this extra interaction

effect. To allow for such a possibility, consider the following specification, in which for

simplicity we use only education (EDUC) as a productivity measure:

WAGE ¼ b1 þ b2EDUC þ d1BLACK þ d2FEMALE

þ gðBLACK�FEMALEÞ þ e ð7:8Þ

where BLACK and FEMALE are indicator variables, and thus so is their interaction. These

are intercept dummy variables, because they are not interacted with any continuous

explanatory variable. They have the effect of causing a parallel shift in the regression,

as in Figure 7.1.Whenmultiple dummy variables are present, and especially when there are

interactions between indicator variables, it is important for proper interpretation towrite out

the regression function, E(WAGE), for each indicator variable combination:

EðWAGEÞ ¼

b1 þ b2EDUC WHITE�MALE

ðb1 þ d1Þ þ b2EDUC BLACK�MALE

ðb1 þ d2Þ þ b2EDUC WHITE�FEMALE

ðb1 þ d1 þ d2 þ gÞ þ b2EDUC BLACK�FEMALE

8>>><
>>>:

In this specification, white males are the reference group, because this is the group defined

when all indicator variables take the value zero, in this caseBLACK ¼ 0 andFEMALE ¼ 0:
The parameter d1 measures the effect of being black, relative to the reference group; the

parameter d2 measures the effect of being female, and the parameter gmeasures the effect of

being black and female.

Using CPS data (cps4_small.dat) from 2008, we obtain the results in Table 7.3. Holding

the effect of education constant, we estimate that black males earn $4.17 per hour less than

Ta b l e 7 . 3 Wage Equation with Race and Gender

Variable Coefficient Std. Error t-Statistic Prob.

C �5.2812 1.9005 �2.7789 0.0056

EDUC 2.0704 0.1349 15.3501 0.0000

BLACK �4.1691 1.7747 �2.3492 0.0190

FEMALE �4.7846 0.7734 �6.1863 0.0000

BLACK�FEMALE 3.8443 2.3277 1.6516 0.0989

R2 ¼ 0.2089 SSE ¼ 130194.7
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white males, white females earn $4.78 less than white males, and black females earn $5.11

less thanwhitemales. The coefficients ofEDUC,BLACK, andFEMALE are all significantly

different from zero using individual t-tests. The interaction effect between BLACK and

FEMALE is not estimated very precisely using this sample of 1000 observations, and it is

not statistically significant.4

Suppose we are asked to test the joint significance of all the qualitative factors. How

do we test the hypothesis that neither race nor gender affects wages? We do it by testing

the joint null hypothesis H0 :d1 ¼ 0, d2 ¼ 0, g ¼ 0 against the alternative that at least one

of the tested parameters is not zero. If the null hypothesis is true, race and gender fall out of

the regression, and thus have no effect on wages.

To test this hypothesis, we use the F-test procedure that is described in Section 6.1. The

test statistic for a joint hypothesis is

F ¼ ðSSER � SSEUÞ=J
SSEU=ðN � KÞ

where SSER is the sum of squared least squares residuals from the ‘‘restricted’’ model in which

thenull hypothesis is assumed to be true,SSEU is the sumof squared residuals from theoriginal,

‘‘unrestricted,’’model, J is thenumberof joint hypotheses, andN � K is thenumber of degrees

of freedomin theunrestrictedmodel. If the null hypothesis is true, then the test statisticFhas an

F-distributionwithJnumeratordegreesoffreedomandN � K denominatordegreesoffreedom,

FðJ, N�KÞ. We reject the null hypothesis if F�Fc, where Fc is the critical value, illustrated

in Figure B.9 of Appendix B, for the level of significance a. To test the J¼ 3 joint null hypo-

theses H0 :d1 ¼ 0, d2 ¼ 0, g ¼ 0, we obtain the unrestricted sum of squared errors SSEU ¼
130194.7 from the model reported in Table 7.3. The restricted sum of squares is obtained by

estimating the model that assumes that the null hypothesis is true, leading to the fitted model

bWAGE¼�6:7103 þ 1:9803EDUC

ðseÞ ð1:9142Þ ð0:1361Þ

which has SSER¼ 135771.1. The degrees of freedomN � K ¼ 1000� 5 ¼ 995 come from

the unrestricted model. The value of the F-statistic is

F ¼ ðSSER � SSEUÞ=J
SSEU=ðN � KÞ ¼ ð135771:1� 130194:7Þ=3

130194:7=995
¼ 14:21

The 1% critical value (i.e., the 99th percentile value) is Fð0:99,3,995Þ ¼ 3:80: Thus, we
conclude that race and/or gender affect the wage equation.

7.2.2 QUALITATIVE FACTORS WITH SEVERAL CATEGORIES

Many qualitative factors have more than two categories. An example is the variable region

of the country in our wage equation. The CPS data record worker residence within

4 Estimating thismodel using the larger data set cps4.dat, which contains 4838observations, yields a coefficient

estimate of 4.6534 with a t-value of 4.4318. Recall from Sections 2.4.4 and 5.3.1 that larger sample sizes lead to

smaller standard errors, and thus to more precise estimation. Labor economists tend to use large data sets so

that complex effects and interactions can be estimated precisely.We use the smaller data set as a text example so that

results can be replicated using student versions of software.
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one of the four regions: northeast, midwest, south, and west. Again, using just the simple

wage specification for illustration, we can incorporate indicator variables into the wage

equation as

WAGE ¼ b1 þ b2EDUC þ d1SOUTH þ d2MIDWEST þ d3WEST þ e (7.9)

Notice that we have not included the indicator variables for all regions. Doing sowould have

created a model in which exact collinearity exists. Since the regional categories are

exhaustive, the sum of the regional indicator variables is NORTHEAST þ SOUTHþ
MIDWEST þWEST ¼ 1. Thus, the ‘‘intercept variable’’ x1 ¼ 1 is an exact linear com-

bination of the region indicators. Recall, fromChapter 6.4, that the least squares estimator is

not defined in such cases. Failure to omit one indicator variable will lead to your computer

software’s returning a message saying that least squares estimation fails. This error is the

dummy variable trap that we mentioned in Section7.1.1a.

The usual solution to this problem is to omit one indicator variable, which defines a

reference group, as we shall see by examining the regression function,

EðWAGEÞ ¼

ðb1 þ d3Þ þ b2EDUC WEST

ðb1 þ d2Þ þ b2EDUC MIDWEST

ðb1 þ d1Þ þ b2EDUC SOUTH

b1 þ b2EDUC NORTHEAST

8>>><
>>>:

The omitted indicator variable, NORTHEAST, identifies the reference group for the

equation, to which workers in other regions are compared. It is the group that remains

when the regional indicator variables WEST, MIDWEST, and SOUTH are set to zero.

Mathematically it does not matter which indicator variable is omitted; the choice can be

made that is most convenient for interpretation. The intercept parameter b1 represents the

base wage for a worker with no education who lives in the northeast. The parameter d1
measures the expected wage differential between southern workers relative to those in the

northeast; d2 measures the expected wage differential between midwestern workers and

those in the northeast.

Using the CPS data cps4_small.dat, let us take the specification in Table 7.3 and add the

regional dummies SOUTH, MIDWEST, and WEST. The results are in Table 7.4. Based on

those results we can say that workers in the midwest earn significantly less per hour than

Ta b l e 7 . 4 Wage Equation with Regional Indicator Variables

Variable Coefficient Std. Error t-Statistic Prob.

C �4.8062 2.0287 �2.3691 0.0180

EDUC 2.0712 0.1345 15.4030 0.0000

BLACK �3.9055 1.7863 �2.1864 0.0290

FEMALE �4.7441 0.7698 �6.1625 0.0000

BLACK�FEMALE 3.6250 2.3184 1.5636 0.1182

SOUTH �0.4499 1.0250 �0.4389 0.6608

MIDWEST �2.6084 1.0596 �2.4616 0.0140

WEST 0.9866 1.0598 0.9309 0.3521

R2 = 0.2189 SSE ¼ 128544.2
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workers in the northeast, holding constant the factors education, race, and gender. We

estimate that workers in the midwest earn $2.61 less per hour than workers in the northeast.

Howwould we test the hypothesis that there are no regional differences? This would be a

joint test of the null hypothesis that the coefficients of the regional indicators are all zero. In

the context of the CPS data, SSEU ¼ 128544.2 for thewage equation in Table 7.4. Under the

null hypothesis the model in Table 7.4 reduces to that in Table 7.3 where SSER ¼ 130194.7.

This yields an F-statistic value of 4.2456. The a ¼ 0.01 critical value [99th percentile] is

F(0.99,3.992) ¼ 3.8029. At the 1% level of significance, we reject the null hypothesis and

conclude that there are significant regional differences.5

7.2.3 TESTING THE EQUIVALENCE OF TWO REGRESSIONS

In the Section 7.1.2 we introduced both intercept and slope-indicator variables into the

hedonic equation for house price. The result was given in (7.6)

PRICE ¼ b1 þ dDþ b2SQFT þ gðSQFT �DÞ þ e

The regression functions for the house prices in the two locations are

EðPRICEÞ ¼ a1 þ a2SQFT D ¼ 1

b1 þ b2SQFT D ¼ 0

�

where a1 ¼ b1 þ d and a2 ¼ b2 þ g. Figure 7.2b shows that by introducing both intercept
and slope-indicator variables we have essentially assumed that the regressions in the two

neighborhoods are completely different. We could obtain the estimates for (7.6) by

estimating separate regressions for each of the neighborhoods. In this section we generalize

this idea, which leads to the Chow test, named after econometrician Gregory Chow. The

Chow test is an F-test for the equivalence of two regressions.

By including an intercept indicator variable and an interaction variable for each

additional variable in an equation, we allow all coefficients to differ based on a qualitative

factor. Consider again the wage equation in (7.8)

WAGE ¼ b1 þ b2EDUC þ d1BLACK þ d2FEMALE þ gðBLACK �FEMALEÞ þ e

Wemight ask ‘‘Are there differences between thewage regressions for the south and for the

rest of the country?’’ If there are nodifferences, then thedata from the south andother regions

can be pooled into one sample, with no allowance made for differing slope or intercept.

How can we test this? We can carry out the test by creating intercept and slope-indicator

variables for every variable in the model, and then jointly testing the significance of the

indicator variable coefficients using an F-test. That is, we specify the model

WAGE ¼ b1 þ b2EDUC þ d1BLACK þ d2FEMALE þ gðBLACK�FEMALEÞ
þ u1SOUTH þ u2ðEDUC�SOUTHÞ þ u3ðBLACK�SOUTHÞ
þ u4ðFEMALE�SOUTHÞ þ u5ðBLACK�FEMALE�SOUTHÞ þ e

(7.10)

In (7.10)we have twice the number of parameters and variables than in (7.8).We have added

five new variables, the SOUTH intercept indicator variable and interactions between

SOUTH and the other four variables, and corresponding parameters. Estimating (7.10)

5 Using the larger CPS data file cps4.dat, the F ¼ 9.3613, which is also significant at the 1% level.
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is equivalent to estimating (7.8) twice��once for the southernworkers and again forworkers

in the rest of the country. To see this, examine the regression functions

EðWAGEÞ ¼

b1 þ b2EDUC þ d1BLACK þ d2FEMALE

þ gðBLACK�FEMALEÞ SOUTH ¼ 0

ðb1 þ u1Þ þ ðb2 þ u2ÞEDUC þ ðd1 þ u3ÞBLACK
þðd2 þ u4ÞFEMALE þ ðgþ u5ÞðBLACK�FEMALEÞ SOUTH ¼ 1

8>>>><
>>>>:

Note that each variable has a separate coefficient for southern and nonsouthern workers.

In column (1) of Table 7.5 we report the estimates and standard errors for the fully

interacted model (7.10), using the full sample. The base model (7.8) is estimated once for

workers outside the south [column (2)] and again for southern workers [column (3)]. Note

that the coefficient estimates on the nonsouth data in (2) are identical to those using the full

sample in (1). The standard errors differ because the estimates of the error variance, s2,

differ. The coefficient estimates using only southern workers are obtained from the full

model by adding the indicator variable interaction coefficients ui to the corresponding

nonsouth coefficients. For example, the coefficient estimate for BLACK in column (3) is

obtained as (d̂1 þ û3) ¼ �5:0894þ 1:7044 ¼ �3:3850. Similarly the coefficient on

FEMALE in (3) is (d̂2 þ û4) ¼ �5:0051þ 0:9011 ¼ �4:1040. Furthermore, note that

the sum of squared residuals for the full model in column (1) is the sum of the SSE

from the two separate regressions

SSE full ¼ SSEnonsouth þ SSEsouth ¼ 89088:5þ 40895:9 ¼ 129984:4

Using this indicator variable approach, we can test for a southern regional difference. We

estimate (7.10) and test the joint null hypothesis

H0 :u1 ¼ u2 ¼ u3 ¼ u4 ¼ u5 ¼ 0

against the alternative that at least one ui 6¼ 0. This is the Chow test. If we reject this null

hypothesis, we conclude that there is some difference in the wage equation in the southern

Ta b l e 7 . 5 Comparison of Fully Interacted to Separate Models

(1) (2) (3)

Full sample Nonsouth South

Variable Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

C �6.6056 2.3366 �6.6056 2.3022 �2.6617 3.4204

EDUC 2.1726 0.1665 2.1726 0.1640 1.8640 0.2403

BLACK �5.0894 2.6431 �5.0894 2.6041 �3.3850 2.5793

FEMALE �5.0051 0.8990 �5.0051 0.8857 �4.1040 1.5806

BLACK�FEMALE 5.3056 3.4973 5.3056 3.4457 2.3697 3.3827

SOUTH 3.9439 4.0485

EDUC� SOUTH �0.3085 0.2857

BLACK� SOUTH 1.7044 3.6333

FEMALE� SOUTH 0.9011 1.7727

BLACK�FEMALE� SOUTH �2.9358 4.7876

SSE 129984.4 89088.5 40895.9

N 1000 704 296
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region relative to the rest of the country. The test can also be thought of as comparing the

estimates in the nonsouth and south in columns (2) and (3) in Table 7.5.

The test ingredients are the unrestricted SSEU ¼ 129984.4 from the full model in

Table 7.5 (or the sum of the SSEs from the two separate regressions), and the restricted

SSER ¼ 130194:7 from Table 7.3. The test statistic for the J ¼ 5 hypotheses is

F ¼ ðSSER � SSEUÞ=J
SSEU=ðN � KÞ ¼ ð130194:7� 129984:4Þ=5

129984:4=990
¼ 0:3203

The denominator degrees of freedom come from the unrestricted model, N � K ¼
1000� 10. The 10% critical value is Fc ¼ 1.85, and thus we fail to reject the hypothesis

that the wage equation is the same in the southern region and the remainder of the country

at the 10% level of significance.6 The p-value of this test is p ¼ 0:9009.

REMARK: The usual F-test of a joint hypothesis relies on the assumptions MR1–MR6

of the linear regression model. Of particular relevance for testing the equivalence of two

regressions is assumptionMR3, that the variance of the error term, var(ei) ¼ s2, is the same

for all observations. If we are considering possibly different slopes and intercepts for parts

of the data, it might also be true that the error variances are different in the two parts of the

data. In such a case, the usual F-test is not valid. Testing for equal variances is covered in

Chapter 8.2.3, and the question of pooling in this case is covered in Chapter 8.4.2. For now,

be aware that we are assuming constant error variances in the calculations above.

7.2.4 CONTROLLING FOR TIME

The earlier examples we have given apply indicator variables to cross-sectional data.

Indicator variables are also used in regressions using time-series data, as the following

examples illustrate.

7.2.4a Seasonal Indicators

Summermeans outdoor cooking on barbeque grills.What effect might this have on the sales

of charcoal briquettes, a popular fuel for grilling? To investigate, let us define a model with

dependent variable yt¼ the number of 20-pound bags of Royal Oak charcoal sold in week t

at a supermarket. Explanatory variables would include the price of Royal Oak, the price of

competitive brands (Kingsford and the store brand), the prices of complementary goods

(charcoal lighter fluid, pork ribs and sausages), and advertising (newspaper ads and

coupons). While these standard demand factors are all relevant, we may also find strong

seasonal effects. All other things being equal, more charcoal is sold in the warm summer

months than in other seasons. Thus we may want to include either monthly indicator

variables (for example, AUG ¼ 1 if month is August, AUG ¼ 0 otherwise) or seasonal

indicator variables (in North America, SUMMER ¼ 1 if month ¼ June, July, or August;

SUMMER¼ 0 otherwise) into the regression. In addition to these seasonal effects, holidays

are special occasions for cookouts. In the United States these are Memorial Day (last

Monday in May), Independence Day (July 4), and Labor Day (first Monday in September).

6 Using the larger data file cps4.dat F¼ 1.2568.
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Additional sales can be expected in the week before these holidays, meaning that indicator

variables for each should be included into the regression.

7.2.4b Year Indicators

In the same spirit as seasonal indicator variables, annual indicator variables are used to

capture year effects not otherwise measured in a model. The real estate model discussed

earlier in this chapter provides an example. Real estate data are available continuously,

every month, every year. Suppose we have data on house prices for a certain community

covering a 10-year period. In addition to house characteristics, such as those employed in

(7.7), the overall price level is affected by demand factors in the local economy, such as

population change, interest rates, unemployment rate, and income growth. Economists

creating ‘‘cost-of-living’’ or ‘‘house price’’ indexes for cities must include a component for

housing that takes the pure price effect into account. Understanding the price index is

important for tax assessors, who must reassess the market value of homes in order to

compute the annual property tax. It is also important to mortgage bankers and other home

lenders, who must reevaluate the value of their portfolio of loans with changing local

conditions, as well as to homeowners trying to sell their houses, and to potential buyers as

they attempt to agree upon a selling price.

The simplest method for capturing these price effects is to include annual indicator

variables (for example, D99 ¼ 1 if year ¼ 1999; D99 ¼ 0 otherwise) into the hedonic

regression model. An example can be found in Exercise 7.4.

7.2.4c Regime Effects

An economic regime is a set of structural economic conditions that exist for a certain period.

The idea is that economic relations may behave one way during one regime, but may

behave differently during another. Economic regimes may be associated with political

regimes (conservatives in power, liberals in power), unusual economic conditions (oil

embargo, recession, hyperinflation), or changes in the legal environment (tax law changes).

An investment tax credit7 was enacted in 1962 in an effort to stimulate additional

investment. The law was suspended in 1966, reinstated in 1970, and eliminated in the

Tax Reform Act of 1986. Thus we might create an indicator variable

ITCt ¼ 1 if t ¼ 1962� 1965; 1970� 1986

0 otherwise

�

A macroeconomic investment equation might be

INVt ¼ b1 þ dITCt þ b2GNPt þ b3GNPt�1 þ et

If the tax credit was successful, then d> 0.

7.3 Log-Linear Models

In Section 4.5 and Appendix 4C we examined the log-linear model in some detail. In this

section we explore the interpretation of indicator variables in log-linear models. Some

additional detail is provided in Appendix 7A.

7 Intriligator, Bodkin andHsiao,EconometricModels, Techniques andApplications, 2nd edition, Upper Saddle

River, NJ: Prentice-Hall, 1996, p. 53.
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Let us consider the log-linear model

lnðWAGEÞ ¼ b1 þ b2EDUC þ dFEMALE (7.11)

What is the interpretation of the parameter d? FEMALE is an intercept dummy

variable, creating a parallel shift of the log-linear relationship when FEMALE ¼ 1.

That is

lnðWAGEÞ ¼ b1 þ b2EDUC MALES ðFEMALE ¼ 0Þ
ðb1 þ dÞ þ b2EDUC FEMALES ðFEMALE ¼ 1Þ

�

But what about the fact that the dependent variable is ln(WAGE)? Does that have an effect?

The answer is yes��and there are two solutions.

7.3.1 A ROUGH CALCULATION

First, take the difference between ln(WAGE) of females and males:

lnðWAGEÞFEMALES � lnðWAGEÞMALES ¼ d

Recall from Appendix A.1.6 and (A.3) that 100 times the log difference, 100d, is

approximately the percentage difference. Using the data file cps4_small.dat, the estimated

log-linear model (7.11) is

blnðWAGEÞ ¼ 1:6539 þ 0:0962EDUC � 0:2432FEMALE

ðseÞ ð0:0844Þ ð0:0060Þ ð0:0327Þ

Thus, we estimate that there is a 24.32% differential between male and female wages. This

is quick and simple, but as shown in Table A.2 there is close to a 10% approximation error

with so large a difference.

7.3.2 AN EXACT CALCULATION

We can overcome the approximation error by doing a little algebra. The wage

difference is

lnðWAGEÞFEMALES � lnðWAGEÞMALES ¼ ln
WAGEFEMALES

WAGEMALES

� �
¼ d

using the property of logarithms that ln(x)� ln(y) ¼ ln(x=y). These are natural logarithms,

and the anti-log is the exponential function,

WAGEFEMALES

WAGEMALES

¼ ed

Subtract 1 from each side (in a tricky way) to obtain

WAGEFEMALES

WAGEMALES

�WAGEMALES

WAGEMALES

¼ WAGEFEMALES �WAGEMALES

WAGEMALES

¼ ed � 1
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The percentage difference betweenwages of females andmales is 100(ed � 1)%. From this,

we estimate the wage differential between males and females to be

100ðed̂ � 1Þ% ¼ 100ðe�0:2432 � 1Þ% ¼ �21:59%

Using the delta method from Appendix 5B.4, the approximate standard error for this

estimate is 2.57%, which is a calculation that may be provided by your software, making

this exact calculation more than one standard error different from the approximate value

of �24.32%.

7.4 The Linear Probability Model

Economics is sometimes described as the ‘‘theory of choice.’’Many of the choices wemake

in life are ‘‘either��or’’ in nature. A few examples include

� A consumer who must choose between Coke and Pepsi

� A married woman who must decide whether to enter the labor market or not

� A bank official must choose to accept a loan application or not

� A high school graduate must decide whether to attend college or not

� A member of Parliament, a Senator, or a Representative must vote for or against a

piece of legislation

To analyze and predict such outcomes using an econometric model, we represent the

choice using an indicator variable, the value one if one alternative is chosen and the value

zero if the other alternative is chosen. Becausewe are attempting to explain choice between

two alternatives, the indicator variable will be the dependent variable rather than an

independent variable in a regression model.

To begin, let us represent the variable indicating a choice as

y ¼ 1 if first alternative is chosen

0 if second alternative is chosen

�

If we observe the choices that a random sample of individuals makes, then y is a random

variable. If p is the probability that the first alternative is chosen, then P[ y ¼ 1] ¼ p. The

probability that the second alternative is chosen is P[ y ¼ 0] = 1 � p. The probability

function for the binary indicator variable y is

f yð Þ ¼ py 1� pð Þ1�y; y ¼ 0; 1

The indicator variable y is said to follow aBernoulli8 distribution. The expected value of y is

E(y) ¼ p, and its variance is var(y) ¼ p(1 � p).

We are interested in identifying factors that might affect the probability p using a linear

regression function, or, in this context, a linear probability model,

E yð Þ ¼ p ¼ b1 þ b2x2 þ � � � þ bKxK

8 After Swiss mathematician Jacob Bernoulli, 1654–1705.
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Proceeding as usual, we break the observed outcome y into a systematic portion, E(y), and

an unpredictable random error, e, so that the econometric model is

y ¼ E yð Þ þ e ¼ b1 þ b2x2 þ � � � þ bKxK þ e

One difficulty with using this model for choice behavior is that the usual error term

assumptions cannot hold. The outcome y only takes two values, implying that the error

term e also takes only two values, so that the usual ‘‘bell-shaped’’ curve describing the

distribution of errors does not hold. The probability functions for y and e are

y value e value Probability

1 1� b1 þ b2x2 þ � � � þ bKxKð Þ p

0 � b1 þ b2x2 þ � � � þ bKxKð Þ 1 � p

The variance of the error term e is

var eð Þ ¼ p 1� pð Þ ¼ b1 þ b2x2 þ � � � þ bKxKð Þ 1� b1 � b2x2 � � � � � bKxKð Þ

This error is not homoskedastic, so the usual formula for the variance of the least squares

estimator is incorrect. A second problem associated with the linear probability model is that

predicted values, dE yð Þ ¼ p̂, can fall outside the (0, 1) interval, meaning that their interpret-

ation as probabilities does not make sense. Despite these weaknesses, the linear probability

model has the advantage of simplicity, and it has been found to provide good estimates of the

marginal effects of changes in explanatory variables xk on the choice probability p, as long as

p is not too close to zero or one.9

7.4.1 A MARKETING EXAMPLE

A shopper is deciding between Coke and Pepsi. Define the variable COKE:

COKE ¼ 1 if Coke is chosen

0 if Pepsi is chosen

�

The expected value of this variable is E(COKE) ¼ pCOKE ¼ probability that Coke is

chosen. What factors might enter the choice decision? The relative price of Coke to Pepsi

(PRATIO) is a potential factor. As the relative price of Coke rises, we should observe a

reduced probability of its choice. Other factors influencing the consumer might be the

presence of store displays for these products. Let DISP_COKE and DISP_PEPSI be

indicator variables taking the value one if the respective store display is present and

zero if it is not.We expect that the presence of a Coke displaywill increase the probability of

a Coke purchase, and the presence of a Pepsi display will decrease the probability of a Coke

purchase.

9 See Chapter 16 for nonlinear models of choice, called probit and logit, which ensure that predicted

probabilities fall between zero and one. These models require the use of more complex estimators and methods

of inference.
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The data file coke.dat10 contains ‘‘scanner’’ data on 1140 individuals who purchased

Coke or Pepsi. In this sample 44.7% of the customers chose Coke. The estimated regression

model is

bE COKEð Þ ¼ p̂COKE ¼ 0:8902� 0:4009PRATIOþ 0:0772DISP COKE � 0:1657DISP PEPSI

(se) (0.0655) (0.0613) (0.0344) (0.0356)

Assuming for the moment that the standard errors are reliable,11 all the coefficients are

significantly different from zero at thea ¼ 0.05 level. Recall thatPRATIO ¼ 1 if the prices

of Coke and Pepsi are equal, and thatPRATIO ¼ 1.10would represent a case inwhich Coke

was 10%more expensive than Pepsi. Such an increase is estimated to reduce the probability

of purchasingCoke by 0.04. A store display for Coke is estimated to increase the probability

of a Coke purchase by 0.077, and a Pepsi display is estimated to reduce the probability of a

Coke purchase by 0.166. The concerns about predicted probabilities falling outside (0, 1) are

well founded in general, but in this example only 16 of the 1140 sample observations

resulted in predicted probabilities less than zero, and there were no predicted probabilities

greater than one.

7.5 Treatment Effects

Consider the question ‘‘Do hospitals make people healthier?’’ Angrist and Pischke12 report

the results of aNationalHealth InterviewSurvey that included the question ‘‘During the past

12 months, was the respondent a patient in a hospital overnight?’’ Also asked was ‘‘Would

yousayyourhealth ingeneral isexcellent,verygood,good, fairorpoor?’’Using thenumber1

for poor health and 5 for excellent health, those who had not gone to the hospital had an

average health score of 3.93, and those who had been to the hospital had an average score

of 3.21. That is, individuals who had been to the hospital had poorer health than those who

had not.

Principles of economics books warn in the first chapter13 about the faulty line of

reasoning known as post hoc, ergo propter hoc, which means that one event’s preceding

another does not necessarily make the first the cause of the second. Going to the hospital

does not cause the poorer health status. Those who were less healthy chose to go to the

hospital because of an illness or injury, and at the time of the survey were still less healthy

than those who had not gone to the hospital. Another way to say this is embodied in the

warning that ‘‘correlation is not the same as causation.’’ We observe that those who had

been in a hospital are less healthy, but observing this association does not imply that going to

the hospital causes a person to be less healthy. Still another way to describe the problem

we face in this example is to say that data exhibit a selection bias, because some people chose

(or self-selected) to go to the hospital and the others did not.Whenmembership in the treated

group is in part determined by choice, then the sample is not a random sample. There are

systematic factors, in this case health status, contributing to the composition of the sample.

10 Obtained from the ERIM public data base, James M. Kilts Center, University of Chicago Booth School of

Business. Scanner data is information recorded at the point of purchase by an electronic device reading a barcode.
11 The estimates and standard errors are not terribly dissimilar from those obtained using more advanced

options discussed in Chapters 8 and 16.
12 Mostly Harmless Econometrics: An Empiricist’s Guide, Princeton, 2009, pp. 12–13.
13 See, for example, Campbell R. McConnell and Stanley L. Brue, Economics, Twelfth Edition, McGraw-Hill,

1993, pp. 8–9.
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A second example of selection bias may bring the concept closer to home. Are you

reading this great book because you are enrolled in an econometrics class? Is the course

required, or not? If your class is an ‘‘elective,’’ then you and your classmates are not a

random sample from the broader student population. It is our experience that students taking

econometrics as an elective have an ability level and quantitative preparation that is higher,

on average, than a random sample from the university population. We also observe that a

higher proportion of undergraduate students who take econometrics enroll in graduate

programs in economics or related disciplines. Is this a causal relationship? In part, it

certainly is, but also your abilities and future plans for graduate training may have drawn

you to econometrics, so that the high success rate of our students is in part attributed to

selection bias.

Selection bias is also an issue when asking

� ‘‘How much does an additional year of education increase the wages of married

women?’’ The difficulty is that we are able to observe a woman’s wages only if she

chooses to join the labor force, and thus the observed data is not a random sample.

� ‘‘How much does participation in a job-training program increase wages?’’ If

participation is voluntary, then we may see a greater proportion of less skilled

workers taking advantage of such a program.

� ‘‘Howmuch does a dietary supplement contribute toweight loss?’’ If those taking the

supplement are among the severely overweight, then the results we observe may not

be ‘‘typical.’’

In each of these cases selection bias interferes with a straightforward examination of the

data, and makes more difficult our efforts to measure a causal effect, or treatment effect.

In some situations, usually those involving the physical or medical sciences, it is clearer

how we might study causal effects. For example, if we wish to measure the effect of a new

type of fertilizer on rice production, we can randomly assign identical rice fields to be

treated with a new fertilizer (the treatment group), with the others being treated with an

existing product (the control group). At the end of the growing period we compare the

production on the two types of fields. The key here is that we perform a randomized

controlled experiment. By randomly assigning subjects to treatment and control groups,

we ensure that the differenceswe observewill result from the treatment. Inmedical research

the effectiveness of a new drug ismeasured by such experiments. Test subjects are randomly

assigned to the control group, who receive a placebo drug, and the treatment group, who

receive the drug being tested. By random assignment of treatment and control groups, we

prevent any selection bias from occurring.

As economists wewould like to have the type of information that arises from randomized

controlled experiments to study the consequences of social policy changes, such as changes

in laws, or changes in types and amounts of aid and training we provide the poor. The ability

to perform randomized controlled experiments is limited because the subjects are people,

and their economic well-being is at stake. However, there are some examples. Before we

proceed, wewill examine the statistical consequences of selection bias for themeasurement

of treatment effects.

7.5.1 THE DIFFERENCE ESTIMATOR

In order to understand the measurement of treatment effects, consider a simple regression

model in which the explanatory variable is a dummy variable, indicating whether a
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particular individual is in the treatment or control group. Let y be the outcome variable, the

measured characteristic the treatment is designed to effect. In the rice production example, y

would be the output of rice on a particular rice field. Define the indicator variable d as

di ¼ 1 individual in treatment group

0 individual in control group

�
(7.12)

The effect of the treatment on the outcome can be modeled as

yi ¼ b1 þ b2di þ ei; i ¼ 1; . . . ;N (7.13)

where ei represents the collection of other factors affecting the outcome. The regression

functions for the treatment and control groups are

E yið Þ ¼ b1 þ b2 if in treatment group, di ¼ 1

b1 if in control group, di ¼ 0

�

This is the samemodel we used in Chapter 2.9 to study the effect of location on house prices.

The treatment effect that we wish to measure is b2. The least squares estimator of b2 is

b2 ¼
�
N

i¼1
di � d
� �

yi � yð Þ

�
N

i¼1
di � d
� �2 ¼ y1 � y0 (7.14)

where y1 ¼ �N1
i¼1yi=N1 is the sample mean of the N1 observations on y for the treatment

group (d ¼ 1) and y0 ¼ �N0
i¼1yi=N0 is the sample mean of the N0 observations on y for

the control group (d ¼ 0). In this treatment/control framework the estimator b2 is called the

difference estimator, because it is the difference between the sample means of

the treatment and control groups.14

7.5.2 ANALYSIS OF THE DIFFERENCE ESTIMATOR

The statistical properties of the difference estimator can be examined using the same

strategy employed in Chapter 2.4.2. We can rewrite the difference estimator as

b2 ¼ b2 þ
�N

i¼1 di � d
� �

ei � eð Þ
�N

i¼1 di � d
� �2 ¼ b2 þ e1 � e0ð Þ

In themiddle equality, the factor added tob2 has the same form as the difference estimator in

(7.14), with ei replacing yi��hence the final equality. The difference estimator b2 equals the

true treatment effect b2 plus the difference between the averages of the unobserved factors

affecting the outcomes y for the treatment group e1ð Þ and for the control group e0ð Þ. In order
for the difference estimator to be unbiased, E(b2) ¼ b2, it must be true that

E e1 � e0ð Þ ¼ E e1ð Þ � E e0ð Þ ¼ 0

14 See Appendix 7B for an algebraic derivation.
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In words, the expected value of all the factors affecting the outcome, other than the

treatment, must be equal for the treatment and control groups.

If we allow individuals to ‘‘self-select’’ into treatment and control groups, then E e1ð Þ �
E e0ð Þ is the selection bias in the estimation of the treatment effect. For example, we

observed that those who had not gone to the hospital (control group) had an average health

score of 3.93, and thosewho had been to the hospital (treatment group) had an average health

score of 3.21. The estimated effect of the treatment is y1 � y0ð Þ ¼ 3.21 � 3.93 ¼ � 0.72.

The estimator bias in this case arises because the pre-existing health conditions for the

treated group, captured byE e1ð Þ, are poorer than the pre-existing health of the control group,
captured byE e0ð Þ, so that in this example there is a negative bias in the difference estimator.

We can anticipate that anytime some individuals select treatment there will be factors

leading to this choice that are systematically different from those leading individuals in the

control group to not select treatment, resulting in a selection bias in the difference estimator.

How can we eliminate the self-selection bias? The solution is to randomly assign

individuals to treatment and control groups, so that there are no systematic differences

between the groups, except for the treatment itself. With random assignment, and the use of

a large number of experiment subjects, we can be sure that E e1ð Þ ¼ E e0ð Þ and E b2ð Þ ¼ b2.

7.5.3 APPLICATION OF DIFFERENCE ESTIMATION: PROJECT STAR

Medical researchers use white mice to test new drugs, because these mice, surprisingly, are

genetically similar to humans. Mice that are bred to be identical are randomly assigned to

treatment and control groups, making estimation of the treatment effect of a new drug on the

mice a relatively straightforward and reproducible process. Medical research on humans is

strictly regulated, and volunteers are given incentives to participate, then randomly assigned

to treatment and control groups. Randomized controlled experiments in the social sciences

are equally attractive from a statistician’s point of view, but are rare because of the

difficulties in organizing and funding them. A notable example of a randomized experiment

is Tennessee’s Project STAR.15

A longitudinal experiment was conducted in Tennessee beginning in 1985 and ending in

1989.A single cohort of studentswas followed fromkindergarten through third grade. In the

experiment children were randomly assigned within schools into three types of classes:

small classes with 13–17 students, regular-sized classes with 22–25 students, and regular-

sized classes with a full-time teacher aide to assist the teacher. Student scores on

achievement tests were recorded, as was some information about the students, teachers,

and schools. Data for the kindergarten classes is contained in the data file star.dat.

Let us first compare the performance of students in small classes versus regular classes.16

The variable TOTALSCORE is the combined reading and math achievement scores and

SMALL ¼ 1 if the student was assigned to a small class, and zero if the student is in a regular

class. In Tables 7.6a and 7.6b are summary statistics for the two types of classes. First, note

that on all measures except TOTALSCORE the variable means reported are very similar.

This is because students were randomly assigned to the classes, so that there should be no

patterns evident. The average value of TOTALSCORE in the regular classes is 918.0429 and

in small classes it is 931.9419, a difference of 13.899 points. The test scores are higher in the

15 See www.heros-inc.org/star.htm for program description, public use data and extensive literature.
16 Interestingly there is no significant difference in outcomes comparing a regular class to a regular classwith an

aide. For this example all observations for students in the third treatment group are dropped.
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smaller classes. The difference estimator obtain using regression will yield the same

estimate, along with significance levels.

The model of interest is

TOTALSCORE ¼ b1 þ b2SMALLþ e (7.15)

The regression results are in column (1) of Table 7.7. The estimated ‘‘treatment effect’’ of

putting kindergarten children into small classes is 13.899 points, the same as the difference

in sample means computed above, on their achievement score total; the difference is

statistically significant at the 0.01 level.

7.5.4 THE DIFFERENCE ESTIMATOR WITH ADDITIONAL CONTROLS

Because of the random assignment of the students to treatment and control groups, there is

no selection bias in the estimate of the treatment effect. However, if additional factorsmight

affect the outcome variable, they can be included in the regression specification. For

example, it is possible that a teacher’s experience leads to greater learning and higher

achievement test scores. Adding TCHEXPER to the base model we obtain

Ta b l e 7 . 6 a Summary Statistics for Regular-Sized Classes

Variable Mean Std. Dev. Min Max

TOTALSCORE 918.0429 73.1380 635 1229

SMALL 0.0000 0.0000 0 0

TCHEXPER 9.0683 5.7244 0 24

BOY 0.5132 0.4999 0 1

FREELUNCH 0.4738 0.4994 0 1

WHITE ASIAN 0.6813 0.4661 0 1

TCHWHITE 0.7980 0.4016 0 1

TCHMASTERS 0.3651 0.4816 0 1

SCHURBAN 0.3012 0.4589 0 1

SCHRURAL 0.4998 0.5001 0 1

N ¼ 2005

Ta b l e 7 . 6 b Summary Statistics for Small Classes

Variable Mean Std. Dev. Min Max

TOTALSCORE 931.9419 76.3586 747 1253

SMALL 1.0000 0.0000 1 1

TCHEXPER 8.9954 5.7316 0 27

BOY 0.5150 0.4999 0 1

FREELUNCH 0.4718 0.4993 0 1

WHITE ASIAN 0.6847 0.4648 0 1

TCHWHITE 0.8625 0.3445 0 1

TCHMASTERS 0.3176 0.4657 0 1

SCHURBAN 0.3061 0.4610 0 1

SCHRURAL 0.4626 0.4987 0 1

N ¼ 1738
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TOTALSCORE ¼ b1 þ b2SMALL þ b3TCHEXPERþ e (7.16)

The least squares/difference estimates of (7.16) are in column (2) of Table 7.7. We estimate

that each additional year of teaching experience increases the test score performance by

1.156 points, which is statistically significant at the 0.01 level. This increases our under-

standing of the effect of small classes. The results show that the effect of small classes is the

same as the effect of approximately 12 years of teaching experience.

Note that adding TCHEXPER to the regression changed the estimate of the effect of

SMALL classes very little. This is exactly what we would expect if TCHEXPER is

uncorrelated with SMALL. The simple correlation between SMALL and TCHEXPER

is only �0.0064. Recall that omitting a variable that is uncorrelated with an included

variable does not change the estimated coefficient of the included variable. Comparing the

models in columns (1) and (2) of Table 7.7, the model in (1) omits the significant variable

TCHEXPER, but there is little change in the estimate of b2 introduced by omitting this

nearly uncorrelated variable. Furthermore, we can expect, in general, to obtain a difference

estimatorwith smaller standard errors if we are able to include additional controls. In (7.15),

any and all factors other than small class size are included in the error term. By taking

some of those factors out of the error term and including them in the regression, the variance

of the error term s2 is reduced, which reduces estimator variance.

7.5.4a School Fixed Effects

It may be that assignment to treatment groups is related to one or more observable

characteristics. That is, treatments are randomly assigned given an external factor. Prior

to a medical experiment concerning weight loss, participants may fall into the ‘‘over-

weight’’ category and the ‘‘obese’’ category. Of those in the overweight group 30% are

randomly assigned for treatment, and of the obese group 50% are randomly assigned for

treatment. Given pretreatment status, the treatment is randomly assigned. If such con-

ditioning factors are omitted and put into the error term in (7.15) or (7.16), then these

factors are correlated with the treatment variable and the least squares estimator of the

treatment effect is biased and inconsistent. The way to adjust to ‘‘conditional’’ random-

ization is to include the conditioning factors into the regression.

In the STAR data, another factor that we might consider affecting the outcome is the

school itself. The studentswere randomizedwithin schools (conditional randomization), but

Ta b l e 7 . 7 Project STAR: Kindergarden

(1) (2) (3) (4)

C 918.0429*** 907.5643*** 917.0684*** 908.7865***

(1.6672) (2.5424) (1.4948) (2.5323)

SMALL 13.8990*** 13.9833*** 15.9978*** 16.0656***

(2.4466) (2.4373) (2.2228) (2.2183)

TCHEXPER 1.1555*** 0.9132***

(0.2123) (0.2256)

SCHOOL EFFECTS No No Yes Yes

N 3743 3743 3743 3743

adj. R2 0.008 0.016 0.221 0.225

SSE 20847551 20683680 16028908 15957534

Standard errors in parentheses

Two-tail p-values: * p < 0.10, ** p < 0.05, *** p < 0.01

280 US ING INDICATOR VARIABLES



not across schools. Some schools may be located in wealthier school districts that can pay

higher salaries, thus attracting better teachers. The students in our sample are enrolled in 79

different schools.Oneway to account for school effects is to include an indicator variable for

each school. That is, we can introduce 78 new indicators:

SCHOOL j ¼ 1 if student is in school j

0 otherwise

�

This is an ‘‘intercept’’ indicator variable, allowing the expected total score to differ for each

school. The model including these indicator variables is

TOTALSCOREi ¼ b1 þ b2SMALLi þ b3TCHEXPERi þ �79
j¼2 djSCHOOL ji þ ei (7.17)

The regression function for a student in school j is

E TOTALSCOREið Þ ¼ b1 þ dj
� �þ b3TCHEXPERi student in regular class

b1 þ dj þ b2

� �þ b3TCHEXPERi student in small class

(

The expected score for a student in a regular class for a teacher with no experience is

adjusted by the fixed amount dj. Thisfixed effect controls for somedifferences in the schools

that are not accounted for by the regression model.

Columns (3) and (4) in Table 7.7 contain the estimated coefficients of interest, but not the

78 indicator variable coefficients. The joint F-test of the hypothesis that all dj ¼ 0 consists

of J ¼ 78 hypotheses with N – K ¼ 3663 degrees of freedom. The F-value ¼ 14.118 is

significant at the 0.001 level. We conclude that there are statistically significant individual

differences among schools. The important coefficients on SMALL and TCHEXPER change

a little. The estimated effect of being in a small class increases to 16.0656 achievement test

points in model (4), as compared to 13.9833 points in the corresponding model (2). It

appears that some effect of small classes was masked by unincorporated individual school

differences. This effect is small however, as the 95% interval estimate for the coefficient of

SMALL [11.7165, 20.4148] inmodel (4) includes 13.9833. Similarly, the estimated effect of

teacher experience is slightly different in the models with and without the school fixed

effects.

7.5.4b Linear Probability Model Check of Random Assignment

In Tables 7.6a and 7.6b we examined the summary statistics for the data sorted by whether

pupils were in a regular class or a small class. Except for total score, we did not find much

difference in the samplemeans of the variables examined. Another way to check for random

assignment is to regress SMALL on these characteristics and check for any significant

coefficients, or an overall significant relationship. If there is random assignment, we should

not find any significant relationships. Because SMALL is an indicator variable, we use the

linear probability model discussed in Section 7.4. The estimated linear probability model is

bSMALL

tð Þ
¼ 0:4665þ 0:0014BOY

0:09ð Þ
þ 0:0044WHITE

0:22ð Þ
ASIAN � 0:0006

�0:42ð Þ
TCHEXPER

� 0:0009FREELUNCH
�0:05ð Þ

7 . 5 TREATMENT EFFECTS 281



First, note that none of the right-hand-side variables are statistically significant. Second, the

overall F statistic for this linear probability model is 0.06 with a p ¼ 0.99. There is no

evidence that students were assigned to small classes based on any of these criteria. Also,

recall that the linear probability model is so named because E(SMALL) is the probability of

observing SMALL ¼ 1 in a random draw from the population. If the values of all the

potential explanatory factors are zero, the estimated intercept gives the estimated prob-

ability of observing a child in a small class to be 0.4665, with 95% interval estimate [0.4171,

0.5158]. We cannot reject the null hypothesis that the intercept equals 0.5, which is what it

should be if students are allocated by a ‘‘flip’’ of a coin. The importance of this, again, is that

by randomly assigning students to small classes we can estimate the ‘‘treatment’’ effect

using the simple difference estimator in (7.15).The ability to isolate the important class size

effect is a powerful argument in favor of randomized controlled experiments.

7.5.5 THE DIFFERENCES-IN-DIFFERENCES ESTIMATOR

Randomized controlled experiments are rare in economics because they are expensive and

involve human subjects. Natural experiments, also called quasi-experiments, rely on

observing real-world conditions that approximate what would happen in a randomized

controlled experiment. Treatment appears as if it were randomly assigned. In this sectionwe

consider estimating treatment effects using ‘‘before and after’’ data.

Suppose that we observe two groups before and after a policy change,with the treatment

group being affected by the policy, and the control group being unaffected by the policy.

Using such data, wewill examine any change that occurs to the control group and compare it

to the change in the treatment group.

The analysis is explained by Figure 7.3. The outcome variable ymight be an employment

rate, a wage rate, a price, or so on. Before the policy change we observe the treatment group

value y ¼ B, and after the policy is implemented the treatment group value is y ¼ C. Using

only the data on the treatment group we cannot separate out the portion of the change from

y ¼ B to y ¼ C that is due to the policy from the portion that is due to other factors that may

affect the outcome. We say that the treatment effect is not ‘‘identified.’’

We can isolate the effect of the treatment by using a control group that is not affected by

the policy change. Before the policy change, we observe the control group value y ¼ A, and

after the policy change, the control group value is y ¼ E. In order to estimate the treatment

effect using the four pieces of information contained in the points A, B, C, and E, we make

y

Treatment

B

A Control

Before After

Treatment group with
unobserved trend

Treatment effect � δ

C

D

E

FIGURE 7.3 Difference-in-Differences Estimation.
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the strong assumption that the two groups experience a common trend. In Figure 7.3, the

dashed line BD represents what we imagine the treatment group growth would have been

(the term counterfactual from psychology is sometimes used to describe this imagined

outcome) in the absence of the policy change. The growth described by the dashed line BD

is unobservable, and is obtained by assuming that the growth in the treatment group that is

unrelated to the policy change is the same as the growth in the control group.

The treatment effect d ¼ CD is the difference between the treatment and control values

of y in the ‘‘after’’ period, after subtractingDE,which iswhat the difference between the two

groupswould have been in the absence of the policy. Using the common growth assumption,

the difference DE equals the initial difference AB. Using the four observable points A, B, C,

and E depicted in Figure 7.3, estimation of the treatment effect is based on data averages for

the two groups in the two periods,

d̂ ¼ Ĉ� Ê
� �� B̂� Â

� �
¼ yTreatment;After � yControl;After

� �� yTreatment;Before � yControl;Before
� �

(7.18)

In (7.18), the sample means are

yControl;Before ¼ Â = sample mean of y for control group before policy implementation

yTreatment;Before ¼ B̂= samplemeanof y for treatmentgroupbeforepolicy implementation

yControl;After ¼ Ê = sample mean of y for control group after policy implementation

yTreatment;After ¼ Ĉ = sample mean of y for treatment group after policy implementation

The estimator d̂ is called a differences-in-differences (abbreviated as D-in-D, DD, or DID)
estimator of the treatment effect.

The estimator d̂ can be conveniently calculated using a simple regression. Define yit to be

the observed outcome for individual i in period t. Let AFTERt be an indicator variable that

equals one in the period after the policy change (t ¼ 2) and zero in the period before the

policy change (t ¼ 1). Let TREATi be a dummy variable that equals one if individual i is

in the treatment group and zero if the individual is in the control (non-treatment) group.

Consider the regression model

yit ¼ b1 þ b2TREATi þ b3AFTERt þ d TREATi�AFTERtð Þ þ eit (7.19)

The regression function is

E yitð Þ ¼
b1 TREAT ¼ 0; AFTER ¼ 0 Control before ¼ A½ �
b1 þ b2 TREAT ¼ 1; AFTER ¼ 0 Treatment before ¼ B½ �
b1 þ b3 TREAT ¼ 0; AFTER ¼ 1 Control after ¼ E½ �
b1 þ b2 þ b3 þ d TREAT ¼ 1; AFTER ¼ 1 Treatment after ¼ C½ �

8>><
>>:

In Figure 7.3, points A ¼ b1, B ¼ b1 þ b2, E ¼ b1 þ b3 and C ¼ b1 þ b2 þ b3 þ d.
Then,

d ¼ C� Eð Þ � B� Að Þ ¼ b1 þ b2 þ b3 þ dð Þ � b1 þ b3ð Þ½ � � b1 þ b2ð Þ � b1½ �
Using the least squares estimates b1, b2, b3 and d̂ from (7.19), we have

d̂ ¼ b1 þ b2 þ b3 þ d̂
� �

� b1 þ b3ð Þ
h i

� b1 þ b2ð Þ � b1½ �
¼ yTreatment;After � yControl;After

� �� yTreatment;Before � yControl;Before
� �
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7.5.6 ESTIMATING THE EFFECT OF A MINIMUM WAGE CHANGE

Card and Krueger (1994)17 provide an example of a natural experiment and the differences-

in-differences estimator. On April 1, 1992, New Jersey’s minimum wage was increased

from $4.25 to $5.05 per hour, while the minimumwage in Pennsylvania stayed at $4.25 per

hour. Card and Krueger collected data on 410 fast food restaurants in New Jersey (the

treatment group) and eastern Pennsylvania (the control group). The ‘‘before’’ period is

February 1992, and the ‘‘after’’ period is November 1992. Using these data, they estimate

the effect of the ‘‘treatment,’’ raising the New Jersey minimumwage on employment at fast

food restaurants in New Jersey. Their interesting finding, that there was no significant

reduction18 in employment, sparked a great debate and much further research.19 In model

(7.19) we will test the null and alternative hypotheses

H0 : d � 0 versus H1 : d (7.20)

The relevant Card and Krueger data is in the data file njmin3.dat. We use the sample means

of FTE, the number of full-time-equivalent20 employees, given in Table 7.8, to estimate the

treatment effect d using the differences-in-differences estimator.

In Pennsylvania, the control group, employment fell during the period February to

November. Recall that the minimum wage level was changed in New Jersey, but not in

Pennsylvania, so that employment levels in Pennsylvania were not affected. In New Jersey

we see an increase inFTE in the same period. The differences-in-differences estimate of the

change in employment due to the change in the minimum wage is

bd ¼ FTENJ;After � FTEPA;After

� �� FTENJ;Before � FTEPA;Before

� �
¼ 21:0274� 21:1656ð Þ � 20:4394� 23:3312ð Þ
¼ 2:7536

(7.21)

We estimate that FTE employment increased by 2.75 employees during the period in which

the New Jersey minimum wage was increased. This positive effect is contrary to what is

predicted by economic theory.

Ta b l e 7 . 8 Full-time Equivalent Empoyees by State and Period

Variable N mean se

Pennsylvania ðPAÞ
Before 77 23.3312 1.3511

After 77 21.1656 0.9432

New Jersey ðNJÞ
Before 321 20.4394 0.5083

After 319 21.0274 0.5203

17 David Card and Alan Krueger (1994) ‘‘MinimumWages and Employment: A Case Study of the Fast Food

Industry inNew Jersey andPennsylvania,’’TheAmericanEconomicReview, 84, 316–361.We thankDavidCard for

letting us use the data.
18 Remember that failure to reject a null hypothesis does not make it true!
19 The issue is hotly contested and the literature extensive. See, for example, http://en.wikipedia.org/wiki/

Minimum_wage, and the references listed, as a starting point.
20 Card and Krueger calculate FTE ¼ 0.5 � number of part time workers þ number of full time workers þ

number of managers.
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Rather than compute the differences-in-differences estimate using sample means, it

is easier and more general to use the regression format. In (7.19) let y ¼ FTE employment,

the treatment variable is the indicator variable NJ ¼ 1 if observation is from New Jersey,

and zero if from Pennsylvania. The time indicator is D ¼ 1 if the observation is

from November and zero if it is from February. The differences-in-differences regression

is then

FTEit ¼ b1 þ b2NJi þ b3Dt þ d NJi�Dtð Þ þ eit (7.22)

Using the 794 complete observations in njmin3.dat, the least squares estimates are reported

in column (1) of Table 7.9. At the a ¼ 0.05 level of significance the rejection region for the

left-tail test in (7.20) is t � � 1.645, so we fail to reject the null hypothesis. We cannot

conclude that the increase in the minimum wage in New Jersey reduced employment at

New Jersey fast food restaurants.

As with randomized control experiments it is interesting to see the robustness of these

results. In Table 7.9 column (2) we add indicator variables for fast food chain and whether

Ta b l e 7 . 9 Difference-in-Differences Regressions

(1) (2) (3)

C 23.3312*** 25.9512*** 25.3205***

(1.072) (1.038) (1.211)

NJ �2.8918* �2.3766* �0.9080

(1.194) (1.079) (1.272)

D �2.1656 �2.2236 �2.2119

(1.516) (1.368) (1.349)

D NJ 2.7536 2.8451 2.8149

(1.688) (1.523) (1.502)

KFC �10.4534*** �10.0580***

(0.849) (0.845)

ROYS �1.6250 �1.6934*

(0.860) (0.859)

WENDYS �1.0637 �1.0650

(0.929) (0.921)

CO OWNED �1.1685 �0.7163

(0.716) (0.719)

SOUTHJ �3.7018***

(0.780)

CENTRALJ 0.0079

(0.897)

PA1 0.9239

(1.385)

N 794 794 794

R2 0.007 0.196 0.221

adj. R2 0.004 0.189 0.211

Standard errors in parentheses

Two-tail p-values: * p < 0.05, ** p < 0.01, *** p < 0.001
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the restaurant was company-owned rather than franchise-owned. In column (3) we add

indicator variables for geographical regions within the survey area. None of these changes

alter the differences-in-differences estimate, and none lead to rejection of the null

hypothesis in (7.20).

7.5.7 USING PANEL DATA

In the previous section’s differences-in-differences analysis, we did not exploit one very

important feature of Card and Krueger’s data��namely, that the same fast food restaurants

were observed on two occasions. We have ‘‘before’’ and ‘‘after’’ data on 384 of the 410

restaurants. These are called paired data observations, or repeat data observations, or

panel data observations. In Chapter 1 we introduced the notion of a panel of data��we

observe the same individual-level units over several periods. The Card and Krueger data

includes T ¼ 2 observations on N ¼ 384 individual restaurants among the 410 restaurants

surveyed. The remaining 26 restaurants had missing data on FTE either in the ‘‘before’’ or

‘‘after’’ period. There are powerful advantages to using panel data, some of which we will

describe here. See Chapter 15 for a much more extensive discussion.

Using panel data we can control for unobserved individual-specific characteristics.

There are characteristics of the restaurants that we do not observe. Some restaurants will

have preferred locations, some may have superior managers, and so on. These unobserved

individual specific characteristics are included in the error term of the regression (7.22). Let

ci denote any unobserved characteristics of individual restaurant i that do not change over

time. Adding ci to (7.22) we have

FTEit ¼ b1 þ b2NJi þ b3Dt þ d NJi�Dtð Þ þ ci þ eit (7.23)

Whatever cimight be, it contaminates this regressionmodel. A solution is at hand ifwe have

a panel of data. If we have T ¼ 2 repeat observations we can eliminate ci by analyzing the

changes in FTE from period one to period two. Recall thatDt ¼ 0 in period one, soD1 ¼ 0;

andDt ¼ 1 in period two, soD2 ¼ 1. Subtract the observation for t ¼ 1 from that for t ¼ 2

FTEi2 ¼ b1 þ b2NJi þ b31þ d NJi�1ð Þ þ ci þ ei2

� FTEi1 ¼ b1 þ b2NJi þ b30þ d NJi�0ð Þ þ ci þ ei1

DFTEi ¼ b3 þ dNJi þ Dei

where DFTEi ¼ FTEi2 � FTEi1 and Dei ¼ ei2 � ei1. Using the differenced data, the

regression model of interest becomes

DFTEi ¼ b3 þ dNJi þ Dei (7.24)

Observe that the contaminating factor ci has dropped out! Whatever those unobservable

features might have been, they are now gone. The intercept b1 and the coefficient b2 have

also dropped out, with the parameter b3 becoming the new intercept. The most important

parameter, d, measuring the treatment effect is the coefficient of the indicator variable NJi,

which identifies the treatment (New Jersey) and control group (Pennsylvania) obser-

vations.
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The estimated model (7.24) is

bDFTE ¼ �2:2833þ 2:7500NJ R2 ¼ 0:0146

(se) (1.036) (1:154Þ

The estimate of the treatment effect d̂ ¼ 2:75 using the differenced data, which accounts

for any unobserved individual differences, is very close to the differences-in-differences.

Once again we fail to conclude that theminimumwage increase has reduced employment in

these New Jersey fast food restaurants.

7.6 Exercises

Answers to exercises marked * appear at www.wiley.com/college/hill.

7.6.1 PROBLEMS

7.1 An economics department at a large state university keeps track of itsmajors’ starting

salaries. Does taking econometrics affect starting salary? Let SAL ¼ salary in

dollars, GPA ¼ grade point average on a 4.0 scale, METRICS ¼ 1 if student

took econometrics, and METRICS ¼ 0 otherwise. Using the data file metrics.dat,

which contains information on 50 recent graduates, we obtain the estimated

regression

bSAL ¼ 24200 þ 1643GPAþ 5033METRICS R2 ¼ 0:74

ðseÞ ð1078Þ ð352Þ ð456Þ
(a) Interpret the estimated equation.

(b) How would you modify the equation to see whether women had lower starting

salaries than men? (Hint: Define an indicator variable FEMALE ¼ 1, if female;

zero otherwise.)

(c) How would you modify the equation to see if the value of econometrics was the

same for men and women?

7.2* In September 1998, a local TV station contacted an econometrician to analyze some

data for them. They were going to do a Halloween story on the legend of full moons’

affecting behavior in strange ways. They collected data from a local hospital on

emergency room cases for the period from January 1, 1998, until mid-August. There

were 229 observations. During this time there were eight full moons and seven new

moons (a related myth concerns new moons) and three holidays (New Year’s Day,

Memorial Day, andEaster). If there is a full-moon effect, then hospital administrators

will adjust numbers of emergency room doctors and nurses, and local police may

change the number of officers on duty.

Using the data in the file fullmoon.dat we obtain the regression results in the

following table: T is a time trend (T ¼ 1,2,3, . . . , 229) and the rest are indicator

variables.HOLIDAY¼ 1 if the day is a holiday; 0 otherwise.FRIDAY¼ 1 if the day is

a Friday; 0 otherwise. SATURDAY ¼ 1 if the day is a Saturday; 0 otherwise.

FULLMOON ¼ 1 if there is a full moon; 0 otherwise. NEWMOON ¼ 1 if there

is a new moon; 0 otherwise.
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(a) Interpret these regression results. When should emergency rooms expect more

calls?

(b) The model was reestimated omitting the variables FULLMOON and NEW-

MOON, as shown below. Comment on any changes you observe.

(c) Test the joint significance of FULLMOON and NEWMOON. State the null and

alternative hypotheses and indicate the test statistic you use. What do you

conclude?

7.3 Henry Saffer and Frank Chaloupka (‘‘The Demand for Illicit Drugs,’’ Economic

Inquiry, 37(3), 1999, 401–411) estimate demand equations for alcohol, marijuana,

cocaine, and heroin using a sample of size N ¼ 44,889. The estimated equation for

alcohol use after omitting a few control variables is shown in the chart at the top of

page 289.

The variable definitions (sample means in parentheses) are as follows:

The dependent variable is the number of days alcohol was used in the past 31 days

(3.49)

ALCOHOL PRICE��price of a liter of pure alcohol in 1983 dollars (24.78)

INCOME��total personal income in 1983 dollars (12,425)

GENDER��a binary variable ¼ 1 if male (0.479)

MARITAL STATUS��a binary variable ¼ 1 if married (0.569)

AGE 12–20��a binary variable ¼ 1 if individual is 12–20 years of age (0.155)

AGE 21–30��a binary variable ¼ 1 if individual is 21–30 years of age (0.197)

BLACK��a binary variable ¼ 1 if individual is black (0.116)

HISPANIC��a binary variable ¼ 1 if individual is Hispanic (0.078)

EmergencyRoomCasesRegression��Model1

Variable Coefficient Std. Error t-Statistic Prob.

C 93.6958 1.5592 60.0938 0.0000

T 0.0338 0.0111 3.0580 0.0025

HOLIDAY 13.8629 6.4452 2.1509 0.0326

FRIDAY 6.9098 2.1113 3.2727 0.0012

SATURDAY 10.5894 2.1184 4.9987 0.0000

FULLMOON 2.4545 3.9809 0.6166 0.5382

NEWMOON 6.4059 4.2569 1.5048 0.1338

R2 ¼ 0.1736 SSE ¼ 27108.82

EmergencyRoomCasesRegression��Model 2

Variable Coefficient Std. Error t-Statistic Prob.

C 94.0215 1.5458 60.8219 0.0000

T 0.0338 0.0111 3.0568 0.0025

HOLIDAY 13.6168 6.4511 2.1108 0.0359

FRIDAY 6.8491 2.1137 3.2404 0.0014

SATURDAY 10.3421 2.1153 4.8891 0.0000

R2 ¼ 0.1640 SSE ¼ 27424.19
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(a) Interpret the coefficient of alcohol price.

(b) Compute the price elasticity at the means of the variables.

(c) Compute the price elasticity at the means of alcohol price and income, for a

married black male, age 21–30.

(d) Interpret the coefficient of income. If we measured income in $1,000 units, what

would the estimated coefficient be?

(e) Interpret the coefficients of the indicator variables, as well as their significance.

7.4 In the file stockton.datwe have data from January 1991 to December 1996 on house

prices, square footage, and other characteristics of 4682 houses that were sold in

Stockton, California. One of the key problems regarding housing prices in a region

concerns construction of ‘‘house price indexes,’’ as discussed in Section 7.2.4b. To

illustrate, we estimate a regression model for house price, including as explanatory

variables the size of the house (SQFT), the age of the house (AGE), and annual

indicator variables, omitting the indicator variable for the year 1991.

PRICE ¼ b1 þ b2SQFT þ b3AGE þ d1D92þ d2D93þ d3D94þ d4D95

þ d5D96þ e

The results are as follows:

Demand for Illicit Drugs

Variable Coefficient t-statistic

C 4.099 17.98

ALCOHOL PRICE �0.045 5.93

INCOME 0.000057 17.45

GENDER 1.637 29.23

MARITAL STATUS �0.807 12.13

AGE 12–20 �1.531 17.97

AGE 21–30 0.035 0.51

BLACK �0.580 8.84

HISPANIC �0.564 6.03

StocktonHousePrice IndexModel

Variable Coefficient Std. Error t-Statistic Prob.

C 21456.2000 1839.0400 11.6671 0.0000

SQFT 72.7878 1.0001 72.7773 0.0000

AGE �179.4623 17.0112 �10.5496 0.0000

D92 �4392.8460 1270.9300 �3.4564 0.0006

D93 �10435.4700 1231.8000 �8.4717 0.0000

D94 �13173.5100 1211.4770 �10.8739 0.0000

D95 �19040.8300 1232.8080 �15.4451 0.0000

D96 �23663.5100 1194.9280 �19.8033 0.0000
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(a) Discuss the estimated coefficients on SQFT and AGE, including their interpret-

ation, signs, and statistical significance.

(b) Discuss the estimated coefficients on the indicator variables.

(c) What would have happened if we had included an indicator variable for 1991?

7.6.2 COMPUTER EXERCISES

7.5* In (7.7)we specified a hedonicmodel for house price. The dependent variablewas the

price of the house in dollars. Real estate economists have found that for many data

sets, a more appropriate model has the dependent variable ln(PRICE).

(a) Using the data in the file utown.dat, estimate the model (7.7) using ln(PRICE) as

the dependent variable.

(b) Discuss the estimated coefficients on SQFT and AGE. Refer to Chapter 4.5 for

help with interpreting the coefficients in this log-linear functional form.

(c) Compute the percentage change in price due to the presence of a pool. Use both the

rough approximation in Section 7.3.1 and the exact calculation in Section 7.3.2.

(d) Compute the percentage change in price due to the presence of a fireplace. Use

both the rough approximation in Section 7.3.1 and the exact calculation in

Section 7.3.2.

(e) Compute the percentage change in price of a 2500-square-foot home near the

university relative to the same house in another location using the methodology

in Section 7.3.2.

7.6 Data on theweekly sales of a major brand of canned tuna by a supermarket chain in a

largemidwestern U.S. city during amid-1990s calendar year are contained in the file

tuna.dat. There are 52 observations on the variables

SAL1 ¼ unit sales of brand no. 1 canned tuna

APR1 ¼ price per can of brand no. 1 canned tuna

APR2, APR3 ¼ price per can of brands nos. 2 and 3 of canned tuna

DISP ¼ an indicator variable that takes the value one if there is a store display for

brand no. 1 during the week but no newspaper ad; zero otherwise

DISPAD ¼ an indicator variable that takes the value one if there is a store display

and a newspaper ad during the week; zero otherwise

(a) Estimate, by least squares, the log-linear model

lnðSAL1Þ ¼ b1 þ b2APR1þ b3APR2þ b4APR3þ b5DISPþ b6DISPADþ e

(b) Discuss and interpret the estimates of b2, b3, and b4.

(c) Are the signs and relative magnitudes of the estimates of b5 and b6 consistent

with economic logic? Interpret these estimates using the approaches in Sections

7.3.1 and 7.3.2.

(d) Test, at the a ¼ 0:05 level of significance, each of the following hypotheses:

(i) H0 :b5 ¼ 0, H1 :b5 6¼ 0

(ii) H0 :b6 ¼ 0, H1 :b6 6¼ 0

(iii) H0 :b5 ¼ 0,b6 ¼ 0; H1 :b5 orb6 6¼ 0

(iv) H0 :b6 � b5, H1 :b6 >b5

(e) Discuss the relevance of the hypothesis tests in (d) for the supermarket chain’s

executives.
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7.7 Mortgage lenders are interested in determining borrower and loan factors that may

lead to delinquency or foreclosure. In the file lasvegas.dat are 1000 observations on

mortgages for single-family homes in Las Vegas, Nevada, during 2008. The variable

of interest isDELINQUENT, an indicator variable ¼ 1 if the borrowermissed at least

three payments (90 or more days late), but zero otherwise. Explanatory variables are

LVR ¼ the ratio of the loan amount to the value of the property; REF ¼ 1 if purpose

of the loan was a ‘‘refinance’’ and ¼ 0 if loan was for a purchase; INSUR ¼ 1 if

mortgage carriesmortgage insurance, zero otherwise;RATE ¼ initial interest rate of

the mortgage; AMOUNT ¼ dollar value of mortgage (in $100,000); CREDIT ¼
credit score, TERM ¼ number of years between disbursement of the loan and the

date it is expected to be fully repaid, ARM ¼ 1 if mortgage has an adjustable rate,

and ¼ 0 if mortgage has a fixed rate.

(a) Estimate the linear probability (regression) model explainingDELINQUENT as

a function of the remaining variables. Are the signs of the estimated coefficients

reasonable?

(b) Interpret the coefficient of INSUR. IfCREDIT increases by 50 points, what is the

estimated effect on the probability of a delinquent loan?

(c) Compute the predicted value ofDELINQENT for the final (1000th) observation.

Interpret this value.

(d) Compute the predicted value of DELINQUENT for all 1000 observations.

How many were less than zero? How many were greater than 1? Explain

why such predictions are problematic.

7.8 A motel’s management discovered that a defective product was used in the motel’s

construction. It took seven months to correct the defects, during which time

approximately 14 rooms in the 100-unit motel were taken out of service for one

month at a time. The motel lost profits due to these closures, and the question of how

to compute the losses was addressed by Adams (2008).21 For this exercise, use the

data in motel.dat.

(a) The occupancy rate for the damaged motel isMOTEL_PCT, and the competitor

occupancy rate is COMP_PCT. On the same graph, plot these variables against

TIME. Which had the higher occupancy before the repair period?Which had the

higher occupancy during the repair period?

(b) Compute the average occupancy rate for the motel and competitors when the

repairs were not being made (call these MOTEL0 and COMP0) and when they

were beingmade (MOTEL1 andCOMP1). During the nonrepair period,whatwas

the difference between the average occupancies,MOTEL0 � COMP0? Assume

that the damagedmotel occupancy ratewould havemaintained the same relative

difference in occupancy if there had been no repairs. That is, assume that the

damaged motel’s occupancy would have been MOTEL
	
1 ¼ COMP1þ

MOTEL0 � COMP0

� �
. Compute the ‘‘simple’’ estimate of lost occupancy

MOTEL
	
1 �MOTEL1. Compute the amount of revenue lost during the seven-

month period (215 days) assuming an average room rate of $56.61 per night.

(c) Draw a revised version of Figure 7.3 that explains the calculation in part (b).

(d) Alternatively, consider a regression approach. A model explaining motel

occupancyuses as explanatory variables the competitors’ occupancy, the relative

21 A. Frank Adams (2008) ‘‘When a ‘Simple’ Analysis Won’t Do: Applying Economic Principles in a Lost

Profits Case,’’ The Value Examiner, May/June 2008, 22–28. The authors thank Professor Adams for the use of his

data.
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price (RELPRICE) and an indicator variable for the repair period (REPAIR).

That is, let

MOTEL PCTt ¼ b1 þ b2COMP PCTt þ b3RELPRICEt þ b4REPAIRt þ et

Obtain the least squares estimates of the parameters. Interpret the estimated

coefficients, as well as their signs and significance.

(e) Using the least squares estimate of the coefficient of REPAIR from part (d),

compute an estimate of the revenue lost by the damaged motel during the repair

period (215 days@$56.61� b4). Compare this value to the ‘‘simple’’ estimate in

part (b). Construct a 95% interval estimate for the estimated loss. Is the estimated

loss from part (b) within the interval estimate?

(f) Carry out the regression specification test RESET. Is there any evidence ofmodel

misspecification?

(g) Plot the least squares residuals against TIME. Are there any obvious patterns?

7.9* In the STAR experiment (Section 7.5.3), children were randomly assigned within

schools into three types of classes: small classes with 13 to 17 students, regular-sized

classes with 22–25 students, and regular-sized classes with a full-time teacher aide to

assist the teacher. Student scores on achievement tests were recorded, as was some

information about the students, teachers, and schools. Data for the kindergarten

classes is contained in the data file star.dat.

(a) Calculate the average of TOTALSCORE for (i) students in regular-sized class-

roomswith full time teachers,butnoaide; (ii) students in regular-sizedclassrooms

with full time teachers, andanaide;and (iii) students insmall classrooms.Whatdo

you observe about test scores in these three types of learning environments?

(b) Estimate the regressionmodelTOTALSCOREi ¼ b1 þ b2SMALLi þ b3AIDEi þ
ei, where AIDE is a indicator variable equaling one for classes taught by a

teacher and an aide and zero otherwise. What is the relation of the estimated

coefficients from this regression to the sample means in part (a)? Test the

statistical significance of b3 at the 5% level of significance.

(c) To the regression in (b) add the additional explanatory variable TCHEXPER. Is

this variable statistically significant? Does its addition to the model affect the

estimates of b2 and b3?

(d) To the regression in (c) add the additional explanatory variables BOY,

FREELUNCH, and WHITE_ASIAN. Are any of these variables statistically

significant? Does their addition to the model affect the estimates of b2 and b3?

(e) To the regression in (d) add the additional explanatory variables TCHWHITE,

TCHMASTERS, SCHURBAN, and SCHRURAL. Are any of these variables

statistically significant? Does their addition to the model affect the estimates

of b2 and b3?

(f) Discuss the importance of parts (c), (d), and (e) to our estimation of the

‘‘treatment’’ effects in part (b).

(g) Add to the models in (b) through (e) indicator variables for each school

SCHOOL j ¼ 1 if student is in school j

0 otherwise

�

Test the joint significance of these school ‘‘fixed effects.’’ Does the inclusion

of these fixed effect indicator variables substantially alter the estimates of b2

and b3?
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7.10 Many cities in California have passed Inclusionary Zoning policies (also known as

below-market housingmandates) as an attempt tomakehousingmore affordable. These

policies require developers to sell some units below themarket price on a percentage of

the new homes built. For example, in a development of 10 new homes eachwithmarket

value $850,000, the developer may have to sell 5 of the units at $180,000. Means et al.

(2007)22 examine the effects of such policies on house prices and number of housing

units available using 1990 (before policy impact) and 2000 (after policy impact) census

data on California cities. Use means.dat for the following exercises.

(a) Using only the data for 2000, compare the sample means of LNPRICE and

LNUNITS for cities with an Inclusionary Zoning policy, IZLAW ¼ 1, to those

without the policy, IZLAW ¼ 0. Based on these estimates, what is the percentage

difference in prices and number of units for cities with and without the law? [For

this example, use the simple rule that 100[ln(y1) � ln(y0)] is the approximate

percentage difference between y0 and y1.] Does the law achieve its purpose?

(b) Use the existence of an Inclusionary Zoning policy as a ‘‘treatment.’’ Consider

those cities who did not pass such a law, IZLAW ¼ 0, the ‘‘control’’ group. Draw

a figure like Figure 7.3 comparing treatment and control groups LNPRICE and

LNUNITS, and determine the ‘‘treatment effect.’’ Are your conclusions about the

effect of the policy the same as in (a)?

(c) Use LNPRICE and LNUNITS in differences-in-differences regressions, with

explanatory variables D, the indicator variable for year 2000; IZLAW, and the

interaction of D and IZLAW. Is the estimate of the treatment effect statistically

significant, and of the anticipated sign?

(d) To the regressions in (c) add the control variable LMEDHHINC. Interpret

the estimate of the new variable, including its sign and significance. How

does the addition affect the estimates of the treatment effect?

(e) To the regressions in (d) add the variables EDUCATTAIN, PROPPOVERTY, and

LPOP. Interpret the estimates of these new variables, including their signs

and significance. How do these additions affect the estimates of the treatment

effect?

(f) Write a 250-word essay discussing the essential results in parts (a) through (e).

Include in your essay an economic analysis of the policy.

7.11 This question extends the analysis of Exercise 7.10. Read the introduction to that

exercise if you have not done so. Each city in the sample may have unique,

unobservable characteristics that affect LNPRICE and LNUNITS. Following the

discussion in Section 7.5.6, use the differenced data to control for these unobserved

effects.

(a) Regress DLNPRICE and DLNUNITS on IZLAW. Compare the estimate of the

treatment effect to those from the differences-in-differences regression of

LNPRICE and LNUNITS on the explanatory variables D, the indicator variable

for year 2000; IZLAW, and the interaction of D and IZLAW.

(b)̂ Explain, algebraically, why the outcome in (a) occurs.

(c) To the regression in (a) add the variable DLMEDHHINC. Interpret the estimate

of this new variable, including its sign and significance. How does the addition

affect the estimates of the treatment effect?

22 ‘‘Below-Market Housing Mandates as Takings: Measuring their Impact’’ Tom Means, Edward Stringham,

and Edward Lopez, Independent Policy Report, November 2007. The authors wish to thank Tom Means for

providing the data and insights into this exercise.
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(d) To the regression in (c), add the variables DEDUCATTAIN, DPROPPOVERTY,

andDLPOP. Interpret the estimates of these new variables, including their signs

and significance. How do these additions affect the estimates of the treatment

effect?

7.12 Use the data in the file cps5.dat to estimate the regression of ln(WAGE) on the

explanatory variables EDUC, EXPER, EXPER2, FEMALE, BLACK, MARRIED,

SOUTH, FULLTIME, and METRO.

(a) Discuss the results of the estimation. Interpret each coefficient and comment on

its sign and significance. Are things as you would expect?

(b)̂ (large data set) Use the data cps4.dat to re-estimate the equation.What changes

do you observe?

7.13^ (large data set) Use the data file cps4.dat for the following:

(a) Estimate the model used in Table 7.4. (i) Test the null hypothesis that the

interaction between BLACK and FEMALE is statistically significant. (ii) Test

the null hypothesis that there is no regional effect.

(b) Estimate the model used in Table 7.4 using ln(WAGE) as the dependent variable

rather than WAGE. (i) Discuss any important differences in results between

the linear and log-linear specifications. (ii) Test the null hypothesis that the

interaction between BLACK and FEMALE is statistically significant. (iii) Test

the null hypothesis that there is no regional effect.

(c) Estimate the models used in Table 7.5. Carry out the test for the null hypothesis

that there is no difference between wage equations for southern and nonsouthern

workers.

(d) Estimate themodels used in Table 7.5 using ln(WAGE) as the dependent variable

rather than WAGE. (i) Discuss any important differences in results between the

linear and log-linear specifications. (ii) Carry out the test for the null hypothesis

that there is no difference between wage equations for southern and nonsouthern

workers.

7.14* Professor Ray C. Fair’s voting model was introduced in Exercise 2.14. He builds

models that explain and predict the U.S. presidential elections. See his website

at http://fairmodel.econ.yale.edu/vote2008/index2.htm. The basic premise of the

model is that the incumbent party’s share of the two-party (Democratic and

Republican) popular vote (incumbent means the party in power at the time of the

election) is affected by a number of factors relating to the economy, and variables

relating to the politics, such as how long the incumbent party has been in power, and

whether the president is running for reelection. Fair’s data, 33 observations for the

election years from 1880 to 2008, are in the file fair4.dat. The dependent variable is

VOTE ¼ percentage share of the popular vote won by the incumbent party.

The explanatory variables include

PARTY ¼ 1 if there is a Democratic incumbent at the time of the election and �1 if

there is a Republican incumbent.

PERSON ¼ 1 if the incumbent is running for election and zero otherwise.

DURATION ¼ 0 if the incumbent party has been in power for one term, one if the

incumbent party has been in power for two consecutive terms, 1.25 if the incumbent

partyhas been inpower for three consecutive terms, 1.50 for fourconsecutive terms,

and so on.

WAR ¼ 1 for the elections of 1920, 1944, and 1948 and zero otherwise.
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GROWTH ¼ growth rate of real per capita GDP in the first three quarters of the

election year (annual rate).

INFLATION ¼ absolute value of the growth rate of the GDP deflator in the first 15

quarters of the administration (annual rate) except for 1920, 1944, and 1948,

where the values are zero.

GOODNEWS ¼ number of quarters in the first 15 quarters of the administration in

which the growth rate of real per capitaGDP is greater than 3.2%at an annual rate

except for 1920, 1944, and 1948, where the values are zero.

(a) Consider the regression model

VOTE ¼ b1 þ b2GROWTH þ b3INFLATION þ b4GOODNEWS

þ b5PERSON þ b6DURATION þ b7PARTY þ b8WARþ e

Discuss the anticipated effects of the dummy variables PERSON and WAR.

(b) The binary variable PARTY is somewhat different from the dummy variables we

have considered.Write out the regression functionE(VOTE) for the twovalues of

PARTY. Discuss the effects of this specification.

(c) Use the data for the period 1916–2004 to estimate the proposed model. Discuss

the estimation results. Are the signs as expected? Are the estimates statistically

significant? How well does the model fit the data?

(d) Predict the outcome of the 2008 election using the given 2008 data for values of

the explanatory variables. Based on the prediction, would you have picked the

outcome of the election correctly?

(e) Construct a 95% prediction interval for the outcome of the 2008 election.

(f) Using data values of your choice (youmust explain them), predict the outcome of

the 2012 election.

7.15 The data file br2.dat contains data on 1080 house sales in Baton Rouge, Louisiana,

during July and August 2005. The variables are PRICE ($), SQFT (total square feet),

BEDROOMS (number), BATHS (number),AGE (years),OWNER (¼1 if occupied by

owner; zero if vacant or rented), POOL (¼1 if present), TRADITIONAL (¼1 if

traditional style; 0 if other style), FIREPLACE (¼1 if present), andWATERFRONT

(¼1 if on waterfront).

(a) Compute the data summary statistics and comment. In particular, construct a

histogram of PRICE. What do you observe?

(b) Estimate a regression model explaining ln(PRICE=1000) as a function of the

remaining variables. Divide the variable SQFT by 100 prior to estimation.

Comment on how well the model fits the data. Discuss the signs and statistical

significance of the estimated coefficients. Are the signswhat you expect?Give an

exact interpretation of the coefficient of WATERFRONT.

(c) Create a variable that is the product ofWATERFRONT and TRADITIONAL. Add

this variable to the model and reestimate. What is the effect of adding this

variable? Interpret the coefficient of this interaction variable, and discuss its sign

and statistical significance.

(d) It is arguable that the traditional-style homes may have a different regression

function from the diverse set of nontraditional styles. Carry out aChow test of the

equivalence of the regression models for traditional versus nontraditional styles.

What do you conclude?

(e) Using the equation estimated in part (d), predict the value of a traditional style

house with 2500 square feet of area, that is 20 years old, that is owner-occupied
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at the time of sale, that has a fireplace, 3 bedrooms, and 2 baths, but no pool, and

that is not on the waterfront.

7.16* Data on 1500 house sales from Stockton, California, are contained in the data file

stockton4.dat. [Note: stockton3.dat is a larger version of the same data set, containing

2610 observations.] The houses are detached single-family homes that were listed

for sale between October 1, 1996, and November 30, 1998. The variables are PRICE

($), LIVAREA (hundreds of square feet), BEDS (number of bedrooms), BATHS

(number of bathrooms), LGELOT (¼ 1 if lot size is greater than 0.5 acres, zero

otherwise), AGE (years), and POOL (¼ 1 if home has pool, zero otherwise).

(a) Examine the histogram of PRICE. What do you observe? Create the variable

ln(PRICE) and examine its histogram. Comment on the difference.

(b) Estimate a regression of ln(PRICE/1000) on the remaining variables. Discuss

the estimation results. Comment on the signs and significance of the variables

LIVAREA, BEDS, BATHS, AGE, and POOL.

(c) Discuss the effect of large lot size on the selling price of a house.

(d) Introduce to the model an interaction variable LGELOT*LIVAREA. Estimate

this model and discuss the interpretation, sign, and significance of the coefficient

of the interaction variable.

(e) Carry out a Chow test of the equivalence of models for houses that are on large

lots and houses that are not.

Appendix 7A Details of Log-Linear Model
Interpretation

You may have noticed that in Section 7.3, while discussing the interpretation of the log-

linear model, we omitted the error term, and we did not discuss the regression function

E(WAGE). To do so, we make use of the properties of the log-normal distribution in

Appendix 4C. There we noted that for the log-linear model ln(y) ¼ b1 þ b2xþ e, if the

error term e 
 N(0,s2), then the expected value of y is

EðyÞ ¼ expðb1 þ b2xþ s2=2Þ ¼ expðb1 þ b2xÞ�expðs2=2Þ
Starting from this equation we can explore the interpretation of dummy variables and

interaction terms.

Let D be a dummy variable. Adding this to our log-linear model, we have ln(y) ¼
b1 þ b2xþ dDþ e and

EðyÞ ¼ expðb1 þ b2xþ dDÞ�expðs2=2Þ
If we let E( y1) and E( y0) denote the cases whenD¼ 1 andD¼ 0, respectively, then we can

compute their percentage difference as

%DEðyÞ ¼ 100
Eðy1Þ � Eðy0Þ

Eðy0Þ
	 


%

¼ 100
expðb1 þ b2xþ dÞ�expðs2=2Þ � expðb1 þ b2xÞ�expðs2=2Þ

expðb1 þ b2xÞ�expðs2=2Þ
	 


%

¼ 100
expðb1 þ b2xÞexpðdÞ � expðb1 þ b2xÞ

expðb1 þ b2xÞ
	 


% ¼ 100½expðdÞ � 1�%
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The interpretation of dummy variables in log-linear models carries over to the regression

function. The percentage difference in the expected value of y is 100[exp(d)� 1]%.

Appendix 7B Derivation of the
Differences-in-Differences Estimator

To verify the expression for the differences-in-differences estimator in (7.14), note that the

numerator can be expressed as

�
N

i¼1
di � d
� �

yi � yð Þ ¼ �
N

i¼1
di yi � yð Þ � d �

N

i¼1
yi � yð Þ

¼ �
N

i¼1
di yi � yð Þ �

using �
N

i¼1
yi � yð Þ ¼ 0

�

¼ �
N

i¼1
diyi � y �

N

i¼1
di

¼ N1y1 � N1y

¼ N1y1 � N1 N1y1 þ N0y0ð Þ=N

¼ N0N1

N
y1 � y0ð Þ ½using N ¼ N1 þ N0�

The denominator of b2 is

�
N

i¼1
di � d
� �2 ¼ �

N

i¼1
d2i � 2d �

N

i¼1
di þ �

N

i¼1
d
2

¼ �
N

i¼1
di � 2dN1 þ Nd

2 �
using d2i ¼ di and �

N

i¼1
di ¼ N1

�
¼ N1 � 2

N1

N
N1 þ N

N1

N

� �2

¼ N0N1

N

�
using N ¼ N0 þ N1

�
Combining the expressions for numerator and denominator, we obtain the result for the

difference estimator in (7.14).
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C h a p t e r 8
Heteroskedasticity

Learning Objectives

Based on the material in this chapter you should be able to

1. Explain the meaning of heteroskedasticity and give examples of data sets likely to

exhibit heteroskedasticity.

2. Explain how and why plots of least squares residuals can reveal heteroskedas-

ticity.

3. Specify a variance function and use it to test for heteroskedasticity with (a) a

Breusch–Pagan test and (b) a White test.

4. Test for heteroskedasticity using a Goldfeldt–Quandt test applied to (a) two

subsamples with potentially different variances and (b) a model where the variance

is hypothesized to depend on an explanatory variable.

5. Describe and compare the properties of the least squares and generalized least

squares estimators when heteroskedasticity exists.

6. Compute heteroskedasticity-consistent standard errors for least squares.

7. Describe how to transform a model to eliminate heteroskedasticity.

8. Compute generalized least squares estimates for heteroskedastic models where (a)

the variance is known except for the proportionality constants2, (b) thevariance is a

function of explanatory variables and unknown parameters, and (c) the sample is

partitioned into two groups with different variances.

9. Explain why the linear probability model exhibits heteroskedasticity.

10. Compute generalized least squares estimates of the linear probability model.

Keywords

Breusch–Pagan test

generalized least squares

Goldfeld–Quandt test

grouped data

heteroskedasticity

heteroskedasticity-consistent

standard errors

homoskedasticity

Lagrange multiplier test

linear probability model

mean function

residual plot

transformed model

variance function

weighted least squares

White test
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8.1 The Nature of Heteroskedasticity

In Chapter 2 the relationship between average or mean household expenditure on food EðyÞ
and household income x was described by the linear function

EðyÞ ¼ b1 þ b2x (8.1)

The unknown parameters b1 and b2 convey information about this expenditure function.

The response parameter b2 describes howmean household food expenditure changes when

household income increases by one unit. The intercept parameter b1 measures expenditure

on food for a zero income level.Knowledge of these parameters aids planning by institutions

such as government agencies or food retail chains. To estimate b1 and b2 we considered a

sample of N ¼ 40 households indexed by i¼ 1, 2, . . . , 40, with the pair ðyi, xiÞ denoting
expenditure on food and income for the ith household.

In order to recognize that not all households with a particular income will have the same

food expenditure, and in linewith our general specification of the regressionmodel, we let ei
be the difference between expenditure on food by the ith household yi andmean expenditure

on food for all households with income xi. That is,

ei ¼ yi � EðyiÞ ¼ yi � b1 � b2xi (8.2)

Thus, the model used to describe expenditure on food for the ith household is written as

yi ¼ b1 þ b2xi þ ei (8.3)

We can view EðyiÞ ¼ b1 þ b2xi as that part of food expenditure explained by income xi and

ei as that part of food expenditure explained by other factors.

We begin this chapter by asking whether the mean function EðyÞ ¼ b1 þ b2x is better at

explaining expenditure on food for low-income households than it is for high-income

households. If you were to guess food expenditure for a low-income household and food

expenditure for a high-income household, which guess do you think would be easier? Low-

income households do not have the option of extravagant food tastes. Comparatively, they

have few choices and are almost forced to spend a particular portion of their income on food.

High-income households on the other hand could have simple food tastes or extravagant

food tastes. They might dine on caviar or spaghetti, while their low-income counterparts

have to take the spaghetti. Thus, income is relatively less important as an explanatory

variable for food expenditure of high-income households. It is harder to guess their food

expenditure.

Another way of describing what we have just said is to say that the probability of getting

large positive or negative values for e is higher for high incomes than it is for low incomes.

Factors other than income can have a larger impact on food expenditure when household

income is high. How can wemodel this phenomenon? A random variable, in this case e, has

a higher probability of taking on large values if its variance is high. Thus, we can capture the

effect we are describing by having varðeÞ depend directly on income x. An equivalent

statement is to say varðyÞ increases as x increases. Food expenditure y can deviate further

from its mean EðyÞ ¼ b1 þ b2x when x is large. In such a case, when the variances for all

observations are not the same, we say that heteroskedasticity exists. Alternatively, we say

the random variable y and the random error e are heteroskedastic. Conversely, if all

observations come from probability density functions with the same variance, we say that

homoskedasticity exists, and y and e are homoskedastic.
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The heteroskedastic assumption is illustrated in Figure 8.1. At x ¼ x1, the probability

density function f ðy1jx1Þ is such that y1 will be close to Eðy1Þ with high probability. When

we move to x2, the probability density function f ðy2jx2Þ is more spread out; we are less

certain about where y2 might fall, and larger values are possible. When homoskedasticity

exists, the probability density function for the errors does not change as x changes, as we

illustrated in Figure 2.3.

Note that the existence of heteroskedasticity is a violation of one of our least squares

assumptions that were listed in Section 5.1. When we previously considered the model in

(8.3), we assumed that the ei were uncorrelated random error terms with mean zero and

constant variance s2. That is,

EðeiÞ ¼ 0 varðeiÞ ¼ s2 covðei; e jÞ ¼ 0 for i 6¼ j

The assumptionwe are questioning now is the constant variance assumptionMR3 that states

varðyiÞ ¼ varðeiÞ ¼ s2. Our discussion suggests that it should be replaced with an assump-

tion of the form

varðyiÞ ¼ varðeiÞ ¼ hðxiÞ (8.4)

where hðxiÞ is a function of xi that increases as xi increases.

This chapter is concerned with the consequences of a variance assumption like (8.4).

What are the consequences for the properties of least squares estimators? Is there a better

estimation technique? How do we detect the existence of heteroskedasticity?

We can further illustrate the nature of heteroskedasticity, and at the same time

demonstrate an informal way of detecting heteroskedasticity, by reexamining least

squares estimation of the mean function EðyiÞ ¼ b1 þ b2xi and the corresponding

least squares residuals. The least squares estimated equation from the observations

in the file food.dat is

ŷ ¼ 83:42þ 10:21 x

A graph of this estimated function, along with all the observed expenditure-income points

ðyi, xiÞ, appears in Figure 8.2. Notice that, as income ðxÞ grows, the prevalence of data

points that deviate further from the estimated mean function increases. There are more

Probability
density
function

f(y)

f(y1|x1)

f(y2|x2)

x1

x2

x

y

E(y) = β1 + β2 x

FIGURE 8.1 Heteroskedastic errors.
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points scattered further away from the line as x gets larger. Another way of describing this

feature is to say that there is a tendency for the least squares residuals, defined by

êi ¼ yi � 83:42� 10:21xi

to increase in absolute value as income grows.

Since the observable least squares residuals ðêiÞ are estimates of the unobservable errors

(ei), given by ei ¼ yi � b1 � b2xi, Figure 8.2 also suggests that the unobservable errors tend

to increase in absolute value as income increases. That is, the variation of food expenditure y

around mean food expenditure EðyÞ increases as income x increases. This observation is

consistent with the hypothesis that we posed earlier: namely, that themean food expenditure

function is better at explaining food expenditure for low-income (spaghetti-eating) house-

holds than it is for high-income households who might be spaghetti eaters or caviar eaters.

We can capture the increasing variation of y around its mean by the heteroskedasticity

assumption given in (8.4).

Heteroskedasticity is often encountered when using cross-sectional data. The term

cross-sectional data refers to having data on a number of economic units such as firms or

households, at a given point in time. The household data on income and food expenditure

fall into this category. Other possible examples include data on costs, outputs, and inputs

for a number of firms, and data on quantities purchased and prices for some commodity,

or commodities, in a number of retail establishments. Cross-sectional data invariably

involve observations on economic units of varying sizes. For example, data on house-

holds will involve households with varying numbers of household members and different

levels of household income. With data on a number of firms, we might measure the size

of the firm by the quantity of output it produces. Frequently, the larger the firm, or the

larger the household, the more difficult it is to explain the variation in some outcome

variable y by the variation in a set of explanatory variables. Larger firms and households

are likely to be more diverse and flexible with respect to the way in which values for y are

determined. What this means for the linear regression model is that as the size of the

economic unit becomes larger, there is more uncertainty associated with the outcomes y.

This greater uncertainty is modeled by specifying an error variance that is larger, the

larger the size of the economic unit.
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FIGURE 8.2 Least squares estimated food expenditure function and observed data points.

8 . 1 THE NATURE OF HETEROSKEDAST IC ITY 301



Heteroskedasticity is not a property that is necessarily restricted to cross-sectional data.

With time-series data, where we have data over time on one economic unit, such as a firm, a

household, or even a whole economy, it is possible that the error variance will change. This

would be true if therewas an external shock or change in circumstances that createdmore or

less uncertainty about y.

The plotting of least squares residuals is an informal way of detecting heteroskedasticity.

More formal tests are considered shortly. First, however, we examine the consequences of

heteroskedasticity for least squares estimation.

8.1.1 CONSEQUENCES FOR THE LEAST SQUARES ESTIMATOR

Since the existence of heteroskedasticity means that the least squares assumption varðeiÞ ¼
s2 is violated, we need to ask what consequences this violation has for our least squares

estimator, and what we can do about it. There are two implications:

1. The least squares estimator is still a linear and unbiased estimator, but it is no longer

best. There is another estimator with a smaller variance.

2. The standard errors usually computed for the least squares estimator are incorrect.

Confidence intervals and hypothesis tests that use these standard errors may be

misleading.

We consider the second implication first. What happens to the standard errors?

For the simple linear regression model without heteroskedasticity

yi ¼ b1 þ b2xi þ ei varðeiÞ ¼ s2 (8.5)

we showed in Chapter 2 that the variance of the least squares estimator for b2 is

varðb2Þ ¼ s2

�N
i¼1ðxi � xÞ2 (8.6)

Now suppose the error variances for each observation are different, and that we recognize

this difference by putting a subscript i on s2, so that we have

yi ¼ b1 þ b2xi þ ei varðeiÞ ¼ s2
i (8.7)

It is shown in Appendix 8A at the end of this chapter that the variance of the least squares

estimator for b2 under the heteroskedastic specification in (8.7) is

varðb2Þ ¼ �
N

i¼1
w2
i s

2
i ¼

�N
i¼1

�ðxi � xÞ2s2
i

�
�
�N

i¼1ðxi � xÞ2�2 (8.8)

where wi ¼ ðxi � xÞ=�ðxi � xÞ2. Consequently, if we proceed to use the least squares

estimator and its usual standard errors when varðeiÞ ¼ s2
i , we will be using an estimate of

(8.6) to compute the standard error of b2 when we should be using an estimate of (8.8).

To consider the first implication of using the least squares estimator, that it is no longer

best in thesense that it is theminimumvariance linearunbiasedestimator,weneed todescribe

how to obtain an alternative estimator that has the minimum variance property.We discover

in Sections 8.4 and 8.5 that which estimator is best depends on the nature of the

heteroskedasticity—how we specify the form of the variance function. Before considering

the various options for alternative estimators, we examine howwemight detect the presence

of heteroskedasticity.
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8.2 Detecting Heteroskedasticity

In our discussion of the food expenditure equation we used the nature of the economic

problem and data to argue why heteroskedasticity of a particular form might be present.

However, in this and in other equations that use other types of data, therewill be uncertainty

about whether a heteroskedastic assumption is warranted. It is natural to ask: Howdo I know

if heteroskedasticity is likely to be a problem formymodel andmy set of data? Is there away

of detecting heteroskedasticity so that I know whether to investigate other estimation

techniques? We consider three ways of investigating these questions. The first is the

informal use of residual plots. The other two are more formal classes of statistical tests.

8.2.1 RESIDUAL PLOTS

Oneway of investigating the existence of heteroskedasticity is to estimate your model using

least squares and to plot the least squares residuals. Examples of residual plots were given in

Figures 4.7 and 4.8 of Chapter 4. If the errors are homoskedastic, there should be no patterns

of any sort in the residuals. If the errors are heteroskedastic, theymay tend to exhibit greater

variation in some systematic way. For example, for the household food expenditure data, we

suspect that thevariance increases as incomes increases. A plot of the least-squares residuals

against income appears in Figure 8.3. Notice how the absolute magnitudes of the residuals

increase dramatically as income increases. This method of investigating heteroskedasticity

can be followed for any simple regression. In a regression with more than one explanatory

variable we can plot the least squares residuals against each explanatory variable, or against

ŷi, to see if they vary in a systematic way.

8.2.2 LAGRANGE MULTIPLIER TESTS

In this section we consider a test for heteroskedasticity based on a variance function. To

introduce the concept of a variance function, consider first the mean function E(yi) that, for

the general multiple regression model, is given by

E yið Þ ¼ b1 þ b2xi2 þ � � � þ bKxiK (8.9)

Income

e
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FIGURE 8.3 Least squares food expenditure residuals plotted against income.
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Thevariance function is relevantwhen heteroskedasticity is a possibility. It is similar to (8.9)

except that we relate the variance to a set of explanatory variables zi2, zi3, . . . , ziS that are
possibly different from xi2, xi3, . . . , xiK. A general form for the variance function is

var yið Þ ¼ s2
i ¼ E e2i

� � ¼ h a1 þ a2zi2 þ � � � þ aSziSð Þ (8.10)

This is a general form because we have not been specific about the function h(�). Notice
that the variance of yi changes for each observation depending on the values of the z’s.

In the mean and variance functions for the food expenditure example given in (8.1) and

(8.4), respectively, there was only one x and one z, and they were both the same variable,

household income.

One of the desirable features of the test that we develop is that it is valid for most

functions h(�). There aremany possible functions; two examples are an exponential function

h a1 þ a2zi2 þ � � � þ aSziSð Þ ¼ exp a1 þ a2zi2 þ � � � þ aSziSð Þ (8.11)

and a linear function

h a1 þ a2zi2 þ � � � þ aSziSð Þ ¼ a1 þ a2zi2 þ � � � þ aSziS (8.12)

In this latter case one must be careful to ensure h(�) > 0.

Notice what happens to the function h(�) when a2 ¼ a3 ¼ � � � ¼ aS ¼ 0. It collapses to

h a1 þ a2zi2 þ � � � þ aSziSð Þ ¼ h a1ð Þ

The term h(a1) is a constant; in (8.11), h(a1) ¼ a1, and in (8.12), h(a1) ¼ exp(a1). The

variance does not depend on any explanatory variables. In other words, when

a2 ¼ a3 ¼ � � � ¼ aS ¼ 0, heteroskedasticity is not present; the variance is constant. In

terms of notation that you are familiar with, we can write s2 ¼ h(a1). Consequently, the

null and alternative hypotheses for a test for heteroskedasticity based on the variance

function are

H0 : a2 ¼ a3 ¼ � � � ¼ aS ¼ 0

H1 : not all the as in H0 are zero
(8.13)

The null and alternative hypotheses are the first components of a test. The next component is

a test statistic. To obtain a test statistic we consider the linear variance function in (8.12) that

we substitute into (8.10) to obtain

var yið Þ ¼ s2
i ¼ E e2i

� � ¼ a1 þ a2zi2 þ � � � þ aSziS (8.14)

Let vi ¼ e2i � E e2ið Þ be the difference between a squared error and its mean. Then, from

(8.14), we can write

e2i ¼ E e2i
� �þ vi ¼ a1 þ a2zi2 þ � � � þ aSziS þ vi (8.15)

Notice that the addition of vi to thevariance function serves a similar purpose to addition of ei
to the mean function. Specifically, adding ei to the mean function E(yi) gives the general

regression model that we have studied in earlier chapters:
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yi ¼ E yið Þ þ ei ¼ b1 þ b2xi2 þ � � � þ bKxiK þ ei (8.16)

There is an important difference, however. In (8.16) the dependent variable yi is observable.

If we try to estimate (8.15), we find that the ‘‘dependent variable’’ e2i is not observable

because the true regression errors ei are not known.We overcome this problem by replacing

the e2i with the squares of the least squares residuals ê2i , obtained from estimating (8.16).

Thus, we write an operational version of (8.15) as

ê2i ¼ a1 þ a2zi2 þ � � � þ aSziS þ vi (8.17)

Strictly speaking, replacing e2i by ê
2
i also changes the definition of vi, but we will retain the

same notation to avoid unnecessary complication.

The variance function test for heteroskedasticity uses quantities obtained from least

squares estimation of (8.17). We are interested in discovering whether the variables

zi2, zi3, . . . ,ziS help explain the variation in ê2i . Since the R2 goodness-of-fit statistic from

(8.17)measures the proportion of variation in ê2i explained by the z’s, it is a natural candidate

for a test statistic. It can be shown that whenH0 is true, the sample size multiplied by R2 has

a chi-square (x2) distribution with S�1 degrees of freedom. That is,

�2 ¼ N�R2 � �2
ðS�1Þ (8.18)

It is likely that so far, your exposure to thex2-distribution has been limited. Itwas introduced

inAppendix B.3.6, it was used for testing for normality in Chapter 4.3.5, and its relationship

with the F-test was explored in an appendix to Chapter 6, Appendix 6A. It is a distribution

that is used for testing many different kinds of hypotheses. Like an F random variable, a x2

random variable only takes positive values. Because a large R2 value provides evidence

against the null hypothesis (it suggests the z variables explain changes in the variance),

the rejection region for the statistic in (8.18) is in the right tail of the distribution. Thus, for a

5% significance level, we reject H0 and conclude that heteroskedasticity exists

when �2 � �2
ð0:95; S�1Þ.

There are several important features of this test:

� It is a large sample test. The result in (8.18) holds approximately in large samples

when the null hypothesis is true.

� You will often see the test referred to as a Lagrange multiplier test or a Breusch-

Pagan test for heteroskedasticity. Breusch and Pagan used the Lagrange multiplier

principle (see Appendix C.8.4) to derive an earlier version of the test which was later

modified by other researchers to the form in (8.18). The test values for these and other

slightly different versions of the test, one of which is an F-test, are automatically

calculated by a number of software packages. The one provided by your softwaremay

or may not be exactly the same as the N � R2 version in (8.18). The relationships

between the different versions of the test are described in Appendix 8B. As you

proceed through the book and study more econometrics, you will find that many

Lagrangemultiplier tests can bewritten in the formN�R2where theR2 comes from a

convenient auxiliary regression related to the hypothesis being tested.

� We motivated the test in terms of an alternative hypothesis with the very general

variance function s2
i ¼ h a1 þ a2zi2 þ � � � þ aSziSð Þ, yet we proceeded to carry out

the test using the linear function ê2i ¼ a1 þ a2zi2 þ � � � þ aSziS þ vi. One of the

amazing features of the Breusch-Pagan test is that the value of the statistic computed

from the linear function is valid for testing an alternative hypothesis of hetero-

skedasticity where the variance function can be of any form given by (8.10).
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8.2.2a The White Test

One problem with the variance function test described so far is that it presupposes that

we have knowledge of the variables appearing in the variance function if the alternative

hypothesis of heteroskedasticity is true. In other words, it assumes we are able to

specify z2,z3, . . . , zS. In reality we may wish to test for heteroskedasticity without

precise knowledge of the relevant variables. With this point in mind, econometrician

Hal White suggested defining the z’s as equal to the x’s, the squares of the x’s, and

possibly their cross-products. Frequently, the variables that affect the variance are the

same as those in the mean function. Also, by using a quadratic function we can

approximate a number of other possible variance functions. Suppose the mean function

has two explanatory variables

EðyÞ ¼ b1 þ b2x2 þ b3x3

The White test without cross-product terms (interactions) specifies

z2 ¼ x2 z3 ¼ x3 z4 ¼ x22 z5 ¼ x23

Including interactions adds one further variable, z6 ¼ x2x3. If the mean function contains

quadratic terms (x3 ¼ x22 for example), then some of the z’s are redundant and are deleted.

The White test is performed as an F-test (see Appendix 8B for details) or using the

x2 ¼ N � R2 test defined in (8.18).

8.2.2b Testing the Food Expenditure Example

To test for heteroskedasticity in the food expenditure example where the variance is

potentially a function of income, we test H0 : a2 ¼ 0 against the alternative H1 : a2 6¼
0 in the variance function s2

i ¼ hða1 þ a2xiÞ. We begin by estimating the function ê2i ¼
a1 þ a2xi þ vi by least squares, from which we obtain

R2 ¼ 1� SSE

SST
¼ 0:1846

and

�2 ¼ N�R2 ¼ 40� 0:1846 ¼ 7:38

Since there is only one parameter in the null hypothesis, the x2-test has one degree of

freedom. The 5% critical value is 3.84. Because 7.38 is greater than 3.84, we reject H0

and conclude that the variance depends on income.

For the White version of the test we estimate the equation ê2i ¼ a1 þ a2xi þ a3x
2
i þ vi

and test H0 : a2 ¼ a3 ¼ 0 against H1 : a2 6¼ 0 or a3 6¼ 0. In this case, including both the

test and p-value, we have

�2 ¼ N �R2 ¼ 40� 0:18888 ¼ 7:555 p-value ¼ 0:023

The 5% critical value is �2
ð0:95; 2Þ ¼ 5:99. Again, we conclude that heteroskedasticity exists

with the variance dependent on income.
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8.2.3 THE GOLDFELD-QUANDT TEST

The second test for heteroskedasticity is designed for two groups of data with possibly

different variances. To introduce this case, consider a wage equation where earnings per

hour (WAGE) depends on years of education (EDUC), years of experience (EXPER) and a

dummy variable METRO that is equal to one for workers who live in a metropolitan area

and zero for workers who live outside a metropolitan area. Using data in the file cps2.dat

the least squares estimated equation for this model is

bWAGE ¼ �9:914þ 1:234EDUC þ 0:133EXPERþ 1:524METRO

ðseÞ ð1:08Þ ð0:070Þ ð0:015Þ ð0:431Þ (8.19)

The results suggest that education and experience have a positive effect on the level ofwages

and that given a particular level of education and experience, the averagemetropolitan wage

is $1.50 per hour higher than the average wage in a rural area.

The question we now ask is: How does the variance of wages in a metropolitan area

compare with the variance of wages in a rural area? Are the variances likely to be the

same, or different? One might suspect that the greater range of different types of jobs in

a metropolitan area might lead to city wages’ having a higher variance. If the variance

of metropolitan wages differs from the variance of rural wages, then we have hetero-

skedasticity. The variance is not constant for all observations. The Goldfeld-Quandt test is

designed to test for this form of heteroskedasticity, where the sample can be partitioned into

two groups—metropolitan and rural in this case—and we suspect the variance could be

different in the two groups.

The test is based on a comparison of the error variances estimated fromeach group.Using

the subscript M to denote metropolitan observations and the subscript R to denote rural

observations, we can write separate equations for the two groups as

WAGEMi ¼ bM1 þ b2EDUCMi þ b3EXPERMi þ eMi i ¼ 1; 2; . . . ; NM (8.20a)

WAGERi ¼ bR1 þ b2EDUCRi þ b3EXPERRi þ eRi i ¼ 1; 2; . . . ; NR (8.20b)

Note that METRO does not appear in the equations. Can you explain why?

Implicit in the above specification is the assumption that the coefficients for EDUC and

EXPER (b2 and b3) are the same in both metropolitan and rural areas, but the intercepts

differ. This assumption is in linewith the estimated equation in (8.19) where the estimate for

bR1 is bR1 ¼ �9.914 and the estimate for bM1 is bM1 ¼ �9:914þ 1:524 ¼ �8:39.
We wish to test the null hypothesis s2

M ¼ s2
R, where s

2
M ¼ var eMið Þ and s2

R ¼ var eRið Þ.
The alternative hypothesis will depend on whether we want to establish that the variances

are different s2
M 6¼ s2

Rð Þ or, as suggested above, that metropolitan wages have a greater

variance s2
M > s2

Rð Þ. The test statistic is derived from a result in Appendix C.7.3 which, in

the context of regression models, is

F ¼ ŝ2
M

�
s2
M

ŝ2
R=s

2
R

� FðNM�KM ;NR�KRÞ (8.21)
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where NM � KM and NR � KR are the degrees of freedom for the two sub-sample

regressions. Usually, and in our example, KM ¼ KR. In words, (8.21) says: The F statistic

that has a numerator equal to the ratio of one variance estimate to its true population value,

and a denominator equal to the ratio of the other variance estimate to its population

value, has an F distribution with ðNM � KM;NR � KRÞ degrees of freedom. The degrees of

freedom are different to those for the result in Appendix C.7.3 because we are considering

the error variances from two regression equations rather than the variances from two

samples of data.

Suppose we want to test

H0 : s
2
M ¼ s2

R against H1 : s
2
M 6¼ s2

R (8.22)

When H0 is true, (8.21) reduces to the test statistic

F ¼ ŝ2
M

ŝ2
R

(8.23)

Given that (8.22) is a two-tail test, that KM ¼ KR ¼ 3, and, that in the file cps2.dat there are

NM ¼ 808 metropolitan observations and NR ¼ 192 rural observations, the relevant lower

and upper critical values for a 5% significance level are FLc ¼ Fð0:025; 805; 189Þ ¼ 0:81 and

FUc ¼ Fð0:975; 805; 189Þ ¼ 1:26. We reject H0 if F < FLc or F > FUc.

Using least squares to estimate (8.20a) and (8.20b) separately yields variance estimates

ŝ2
M ¼ 31:824 ŝ2

R ¼ 15:243

The estimated error variance for the metropolitan wage equation is approximately double

that for the rural wage equation. To decide whether this difference could be attributable to

sampling error or is sufficiently large to conclude that s2
M 6¼ s2

R, we compute

F ¼ ŝ2
M

ŝ2
R

¼ 31:824

15:243
¼ 2:09

Since 2.09>FUc¼ 1.26, we rejectH0 and conclude that thewage variances for the rural and

metropolitan regions are not equal.

When following the above procedure, it does not matter whether you put the larger

variance estimate in the numerator or the denominator of the F-statistic. However, if you

always put the larger estimate in the numerator, you rejectH0 at a 5% level of significance if

F > FUc ¼ Fð0:975;NM�KM ;NR�KRÞ. In otherwords, youmust still recognize that it is a two-tail

test by using FUc ¼ Fð0:975; NM�KM ; NR�KRÞ and not FUc ¼ Fð0:95; NM�KM ; NR�KRÞ. For a one-
tail test, the critical value changes. For H1 : s

2
M > s2

R , we reject H0 at a 5% level of

significance if F > Fc ¼ Fð0:95; 805; 189Þ ¼ 1:22. Since we originally hypothesized that

greater job variety in the metropolitan area might lead to a greater variance, one could

argue that a one-tail test is appropriate.

8.2.3a The Food Expenditure Example

Although the Goldfeld-Quandt test is specifically designed for instances in which the

sample divides naturally into two groups, it can also be used where, under H1, the variance

308 HETEROSKEDAST IC ITY



is a function of a single explanatory variable, say zi. To perform the test under these

circumstances, we order the observations according to zi so that if heteroskedasticity

exists, the first half of the sample will correspond to observations with lower variances and

the last half of the sample will correspond to observations with higher variances. Then we

split the sample into approximately two equal halves, carry out two separate least

squares regressions that yield variance estimates, say ŝ2
1 and ŝ2

2, and proceed with the

test as described previously.

Following these steps for the food expenditure example, with the observations ordered

according to income xi, and the sample split into two equal groups of 20 observations each,

yields ŝ2
1 ¼ 3574:8 and ŝ2

2 ¼ 12921:9, from which we obtain

F ¼ ŝ2
2

ŝ2
1

¼ 12921:9

3574:8
¼ 3:61

Believing that the variances could increase, but not decrease with income, we use a one-tail

test with 5% critical value Fð0:95; 18; 18Þ ¼ 2:22. Since 3.61 > 2.22, a null hypothesis of

homoskedastcity is rejected in favor of the alternative that the variance increases with

income.

8.3 Heteroskedasticity-Consistent Standard Errors

Suppose that hypothesis tests suggest that our model suffers from heteroskedasticity. What

should we do about it? Recall that there are two problems with using the least squares

estimator in the presence of heteroskedasticity: One is that the least squares estimator,

although still being unbiased, is no longer best. The other is that the usual least squares

standard errors are incorrect, which invalidates interval estimates and hypothesis tests. If we

are prepared to accept the least squares estimator as a useful estimator, despite the fact it is

not the minimum variance estimator, there is a way of correcting the standard errors so that

our interval estimates and hypothesis tests are valid.

In Section 8.1.1, for the simple regression model yi ¼ b1 þ b2xi þ ei with heteroske-

dastic variance var eið Þ ¼ s2
i , we indicated that the variance of the least squares estimator for

b2 is given by

varðb2Þ ¼
�
N

i¼1
xi � xð Þ2s2

i

h i

�
N

i¼1
xi � xð Þ2

� �2 (8.24)

A consistent estimator for this variance and similar variances in the multiple regression

model has been suggested by econometrician HalWhite.1 The resulting standard errors (the

standard error for b2 and the standard errors for the least squares estimator of

other coefficients in the multiple regression model) have become known as White’s

heteroskedasticity-consistent standard errors, or heteroskedasticity robust standard

errors, or simply robust standard errors. The term ‘‘robust’’ is used because they are valid

in large samples for both heteroskedastic and homoskedastic errors.

1 See Appendix 5B for a discussion of consistency.
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The White standard error for b2 is obtainded from (8.24) by replacing s2
i with the

squares of the least squares residuals êi ¼ yi � b1 � b2xi, and including a degrees of

freedom adjustment N=(N � K), which is similar to that used for estimating s2 in the

regression model with homoskedasticity. Noting that K ¼ 2 in this case, the White

variance estimator is given by

bvarðb2Þ ¼ N

N � 2

�
N

i¼1
ðxi � xÞ2 êi2
h i

�
N

i¼1
ðxi � xÞ2

� �2 (8.25)

and the White standard error is given by the square root of this quantity. In multiple

regression models the formulas are more complex, but the principle is the same. Replacing

s2
i with the squared residuals ê2i leads to a consistent variance estimator. Large variances

tend to lead to large values of the squared residuals.

Most regression packages include an option for calculating standard errors usingWhite’s

estimator. If we do so for the food expenditure example, we obtain

ŷ ¼ 83:42þ 10:21x

ð27:46Þ ð1:81Þ ðWhite seÞ
ð43:41Þ ð2:09Þ ðincorrect seÞ

In this case, ignoring heteroskedasticity and using incorrect standard errors, based on the

usual formula in (8.6), tends to understate the precision of estimation; we tend to get

confidence intervals that are wider than they should be. Specifically, following the result

in (3.6) in Chapter 3, we can construct two corresponding 95% confidence intervals

for b2.

White : b2 � tcseðb2Þ ¼ 10:21� 2:024� 1:81 ¼ ½6:55; 13:87	
Incorrect : b2 � tcseðb2Þ ¼ 10:21� 2:024� 2:09 ¼ ½5:97; 14:45	

If we ignore heteroskedasticity, we estimate that b2 lies between 5.97 and 14.45. When we

recognize the existence of heteroskedasticity, our information is more precise, and

we estimate that b2 lies between 6.55 and 13.87. A word of caution is in order, however.

This result is contrary to what typically happens in empirical work. The most frequent

outcome is where the least squares standard errors overstate precision in the presence of

heteroskedasticity. Our atypical result may be attributable to the relatively small sample

of 40 observations.

White’s estimator for the standard errors helps us avoid computing incorrect interval

estimates or incorrect values for test statistics in the presence of heteroskedasticity. It

does not address the other implication of heteroskedasticity, that the least squares

estimator is no longer best. However, failing to address this issue may not be a grave

sin. If you have a large sample size—many cross-sectional data sets have thousands of

observations—the variance of the least squares estimator may still be sufficiently small to

get precise estimates. Also, as we discover in the next section, to find an alternative

estimator with a lower variance it is necessary to specify a suitable variance function.

Using least squares with robust standard errors avoids the need to specify a suitable

variance function.
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8.4 Generalized Least Squares: Known
Form of Variance

8.4.1 VARIANCE PROPORTIONAL TO X

Consider again the food expenditure example with heteroskedasticity assumption,

yi ¼ b1 þ b2xi þ ei

EðeiÞ ¼ 0; varðeiÞ ¼ s2
i ; covðei; e jÞ ¼ 0 ði 6¼ jÞ (8.26)

Although it is possible to obtain theWhite heteroskedasticity-consistent variance estimates

by simply assuming that the error variances s2
i can be different for each observation,

to develop an estimator that is better than the least squares estimator we need to make a

further assumption about how the variances s2
i change with each observation. This further

assumption becomes necessary because the best linear unbiased estimator in the presence of

heteroskedasticity, an estimator known as the generalized least squares estimator, depends

on the unknown s2
i . It is not practical to estimateN unknown variances s2

1;s
2
2; . . . ; s

2
N with

only N observations without making a restrictive assumption about how the s2
i change.

Thus, tomake the generalized least squares estimator operational, some structure is imposed

on s2
i .

Our earlier inspection of the least squares residuals for the food expenditure example

suggested that the error variance increases as income increases. One possible assumption for

the variance s2
i that has this characteristic is

varðeiÞ ¼ s2
i ¼ s2xi (8.27)

That is, we assume that the variance of the ith error term s2
i is given by a positive unknown

constant parameter s2 multiplied by the positive income variable xi, so that varðeiÞ is

proportional to income. As explained earlier, in economic terms this assumption implies

that for low levels of income ðxiÞ, food expenditure ðyiÞwill be clustered closer to the mean

functionEðyiÞ ¼ b1 þ b2xi. Expenditure on food for low-income householdswill be largely

explained by the level of income. At high levels of income, food expenditures can deviate

more from themean function. Thismeans that there are likely to bemany other factors, such

as specific tastes and preferences, that reside in the error term, and that lead to a greater

variation in food expenditure for high-income households.

8.4.1a Transforming the Model

The least squares estimator is not the best linear unbiased estimator when the errors are

heteroskedastic. What is the best linear unbiased estimator under these circumstances? We

approach this problem by changing or transforming the model into one with homoskedastic

errors. Leaving the basic structure of the model intact, it is possible to turn the hetero-

skedastic error model into a homoskedastic error model. Once this transformation has been

carried out, application of least squares to the transformedmodel gives a best linear unbiased

estimator.

To demonstrate these facts, we begin by dividing both sides of the original model in

(8.26) by
ffiffiffiffi
xi

p

yiffiffiffiffi
xi

p ¼ b1

1ffiffiffiffi
xi

p

 �

þ b2

xiffiffiffiffi
xi

p

 �

þ eiffiffiffiffi
xi

p (8.28)
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Now, define the following transformed variables

y
i ¼
yiffiffiffiffi
xi

p ; x
i1 ¼
1ffiffiffiffi
xi

p ; x
i2 ¼
xiffiffiffiffi
xi

p ¼ ffiffiffiffi
xi

p
; e
i ¼

eiffiffiffiffi
xi

p (8.29)

so that (8.28) can be rewritten as

y
i ¼ b1x


i1 þ b2x



i2 þ e
i (8.30)

The beauty of this transformed model is that the new transformed error term e
i is

homoskedastic. The proof of this result is as follows:

varðe
i Þ ¼ var
eiffiffiffiffi
xi

p

 �

¼ 1

xi
varðeiÞ ¼ 1

xi
s2xi ¼ s2 (8.31)

Also, the transformed error term will retain the properties of zero mean, Eðe
i Þ ¼ 0,

and zero correlation between different observations, covðe
i , e
jÞ ¼ 0 for i 6¼ j. As a

consequence, we can apply least squares to the transformed variables, y
i , x


i1, and x
i2 to

obtain the best linear unbiased estimator for b1 and b2. Note that the transformed

variables y
i , x


i1, and x



i2 are all observable; it is a straightforward matter to compute ‘‘the

observations’’ on these variables. An important difference, however, is that the model no

longer contains a constant term. The old xi1 is implicitly equal to one for all observations.

The new transformed variable x
i1 ¼ 1=
ffiffiffiffi
xi

p
is no longer constant. You will have to be

careful to exclude a constant if your software automatically inserts one, but you can still

proceed. The transformedmodel is linear in the unknown parametersb1 andb2. These are

the original parameters that we are interested in estimating. They have not been affected

by the transformation. In short, the transformed model is a linear model to which we

can apply least squares estimation. The transformed model satisfies the conditions of

the Gauss–Markov theorem, and the least squares estimators defined in terms of the

transformed variables are BLUE.

To summarize, to obtain the best linear unbiased estimator for a model with hetero-

skedasticity of the type specified in (8.27)

1. Calculate the transformed variables given in (8.29).

2. Use least squares to estimate the transformed model given in (8.30).

The estimator obtained in this way is called a generalized least squares estimator.

8.4.1b Weighted Least Squares

One way of viewing the generalized least squares estimator is as a weighted least squares

estimator. Recall that the least squares estimator yields values of b1 and b2 that minimize

the sum of squared errors. In this case, we are minimizing the sum of squared transformed

errors that is given by

�
N

i¼1
e
2i ¼ �

N

i¼1

e2i
xi

¼ �
N

i¼1
x
�1=2
i ei

� 
2

The errors areweighted by x
�1=2
i , the reciprocal of

ffiffiffiffi
xi

p
. When

ffiffiffiffi
xi

p
is small, the data contain

more information about the regression function and the observations are weighted heavily.

312 HETEROSKEDAST IC ITY



When
ffiffiffiffi
xi

p
is large, the data contain less information and the observations are weighted

lightly. In this way we take advantage of the heteroskedasticity to improve parameter

estimation.

Most software has a weighted least squares or generalized least squares option. If your

software falls into this category, you do not have to worry about transforming the variables

before estimation, nor do you have to worry about omitting the constant. The computer will

do both the transforming and the estimating. If you do the transforming yourself—that is,

you create y
i ; x


i1, and x



i2 and apply least squares—be careful not to include a constant in the

regression. As noted before, there is no constant because x
i1 6¼ 1.

8.4.1c Food Expenditure Estimates

Applying the generalized (weighted) least squares procedure to our household expenditure

data yields the following estimates:

ŷi ¼ 78:68þ 10:45xi

ðseÞ ð23:79Þ ð1:39Þ (8.32)

That is, we estimate the intercept term as b̂1 ¼ 78:68 and the slope coefficient that shows the
response of food expenditure to a change in income as b̂2 ¼ 10:45. These estimates

are somewhat different from the least squares estimates b1 ¼ 83.42 and b2 ¼ 10.21 that

did not allow for the existence of heteroskedasticity. It is important to recognize that the

interpretations for b1 and b2 are the same in the transformed model in (8.30) as they are in

the untransformed model in (8.26). Transformation of the variables should be regarded as a

device for converting a heteroskedastic error model into a homoskedastic error model, not

as something that changes the meaning of the coefficients.

The standard errors in (8.32), namely seðb̂1Þ ¼ 23:79 and seðb̂2Þ ¼ 1:39, are both lower
than their least squares counterparts that were calculated from White’s estimator, namely

se(b1)¼ 26.77 and se(b2)¼ 1.76. Since generalized least squares is a better estimation

procedure than least squares, we do expect the generalized least squares standard errors to be

lower. This statement needs to be qualified in two ways, however. First, remember that

standard errors are square roots of estimated variances; in a single sample the relative

magnitudes of variances may not always be reflected by their corresponding variance

estimates. Thus, lower standard errors do not always mean better estimation. Second, the

reduction in variance has come at the cost of making an additional assumption, namely, that

the variances have the structure given in (8.27).

The smaller standard errors have the advantage of producing narrower more informative

confidence intervals. For example, using the generalized least squares results, a 95% con-

fidence interval for b2 is given by

b̂2 � tcseðb̂2Þ ¼ 10:451� 2:024� 1:386 ¼ ½7:65; 13:26	

The least squares confidence interval computed using White’s standard errors was [6.64,

13.78].

8.4.2 GROUPED DATA

Another form of heteroskedasticity is where the sample can be divided into two or more

groups with each group having a different error variance. To describe the generalized least

squares estimator relevant for this setup, we return to the wage equation introduced in

Section 8.2.3 where the error variance for observations on metropolitan workers was found
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to be different from that for observations on rural workers. The equations for each group

were given by

WAGEMi ¼ bM1 þ b2EDUCMi þ b3EXPERMi þ eMi i ¼ 1; 2; . . . ;NM (8.33a)

WAGERi ¼ bR1 þ b2EDUCRi þ b3EXPERRi þ eRi i ¼ 1; 2; . . . ;NR (8.33b)

and the estimated error variances for each group werebvar eMið Þ ¼ ŝ2
M ¼ 31:824 andbvar eRið Þ ¼ ŝ2

R ¼ 15:243.
One set of estimates that recognizes that the error variances are different are the separate

least squares estimates of (8.33a) and (8.33b) that turn out to be

bM1 ¼ �9:052 bM2 ¼ 1:282 bM3 ¼ 0:1346

bR1 ¼ �6:166 bR2 ¼ 0:956 bR3 ¼ 0:1260

However, a problem with these estimates is that we have two estimates for b2 and two

estimates for b3 when in (8.33) we are assuming the effect of education and experience on

wages is the same for both metropolitan and rural areas. Given that this assumption is

correct, better estimates (ones with lower variances) can be obtained by combining both

subsets of data and applying a generalized least squares estimator to the complete set of data,

with recognition given to the existence of heteroskedasticity.

The strategy for obtaining generalized least squares estimates is the same as it was in

the previous section. The variables are transformed by dividing each observation by the

standard deviation of the corresponding error term. With the grouped data, that means that

all metropolitan observations are divided bysM and all rural observations are divided bysR.

Equations (8.33a) and (8.33b) become

WAGEMi

sM


 �
¼ bM1

1

sM


 �
þ b2

EDUCMi

sM


 �
þ b3

EXPERMi

sM


 �
þ eMi

sM


 �
i ¼ 1; 2; . . . ;NM (8.34a)

WAGERi

sR


 �
¼ bR1

1

sR


 �
þ b2

EDUCRi

sR


 �
þ b3

EXPERRi

sR


 �
þ eRi

sR


 �
i ¼ 1; 2; . . . ;NR (8.34b)

The variances of the transformed error terms ðeMi=sMÞ and ðeRi=sRÞ are the same. They are

both equal to one. Is this fact obvious to you? No? Go back to (8.31) and try out the same

steps with the transformed errors in (8.34).When you are comfortable, it will be clear to you

that the combined set of error terms is homoskedastic. Thus, application of least squares to

the complete set of transformed observations yields best linear unbiased estimators.

There are two complications, however. The first is thatsM andsR are unknown.We solve

this problem by transforming the observations with their estimates ŝM and ŝR. Doing so

yields a feasible generalized least squares estimator that has good properties in large

samples. The second complication relates to the fact that the metropolitan and rural

intercepts are different. This complication will not necessarily be present in all models

with grouped data, but it arises in this case because both the mean and variance of wage

depend on the dummy variable METRO.

The different intercepts are accommodated by including METRO as we did in the

original (8.19), but this time it is transformed in the same way as the other variables.
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Collecting all these facts together, we can combine (8.34a) and (8.34b) and summarize the

method for obtaining feasible generalized least squares estimates in the following way:

1. Obtain estimated ŝM and ŝR by applying least squares separately to the metropolitan

and rural observations.

2. Let ŝi ¼ ŝM when METROi ¼ 1

ŝR when METROi ¼ 0

�
3. Apply least squares to the transformed model

WAGEi

ŝi


 �
¼ bR1

1

ŝi


 �
þ b2

EDUCi

ŝi


 �
þ b3

EXPERi

ŝi


 �
þ d

METROi

ŝi


 �

þ ei

ŝi


 �
(8.35)

where bM1 ¼ bR1 þ d.

Following these steps using the data in the file cps2.dat yields the estimated equation

bWAGE ¼ �9:398þ 1:196EDUC þ 0:132EXPERþ 1:539METRO

ðseÞ ð1:02Þ ð0:069Þ ð0:015Þ ð0:346Þ

These coefficient estimates are similar inmagnitude to those in (8.19), an outcome that is not

surprising given that both least squares and generalized least squares are unbiased in the

presence of heteroskedasticity. We would hope, however, that the greater precision of

the generalized least squares estimator is reflected in smaller standard errors. The standard

errors in (8.19) are not a good basis for comparison because they are incorrect under

heteroskedasticity. Instead, we can compare those in (8.36) with the heteroskedasticity-

consistent standard errors from least squares estimation using all observations, or the

standard errors obtained by applying least squares separately to the metropolitan and rural

observations. With separate least squares estimation, they are, for EDUC, se(bM2) ¼ 0.080

and se(bR2)¼ 0.133, and forEXPER, se(bM3)¼ 0.018 and se(bR3)¼ 0.025. These values are

larger than the corresponding ones in (8.36); using the larger combined set of observations

has led to a reduction in the standard errors. The heteroskedasticity-consistent standard

errors from least squares estimation using all observations are se(b2) ¼ 0.084, se(b3) ¼
0.016, and se(b4) ¼ 0.345, which are slightly larger or comparable to those in (8.36).

8.5 Generalized Least Squares: Unknown
Form of Variance

A characteristic of the two generalized least squares estimators considered in Section 8.4,

was knowledge of the form of variance. In the first case where we assumed var eið Þ ¼ s2xi,

the only unknown parameter in the variance function was s2, and after transforming the

model, we are able to estimate it in the usual way. In the other case we had two groups of

observationswith two different variances s2
M and s2

Rð Þ, andwe could estimate each of these

variances by applying least squares separately to each of the groups. We now consider

a more complex model where the variance function contains extra parameters that need to

be estimated.
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To motivate this model, we return to our earlier error variance specification for the food

expenditure equation, var eið Þ ¼ s2xi. You may have wondered why we chose this speci-

fication. There are many other possible variance functions that have the property that as xi
increases, the variance increases. Two examples are var eið Þ ¼ s2x2i and var eið Þ ¼ s2x

1=2
i .

Why not choose one of these functions? Amore general specification that includes all these

specifications as special cases is

var eið Þ ¼ s2
i ¼ s2x

g
i (8.37)

where g is an unknown parameter.

How do we proceed with estimation with an assumption like (8.37)? Our earlier

discussion suggests that we should transform our model by dividing the ith observation

on each variable by x
g=2
i . Doing so will lead to a transformed error term with constant

variance s2. Do you understand why? Go back to (8.31) and redo the little proof in this

equation with g included.

Because g is unknown, we must estimate it before we can proceed with the transform-

ation. To do so it is convenient to consider a framework more general than (8.37). To

introduce this framework, we take logs of (8.37) to yield

lnðs2
i Þ ¼ lnðs2Þ þ g lnðxiÞ

Then, taking the exponential of both sides,

s2
i ¼ exp

�
lnðs2Þ þ g lnðxiÞ

� ¼ expða1 þ a2ziÞ (8.38)

where a1 ¼ lnðs2Þ;a2 ¼ g, and zi ¼ lnðxiÞ. Writing the variance function in this form is

convenient because it shows how the variance can be related to any explanatory variable zi
that may or may not be one of the variables in the mean functionEðyiÞ ¼ b1 þ b2xi. Also, if

we believe the variance is likely to depend on more than one explanatory variable, say zi2,

zi3, . . . , ziS, (8.38) can be extended to the function

s2
i ¼ expða1 þ a2zi2 þ � � � þ aSziSÞ (8.39)

The exponential function is convenient because it ensures that we will get positive values

for the variances s2
i for all possible values of the parameters a1;a2; . . . ;aS. Note also that

we suggested it as a possible variance function in (8.11) when testing for heteroskedasticity.

Returning to (8.38), we rewrite it as

lnðs2
i Þ ¼ a1 þ a2zi (8.40)

and now address the question of how to estimate a1 and a2. Recall how we get the least

squares estimator for the mean function EðyiÞ ¼ b1 þ b2xi. We expressed the observations

yi as

yi ¼ EðyiÞ þ ei ¼ b1 þ b2xi þ ei

and then applied least squares. We can follow a similar strategy for estimating the variance

function using the squares of the least squares residuals ê2i as our observations. That is, we

write

lnðê2i Þ ¼ lnðs2
i Þ þ vi ¼ a1 þ a2zi þ vi (8.41)
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and apply least squares. Regressing lnðê2i Þ on a constant and zi yields least squares estimates

for a1 and a2.

Whether or not this procedure is a legitimate one depends on the properties of the new

error term vi that we introduced in (8.41). Does it have a zero mean? Is it uncorrelated

and homoskedastic? The answer to these questions is no; EðviÞ 6¼ 0 and the vi are both

correlated and heteroskedastic. However, it can be shown that the least squares estimator for

a2 (and any other slope parameters that might be present) is unbiased in large samples.

The least squares estimator for the intercept a1 is asymptotically biased downward by

the amount 1.2704, and thus the obvious ‘‘fix’’ is to use the intercept estimator
^̂a1 ¼ â1 þ 1:2704. Interestingly, this correction has no effect on the generalized least

squares estimates of the b coefficients because a1 cancels out during the calculations.2

In the food expenditure example, with zi defined as zi ¼ ln(xi), the least squares estimate

of (8.41) is

bln s2
i

� � ¼ 0:9378þ 2:329zi

Notice that the estimate â2 ¼ ĝ ¼ 2:329 is more than twice the value of g ¼ 1 that was an

implicit assumption of the variance specification used in Section 8.4.1. It suggests that the

earlier assumption could be too restrictive.

The next step is to transform the observations in such a way that the transformed model

has a constant error variance. As suggested earlier, we could do so by dividing both sides of

the equation yi ¼ b1 þ b2xi þ ei by x
ĝ=2
i . However, in line with the more general specifica-

tion in (8.39), we can obtain variance estimates from

ŝ2
i ¼ expðâ1 þ â1ziÞ

and then divide both sides of the equation by ŝi. Both strategies ultimately lead to the same

generalized least squares estimates forb1 and b2.Why does the second onework? Dividing

(8.26) by si yields

yi

si


 �
¼ b1

1

si


 �
þ b2

xi

si


 �
þ ei

si


 �

The variance of the transformed error is constant (homoskedastic) because

var
ei

si


 �
¼ 1

s2
i


 �
varðeiÞ ¼ 1

s2
i


 �
s2
i ¼ 1 (8.42)

Thus, to obtain a generalized least squares estimator forb1 andb2, using the estimates ŝ2
i in

place of the unknown s2
i , we define the transformed variables

y
i ¼
yi

ŝi


 �
x
i1 ¼

1

ŝi


 �
x
i2 ¼

xi

ŝi


 �
(8.43)

and apply least squares to the equation

y
i ¼ b1x


i1 þ b2x



i2 þ e
i (8.44)

2 The ‘‘fix’’ requires the errors ei to be normally distributed. Further discussion of this advanced point can be

found in Econometric Methods with Applications in Business and Economics (Oxford, 2004) by Heij, de Boer,

Franses, Kloek and Van Dijk, p. 337.
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To summarize these steps for the general case, suppose we are estimating the model

yi ¼ b1 þ b2xi2 þ � � � þ bKxiK þ ei (8.45)

where

varðeiÞ ¼ s2
i ¼ expða1 þ a2zi2 þ � � � þ aSziSÞ (8.46)

The steps for obtaining a generalized least squares estimator for b1;b2; . . . ; bK are

1. Estimate (8.45) by least squares and compute the squares of the least squares

residuals ê2i .

2. Estimate a1;a2; . . . ;aS by applying least squares to the equation lnðê2i Þ ¼ a1 þ
a2zi2 þ � � � þ aSziS þ vi.

3. Compute variance estimates ŝ2
i ¼ expðâ1 þ â2zi2 þ � � � þ âSziSÞ.

4. Compute the transformed observations defined by (8.43), including x
i3; . . . ; x


iK if

K > 2.

5. Apply least squares to (8.44), or to an extended version of (8.44), if K > 2.

Steps 4 and 5 can be replaced by weighted least squares with weights defined by ŝ�1
i if your

software automatically computes weighted least squares estimates. If you are very

fortunate, you will have software that performs all five steps automatically.

Following these steps to obtain generalized least squares estimates for the food

expenditure example yields

ŷ ¼ 76:05þ 10:63x
ðseÞ ð9:71Þ ð0:97Þ (8.47)

Compared to the generalized least squares results for the variance specification s2
i ¼ s2xi,

the estimates for b1 and b2 have not changed a great deal, but there has been a considerable

drop in the standard errors that under the previous specification were seðb̂1Þ ¼ 23:79 and

seðb̂2Þ ¼ 1:39.
As mentioned earlier, because standard errors are themselves estimates, we cannot

conclude with certainty that allowing for a more general variance specification has

improved the precision with which we have estimatedb1 andb2. However, in this particular

case it is distinctly possible that our improved results are attributable to better modeling and

better estimation.

8.5.1 USING ROBUST STANDARD ERRORS

The generalized least squares estimators described in Sections 8.4 and 8.5 each require an

assumption about the form of heteroskedasticity. If that assumption is correct, the

generalized least squares estimator is minimum variance. If that assumption is wrong,

then, like the least squares estimator, the generalized least squares estimator will not be

minimumvariance, and its standard errorswill be incorrect. As discussed in Section 8.3, this

problem can be avoided by using least squares with White standard errors where an

assumption about the form of heteroskedasticity is not needed, but then the potential

reduction in variance from generalized least squares will not be realized. Given that we

cannot be sure about the form of the variance function, how do we solve this dilemma?
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After correcting for heteroskedasticity via generalized least squares, one can test the

residuals from the transformedmodel to see if any evidence of heteroskedasticity remains. If

there is no evidence of remaining heteroskedasticity, then we can expect that generalized

least squares has improved the precision of estimation, and that the chance of obtaining

incorrect standard errors has been reduced. However, if wewish to err on the side of caution,

or if further modeling fails to eliminate heteroskedasticity, we can use robust standard errors

in conjunction with the generalized least squares estimator. Robust standard errors can be

used not only to guard against the possible presence of heteroskedasticity when using least

squares, they can be used to guard against the possible misspecification of a variance

function when using generalized least squares.

8.6 Heteroskedasticity in the Linear Probability Model

In Chapter 7.4 we introduced the linear probability model for explaining choice between

two alternatives. We can represent this choice by an indicator variable y that takes the value

one with probability p if the first alternative is chosen, and the value zero with probability

1�p if the second alternative is chosen. An indicator variable with these properties is a

Bernoulli random variable with mean E(y) ¼ p and variance var(y) ¼ p(1�p). Interest

centers on measuring the effect of explanatory variables x2, x3, . . . , xK on the probability p.
In the linear probability model the relationship between p and the explanatory variables

is specified as the linear function

E yð Þ ¼ p ¼ b1 þ b2x2 þ � � � þ bKxK

Defining the error ei as the difference yi � E(yi) for the ith observation, we have

the model

yi ¼ E yið Þ þ ei ¼ b1 þ b2xi2 þ � � � þ bKxiK þ ei (8.48)

This model can be estimated with least squares—an examplewas given in Section 7.4—but

it suffers from heteroskedasticity because

var yið Þ ¼ var eið Þ ¼ pi 1� pið Þ
¼ b1 þ b2xi2 þ � � � þ bKxiKð Þ 1� b1 � b2xi2 � � � � � bKxiKð Þ (8.49)

The error variance depends on the values of the explanatory variables. We can rectify this

problem by applying the techniques described earlier in this chapter. Instead of using least

squares standard errors, we can use heteroskedasticity-robust standard errors. Or, alter-

natively, we can apply a generalized least squares procedure.

The first step towards obtaining generalized least squares estimates is to estimate the

variance in (8.49). An estimate of pi can be obtained from the least squares predictions

p̂i ¼ b1 þ b2xi2 þ � � � þ bKxiK (8.50)

giving an estimated variance of

bvar eið Þ ¼ p̂i 1� p̂ið Þ (8.51)
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Aword of caution is required at this point. It is possible that some of the p̂i obtained from

(8.50) will not lie within the interval 0< p̂i < 1. If that happens, the corresponding variance

estimate in (8.51) will be negative or zero, a nonsensical outcome. Thus, before proceeding

to calculate the estimated variances from (8.51), it is necessary to check the estimated

probabilities from (8.50) to ensure that they lie between zero and one. For those observations

that violate this requirement, one possible solution is to set p̂i’s greater than 0.99 equal to

0.99, and p̂i’s less than 0.01 equal to 0.01. Another possible solution is to omit the offending

observations. Neither of these solutions is totally satisfactory. Truncating at 0.99 or 0.01 is

arbitrary, and the results could be sensitive to the truncation point. Omitting observations

means that we are throwing away information. It might be preferable to use least squares

with robust standard errors—that should, at least, be one of the options that is tried.

Once positive variance estimates have been obtained using (8.51), with adjustments

where necessary, generalized least squares estimates can be obtained by applying least

squares to the transformed equation

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂i 1� p̂ið Þp ¼ b1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂i 1� p̂ið Þp þ b2

xi2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂i 1� p̂ið Þp þ � � � þ bK

xiKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂i 1� p̂ið Þp þ eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂i 1� p̂ið Þp

8.6.1 THE MARKETING EXAMPLE REVISITED

In Section 7.4.1 the choice of purchasing either Coke (COKE¼ 1) or Pepsi (COKE¼ 0)was

modeled as depending on the relative price of Coke to Pepsi (PRATIO), and whether store

displays for Coke and Pepsi were present (DISP_COKE¼ 1 if a Coke display was present,

otherwise 0;DISP_PEPSI¼ 1 if a Pepsi display was present, otherwise zero). The file coke.

dat contains 1140 observations on these variables. Table 8.1 contains the results for (1) least

squares, (2) least squares with robust standard errors, (3) generalized least squares with

variances below 0.01 truncated to 0.01, and (4) generalized least squares with observations

not satisfying 0< p̂i < 1 omitted. For the generalized least squares estimates there were no

observations for which p̂i > 0.99 and there were 16 observations where p̂i < 0.01; for these

latter cases it was also true that p̂i < 0.

Since the variance function in (8.49) contains the x’s, their squares, and their cross

products, a suitable test for heteroskedasticity is the White test described in Section 8.2.2a.

Applying this test to the residuals from the least-squares estimated equation yields

�2 ¼ N�R2 ¼ 25:817 p-value ¼ 0:0005

Ta b l e 8 . 1 Linear Probability Model Estimates

LS LS-robust GLS-trunc GLS-omit

C 0.8902 0.8902 0.6505 0.8795

(0.0655) (0.0652) (0.0568) (0.0594)

PRATIO �0.4009 �0.4009 �0.1652 �0.3859

(0.0613) (0.0603) (0.0444) (0.0527)

DISP_COKE 0.0772 0.0772 0.0940 0.0760

(0.0344) (0.0339) (0.0399) (0.0353)

DISP_PEPSI �0.1657 �0.1657 �0.1314 �0.1587

(0.0356) (0.0343) (0.0354) (0.0360)
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leading us to reject a null hypothesis of homoskedasticity at a 1% level of significance. Note

that, when carrying out this test, your software will omit the squares of DISP_COKE

andDISP_PEPSI. Because these variables are indicator variables, DISP_COKE2¼DISP_

COKE and DISP_PEPSI2 ¼ DISP_PEPSI, leaving a x2 test with 7 degrees of freedom.

Examining the estimates in Table 8.1, we see there is little difference in the four sets of

standard errors. In this particular case the use of least squares standard errors does not seem

to matter. The four sets of coefficient estimates are also similar with the exception of those

from generalized least squares where the negative p̂’s were truncated to 0.01. Theweight on

observations with variancebvarðeiÞ ¼ 0:01ð1� 0:01Þ ¼ 0:0099 is a relatively large one. It

appears that the large weights placed on those 16 observations are having a noticeable

impact on the estimates. The signs are all as expected. Making Coke more expensive leads

more people to purchase Pepsi. A Coke display encourages purchase of Coke, and a Pepsi

display encourages purchase of Pepsi.

In Chapter 16 we study models which are specifically designed for modeling choice

between two or more alternatives, and which do not suffer from the problems of the linear

probability model.

8.7 Exercises

Answers to exercises marked * appear at www.wiley.com/college/hill.

8.7.1 PROBLEMS

8.1 Show that the variance of the least squares estimator given in (8.8) simplifies to that

given in (8.6) when s2
i ¼ s2. That is,

�N
i¼1

�ðxi � xÞ2s2
i

�
h
�N

i¼1ðxi � xÞ2
i2 ¼ s2

�N
i¼1ðxi � xÞ2

8.2 Consider the model yi ¼ b1 þ b2xi þ ei with heteroskedastic variance varðeiÞ ¼ s2
i

and its transformed homoskedastic version y
i ¼ b1s
�1
i þ b2x



i þ e
i where

y
i ¼ s�1
i yi; x
i ¼ s�1

i xi; and e
i ¼ s�1
i ei. The normal equations whose solution

yields the generalized least squares estimators b̂1 and b̂2 are

�s�2
i

� �
b̂1 þ �s�1

i x
i
� �

b̂2 ¼ �s�1
i y
i

�s�1
i x
i

� �
b̂1 þ � x
2i

� �
b̂2 ¼ � x
i y



i

(a) Show that b̂1 and b̂2 can be written as

b̂2 ¼
�s�2

i yixi

�s�2
i

� �s�2
i yi

�s�2
i


 �
�s�2

i xi

�s�2
i


 �
�s�2

i x2i
�s�2

i

� �s�2
i xi

�s�2
i


 �2
, b̂1 ¼ �s�2

i yi

�s�2
i

� �s�2
i xi

�s�2
i


 �
b̂2

(b) Show that b̂1 and b̂2 are equal to the least squares estimators b1 and b2 when

s2
i ¼ s2 for all i. That is, the error variances are constant.
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(c) Does a comparison of the formulas for b̂1 and b̂2 with those for b1 and b2
suggest an interpretation for b̂1 and b̂2?

8.3 Consider the simple regression model

yi ¼ b1 þ b2xi þ ei

where the ei are independent errors with EðeiÞ ¼ 0 and varðeiÞ ¼ s2x2i . Suppose that

you have the following five observations

y ¼ ð4; 3; 1; 0; 2Þ x ¼ ð1; 2; 1; 3; 4Þ
Use a hand calculator to find generalized least squares estimates of b1 and b2.

8.4 A sample of 200 Chicago households was taken to investigate how far American

households tend to travel when they take vacation. Measuring distance in miles per

year, the following model was estimated

MILES ¼ b1 þ b2INCOME þ b3AGE þ b4KIDSþ e

Income

R
es

id
R

es
id

0 20 40 60 80 100 120
–2000

–1000

0

1000

2000

Age
20 30 40 50 60

–2000

–1000

1000

0

2000

FIGURE 8.4 Residual plots for Exercise 8.4: vacation data.
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The variables are self-explanatory except perhaps for AGE, the average age of the

adult members of the household. The data are in the file vacation.dat.

(a) The equation was estimated by least squares and the residuals are plotted against

age and income in Figure 8.4. What do these graphs suggest to you?

(b) Ordering the observations according to descending values of INCOME, and

applying least squares to the first 100 observations, and again to the second 100

observations, yields the sums of squared errors

SSE1 ¼ 2:9471�107 SSE2 ¼ 1:0479�107

Use the Goldfeld–Quandt test to test for heteroskedastic errors. Include speci-

fication of the null and alternative hypotheses.

(c) Table 8.2 contains three sets of estimates: those from least squares, those from

least squares with White’s standard errors, and those from generalized least

squares under the assumption s2
i ¼ s2 � INCOME2.

(i) How do vacation miles traveled depend on income, age, and the number of

kids in the household?

(ii) How do White’s standard errors compare with the least squares standard

errors? Do they change your assessment of the precision of estimation?

(iii) Is there evidence to suggest the generalized least squares estimates are

better estimates?

8.5 In Exercise 5.5 an equation used for the valuation of homes in towns surrounding

Boston was estimated. Reestimating that equation with White’s standard errors

yields the output in Table 8.3.

(a) For the coefficients of CRIME, ROOMS, AGE, and TAX, compare 95% confi-

dence intervals obtained using the standard errors from Exercise 5.5 with those

from Table 8.3.

Ta b l e 8 . 2 Output for Exercise 8.4

Variable Coefficient Std. Error t-value p-value

Least squares estimates

C �391.55 169.78 �2.31 0.022

INCOME 14.20 1.80 7.89 0.000

AGE 15.74 3.76 4.19 0.000

KIDS �81.83 27.13 �3.02 0.003

Least squares estimates with White standard errors

C �391.55 142.65 �2.74 0.007

INCOME 14.20 1.94 7.32 0.000

AGE 15.74 3.97 3.97 0.000

KIDS �81.83 29.15 �2.81 0.006

Generalized least squares estimates

C �425.00 121.44 �3.50 0.001

INCOME 13.95 1.48 9.42 0.000

AGE 16.72 3.02 5.53 0.000

KIDS �76.81 21.85 �3.52 0.001
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(b) Do you think heteroskedasticity is likely to be a problem?

(c) What misleading inferences are likely if the incorrect standard errors are used?

8.6 Continuing with the example in Exercise 8.5, Table 8.4 contains output for the

following least squares regression

EHAT SQ ¼ a1 þ a2ROOMSþ a3ROOMS2 þ a4CRIME þ a5CRIME2

þ a6DIST þ v

where EHAT SQ denotes the squares of the least squares residuals from the mean

function estimated in Exercise 8.5.

(a) Discuss how each of the variables ROOMS, CRIME, and DIST influences the

variance of house values.

(b) Test for heteroskedasticity.

8.7* Consider the model

yi ¼ b1 þ b2xi þ ei EðeiÞ ¼ 0 varðeiÞ ¼ s2
i ¼ expðaziÞ

You have the following eight observations on yi, xi, and zi:

Ta b l e 8 . 3 Estimated Mean Function for Exercise 8.5

Dependent Variable: VALUE
Observations: 506

Heteroskedasticity-Consistent Standard Errors

Variable Coefficient Std. Error t-value p-value

C 28.407 7.380 3.849 0.000

CRIME �0.183 0.035 �5.283 0.000

NITOX �22.811 4.360 �5.232 0.000

ROOMS 6.372 0.665 9.574 0.000

AGE �0.048 0.011 �4.433 0.000

DIST �1.335 0.190 �7.019 0.000

ACCESS 0.272 0.075 3.644 0.000

TAX �0.013 0.003 �4.430 0.000

PTRATIO �1.177 0.124 �9.522 0.000

R2 ¼ 0:657 SSE ¼ 14; 652:22 SST ¼ 42; 716:29

Ta b l e 8 . 4 Estimated Variance Function for Exercise 8.6

Dependent Variable: EHAT_SQ
Included observations: 506

Variable Coefficient Std. Error t-value p-value

C 1007.037 204.522 4.92 0.000

ROOMS �305.311 63.088 �4.84 0.000

ROOMS2 23.822 4.844 4.92 0.000

CRIME 2.285 1.242 1.84 0.067

CRIME2 �0.039 0.019 �2.04 0.042

DIST �4.419 2.466 �1.79 0.074

R2 ¼ 0:08467 SSE ¼ 5; 038; 458 SST ¼ 5; 504; 525
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Use a hand calculator to

(a) Find least squares estimates of b1 and b2.

(b) Find the least squares residuals.

(c) Estimate a.
(d) Find variance estimates ŝ2

i .

(e) Find generalized least squares estimates of b1 and b2. (Hint: Use the results in

Exercise 8.2)

8.7.2 COMPUTER EXERCISES

8.8 The file stockton96.dat contains 940 observations on home sales in Stockton,

CA in 1996. They are a subset of the data in the file stockton.dat used for

Exercise 7.4.

(a) Use least squares to estimate a linear equation that relates house price PRICE to

the size of the house in square feet SQFT and the age of the house in years AGE.

Comment on the estimates.

(b) Suppose that you own two houses. One has 1400 square feet; the other has 1800

square feet. Both are 20 years old. What price do you estimate you will get for

each house.

(c) Use the White test (with cross-product term included) to test for heteroskedas-

ticity.

(d) Estimate a1 and a2 in the variance function s2
i ¼ expða1 þ a2SQFTÞ.

(e) Using the variance assumption from part (d), find generalized least squares

estimates for the parameters of the equation estimated by least squares in part (a).

Comment on the results.

(f) Use the results from part (e) to estimate the prices you will get for your two

houses.

8.9 (a) Using the estimates obtained in part (a) of Exercise 8.8 as the parameter values,

and assuming normally distributed errors, find the probability that (i) your 1400-

square-foot house sells for more than $115,000 and (ii) your 1800-square-foot

house sells for less than $110,000.

(b) After making the correction ^̂a1 ¼ â1 þ 1:2704; use the estimates obtained in

parts (d) and (e) of Exercise 8.8 as the parameter values and, assuming normally

distributed errors, find the probability that (i) your 1400-square-foot house sells

for more than $115,000 and (ii) your 1800-square-foot house sells for less than

$110,000.

(c) Comment on and compare the answers you obtained in parts (a) and (b).

8.10* (a) The purpose of this exercise is to test whether the variance specification s2
i ¼

s2xi introduced in Section 8.4.1 has been adequate to eliminate heteroske-

dasticity in the food expenditure example in the text. Compute the squares of

the residuals from the transformed model used to obtain the estimates in

(8.32). Regress the squares of the residuals on xi and test for heteroskedas-

ticity.

y 1.1 �0.5 18.9 �0.9 6.4 1.8 4.5 �0.2

x �0.5 �3 3.2 �1.8 3.4 �3.5 2.4 �0.2

z 3.3 0.3 7.0 4.7 1.9 6.8 2.3 6.4
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(b) We now ask whether the variance specification s2
i ¼ s2x

g
i introduced in Section

8.5 eliminates heteroskedasticity. Compute the squares of the residuals from the

transformed model used to obtain the estimates in (8.47). Regress the squares of

the residuals on xi and test for heteroskedasticity.

8.11 Reconsider the household expenditure model that appears in the text, and the data for

which are in the file food.dat. That is, we have the model

yi ¼ b1 þ b2xi þ ei

where yi is food expenditure for the ith household and xi is income. Find generalized

least squares estimates for b1 and b2 under the assumptions

(i) varðeiÞ ¼ s2 ffiffiffiffi
xi

p
(ii) varðeiÞ ¼ s2x2i
(iii) varðeiÞ ¼ s2lnðxiÞ

Comment on the sensitivity of the estimates and their standard errors to the hetero-

skedastic specification. For each case, use theWhiteN�R2 statistic and the residuals

from the transformed model to test whether heteroskedasticity has been eliminated.

8.12 In the file pubexp.dat there are data on public expenditure on education (EE), gross

domestic product (GDP), and population (P) for 34 countries in the year 1980. It is

hypothesized that per capita expenditure on education is linearly related to per capita

GDP. That is,

yi ¼ b1 þ b2xi þ ei

where

yi ¼ EEi

Pi


 �
and xi ¼ GDPi

Pi


 �

It is suspected that ei may be heteroskedastic with a variance related to xi.

(a) Why might the suspicion about heteroskedasticity be reasonable?

(b) Estimate the equation using least squares; plot the least squares function and the

residuals. Is there any evidence of heteroskedasticity?

(c) Test for the existence of heteroskedasticity using a White test.

(d) UseWhite’s formula for least squares variance estimates to find some alternative

standard errors for the least squares estimates obtained in part (b). Use

these standard errors and those obtained in part (b) to construct two alternative

95% confidence intervals for b2. What can you say about the confidence interval

that ignores the heteroskedasticity?

(e) Reestimate the equation under the assumption that varðeiÞ ¼ s2xi. Report the

results. Construct a 95% confidence interval for b2. Comment on its width

relative to that of the confidence intervals found in part (d).

8.13* Consider the following cost function where C denotes cost and Q denotes output.

Assume that varðe1tÞ ¼ s2Q1t. We use a subscript t because the observations are

time-series data. They are stored in the file cloth.dat.

C1t ¼ b1 þ b2Q1t þ b3Q
2
1t þ b4Q

3
1t þ e1t

(a) Find generalized least squares estimates of b1,b2,b3, andb4.

(b) Test the hypothesis b1 ¼ b4 ¼ 0.
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(c) What can you say about the nature of the average cost function if the hypothesis

in (b) is true?

(d) Under what assumption about the error term would it be more appropriate to

estimate the average cost function than the total cost function?

8.14* In the file cloth.dat there are 28 time-series observations on total cost (C) and output

(Q) for two clothing manufacturing firms. It is hypothesized that both firms’ cost

functions are cubic and can be written as

firm 1: C1t ¼ b1 þ b2Q1t þ b3Q
2
1t þ b4Q

3
1t þ e1t

firm 2: C2t ¼ d1 þ d2Q2t þ d3Q
2
2t þ d4Q

3
2t þ e2t

where Eðe1tÞ ¼ Eðe2tÞ ¼ 0, varðe1tÞ ¼ s2
1, and varðe2tÞ ¼ s2

2. Also, e1t and e2t are

independent of each other and over time.

(a) Estimate each function using least squares. Report and comment on the results.

Do the estimated coefficients have the expected signs?

(b) Using a 10% significance level, test the hypothesis that H0 :s
2
1 ¼ s2

2 against the

alternative that H1 :s
2
1 6¼s2

2.

(c) Estimate both equations jointly, assuming that b1 ¼ d1; b2 ¼ d2; b3 ¼ d3, and
b4 ¼ d4. Report and comment on the results.

(d) Test the hypothesis

H0 :b1 ¼ d1; b2 ¼ d2; b3 ¼ d3 andb4 ¼ d4

Comment on the test outcome.

8.15* (a) Reconsider the wage equation that was estimated in Section 8.4.2. Instead of

estimating the variances from two separate subsamples, one formetropolitan and

the other for rural, estimate the two variances using the model

s2
i ¼ expða1 þ a2METROiÞ

and one single combined sample. Are your variance estimates different from

those obtained using two separate subsamples? Why?

(b) Find a new set of generalized least squares estimates for the mean function and

compare them with those in (8.36).

(c) Find White standard errors for the least squares estimates of the mean function.

How do they comparewith the generalized least squares standard errors obtained

in part (b)?

8.16 Consider the following model used to explain gasoline consumption per car in

Germany and Austria for the period 1960–1978:

lnðGASÞ ¼ b1 þ b2lnðINCÞ þ b3lnðPRICEÞ þ b4lnðCARSÞ þ e

where INC is per capita real income, PRICE is the real gasoline price, and CARS is

the per capita stock of cars. Data on these variables appear in the file gasga.dat.

(a) Using separate least squares estimations, estimate the error variance for

Germany s2
G, and the error variance for Austria s2

A.

(b) Test the hypothesis H0 :s
2
G ¼ s2

A against the alternative H1 :s
2
G 6¼s2

A at a 5%

significance level.
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(c) Find generalized least squares estimates of the coefficients b1; b2; b3; b4.

(d) Use the results in (c) to test the null hypothesis that demand is price inelastic

ðb3 � �1Þ against the alternative that demand is elastic b3 <�1.

8.17 The file br2.dat contains data on 1080 houses sold in Baton Rouge, Louisiana

duringmid-2005.Wewill be concernedwith the selling price (PRICE), the size of the

house in square feet (SQFT ), and the age of the house in years (AGE). Define a new

variable that measures house size in terms of hundreds of square feet, SQFT100 ¼
SQFT=100.
(a) Find least squares estimates of the following equation and save the residuals:

lnðPRICEÞ ¼ b1 þ b2SQFT100þ b3AGE þ b4AGE
2 þ e

(b) Plot the least residuals against (i) AGE and (ii) SQFT100. Is there any evidence

of heteroskedasticity?

(c) Test for heteroskedasticity using a Breusch-Pagan test and the variables AGE

and SQFT100. Is there evidence of heteroskedasticity at a 1% level of signifi-

cance?

(d) Estimate the variance function s2
i ¼ exp a1 þ a2AGEi þ a3SQFT100ið Þ and

report the results. Use the robust standard error option and comment on the

effects of AGE and SQFT100 on the variance.

(e) Use the estimated variance function in (d) to find variance estimates ŝ2
i , i ¼ 1,

2, . . . , 1080, and use those estimates to find generalized least squares estimates

of the equation in (a).

(f) Use a table format to report estimates and standard errors for themodel in part (a),

from the following estimation techniques. Comment on any differences and

similarities.

(i) Least squares

(ii) Least squares with heteroskedasticity-robust standard errors

(iii) Generalized least squares from part (e)

(iv) Generalized least squares from part (e), but with robust standard errors

(g) Do the transformed residuals from the transformed regression in part (e) show

evidence of heteroskedasticity? Use a Breusch-Pagan test with variables AGE

and SQFT100.

8.18 In Section 8.6.1 we estimated the linear probability model

COKE ¼ b1 þ b2PRATIOþ b3DISP COKE þ b3DISP PEPSI þ e

where COKE ¼ 1 if a shopper purchased Coke and COKE ¼ 0 if a shopper

purchased Pepsi. The variable PRATIO was the relative price ratio of Coke to

Pepsi, and DISP_COKE and DISP_PEPSI were indicator variables equal to one

if the relevant display was present. Suppose now that we have 1140 observations

on randomly selected shoppers from 50 different grocery stores. Each grocery

store has its own settings for PRATIO, DISP_COKE and DISP_PEPSI. Let an

(i, j) subscript denote the jth shopper at the ith store, so that we can write the

model as

COKEij ¼ b1 þ b2PRATIOi þ b3DISP COKEi þ b3DISP PEPSIi þ eij

Average this equation over all shoppers in the ith store so that we have

COKEi� ¼ b1 þ b2PRATIOi þ b3DISP COKEi þ b3DISP PEPSIi þ ei� (8.52)



where

ei� ¼ 1

Ni

�
Ni

j¼1
eij COKEi� ¼ 1

Ni

�
Ni

j¼1
COKEij

and Ni is the number of sampled shoppers in the ith store.

(a) Explain whyCOKEi is the proportion of shoppers from the ith storewho bought

Coke.

(b) Given that E COKEij

� � ¼ pi and var COKEij

� � ¼ pi 1� pið Þ, show that

E COKEi�
� � ¼ pi and var COKEi�

� � ¼ pi 1� pið Þ
Ni

(c) Interpret pi and express it in terms of PRATIOi, DISP_COKEi and

DISP_PEPSIi.

(d) Observations on the variables COKEi�, PRATIOi, DISP_COKEi, DISP_PEPSIi
andNi appear in the file coke_grouped.dat. Find least squares estimates of (8.52).

Comment on the results.

(e) Test forheteroskedasticitybyapplying theWhite testwith cross-product terms to the

leastsquaresresiduals.Explainwhyitmakessensetoincludethecross-productterms.

(f) Estimate pi and var COKEi�
� �

for each of the stores. Report the mean, standard

deviation, maximum, and minimum values of the estimated pi.

(g) Find generalized least squares estimates of (8.52). Comment on the results and

compare them with those obtained in part (d).

8.19 (a) Using the data in cps4_small.dat estimate the following wage equation with

least squares and heteroskedasticity-robust standard errors:

lnðWAGEÞ ¼ b1 þ b2EDUC þ b3EXPERþ b4EXPER
2

þ b5ðEXPER�EDUCÞ þ e

Report the results.

(b) AddMARRIED to the equation and re-estimate. Holding education and experi-

ence constant, do married workers get higher wages? Using a 5% significance

level, test a null hypothesis thatwages ofmarriedworkers are less than or equal to

those of unmarriedworkers against the alternative that wages ofmarriedworkers

are higher.

(c) Plot the residuals from part (a) against the two values of MARRIED. Is there

evidence of heteroskedasticity?

(d) Estimate the model in part (a) twice—once using observations on only married

workers and once using observations on only unmarried workers. Use the

Goldfeld-Quandt test and a 5% significance level to test whether the error

variances for married and unmarried workers are different.

(e) Find generalized least squares of the model in part (a). Compare the estimates

and standard errors with those obtained in part (a).

(f) Find two 95% interval estimates for themarginal effect @EðlnðWAGEÞÞ=@EDUC
for aworkerwith 16 years of education and 10 years of experience.Use the results

from part (a) for one interval and the results from part (e) for the other interval.

Comment on any differences.

8.20 Consider again the data in cps4_small.dat and the wage equation

lnðWAGEÞ ¼ b1 þ b2EDUC þ b3EXPERþ b4EXPER
2

þ b5ðEXPER�EDUCÞ þ e
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(a) Plot the least squares residuals against EDUC and against EXPER. What do

they suggest?

(b) Test for heteroskedasticity using a Breusch-Pagan test where the variance

depends on EDUC, EXPER and MARRIED. What do you conclude at a 5%

significance level?

(c) Estimate a variance function that includes EDUC, EXPER, andMARRIED and

use it to estimate the standard deviation for each observation.

(d) Find generalized least squares estimates of the wage equation. Compare the

estimates and standard errors with those obtained from least squares estimation

with heteroskedasticity-robust standard errors.

(e) Find two 95% interval estimates for the marginal effect @EðlnðWAGEÞÞ=
@EXPER for a worker with 16 years of education and 20 years of experience.

Use least squares with heteroskedasticity-robust standard errors for one interval

and the results from part (d) for the other. Comment on any differences.

8.21 This exercise is a continuation of Exercise 8.20. Estimates from 8.20(c) and 8.20(d)

should be used to answer the following questions.

(a) Forecast thewage of amarried worker with 18 years of education and 16 years of

experience. Use both the natural predictor and the corrected predictor. (See

Chapter 4.5.3.)

(b) Find a 95% forecast interval for the wage of a married worker with 18 years of

education and 16 years of experience. Ignore the uncertainty and sampling error

from estimating the coefficients.

8.22 In Exercise 7.7 we considered a model designed to provide information to mortgage

lenders. They want to determine borrower and loan factors that may lead to

delinquency or foreclosure. In the file lasvegas.dat are 1000 observations on

mortgages for single-family homes in Las Vegas, Nevada during 2008. The variable

of interest isDELINQUENT, an indicator variable ¼ 1 if the borrowermissed at least

three payments (90þ days late), but zero otherwise. Explanatory variables are

LVR ¼ the ratio of the loan amount to the value of the property; REF ¼ 1 if purpose

of the loan was a ‘‘refinance’’ and ¼ 0 if loan was for a purchase; INSUR ¼ 1 if

mortgage carriesmortgage insurance, zero otherwise;RATE ¼ initial interest rate of

the mortgage; AMOUNT ¼ dollar value of mortgage (in $100,000); CREDIT ¼
credit score, TERM ¼ number of years between disbursement of the loan and the

date it is expected to be fully repaid, ARM ¼ 1 if mortgage has an adjustable rate,

and ¼ 0 if mortgage has a fixed rate.

(a) Estimate the linear probability (regression) model explainingDELINQUENT as

a function of the remaining variables. Use the White test with cross-product

terms included to test for heteroskedasticity. Why did we include the cross-

product terms?

(b) Use the estimates from (a) to estimate the error variances for each observation.

Howmany of these estimates are at least one? Howmany are at most zero? How

many are less than 0.01?

(c) Prepare a table containing estimates and standard errors from estimating the

linear probability model in each of the following ways:

(i) Least squares with conventional standard errors.

(ii) Least squares with heteroskedasticity-robust standard errors.

(iii) Generalized least squares omitting observations with variances less than

0.01.
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(iv) Generalized least squares with variances less than 0.01 changed to 0.01.

(v) Generalized least squares with variances less than 0.00001 changed to

0.00001.
Discuss and compare the different results.

(d) Using the results from (iv), interpret each of the coefficients. Mention whether

the signs are reasonable and whether they are significantly different from zero.

Appendix 8A Properties of the Least Squares Estimator

We are concerned with the properties of the least squares estimator for b2 in the model

yi ¼ b1 þ b2xi þ ei

where

EðeiÞ ¼ 0 varðeiÞ ¼ s2
i covðei; e jÞ ¼ 0 ði 6¼ jÞ

Note that we are assuming the existence of heteroskedasticity. InAppendix 2D ofChapter 2,

we wrote the least squares estimator for b2 as

b2 ¼ b2 þ �wiei (8A.1)

where

wi ¼ xi � x

�ðxi � xÞ2

This expression is a useful one for exploring the properties of least squares estimation under

heteroskedasticity. The first property that we establish is that of unbiasedness. This property

was derived under homoskedasticity in (2.13). The same proof holds under heteroskedas-

ticity because the only error term assumption that was used is EðeiÞ ¼ 0.We summarize the

results here for completeness:

Eðb2Þ ¼ Eðb2Þ þ Eð�wieiÞ
¼ b2 þ �wiEðeiÞ ¼ b2

The next result is that the least squares estimator is no longer best. That is, although it is still

unbiased, it is no longer the best linear unbiased estimator. We showed this result in Section

8.4 by considering alternative variance specifications and deriving alternative estimators

that were best under these specifications.

The final consequence of using least squares under heteroskedasticity is that the usual

formulas for the least squares standard errors are incorrect. To prove this result, we write,

from (8A.1),

varðb2Þ ¼ varð�wieiÞ
¼ �w2

i varðeiÞ þ ��
i 6¼ j

wiw jcovðei; e jÞ

¼ �w2
i s

2
i

¼
�
h
ðxi � xÞ2s2

i

i
h
�ðxi � xÞ2

i2
ð8A:2Þ
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If the variances are all the same ðs2
i ¼ s2Þ, then the next-to-last line becomes s2�w2

i . This

simplification is not possible under heteroskedasticity, so the result in (8A.2) is different to

that derived in Appendix 2E. Specifically, it follows from (8A.2) that

varðb2Þ 6¼ s2

�ðxi � xÞ2 (8A.3)

Thus, if we use the least squares estimation procedure and ignore heteroskedasticity when

it is present, we will be using an estimate of the right-hand-side of (8A.3) to obtain the

standard error for b2 when in fact we should be using an estimate of (8A.2). Using incorrect

standard errors means that interval estimates and hypothesis tests will no longer be valid.

Note that standard computer software for least squares regression will compute the

estimated variance for b2 based on (8A.3) unless told specifically to compute White

standard errors.

Appendix 8B Lagrange Multiplier Tests
for Heteroskedasticity

More insights into Lagrange multiplier and other variance function tests can be developed

by relating them to the F-test introduced in (6.8) for testing the significance of a mean

function. To put that test in the context of a variance function, consider (8.15)

ê2i ¼ a1 þ a2zi2 þ � � � þ aSziS þ vi (8B.1)

and assume that our objective is to test H0 :a2 ¼ a3 ¼ � � � ¼ aS ¼ 0 against the alternative

that at least one as, for s ¼ 2, . . . , S, is nonzero. In Section 8.2.2 we considered a more

general variance function than that in (8B.1), but we also pointed out that using the linear

function in (8B.1) is valid for testing more general alternative hypotheses.

Adapting the F-value reported in (6.8) to test the overall significance of (8B.1),

we have

F ¼ ðSST � SSEÞ=ðS� 1Þ
SSE=ðN � SÞ (8B.2)

where

SST ¼ �
N

i¼1

�
ê2i � ê2

�2
and SSE ¼ �

N

i¼1
v̂2i

are the total sum of squares and sum of squared errors from estimating (8B.1). Note that ê2 is

the mean of the dependent variable in (8B.1), or, equivalently, the average of the squares

of the least squares residuals from the mean function. At a 5% significance level, a valid test

is to reject H0 if the F-value is greater than a critical value given by Fð0:95; S�1;N�SÞ.
Two further tests, the original Breusch–Pagan test and its N � R2 version, can be

obtained bymodifying (8B.2). Please be patient aswework through thesemodifications.We

begin by rewriting (8B.2) as

x2 ¼ ðS� 1Þ�F ¼ SST � SSE

SSE=ðN � SÞ � x2ðS�1Þ (8B.3)
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The chi-square statistic x2 ¼ ðS� 1Þ�F has an approximate x2ðS�1Þ-distribution in large

samples. That is, multiplying an F-statistic by its numerator degrees of freedom gives

another statistic that follows a chi-square distribution. The degrees of freedom of the chi-

square distribution are S � 1, the same as that for the numerator of the F-distribution. The

background for this result is given in Appendix 6A.

Next, note that

varbðe2i Þ ¼ varbðviÞ ¼ SSE

N � S
(8B.4)

That is, thevariance of the dependent variable is the sameas thevariance of the error,whichcan

be estimated from the sum of squared errors in (8B.1). Substituting (8B.4) into (8B.3) yields

x2 ¼ SST � SSE

varbðe2i Þ
(8B.5)

This test statistic represents the basic form of the Breusch–Pagan statistic. Its two different

versions occur because of the alternative estimators used to replace varbðe2i Þ.
If it is assumed that ei is normally distributed, it can be shown that varðe2i Þ ¼ 2s4

e , and the

statistic for the first version of the Breusch–Pagan test is

x2 ¼ SST � SSE

2ŝ4
e

(8B.6)

Note that s4
e ¼ ðs2

eÞ2 is the square of the error variance from the mean function; unlike SST

and SSE, its estimate comes from estimating (8.16). The result varðe2i Þ ¼ 2s4
e might be

unexpected—here is a little proof so that you know where it comes from. When

ei �Nð0; s2
eÞ, then ðei=seÞ�Nð0; 1Þ, and ðe2i =s2

eÞ� x2ð1Þ. The variance of a x2ð1Þ random
variable is 2. Thus,

var
e2i
s2
e


 �
¼ 2 ) 1

s4
e

varðe2i Þ ¼ 2 ) varðe2i Þ ¼ 2s4
e

Using (8B.6), we reject a null hypothesis of homoskedasticity when the x2-value is greater
than a critical value from the x2ðS�1Þ distribution.

For the second version of (8B.5) the assumption of normally distributed errors is not

necessary. Because this assumption is not used, it is often called the robust version of the

Breusch–Pagan test. The sample variance of the squared least squares residuals, the ê2i , is

used as an estimator for varðe2i Þ. Specifically, we set

varbðe2i Þ ¼
1

N
�
N

i¼1

�
ê2i � ê2

�2
¼ SST

N
(8B.7)

This quantity is an estimator for varðe2i Þ under the assumption that H0 is true. It can also be

written as the total sum of squares from estimating the variance function divided by the

sample size. Substituting (8B.7) into (8B.5) yields

x2 ¼ SST � SSE

SST=N

¼ N� 1� SSE

SST


 �
¼ N �R2

(8B.8)

APPENDIX 8B LAGRANGE MULTIPLIER TESTS 333



where R2 is the R2 goodness-of-fit statistic from estimating the variance function. At a 5%

significance level, a null hypothesis of homoskedasticity is rejected when x2 ¼ N �R2

exceeds the critical value x2ð0:95; S�1Þ.
Software often reports the outcome of the White test described in Section 8.4.3a as an

F-value or a x2-value. The F-value is from the statistic in (8B.4), with the z’s chosen as the

x’s and their squares and possibly cross-products. Thex2-value is from the statistic in (8B.8),

with the z’s chosen as the x’s and their squares and possibly cross-products.
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C h a p t e r 9
Regression With Time-Series
Data: Stationary Variables

Learning Objectives

Based on the material in this Chapter, you should be able to:

1. Explain why lags are important in models that use time-series data, and theways in

which lags can be included in dynamic econometric models.

2. Explain what is meant by a serially correlated time series, and how we measure

serial correlation.

3. Specify, estimate, and interpret the estimates from a finite distribute lag model.

4. Explain the nature of regressions that involve lagged variables and the number of

observations that are available.

5. Specify and explain how the multiple regression assumptions are modified to

accommodate time series data.

6. Compute the autocorrelations for a time-series, graph the corresponding correlo-

gram, and use it to test for serial correlation.

7. Use a correlogram of residuals to test for serially correlated errors.

8. Use a Lagrange multiplier test for serially correlated errors.

9. ComputeHACstandarderrors for least squaresestimates.Explainwhytheyareused.

10. Describe the properties of an AR(1) error.

11. Compute nonlinear least squares estimates for a model with an AR(1) error.

12. Test whether an ARDL(1, 1) model can be written as an AR(1) error model.

13. Specify and estimate autoregressive distributed lag models. Use serial correlation

checks, significance of coefficients and model selection criteria to choose lag

lengths.

14. Estimate an autoregressive model and choose a suitable lag length.

15. Use AR and ARDL models to compute forecasts, standard errors of forecasts and

forecast intervals.

16. Explain what is meant by exponential smoothing. Use exponential smoothing to

compute a forecast.

17. Compute delay, interim, and total multipliers for both ARDL and finite distributed

lag models.
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9.1 Introduction

When modeling relationships between variables, the nature of the data that have been

collected has an important bearing on the appropriate choice of an econometric model. In

particular, it is important to distinguish between cross-section data (data on a number of

economic units at a particular point in time) and time-series data (data collected over time

on one particular economic unit). Examples of both types of data were given in Chapter

1.5. When we say ‘‘economic units’’ we could be referring to individuals, households,

firms, geographical regions, countries, or some other entity on which data is collected.

Because cross-section observations on a number of economic units at a given time are

often generated by way of a random sample, they are typically uncorrelated. The level of

income observed in the Smiths’ household, for example, does not affect, nor is it affected

by, the level of income in the Jones’s household. On the other hand, time-series

observations on a given economic unit, observed over a number of time periods, are

likely to be correlated. The level of income observed in the Smiths’ household in one year

is likely to be related to the level of income in the Smiths’ household in the year before.

Thus, one feature that distinguishes time-series data from cross-section data is the likely

correlation between different observations. Our challenges for this chapter include testing

for and modeling such correlation.

A second distinguishing feature of time-series data is its natural ordering according to

time. With cross-section data there is no particular ordering of the observations that is

better or more natural than another. One could shuffle the observations and then proceed

with estimation without losing any information. If one shuffles time-series observations,

there is a danger of confounding what is their most important distinguishing feature: the

possible existence of dynamic relationships between variables. A dynamic relationship is

one in which the change in a variable now has an impact on that same variable, or other

variables, in one or more future time periods. For example, it is common for a change in

the level of an explanatory variable to have behavioral implications for other variables

beyond the time period in which it occurred. The consequences of economic decisions that

result in changes in economic variables can last a long time. When the income tax rate is
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increased, consumers have less disposable income, reducing their expenditures on goods

and services, which reduces profits of suppliers, which reduces the demand for productive

inputs, which reduces the profits of the input suppliers, and so on. The effect of the tax

increase ripples through the economy. These effects do not occur instantaneously but are

spread, or distributed, over future time periods. As shown in Figure 9.1, economic actions

or decisions taken at one point in time, t, have effects on the economy at time t, but also at

times t þ 1, t þ 2, and so on.

9.1.1 DYNAMIC NATURE OF RELATIONSHIPS

Given that the effects of changes in variables are not always instantaneous, we need to ask

how to model the dynamic nature of relationships. We begin by recognizing three different

ways of doing so.

1. One way is to specify that a dependent variable y is a function of current and past

values of an explanatory variable x. That is,

yt ¼ f ðxt; xt�1; xt�2; � � �Þ (9.1)

We can think of (yt, xt) as denoting the values for y and x in the current period; xt�1

means the value of x in the previous period; xt�2 is the value of x two periods ago,

and so on. For the moment f (�) is used to denote any general function. Later we

replace f (�) by a linear function, like those used so far in the book. Equations such

as (9.1) say, for example, that the current rate of inflation yt depends not just on the

current interest rate xt, but also on the rates in previous time periods xt�1, xt�2, . . . .
Turning this interpretation around as in Figure 9.1, it means that a change in the

interest rate now will have an impact on inflation now and in future periods; it takes

time for the effect of an interest rate change to fully work its way through the

economy. Because of the existence of these lagged effects, (9.1) is called a

distributed lag model.

2. A second way of capturing the dynamic characteristics of time-series data is to

specify a model with a lagged dependent variable as one of the explanatory

variables. For example,

yt ¼ f ðyt�1; xtÞ (9.2)

Economic Action
at Time t

Effect at Time t Effect at Time t + 1 Effect at Time t + 2

FIGURE 9.1 The distributed lag effect.
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where again f (�) is a general function that we later replace with a linear function. In
this case we are saying that the inflation rate in one period yt will depend (among

other things) on what it was in the previous period, yt�1. Assuming a positive

relationship, periods of high inflationwill tend to follow periods of high inflation and

periods of low inflation will tend to follow periods of low inflation. Or, in other

words, inflation is positively correlated with its value lagged one period. A model of

this nature is one way of modeling correlation between current and past values of a

dependent variable. Also, we can combine the features of (9.1) and (9.2) so that we

have a dynamic model with lagged values of both the dependent and explanatory

variables, such as

yt ¼ f ðyt�1; xt; xt�1; xt�2Þ (9.3)

Such models are called autoregressive distributed lag (ARDL) models, with

‘‘autoregressive’’ meaning a regression of yt on its own lag or lags.

3. A third way of modeling the continuing impact of change over several periods is via

the error term. For example, using general functions f (�) and g(�), both of which are
replaced later with linear functions, we can write

yt ¼ f ðxtÞ þ et et ¼ gðet�1Þ (9.4)

where the function et ¼ g(et�1) is used to denote the dependence of the error on its

value in the previous period. In this case et is correlated with et�1; we say the errors

are serially correlated or autocorrelated. Because (9.3) implies etþ1 ¼ g(et), the

dynamic nature of this relationship is such that the impact of any unpredictable shock

that feeds into the error termwill be felt not just in period t, but also in future periods.

The current error et affects not just the current value of the dependent variable yt, but

also its future values ytþ1; ytþ2; . . . . As an example, suppose that a terrorist act

creates fear of an oil shortage, driving up the price of oil. The terrorist act is an

unpredictable shock that forms part of the error term et. It is likely to affect the price

of oil in the future as well as during the current period.

In this chapter we consider these three ways in which dynamics can enter a regression

relationship—lagged values of the explanatory variable, lagged values of the depen-

dent variable, and lagged values of the error term. What we discover is that these three

ways are not as distinct as one might at first think. Including a lagged dependent

variable yt�1 can capture similar effects to those obtained by including a lagged error

et�1, or a long history of past values of an explanatory variable, xt�1; xt�2; . . . . Thus, we
not only consider the three kinds of dynamic relationships, we explore the relationships

between them.

Related to the idea of modeling dynamic relationships between time series variables

is the important concept of forecasting. We are not only interested in tracing the impact

of a change in an explanatory variable or an error shock through time. Forecasting

future values of economic time series, such as inflation, unemployment, and exchange

rates, is something that attracts the attention of business, governments, and the general

public. Describing how dynamic models can be used for forecasting is another objective

of this chapter.
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9.1.2 LEAST SQUARES ASSUMPTIONS

An important consequence of using time series data to estimate dynamic relationships is the

possible violation of one of our least squares assumptions. Assumption MR4 specified in

Chapter 5 states that different observations on y and on e are uncorrelated. That is,

covðyi; yjÞ ¼ covðei; ejÞ ¼ 0 for i 6¼ j

In this chapter, to emphasize that we are using time-series observations, we drop the i and j

subscripts and use t and s instead, with t and s referring to two different time periods such as

days, months, quarters, or years. Thus, the above assumption becomes

covðyt; ysÞ ¼ covðet; esÞ ¼ 0 for t 6¼ s

The dynamic models in (9.2), (9.3) and (9.4) imply correlation between yt and yt�1 or et and

et�1 or both, so they clearly violate assumption MR4. As mentioned below (9.4), when a

variable is correlated with its past values, we say that it is autocorrelated or serially

correlated. How to test for serial correlation, and its implications for estimation, are also

covered in this chapter.

9.1.2a Stationarity

An assumption that wemaintain throughout the chapter is that the variables in our equations

are stationary. This assumptionwill take onmoremeaning in Chapter 12when it is relaxed.

For the moment we note that a stationary variable is one that is not explosive, nor trending,

and nor wandering aimlessly without returning to its mean. These features can be illustrated

with some graphs. Figures 9.2(a), 9.2(b) and 9.2(c) contain graphs of the observations on

three different variables, plotted against time. Plots of this kind are routinely considered

when examining time-series variables. The variable Y that appears in Figure 9.2(a) is

considered stationary because it tends to fluctuate around a constant mean without

wandering or trending. On the other hand, X and Z in Figures 9.2(b) and 9.2(c) possess

characteristics of nonstationary variables. In Figure 9.2(b) X tends to wander, or is ‘‘slow

turning,’’ while Z in Figure 9.2(c) is trending. These concepts will be definedmore precisely

inChapter 12. For now the important thing to remember is that this chapter is concernedwith

modeling and estimating dynamic relationships between stationary variables whose time

series have similar characteristics to those of Y. That is, they neither wander nor trend.

9.1.3 ALTERNATIVE PATHS THROUGH THE CHAPTER

This chapter covers a great deal of material. Instructors teaching a one-semester course may

notwish to cover all of it, and different instructors are likely to have different preferences for

the sections they wish to cover. Figures 9.3(a) and 9.3(b) provide a guide to alternativeways

of covering a limited amount of the material. Figure 9.3(a) is designed for instructors who

wish to start with finite distributed lags. This starting point has the advantage of beginning

withamodel that isclosest to thosestudiedsofar inChapters2 to8.Fromtherewerecommend

covering serial correlation—relevant definitions, concepts, and testing. At this point some

instructors might like to proceed with the AR(1) error model; others might prefer to jump

straight to ARDL models. The second path in Figure 9.3(b) is designed for instructors who

wish to start the chapter with serial correlation. After covering definitions, concepts, and

testing, they can proceed to the AR(1) error model or straight to ARDL models. Finite

distributed lag models can be covered as a special case of ARDL models or omitted.
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FIGURE 9.2 (a) Time series of a stationary variable; (b) time series of a nonstationary variable

that is ‘‘slow-turning’’ or ‘‘wandering’’; (c) time series of a nonstationary variable that ‘‘trends.’’
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9.2 Finite Distributed Lags

The first dynamic relationship that we consider is that given in (9.1), yt ¼ f ðxt; xt�1;
xt�2; � � �Þ, with the additional assumptions that the relationship is linear, and, after q time

periods, changes in x no longer have an impact on y. Under these conditions we have the

multiple regression model

yt ¼ aþ b0xt þ b1xt�1 þ b2xt�2 þ � � � þ bqxt�q þ et (9.5)

The model in (9.5) can be treated in the same way as the multiple regression model studied

in Chapters 5 and 6. Instead of having a number of explanatory variables, we have a

number of different lags of the same explanatory variable. However, for the purpose of

estimation, these different lags can be treated in the same way as different explanatory

9.3 and 9.4 Serial Correlation:
Definitions and Testing

9.5 Estimation with AR(1) Error

9.2 Finite Distributed Lags 

9.6 ARDL

9.7 Forecasting

9.8 Multiplier Analysis

FIGURE 9.3 (b) Alternative paths through the chapter starting with serial correlation.

9.2 Finite Distributed Lags 9.3 and 9.4 Serial Correlation:
Definitions and Testing

9.5 Estimation with AR(1) Error

9.6 ARDL

9.7 Forecasting

9.8 Multiplier Analysis

FIGURE 9.3 (a) Alternative paths through the chapter starting with finite distributed lags.
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variables. It is convenient to change subscript notation on the coefficients: bs is used to

denote the coefficient of xt�s and a is introduced to denote the intercept. Other explanatory

variables can be added if relevant, in which case other symbols are needed to denote their

coefficients.

Models such as (9.5) have two special uses. The first is forecasting future values of y. To

introduce notation for future values, suppose our sample period is for t ¼ 1, 2, . . . , T. We

use t for the index (rather than i) and T for the sample size (rather than N) to emphasize

the time series nature of the data. Given that the last observation in our sample is at t ¼ T, the

first postsample observation that we want to forecast is at t ¼ T þ 1. The equation

for this observation is given by

yTþ1 ¼ aþ b0xTþ1 þ b1xT þ b2xT�1 þ � � � þ bqxT�qþ1 þ eTþ1 (9.6)

The forecasting problem is how to use the time series of x-values, xTþ1; xT ; xT�1; . . . ;
xT�qþ1 to forecast the value yTþ1, with special attention needed to obtain a value for xTþ1.

We consider this problem in Section 9.7, within the context of a more general model.

The second special use of models like (9.5) is for policy analysis. Examples of policy

analysis where the distributed-lag effect is important are the effects of changes in

government expenditure or taxation on unemployment and inflation (fiscal policy), the

effects of changes in the interest rate on unemployment and inflation (monetary policy),

and the effect of advertising on sales of a firm’s products. The timing of the effect of a change

in the interest rate or a change in taxation on unemployment, inflation, and the general health

of the economy can be critical. Suppose the government (or a firm or business) controls the

values of x, andwould like to set x to achieve a givenvalue, or a given sequence of values, for

y. The coefficient bs gives the change in EðytÞ when xt�s changes by one unit, but x is held

constant in other periods. Alternatively, if we look forward instead of backward,bs gives the

change in EðytþsÞ when xt changes by one unit, but x in other periods is held constant. In

terms of derivatives

@EðytÞ
@xt�s

¼ @EðytþsÞ
@xt

¼ bs (9.7)

To further appreciate this interpretation, suppose that x and y have been constant for at least

the last q periods and that xt is increased by one unit, then returned to its original level. Then,

using (9.5) but ignoring the error term, the immediate effect will be an increase in yt by b0

units. One period later, ytþ1 will increase by b1 units, then ytþ2 will increase by b2 units and

so on, up to period t þ q, when ytþqwill increase by bq units. In period t þ q þ 1 the value

of ywill return to its original level. The effect of a one-unit change in xt is distributed over

the current and next q periods, from which we get the term ‘‘distributed lag model.’’ It is

called a finite distributed lag model of order q because it is assumed that after a finite

number of periods q, changes in x no longer have an impact on y. The coefficientbs is called a

distributed-lagweight or an s-period delaymultiplier. The coefficientb0 (s ¼ 0) is called

the impact multiplier.

It is also relevant to ask what happens if xt is increased by one unit and thenmaintained at

its new level in subsequent periods (t þ 1), (t þ 2), . . . . In this case, the immediate impact

will again be b0; the total effect in period t þ 1 will be b0 þ b1, in period t þ 2 it will be

b0 þ b1 þ b2, and so on. We add together the effects from the changes in all preceding

periods. These quantities are called interim multipliers. For example, the two-period

interim multiplier is ðb0 þ b1 þ b2Þ. The total multiplier is the final effect on y of the

sustained increase after q or more periods have elapsed; it is given by �q
s¼0bs.

342 REGRESS ION WITH T IME- SER IES DATA : STAT IONARY VARIABLES



9.2.1 ASSUMPTIONS

When the simple regression model was first introduced in Chapter 2, it was written in terms

of the mean of y conditional on x. Specifically, EðyjxÞ ¼ b1 þ b2x, which led to the error

term assumption EðejxÞ ¼ 0. Then, so that we could avoid the need to condition on x, and

hence ease the notational burden, we made the simplifying assumption that the x’s are not

random.Wemaintained this assumption through Chapters 2–8, recognizing that although it

is unrealistic formost data sets, relaxing it in a limited but realistic waywould have had little

impact on our results and on our choice of estimators and test statistics. Further con-

sequences of relaxing it are explored in Chapter 10. However, because the time-series

variables used in the examples in this chapter are random, it is useful to mention alternative

assumptions under which we can consider the properties of least squares and other

estimators.

In distributed lag models both y and x are typically random. The variables used in the

example that follows are unemployment and output growth. They are both random.They are

observed at the same time; we do not know their values prior to ‘‘sampling.’’ We do not

‘‘set’’ output growth and then observe the resulting level of unemployment. To accom-

modate this randomness we assume that the x’s are random and that et is independent of all

x’s in the sample—past, current, and future. This assumption, in conjunction with the other

multiple regression assumptions, is sufficient for the least squares estimator to be unbiased

and to be best linear unbiased conditional on the x’s in the sample.1 With the added

assumption of normally distributed error terms, our usual t and F tests have finite sample

justification. Accordingly, the multiple regression assumptions given in Chapter 5 can be

modified for the distributed lag model as follows:

ASSUMPTIONS OF THE DISTRIBUTED LAG MODEL

TSMR1. yt ¼ aþ b0xt þ b1xt�1 þ b2xt�2 þ � � � þ bqxt�q þ et
t ¼ qþ 1; . . . ; T

TSMR2. y and x are stationary random variables, and et is independent of current, past

and future values of x.

TSMR3. EðetÞ ¼ 0

TSMR4. varðetÞ ¼ s2

TSMR5. covðet; esÞ ¼ 0 t 6¼ s

TSMR6. et � Nð0;s2Þ

9.2.2 AN EXAMPLE: OKUN’S LAW

To illustrate and expand on the various distributed lag concepts, we introduce an economic

model known as Okun’s Law. In this model the change in the unemployment rate from one

period to the next depends on the rate of growth of output in the economy:2

Ut � Ut�1 ¼ �gðGt � GNÞ (9.8)

1 The complete independence of e and all x’s is stronger than needed to establish good large sample properties.

See Section 9.5 and Chapter 10.
2 SeeO.Blanchard (2009),Macroeconomics, 5th edition,UpperSaddleRiver,NJ,PearsonPrenticeHall, p. 184.
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whereUt is the unemployment rate in period t,Gt is the growth rate of output in period t, and

GN is the ‘‘normal’’ growth rate, which we assume is constant over time. The parameter g is
positive, implying that when the growth of output is above the normal rate, unemployment

falls; a growth rate below the normal rate leads to an increase in unemployment. The normal

growth rate GN is the rate of output growth needed to maintain a constant unemployment

rate. It is equal to the sum of labor force growth and labor productivity growth. We expect

0 < g < 1, reflecting that output growth leads to less than one-to-one adjustments in

unemployment.3

To write (9.8) in the more familiar notation of the multiple regression model, we denote

the change in unemployment byDUt ¼ DUt ¼ Ut � Ut�1,
4 we setb0 ¼ �g, anda ¼ gGN .

Including an error term then yields

DUt ¼ aþ b0Gt þ et (9.9)

Recognizing that changes in output are likely to have a distributed-lag effect on unemploy-

ment—not all of the effect will take place instantaneously—we expand (9.9) to include lags

of Gt

DUt ¼ aþ b0Gt þ b1Gt�1 þ b2Gt�2 þ � � � þ bqGt�q þ et (9.10)

To estimate this relationship we use quarterly U.S. data on unemployment and the

percentage change in gross domestic product (GDP) from quarter 2, 1985, to quarter 3,

2009. Output growth is defined as

Gt ¼ GDPt � GDPt�1

GDPt�1

�100 (9.11)

These data are stored in the file okun.dat. The time series for DU and G are graphed in

Figures 9.4(a) and 9.4(b). The effects of the global financial crisis are clearly evident

towards the end of the sample. At this time we note that the series appear to be stationary;

tools for more rigorous assessment of stationarity are deferred until Chapter 12.

To fully appreciate how the lagged variables are defined and how their observations enter

the estimation procedure, consider the spreadsheet in Table 9.1. This table contains the

observations onUt, its lag Ut�1, and its difference DUt, as well asGt and its lags up toGt�3.

Notice that for t ¼ 2, Ut ¼ U2 ¼ 7:2, Ut�1 ¼ U1 ¼ 7:3, and DUt ¼ U2 � U1 ¼ 7:2�
7:3 ¼ �0:1. Similarly, for t ¼ 3, Ut ¼ U3 ¼ 7:0, Ut�1 ¼ U2 ¼ 7:2, and DUt ¼
U3 � U2 ¼ 7:0� 7:2 ¼ �0:2. No observations are listed for Ut�1 and DUt for t ¼ 1,

because they would require a value for U0 (1985Q1) which is not provided in this data set.

For Gt, when t ¼ 2, Gt�1 ¼ G1 ¼ 1:4. When t ¼ 3, Gt�1 ¼ G2 ¼ 2:0 and Gt�2 ¼ G1 ¼
1:4. When t ¼ 4, Gt�1 ¼ G3 ¼ 1:4, Gt�2 ¼ G2 ¼ 2:0, and Gt�3 ¼ G1 ¼ 1:4. Because an

observation for G0 is not available, an observation is lost for each lag that is introduced.

Using three lags of G (q ¼ 3) means that only 95 of the original 98 observations are used

for estimation.5 In the general case with q lags, the observations used are those for

t ¼ qþ 1; qþ 2; . . . ; T .

3 For more details see Blanchard (2009), ibid, Chapter 9.
4 Using DUt, instead of Ut, has two advantages. The first is that Okun’s Law is stated in terms of the change in

unemployment. The second is that DUt, is stationary, but Ut, is not.
5 Since G is defined as the percentage change in GDP, one might question whether an extra observation on G

should be lost. However, the growth rate for 1985Q2 was obtained directly from Federal Reserve economic data.
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FIGURE 9.4 (a) Time series for the change in the U.S. unemployment rate: 1985Q3 to 2009Q3.
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FIGURE 9.4 (b) Time series for U.S. GDP growth: 1985Q2 to 2009Q3.

Ta b l e 9 . 1 Spreadsheet of Observations for Distributed Lag Model

t Quarter Ut Ut�1 DUt Gt Gt�1 Gt�2 Gt�3

1 1985Q2 7.3 � � 1.4 � � �
2 1985Q3 7.2 7.3 �0.1 2.0 1.4 � �
3 1985Q4 7.0 7.2 �0.2 1.4 2.0 1.4 �
4 1986Q1 7.0 7.0 0.0 1.5 1.4 2.0 1.4

5 1986Q2 7.2 7.0 0.2 0.9 1.5 1.4 2.0

96 2009Q1 8.1 6.9 1.2 �1.2 �1.4 0.3 0.9

97 2009Q2 9.3 8.1 1.2 �0.2 �1.2 �1.4 0.3

98 2009Q3 9.6 9.3 0.3 0.8 �0.2 �1.2 �1.4
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Least squares estimates of the coefficients and related statistics for (9.10) are reported in

Table 9.2 for lag lengths q ¼ 2 and q ¼ 3. All coefficients of G and its lags have the

expected negative sign and are significantly different from zero at a 5% significance level,

with the exception of that for Gt�3 when q ¼ 3. A variety of measures are available for

choosing q. In this case we drop Gt�3 and settle on a model of order 2 because b3 is

insignificant and has the wrong sign, and b0; b1, and b2 all have the expected negative signs
and are significantly different from zero. The information criteria AIC and SC discussed in

Chapter 6 are another set of measures that can be used for assessing lag length.

What do the estimates for lag length 2 tell us?A 1% increase in the growth rate leads to a

fall in the unemployment rate of 0.20% in the current quarter, a fall of 0.16% in the next

quarter, and a fall of 0.07% two quarters from now, holding other factors fixed. These

changes represent the values of the impact multiplier and the one-quarter and two-quarter

delaymultipliers. The interimmultipliers, that give the effect of a sustained increase in the

growth rate of 1%, are�0.367 for one quarter and�0.437 for two quarters. Sincewe have

a lag length of two, �0.437 is also the total multiplier. Knowledge of these values is

important for a government who wishes to keep unemployment below a certain level by

influencing the growth rate. If we view g in (9.8) as the total effect of a change in output

growth, then its estimate is ĝ ¼ ��2
s¼0bs ¼ 0:437. An estimate of the normal growth

rate that is needed to maintain a constant unemployment rate is ĜN ¼ â=ĝ ¼
0:5836=0:437 ¼ 1:3% per quarter.

A possibly puzzling result in Table 9.2 is that the estimatedmodelwithGt�3 has a slightly

lowerR2 than thatwithoutGt�3. Since adding a variable lowers the sumof squared errors and

increases the R2, this outcome is counterintuitive. It can occur in this case because the

number of observations is different in each case. If we are using all of the data available,

the number of observations changes as the number of lags changes unless specific provision

is made to do otherwise.

Ta b l e 9 . 2 Estimates for Okun’s Law Finite Distributed Lag Model

Lag Length q ¼ 3

Variable Coefficient Std. Error t-value p-value

Constant 0.5810 0.0539 10.781 0.0000

Gt �0.2021 0.0330 6.120 0.0000

Gt�1 �0.1645 0.0358 �4.549 0.0000

Gt�2 �0.0716 0.0353 �2.027 0.0456

Gt�3 0.0033 0.0363 0.091 0.9276

Observations ¼ 95 R2 ¼ 0.652 ŝ ¼ 0.1743

Lag Length q ¼ 2

Variable Coefficient Std. Error t-value p-value

Constant 0.5836 0.0472 12.360 0.0000

Gt �0.2020 0.0324 �6.238 0.0000

Gt�1 �0.1653 0.0335 �4.930 0.0000

Gt�2 �0.0700 0.0331 �2.115 0.0371

Observations ¼ 96 R2 ¼ 0.654 ŝ ¼ 0.1726
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9.3 Serial Correlation

In the distributed lag model in the previous section we examined one feature of time-series

data: how a dependent variable can be related to current and past values of an explanatory

variable. The effect of a change in the value of an explanatory variable is distributed over a

number of future periods.We noted that, if the specified assumptions hold, and, in particular,

the equation errors are uncorrelated with each other and with x, the traditional least squares

estimator and associated testing procedures can be used.

We turn now to another question: When is assumption TSMR5, covðet; esÞ ¼ 0 for t 6¼ s

likely to be violated, and how dowe assess its validity? As mentioned in the introduction to

this chapter, different observations in a cross-section data set, collected by way of a random

sample, are typically uncorrelated.With time-series data, however, successive observations

are likely to be correlated. If unemployment is high in this quarter, it ismore likely to be high

than low next quarter. Changes in variables such as unemployment, output growth, inflation

and interest rates are usually more gradual than abrupt; their values in one period will

depend onwhat happened in the previous period. This dependencemeans that output growth

now, for example, will be correlated with output growth in the previous period. When a

variable exhibits correlation over time, we say it is autocorrelated or serially correlated;
we will use these two terms interchangeably. Both observable time-series variables such as

DU andG, and the unobservable error e, can be autocorrelated. Autocorrelation in the error

can arise from an autocorrelated omitted variable, or it can arise if a dependent variable y is

autocorrelated and this autocorrelation is not adequately explained by the x’s and their lags

that are included in the equation.

To illustrate the concept of autocorrelation or serial correlation, we begin by considering

the observations on output growth G that were used in the distributed lag model of the

previous section. We describe methodology for measuring autocorrelation and for testing

whether it is significantly different from zero. Then, later in this section, we apply

the methodology to the error term in a regression equation. It is useful to assess

the autocorrelation properties of both observable variables and the error term. For the

observable variables, the properties are useful for the construction of autoregressivemodels

that are considered later in this chapter. For the error term it is useful to checkwhether one of

the least squares assumptions has been violated.

9.3.1 SERIAL CORRELATION IN OUTPUT GROWTH

To appreciate the nature of autocorrelation, consider the time-series graph of G in Figure

9.4(b). In a few instances G changes dramatically from one quarter to the next, but on

average, high values of Gt�1 are followed by high values of Gt, and low values of Gt�1 are

followed by lowvalues ofGt, suggesting a positive correlation between observations that are

one period apart. We can further illustrate this correlation by examining the scatter diagram

in Figure 9.5 where pairs of observations ðGt�1;GtÞ are plotted using the data from Table

9.1.6 If Gt and Gt�1 are uncorrelated, the observations would be scattered randomly

throughout all four quadrants. The predominance of points in the NE and SW quadrants

suggests Gt and Gt�1 are positively correlated.

6 This diagrammatic tool was introduced in Figure P.4 in the Probability Primer to explain the meaning of

covariance and correlation.
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9.3.1a Computing Autocorrelations

The correlations between a variable and its lags are called autocorrelations. How do we

measure this kind of correlation? Recall from Chapter 4.2 that the population correlation

between two variables x and y is given by

rxy ¼ covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞvarðyÞp

Turning this formula into one that measures the correlation between Gt and Gt�1, we have

r1 ¼ cov Gt;Gt�1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Gtð Þvar Gt�1ð Þp ¼ cov Gt;Gt�1ð Þ

var Gtð Þ (9.12)

The notation r1 is used to denote the population correlation between observations that are

one period apart in time, known also as the population autocorrelation of order one. The

second equality in (9.12) holds because var Gtð Þ ¼ var Gt�1ð Þ, a property of time series that

are stationary.

The first-order sample autocorrelation for G is obtained from (9.12) by replacing

cov Gt;Gt�1ð Þ and var Gtð Þ by their estimates

bcov Gt;Gt�1ð Þ ¼ 1

T � 1
�
T

t¼2
Gt � G
� �

Gt�1 � G
� �

, bvar Gtð Þ ¼ 1

T � 1
�
T

t¼1
Gt � G
� �2

where G is the sample mean G ¼ T�1�T
t¼1Gt. The index of summation in the formula forbcov Gt;Gt�1ð Þ starts at t ¼ 2 because we do not observe G0. Making the substitutions, and

using r1 to denote the sample autocorrelation at lag one, yields

r1 ¼
�
T

t¼2
Gt � G
� �

Gt�1 � G
� �

�
T

t¼1
Gt � G
� �2 (9.13)
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FIGURE 9.5 Scatter diagram for Gt and Gt�1.
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More generally, the k-th order sample autocorrelation for a series y that gives the

correlation between observations that are k periods apart (the correlation between yt and

yt�k) is given by

rk ¼
�
T

t¼kþ1
yt � yð Þ yt�k � yð Þ

�
T

t¼1
yt � yð Þ2

(9.14)

This formula is commonly used in the literature and in software and is the one we use to

compute autocorrelations in this text, but it is worth mentioning variations of it that are

sometimes used. Because (T � k) observations are used to compute the numerator and T

observations are used to compute the denominator, an alternative that leads to larger

estimates in finite samples is

r0k ¼
1

T � k
�
T

t¼kþ1
yt � yð Þ yt�k � yð Þ

1

T
�
T

t¼1
yt � yð Þ2

(9.15)

Anothermodification of (9.14) that has a similar effect is to use only (T � k) observations in

the denominator, so that it becomes �T
t¼kþ1 yt � yð Þ2.

Applying (9.14) to the series G yields, for the first four autocorrelations,

r1 ¼ 0:494 r2 ¼ 0:411 r3 ¼ 0:154 r4 ¼ 0:200 (9.16)

The autocorrelations at lags one and two are moderately high; those at lags three and four

are much smaller—less than half the magnitude of the earlier ones. How dowe test whether

an autocorrelation is significantly different from zero? Let the kth order population

autocorrelation be denoted by rk. Then, when the null hypothesis H0 : rk ¼ 0 is true, it

turns out that rk has an approximate normal distribution with mean zero and variance 1/T.

Thus, a suitable test statistic is

Z ¼ rk � 0ffiffiffiffiffiffiffiffi
1=T

p ¼
ffiffiffiffi
T

p
rk � Nð0; 1Þ (9.17)

The product of the square root of the sample size and the sample autocorrelation rk has an

approximate standard normal distribution. At a 5% significance level, we rejectH0 : rk ¼ 0

when
ffiffiffiffi
T

p
rk � 1:96 or

ffiffiffiffi
T

p
rk � �1:96.

For the series G, T ¼ 98, and the values of the test statistic Z for the first four lags are

Z1 ¼
ffiffiffiffiffi
98

p � 0:494 ¼ 4:89, Z2 ¼
ffiffiffiffiffi
98

p � 0:414 ¼ 4:10
Z3 ¼

ffiffiffiffiffi
98

p � 0:154 ¼ 1:52, Z4 ¼
ffiffiffiffiffi
98

p � 0:200 ¼ 1:98

Thus, we reject the hypothesesH0 : r1 ¼ 0 and H0 : r2 ¼ 0, we have insufficient evidence

to rejectH0 : r3 ¼ 0, and r4 is on the borderline of being significant.We conclude thatG, the

quarterly growth rate in U.S. GDP, exhibits significant serial correlation at lags one and two.

9.3.1b The Correlogram

A useful device for assessing the significance of autocorrelations is a diagrammatic

representation of the correlogram. The correlogram, also called the sample autocorrela-

tion function, is the sequence of autocorrelations r1; r2; r3; . . . . It shows the correlation
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between observations that are one period apart, two periods apart, three periods apart, and so

on. We indicated that an autocorrelation rk will be significantly different from zero at a 5%

significance level if
ffiffiffiffi
T

p
rk � 1:96 or if

ffiffiffiffi
T

p
rk � �1:96. Alternatively, we can say that rk

will be significantly different from zero if rk � 1:96
� ffiffiffiffi

T
p

or rk � �1:96
� ffiffiffiffi

T
p

. By drawing

the values 	1:96
� ffiffiffiffi

T
p

as bounds on a graph that illustrates the magnitude of each of the

rk, we can see at a glance which correlations are significant.

A graph of the correlogram for G for the first 12 lags appears in Figure 9.6. The heights

of the bars represent the correlations and the horizontal lines drawn at	2
� ffiffiffiffiffi

98
p ¼ 	0:202

are the significance bounds.We have used 2 rather than 1.96 as a convenient approximation.

We can see at a glance that r1 and r2 are significantly different from zero, that r4 and r12 are

bordering on significance, and the remainder of the autocorrelations are not significantly

different from zero.

Your software may not produce a correlogram that is exactly the same as Figure 9.6. It

might have the correlations on the x-axis and the lags on the y-axis. It could use spikes

instead of bars to denote the correlations, it might provide a host of additional information,

and the width of its significance bounds might vary with different lags. So be prepared!

Learn to isolate and focus on the information corresponding to that in Figure 9.5 and do not

be disturbed if the output is slightly different. If the significance bounds vary, it is because

they use a refinement of the large sample approximation
ffiffiffiffi
T

p
rk � Nð0; 1Þ.

Before turning to the question of autocorrelated errors in a regression equation, we note a

few facts related to the stationarity of a series. The formula used for computing auto-

correlations assumes that themean and variance of the series are constant over time, and that

an autocorrelation depends on the time between observations, not on the actual time period.

These are characteristics of a stationary time series—characteristics that are more precise

than our earlier vague description of a stationary time series as onewhich neither trends nor

wanders. These issues are explored in detail in Chapter 12.

9.3.2 SERIALLY CORRELATED ERRORS

The correlogram can also be used to check whether the multiple regression assumption

covðet; esÞ ¼ 0 for t 6¼ s is violated. To illustrate how to do so, we introduce another
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FIGURE 9.6 Correlogram for G.
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example: the Phillips curve. A further test for serially correlated errors is considered in

Section 9.4. In Section 9.5 we investigate the consequences of serial correlation for least

squares estimates, and examine alternative ways of overcoming the problem. Autoregres-

sive distributed lag models, which provide a very general way of allowing for serially

correlated errors and at the same time accommodate the dynamic features of lagged y’s and

lagged x’s, are considered in Section 9.6, where we re-examine both the Phillips curve and

the model for Okun’s Law.

9.3.2a A Phillips Curve

The Phillips curve has a long history in macroeconomics as a tool for describing the

relationship between inflation and unemployment.7 Our starting point is the model

INFt ¼ INFE
t � g Ut � Ut�1ð Þ (9.18)

where INFt is the inflation rate in period t, INF
E
t denotes inflationary expectations for period

t, DUt ¼ Ut � Ut�1 denotes the change in the unemployment rate from period t � 1 to

period t, and g is an unknown positive parameter. It is hypothesized that falling levels of

unemployment Ut � Ut�1 < 0ð Þ reflect excess demand for labor that drives up wages,

which in turn drives up prices. Conversely, rising levels of unemployment Ut � Ut�1 > 0ð Þ
reflect an excess supply of labor that moderates wage and price increases. The expected

inflation rate is included because workers will negotiate wage increases to cover increasing

costs from expected inflation, and these wage increases will be transmitted into actual

inflation. We initially assume that inflationary expectations are constant over time

b1 ¼ INFE
tð Þ, an assumption that we relax in Section 9.5. With this change, setting

b2 ¼ �g, and adding an error term, the Phillips curve can be written as the simple

regression model

INFt ¼ b1 þ b2DUt þ et (9.19)

The data used for estimating (9.19) are quarterly Australian data from 1987, Quarter 1 to

2009,Quarter 3. The data are stored in the file phillips_aus.dat. One observation is lost in the

construction of DUt ¼ Ut � Ut�1, making the sample period from 1987Q2 to 2009Q3, a

total of 90 observations. Inflation is calculated as the percentage change in the Consumer

Price Index, with an adjustment in the third quarter of 2000 when Australia introduced a

national sales tax. The adjusted time series is graphed in Figure 9.7(a); the time series for the

change in the unemployment rate appears in Figure 9.7(b). While both of these graphs

wander a bit, we will proceed under the assumption that they are stationary. More formal

tests are set as exercises in Chapter 12.

To examine whether the errors in the Phillips curve in (9.19) are serially correlated, we

first compute the least squares residuals

êt ¼ INFt � b1 � b2DUt (9.20)

Because the et are unobserved, it is impossible to compute their autocorrelations. We rely

instead on the correlogram of the residuals which is an estimate of the correlogram of the

unobserved errors and hence provides evidence on whether or not the assumption

7 For a historical review of the development of different versions, see Gordon, R. J. (2008), ‘‘The History of

the Phillips Curve: An American Perspective,’’ www.nzae.org.nz/conferences/2008/090708/nr1217302437.pdf.

Keynote Address at the Australasian Meetings of the Econometric Society.
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covðet; esÞ ¼ 0 is violated. Replacing y by ê in (9.14), and recalling that the sample mean of

the least squares residuals is zero, the k-th order autocorrelation for the residuals can be

written as

rk ¼
�
T

t¼kþ1
êt êt�k

�
T

t¼1
ê2t

(9.21)

The least squares estimated equation is

dINF ¼ 0:7776� 0:5279DU

ðseÞ ð0:0658Þ ð0:2294Þ (9.22)

These preliminary estimates suggest that an increase in unemployment has the expected

negative effect on inflation, and the estimate is significantly different from zero at a 5%

significance level.
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FIGURE 9.7 (b) Time series for the quarterly change in the Australian unemployment rate.
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FIGURE 9.7 (a) Time series for Australian price inflation.
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Applying (9.21) to the residuals of the least-squares estimated equation in (9.22) yields

the correlogram in Figure 9.8. Its significance bounds are	2
� ffiffiffiffiffi

90
p ¼ 0:21. There is strong

evidence that the residuals are autocorrelated. The correlations at lags one through six and at

lag eight are all significantly different from zero. The values at the first five lags are

r1 ¼ 0:549 r2 ¼ 0:456 r3 ¼ 0:433 r4 ¼ 0:420 r5 ¼ 0:339

We have found that the errors in the Phillips curve (9.19) are serially correlated. The

implications of this correlation andwhat to do about it are considered in Sections 9.5 and 9.6.

Before turning to these solutions, we consider two other tests for serially correlated errors.

9.4 Other Tests For Serially Correlated Errors

9.4.1 A LAGRANGE MULTIPLIER TEST

A second test that we consider for testing for serially correlated errors is derived from a

general set of hypothesis testing principles that produce Lagrange8 multiplier (LM) tests. In

more advanced courses you will learn the origin of the term Lagrange multiplier. The

general principle is described in Appendix C.8.4. An advantage of this test is that it readily

generalizes to a joint test of correlations at more than one lag.

To introduce the test, suppose in the first instance that wewant to test whether errors that

are one period apart are correlated. In other words, is covðet; et�1Þ equal to zero? Or is r1
significantly different from zero? If et and et�1 are correlated, then one way to model the

relationship between them is to write

et ¼ ret�1 þ vt (9.23)
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FIGURE 9.8 Correlogram for residuals from least-squares estimated Phillips curve.

8 Joseph-Louis Lagrange (1736–1813) was an Italian born mathematician. Statistical tests using the so-called

Lagrange multiplier principle were introduced into statistics by C. R. Rao in 1948.
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where r is an unknown parameter and vt is another random error term. We are saying that et
depends on et�1, just like y depends on x in a regression equation where y and x are

correlated. Now, if the equation of interest is the simple regression equation

yt ¼ b1 þ b2xt þ et, then we can substitute (9.23) for et, which leads to the equation

yt ¼ b1 þ b2xt þ ret�1 þ vt (9.24)

Assuming that vt is independent of et�1, one way to test whether et and et�1 are cor-

related is to test the null hypothesis H0 : r ¼ 0. The obvious way to perform this test if et�1

was observable is to regress yt on xt and et�1 and to then use a t- or F-test to test the

significance of the coefficient of et�1. However, because et�1 is not observable, we replace it

by the lagged least squares residuals êt�1 and then perform the test in the usual way.

Proceeding in this way seems straightforward, but to complicate matters, time-series

econometricians have managed to do it in at least four different ways! Let t ¼ 1, 2, . . . , 90
denote the observations used to estimate the Phillips curve for the period from 1987Q2 to

2009Q3. Then, estimation of (9.24) requires a value for ê0. Two common ways of overcoming

the unavailability of ê0 are (i) to delete the first observation and hence use a total of 89

observations and (ii) to set ê0 ¼ 0 and use all 90 observations. The results for the Phillips curve

from these two alternatives are

(i) t¼ 6:219 F¼ 38:67 p-value ¼ 0:000

(ii) t¼ 6:202 F¼ 38:47 p-value ¼ 0:000

The results are almost identical. The null hypothesis H0 : r ¼ 0 is rejected at all conven-

tional significance levels. We conclude that the errors are serially correlated.

As we discovered in Chapter 8, LM tests are such that they can frequently be written as

the simple expression T � R2 where T is the number of sample observations and R2 is

the goodness-of-fit statistic from an auxiliary regression. To derive the relevant auxiliary

regression for the autocorrelation LM test, we begin by writing the test equation

from (9.24) as

yt ¼ b1 þ b2xt þ rêt�1 þ vt (9.25)

Noting that yt ¼ b1 þ b2xt þ êt, we can rewrite (9.25) as

b1 þ b2xt þ êt ¼ b1 þ b2xt þ rêt�1 þ vt

Rearranging this equation yields

êt ¼ b1 � b1ð Þ þ b2 � b2ð Þxt þ rêt�1 þ vt

¼ g1 þ g2xt þ rêt�1 þ vt
(9.26)

where g1 ¼ b1 � b1 and g2 ¼ b2 � b2. When testing for autocorrelation by testing

the significance of the coefficient of êt�1, one can estimate (9.25) or (9.26). Both yield

the same test result—the same coefficient estimate for êt�1 and the same t-value. The

estimates for the intercept and the coefficient of xt will be different, however, because in

(9.26) we are estimating ðb1 � b1Þ and ðb2 � b2Þ instead of b1 and b2. The auxiliary

regression from which the T � R2 version of the LM test is obtained is (9.26). Because

ðb1 � b1Þ and ðb2 � b2Þ are centered around zero, if (9.26) is a regression with significant
explanatory power, that power will come from êt�1.
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If H0 : r ¼ 0 is true, then LM ¼ T �R2 has an approximate x2
ð1Þ distribution where T

and R2 are the sample size and goodness-of-fit statistic, respectively, from least squares

estimation of (9.26). Once again there are two alternatives depending on whether the first

observation is discarded, or ê0 is set equal to zero. Labeling these two alternatives as (iii) and

(iv), respectively, we obtain the following results for the Phillips curve:

(iii) LM ¼ ðT � 1Þ�R2 ¼ 89� 0:3102 ¼ 27:61

(iv) LM ¼ T �R2 ¼ 90� 0:3066 ¼ 27:59

These values are much larger than 3.84, which is the 5% critical value from a x2
ð1Þ-

distribution, leading us to reject the null hypothesis of no autocorrelation. Alternatively, we

can reject H0 by examining the p-value for LM ¼ 27.61, which is 0.000.

There is no strong theoretical reason for choosing between the four representations of

the test. The best one for you to use is that which is automatically computed by your

software.We have described all four so that therewill not be anymysteries in your computer

output.

9.4.1a Testing Correlation at Longer Lags

The correlogram in Figure 9.8 suggested not just correlation between et and et�1, but also

between et and ðet�2; et�3; et�4; et�5;et�6Þ. The LM test can be used to test for more

complicated autocorrelation structures involving higher order lags by including the

additional lagged errors in (9.25) or (9.26). An F-test can be used to test the relevance

of their inclusion, or, a x2-test can be used for the T� R2 version of the test. The degrees of

freedom for the x2-test and the numerator degrees of freedom for the F-test are the number

of lagged residuals that are included. Slightly different results are obtained depending on

whether one discards the initial observations where the lagged values of êt are not available,

or sets these values equal to zero. Suppose for the Phillips curve that we add êt�2; êt�3 and

êt�4 to (9.26) and use the T �R2 version of the test. The results we obtain for (iii) omitting

the first four observations and (iv) setting e0 ¼ e�1 ¼ e�2 ¼ e�3 ¼ 0 are

(iii) LM ¼ ðT � 4Þ�R2 ¼ 86�0:3882 ¼ 33:4

(iv) LM ¼ T �R2 ¼ 90� 0:4075 ¼ 36:7

Because the 5% critical value from a x2
ð4Þ- distribution is 9.49, these LM values lead us to

conclude that the errors are serially correlated.

9.4.2 THE DURBIN-WATSON TEST

The sample correlogram and the Lagrange multiplier test are two large sample tests for

serially correlated errors. Their test statistics have their specified distributions in large

samples. An alternative test, one that is exact in the sense that its distribution does not rely

on a large sample approximation, is the Durbin-Watson test. It was developed in 1950 and

for a long time was the standard test for H0 : r ¼ 0 in the error model et ¼ ret�1 þ vt. It is

used less frequently today because its critical values are not available in all software

packages, and one has to examine upper and lower critical bounds instead. Also, unlike

the LM and correlogram tests, its distribution no longer holds when the equation contains

a lagged dependent variable. Details are provided in Appendix 9A at the end of this

chapter.
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9.5 Estimation With Serially Correlated Errors

In the last two sections we described hypothesis tests for checking whether the least squares

assumption covðet; esÞ ¼ 0 is violated. If it is violated, we say the errors are serially

correlated. We now ask: What are the implications of serially correlated errors for least

squares estimation? And how do we overcome the negative consequences of serially

correlated errors? Three estimation procedures are considered:

1. Least squares estimation (Section 9.5.1)

2. An estimation procedure that is relevant when the errors are assumed to follow what

is known as a first-order autoregressive model et ¼ ret�1 þ vt (Section 9.5.2)

3. A general estimation strategy for estimating models with serially correlated errors

The general estimation strategy that will be introduced in Section 9.5.3 and considered in

more depth in Section 9.6 is the estimation of an autoregressive distributed lag (ARDL)

model which is designed to capture dynamics from all sources—lagged x’s, lagged y’s, and

serially correlated errors.

Before considering each of the above estimation procedures, we need to introduce an

extra assumption. We will encounter models with a lagged dependent variable, such as

yt ¼ dþ u1yt�1 þ d0xt þ d1xt�1 þ vt

In such cases the time-series assumption TSMR2 introduced in Section 9.2.1 is no longer

valid. In the context of the above equation, this assumption says that vt is not correlated with

current, past, and future values of yt�1; xt and xt�1. Since yt is a future value of yt�1 and yt
depends directly on vt, the assumption will be violated. We can, however, replace it with a

weaker, more tenable assumption—namely, that vt is uncorrelated with current and past

values of the right-hand-side variables. Under this assumption, the least squares estimator is

no longer unbiased, but it does have the desirable large sample property of consistency,9 and,

if the errors are normally distributed, it is best in a large sample sense. Thus, we replace

TSMR2 with the following assumption.

ASSUMPTIONFORMODELSWITHALAGGEDDEPENDENTVARIABLE

TSMR2A: In the multiple regression model yt ¼ b1þ b2xt2 þ � � � þ bKxtK þ vt where

some of the xtk may be lagged values of y, vt is uncorrelated with all xtk and their past

values.

This assumption is the one maintained throughout the remainder of this chapter. Note that

the vt are assumed to be uncorrelated random errors with zero mean and constant variance

and hence satisfy assumptions TSMR3, TSMR4, and TSMR5 that were previously written

in terms of et.

9 The property of consistency is discussed in Appendix 5B.
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9.5.1 LEAST SQUARES ESTIMATION

First, suppose we proceed with least squares estimation without recognizing the existence

of serially correlated errors. What are the consequences? They are essentially the same

as ignoring heteroskedasticity should it exist.

1. The least squares estimator is still a linear unbiased estimator, but it is no longer

best. If we are able to correctly model the autocorrelated errors, then there exists

an alternative estimator with a lower variance. Having a lower variance means there

is a higher probability of obtaining a coefficient estimate close to its true value.

It also means that hypothesis tests have greater power and a lower probability of a

Type II error.

2. The formulas for the standard errors usually computed for the least squares estimator

are no longer correct, and hence confidence intervals and hypothesis tests that use

these standard errors may be misleading.

Although the usual least squares standard errors are not the correct ones, it is possible to

compute correct standard errors for the least squares estimator when the errors are

autocorrelated. These standard errors are known as HAC (heteroskedasticity and auto-

correlation consistent) standard errors, or Newey-West standard errors, and are

analogous to the heteroskedasticity consistent standard errors introduced in Chapter 8.

By using HAC standard errors with least squares, we can avoid having to specify the precise

nature of the autocorrelated error model that is required for an alternative estimator with a

lower variance. For the HAC standard errors to be valid, we need to assume that the

autocorrelations go to zero as the time between observations increases (a condition

necessary for stationarity), and we need a large sample, but it is not necessary to make

a precise assumption about the autocorrelated error model.

To get a feel for how HAC standard errors are found, consider the simple regression

model yt ¼ b1 þ b2xt þ et. FromAppendix 8A thevariance of the least squares estimator b2
can be written as (with subscripts i and j replaced by t and s)

var b2ð Þ ¼ �
t
w2
t var etð Þ þ � �

t 6¼s
wtwscov et; esð Þ

¼ �
t
w2
t var etð Þ 1þ

� �
t 6¼s

wtwscov et; esð Þ
�
t
w2
t var etð Þ

2
4

3
5 (9.27)

where wt ¼ xt � xð Þ=�t xt � xð Þ2. When the errors are not correlated, covðet; esÞ ¼ 0,

and the term in square brackets is equal to one. The resulting expression var b2ð Þ ¼
�tw

2
t var etð Þ is the one used to find heteroskedasticity-consistent (HC) standard errors.

When the errors are correlated, the term in square brackets is estimated to obtain HAC

standard errors. If we call the quantity in square brackets g and its estimate ĝ, then the

relationship between the two estimated variances is

bvarHAC b2ð Þ ¼bvarHC b2ð Þ�ĝ (9.28)

The HAC variance estimate is equal to the HC variance estimate multiplied by an extra

term that depends on the serial correlation in the errors.
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This explanation is a simplified one because it treats x as nonrandom. If x is random and et
is independent of all x values, as specified in assumption TSMR2, then essentially the same

argument holds. More general arguments allow for correlation between et and the x values,

aswill occur if themodel contains a lagged dependent variable, and they extend the results to

themultiple regressionmodelwithmore than one x. However, in all cases the end result is an

expression like (9.28). Several alternative estimators for g are available. They differ

depending on the number of lags for which autocorrelations are estimated and on the

weights placed on the autocorrelations at each lag. Because a large number of alternatives

are possible, you will discover that different software packages may yield different HAC

standard errors; also, different options are possible within a given software package. The

message is: Don’t be disturbed if you see slightly different HAC standard errors computed

for the same problem.

The least squares-estimated Phillips curve INFt ¼ b1 þ b2DUt þ et with both sets of

standard errors—the incorrect least squares ones that ignore autocorrelation, and the correct

HAC ones that recognize the autocorrelation—are as follows:10

dINF ¼ 0:7776� 0:5279DU

ð0:0658Þ ð0:2294Þ ðincorrect seÞ
ð0:1030Þ ð0:3127Þ ðHAC seÞ

(9.29)

The HAC standard errors are larger than those from least squares, implying that if we ignore

the autocorrelation, wewill overstate the reliability of the least squares estimates. The t and

p-values for testing H0 : b2 ¼ 0 are

t ¼ �0:5279=0:2294 ¼ �2:301 p ¼ 0:0238 (from LS standard errors)

t ¼ �0:5279=0:3127 ¼ �1:688 p ¼ 0:0950 (from HAC standard errors)

With least squares standard errors, a two-tail test, and a 5% significance level, we reject

H0 : b2 ¼ 0.With HAC standard errors, we do not rejectH0. Thus, using incorrect standard

errors can lead to misleading results. A similar conclusion can be reached by examining the

95% interval estimates forb2 for each set of standard errors. Using tð0:975; 88Þ ¼ 1:987, those
interval estimates are (�0.984, �0.072) for least squares and (�1.149, 0.094) for HAC

standard errors. The narrower least squares interval leads to an exaggerated conclusion

about the reliability of estimation.

9.5.2 ESTIMATING AN AR(1) ERROR MODEL

Using least squares with HAC standard errors overcomes the negative consequences that

autocorrelated errors have for least squares standard errors. However, it does not address

the issue of finding an estimator that is better, in the sense that it has a lower variance. One

way to proceed is to make an assumption about the model that generates the autocorrelated

errors, and to derive an estimator compatible with this assumption. In this section we

examine one such assumption. To introduce it, we return to the Lagrange multiplier test for

serially correlated errors, where correlation between et and et�1 was modeled by writing

et as dependent on et�1 through the equation

10 The HAC standard errors were computed by EViews 7.0 using a Bartlett kernel, a Newey-West fixed

bandwidth of 4, and a degrees-of-freedom adjustment.
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et ¼ ret�1 þ vt (9.30)

If we assume the vt are uncorrelated random errors with zero mean and constant variances,

EðvtÞ ¼ 0 varðvtÞ ¼ s2
v covðvt; vsÞ ¼ 0 for t 6¼ s (9.31)

then (9.30) describes a first-order autoregressive model or a first-order autoregressive

process for et. The term AR(1) model is used as an abbreviation for first-order auto-

regressive model. It is called an autoregressive model because it can be viewed as a

regressionmodel where et depends on its lagged value, inducing autocorrelation. It is called

first-order because the right-hand-side variable is et lagged one period.

Oneway to estimate a regression equationwith serially correlated errors is to assume that

those errors follow an AR(1) model and to develop an estimation procedure relevant for

that model. Other autocorrelated error models could be assumed. In particular, one could

include more lags of et leading to, say, an AR(2) or an AR(3) model. However, for the

moment we focus on the AR(1) error model because it has been a popular one in

econometrics and is a good starting point.

9.5.2a Properties of an AR(1) Error

Before turning to estimation, it is useful to examine the properties of et when it follows an

AR(1) process. In (9.31) we made assumptions about vt that are the same as those made

about et in Chapters 2–7. The question now is: How do the assumptions about vt in (9.31),

and the AR(1) error model, change the properties of et?Wemake one further assumption to

ensure the et are stationary: namely, that r is less than one in absolute value. That is,

�1 < r < 1 (9.32)

In Appendix 9B, we show that the mean and variance of et are

E etð Þ ¼ 0 var etð Þ ¼ s2
e ¼ s2

v

1� r2
(9.33)

The AR(1) error et has a mean of zero, and a variance that depends on the variance of vt and

themagnitude of r. The larger the degree of autocorrelation (the closer r is toþ1 or �1), the

larger the variance of et. Also, since s
2
v

�
1� r2ð Þ is constant over time, et is homoskedastic.

InAppendix 9Bwe also discover that the covariance between two errors that are kperiods

apart et and et�kð Þ is

cov et; et�kð Þ ¼ rks2
v

1� r2
, k > 0 (9.34)

This expression shows how the properties of the et differ from those assumed in Chapters

2–7. In these earlier chapters we assumed that the covariance between errors for different

observations was zero. It is now nonzero because of the existence of a lagged relationship

between the errors from different time periods.

It is useful to describe the correlation implied by the covariance in (9.34). Using the

correlation formula in (9.12), we have
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rk ¼ corr et; et�kð Þ ¼ cov et; et�kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var etð Þvar et�kð Þp ¼ cov et; et�kð Þ

var etð Þ

¼ rks2
v

�
1� r2ð Þ

s2
v= 1� r2ð Þ

¼ rk

(9.35)

That is, rk ¼ rk. The correlation between two errors that are k periods apart (rk) is given by r
raised to the power k. An interpretation or definition of the unknown parameter r can be

obtained by setting k ¼ 1. Specifically,

r1 ¼ corrðet; et�1Þ ¼ r (9.36)

Thus, r represents the correlation between two errors that are one period apart; it is the first-
order autocorrelation for e, sometimes simply called the autocorrelation coefficient.

Recall the concept of a correlogram that was introduced in Section 9.3. It consisted of the

sequence of sample autocorrelations r1, r2, r3, . . . . The coefficient r is the population

autocorrelation at lag one for a time series that can be described by an AR(1) model; r1 is an

estimate for r when we assume a series is AR(1).

Corresponding to the sample correlogram r1, r2, r3, . . . , we can also define a population
correlogram as r1, r2, r3, . . . . From (9.35), the population correlogram for an AR(1) model

is r, r2, r3, . . . . Because�1< r< 1, these autocorrelations decline geometrically as the lag

increases, eventually becoming negligible. Since the AR(1) error model et ¼ ret�1 þ vt
only contains one lag of e, youmight be surprised to find that autocorrelations at lags greater

than one, although declining, are still nonzero. The correlation persists because each et
depends on all past values of the errors vt through the equation (see Appendix 9B)

et ¼ vt þ rvt�1 þ r2vt�2 þ r3vt�3 þ � � � (9.37)

We can relate these results to the errors from the Phillips curve. The sample correlogram for

the first five lags was found to be

r1 ¼ 0:549 r2 ¼ 0:456 r3 ¼ 0:433 r4 ¼ 0:420 r5 ¼ 0:339

Without any assumptions about the model that generates the errors, these values are

unrestricted estimates of the population autocorrelations (r1, r2, r3, r4, r5). Now suppose the

errors follow an AR(1) model where we have only one unknown parameter r. In this case,

r̂1 ¼ r̂ ¼ r1 ¼ 0:549

Imposing the structure of the AR(1) model leads to the following estimates at longer lags:

r̂2 ¼ r̂2 ¼ ð0:549Þ2 ¼ 0:301

r̂3 ¼ r̂3 ¼ ð0:549Þ3 ¼ 0:165

r̂4 ¼ r̂4 ¼ ð0:549Þ4 ¼ 0:091

r̂5 ¼ r̂5 ¼ ð0:549Þ5 ¼ 0:050

These values are considerably smaller than the unrestricted estimates of the correlogram,

suggesting that theAR(1) assumptionmightnotbeadequate for the errorsof thePhillips curve.

360 REGRESS ION WITH T IME- SER IES DATA : STAT IONARY VARIABLES



9.5.2b Nonlinear Least Squares Estimation

In this section we develop an estimator for the regression model with AR(1) errors. First, let

us summarize the model and its assumptions. It is given by

yt ¼ b1 þ b2xt þ et with et ¼ ret�1 þ vt (9.38)

and �1 < r < 1. Only one explanatory variable is included, to keep the discussion simple

and to use the framework of the Phillips curve example. The vt are uncorrelated random

variables with mean zero and a constant variance s2
v (see assumptions MR2, MR3, and

MR4, stated in Section 5.1):

EðvtÞ ¼ 0 varðvtÞ ¼ s2
v covðvt; vsÞ ¼ 0 for t 6¼ s (9.39)

Substituting et ¼ ret�1 þ vt into yt ¼ b1 þ b2xt þ et yields

yt ¼ b1 þ b2xt þ ret�1 þ vt (9.40)

From the regression equation the error in the previous period can be written as

et�1 ¼ yt�1 � b1 � b2xt�1 (9.41)

Multiplying (9.41) by r yields

ret�1 ¼ ryt�1 � rb1 � rb2xt�1 (9.42)

Substituting (9.42) into (9.40) yields

yt ¼ b1ð1� rÞ þ b2xt þ ryt�1 � rb2xt�1 þ vt (9.43)

What have we done? We have transformed the original model in (9.38) with the auto-

correlated error term et into a new model given by (9.43) that has an error term vt that is

uncorrelated over time. The advantage of doing so is that we can now proceed to find

estimates for ðb1; b2; rÞ that minimize the sum of squares of uncorrelated errors

Sv ¼ �T
t¼2v

2
t . Minimizing the sum of squares of the correlated errors Se ¼ �T

t¼1e
2
t yields

the least squares estimator that is not best and whose standard errors are not correct.

However, minimizing the sum of squares of uncorrelated errors, Sv, yields an estimator that

is best andwhose standard errors are correct (in large samples). Note that this result is in line

with earlier practice in the book. The least squares estimator used inChapters 2–7minimizes

a sum of squares of uncorrelated errors.

There are, however, two important distinctive features about the transformed model in

(9.43). To appreciate the first, note that the coefficient of xt�1 is equal to�rb2 which is the

negative product of r (the coefficient of yt�1) and b2 (the coefficient of xt). This fact means

that although (9.43) is a linear function of the variables xt, yt�1 and xt�1, it is not a linear

function of the parameters (b1, b2, r). The usual linear least squares formulas cannot be

obtained by using calculus to find the values of (b1, b2, r) that minimize Sv. Nevertheless,

computer software can be used to find the estimates numerically. Numerical methods use

a systematic procedure for trying a sequence of alternative parameter values until those

which minimize the sum of squares function are found. Because these estimates are not

computed from a linear formula but still minimize a sum of squares function, they are called
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nonlinear least squares estimates. Estimates obtained in this way have the usual desirable

properties in large samples under assumptions TSMR2A and TSMR3–5.

The second distinguishing feature about the model in (9.43) is that it contains the lagged

dependent variable yt�1 as well as xt and xt�1, the current and lagged values of the

explanatory variable. For this reason, the summation Sv ¼ �T
t¼2v

2
t begins at t ¼ 2.

In the last section, we cast some doubt on whether the AR(1) error model was an

appropriate one for capturing the residual autocorrelations in the Phillips curve example.

Nevertheless, we will estimate the Phillips curve assuming AR(1) errors; later, we

investigate whether a better model can be found. In this context, (9.43) becomes

INFt ¼ b1ð1� rÞ þ b2DUt þ rINFt�1 � rb2DUt�1 þ vt (9.44)

Applying nonlinear least squares and presenting the estimates in terms of the original

untransformed model, we have

dINF ¼ 0:7609� 0:6944DU et ¼ 0:557et�1 þ vt

ðseÞ ð0:1245Þ ð0:2479Þ ð0:090Þ (9.45)

Comparing these estimates with those from least squares b1 ¼ 0:7776; b2 ¼ �0:5279ð Þ,
we find that the estimate for b1 is of similar magnitude, but that that for b2 is a larger

negative value, suggesting a greater impact of unemployment on inflation. The standard

error se b̂2

� � ¼ 0:2479 is smaller than the corresponding HAC least squares standard error

se b2ð Þ ¼ 0:3127½ 
, suggesting a more reliable estimate, but the standard error for b̂1 is

unexpectedly larger, something that we do not expect since we have used an estimation

procedure with a lower variance. It must be kept in mind, however, that standard errors are

themselves estimates of true underlying standard deviations. The estimate r̂ ¼ 0:557 is

similar but not exactly the same as the estimate r1 ¼ 0.549 obtained from the correlation

between least squares residuals that are one quarter apart.

9.5.2c Generalized Least Squares Estimation

In Chapter 8 we discovered that the problem of heteroskedasticity could be overcome by

using an estimation procedure known as generalized least squares, and that a convenient

way to obtain generalized least squares estimates is to first transform themodel so that it has

a new uncorrelated homoskedastic error term, and to then apply least squares to the

transformed model. This same kind of approach can be pursued when the errors follow an

AR(1) model. Indeed, it can be shown that nonlinear least squares estimation of (9.43) is

equivalent to using an iterative generalized least squares estimator called the Cochrane-

Orcutt procedure. Details are provided in Appendix 9C.

9.5.3 ESTIMATING A MORE GENERAL MODEL

The results for the Phillips curve example presented in (9.45) came from estimating the AR

(1) error model written as the transformed model

yt ¼ b1ð1� rÞ þ ryt�1 þ b2xt � rb2xt�1 þ vt (9.46)

Suppose now that we consider the model

yt ¼ dþ u1yt�1 þ d0xt þ d1xt�1 þ vt (9.47)
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How do (9.46) and (9.47) differ? What characteristics do they have in common? The first

thing to notice is that they contain the same variables; in both cases yt depends on xt, xt�1

and yt�1. There is a difference in the number of parameters, however. In (9.46) there are

three unknown parameters, b1, b2, and r. In (9.47) there are four unknown parameters, d,
d0, d1, and u1. Also, the notation in (9.47) is new; we have used the symbols d (delta) and u
(theta). The intercept is denoted by d, the coefficients of x and its lag are denoted by

subscripted d’s, and the coefficient of the lagged dependent variable yt�1 is given by a

subscripted u. This new notation will prove to be convenient in Section 9.6, where we

discuss a general class of autoregressive distributed lag (ARDL) models. Equation
(9.47) is a member of this class.

To establish the relationship between (9.46) and (9.47), note that (9.47) is the same as

(9.46) if we set

d ¼ b1ð1� rÞ d0 ¼ b2 d1 ¼ �rb2 u1 ¼ r (9.48)

From these relationships, it can be seen that (9.46) is a restricted version of (9.47) with the

restriction d1 ¼ �u1d0 imposed. The restriction reduces the number of parameters from

four to three and makes (9.47) equivalent to the AR(1) error model.

These observations raise a number of questions. Instead of estimating the AR(1) error

model, would it be better to estimate the more general model in (9.47)? What technique

should be used for estimating (9.47)? Is it possible to estimate (9.47) and then test the

validity of the AR(1) error model by testing a null hypothesis H0 : d1 ¼ �u1d0?
Considering estimation first, we note that (9.47) can be estimated by linear least squares

providing that the vt satisfy the usual assumptions required for least squares estimation—

namely, that they have zero mean and constant variance and are uncorrelated. The presence

of the lagged dependent variable yt�1 means that a large sample is required for the desirable

properties of the least squares estimator to hold, but the least squares procedure is still valid

providing that assumption TSMR2A holds. It is important for the vt to be uncorrelated. If

they are correlated, assumption TSMR2Awill be violated, and the least squares estimator

will be biased, even in large samples.

In the introduction to this chapterwe observed that dynamic characteristics of time-series

relationships can occur through lags in the dependent variable, lags in the explanatory

variables, or lags in the error term. In this section we modeled a lag in the error term with an

AR(1) process and showed that such a model is equivalent to (9.46), which, in turn, is a

special case of (9.47). Notice that (9.46) and (9.47) do not have lagged error terms, but they

do have a lagged dependent variable and a lagged explanatory variable. Thus, the dynamic

features of amodel implied by anAR(1) error can be captured by using instead amodel with

a lagged y and a lagged x. This observation raises issues about a general modeling strategy

for dynamic economic relationships. Instead of explicitly modeling lags through an

autocorrelated error, we may be able to capture the same dynamic effects by adding lagged

variables yt�1 and xt�1 to the original linear equation.

Is it possible to test H0 : d1 ¼ �u1d0 and hence decide whether the AR(1) model is a

reasonable restricted version of (9.47) orwhether themore generalmodel in (9.47)would be

preferable? The answer is yes: the test is similar to, but more complicated than, those

considered in Chapter 5. Complications occur because the hypothesis involves an equation

that is nonlinear in the parameters, and the delta method (see Appendix 5B) is needed to

compute the standard error of products such as û1d̂0. Nevertheless, the test, known as aWald

test, can be performed using most software.

Applying the least squares estimator to (9.47) using the data for the Phillips curve

example yields
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dINFt ¼ 0:3336þ 0:5593INFt�1 � 0:6882DUt þ 0:3200DUt�1

ðseÞ ð0:0899Þ ð0:0908Þ ð0:2575Þ ð0:2499Þ (9.49)

How do these results compare with those from the more restrictive AR(1) error model?

Most of them turn out to be very similar. The equivalent estimates from the AR(1) error

model are found by substituting the estimates in (9.45) into the expressions in (9.48).Wefind

d̂ ¼ b̂1ð1� r̂Þ ¼ 0:7609�ð1� 0:5574Þ ¼ 0:3368 which is similar to 0.3336

û1 ¼ r̂ ¼ 0:5574 which is similar to 0.5593

d̂0 ¼ b̂2 ¼ �0:6944 which is similar to �0.6882

d̂1 ¼ �r̂b̂2 ¼ �0:5574�ð�0:6944Þ ¼ 0:3871 which differs a little from 0.3200

The closeness of these values and the relatively large standard error on the coefficient of

DUt�1 suggest that a test of the restriction H0 : d1 ¼ �u1d0 would not be rejected. More

formally, using a Wald chi-square test yields a value of x2
ð1Þ ¼ 0:112 with a corresponding

p-value ¼ 0.738. On the basis of this test, we conclude that the AR(1) error model is not

too restrictive.

Specification and estimation of the more general model does have some advantages,

however. It makes the dependence of yt on its lag and that of xmore explicit, and it can often

provide a useful economic interpretation. The original economic model for the Phillips

curve was

INFt ¼ INFE
t � g Ut � Ut�1ð Þ (9.50)

Comparing this model with the estimated one in (9.50), an estimate of the model for

inflationary expectations is INFE
t ¼ 0:3336þ 0:5593INFt�1; expectations for inflation in

the current quarter are 0.33% plus 0.56 times last quarter’s inflation rate. The effect of

unemployment in (9.49) is �0:6882 Ut � Ut�1ð Þ þ 0:3200 Ut�1 � Ut�2ð Þ, which is dyna-

micallymore complex than the original specification of�g Ut � Ut�1ð Þ. Note, however, that
the coefficient of DUt�1 is not significantly different from zero in (9.49). If DUt�1 is

excluded from the equation, then the unemployment effect is consistent with the original

equation. Re-estimation of the model after omitting DUt�1 yields

dINFt ¼ 0:3548þ 0:5282INFt�1 � 0:4909DUt

ðseÞ ð0:0876Þ ð0:0851Þ ð0:1921Þ (9.51)

In this model inflationary expectations are given by INFE
t ¼ 0:3548þ 0:5282INFt�1 and a

1% rise in the unemployment rate leads to an approximate 0.5% fall in the inflation rate.

9.5.4 SUMMARY OF SECTION 9.5 AND LOOKING AHEAD

In Section 9.5 we have described three ways of overcoming the effect of serially correlated

errors:

1. Estimate the model using least squares with HAC standard errors.

2. Use nonlinear least squares to estimate the model with a lagged x, a lagged y, and the

restriction implied by an AR(1) error specification.
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3. Use least squares to estimate themodelwith a lagged x and a lagged y, butwithout the

restriction implied by an AR(1) error specification.

Using least squares with HAC standard errors is preferred if one does not wish to bother

transforming the model to one with relevant lagged variables that have the effect of

eliminating the serial correlation in the errors. The nonlinear model with the AR(1) error

restriction is appropriate if the error has serial correlation that takes the form of an AR(1)

process. For many years it was the most common method for correcting for autocorrelated

errors. However, the thirdmethod—including appropriate lags of y and xwithout the AR(1)

error restriction—is now generally preferred by applied econometricians. It is less restric-

tive than the AR(1) error model, the model with lags frequently has a useful economic

interpretation, and it can be used to correct for more general forms of serially correlated

errors than the AR(1) error model.

This last statement raises some unanswered questions. While including one lag of y

and one lag of x will correct for serially correlated errors if they follow an AR(1) model, it

might not solve the problem if the form of serial correlation is more complex. How do we

check whether some serial correlation still remains? If we include a lagged y and a lagged x

and the errors are still serially correlated, how do we proceed? Checking for serial

correlation proceeds along the same lines as we have described in Section 9.4. We apply

the same tests to the errors from the new model with lags. Also, if we have doubts about

whether the errors in the newmodel are correlated, we can useHAC standard errorswith this

model. Alternatively, including more lags of y on the right side of the equation can have the

effect of eliminating any remaining serial correlation in the errors. Models with a

general number of lags of y and x are called autoregressive distributed lag models; we

consider them in the next section.

9.6 Autoregressive Distributed Lag Models

An autoregressive distributed lag (ARDL) model is one that contains both lagged xt’s and

lagged yt’s. In its general form, with p lags of y and q lags of x, an ARDL(p, q) model can be

written as

yt ¼ dþ u1yt�1 þ � � � þ upyt�p þ d0xt þ d1xt�1 þ � � � þ dqxt�q þ vt (9.52)

The AR component of the name ARDL comes from the regression of y on lagged values of

itself; the DL component comes from the distributed lag effect of the lagged x’s. Two

examples that we have encountered so far in (9.50) and (9.51) are

ARDL(1,1): dINFt ¼ 0:3336þ 0:5593INFt�1 � 0:6882DUt þ 0:3200DUt�1

ARDL(1,0): dINFt ¼ 0:3548þ 0:5282INFt�1 � 0:4909DUt

The ARDL model has several advantages. It captures dynamic effects from lagged x’s and

lagged y’s, and by including a sufficient number of lags of y and x, we can eliminate serial

correlation in the errors. Moreover, an ARDLmodel can be transformed into one with only

lagged x’s which go back into the infinite past:

yt ¼ aþ b0xt þ b1xt�1 þ b2xt�2 þ b3xt�3 þ � � � þ et

¼ aþ �
1

s¼0
bsxt�s þ et

(9.53)
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Because it does not have a finite cut off point, thismodel is called an infinite distributed lag
model. It contrasts with the finite distributed lag model we studied in Section 9.2, where the

effect of the lagged x’s was assumed to cut off to zero afterq lags. Like before, the parameter

bs is the distributed lagweight or the s-period delaymultiplier showing the effect of a change

in xt on ytþs. The total or long-run multiplier showing the long-run effect of a sustained

change in xt is�1
s¼0bs. For the transformation from (9.52) to (9.53) to be valid, the effect of a

changemust gradually die out. Thus, thevalues ofbs for large swill be small and decreasing,

a property that is necessary for the infinite sum �1
s¼0bs to be finite. Estimates for the lag

weights bs can be found from estimates of the uk’s and the dj’s in (9.52), with the precise

relationship between them depending on the values for p and q. This relationship is explored

in Section 9.8.

The twomain uses of ARDLmodels are for forecasting andmultiplier analysis. Both are

useful policy tools. We consider them in Sections 9.7 and 9.8, respectively. For the

remainder of this section we consider estimation of (9.52). Because estimation is straight-

forward—least squares is an appropriate estimation technique under assumptions TSMR1,

TSMR2A, and TSMR3–5—the main concern for estimation is choice of the lag lengths

p and q.

There are a number of different criteria for choosing p and q. Because they all do not

necessarily lead to the same choice, there is a degree of subjective judgment that must be

used. Four possible criteria are

1. Has serial correlation in the errors been eliminated? If not, then least squares will be

biased in small and large samples. It is important to include sufficient lags, especially

of y, to ensure that serial correlation does not remain. It can be checked using the

correlogram or Lagrange multiplier tests.

2. Are the signs and magnitudes of the estimates consistent with our expectations from

economic theory? Estimates which are poor in this sense may be a consequence of

poor choices for p and q, but they could also be symptomatic of a more general

modeling problem.

3. Are the estimates significantly different from zero, particularly those at the longest

lags?

4. What values for p and q minimize information criteria such as the AIC and SC?

Information criteria were first considered in Chapter 6. In the context of the ARDL

model they involve choosing p and q to minimize the sum of squared errors (SSE)

subject to a penalty that increases as the number of parameters increases. Increasing

lag lengths increases the number of parameters, and, providing we use the same

number of observations in each case,11 it reduces the sum of squared errors; penalty

terms are included with a view to capturing the essential lag effects without

introducing an excessive number of parameters. TheAkaike information criterion

(AIC) is given by12

AIC ¼ ln
SSE

T

� �
þ 2K

T
(9.54)

11 Care must be taken to use the same number of observations. Unless special provision is made, the number of

observations used will typically decline as the lag length increases.
12 You will find slight but nonessential variations in the definitions of AIC and SC. For example, to get the

values computed by EViews 7.0 you need to add [1þln(2p)] to the expressions in (9.54) and (9.55). Adding or

subtracting a constant does not change the lag length that minimizes AIC or SC.
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whereK ¼ p þ q þ 2 is the number of coefficients that are estimated. TheSchwarz
criterion (SC), also known as the Bayes information criterion (BIC), is given by

SC ¼ ln
SSE

T

� �
þ K lnðTÞ

T
(9.55)

Because K lnðTÞ=T > 2K=T for T � 8, the SC penalizes additional lags more

heavily than does the AIC.

We now apply the above criteria to our two examples—the Phillips curve and the equation

for Okun’s law—to see if we can improve on our earlier specifications.

9.6.1 THE PHILLIPS CURVE

Our starting point for the Phillips curve is the previously estimated ARDL(1,0) model

dINFt ¼ 0:3548þ 0:5282INFt�1 � 0:4909DUt, obs ¼ 90

ðseÞ ð0:0876Þ ð0:0851Þ ð0:1921Þ (9.56)

We choose this model in preference to the ARDL(1,1) model because the coefficient of

DUt�1 was not significantly different from zero. Also, to help avoid confusion thatmay arise

because we are considering models with differing numbers of lags, we have indicated that

90 observations were used for estimation.

Checking first to see whether the errors from (9.56) are serially correlated, we obtain the

correlogram for its residuals presented in Figure 9.9. Since these autocorrelations are not

significantly different from zero, they provide no evidence of serial correlation. However, a

further check using Lagrange multiplier tests provides conflicting evidence. Table 9.3

contains the p-values for the LM ¼ T�R2 version of the LM test (with pre-sample errors set

equal to zero) for autocorrelation of orders one to five. Using a 5% significance level, tests

for orders one, four, and five reject a null hypothesis of no autocorrelation.

Taken together, these test results provide some evidence, but not overwhelming

evidence, that serial correlation in the errors still exists; one lag of the dependent variable

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12

Lag

C
or

re
la

tio
n

FIGURE 9.9 Correlogram for residuals from Phillips curve ARDL(1,0) model.
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INF has not been sufficient to eliminate the autocorrelation. When additional lags of both

INF and DU are tried, we find

1. Coefficients of extra lags of DU are never significantly different from zero at a 5%

level of significance.

2. For p ¼ 2, q ¼ 0, the coefficients of INFt�1 and INFt�2 are significantly different

from zero at a 5% significance level; for p ¼ 3, q ¼ 0, the coefficients of INFt�1

and INFt�3 are significant; and for p ¼ 4, q ¼ 0, the coefficients of INFt�1 and

INFt�4 are significant. Coefficients of lags greater than 4 (p� 5)were not significant.

Moreover, for p ¼ 2 and p ¼ 3 the LM test continued to suggest serial correlation in

the errors. For p ¼ 4 no correlation remained.

Thus, if we use significance of coefficients and elimination of serial correlation in the errors

as our criteria for selecting lag lengths, our choice is the ARDL(4,0) model

dINFt ¼ 0:1001þ 0:2354INFt�1 þ 0:1213INFt�2 þ 0:1677INFt�3

ðseÞ ð0:0983Þ ð0:1016Þ ð0:1038Þ ð0:1050Þ
þ 0:2819INFt�4 � 0:7902DUt

ð0:1014Þ ð0:1885Þ obs ¼ 87

(9.57)

In this model inflationary expectations are given by

INFE
t ¼ 0:1001þ 0:2354INFt�1 þ 0:1213INFt�2 þ 0:1677INFt�3 þ 0:2819INFt�4

A relatively large weight is given to actual inflation in the corresponding quarter of the

previous year (t�4). The effect of unemployment on inflation is larger in this model. A 1%

rise in unemployment reduces inflation by approximately 0.8%.

Table 9.4 contains the AIC and SC values for p ¼ 1 to 6 and q ¼ 0, 1. To compute these

values, 85 observations were used for all cases, with the starting quarter being 1988, quarter

3. The values that minimize both the AIC and the SC (the largest negative values) are p ¼ 4

and q ¼ 0, supporting the choice of the ARDL(4,0) model given in (9.57).13

Ta b l e 9 . 3 p-values for LM Test

for Autocorrelation

Lag p-value

1 0.0421

2 0.0772

3 0.1563

4 0.0486

5 0.0287

13 Since the coefficients of INFt�2 and INFt�3 are not significantly different from zero, we could also consider

dropping one or both of these terms from the equation but retaining INFt�4. If one follows this strategy, the model

that minimizes the AIC and the SC omits INFt�2 but keeps INFt�1, INFt�3, and INFt�4.
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9.6.2 OKUN’S LAW

In Section 9.2.1we estimated an equation forOkun’s law. Itwas given by the following finite

distributed lag model where the change in unemployment (DU) was related to GDP growth

(G) and its lags

dDUt ¼ 0:5836� 0:2020Gt � 0:1653Gt�1 � 0:0700Gt�2

ðseÞ ð0:0472Þ ð0:0324Þ ð0:0335Þ ð0:0331Þ obs ¼ 96 (9.58)

In the more general ARDL context, this equation is an ARDL(0,2) model. It has no lags of

DU and two lags of G. We now ask whether we can improve on this model. Does it suffer

from serially correlated errors? If we include lagged values of DU, do those lags have

coefficients that are significantly different from zero?

The correlogram for the residuals from (9.58) is displayed in Figure 9.10. It shows a

significant autocorrelation at lag one, with the remaining autocorrelations being insignif-

icant. This correlation is confirmed by the LM test whose p-value is 0.0004 for a test with

lag order one and pre-sample residual set to zero. When DUt � 1 is included with a view

to eliminating the serial correlation, we find that its coefficient is significantly different

from zero, but that for Gt�2 becomes insignificant. The estimated equation is

Ta b l e 9 . 4 AIC and SC Values for Phillips Curve ARDL Models

p q AIC SC p q AIC SC

1 0 �1.247 �1.160 1 1 �1.242 �1.128

2 0 �1.290 �1.176 2 1 �1.286 �1.142

3 0 �1.335 �1.192 3 1 �1.323 �1.151

4 0 �1.402 �1.230 4 1 �1.380 �1.178

5 0 �1.396 �1.195 5 1 �1.373 �1.143

6 0 �1.378 �1.148 6 1 �1.354 �1.096
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FIGURE 9.10 Correlogram for residuals from Okun’s law ARDL(0,2) model.
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dDUt ¼ 0:3780þ 0:3501DUt�1 � 0:1841Gt � 0:0992Gt�1

ðseÞ ð0:0578Þ ð0:0846Þ ð0:0307Þ ð0:0368Þ obs ¼ 96 (9.59)

There is no evidence that the residuals from (9.59) are autocorrelated. Both the correlogram

and LM test failed to reject null hypotheses of zero autocorrelations. Furthermore, when

extra lags of DU and G are added to (9.59), their coefficients are not significantly different

from zero at a 5% significance level. Thus, we are led to conclude that theARDL(1,1)model

in (9.59) is a suitable one for modeling the relationship betweenDU andG. As a final check

we can examinewhat values of p and qminimize the AIC and SC criteria. Table 9.5 contains

theAIC and SC values for possibly relevant lags. They support our choice of theARDL(1,1)

model; both criteria are at a minimum when p ¼ q ¼ 1. They were calculated using 95

observations with a starting period of 1986, quarter 1.

We examine how this model can be used for forecasting in Section 9.7. In Section 9.8 we

derivemultipliers showing the effect of a change in the growth rate ofGDPon changes in the

unemployment rate.

9.6.3 AUTOREGRESSIVE MODELS

The ARDLmodels in the previous section had an autoregressive component (lagged values

of the dependent variable y) and a distributed lag component (an explanatory variable x, and

its lags). One special case of an ARDL model is the finite distributed lag model that has no

autoregressive component (p ¼ 0). We studied this model in Section 9.2. It is also possible

to have a pure autoregressive (AR)model with only lagged values of the dependent variable

as the right-hand-side variables, and no distributed-lag component. Specifically, an auto-

regressive model of order p, denoted AR(p), is given by

yt ¼ dþ u1yt�1 þ u2yt�2 þ � � � þ upyt�p þ vt (9.60)

In this model the current value of a variable yt depends on its values in the last p periods and

on a random error that is assumed to have a zero mean and a constant variance, and to be

uncorrelated over time. The order of the model p is equal to the largest lag of y on the right

side of the equation. Notice that there are no explanatory variables in (9.60). The value of yt
depends only on a history of its past values and no x’s.

In Section 9.5.2 we were concerned with an AR(1) error model et ¼ ret�1 þ vt and its

implications for estimating b1 and b2 in the regression model yt ¼ b1 þ b2xt þ et. What is

now evident is that the AR class of models has wider applicability than its use for modeling

dynamic error terms. It is also used for modeling observed values of a time series yt. The

main use of AR models is for forecasting. Multiplier analysis, where the effect on y of a

change in x is traced through time, is no longer possible in the absence of an x.When (9.60) is

used for forecasting, we are using the current and past values of a variable to forecast its

Ta b l e 9 . 5 AIC and SC Values for Okun’s Law ARDL Models

(p, q) AIC SC (p, q) AIC SC (p, q) AIC SC

(0,1) �3.436 �3.356 (1,1) �3.588 �3.480 (2,1) �3.569 �3.435

(0,2) �3.463 �3.356 (1,2) �3.568 �3.433 (2,2) �3.548 �3.387

(0,3) �3.442 �3.308 (1,3) �3.561 �3.400 (2,3) �3.549 �3.361
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future value. The model relies on correlations between values of the variable over time to

help produce a forecast.

As an example, consider the data on growth of U.S. GDP from quarter 2, 1985 to quarter

3, 2009, stored in the file okun.dat. This series was graphed in Figure 9.4(b), and its

correlogram is displayed in Figure 9.6. Go back and look at the correlogram. The correlation

between Gt and Gt�1 (observations that are one quarter apart) is 0.494, and the correlation

between Gt and Gt�2 (observations that are two quarters apart) is 0.411. Both are

significantly different from zero. How many lags are needed—what value of p is

required—for an AR model to capture these correlations? Recall from Section 9.5.2a

that the population autocorrelations from an AR(1) model are given by rk ¼ rk where k is
the order of the lag. In particular, r1 ¼ r and r2 ¼ r21. Thus, for an AR(1) model to be

adequate for G, we would expect r2 ¼ 0.411 to be approximately equal to the square of

r1 ¼ 0.494. However, r21 ¼ ð0:494Þ2 ¼ 0:244, which is quite a bit smaller than 0.411. It is

likely that the extra correlationwill be captured by anAR(2)model, and sowe beginwith the

estimated model

bGt ¼ 0:4657þ 0:3770Gt�1 þ 0:2462Gt�2

ðseÞ ð0:1433Þ ð0:1000Þ ð0:1029Þ obs ¼ 96 (9.61)

The coefficient of Gt�2 is significantly different from zero at a 5% level, suggesting we do

need at least two lags ofG. To checkwhether two lags are adequatewe follow the same steps

that were used for selecting the lag orders in an ARDL model. The possibility of serially

correlated errors is assessed using the correlogram of the residuals and LM tests. Extra lags

of G are added to see if their coefficients are significantly different from zero. And we can

check what value of p minimizes the AIC and SC criteria.

The correlogram for the residuals is displayed in Figure 9.11. With the exception of a

slightly significant autocorrelation at lag 12, all autocorrelations are not significantly

different from zero at a 5% level. Since the correlations at lags 1 to 11 are insignificant,

we are inclined not to react strongly to the result at lag 12. Also, LM tests using various

orders of lags did not reveal any residual autocorrelation, and when extra lags of G were

added, their coefficients were not significantly different from zero. All these results point

towards the AR(2) model in (9.61) as a suitable model.
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FIGURE 9.11 Correlogram for residuals from AR(2) model for GDP growth.
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The AIC and SC values for lags up to five using a starting date of 1986, quarter 3 and 93

observations are given in Table 9.6. In this case the lag length that minimizes the AIC is

different from that which minimizes the SC. Specifically, the SC suggests that we choose

p ¼ 2 and thus supports our earlier choice of an AR(2) model, whereas the AIC suggests a

longer lag length of p ¼ 4. The SC imposes a heavier penalty for the longer lag. You will

find instances like this where different strategies for model choice lead to different

outcomes, making some subjective judgment necessary. We will retain the AR(2) model

and move to the next section where we show how to use it for forecasting.

9.7 Forecasting

Forecasting values of economic variables is amajor activity formany institutions, including

firms, banks, governments, and individuals. Accurate forecasts are important for decision-

making on government economic policy, investment strategies, the supply of goods to

retailers, and a multitude of other things that affect our everyday lives. Because of its

importance, you will find that there are whole books and courses that are devoted to the

various aspects of forecasting—methods and models for forecasting, ways of evaluating

forecasts and their reliability, and practical examples. In this sectionwe consider forecasting

using three different models, an ARmodel, an ARDLmodel, and an exponential smoothing

model. Our focus is on short-term forecasting, typically up to three periods into the future.

9.7.1 FORECASTING WITH AN AR MODEL

Suppose that it is the third quarter in 2009, you have estimated the AR(2) model in (9.61)

using observations on growth in U.S. GDP up to and including that for 2009Q3, and you

would like to forecast GDP growth for the next three quarters: 2009Q4, 2010Q1, and

2010Q2. How do we use the AR(2) model to give these forecasts? How do we calculate

standard errors for our forecasts? What about forecast intervals?

We begin by writing the AR(2) model in terms of its unknown coefficients

Gt ¼ dþ u1Gt�1 þ u2Gt�2 þ vt (9.62)

Denoting the last sample observation as GT, our task is to forecast GTþ1, GTþ2, and GTþ3.

Using (9.62), we can obtain the equation that generates GTþ1 by changing the time

subscripts. The required equation is

GTþ1 ¼ dþ u1GT þ u2GT�1 þ vTþ1

Recognizing that the growth values for the two most recent quarters are GT ¼ G2009Q3

¼ 0.8, and GT�1 ¼ G2009Q2 ¼ �0.2, the forecast of GTþ1 ¼ G2009Q4 obtained from the

estimated equation in (9.61) is14

Ta b l e 9 . 6 AIC and SC Values for AR Model of Growth in U.S. GDP

Order (p) 1 2 3 4 5

AIC �1.094 �1.131 �1.124 �1.133 �1.112

SC �1.039 �1.049 �1.015 �0.997 �0.948

14 We carry the coefficient estimates to five decimal places to avoid rounding error.

372 REGRESS ION WITH T IME- SER IES DATA : STAT IONARY VARIABLES



ĜTþ1 ¼ d̂þ û1GT þ û2GT�1

¼ 0:46573þ 0:37700� 0:8þ 0:24624�ð�0:2Þ
¼ 0:7181

(9.63)

Moving to the forecast for two quarters ahead, G2010Q1, we have

ĜTþ2 ¼ d̂þ û1ĜTþ1 þ û2GT

¼ 0:46573þ 0:37700� 0:71808 þ 0:24624� 0:8

¼ 0:9334

(9.64)

There is an important difference in the way the forecasts ĜTþ1 and ĜTþ2 are obtained. It is

possible to calculate ĜTþ1 using only past observations on y. However, GTþ2 depends on

GTþ1, which is unobserved at time T. To overcome this problem, we replace GTþ1 by its

forecast ĜTþ1 on the right side of (9.64). For forecasting GTþ3, the forecasts for both GTþ2

and GTþ1 are needed on the right side of the equation. Specifically,

ĜTþ3 ¼ d̂þ û1ĜTþ2 þ û2ĜTþ1

¼ 0:46573 þ 0:37700� 0:93343þ 0:24624� 0:71808

¼ 0:9945

(9.65)

The forecast growth rates for 2009Q4, 2010Q1, and 2010Q2 are approximately 0.72%,

0.93%, and 0.99%, respectively.

We are typically interested not just in point forecasts, but also in interval forecasts that

give a likely range inwhich a future value could fall and that indicate the reliability of a point

forecast. A 95% interval forecast for j periods into the future is given by ĜTþj 	 tð0:975; df Þŝj

where ŝj is the standard error of the forecast error and df is the number of degrees of

freedom in the estimation of the AR model (df ¼ 93 in our example). To get the standard

errors, note that the first forecast error, occurring at time Tþ1, is

u1 ¼ GTþ1 � ĜTþ1 ¼ ðd� d̂Þ þ ðu1 � û1ÞGT þ ðu2 � û2ÞGT�1 þ vTþ1

The difference between the forecast ĜTþ1 and the corresponding realized value GTþ1

depends on the differences between the actual coefficients and the estimated coefficients

and on the value of the unpredictable random error vTþ1. A similar situation arose in

Chapters 4 and 6 when we were forecasting using the regression model. What we are going

to do differently now is to ignore the error from estimating the coefficients. It is common to

do so because the variance of the random error is usually large relative to the variances of the

estimated coefficients, and the resulting variance estimator retains the property of consist-

ency. This means we can write the forecast error for one quarter ahead as

u1 ¼ vTþ1 (9.66)

For two quarters ahead, the forecast error gets more complicated because we have to allow

for not only vTþ2 but also for the error that occurs from using ĜTþ1 instead of GTþ1 on the

right side of (9.64). Thus, the forecast error for two periods ahead is

u2 ¼ u1ðGTþ1 � ĜTþ1Þ þ vTþ2 ¼ u1u1 þ vTþ2 ¼ u1vTþ1 þ vTþ2 (9.67)
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For three periods ahead the error can be shown to be

u3 ¼ u1u2 þ u2u1 þ vTþ3 ¼ ðu21 þ u2ÞvTþ1 þ u1vTþ2 þ vTþ3 (9.68)

Expressing the forecast errors in terms of the vt’s is convenient for deriving expressions for

the forecast error variances. Because the vt’s are uncorrelated with constant variance s2
v ,

(9.66), (9.67), and (9.68) can be used to show that

s2
1 ¼ varðu1Þ ¼ s2

v

s2
2 ¼ varðu2Þ ¼ s2

v 1þ u21
� �

s2
3 ¼ varðu3Þ ¼ s2

v u21 þ u2
� �2 þ u21 þ 1

� 	

The standard errors of the forecast errors are obtained by replacing the unknown parameters

in the above expressions by their estimates û1 ¼ 0:37700
�

, û2 ¼ 0:24624, ŝv ¼ 0:55269Þ
and then taking the square roots of the variance estimates ŝ2

1, ŝ
2
2, and ŝ2

3. These standard

errors appear in Table 9.7, along with the forecast intervals calculated using tð0:975; 93Þ ¼
1:9858. The forecast intervals are relatively wide, including the possibility of negative as

well as positive growth. The point forecasts by themselves do not convey the great deal of

uncertainty that is associated with these forecasts. Notice also how the forecast standard

errors and thewidths of the intervals increase aswe forecast further into the future, reflecting

the additional uncertainty from doing so.

9.7.2 FORECASTING WITH AN ARDL MODEL

In the previous section we saw how an autoregressive model can be used for forecasting,

delivering both point and interval forecasts for a variable of interest. Suppose now that we

wish to use an ARDL model for forecasting. As an example, consider forecasting future

unemployment using the Okun’s LawARDL(1,1) model that we estimated in Section 9.6.2:

DUt ¼ dþ u1DUt�1 þ d0Gt þ d1Gt�1 þ vt (9.69)

Does using this model for forecasting, instead of a pure AR model, create any special

problems?One obvious difference is that future values ofG are required. The value ofDU in

the first post-sample quarter is

DUTþ1 ¼ dþ u1DUT þ d0GTþ1 þ d1GT þ vTþ1 (9.70)

Before we can use this equation to forecast DUTþ1, a value for GTþ1 is needed; fore-

casting further into the future will require more future values of G. These values may be

Ta b l e 9 . 7 Forecasts and Forecast Intervals for GDP Growth

Quarter Forecast ĜTþj

Standard Error of

Forecast Error (ŝj)

Forecast Interval

ĜTþj 	 1:9858�ŝj

� �
2009Q4 ( j ¼ 1) 0.71808 0.55269 (�0.379, 1.816)

2010Q1 ( j ¼ 2) 0.93343 0.59066 (�0.239, 2.106)

2010Q2 ( j ¼ 3) 0.99445 0.62845 (�0.254, 2.242)
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independent forecasts or theymight be from ‘‘what if’’ questions: If GDP growth in the next

two quarters is G�
Tþ1 ¼ G�

Tþ2, what is our forecast for the level of unemployment?

Apart from the need to supply future values ofG, the forecasting procedure for an ARDL

model is essentially the same as that for a pure AR model. Providing we are content to

construct forecast intervals that ignore any error in the specification of future values of G,

adding a distributed lag component to the ARmodel does not require any special treatment.

Point and interval forecasts are obtained in the same way.

There is, however, one special feature of the model in (9.69) that is worthy of further

consideration. Recall that the dependent variable DUt is the change in unemployment

defined as DUt ¼ Ut � Ut�1. Does this have any implications for forecasting the level of

unemployment given by Ut? To investigate this question, we rewrite (9.70) as

UTþ1 � UT ¼ dþ u1 UT � UT�1ð Þ þ d0GTþ1 þ d1GT þ vTþ1

Bringing UT over to the right side and collecting terms yields

UTþ1 ¼ dþ u1 þ 1ð ÞUT � u1UT�1 þ d0GTþ1 þ d1GT þ vTþ1

¼ dþ u�1UT þ u�2UT�1 þ d0GTþ1 þ d1GT þ vTþ1

(9.71)

where u�1 ¼ u1 þ 1 and u�2 ¼ �u1. For the purpose of computing point and interval

forecasts, the ARDL(1,1) model for a change in unemployment can be written as an

ARDL(2,1) model for the level of unemployment, with parameters u�1 and u�2. This result
holds not only for ARDL models where a dependent variable is measured in terms of a

change or difference, but also for pure ARmodels involving such variables. It is particularly

relevant when nonstationary variables are differenced to achieve stationarity—a trans-

formation that is considered further in Chapter 12.

Finally, we note that forecasting with a finite distributed lag model with no AR

component can be carried out within the same framework as forecasting (prediction) in

the linear regression model considered in Chapter 6. Instead of the right-hand-side

variables’ being a number of different x’s, they comprise a number of lags on the same x.

9.7.3 EXPONENTIAL SMOOTHING

In Section 9.7.1 we saw how an autoregressive model can be used to forecast the future

value of a variable by making use of past observations on that variable. Another popular

model used for predicting the future value of a variable on the basis of its history is

the exponential smoothing method. Like forecasting with an AR model, forecasting using

exponential smoothing does not utilize information from any other variable.

To introduce this method, consider a sample of observations ðy1; y2; . . . ; yT�1; yTÞwhere
our objective is to forecast the next observation yTþ1. One possible forecasting method, and

one that has some intuitive appeal, is to use the average of past information—say, the

average of the last k observations. For example, if we adopt this method with k ¼ 3,

the proposed forecast is

ŷTþ1 ¼ yT þ yT�1 þ yT�2

3

This forecasting rule is an example of a simple (equally-weighted)moving averagemodel

with k ¼ 3. Note that when k ¼ 1, all weight is placed on the most recent value and the

forecast is ŷTþ1 ¼ yT .
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Now let us extend the moving average idea by changing the equal weighting system

where the weights are all (1=k) to one where more weight is put on recent information—or,

put another way, less weight is placed on observations further into the past. The exponential

smoothing model is one such forecasting model; in this case, the weights decline

exponentially as the observations get older. It has the form

ŷTþ1 ¼ ayT þ að1� aÞ1yT�1 þ að1� aÞ2yT�2 þ � � � (9.72)

Theweight attached to yT�s is given byað1� aÞs.We assume that 0 < a � 1, whichmeans

that theweights get smaller as s gets larger (aswego further into the past). Also, using results

on the infinite sum of a geometric progression, it can be shown that the weights sum to one:

�1
s¼0að1� aÞs ¼ 1.

Using information from the infinite past is not convenient for forecasting. Recognizing

that

ð1� aÞŷT ¼ að1� aÞyT�1 þ að1� aÞ2yT�2 þ að1� aÞ3yT�3 þ � � � � (9.73)

allows us to simplify the model. Notice that the terms on the right hand side of (9.73) also

appear on the right-hand side of (9.72). Thismeanswe can replace an infinite sumby a single

term, so that the forecast can be more conveniently presented as

ŷTþ1 ¼ ayT þ ð1� aÞŷT (9.74)

That is, the forecast for next period is a weighted average of the forecast for the current

period and the actual realized value in the current period.

The exponential smoothing method is a versatile forecasting tool, but one needs a value

for the smoothing parametera and avalue for ŷT to generate the forecast ŷTþ1. Thevalue ofa
can reflect one’s judgment about the relative weight of current information; alternatively,

it can be estimated from historical information by obtaining within-sample forecasts

ŷt ¼ ayt�1 þ ð1� aÞŷt�1 t ¼ 2; 3; . . . ; T (9.75)

and choosing that value of a which minimizes the sum of squares of the one-step forecast

errors

vt ¼ yt � ŷt ¼ yt � ayt�1 þ ð1� aÞŷt�1ð Þ (9.76)

To compute�T
t¼2v

2
t for a given value of awe need a starting value for ŷ1. One option is to set

ŷ1 ¼ y1; another is to set ŷ1 equal to the average of the first (T þ 1)=2 observations on y.15

Once ŷ1 has been set, (9.75) can be used recursively to generate a series of within-sample

forecasts, and (9.76) can be used to generate a series of within-sample forecast errors.

The last value of the within-sample forecasts, generated, either with an a that reflects

personal judgment or with one that minimizes �T
t¼2v

2
t , is ŷT , which is then used in (9.74) to

generate a forecast for the first post-sample observation yTþ1. Forecasts for more than one

period into the future are identical to that for period T þ 1. Can you see why?

For an illustration, we use the same quarterly data on U.S. GDP growth that was used

for the AR model in Section 9.7.1. It runs from 1985Q2 to 2009Q3 and is stored in the file

15 This second option is that used by the software EViews 7.0, and the one used in the example that follows.
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okun.dat. Two values of a were chosen: a ¼ 0.8, and the value that minimized the sum of

squares ofwithin-sample forecast errors—in this case,a ¼ 0.38. The smaller thevalue ofa,
the greater the contribution of past observations to a forecast, and the smoother the series of

within-sample forecasts is. With large values of a, the most recent observation is the major

contributor to a forecast, and the series of forecasts more closely mimics the actual series.

These characteristics are evident in Figures 9.12(a) and (b), where the actual series is

graphed alongside the within-sample forecasts for a ¼ 0.38 (Figure 9.12(a)), and a ¼ 0.8

(Figure 9.12(b)). In both these figures, the solid line represents actual GDP growth and the

dashed line represents the within-sample forecasts. In Figure 9.12(a), where a ¼ 0.38,

the smoothed series is much less volatile than the actual series. It retains a jagged

appearance, but the peaks and troughs are much less extreme. In Figure 9.12(b), where

a ¼ 0.8, the peaks and troughs of the smoothed series are only slightly less pronounced, and

the forecasts closely follow the actual series by one period reflecting the high weight placed

on the most recent value.
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FIGURE 9.12 (a) Exponentially smoothed forecasts for GDP growth with a ¼ 0.38.
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FIGURE 9.12 (b) Exponentially smoothed forecasts for GDP growth with a ¼ 0.8.
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The forecasts for 2009Q4 from each value of a are

a ¼ 0:38 : ĜTþ1 ¼ aGT þ ð1� aÞĜT ¼ 0:38� 0:8þ ð1� 0:38Þ� ð�0:403921Þ
¼ 0:0536

a ¼ 0:8 : ĜTþ1 ¼ aGT þ ð1� aÞĜT ¼ 0:8� 0:8þ ð1� 0:8Þ� ð�0:393578Þ
¼ 0:5613

The difference between these two forecasts can be explained by the different weights

placed on the most recent values of past growth. GDP growth was positive in 2009Q3

G2009Q3 ¼ 0:8ð Þ after three successive quarters of negative growth attributable to the global
financial crisis G2009Q2 ¼ �0:2;ð G2009Q1 ¼ �1:2;G2008Q4 ¼ �1:4Þ. The 2009Q4 forecast
that uses a ¼ 0.8 is higher than that for a ¼ 0.38 because it places a heavy weight on the

most recent positive growth in 2009Q3. The forecast for low growth that comes from using

a ¼ 0.38 reflects the increased weight on the negative growth of the earlier three quarters.

9.8 Multiplier Analysis

Multiplier analysis refers to the effect, and the timing of the effect, of a change in one

variable on the outcome of another variable. For example, by controlling the federal funds

rate, the U.S. Federal Reserve Board attempts to influence inflation, unemployment, and the

general level of economic activity. Because the effects of a change in the federal funds rate

are not instantaneous, the Fed would like to know when and by how much variables like

inflation and unemployment will respond. In a similar way, when the government makes

changes to expenditure and taxation, it wants information on the magnitude and timing

of changes in economic activity. At the firm level, firms are interested in the timing and

magnitude of the effects of various forms of advertising on sales of their products.

The concepts of impact, delay, interim, and total multipliers were introduced in Section

9.2 in the context of a finite distributed lag model. If your memory needs refreshing, please

reread that section. Nowwe are concerned with how to find multipliers for an ARDLmodel

of the form

yt ¼ dþ u1yt�1 þ � � � þ upyt�p þ d0xt þ d1xt�1 þ � � � þ dqxt�q þ vt (9.77)

The secret for doing so lies in our ability to transform it into an infinite distributed lagmodel

written as

yt ¼ aþ b0xt þ b1xt�1 þ b2xt�2 þ b3xt�3 þ � � � þ et (9.78)

The multipliers defined for this model are similar to those for the finite distributed lag

model. Specifically,

bs ¼ @yt
@xt�s

¼ s period delay multiplier

�
s

j¼0
bj ¼ s period interim multiplier

�
1

j¼0
bj ¼ total multiplier
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When we estimate an ARDL model, we obtain estimates of the u’s and d’s in (9.77). To

obtain multipliers that are expressed in terms of the b’s, we need to be able to compute

estimates of the b’s from those for the u’s and d’s. Describing how the b’s can be derived

from the u’s and d’s is the purpose of this section.

Our task ismade easier if we canmaster somemachinery known as the lag operator. The

lag operator L has the effect of lagging a variable,

Lyt ¼ yt�1

For lagging a variable twice, we have

L Lytð Þ ¼ Lyt�1 ¼ yt�2

which we write as L2yt ¼ yt�2. More generally, L raised to the power of s means lag a

variable s times

Lsyt ¼ yt�s

Now we are in a position to write the ARDL model in terms of lag operator notation.

Equation (9.77) becomes

yt ¼ dþ u1Lyt þ u2L
2yt þ � � � þ upL

pyt þ d0xt þ d1Lxt þ d2L
2xt

þ � � � þ dqL
qxt þ vt

(9.79)

Bringing the terms that contain yt to the left side of the equation, and factoring out yt and xt
yields

1� u1L� u2L
2 � � � � � upL

p
� �

yt ¼ dþ d0 þ d1Lþ d2L
2 þ � � � þ dqL

q
� �

xt þ vt (9.80)

This algebra is starting to get heavy. To make our derivation manageable, consider the

ARDL(1,1) model used to describe Okun’s law. From the above results, the model

DUt ¼ dþ u1DUt�1 þ d0Gt þ d1Gt�1 þ vt (9.81)

can be written as

1� u1Lð ÞDUt ¼ dþ d0 þ d1Lð ÞGt þ vt (9.82)

Now suppose that it is possible to define an inverse of 1� u1Lð Þ, which we write as

1� u1Lð Þ�1
, which is such that

1� u1Lð Þ�1
1� u1Lð Þ ¼ 1

This concept is a bit abstract. Using it will seem like magic the first time that you encounter

it. Stick with us. We have nearly reached the essential result. Multiplying both sides of

(9.82) by 1� u1Lð Þ�1
yields

DUt ¼ 1� u1Lð Þ�1dþ 1� u1Lð Þ�1 d0 þ d1Lð ÞGt þ 1� u1Lð Þ�1
vt (9.83)

9 . 8 MULT IPL I ER ANALYS I S 379



This representation is useful because we can equate it with the infinite distributed lag

representation

DUt ¼ aþ b0Gt þ b1Gt�1 þ b2Gt�2 þ b3Gt�3 þ � � � þ et

¼ aþ b0 þ b1Lþ b2L
2 þ b3L

3 þ � � �� �
Gt þ et

(9.84)

For (9.83) and (9.84) to be identical, it must be true that

a ¼ 1� u1Lð Þ�1d (9.85)

b0 þ b1Lþ b2L
2 þ b3L

3 þ � � � ¼ 1� u1Lð Þ�1 d0 þ d1Lð Þ (9.86)

et ¼ 1� u1Lð Þ�1
vt (9.87)

Equation (9.85) can be used to derivea in terms of u1 and d, and (9.86) can be used to derive
theb’s in terms of the u’s and d’s. To see how, first multiply both sides of (9.85) by ð1� u1LÞ
to obtain 1� u1Lð Þa ¼ d. Then, recognizing that the lag of a constant that does not change
over time is the same constant ðLa ¼ aÞ, we have

1� u1ð Þa ¼ d and a ¼ d

1� u1

Turning now to the b’s, we multiply both sides of (9.86) by 1� u1Lð Þ to obtain

d0 þ d1L ¼ 1� u1Lð Þ b0 þ b1Lþ b2L
2 þ b3L

3 þ � � �� �
¼ b0 þ b1Lþ b2L

2 þ b3L
3 þ � � �

� b0u1L� b1u1L
2 � b2u1L

3 � � � �
¼ b0 þ b1 � b0u1ð ÞLþ b2 � b1u1ð ÞL2 þ b3 � b2u1ð ÞL3 þ � � �

(9.88)

Notice howwe can do algebra with the lag operator.We have used the fact that LrLs ¼ Lrþs.

Equation (9.88) holds the key to deriving the b’s in terms of the u’s and the d’s. For both
sides of this equation to mean the same thing (to imply the same lags), coefficients of like

powers in the lag operatormust be equal. Tomakewhat followsmore transparent,we rewrite

(9.88) as

d0 þ d1Lþ 0L2 þ 0L3 ¼ b0 þ b1 � b0u1ð ÞLþ b2 � b1u1ð ÞL2 þ b3 � b2u1ð ÞL3 þ � � �
(9.89)

Equating coefficients of like powers in L yields

d0 ¼ b0

d1 ¼ b1 � b0u1

0 ¼ b2 � b1u1

0 ¼ b3 � b2u1

and so on. Thus, the b’s can be found from the u’s and the d’s using the recursive equations

b0 ¼ d0

b1 ¼ d1 þ b0u1

bj ¼ bj�1u1 for j � 2

(9.90)
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You are probably asking: Do I have to go through all this each time I want to derive some

multipliers for an ARDL model? The answer is no. You can start from the equivalent of

(9.88) which, in its general form, is

d0 þ d1Lþ d2L
2 þ � � � þ dqL

q ¼ 1� u1L� u2L
2 � � � � � upL

p
� �
� b0 þ b1Lþ b2L

2 þ b3L
3 þ � � �� � (9.91)

Given the values p and q for your ARDL model, you need to multiply out the above

expression, and then equate coefficients of like powers in the lag operator.

What are the values of the multipliers for our Okun’s Law example?

dDUt ¼ 0:3780þ 0:3501DUt�1 � 0:1841Gt � 0:0992Gt�1

Using the relationships in (9.90), the impact multiplier and the delay multipliers for the first

four quarters are given by

b̂0 ¼ d̂0 ¼ �0:1841

b̂1 ¼ d̂1 þ b̂0û1 ¼ �0:099155� 0:184084� 0:350116 ¼ �0:1636

b̂2 ¼ b̂1û1 ¼ �0:163606� 0:350166 ¼ �0:0573

b̂3 ¼ b̂2û1 ¼ �0:057281� 0:350166 ¼ �0:0201

b̂4 ¼ b̂3û1 ¼ �0:020055� 0:350166 ¼ �0:0070

An increase inGDPgrowth leads to a fall in unemployment,with its greatest effect being felt

in the current and next quarters and a declining effect thereafter. The effect eventually

declines to zero. This property—that theweights at long lags go to zero—is an essential one

for the above analysis to be valid. The weights are displayed in Figure 9.13 for lags up to

seven quarters.
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FIGURE 9.13 Delay multipliers from Okun’s law ARDL(1,1) model.
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Finally, we can estimate the total multiplier that is given by �1
j¼0bj, and the normal

growth rate that is needed to maintain a constant rate of unemployment,GN ¼ �a
�
�1

j¼0bj.

The total multiplier can be found by summing those b’s which are sufficiently large to

contribute to the sum or by using results on the sum of an infinite geometric progression. For

the latter approach, we can show that

�
1

j¼0
b̂j ¼ d̂0 þ d̂1 þ d̂0û1

1� û1
¼ �0:184084þ �0:163606

1� 0:350116
¼ �0:4358

An estimate for a is given by â ¼ d̂= 1� û1
� � ¼ 0:37801=0:649884 ¼ 0:5817 which leads

to a normal growth rate of ĜN ¼ 0:5817=0:4358 ¼ 1:3% per quarter. These results are

consistent with those that we found from the finite distributed lag model in Section 9.2. In

that instance, we had �0.437 for the total multiplier and 1.3% for GN.

9.9 Exercises

Answers to exercises marked * appear at www.wiley.com/college/hill.

9.9.1 PROBLEMS

9.1 Consider the following distributed lag model relating the percentage growth in

private investment (INVGWTH) to the federal funds rate of interest (FFRATE):

INVGWTHt ¼ 4� 0:4FFRATEt � 0:8FFRATEt�1 � 0:6FFRATEt�2

� 0:2FFRATEt�3

(a) Suppose FFRATE = 1% for t ¼ 1, 2, 3, 4. Use the above equation to forecast

INVGWTH for t ¼ 4.

(b) Suppose FFRATE is raised to 1.5% in period t ¼ 5 and then returned to its

original level of 1% for t ¼ 6, 7, 8, 9. Use the equation to forecast INVGWTH for

periods t ¼ 5, 6, 7, 8, 9. Relate the changes in your forecasts to the values of the

coefficients. What are the delay multipliers?

(c) Suppose FFRATE is raised to 1.5% for periods t ¼ 5, 6, 7, 8, 9. Use the equation

to forecast INVGWTH for periods t ¼ 5, 6, 7, 8, 9. Relate the changes in your

forecasts to the values of the coefficients.What are the interimmultipliers?What

is the total multiplier?

9.2 The file ex9_2.dat contains 105 weekly observations on sales revenue (SALES) and

advertising expenditure (ADV) in millions of dollars for a large midwest department

store in 2008 and 2009. The following relationship was estimated:

bSALESt ¼ 25:34þ 1:842 ADVt þ 3:802 ADVt�1 þ 2:265 ADVt�2

(a) Describe the relationship between sales and advertising expenditure. Include an

explanation of the lagged relationship. When does advertising have its greatest

impact? What is the total effect of a sustained $1 million increase in advertising

expenditure?

(b) The estimated covariance matrix of the coefficients is
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Using a one-tail test and a 5% significance level, which lag coefficients are

significantly different from zero? Do your conclusions change if you use a one-

tail test? Do they change if you use a 10% significance level?

(c) Find 95% confidence intervals for the impact multiplier, the one-period interim

multiplier, and the total multiplier.

9.3 Reconsider the estimated equation and covariance matrix in Exercise 9.2. Suppose,

as a marketing executive for the department store, that you have a total of $6 million

to spend on advertising over the next three weeks, t ¼ 106, 107, and 108. Consider

the following allocations of the $6 million:

ADV106 ¼ 6; ADV107 ¼ 0; ADV108 ¼ 0

ADV106 ¼ 0; ADV107 ¼ 6; ADV108 ¼ 0

ADV106 ¼ 2; ADV107 ¼ 4; ADV108 ¼ 0

(a) For each allocation of the $6million, forecast sales revenue for t ¼ 106, 107, and

108.Which allocation leads to the largest forecast for total sales revenue over the

three weeks? Which allocation leads to the largest forecast for sales in week

t ¼ 108? Explain why these outcomes were obtained.

(b) Find 95% forecast intervals for ADV108 for each of the three allocations. If

maximizing ADV108 is your objective, which allocation would you choose?

Why?

9.4* The following least squares residuals come from a sample of size T ¼ 10:

(a) Use a hand calculator to compute the sample autocorrelations:

r1 ¼
�
T

t¼2
êt êt�1

�
T

t¼1
ê2t

r2 ¼
�
T

t¼3
êt êt�2

�
T

t¼1
ê2t

(b) Test whether (i) r1 is significantly different from zero and (ii) r2 is significantly

different from zero. Sketch the first two bars of the correlogram. Include the

significance bounds.

t 1 2 3 4 5 6 7 8 9 10

êt 0.28 �0.31 �0.09 0.03 �0.37 �0.17 �0.39 �0.03 0.03 1.02

C ADV ADVt�1 ADVt�2

C 2.5598 �0.7099 �0.1317 �0.7661

ADV �0.7099 1.3946 �1.0406 0.0984

ADVt�1 �0.1317 �1.0406 2.1606 �1.0367

ADVt�2 �0.7661 0.0984 �1.0367 1.4214

9 . 9 EXERCI SES 383



9.5 The file growth47.dat contains 250 quarterly observations on U.S. GDP growth

from quarter two, 1947, to quarter three, 2009. From these data, we calculate the

following quantities:

�
250

t¼1
Gt � G
� �2 ¼ 333:8558 �

250

t¼2
Gt � G
� �

Gt�1 � G
� � ¼ 162:9753

�
250

t¼3
Gt � G
� �

Gt�2 � G
� � ¼ 112:4882 �

250

t¼4
Gt � G
� �

Gt�3 � G
� � ¼ 30:5802

(a) Compute the first three autocorrelations r1; r2 and r3ð Þ forG. Test whether each
one is significantly different from zero at a 5% significance level. Sketch the first

three bars of the correlogram. Include the significance bounds.

(b) Given that �250
t¼2 Gt�1� G�1

� �2¼333:1119 and �250
t¼2 Gt� G1

� �
Gt�1 � G�1

� � ¼
162:974, where G1 ¼ �250

t¼2Gt=249 ¼ 1:662249 and G�1 ¼ �250
t¼2Gt�1=249 ¼

1:664257, find least squares estimates of d1 and u1 in the AR(1) model

Gt ¼ dþ u1Gt�1 þ et. Explain the difference between the estimate û1 and the

estimate r1 obtained in part (a).

9.6 Increases in the mortgage interest rate increase the cost of owning a house and lower the

demand for houses. In this question we consider an equation where the monthly change

in the number of new one-family houses sold in theU.S. depends on lastmonth’s change

in the 30-year conventional mortgage rate. Let HOMES be the number of new houses

sold (in thousands) and IRATE be themortgage rate. Their monthly changes are denoted

byDHOMESt ¼ HOMESt � HOMESt�1 andDIRATEt ¼ IRATEt � IRATEt�1.Using

data from January 1992 to March 2010 (stored in the file homes.dat), we obtain the

following least squares regression estimates:

bDHOMESt ¼ �2:077� 53:51DIRATEt�1

ðseÞ ð3:498Þ ð16:98Þ obs ¼ 218

(a) Interpret the estimate�53.51. Construct and interpret a 95% confidcnce interval

for the coefficient of DIRATEt�1.

(b) Let êt denote the residuals from the above equation. Use the following estimated

equation to conduct two separate tests for first-order autoregressive errors.

êt ¼ �0:1835� 3:210DIRATEt�1 � 0:3306êt�1 R2 ¼ 0:1077

ðseÞ ð16:087Þ ð0:0649Þ obs ¼ 218

(c) The model with AR(1) errors was estimated as

bDHOMESt ¼ �2:124� 58:61DIRATEt�1 et ¼ �0:3314et�1 þ v̂t

ðseÞ ð2:497Þ ð14:10Þ ð0:0649Þ
obs ¼ 217

Construct a 95% confidence interval for the coefficient of DIRATEt�1, and

comment on the effect of ignoring autocorrelation on inferences about this

coefficient.

384 REGRESS ION WITH T IME- SER IES DATA : STAT IONARY VARIABLES



9.7* Consider the model

et ¼ ret�1 þ vt

(a) Suppose r ¼ 0.9 and s2
v ¼ 1. What is (i) the correlation between et and et�1?

(ii) the correlation between et and et�4? (iii) the variance s2
e?

(b) Repeat part (a) with r = 0.4 and s2
v ¼ 1. Comment on the difference between

your answers for parts (a) and (b).

9.8 In Section 9.1, the following Phillips curve was estimated:

dINFt ¼ 0:1001þ 0:2354 INFt�1 þ 0:1213 INFt�2 þ 0:1677 INFt�3

þ 0:2819 INFt�4 � 0:7902 DUt

The last four sample values for inflation are INF2009Q3 ¼ 1:0; INF2009Q2 ¼ 0:5;
INF2009Q1 ¼ 0:1; and INF2008Q4 ¼ �0:3. The unemployment rate in 2009Q3 was

5.8%. The estimated error variance for the above equation is ŝ2
v ¼ 0:225103.

(a) Given that the unemployment rates in the first three post-sample quarters are

U2009Q4 ¼ 5:6;U2010Q1 ¼ 5:4; and U2010Q2 ¼ 5:0, use the estimated equation to

forecast inflation for 2009Q4, 2010Q1 and 2010Q2.

(b) Find the standard errors of the forecast errors for your forecasts in (a).

(c) Find 95% forecast intervals for INF2009Q4; INF2010Q1; and INF2010Q2. How

reliable are the forecasts you found in part (a)?

9.9 Consider the infinite lag representation

yt ¼ aþ �
1

s¼0
bsxt�s þ et

for the ARDL model

yt ¼ dþ u1yt�1 þ u2yt�2 þ u3yt�3 þ u4yt�4 þ d0xt þ vt

(a) Show that

a ¼ d= 1� u1 � u2 � u3 � u4ð Þ
b0 ¼ d0

b1 ¼ b0u0

b2 ¼ b1u1 þ b0u2

b3 ¼ b2u1 þ b1u2 þ b0u3

bs ¼ bs�1u1 þ bs�2u2 þ bs�3u3 þ bs�4u4 for s � 4

(b) Use the results in (a) to find estimates of the first 12 lag weights for the estimated

Phillips curve in Exercise 9.8. Graph those weights and comment on the graph.

(c) What rate of inflation is consistent with a constant unemployment rate (where

DU ¼ 0 in all time periods)?

9.10* Quarterly data from 1960Q1 to 2009Q4, stored in the file consumptn.dat, were used

to estimate the following relationship between growth in consumption of consumer

durables in the U.S. (DURGWTH) and growth in personal disposable income

(INCGWTH):
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bDURGWTHt ¼ 0:0103� 0:1631DURGWTHt�1 þ 0:7422INCGWTHt

þ 0:3479INCGWTHt�1

(a) Given thatDURGWTH2009Q4 ¼ 0:1; INCGWTH2009Q4 ¼ 0:9; INCGWTH2010Q1¼
0:6; and INCGWTH2010Q2 ¼ 0:8, forecastDURGWTH for 2010Q1 and 2010Q2.

(b) Find and comment on the implied lagweights for up to 12 quarters for the infinite

distributed lag representation

DURGWTHt ¼ aþ �
1

s¼0
bsINCGWTHt�s þ et

(c) Find values for the one- and two-quarter delay and interim multipliers, and the

total multiplier. Interpret those values.

9.11 (a) Write the AR(1) error model et ¼ ret�1 þ vt in lag operator notation.

(b) Show that

ð1� rLÞ�1 ¼ 1þ rLþ r2Lþ r3L3 þ � � �
and hence that

et ¼ vt þ rvt�1 þ r2vt�2 þ r3vt�3 þ � � �

9.9.2 COMPUTER EXERCISES

9.12* Consider the Okun’s Law finite distributed lag model that was estimated in Section

9.2 and the data for which appears in okun.dat.

(a) Estimate the following model for q ¼ 0, 1, 2, 3, 4, 5, and 6.

DUt ¼ aþ �
q

s¼0
bsGt�s þ et

In each case use data from t ¼ 1986Q4 to t ¼ 2009Q3 to ensure that 92

observations are used for each estimation. Report the values of the AIC and

SC selection criteria for each value of q.What lag lengthwould you choose on the

basis of the AIC? What lag length would you choose based on the SC?

(b) Using the model that minimizes the AIC:

(i) Find a 95% confidence interval for the impact multiplier.

(ii) Test the null hypothesis that the total multiplier equals –0.5 against the

alternative that it is greater than –0.5. Use a 5% significance level.

(iii) Find a 95% confidence interval for the normal growth rate GN. (Hint: Use

your software to get the standard error for ĜN ¼ â=ĝ where ĝ ¼ ��q
s¼0bs.

You can do so by pretending to test a hypothesis such as H0 : a=g ¼ 1.)

9.13 The file ex9_13.dat contains 157 weekly observations on sales revenue (SALES)

and advertising expenditure (ADV) in millions of dollars for a large midwest

department store for 2005–2007. (Exercise 9.2 used data on this store for 2008–

2009.) The weeks are from December 28, 2004, to December 25, 2007. We denote

them as t ¼ 1, 2, . . . , 157.
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(a) Graph the series for SALES and ADV. Do they appear be trending or do they

appear to fluctuate around a constant mean? On your graphs, draw horizontal

lines at the means of the series.

(b) Estimate a finite distributed lag model of the form

SALESt ¼ aþ �
q

s¼0
bsADVt�s þ et

for q ¼ 0, 1, 2, 3, 4, and 5. In each case use 152 observations (t¼ 6, 7, . . . , 157
where t ¼ 6 is February 1, 2005). Report the SC values and the total multipliers

for each equation. Is the estimated total multiplier sensitive to choice of lag

length?

(c) Comment on the estimated lag structure of the model that minimizes the SC.

Does it seem sensible to you? Are all the estimates significantly different from

zero at a 5% significance level? Use this model to answer the remaining parts of

this question.

(d) Construct 95% interval estimates for the (i) one-week delay multiplier, (ii) one-

week interim multiplier, (iii) two-week delay multiplier, and (iv) two-week

interim multiplier.

(e) The CEO claims that increasing advertising expenditure by $1 million a week in

each of the next threeweeks will increase total sales over those threeweeks by at

least $6 million. Is there enough evidence in the data to support this claim?

(f) Forecast sales revenue for the first four post-sample weeks, t ¼ 158, 159, 160,

161when (i) nothing is spent on advertising for those fourweeks, (ii) $4million is

spent in the first week (t ¼ 158), and nothing is spent in the remaining three

weeks, and (iii) $1 million is spent in each of the four weeks. Comment on the

three different forecast paths.

9.14 Oneway ofmodeling supply response for an agricultural crop is to specify amodel in

which area planted (acres) depends on price. When the price of the crop’s output is

high, farmers plant more of that crop than when its price is low. Letting AREA denote

area planted, and PRICE denote output price, and assuming a log-log (constant

elasticity) functional form, a finite distributed lag area response model of this type

can be written as

ln AREAtð Þ ¼ aþ �
q

s¼0
bs ln PRICEt�sð Þ þ et

Weuse thismodel to explain the area of sugar cane planted in a region of the southeast

Asian country of Bangladesh. Information on the delay and interim elasticities is

useful for government planning. It is important to know whether existing sugar

processing mills are likely to be able to handle predicted output, whether there is

likely to be excess milling capacity, and whether a pricing policy linking production,

processing, and consumption is desirable. Data comprising 34 annual observations

on area and price are given in the file bangla.dat.

(a) Estimate this model assuming q ¼ 4. What are the estimated delay and interim

elasticities? Comment on the results.

(b) Youwill have discovered that the lagweights obtained in part (a) are not sensible.

One way to try and overcome this problem is to insist that the weights lie on a

straight line

bs ¼ a0 þ a1s s ¼ 0; 1; 2; 3; 4
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If a0 > 0 and a1 < 0, these weights will decline, implying that farmers place a

larger weight on more recent prices when forming their expectations. Substitute

bs ¼ a0 þ a1s into the original equation and hence show that this equation can

be written as

ln AREAtð Þ ¼ aþ a0zt0 þ a1zt1 þ et

where zt0 ¼ �
4

s¼0
ln PRICEt�sð Þ and zt1 ¼ �

4

s¼1
s ln PRICEt�sð Þ:

(c) Create variables zt0 and zt1 and find least squares estimates of a0 and a1.

(d) Use the estimates fora0 anda1 to find estimates forbs ¼ a0 þ a1s and comment

on them. Has the original problem been cured? Do the weights now satisfy a

priori expectations?

(e) How do the delay and interim elasticities compare with those obtained earlier?

9.15* Reconsider the sugar cane supply response problem that was introduced in Exercise

9.14. Using data in bangla.dat, estimate the following model with no lags

ln AREAtð Þ ¼ b1 þ b2 ln PRICEtð Þ þ et

(a) Find the correlogram for the residuals. What autocorrelations are significantly

different from zero?

(b) Perform an LM test for autocorrelated errors using one lagged residual and a 5%

significance level.

(c) Find two 95% confidence intervals for the elasticity of supply—one using least

squares standard errors and one using HAC standard errors. What are the

consequences for interval estimationwhen serially correlated errors are ignored?

(d) Estimate themodel under the assumption that the error is anAR(1) process. Is the

estimate for r significantly different from zero at a 5% significance level?

Compute a 95% confidence interval for the elasticity of supply. How does it

compare with those obtained in part (c)?

(e) Estimate an ARDL(1,1) model for sugar supply response. What restrictions are

necessary on the coefficients of this model to make it equivalent to that in (d)?

Test these restrictions using a 5% significance level. Do the residuals from this

model show any evidence of serial correlation?

9.16* Consider further the ARDL(1,1) supply response model for sugar cane estimated in

part (e) of Exercise 9.15.

ln AREAtð Þ ¼ dþ u1 ln AREAt�1ð Þ þ d0 ln PRICEtð Þ þ d1 ln PRICEt�1ð Þ þ vt

(a) Suppose the first two post-sample prices are PRICETþ1 ¼ 1 and PRICETþ2 ¼
0:8. Use the estimated equation to forecast ln (AREA) in years T þ 1 and T þ 2.

What are the corresponding forecasts for AREA?

(b) Find 95% forecast intervals forAREA in yearsT þ 1 andT þ 2. Canwe forecast

area accurately?

(c) Use the results in (9.90) and the estimated equation to find lag and interim

elasticities for up to four years. Interpret these values.

(d) Find the estimated total elasticity. What does this value tell you?

9.17 The file growth47.dat contains 250 quarterly observations on U.S. GDP growth

(percentage change in GDP) from quarter 2, 1947, to quarter 3, 2009.
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(a) Estimate an AR(2) model for GDP growth and check to see if the residuals are

autocorrelated. What residual autocorrelations, if any, are significantly different

from zero? Does an LM test with two lagged errors suggest serially correlated

errors?

(b) Repeat part(a) using an AR(3) model.

(c) Use the estimated AR(3) model to find 95% forecast intervals for growth in

2009Q4, 2010Q1, and 2010Q2. Check to see if the actual growth figures fell

within your forecast intervals. (You can find these figures on the Federal Reserve

Economic Data (FRED) web page maintained by the Federal Reserve Bank of

St. Louis).

9.18 Youwish to compare the performance of anARmodel and an exponential smoothing

model for forecasting sales revenue one week into the future.

(a) Using the data in ex9_13.dat, estimate an AR(2) model for SALES. Check to see

if the errors are serially correlated.

(b) Re-estimate the AR(2) model with the last four observations (t = 154, 155, 156,

and 157) omitted. Use the estimated model to forecast SALES for t ¼ 154 (one

week ahead). Call the forecast SALESAR154.

(c) Re-estimate the AR(2) model with the last three observations (t = 155, 156, and

157) omitted. Use the estimated model to forecast SALES for t ¼ 155 (oneweek

ahead). Call the forecast SALESAR155.

(d) Continue the process described in parts (b) and (c) to obtain forecasts SALESAR156
and SALESAR157.

(e) Follow the same procedure with an exponential smoothing model. First with the

last four observations omitted, then the last three, then the last two, and then

the last one, find the smoothing parameter estimate which minimizes the sum of

squares of the within-sample one-step forecast errors. In each case use

the estimated smoothing parameter to forecast one week ahead, obtaining the

forecasts SALESES154; SALES
ES
155; SALES

ES
156 and SALESES157.

(f) Find the mean-square prediction errors (MSPE) �157
t¼154 SALESARt ��

SALEStÞ2=4 and �157
t¼154 SALESESt � SALESt

� �2
=4. On the basis of their MSPEs,

which method has led to the most accurate forecasts?

9.19 In this exercise we explore further the relationship between houses sold and

the mortgage rate that was introduced in Exercise 9.6. To familiarize yourself

with the variables, go back and read the question for Exercise 9.6. Then, use the data

in homes.dat to answer the following questions:

(a) Graph HOMES, IRATE, DHOMES, and DIRATE. Which variables appear to be

trending? Which ones are not trending?

(b) Estimate the following model and report the results. Are all the estimates

significantly different from zero at a 5% significance level?

DHOMESt ¼ dþ u1DHOMESt�1 þ d1DIRATEt�1

þ d2DIRATEt�2 þ vt
(9.92)

(c) Test the hypothesisH0 : u1d1 ¼ �d2 against the alternativeH1 : u1d1 6¼ �d2 at a
5% significance level. What does the outcome of this test tell you?

(d) Find the correlogram of the residuals from estimating (9.92). Does it show any

evidence of serial correlation in the errors?
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(e) Test for serially correlated errors in (9.92) using an LM test with two lagged

errors.

(f) Estimate the following ARDL model:

DHOMESt ¼ dþ u1DHOMESt�1 þ u5DHOMESt�5 þ d1DIRATEt�1

þ d3DIRATEt�3 þ vt
(9.93)

This is a special case of an ARDL(5,3) model where u2 ¼ u3 ¼ u4 ¼ d0 ¼
d2 ¼ 0. Is this equation an improvement over (9.92)? Why?

9.20 (a) Show that (9.93) can be written as

HOMESt ¼ dþ u1 þ 1ð ÞHOMESt�1 � u1HOMESt�2 þ u5DHOMESt�5

þ d1DIRATEt�1 þ d3DIRATEt�3 þ vt

(b) If you have not already done so, estimate (9.93). Use this estimated equation and

the result in part (a) to forecast the number of new one-family houses sold in

April, May, and June 2010, assuming the mortgage rate in those three months

remains constant at 4.97%

(c) Find 95% forecast intervals for the three forecasts made in part (b).

9.21 In (9.59) we obtained the following estimated equation for Okun’s Law

dDUt ¼ 0:3780þ 0:3501DUt�1 � 0:1841Gt � 0:0992Gt�1

ðseÞ ð0:0578Þ ð0:0846Þ ð0:0307Þ ð0:0368Þ

(a) Use the data in okun.dat to reproduce these estimates.

(b) Check the correlogram of the residuals. Are there any significant autocorrela-

tions?

(c) Carry out LM tests for autocorrelation on the residuals for error lags up to four.

(d) Re-estimate the equation with variables DUt�2 and Gt�2 added separately and

then together. Are their coefficients significantly different from zero?

(e) What do you conclude about the specification in (9.59)?

9.22 An important relationship in macroeconomics is the consumption function. The file

consumptn.dat contains quarterly data from 1960Q1 to 2009Q4 on the percentage

changes in disposable personal income and personal consumption expenditures. We

describe these variables as income growth (INCGWTH) and consumption growth

(CONGWTH). To ensure that the same number of observations (197) are used for

estimation in each of the models that we consider, use as your sample period 1960Q4

to 2009Q4. Where relevant, lagged variables on the right-hand side of equations can

use values prior to 1960Q4.

(a) Graph the time series forCONGWTH and INCGWTH. Include a horizontal line at

themean of each series.Do the series appear to fluctuate around a constantmean?

(b) Estimate the model CONGWTHt ¼ dþ d0INCGWTHt þ vt. Interpret the esti-

mate for d0. Check for serially correlated errors using the residual correlogram,

and an LM test with two lagged errors. What do you conclude?

(c) Estimate themodelCONGWTHt ¼ dþ u1CONGWTHt�1þ d0INCGWTHt þ vt.

Is this model an improvement over that in part (b)? Is the estimate for u1
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significantly different from zero? Have the values for the AIC and the SC gone

down? Has serial correlation in the errors been eliminated?

(d) Add the variable CONGWTHt�2 to the model in part (c) and re-estimate. Is this

model an improvement over that in part (c)? Is the estimate for u2 (the coefficient
ofCONGWTHt�2) significantly different from zero?Have the values for theAIC

and the SC gone down? Has serial correlation in the errors been eliminated?

(e) Add the variable INCGWTHt�1 to the model in part (d) and re-estimate. Is this

model an improvement over that in part (d)? Is the estimate for d1 (the coefficient
of INCGWTHt�1) significantly different from zero? Have the values for the AIC

and the SC gone down? Has serial correlation in the errors been eliminated?

(f) Does the addition of CONGWTHt�3 or INCGWTHt�2 improve the model in

part (e)?

(g) Drop the variable CONGWTHt�1 from the model in part (e) and re-estimate.

Why might you consider dropping this variable? The model you should be

estimating is

CONGWTHt ¼ dþ u2CONGWTHt�2 þ d0INCGWTHt

þ d1INCGWTHt�1 þ vt
(9.94)

Does this model have lower AIC and SC values than that in (e)? Is there any

evidence of serially correlated errors?

9.23 If you have not already done so, use the data in consumptn.dat and the sample

period 1960Q4 to 2009Q4 to estimate (9.94). Given that INCGWTH2010Q1 ¼
0:6; INCGWTH2010Q2 ¼ 0:8; and INCGWTH2010Q3 ¼ 0:7, find 90% forecast inter-

vals for consumption growth in 2010Q1, 2010Q2, and 2010Q3. Comment on

these intervals.

9.24 Consider the infinite lag representation of (9.94) that we write as

CONGWTHt ¼ aþ �
1

s¼0
bsINCGWTHt�s þ et

(a) Derive expressions that can be used to calculate the bs from u2; d0; and d1.
(b) Find estimates for the one-, two-, and three-quarter delay and interimmultipliers,

and the total multiplier. Interpret these estimates.

9.25 In this question we investigate the effect of wage changes on the inflation rate. Such

effects can be from the demand side or the supply side. On the supply side, we expect

wage increases to increase costs of production and to drive up prices. On the demand

side, wage increases mean greater disposable income, and a greater demand for

goods and services that also pushes up prices. Irrespective of the line of reasoning, the

relationship between wage changes and inflation is likely to be a dynamic one; it

takes time for wage changes to impact on inflation. To investigate this dynamic

relationship, we use quarterly data on U.S. inflation (INF) and wage growth

(WGWTH) from 1970Q2 to 2010Q1. These data can be found in the file

infln_wage.dat.

(a) Graph the time series for INF andWGWTH. Include a horizontal line at the mean

of each series. Do the series appear to fluctuate around a constant mean?

(b) Estimate the model INFt ¼ dþ d0WGWTHt þ vt. Interpret the estimate for d0.
Check for serially correlated errors using the residual correlogram, and an LM

test with two lagged errors. What do you conclude?
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(c) Estimate the model INFt ¼ dþ u1INFt�1 þ d0WGWTHt þ vt. Find estimates

for the impactmultiplier and the totalmultiplier for the effect of a change inwage

growth on inflation. How do these values compare with the estimate for d0 from
part (b)? (Hint: Use (9.90) with d1 ¼ 0 and sum the geometric progression to get

the total multiplier.)

(d) Did inclusion of INFt�1 in the model eliminate serial correlation in the errors?

Report any significant residual autocorrelations from the equation in part (c) and

the results from LM tests with two and three lagged residuals.

(e) Add first INFt�2, and then INFt�3, to the model in part (c). In each case report the

results of correlogram and LM checks for serially correlated errors.

(f) Omit INFt�2 from the second model estimated in part (e), and estimate the

resulting model

INFt ¼ dþ u1INFt�1 þ u3INFt�3 þ d0WGWTHt þ vt (9.95)

Why might you consider dropping INFt�2? Did its omission lead to a fall in the

AIC and SC? Try addingWGWTHt�1. Does its inclusion improve the equation?

9.26 If you have not already done so, use the data in infln_wage.dat to estimate (9.95).

Given that WGWTH2010Q2 ¼ 0:6;WGWTH2010Q3 ¼ 0:5;WGWTH2010Q4 ¼ 0:7; and
WGWTH2011Q1 ¼ 0:4, find 95% forecast intervals for inflation in 2010Q2, 2010Q3,

2010Q4, and 2011Q1. Does knowing wage growth tell you much about future

inflation?

9.27 Consider the infinite lag representation of (9.95) that we write as

INFt ¼ aþ �
1

s¼0
bsWGWTHt�s þ et

(a) Derive expressions that can be used to calculate a and the bs from

u1; u3; d; and d0.
(b) Estimate the rate of inflation when WGWTH remains at WGWTH ¼ 0. Use the

estimates from (9.95) to test the hypothesis that the rate of inflation is zero when

wage growth is zero.

(c) Estimate the rate of inflation when wage growth is constant at 0.25% per quarter.

(d) Graph the delay multipliers for lags up to 12 quarters. Comment on what this

graph shows.

(e) Graph the interim multipliers for lags up to 12 quarters. Comment on what this

graph shows.

(f) Suppose WGWTH has been constant for a long period into the past. Then, in

quarter T þ 1 it increases by 0.2%, in quarter T þ 2 it increases by another 0.1%,

and in quarter T þ 3 it returns to its original level. Estimate the amount by which

inflation will change in quarters T þ 1; T þ 2; T þ 3; T þ 4, and T þ 5.

Appendix 9A The Durbin-Watson Test

In Sections 9.3 and 9.4 two testing procedures for testing for autocorrelated errors, the

sample correlogram and a Lagrange multiplier test, were considered. These are two

large sample tests; their test statistics have their specified distributions in large samples.

An alternative test, one that is exact in the sense that its distribution does not rely on a large

sample approximation, is the Durbin-Watson test. It was developed in 1950 and for a long
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timewas the standard test forH0 : r ¼ 0 in the AR(1) error model et ¼ ret�1 þ vt. It is used

less frequently today because of the need to examine upper and lower bounds, aswe describe

below, and because its distribution no longer holds when the equation contains a lagged

dependent variable.

It is assumed that the vt are independent random errors with distribution Nð0;s2
vÞ, and

that the alternative hypothesis is one of positive autocorrelation. That is,

H0 : r ¼ 0 H1 : r > 0

The statistic used to test H0 against H1 is

d ¼
�
T

t¼2
êt � êt�1ð Þ2

�
T

t¼1
ê2t

(9A.1)

where the êt are the least squares residuals êt ¼ yt � b1 � b2xt. To seewhy d is a reasonable

statistic for testing for autocorrelation, we expand (9A.1) as

d ¼
�
T

t¼2
ê2t þ �

T

t¼2
ê2t�1 � 2 �

T

t¼2
êt êt�1

�
T

t¼1
ê2t

¼
�
T

t¼2
ê2t

�
T

t¼1
ê2t

þ
�
T

t¼2
ê2t�1

�
T

t¼1
ê2t

� 2

�
T

t¼2
êtêt�1

�
T

t¼1
ê2t

� 1þ 1� 2r1

(9A.2)

The last line in (9A.2) holds only approximately. The first two terms differ from 1 through

the exclusion of ê21 and ê2T from the first and second numerator summations, respectively.

Thus, we have

d � 2 1� r1ð Þ (9A.3)

If the estimated value of r is r1 ¼ 0, then the Durbin-Watson statistic d � 2, which is taken

as an indication that themodel errors are not autocorrelated. If the estimate of r happened to
be r1 ¼ 1 then d � 0, and thus a low value for the Durbin-Watson statistic implies that the

model errors are correlated, and r > 0.

The question we need to answer is: How close to zero does the value of the test statistic

have to be beforewe conclude that the errors are correlated? In otherwords, what is a critical

value dc such that we reject H0 when d � dc? Determination of a critical value and a

rejection region for the test requires knowledge of the probability distribution of the test

statistic under the assumption that the null hypothesis, H0 : r ¼ 0, is true. For a 5%

significance level, knowledge of the probability distribution f (d) underH0 allows us to find

dc such thatPðd � dcÞ ¼ 0:05. Then, as illustrated in Figure 9A.1,we rejectH0 if d � dc and

fail to reject H0 if d > dc. Alternatively, we can state the test procedure in terms of the p-

value of the test. For this one-tail test, the p-value is given by the area under f (d ) to the left of
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the calculated value of d. Thus, if the p-value is less than or equal to 0.05, it follows that

d � dc, andH0 is rejected. If the p-value is greater than 0.05, then d > dc, andH0 is accepted.

In any event, whether the test result is found by comparing dwith dc or by computing the

p-value, the probability distribution f (d ) is required. A difficulty associated with f (d), and

one that we have not previously encountered when using other test statistics, is that this

probability distribution depends on the values of the explanatory variables. Different sets of

explanatory variables lead to different distributions for d. Because f (d ) depends on the

values of the explanatory variables, the critical value dc for any given problem will also

depend on the values of the explanatory variables. This property means that it is impossible

to tabulate critical values that can be used for every possible problem. With other test

statistics, such as t, F, and x2, the tabulated critical values are relevant for all models.

There are two ways to overcome this problem. The first way is to use software that

computes the p-value for the explanatory variables in the model under consideration.

Instead of comparing the calculated d value with some tabulated values of dc, we get our

computer to calculate the p-value of the test. If this p-value is less than the specified

significance level, H0 : r ¼ 0 is rejected, and we conclude that the errors are correlated.

In the Phillips curve example the calculated value for the Durbin-Watson statistic from

the estimated equation in (9.22) is d = 0.8873. Is this value sufficiently close to zero (or

sufficiently less than 2), to rejectH0 and conclude that autocorrelation exists?Using suitable

software,16 we find that

p-value ¼ Prðd � 0:8873Þ ¼ 0:0000

The p-value turns out to less than 10�6, a value much less than a conventional 0.05

significance level; we conclude, therefore, that the equation’s error is positively auto-

correlated.

9A.1 THE DURBIN-WATSON BOUNDS TEST

In the absence of software that computes a p-value, a test known as the bounds test can be

used to partially overcome the problem of not having general critical values. Durbin and

Watson considered two other statistics dL and dU whose probability distributions do not

depend on the explanatory variables and which have the property that

dL < d < dU

f(d)

Reject H0

0 4 ddc

Do not reject  H0

FIGURE 9A.1 Testing for positive autocorrelation.

16 The software packages SHAZAM and SAS, for example, will compute the exact Durbin-Watson p-value.
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That is, irrespective of the explanatory variables in the model under consideration, dwill be

bounded by an upper bound dU and a lower bound dL. The relationship between the

probability distributions f ðdLÞ, f (d), and f ðdUÞ is depicted in Figure 9A.2. Let dLc be the 5%
critical value from the probability distribution for dL. That is, dLc is such that

PðdL < dLcÞ ¼ 0:05. Similarly, let dUc be such that PðdU < dUcÞ ¼ 0:05. Since the prob-

ability distributions f ðdLÞ and f ðdUÞ do not depend on the explanatory variables, it is

possible to tabulate the critical values dLc and dUc. These values do depend on TandK, but it

is possible to tabulate the alternative values for different T and K.

Thus, in Figure 9A.2 we have three critical values. The values dLc and dUc can be readily

tabulated. Thevalue dc, the one inwhichwe are really interested for testing purposes, cannot

be foundwithout a specialized computer program. However, it is clear from the figure that if

the calculated value d is such that d< dLc, then it must follow that d < dc, andH0 is rejected.

Also, if d > dUc, then it follows that d > dc, and H0 is not rejected. If it turns out that

dLc < d < dUc, then, because we do not know the location of dc, we cannot be sure whether

to accept or reject. These considerations led Durbin and Watson to suggest the following

decision rules, known collectively as the Durbin-Watson bounds test:

If d < dLc; reject H0 : r ¼ 0 and accept H1 : r > 0;

if d > dUc; do not reject H0 : r ¼ 0;

if dLc < d < dUc; the test is inconclusive.

The presence of a range of values where no conclusion can be reached is an obvious

disadvantage of the test. For this reason it is preferable to have softwarewhich can calculate

the required p-value if such software is available.

The critical bounds for the Phillips curve example for T ¼ 90 are17

dLc ¼ 1:635 dUc ¼ 1:679

Since d ¼ 0:8873 < dLc, we conclude that d < dc; and hencewe rejectH0; there is evidence

to suggest that the errors are serially correlated.

f (d)

f (dL)

dLc dc dUc

d
4

f (d) f (dU)

FIGURE 9A.2 Upper and lower critical value bounds for the Durbin-Watson test.
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Appendix 9B Properties of an AR(1) Error

We are interested in the mean, variance, and autocorrelations for et where et ¼ ret�1 þ vt
and the vt are uncorrelated random errors with mean zero and variance s2

v . To derive the

desired properties, we begin by lagging the equation et ¼ ret�1 þ vt by one period, to

obtain et�1 ¼ ret�2 þ vt�1. Then, substituting et�1 into the first equation yields

et ¼ ret�1 þ vt

¼ r ret�2 þ vt�1ð Þ þ vt

¼ r2et�2 þ rvt�1 þ vt

(9B.1)

Lagging et ¼ ret�1 þ vt by two periods gives et�2 ¼ ret�3 þ vt�2. Substituting this expres-

sion for et�2 into (9B.1) yields

et ¼ r2 ret�3 þ vt�2ð Þ þ rvt�1 þ vt

¼ r3et�3 þ r2vt�2 þ rvt�1 þ vt
(9B.2)

Repeating this process k times and rearranging the order of the lagged v’s yields

et ¼ rket�k þ vt þ rvt�1 þ r2vt�2 þ � � � þ rk�1vt�kþ1 (9B.3)

If weview the process as operating for a long time into the past, thenwe can let k ! 1. This

makes the first and last terms, rket�k and r
k�1vt�kþ1, go to zero, because �1 < r < 1. The

result is

et ¼ vt þ rvt�1 þ r2vt�2 þ r3vt�3 þ � � � (9B.4)

The regression error et can bewritten as a weighted sum of the current and past values of the

uncorrelated error vt. This is an important result. It means that all past values of the v’s

have an impact on the current error et and that this impact feeds through into yt through the

regression equation. Notice, however, that the impact of the past v’s declines the further

wego into the past. Theweights that are attached to the lagged v’s are r; r2; r3; . . .. Because
�1 < r < 1, these weights decline geometrically as we consider past v’s that are

more distant from the current period. Eventually, they become negligible.

Equation (9B.4) can be used to find the properties of the et. Its mean is zero, because

E etð Þ ¼ E vtð Þ þ rE vt�1ð Þ þ r2E vt�2ð Þ þ r3E vt�3ð Þ þ � � �
¼ 0þ r� 0þ r2 � 0þ r3 � 0þ � � �
¼ 0

To find the variance, we write

var etð Þ ¼ var vtð Þ þ r2var vt�1ð Þ þ r4var vt�2ð Þ þ r6var vt�3ð Þ þ � � �
¼ s2

v þ r2s2
v þ r4s2

v þ r6s2
v þ � � �

¼ s2
v 1þ r2 þ r4 þ r6 þ � � �� �

¼ s2
v

1� r2
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In the above derivation zero covariance terms are ignored because the v’s are uncorrelated.

The result in the last line follows from rules for the sum of a geometric progression. Using

shorthand notation, we have s2
e ¼ s2

v

�ð1� r2Þ; the variance of e depends on that for v and
the value for r.

To find the covariance between two e’s that are one period apart, we use (9B.4) and its lag

to write

cov et; et�1ð Þ ¼ E etet�1ð Þ
¼ E



vt þ rvt�1 þ r2vt�2 þ r3vt�3 þ � � �� �
vt�1 þ rvt�2 þ r2vt�3 þ r3vt�4 � � �
� ��

¼ rE v2t�1

� �þ r3E v2t�2

� �þ r5E v2t�3

� �þ � � �
¼ rs2

v 1þ r2 þ r4 þ � � �� �
¼ rs2

v

1� r2

When the second line in the above derivation is expanded, only squared terms with the

same subscript are retained. Because the v’s are uncorrelated, the cross-product terms

with different time subscripts will have zero expectation, and are dropped from the third

line. To obtain the fourth line from the third line, we have usedE v2t�kð Þ ¼ var vt�kð Þ ¼ s2
v for

all lags k.

In a similarway,we can show that the covariance between errors that are k periods apart is

cov et; et�kð Þ ¼ rks2
v

1� r2
k > 0

Appendix 9C Generalized Least Squares Estimation

We are considering the simple regression model with AR(1) errors

yt ¼ b1 þ b2xt þ et et ¼ ret�1 þ vt

Our objective is to obtain the generalized least squares estimator for b1 and b2 by

transforming themodel so that it has a new uncorrelated homoskedastic error term, enabling

us to apply least squares to the transformed model. To specify the transformed model we

begin with (9.44), which is

yt ¼ b1 þ b2xt þ ryt�1 � rb1 � rb2xt�1 þ vt (9C.1)

and then rearrange it to give

yt � ryt�1 ¼ b1 1� rð Þ þ b2 xt � rxt�1ð Þ þ vt (9C.2)

After defining the following transformed variables

y�t ¼ yt � ryt�1 x�t2 ¼ xt � rxt�1 x�t1 ¼ 1� r
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we can rewrite (9C.2) as

y�t ¼ x�t1b1 þ x�t2b2 þ vt (9C.3)

We have formed a newmodel with transformed variables y�t ; x�t1; and x�t2 and, importantly,
with an error term that is not the correlated et, but the uncorrelated vt that we assumed to be

distributed ð0;s2
vÞ. We would expect application of least squares to (9C.3) to yield the best

linear unbiased estimator for b1 and b2.

There are two additional problems that we need to solve, however:

1. Because lagged values of yt and xt had to be formed, only (T � 1) new observations

were created by the transformation. We have values ðy�t ; x�t1; x�t2Þ for t ¼ 2,3, . . . , T,
but we have no ðy�1; x�11; x�12Þ.

2. The value of the autoregressive parameter r is not known. Since y�t ; x�t1 and x�t2
depend on r, we cannot compute these transformed observations without

estimating r.
Considering the second problem first, we can use the sample correlation r1 defined in (9.21)

as an estimator for r. Alternatively, (9C.1) can be rewritten as

yt � b1 � b2xt ¼ rðyt�1 � b1 � b2xt�1Þ þ vt (9C.4)

which is the same as et ¼ ret�1 þ vt. After replacing b1 and b2 with the least squares

estimates b1 and b1, least squares can be applied to (9C.4) to estimate r.

Equations (9C.3) and (9C.4) can be estimated iteratively. That is, we use r̂ from (9C.4) to

estimate b1 and b2 from (9C.3). We then use these new estimates for b1 and b2 in (9C.4)

to re-estimate r, which we then use again in (9C.3) to re-estimate b1 and b2, and so on. This

iterative procedure is known as the Cochrane-Orcutt estimator. On convergence it is

identical to the nonlinear least squares estimator described in Section 9.3.2.

What about the problem of having (T � 1) instead of T transformed observations? One

way to solve this problem is to ignore it and to proceed with estimation on the basis of the

(T� 1) observations. That is the strategy adopted by the estimators we have considered so

far. If T is large, it is a reasonable strategy. However, if we wish to improve efficiency by

including a transformation of the first observation, we need to create a transformed error that

has the same variance as the errors ðv2; v3; : : : ; vTÞ.
The first observation in the regression model is

y1 ¼ b1 þ x1b2 þ e1

with error variance varðe1Þ ¼ s2
e ¼ s2

v

�ð1� r2Þ. The transformation that yields an error

variance of s2
v is multiplication by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
. The result is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
x1b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
e1

or

y�1 ¼ x�11b1 þ x�12b2 þ e�1 (9C.5)
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where

y�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
y1

x�12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
x1

x�11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
e�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
e1

(9C.6)

To confirm that the variance of e�1 is the same as that of the errors ðv2; v3; : : :; vTÞ, note that

varðe�1Þ ¼ ð1� r2Þvarðe1Þ ¼ ð1� r2Þ s2
v

1� r2
¼ s2

v

We also require that e�1 be uncorrelated with ðv2; v3; . . . ; vTÞ. This result will hold because

each of the vt does not depend on any past values for et. The transformed first observation in

(9C.5) can be used with the remaining transformed observations in (9C.3) to obtained

generalized least squares estimates that utilize all T observations. This procedure is

sometimes known as the Prais-Winsten estimator.
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C h a p t e r 10
Random Regressors and
Moment-Based Estimation

Learning Objectives

Based on the material in this chapter you should be able to:

1. Explain why we might sometimes consider explanatory variables in a regression

model to be random.

2. Explain the difference between finite sample and large sample properties of

estimators.

3. Give an intuitive explanation of why correlation between a random x and the error

term causes the least squares estimator to be inconsistent.

4. Describe the ‘‘errors-in-variables’’ problem in econometrics and its consequences

for the least squares estimator.

5. Describe the properties of a good instrumental variable.

6. Discuss how the method of moments can be used to derive the least squares and

instrumental variables estimators, paying particular attention to the assumptions

upon which the derivations are based.

7. Explainwhy it is important for an instrumental variable to be highly correlatedwith

the random explanatory variable for which it is an instrument.

8. Describe how instrumental variables estimation is carried out in the case of surplus

instruments.

9. State the large-sample distribution of the instrumental variables estimator for the

simple linear regression model, and how it can be used for the construction of

interval estimates and hypothesis tests.

10. Describe a test for the existence of correlation between the error term and the

explanatory variables in a model, explaining the null and alternative hypotheses,

and the consequences of rejecting the null hypothesis.
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In this chapterwe reconsider the linear regressionmodel.Wewill initially discuss the simple

linear regression model, but our comments apply to the general model as well. The usual

assumptions are SR1–SR6, given in Chapter 2.2.1. In Chapter 8, we relaxed the assumption

varðeÞ ¼ s2 that the error variance is the same for all observations. In Chapter 9 we

considered regressions with time-series data in which the assumption of serially uncorre-

lated errors, covðei; e jÞ ¼ 0, for i 6¼ j, cannot be maintained.

In this chapter we relax the assumption that variable x is not random. You may have

wondered about the validity of this assumption. In our original discussion of random

variables in the Probability Primer, Section P.1, we said that a variable is random if its

value is unknown until an experiment is performed. In an economist’s nonexperimental

world, the values of x and y are usually revealed at the same time, making x and y

random in the same way. This was recognized in the time-series context in Chapter

9.2.2.

We have considered the variable x to be nonrandom for several reasons. First, when

regression is based on data from controlled experiments, or if we are conditioning our results

upon the sample we have, it is a proper assumption. Secondly, it simplifies the algebra of

least squares. Thirdly, even if x is random, the properties of the least squares estimator still

hold under slightly modified assumptions.

The purpose of this chapter is to discuss regression models in which x is random and

correlated with the error term e. We will

� Discuss the conditions under which having a random x is not a problem, and how to

test whether our data satisfies these conditions.

� Present cases in which the randomness of x causes the least squares estimator to fail.

These are cases in which x is correlated with the error e.

� Provide estimators that have good properties even when x is random and correlated

with the error e.

10.1 Linear Regression with Random x’s

Let us modify the usual simple regression assumptions as follows:

A10.1 y ¼ b1 þ b2x þ e correctly describes the relationship between y and x in

the population, where b1 and b2 are unknown (fixed) parameters and e is an

unobservable random error term.

Keywords

asymptotic properties

conditional expectation

endogenous variables

errors-in-variables

exogenous variables

finite sample properties

first stage regression

Hausman test

instrumental variable

instrumental variable

estimator

just identified equations

large sample properties

over identified equations

population moments

random sampling

reduced form equation

sample moments

simultaneous equations bias

test of surplus moment conditions

two-stage least squares estimation

weak instruments
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A10.2 The data pairs (xi, yi), i ¼ 1, . . . , N, are obtained by random sampling. That

is, the data pairs are collected from the same population, by a process inwhich

each pair is independent of every other pair. Such data are said to be

independent and identically distributed.

A10.3 E ejxð Þ ¼ 0. The expected value of the error term e, conditional on any value

of x, is zero.

A10.4 In the sample, x must take at least two different values.

A10.5 var ejxð Þ ¼ s2. The variance of the error term, conditional on any x, is a

constant s2.

A10.6 The distribution of the error term is normal.

There is only one newassumption in this list. That is, assumptionA10.2 states that both y and

x are obtained by a sampling process, and thus are random. Also, assuming that the pairs are

independent implies that assumption SR4 holds as well. In the other assumptions, all we

have done is bring back the explicit conditioning notation introduced in Chapter 2.

Recognize that the random sampling assumption A10.2 is appropriate for cross-section

data but not time-series data. The assumptions for time-series data were discussed in

Chapter 9.

Because it plays a key role in the properties of the least squares estimator, let us clearly

state the interpretation of A10.3, E ejxð Þ ¼ 0. This assumption implies that we have

(i) omitted no important variables, (ii) that we have used the correct functional form,

and (iii) that there exist no factors that cause the error term e to be correlated with x.

Although the first two of these implications are intuitive, the third may not be.

� If E ejxð Þ ¼ 0, then we can show that it is also true that x and e are uncorrelated, and

that cov(x, e) ¼ 0. Explanatory variables that are not correlated with the error

term are called exogenous variables. This terminology is used in various disci-

plines, and means ‘‘determined outside of a system.’’ For example, in a supply and

demand model, changes in supply due to events like hurricanes or earthquakes are

‘‘exogenous.’’ The econometric analysis of economic systems is considered in

Chapter 11. There you will gain a deeper understanding of the term.

� Conversely, if x and e are correlated, then cov(x, e) 6¼ 0 and we can show that

E ejxð Þ 6¼ 0. Explanatory variables that are correlated with the error term are

called endogenous variables. This means ‘‘determined within a system.’’ For

example, in a supply and demand model, equilibrium price and quantity are

endogenous.

Thus in addition to the usual specification errors of omitted variables and an incorrect

functional form, assumption A10.3 eliminates correlation between a random explanatory

variable x and the random error term e. We discuss the consequences of correlation between

x and e in Section 10.1.3. In Section 10.2 we will explore some cases in which we can

anticipate that correlation will exist between x and e. In each such case the usual least

squares estimation procedure is no longer appropriate.

10.1.1 THE SMALL SAMPLE PROPERTIES OF THE LEAST SQUARES ESTIMATOR

In Chapter 2 we proved the Gauss-Markov theorem. The result that under the classical

assumptions, and fixed x’s, the least squares estimator is the best linear unbiased estimator, is
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a finite sample, or a small sample. What this means is that the result does not depend

on the size of the sample. It holds in every sample, whether the sample size N ¼ 20, 50,

or 10,000.

The finite sample properties of the least squares estimator when x is random can be

summarized as follows: Under assumptions A10.1–A10.6,1

1. The least squares estimator is unbiased.

2. The least squares estimator is the best linear unbiased estimator of the regression

parameters, and the usual estimator of s2 is unbiased.

3. The distributions of the least squares estimators, conditional upon the x’s, are normal,

and their variances are estimated in the usual way. The usual interval estimation and

hypothesis testing procedures are valid.

What these results say is that if x is random, as long as the data are obtained by random

sampling and the other usual assumptions hold, no changes in our regression methods are

required.

10.1.2 LARGE SAMPLE PROPERTIES OF THE LEAST SQUARES ESTIMATOR

In Chapter 5, Appendices 5B.1–5B.2 we introduced ‘‘large sample,’’ or ‘‘asymptotic’’

analysis. If you have not read those appendices, please do so now.

For the purposes of a ‘‘large sample’’ analysis of the least squares estimator, it is

convenient to replace assumption A10.3 by

A10.3* E(e) ¼ 0 and cov(x, e) ¼ 0

We can make this replacement because if assumption A10.3 is true, it follows that A10.3*

is true. That is, E ejxð Þ ¼ 0 ) cov x; eð Þ ¼ 0 and E ejxð Þ ¼ 0 ) E eð Þ ¼ 0. These relations

are proven in Appendix 10A. Introducing assumption A10.3* is convenient because we

want to investigate how to estimate models in which a random regressor x is correlated with

the error term e—that is, when we violate the assumption that cov(x, e) ¼ 0. While it does

not seem like much of a change, because A10.3* is actually a weaker assumption than

A10.3, under A10.3*we cannot show that the least squares estimator is unbiased, or that any

of the other finite sample properties hold.

What we can say is the following: Under assumptions A10.1, A10.2, A10.3*, A10.4, and

A10.5, the least squares estimators

1. Are consistent. That is, they converge in probability to the true parameter values as

N!1.

2. Have approximate normal distributions in large samples, whether the errors are

normally distributed or not. Furthermore, our usual interval estimators and test

statistics are valid, if the sample is large.

3. If assumption A10.3* is not true, and in particular if cov(x,e) 6¼ 0 so that x and e are

correlated, then the least squares estimators are inconsistent. They do not converge to

the true parameter values even in very large samples. Furthermore, none of our usual

hypothesis testing or interval estimation procedures are valid.
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When x is random, the relationship between x and e is the crucial factor when deciding

whether least squares estimation is appropriate or not. If the error term e is correlated with x

(or any xk in themultiple regressionmodel), then the least squares estimator fails. In the next

section we explain why correlation between x and e leads to the failure of the least squares

estimator.

10.1.3 WHY LEAST SQUARES ESTIMATION FAILS

In this sectionwe provide an intuitive explanationwhy the least squares estimator fails when

cov(x, e) 6¼ 0. An algebraic proof is given in Appendix 10B. The regression model data

generation process adds a random error e to the systematic regression function E yjxð Þ ¼
b1 þ b2x to obtain the observed outcome y. In Figure 10.1(a) are positively correlated x and

e values. In Figure 10.1(b) the positively-sloped regression functionE yjxð Þ ¼ b1 þ b2x, the

object of our analysis, is the solid line. For each value of x, add to E yjxð Þ ¼ b1 þ b2x

2
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2 4
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y � b1 � b2x

Fitted Least Squares Line
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E (y�x) � β1 � β2x

∧

FIGURE 10.1 (a) Correlated x and e. (b) Plot of data, true and fitted regression functions.
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the randomerrore to obtain y data values, y ¼ b1þb2xþ e, shown as dots in Figure 10.1(b).

As you see, the true regression function does not pass through the middle of the data in this

case, and that is because of the correlation between x and e. The y values for larger x values

have positive errors e. The y values for smaller x values have negative errors e.

Least squares estimation leads to a fitted line passing through the middle of the data,

shown as a dashed line in Figure 10.1(b). The slope of the fitted line (the estimate b2)

overestimates the true slope of the regression function, b2 > 0. The least squares estimator

attributes all variation in y to variation in x. In this case, however, the variation in y is from

two sources: changes in x and changes in e; and these changes have a positive correlation. If

we think about the effect of changes in x and e on y, we have

Dy ¼ b2Dxþ De

ðþÞ ðþÞ ðþÞ

If x and e are positively correlated and b2 > 0, increases in the x and e values combine to

increase y. In the least squares estimation process, all the change (increase) in y is attributed

to the effect of the change (increase) in x, and thus the least squares estimator will

overestimate b2.

Throughout this chapter we use the relation between wages and years of education as an

example. In this case the omitted variable ‘‘intelligence’’ is in the regression error, and it is

likely to be positively correlated with the years of education a person receives, with more

intelligent individuals choosing to obtain more years of education. When regressing wage

on years of education, increases in wages are all attributed to increases in education by the

least squares estimator. The effect of education is overstated because some of the increase in

wages is also due to higher intelligence.

The statistical consequences of correlation between x and e is that the least squares

estimator is biased—and this bias will not disappear no matter how large the sample.

Consequently the least squares estimator is inconsistentwhen there is correlation between x

and e. In the following section we describe some common situations in which there is

correlation between x and e, causing the least squares estimator to fail.

10.2 Cases in Which x and e Are Correlated

There are several common situations in which the least squares estimator fails due to the

presence of correlation between an explanatory variable and the error term. When an

explanatory variable and the error term are correlated, the explanatory variable is said to be

endogenous. This term comes from simultaneous equationsmodels,whichwewill consider

in Chapter 11, and means ‘‘determined within the system.’’ Using this terminology when

an explanatory variable is correlated with the regression error, one is said to have an

‘‘endogeneity problem.’’

10.2.1 MEASUREMENT ERROR

The errors-in-variables problem occurs when an explanatory variable is measured with

error. If we measure an explanatory variable with error, then it is correlated with the error

term, and the least squares estimator is inconsistent. As an illustration, consider the

following important example. Let us assume that an individual’s personal saving, like

their consumption, is based on his or her ‘‘permanent’’ or long-run income. Let y ¼ annual
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savings and let x� ¼ the permanent annual income of a person. A simple regression model

representing this relationship is

y ¼ b1 þ b2x
� þ v (10.1)

We have asterisked (*) the permanent income variable because it is difficult, if not

impossible, to observe. For the purposes of a regression, suppose that we attempt to

measure permanent income using x ¼ current income. Current income is a measure of

permanent income, but it does not measure permanent income exactly. It is sometimes

called a proxy variable. To capture this feature, let us specify that

x ¼ x� þ u (10.2)

where u is a random disturbance, with mean 0 and variance s2
u. With this statement, we are

admitting that observed current income only approximates permanent income, and con-

sequently that we have measured permanent income with error. Furthermore, let us assume

that u is independent of v and serially uncorrelated.When we use x in the regression in place

of x�, we do so by replacement. That is, substitute x� ¼ x � u into (10.1) to obtain

y ¼ b1 þ b2x
� þ v

¼ b1 þ b2ðx � uÞ þ v

¼ b1 þ b2x þ ðv � b2uÞ
¼ b1 þ b2x þ e

(10.3)

In (10.3) the explanatory variable x is random, from the assumption ofmeasurement error in

(10.2).

In order to estimate (10.3) by least squares, we must determine whether or not x is

uncorrelated with the random disturbance e. The covariance between these two random

variables, using the fact that EðeÞ ¼ 0, is

covðx; eÞ¼ EðxeÞ ¼ E½ðx� þ uÞðv � b2uÞ�
¼ Eð�b2u

2Þ ¼ �b2s
2
u 6¼ 0

(10.4)

The least squares estimator b2 is an inconsistent estimator of b2 because of the correlation

betweentheexplanatoryvariableandtheerrorterm.Consequently,b2 doesnotconvergetob2 in

largesamples.Furthermore,inlargeorsmallsamplesb2 isnotapproximatelynormalwithmean

b2 and variance varðb2Þ ¼ s2=�ðx � xÞ2. When least squares fails in this way, is there

another estimation approach that works? The answer is yes, as we will see in Section 10.3.

10.2.2 SIMULTANEOUS EQUATIONS BIAS

Another situation inwhich an explanatory variable is correlatedwith the regression error term

arises in simultaneous equations models. While this terminology may not sound familiar,

students of economics deal with such models from their earliest introduction to supply and

demand. Recall that in a competitive market, the prices and quantities of goods are determined

jointly by the forces of supply and demand. Thus ifP¼ equilibriumprice andQ¼ equilibrium

quantity, we can say thatP andQ are endogenous, because they are jointly determinedwithin a

simultaneous systemof two equations, one equation for the supply curve and the other equation

for the demand curve. Suppose that we write down the relation

Q ¼ b1 þ b2P þ e (10.5)
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Weknow that changes in price affect the quantities supplied and demanded.But it is also true

that changes in quantities supplied and demanded lead to changes in prices. There is a

feedback relationship between P and Q. Because of this feedback, which results because

price and quantity are jointly, or simultaneously, determined, we can show that

covðP, eÞ 6¼ 0. The least squares estimation procedure will fail if applied to (10.5) because

of an endogeneity problem, and the resulting bias (and inconsistency) is called the

simultaneous equations bias. Supply and demand models permeate economic analysis,

and we will treat simultaneous equations models fully in Chapter 11.

10.2.3 OMITTED VARIABLES

When an omitted variable is correlated with an included explanatory variable, then the

regression error will be correlated with the explanatory variable, making it endogenous.

The classic example is from labor economics. A person’s wage is determined by in part his

or her level of education. Let us specify a log-linear regression model explaining observed

hourly wage as

ln WAGEð Þ ¼ b1 þ b2EDUC þ b3EXPERþ b4EXPER
2 þ e (10.6)

with EDUC ¼ years of education and EXPER ¼ years of experience. What else affects

wages? What have we omitted? This introspective experiment should be carried out each

time a regression model is formulated. There are several factors we might think of, such as

labor market conditions, region of the country, and union membership. However, labor

economists are most concerned about the omission of a variable measuring ability. It is

logical that a person’s ability (and industriousness) may affect the quality of their work and

their wage. These variables are components of the error term e, since we usually have no

measure for them. The problem is that not only might ability affect wages, but more able

individuals may also spend more years in school, causing a positive correlation between the

error term e and the education variableEDUC, so that cov(EDUC, e)> 0. If this is true, then

we can expect that the least squares estimator of the returns to another year of education will

be positively biased, E b2ð Þ > b2, and inconsistent, meaning that the bias will not disappear

even in very large samples.

10.2.4 LEAST SQUARES ESTIMATION OF AWAGE EQUATION

We will use the data on married women in the file mroz.dat to estimate the wage model in

(10.6). Using theN ¼ 428 women in the samplewho are in the labor force, the least squares

estimates and their standard errors are

lnðWAGEÞ ¼ �0:5220þ 0:1075�EDUC þ 0:0416�EXPER� 0:0008�EXPER2

ðseÞ ð0:1986Þ ð0:0141Þ ð0:0132Þ ð0:0004Þ

We estimate that an additional year of education increases wages approximately 10.75%,

holding everything else constant. If ability has a positive effect on wages, then this

estimate is overstated, as the contribution of ability is attributed to the education

variable.

The social and policy importance of the estimate 0.1075 can hardly be exaggerated.

Countries invest a large portion of tax revenue to improve education. Why? It is an

1 0 . 2 CASES IN WHICH x AND e ARE CORRELATED 407



investment, and like any other investment investors (taxpaying citizens) expect a rate of

return that is competitive with rates of returns for alternative projects. Based on the

estimated equation above, additional years of schooling are estimated to increase wages

by 10.75%, holding other factors fixed, meaning that individuals are more likely to be self-

sufficient, enjoy a good quality of life, not requiring welfare or public health assistance, and

less likely to engage in crime. Suppose, however, that 10.75% overestimates the returns to

education for wage income. We might re-evaluate the investment in education and perhaps

decide to spend tax dollars on bridges or parks instead of schools. Evaluating the social rate

of return to education is a social policy problem. Regression estimates such as those above

play heavily into the calculation. Consequently we must do all that we can, as econome-

tricians, to obtain estimates using the best methods. In the next section we begin our

examination of alternative estimation methods for models in which regression errors are

correlated with regression variables.

10.3 Estimators Based on the Method of Moments

In the simple linear regression model y ¼ b1 þ b2xþ e, when x is random and

covðx; eÞ ¼ EðxeÞ 6¼ 0, the least squares estimators are biased and inconsistent, with none

of their usual nice properties holding. When faced with such a situation we must consider

alternative estimation procedures. In this section we discuss the ‘‘method of moments’’

principle of estimation,which is an alternative to the least squares estimation principle.When

all the usual assumptions of the linearmodel hold, themethod ofmoments leads us to the least

squares estimator. If x is random and correlated with the error term, the method of moments

leads us to an alternative, called instrumental variables estimation or two-stage least squares

estimation, that will work in large samples.

10.3.1 METHOD OF MOMENTS ESTIMATION OF A POPULATION MEAN

AND VARIANCE

Let us begin with a simple case. The kth moment of a random variable Y is the expected

value of the random variable raised to the kth power. That is,

EðYkÞ ¼ mk ¼ kthmoment of Y (10.7)

Recall that an ‘‘expected value’’ is an average, over an infinite number of experimental

outcomes. Consequently, the kth populationmoment in (10.7) can be estimated consistently

using the sample (of size N) analog

bEðYkÞ ¼ m̂k ¼ kth samplemoment of Y ¼ �yki =N (10.8)

Themethod ofmoments estimation procedure equatesm population moments tom sample

moments to estimate m unknown parameters. As an example, let Y be a random variable

with mean EðYÞ ¼ m and variance, given in the Probability Primer, equation (P.13):

varðYÞ ¼ s2 ¼ EðY � mÞ2 ¼ EðY2Þ � m2 (10.9)
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In order to estimate the two population parameters m and s2, we must equate two

population moments to two sample moments. The first two population and sample

moments of Y are

Populationmoments Samplemoments

EðYÞ ¼ m1 ¼ m m̂ ¼ �yi=N
EðY2Þ ¼ m2 m̂2 ¼ �y2i =N

(10.10)

Note that for the first population moment m1, it is customary to drop the subscript and use m
to denote the mean of Y. With these two moments, we can solve for the unknown mean and

variance parameters. Equate the first sample moment in (10.10) to the first population

moment to obtain an estimate of the population mean,

m̂ ¼ �yi=N ¼ y (10.11)

Then use (10.9), replacing the second populationmoment in (10.10) by its sample value and

replacing first moment m by (10.11)

~s2 ¼ m̂2 � m̂2 ¼ �y2i
N

� y2 ¼ �y2i � Ny2

N
¼ �ðyi � yÞ2

N
(10.12)

Themethod ofmoments leads us to the samplemean as an estimator of the populationmean.

The method of moments estimator of the variance has N in its denominator, rather than the

usual N�1, so it is not exactly the sample variance we are used to. But in large samples this

will not make much difference. In general, method of moments estimators are consistent,

and converge to the true parameter values in large samples, but there is no guarantee that

they are ‘‘best’’ in any sense.

10.3.2 METHOD OF MOMENTS ESTIMATION IN THE

SIMPLE LINEAR REGRESSION MODEL

The definition of a ‘‘moment’’ can be extended to more general situations. In the linear

regression model y ¼ b1 þ b2xþ e, we usually assume that

EðeÞ ¼ 0)Eðy� b1 � b2xÞ ¼ 0 (10.13)

Furthermore, if x is fixed, or random but not correlated with e, then

EðxeÞ ¼ 0)E½xðy� b1 � b2xÞ� ¼ 0 (10.14)

Equations (10.13) and (10.14) are moment conditions. If we replace the two population

moments by the corresponding sample moments, we have two equations in two unknowns,

which define the method of moments estimators for b1 and b2,

1

N
�ðyi � b1 � b2xiÞ ¼ 0

1

N
� xiðyi � b1 � b2xiÞ ¼ 0

(10.15)

1 0 . 3 E ST IMATORS BASED ON THE METHOD OF MOMENTS 409



These two equations are equivalent to the least squares ‘‘normal’’ equations [see Chapter 2

Appendix A, (2A.3) and (2A.4)] and their solution yields the least squares estimators

b2 ¼ �ðxi � xÞðyi � yÞ
�ðxi � xÞ2

b1 ¼ y� b2x

Thus, under ‘‘nice’’ assumptions, themethod ofmoments principle of estimation leads us to

the same estimators for the simple linear regression model as the least squares principle.

10.3.3 INSTRUMENTAL VARIABLES ESTIMATION IN THE SIMPLE LINEAR

REGRESSION MODEL

Problems for least squares arise when x is random and correlated with the random

disturbance e, so that EðxeÞ 6¼ 0. This makes the moment condition in (10.14) invalid.

Suppose, however, that there is another variable z such that

1. z does not have a direct effect on y, and thus it does not belong on the right-hand side

of the model as an explanatory variable.

2. z is not correlated with the regression error term e. It is exogenous.

3. z is strongly (or at least not weakly) correlated with x, the endogenous explanatory

variable.

Avariable zwith these properties is called an instrumental variable. This terminology arises

because although z does not have a direct effect on y, having it will allow us to estimate

the relationship between x and y. It is a tool, or instrument, that we are using to achieve our

objective.

If such a variable z exists, then we can use it to form the moment condition

EðzeÞ ¼ 0)E½zðy� b1 � b2xÞ� ¼ 0 (10.16)

Then we can use (10.13) and (10.16) to obtain estimates of b1 and b2. The sample moment

conditions are

1

N
�ðyi � b̂1 � b̂2xiÞ ¼ 0

1

N
�ziðyi � b̂1 � b̂2xiÞ ¼ 0

(10.17)

Solving these equations leads us tomethod of moments estimators, which are usually called

the instrumental variable (IV) estimators,

b̂2 ¼ N�ziyi � �zi�yi
N�zixi � �zi�xi

¼ �ðzi � zÞðyi � yÞ
�ðzi � zÞðxi � xÞ

b̂1 ¼ y� b̂2x

(10.18)

These new estimators have the following properties:

� They are consistent, if z is exogenous, with EðzeÞ ¼ 0 (see Appendix 10C).

� In large samples the instrumental variable estimators have approximate normal

distributions. In the simple regression model
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b̂2 �N b2;
s2

r2zx�ðxi � xÞ2
 !

(10.19)

where r2zx is the squared sample correlation between the instrument z and the random

regressor x.

� The error variance is estimated using the estimator

ŝ2
IV ¼ �ðyi � b̂1 � b̂2xiÞ2

N � 2

10.3.3a The Importance of Using Strong Instruments

Examine the variance expression in (10.19). The denominator includes the squared

correlation between the instrument z and the endogenous variable x. We want to obtain

an instrument z that is highly correlated with x to improve the efficiency of the instrumental

variable estimator. If x and e are uncorrelated, so that least squares is still an option, we can

compare the efficiency of the two estimators. Note that we can write the variance of the

instrumental variables estimator of b2 as

varðb̂2Þ ¼ s2

r2zx�ðxi � xÞ2 ¼
varðb2Þ
r2zx

Because r2zx < 1 the variance of the instrumental variables estimator will always be larger

than the variance of the least squares estimator, and thus it is said to be less efficient. Using

the instrumental variables estimation procedure when it is not required leads to wider

confidence intervals, and less precise inference, than if least squares estimation is used. If the

correlation between z and x is 0.1, then the variance of the instrumental variables estimator is

100 times as large as the variance of the least squares estimator. If the correlation between z

and x is 0.5, then the variance of the instrumental variables estimator is four times as large as

the variance of the least squares estimator.

In recent years there has been a great deal of research on the behavior of the instrumental

variables estimator when the instrument is weakly correlated with the endogenous variable x.

When using a weak instrument, the instrumental variables estimator can be badly biased,

even in large samples, and its distribution is not approximately normal. Thus point estimates

can be substantially off, 95% confidence intervals may not work 95% of the time, and

hypothesis tests using the a ¼ 0.05 level of significance may not have a probability of

Type I error equal to 0.05. The bottom line is that when instruments are weak, instrumental

variables estimation is not reliable.

10.3.4 INSTRUMENTAL VARIABLES ESTIMATION IN THE MULTIPLE

REGRESSION MODEL

To implement instrumental variables estimation in a multiple regression equation, we need

an estimation formula that is more general than (10.18). To extend our analysis to a more

general setting, consider the multiple regression model y ¼ b1 þ b2x2 þ � � � þ bKxK þ e.

Suppose that among the explanatory variables we know, or suspect, that xK is an endogenous

variable correlated with the error term. The first K � 1 variables (x1 ¼ 1, x2, . . . , xK�1) are

exogenous variables that are uncorrelated with the error term e—they are ‘‘included’’
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instruments. Instrumental variables estimation can be carried out using a two-step process,

with a least squares regression in each step.

The first stage regression has the endogenous variable xK on the left-hand side, and all

exogenous and instrumental variables on the right-hand side. If we have L ‘‘external’’

instrumental variables that are from outside the model z1, z2, . . . , zL, then the first stage

regression is

xK ¼ g1 þ g2x2 þ � � � þ gK�1xK�1 þ u1z1 þ � � � þ uLzL þ vK (10.20)

where vK is a random error term that is uncorrelated with all the right-hand side variables.

Estimate the first-stage regression (10.20) by least squares and obtain the fitted value

x̂K ¼ ĝ1 þ ĝ2x2 þ � � � þ ĝK�1xK�1 þ û1z1 þ � � � þ ûLzL (10.21)

The fitted value x̂K is a weighted average, or a linear combination, of all the exogenous and

instrumental variables that we have available.

The second stage regression is based on the original specification with x̂K replacing xK,

y ¼ b1 þ b2x2 þ � � � þ bKx̂K þ e� (10.22)

where e� is an error term. Least squares estimation of (10.22) is justified because in large

samples e� is uncorrelated with the explanatory variables, including x̂K . The least squares

estimators from this equation, b̂1; . . . ; b̂K , are the instrumental variables (IV) estimators,

and because they can be obtained by two least squares regressions, they are also popularly

known as the two-stage least squares (2SLS) estimators. They are exactly the same. We

will refer to them as IV or 2SLS or IV/2SLS estimators. In the general case with more than

one endogenous variable on the right-hand side, the steps are similar, and are discussed

in Section 10.3.8.

We can use the standard formulas for estimator variances and covariances for the least

squares estimator of (10.22), which we described in Chapter 5.3.1, with one modification.

While we can use two least squares estimations to obtain proper estimates, least squares

software does not produce correct standard errors and t-values. The IV/2SLS estimator of the

error variance is based on the residuals from the original model, y ¼ b1þ
b2x2 þ � � � þ bKxK þ e,

ŝ2
IV ¼ � yi � b̂1 � b̂2x2i � � � � � b̂KxKi

� �2
N � K

(10.23)

Econometric software will automatically use the proper variance estimator if a two-stage

least squares or instrumental variables estimation option is chosen. Using the IV/2SLS

estimated standard errors from (10.22) we can carry out t-tests and construct interval

estimates of parameters that are valid in large samples. Furthermore, the usual tests of joint

hypotheses are valid in large samples if the instrumental variables are not weak.

10.3.4a Using Surplus Instruments in Simple Regression

Using the simple regression model the logic of the two-stage least squares estimation

procedure can be clarified. With surplus instruments we could select just the number we

need and discard the rest, but generally discarding information is not attractive. The 2SLS

method shows that we can use all the available instruments (assuming that they are strong)

412 RANDOM REGRESSORS AND MOMENT-BASED EST IMAT ION



by forming a linear combination of them. In the simple regression y ¼ b1 þ b2xþ e, if x is

endogenous, and we have L instruments, (10.21) becomes

x̂ ¼ ĝ1 þ û1z1 þ � � � þ ûLzL

We have combined all the instruments into a single variable. Then use x̂ as an instrumental

variable for x. This leads to the two sample moment conditions

1

N
� yi � b̂1 � b̂2xi
� � ¼ 0

1

N
�x̂i yi � b̂1 � b̂2xi
� � ¼ 0

Solving these conditions, and using the fact that x̂ ¼ x, we have

b̂2 ¼
� x̂i � x̂
� �

yi � yð Þ
� x̂i � x̂
� �

xi � xð Þ ¼
� x̂i � xð Þ yi � yð Þ
� x̂i � xð Þ xi � xð Þ

b̂1 ¼ y� b̂2x

We are forming a single ‘‘optimal’’ instrument from the L available instruments. This

estimator is identical to the IV/2SLS estimator arising from (10.22).

10.3.4b Surplus Moment Conditions

In the simple regression model we need only one instrumental variable, yielding two

moment conditions like (10.17), which we solve for the two unknown model parameters.

Sometimes, however, we have more instrumental variables at our disposal than are

necessary. In these circumstances we can use the two-stage procedure just described,

where the information fromall the instrumental variables is collected into onevariable, x̂. To

see why this is necessary, suppose we have L ¼ 2 instruments, z1 and z2. Compared

to (10.17) we have the additional moment condition

E z2eð Þ ¼ E z2 y� b1 � b2xð Þ½ � ¼ 0

Now we have three sample moment conditions:

1

N
� yi � b̂1 � b̂2xi
� � ¼ m̂1 ¼ 0

1

N
�zi1 yi � b̂1 � b̂2xi

� � ¼ m̂2 ¼ 0

1

N
�zi2 yi � b̂1 � b̂2xi

� � ¼ m̂3 ¼ 0

We have three equations with only two unknowns. We could simply throw away one of the

conditions (instruments) and use the remaining two to solve for the unknowns. However,

throwing away good information is hardly ever a good idea.An alternative that uses all of the

moment conditions is to choose values for b̂1 and b̂2 satisfying the three moment conditions

as closely as possible. One way to do this is to use the least squares principle, choosing b̂1

and b̂2 to minimize the sum of squares m̂2
1 þ m̂2

2 þ m̂2
3. It is best, however, to use weighted

least squares, putting the greatest weight on the moments with the smaller variances. While
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the exact details are beyond the scope of this book,2 the values of b̂1 and b̂2 that minimize

this weighted sum of squares are the IV/2SLS estimators.

10.3.5 ASSESSING INSTRUMENT STRENGTH USING THE FIRST STAGE MODEL

In Section 10.3.3a we emphasized the importance of strong instruments when estimating a

simple regression model with an endogenous explanatory variable. There the assessment of

the instrument’s strength was based on the correlation between the endogenous variable x

and the instrument z. In a multiple regression, measuring instrument strength is more

complicated. The first stage regression is a key tool in assessing whether an instrument is

‘‘strong’’ or ‘‘weak’’ in the multiple regression setting.

10.3.5a One Instrumental Variable

Suppose that xK is endogenous and that we have available one external instrumental variable

z1. In terms of the notation above, L ¼ 1. The first stage regression equation is

xK ¼ g1 þ g2x2 þ � � � þ gK�1xK�1 þ u1z1 þ vK (10.24)

In a simple regressionmodel, we can look for instrument strength in the correlation between

the endogenous variable and the instrument. In the multiple regression model we must deal

with the other exogenous variables (x2, . . . , xK�1). The key to assessing the strength of the

instrumental variable z1 is the strength of its relationship to xK after controlling for

the effects of all the other exogenous variables. This, however, is exactly the purpose of

multiple regression analysis. The coefficient u1 in the first stage regression (10.24)measures

the effect of z1 on xK after accounting for the effects of the other variables. A numerical

illustration of this property of multiple regression is given below in Section 10.3.7.

Not onlymust there be an effect of z1 on xK; itmust also be a statistically significant effect.

How significant?Very significant. To reject the hypothesis that the instrument z1 isweak, the

usual rule of thumb is that the F-test statistic for the null hypothesis H0:u1 ¼ 0 in (10.24)

should be greater than 10. Using the relationship between the t- and F-tests, t2 ¼ F

described in Chapter 6.1.3, this translates into the absolute t-statistic for significance being

greater than 3.16. The F > 10 rule has been refined by econometric researchers Stock and

Yogo, and their analysis is discussed in Appendix 10E. When instrumental variables are

weak, estimates and tests based on the resulting IV estimator are unreliable.

10.3.5b More Than One Instrumental Variable

Suppose that xK is endogenous and we have available external instrumental variables z1,

z2, . . . , zL. For a single endogenous variable we need only a single instrument. Sometimes

more instruments are available, and having more strong instruments may improve the

instrumental variables estimator. The first stage regression equation is now

xK ¼ g1 þ g2x2 þ � � � þ gK�1xK�1 þ u1z1 þ � � � þ uLzL þ vK (10.25)

We require that at least one of the instruments be strong. Given the nature of the

requirement, a joint F-test of the null hypothesis H0 : u1 ¼ 0; u2 ¼ 0; . . . ; uL ¼ 0 in

(10.25) is relevant, because the alternative is that at least one of the ui coefficients is

nonzero. Once again the magnitude of theF statistic is relevant, and roughly theF> 10 rule

2 A very advanced reference is Greene (2008), op. cit., Chapter 15.6.
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applies. As noted above, this threshold is refined in Appendix 10E. If the F-test statistic

value is sufficiently large, we reject the hypothesis that the instruments are ‘‘weak’’ and can

proceed with instrumental variables estimation. If the F-value is not sufficiently large, then

instrumental variables and two-stage least squares estimation is quite possibly worse than

‘‘ordinary’’ least squares.

10.3.6 INSTRUMENTAL VARIABLES ESTIMATION OF THE WAGE EQUATION

We continue the wage equation example from Section 10.2.4. We first consider the use of a

single instrumental variable, and then add a ‘‘surplus’’ instrument.

To carry out an instrumental variable estimation, we require a variable that does not

belong in thewage equation itself and that is correlated with EDUC, but that is uncorrelated

with the omitted factors in the error term, here a person’s ability, or intelligence. Such

variables are difficult to obtain, but in ThomasMroz’s data, we have the number of years of

education for the woman’s mother. A mother’s education (MOTHEREDUC) does itself not

belong in the daughter’s wage equation, and it is reasonable to propose that more educated

mothers are more likely to have more educated daughters. We will assess this requirement

using the method of Section 10.3.5a. The remaining question is whether a woman’s ability

and intelligence are correlated with her mother’s education? To be valid instruments, these

variables must be uncorrelated. We will assume so for purposes of illustration.

Before implementing IV/2SLS estimation, we obtain the least squares estimates of

thefirst stage equation forEDUC. Thefirst stage equationhas as explanatoryvariables all the

exogenous variables in the original equation, plus any external instrumental variables.

The least squares estimates are

bEDUC ¼ 9:7751þ 0:0489EXPER � 0:0013EXPER2 þ 0:2677MOTHEREDUC

ðseÞ ð0:4249Þ ð0:0417Þ ð0:0012Þ ð0:0311Þ ð10:26Þ

Note that the coefficient of MOTHEREDUC is very significant, with a t-value of 8.6,

corresponding to an F-test value of 73.95. This is important, as it indicates that our

instrument is correlated with the variable we suspect to be endogenous, even after

accounting for the other exogenous variables in the model.

To implement instrumental variables estimation using the two-stage least squares

approach, we obtain the predicted values of education from the first stage equation,bEDUC, and insert it into the log-linear wage equation to replace EDUC. Then estimate

the resulting equation by least squares. While this two-step process yields proper IV/2SLS

estimates, as we discussed in Section 10.3.4, the accompanying standard errors and t-values

are not correct. It is always best to use software commands designed for instrumental

variables, or two-stage least squares, estimation. The instrumental variables estimates of the

log-linear wage equation are

blnðWAGEÞ ¼ 0:1982 þ 0:0493EDUC þ 0:0449EXPER� 0:0009EXPER2

ðseÞ ð0:4729Þ ð0:0374Þ ð0:0136Þ ð0:0004Þ

Note two changes as compared to the least squares estimates. First, the estimated return to

education is 4.93%, which is lower than the least squares estimate of 10.75%. This is

consistent with the fact that the least squares estimator tends to overestimate the effect of

education if EDUC is positively correlated with the omitted factors in the error term. Also
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notice that the standard error on the coefficient of education (0.0374) is over 2.5 times larger

than the standard error reported with the least squares estimates (0.0141). This reflects the

fact that even with a good instrumental variable, the IV/2SLS estimator is not efficient, as

discussed in Section 10.3.3a. How can we improve the efficiency of the instrumental

variables estimator? We can obtain a larger sample, if possible, or we can obtain more and

stronger instrumental variables.

Let us add ‘‘father’s education’’ as an additional instrumental variable. To test for weak

instruments, we test the joint significance of the two proposed instrumentsMOTHEREDUC

and FATHEREDUC using a standard F-test in the first stage regression. Since there is only

one potentially endogenous variable in the wage equation, EDUC, the minimum number of

instrumental variables is one. Given two instruments, we require that at least one of them be

significant in the first stage equation. The first stage equation is

EDUC ¼ g1 þ g2EXPERþ g3EXPER
2 þ u1MOTHEREDUC þ u2FATHEREDUC þ v

The F-test null hypothesis is that both coefficients, u1 and u2, are zero, and if we reject this
null hypothesis we conclude that at least one of them is nonzero. The first stage estimates are

shown in Table 10.1.

In the first stage regression, the estimated coefficient ofMOTHEREDUC is 0.1576with a

t-value of 4.39, and the estimated coefficient of FATHEREDUC is 0.1895 with a t-value of

5.62. The F-statistic value for the null hypothesis that both these coefficients are zero is

55.40. This value is greater than the rule-of-thumb threshold of 10.We conclude that at least

one of the instruments is not weak. The IV/2SLS estimates are

bln WAGEð Þ¼ 0:0481þ 0:0614EDUC þ 0:0442EXPER� 0:0009EXPER2

ðseÞ ð0:4003Þ ð0:0314Þ ð0:0134Þ ð0:0004Þ (10.27)

Compared to the previous result using onlyMOTHEREDUC as an instrument, we see that

there is an increase in the estimate of the return to education to 6.14%, and a slight reduction

in the standard error. The estimated return to education is statistically significant now,

whereas it was not when only the mother’s education was used as an instrument.

10.3.7 PARTIAL CORRELATION

When introducing the multiple regression model, in Chapter 5.1.1, we stressed that the

coefficients are the effect of a unit change in an explanatory, independent, variable on

Ta b l e 1 0 . 1 First-Stage Equation

Variable Coefficient Std. Error t-Statistic Prob.

C 9.1026 0.4266 21.3396 0.0000

EXPER 0.0452 0.0403 1.1236 0.2618

EXPER2 �0.0010 0.0012 �0.8386 0.4022

MOTHEREDUC 0.1576 0.0359 4.3906 0.0000

FATHEREDUC 0.1895 0.0338 5.6152 0.0000

416 RANDOM REGRESSORS AND MOMENT-BASED EST IMAT ION



the expected outcome, holding all other things constant. In calculus terminology, the

coefficients are partial derivatives. In Section 10.3.5a we discussed another perspective on

the coefficients in amultiple regressionmodel: theymeasure the effect of a unit change in an

explanatory variable on the expected outcome after accounting for, or controlling for, the

effects of all other variables. In this section we discuss this interpretation a bit further. It will

benefit your understanding of regression analysis, and how we test for weak instruments in

the first stage regression. Furthermore this idea will lead to a more general test for weak

instrumental variables, which is introduced in the following section and discussed further in

Appendix 10E.

Let us perform an experiment based on the first stage regression in (10.26). Compute the

least squares residuals, say RESIDE, from the regression of EDUC on EXPER and EXPER2.

These residuals are EDUC with the effects of EXPER and EXPER2 removed. Sometimes

this process is called netting out or partialling out the effects of EXPER and EXPER2. Do

the same thing forMOTHEREDUC, computing the least squares residualsRESIDM from the

regression of MOTHEREDUC on EXPER and EXPER2. Finally, regress RESIDE on

RESIDM. The estimated coefficient is 0.2676908. The regression coefficient ofMOTHER-

EDUC in (10.26) carried out to more decimal places is 0.2676908. They are the same, and it

is not an accident. Regression coefficients can be thought of measuring the effect of one

variable on another after removing, or partialling out, the effects of all other variables. The

sample correlation between RESIDE and RESIDM, 0.3854, is called the partial correlation

coefficient. Partial correlations play an important role in testing for weak instrumental

variables in the general model.

10.3.8 INSTRUMENTAL VARIABLES ESTIMATION IN A GENERAL MODEL

To extend our analysis to a more general setting, consider the multiple regression model

y ¼ b1 þ b2x2 þ � � � þ bKxK þ e. Suppose that among the explanatory variables (x1 ¼ 1,

x2, . . . , xK) we know, or suspect, that several may be correlated with the error term e. Divide

the variables into two groups, with the firstG variables (x1 ¼ 1, x2,. . ., xG) being exogenous
variables that are uncorrelated with the error term e. The second group of B ¼ K�G

variables xGþ1; xGþ2; . . . ; xKð Þ is correlated with the regression error, and thus they are

endogenous. The multiple regression model, including all K variables, is then

y ¼
z}|{
b1 þ b2x2 þ � � � þ bGxG þ

z}|{
bGþ1xGþ1 þ � � � þ bKxK þ e (10.28)

In order to carry out IVestimation we must have at least as many instrumental variables as

we have endogenous variables. Suppose we have L external instrumental variables, from

outside the model, z1, z2, . . . , zL. Such notation is invariably confusing and cumbersome. It

may help to keep things straight to think of G ¼ Good explanatory variables and B ¼ Bad

explanatory variables and L ¼ Lucky instrumental variables, since we are lucky to have

them. Then we have The Good, the Bad, and the Lucky.

It is a necessary condition for IV estimation that L 	 B. If L ¼ B then there are just

enough instrumental variables to carry out IV estimation. The model parameters are said to

be just identified or exactly identified in this case. The term identified is used to indicate

that the model parameters can be consistently estimated. If L > B then we have more

instruments than are necessary for IV estimation, and themodel is said to be overidentified.

To implement IV/2SLS, estimate B first-stage equations, one for each explanatory

variable that is endogenous. On the left-hand side of the first-stage equations, we have

G exogenous variables B endogenous variables
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an endogenous variable. On the right-hand side, we have all the exogenous variables,

including theG explanatory variables that are exogenous, and the L instrumental variables,

which also must be exogenous. The B first-stage equations are

xGþj ¼ g1j þ g2jx2 þ � � � þ gGjxG þ u1jz1 þ � � � þ uLjzL þ vj; j ¼ 1; . . . ;B (10.29)

The first-stage parameters (g’s and u’s) take different values in each equation, which is why
they have a ‘‘j’’ subscript. We have omitted the observation subscript for simplicity. Since

the right-hand-side variables are all exogenous, we can estimate (10.29) by least squares.

Then obtain the predicted values

x̂Gþj ¼ ĝ1j þ ĝ2jx2 þ � � � þ ĝGjxG þ û1jz1 þ � � � þ ûLjzL; j ¼ 1; . . . ;B

This comprises the first stage of two-stage least squares estimation.

In the second stage of estimation we apply least squares to

y ¼ b1 þ b2x2 þ � � �bGxG þ bGþ1x̂Gþ1 þ � � � þ bKx̂K þ e� (10.30)

This two-stage estimation process leads to proper instrumental variables estimates, but it

should not be done this way in applied work. Use econometric software designed for two-

stage least squares or instrumental variables estimation so that standard errors, t-statistics,

and other test statistics will be computed properly.

10.3.8a Assessing Instrument Strength in a General Model

The F-test for weak instruments discussed in Section 10.3.5b is not valid for models having

more than one endogenous variable on the right side of the equation. Consider the model in

(10.28) with B ¼ 2,

y ¼ b1 þ b2x2 þ � � � þ bGxG þ bGþ1xGþ1 þ bGþ2xGþ2 þ e (10.31)

where x2, . . ., xG are exogenous and uncorrelated with the error term e, while xGþ1 and xGþ2

are endogenous. Suppose that we have two external instrumental variables z1 and z2, with z1
being a good instrument for both xGþ1 and xGþ2. The weak instrument F-test may be

significant in each first-stage equation even if z2 is an irrelevant instrument and not at all

related to xGþ1 or xGþ2. In such a casewemight conclude that we have two valid instruments

when we have only one.

The first-stage equations in this case are

xGþ1 ¼ g11 þ g21x2 þ � � � þ gG1xG þ u11z1 þ u21z2 þ v1

xGþ2 ¼ g12 þ g22x2 þ � � � þ gG2xG þ u12z1 þ u22z2 þ v2

The weak instrument F-test in the first equation is for the joint significance of u11 and u21,
H0 : u11 ¼ 0; u21 ¼ 0, with the alternative hypothesis that at least one of these coefficients

is not zero. If u11 is statistically significant, then the joint null hypothesis may be rejected

even if u21 ¼ 0. Similarly in the second equation we can obtain a significantF-test outcome

even if z2 is irrelevant as an instrument for xGþ2 as long as z1 is statistically significant.
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In this case we have two individually significant F-tests despite the fact that only one valid

instrument z1 is available, and thus the model in (10.31) is not identified.

The more general test required for this case, which builds on the concept of ‘‘partial

correlation’’ in Section 10.3.7, is discussed in Appendix 10E.

10.3.8b Hypothesis Testing with Instrumental Variables Estimates

We may be interested in testing hypotheses about the regression parameters based on the

two-stage least squares/instrumental variables estimates. When testing the null hypothesis

H0 :bk ¼ c, use of the test statistic t ¼ ðb̂k � cÞ=seðb̂kÞ is valid in large samples. We know

that asN!1, the tðN�KÞ distribution converges to the standard normal distributionN(0, 1).

If the degrees of freedomN � K are large, then critical values from the two distributionswill

be very close. It is common, but not universal, practice to use critical values, and p-values,

based on the tðN�KÞ distribution rather than themore strictly appropriateN(0, 1) distribution.

The reason is that tests based on the t-distribution tend towork better in samples of data that

are not large.

Another issue is whether to use standard errors that are ‘‘robust’’ to the presence of

heteroskedasticity (in cross-section data) or autocorrelation and heteroskedasticity (in time-

series data). These options were described in Chapters 8 and 9 for the linear regression

model, and they are also available in most software packages for IV estimation. Such

corrections to standard errors require large samples in order to work properly.

When using software to test a joint hypothesis, such as H0 :b2 ¼ c2;b3 ¼ c3, the test

may be based on the chi-square distribution with the number of degrees of freedom equal

to the number of hypotheses (J) being tested. The test itself may be called a Wald test, or

a likelihood ratio (LR) test, or a Lagrange multiplier (LM) test. These testing procedures

are all asymptotically equivalent and are discussed in Appendix C.8.4. However, the test

statistic reported may also be called an F-statistic with J numerator degrees of freedom

and N � K denominator degrees of freedom. This F-value is often calculated by dividing

one of the chi-square tests statistics, such as the Wald statistic, by J. The motivation for

using the F-test is to achieve better performance in small samples. Asymptotically, the

tests will all lead to the same conclusion. See Chapter 6, Appendix 6A, for some related

discussion. Once again, joint tests can be made ‘‘robust’’ to potential heteroskedasticity

or autocorrelation problems, and this is an option with many software packages.

10.3.8c Goodness-of-Fit with Instrumental Variables Estimates

We discourage the use of measures like R2 outside the context of least squares estimation.

When there are endogenous variables on the right-hand side of a regression equation, the

concept ofmeasuring howwell thevariation in y is explained by the x variables breaks down,

because as we discussed in Section 10.2, these models exhibit feedback. This logical

problem is paired with a numerical one. If our model is y ¼ b1 þ b2xþ e, then the IV

residuals are ê ¼ y� b̂1 � b̂2x. Many software packages will report the goodness-of-fit

measure R2 ¼ 1� �ê2i =�ðyi � yÞ2. Unfortunately, this quantity can be negative when

based on IV estimates.

10.4 Specification Tests

We have shown that if an explanatory variable is correlated with the regression error term,

the least squares estimator fails. If a strong instrumental variable is available, the IV

estimator is consistent and approximately normally distributed in large samples. But if we

use a weak instrument, or an instrument that is invalid in the sense that it is not uncorrelated
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with the regression error, then IVestimation can be as bad as, or worse than, using the least

squares estimator. We addressed how to detect weak instruments in Section 10.3.5, and go

into much greater detail on this problem in Appendix 10E. In this section we ask two other

important questions that must be answered in each situation in which instrumental variables

estimation is considered:

1. Canwe test for whether x is correlatedwith the error term? Thismight give us a guide

for when to use least squares and when to use IV estimators.

2. Can we test if our instrument is valid, and uncorrelated with the regression error, as

required?

10.4.1 THE HAUSMAN TEST FOR ENDOGENEITY

In the previous sections we discussed the fact that the least squares estimator fails if there is

correlation between an explanatory variable and the error term. We also provided

an estimator, the instrumental variables estimator, that can be used when the least squares

estimator fails. The question we address in this section is how to test for the presence of a

correlation between an explanatory variable and the error term, so that we can use the

appropriate estimation procedure.

The null hypothesis is H0 :covðx; eÞ ¼ 0 against the alternative that H1 : covðx; eÞ 6¼ 0.

The idea of the test is to compare the performance of the least squares estimator to an

instrumental variables estimator. Under the null and alternative hypotheses, we know the

following:

� If the null hypothesis is true, both the least squares estimator b and the instrumental

variables estimator b̂ are consistent. Thus, in large samples the difference between

them converges to zero. That is, q ¼ ðb� b̂Þ! 0. Naturally, if the null hypothesis is

true, use the more efficient estimator, which is the least squares estimator.

� If the null hypothesis is false, the least squares estimator is not consistent, and the

instrumental variables estimator is consistent. Consequently, the difference between

them does not converge to zero in large samples. That is, q ¼ ðb� b̂Þ! c 6¼ 0. If the

null hypothesis is not true, use the instrumental variables estimator, which is

consistent.

There are several forms of the test, usually called the Hausman test in recognition of

econometrician Jerry Hausman’s pioneering work on this problem, for these null and

alternative hypotheses. One form of the test directly examines the differences between the

least squares and instrumental variables estimates, as we have described above. Some

computer software programs implement this test for the user, which can be computationally

difficult to carry out.3

An alternative form of the test is very easy to implement, and is the one we recommend.

See Appendix 10D for an explanation of the test’s logic. In the regression y ¼b1 þ b2xþ e,

wewish to knowwhether x is correlated with e. Let z1 and z2 be instrumental variables for x.

At minimum, one instrument is required for each variable that might be correlated with the

error term. Then carry out the following steps:

3 Some software packages compute Hausman tests with K, or K � 1, degrees of freedom, where K is the total

number of regression parameters. This is incorrect. Use the correct degrees of freedom B, equal to the number of

potentially endogenous right-hand-side variables. See (10.28).

420 RANDOM REGRESSORS AND MOMENT-BASED EST IMAT ION



1. Estimate the first-stage model x ¼ g1 þ u1z1 þ u2z2 þ v by least squares, including

on the right-hand side all instrumental variables and all exogenous variables not

suspected to be endogenous, and obtain the residuals

v̂ ¼ x� ĝ1 � û1z1 � û2z2

If more than one explanatory variable is being tested for endogeneity, repeat this

estimation for each one.

2. Include the residuals computed in step 1 as an explanatory variable in the original

regression, y ¼ b1 þ b2xþ dv̂þ e. Estimate this ‘‘artificial regression’’ by least

squares, and employ the usual t-test for the hypothesis of significance:

H0 :d ¼ 0 ðno correlation between x and eÞ
H1 :d 6¼ 0 ðcorrelation between x and eÞ

3. If more than one variable is being tested for endogeneity, the test will be an F-test of

joint significance of the coefficients on the included residuals.

The t- and F-tests in steps two and three can be made robust if heteroskedasticity and/or

autocorrelation are potential problems.

10.4.2 TESTING INSTRUMENT VALIDITY

Avalid instrument zmustbeuncorrelatedwith the regression error term, so that covðz; eÞ ¼ 0.

If this condition fails then the resulting moment condition, like (10.16), is invalid and

the IV estimator will not be consistent. Unfortunately, not every instrument can be tested for

validity. In order to compute the IV estimator for an equation with B possibly endogenous

variables, we must have at least B instruments. The validity of this minimum number of

required instruments cannot be tested. In the case in which we have L>B instruments

available, we can test the validity of the L� B extra, or surplus, moment conditions.4

An intuitive approach is the following. From the set of L instruments, form groups of B

instruments and compute the IVestimates using each different group. If all the instruments

are valid, then wewould expect all the IVestimates to be similar. Rather than do this, there is

a test of the validity of the surplusmoment conditions that is easier to compute. The steps are

1. Compute the IV estimates b̂k using all available instruments, including the G

variables x1 ¼ 1; x2; . . . ; xG that are presumed to be exogenous, and the L instru-

ments z1; . . . ; zL.

2. Obtain the residuals ê ¼ y� b̂1 � b̂2x2 � � � � � b̂KxK .

3. Regress ê on all the available instruments described in step one.

4. Compute NR2 from this regression, where N is the sample size and R2 is the usual

goodness-of-fit measure.

5. If all of the surplus moment conditions are valid, then NR2 � x2ðL�BÞ.
5 If the value of

the test statistic exceeds the 100ð1� aÞth percentile (i.e., the critical value) from the

4 Econometric jargon for surplus moment conditions is ‘‘overidentifying restrictions.’’ A surplus of moment

conditions means we have more than enough for identification, hence ‘‘overidentifying.’’ Moment conditions like

(10.16) can be thought of as restrictions on parameters.
5 This test is valid if errors are homoskedastic and is sometimes called the Sargan test. If the errors are

heteroskedastic, there is a more general test called Hansen’s J-test that is provided by some software. A very

advanced reference is Hayashi, Econometrics, Princeton, 2000, pp. 227–228.
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x2ðL�BÞ distribution, then we conclude that at least one of the surplus moment

conditions is not valid.

If we reject the null hypothesis that all the surplus moment conditions are valid, then we

are faced with trying to determine which instrument(s) are invalid, and how to weed

them out.

10.4.3 SPECIFICATION TESTS FOR THE WAGE EQUATION

In Section 10.3.6 we examined a ln(WAGE) equation for married women, using the two

instruments ‘‘mother’s education’’ and ‘‘father’s education’’ for the potentially endogenous

explanatory variable education (EDUC).

To implement theHausman test we first obtain the first-stage regression estimates, which

are shown in Table 10.1. Using these estimates we calculate the least squares residuals

v̂ ¼ EDUC �bEDUC. Insert the residuals in the ln(WAGE) equation as an extra variable, and

estimate the resulting augmented regression using least squares. The resulting estimates are

shown in Table 10.2

TheHausman test of the endogeneity is based on the t-test of significance of the first-stage

regression residuals, v̂. If we reject the null hypothesis that the coefficient is zero, we

conclude that education is endogenous. Note that the coefficient of the first-stage regression

residuals (VHAT) is significant at the 10% level of significance using a two-tail test. While

this is not strong evidence of the endogeneity of education, it is sufficient cause for concern to

consider using instrumental variables estimation. Second, note that the coefficient estimates

of the remaining variables, but not their standard errors, are identical to their instrumental

variables estimates. This feature of the regression-based Hausman test is explained in

Appendix 10D.

In order to be valid, the instruments MOTHEREDUC and FATHEREDUC should be

uncorrelated with the regression error term. As discussed in Section 10.4.2, we cannot test

the validity of both instruments only the ‘‘overidentifying’’ or surplus instrument. Since we

have two instruments and only one potentially endogenous variable,we have L� B ¼ 1 extra

instrument. The test is carried out by regressing the residuals from the ln(WAGE) equation,

calculated using the instrumental variables estimates, on all available exogenous and

instrumental variables. The test statistic is NR2 from this artificial regression, and R2 is

the usual goodness-of-fit measure. If the surplus instruments are valid, then the test statistic

has an asymptotic x2ð1Þ distribution, where the degrees of freedom are the number of surplus

instruments. If the test statistic value is greater than the critical value from this distribution,

then we reject the null hypothesis that the surplus instrument is valid. For the artificial

regression R2 ¼ 0:000883, and the test statistic value is NR2 ¼ 428� 0:000883 ¼ 0:3779.

Ta b l e 1 0 . 2 Hausman Test Auxiliary Regression

Variable Coefficient Std. Error t-Statistic Prob.

C 0.0481 0.3946 0.1219 0.9030

EDUC 0.0614 0.0310 1.9815 0.0482

EXPER 0.0442 0.0132 3.3363 0.0009

EXPER2 �0.0009 0.0004 �2.2706 0.0237

VHAT 0.0582 0.0348 1.6711 0.0954

422 RANDOM REGRESSORS AND MOMENT-BASED EST IMAT ION



The 0.05 critical value for the chi-square distribution with one degree of freedom is 3.84,

so we fail to reject the surplus instrument as valid. With this result we are reassured

that our instrumental variables estimator for the wage equation is consistent.

10.5 Exercises

Answers to exercises marked * appear at www.wiley.com/college/hill.

10.5.1 PROBLEMS

10.1 Using state level data, a researcher wishes to examine the relationship between the

median rent paid (RENT) as a function of median house values (MDHOUSE in

$1,000). The percentage of the state population living in an urban area (PCTURBAN)

is used as an additional control.

(a) The least squares estimates of the model are in column (1). Why might we be

concerned thatMEDHOUSE, the median price of houses, is endogenous in this

regression?

(b) Four instruments are considered: median family income (FAMINC in $1,000)

and region of the country (REG1, REG2, REG3). Using the models in columns

(2) and (3), test if the instruments are weak.

(c) In column (4) the least squares residuals (VHAT) from the regression in column

(2) are added as a regressor to the basic regression. The estimates are obtained

using least squares. What is the usefulness of this regression? What does it

indicate about the results in (1)?

(1)

RENT

(2)

MDHOUSE

(3)

MDHOUSE

(4)

RENT

(5)

RENT

(6)

EHAT

C 125.9

(14.19)

�18.67

(12.00)

7.225

(8.936)

120.7

(12.43)

120.7

(15.71)

�62.85

(26.95)

PCTURBAN 0.525

(0.249)

0.182

(0.115)

0.616

(0.131)

0.0815

(0.244)

0.0815

(0.305)

�0.283

(0.258)

MDHOUSE 1.521

(0.228)

2.240

(0.268)

2.240

(0.339)

FAMINC 2.731

(0.682)

4.448

(1.532)

REG2 �5.095

(4.122)

�6.768

(9.262)

REG3 �1.778

(4.073)

4.847

(9.151)

REG4 13.41

(4.048)

�18.77

(9.096)

VHAT �1.589

(0.398)

N 50 50 50 50 50 50

R2 0.669 0.691 0.317 0.754 0.599 0.226

SSE 20259.6 3767.6 8322.2 15054.0 24565.7 19019.9

Standard errors in parentheses
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(d) In column (5) are IV/2SLS estimates using the instruments listed in part (b).What

differences do you observe between these results and the least squares results in

column (1)? Note that the estimates (though not the standard errors) are the same

in columns (4) and (5). Is this a mistake? Explain.

(e) In column (6) the residuals from the estimation in (5) are regressed upon the

variables shown. What information is contained in these results?

10.2 The labor supply of married women has been a subject of a great deal of economic

research. Consider the following supply equation specification

HOURS ¼ b1 þ b2WAGE þ b3EDUC þ b4AGE þ b5KIDSL6 þ b6KIDS618

þ b7NWIFEINC þ e

where HOURS is the supply of labor, WAGE is hourly wage, EDUC is years of

education, KIDSL6 is the number of children in the household who are less than

six years old, KIDS618 is the number between 6 and 18 years old, and NWIFEINC

is household income from sources other than the wife’s employment.

(a) Discuss the signs you expect for each of the coefficients.

(b) Explain why this supply equation cannot be consistently estimated by least

squares regression.

(c) Suppose we consider the woman’s labor market experience EXPER and its

square, EXPER2, to be instruments for WAGE. Explain how these variables

satisfy the logic of instrumental variables.

(d) Is the supply equation identified? Explain.

(e) Describe the steps (not computer commands) you would take to obtain 2SLS

estimates.

10.5.2 COMPUTER EXERCISES

10.3 To examine the quantity theory of money, Brumm (2005) [‘‘Money Growth, Output

Growth, and Inflation: A Reexamination of the Modern Quantity Theory’s Linchpin

Prediction,’’ Southern Economic Journal, 71(3), 661–667] specifies the equation

INFLAT ¼ b1 þ b2MONEY þ b3OUTPUT þ e

where INFLAT is the growth rate of the general price level, MONEY is the growth

rate of the money supply, and OUTPUT is the growth rate of national output.

According to theory we should observe that b1 ¼ 0, b2 ¼ 1, and b3 ¼ �1.

Dr. Brumm kindly provided us the data he used in his paper, which is contained

in the file brumm.dat. It consists of 1995 data on 76 countries.

(a) Estimate the model by least squares, and test

(i) the strong joint hypothesis that b1 ¼ 0, b2 ¼ 1, and b3 ¼ �1

(ii) the weak joint hypothesis b2 ¼ 1 and b3 ¼ �1

(b) Examine the least squares residuals for the presence of heteroskedasticity related

to the variable MONEY.

(c) Obtain robust standard errors for themodel and compare them to the least squares

standard errors.

(d) It is argued that OUTPUT may be endogenous. Four instrumental variables are

proposed, INITIAL ¼ initial level of real GDP, SCHOOL ¼ a measure of the

population’s educational attainment, INV ¼ average investment share of GDP,
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and POPRATE ¼ average population growth rate. Using these instruments,

obtain instrumental variables (2SLS) estimates of the inflation equation.

(e) Test the strong and weak hypotheses listed in (a) using the IV estimates. If your

software permits, make the tests robust to heteroskedasticity.

(f) Use the Hausman test to check the endogeneity of OUTPUT. Because the

regression errors may be heteroskedastic, use robust standard errors when

estimating the auxiliary regression.

(g) Test the validity of the overidentifying restrictions.

(h) Test the relevance of the instruments using a joint F-test as described in Section

10.4.2. If your software permits, use a robust joint test.

10.4 The 25 values of x and e in ivreg1.datwere generated artificially. Use your computer

software to carry out the following:

(a) Create the value of the dependent variable y from themodel y ¼ b1 þ b2xþ e ¼
1þ 1� xþ e by the method described in Section 10.1.3.

(b) In the same graph, plot the value of y against x, and the regression function

EðyÞ ¼ 1þ 1� x. Do the data fall randomly about the regression function?

(c) Using the data on y created in part (a) and x, obtain the least squares estimates of

the parameters b1 andb2. Compare the estimated values of the parameters to the

true values.

(d) Plot the data and the fitted least squares regression line ŷ ¼ b1 þ b2x. Compare

this plot to the one in part (b).

(e) Compute the least squares residuals from the least squares regression in part (d).

Find the sample correlation matrix of the variables x, e, and the least squares

residuals ê ¼ y� b1 � b2x. Comment on thevalues of the correlations.Which of

these correlations could you not compute using a sample of data collected from

the real world?

10.5* Using your computer software, and the 50 observations on savings (y), income (x),

and averaged income (z) in savings.dat,

(a) Estimate a least squares regression of savings on income.

(b) Estimate the relation between savings and income (x) using the instrumental

variables estimator, with instrument z, using econometric software designed for

instrumental variables, or two-stage least squares, estimation.

(c) Using the steps outlined in Section 10.4.1, carry out the Hausman test (via an

artificial regression) for the existence of correlation between x and the random

disturbance e.

(d) Use two least squares regressions to obtain the IVestimates in part (b). Compare

the estimates, standard errors, and t-statistics to those in part (b) and comment on

the differences.

10.6 The 500 values of x; y; z1; and z2 in ivreg2.dat were generated artificially. The

variable y ¼ b1 þ b2xþ e ¼ 3þ 1�xþ e.

(a) The explanatory variable x follows a normal distribution with mean zero and

variance s2
x ¼ 2. The random error e is normally distributed with mean zero

and variance s2
e ¼ 1. The covariance between x and e is 0.9. Using the algebraic

definition of correlation, determine the correlation between x and e.

(b) Given the values of y and x, and the values of b1 ¼ 3 and b2 ¼ 1, solve for the

values of the random disturbances e. Find the sample correlation between x and e

and compare it to your answer in (a).
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(c) In the same graph, plot the value of y against x, and the regression function

EðyÞ ¼ 3þ 1� x. Note that the data do not fall randomly about the regression

function.

(d) Estimate the regressionmodel y ¼ b1 þ b2xþ e by least squares using a sample

consisting of the first N ¼ 10 observations on y and x. Repeat using N ¼ 20,

N ¼ 100, and N ¼ 500. What do you observe about the least squares estimates?

Are they getting closer to the true values as the sample size increases, or not? If

not, why not?

(e) The variables z1 and z2 were constructed to have normal distributionswithmeans

zero and variances one, and to be correlated with x but uncorrelated with e. Using

the full set of 500 observations, find the sample correlations between z1; z2; x;
and e. Will z1 and z2 make good instrumental variables? Why? Is one better than

the other? Why?

(f) Estimate the model y ¼ b1 þ b2xþ e by instrumental variables using a sample

consisting of the first N¼10 observations and the instrument z1. Repeat using

N¼20;N¼100, andN ¼ 500.What do you observe about the IVestimates? Are

they getting closer to the true values as the sample size increases, or not? If not,

why not?

(g) Estimate the model y ¼ b1 þ b2xþ e by instrumental variables using a sample

consisting of the first N¼10 observations and the instrument z2. Repeat using

N¼20; N¼100, and N¼500. What do you observe about the IVestimates? Are

they getting closer to the true values as the sample size increases, or not? If not,

why not? Comparing the results using z1 alone to those using z2 alone, which

instrument leads to more precise estimation? Why is this so?

(h) Estimate the model y¼b1 þ b2xþ e by instrumental variables using a sample

consisting of the first N¼10 observations and the instruments z1 and z2. Repeat

using N¼20; N¼100, and N¼500. What do you observe about the IV

estimates? Are they getting closer to the true values as the sample size increases,

or not? If not, why not? Is estimation more precise using two instruments than

one, as in parts (f) and (g)?

10.7* A consulting firm run byMr. John Chardonnay is investigating the relative efficiency

of wine production at 75 California wineries. John sets up the production function

Q ¼ b1 þ b2MGT þ b3CAPþ b4LABþ e

whereQ is an index ofwine output for awinery, taking into account both quantity and

quality,MGT is a variable that reflects the efficiency ofmanagement,CAP is an index

of capital input, and LAB is an index of labor input. Because he cannot get data on

management efficiency, John collects observations on the number of years

of experience (XPER) of each winery manager and uses that variable in place of

MGT . The 75 observations are stored in the file chard.dat.

(a) Estimate the revised equation using least squares and comment on the results.

(b) Find corresponding interval estimates for wine output at wineries that have the

sample average values for labor and capital and have managers with

(i) 10 years experience

(ii) 20 years experience

(iii) 30 years experience.

(c) John is concerned that the proxy variable XPER might be correlated with the

error term.He decides to do aHausman test, using themanager’s age (AGE) as an

instrument for XPER. Regress XPER on AGE; CAP, and LAB, and save the
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residuals. Include these residuals as an extra variable in the equation you

estimated in part (a), and comment on the outcome of the Hausman test.

(d) Use the instrumental variables estimator to estimate the equation

Q ¼ b1 þ b2XPERþ b3CAPþ b4LABþ e

with AGE, CAP, and LAB as the instrumental variables. Comment on the results

and compare them with those obtained in part (a).

(e) Find corresponding interval estimates for wine output at wineries that have the

sample average values for labor and capital and have managers with

(i) 10 years experience

(ii) 20 years experience

(iii) 30 years experience

Compare these interval estimates with those obtained in part (b).

10.8 The labor supply of married women has been a subject of a great deal of economic

research. A classic work6 is that of Professor TomMroz, who kindly provided us his

data. The data file ismroz.dat and the variable definitions are in the filemroz.def. The

data file contains information on women who have worked in the previous year and

those who have not. The variable indicating whether a woman worked is LFP, labor

force participation, which takes the value 1 if a woman worked and 0 if she did not.

Use only the data on women who worked for the following exercises. Consider the

supply equation specification

HOURS ¼ b1 þ b2lnðWAGEÞ þ b3EDUC þ b4AGE þ b5KIDSL6

þ b6KIDS618 þ b7NWIFEINC þ e

The variable NWIFEINC is defined as

NWIFEINC ¼ FAMINC �WAGE�HOURS

(a) Considering the woman’s labor market experience EXPER and its square,

EXPER2, to be instruments for ln(WAGE), test the endogeneity of ln(WAGE)

using the Hausman test.

(b) Estimate the first-stage equation

lnðWAGEÞ ¼ p1 þ p2EDUC þ p3AGE þ p4KIDSL6þ p5KIDS618

þ p6NWIFEINC þ p7EXPERþ p8EXPER
2 þ v

using least squares estimation, and test the joint significance of EXPER and

EXPER2. Do these instruments seem adequate?

(c) In this problemwe have one surplus instrument. Check the validity of the surplus

instrument using the test suggested in Section 10.4.2. What do you conclude

about the validity of the overidentifying variable?

(d) It is also possible in the supply equation that the woman’s level of education is

endogenous, due to the omission of ability from the model. Discuss the suitabi-

lity of using as instruments the woman’s mother’s education (MOTHEREDUC),

her father’s education (FATHEREDUC), her husband’s education (HEDUC),

and the woman’s number of siblings (SIBLINGS).

6 Mroz, T. A. (1987) ‘‘The sensitivity of an empirical model of a married woman’s hours of work to economic

and statistical assumptions,’’ Econometrica, 55, 765–800.

1 0 . 5 EXERCI SES 427



(e) Estimate the first-stage equations for EDUC and ln(WAGE) including all

instruments in (b) and the potential instruments listed in (d). In each first-stage

equation, test the joint significance of EXPER, EXPER2, MOTHEREDUC,

FATHEREDUC, HEDUC, and SIBLINGS.

(f) Use the results of (e) to carry out a Hausman test of the endogeneity ofEDUC and

ln(WAGE).

(g) Compute the 2SLS estimates of the supply equation, assuming that EDUC and

ln(WAGE) are endogenous. Discuss the estimates’ signs and significance. Are

there any surprises?

(h) Test the validity of the overidentifying instruments based on part (g).

(i) Write a 200-word summary ofwhat you have discovered in this exercise about the

labor supply of married women.

10.9 Consider a supply model for edible chicken, which the U.S. Department of Agri-

culture calls ‘‘broilers.’’ The data for this exercise are in the file newbroiler.dat, which

is adapted from the data provided by Epple and McCallum (2006).7 The data are

annual, 1950–2001, but in the estimations use data from 1960–1999. The supply

equation is

lnðQPRODtÞ ¼ b1 þ b2 lnðPtÞ þ b3 lnðPFtÞ þ b4TIMEt þ lnðQPRODt�1Þ þ est

where QPROD ¼ aggregate production of young chickens, P ¼ real price index of

fresh chicken, PF ¼ real price index of broiler feed, TIME ¼ 1; . . . ; 52. This

supply equation is dynamic, with lagged production on the right-hand side.

This predetermined variable is known at time t and is treated as exogenous.

TIMEð¼ 1; 2; . . . ; 52Þ is included to capture technical progress in production.

Some potential external instrumental variables are lnðYtÞ where Y is real per capita

income; lnðPBtÞ where PB is the real price of beef; POPGRO ¼ percentage

population growth from year t � 1 to t; lnðPt�1Þ ¼ lagged log of real price of

chicken; lnðEXPTSÞ ¼ log of exports of chicken.

(a) Estimate the supply equation by least squares. Discuss the estimation results. Are

the signs and significance what you anticipated?

(b) Estimate the supply equation using an instrumental variables estimator with all

available instruments. Compare these results to those in (a).

(c) Test the endogeneity of lnðPtÞ using the regression-based Hausman test

described in Section 10.4.1.

(d) Check whether the instruments are adequate, using the test for weak instruments

described in Section 10.3.5. What do you conclude?

(e) Do you suspect the validity of any instruments on logical grounds? If so, which

ones, and why? Check the instrument validity using the test procedure described

in Section 10.4.2.

Appendix 10A Conditional and Iterated Expectations

In this appendix we provide some results related to conditional expectations.

7 ‘‘Simultaneous equation econometrics: Themissing example,’’Economic Inquiry, 44(2), 374–384.Wewould

like to thank Professor Bennett McCallum for his generous help.
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10A.1 CONDITIONAL EXPECTATIONS

In the Probability Primer, Section P.3, we defined the conditional probability distri-

bution. If X and Y are two random variables with joint probability distribution f ðx; yÞ,
then the conditional probability distribution of Y given X is f ðyjxÞ. We can use this

conditional pdf to compute the conditional mean of Y given X. That is, we can obtain

the expected value of Y given that X ¼ x. The conditional expectation EðY jX ¼ xÞ is the
average (or mean) value of Y given that X takes the value x. In the discrete case it is

defined to be

EðY jX ¼ xÞ ¼ �
y
yPðY ¼ yjX ¼ xÞ ¼ �

y
yf ðyjxÞ (10A.1)

Similarly we can define the conditional variance of Y given X. This is the variance of the

conditional distribution of Y given X. In the discrete case it is

varðYjX ¼ xÞ ¼ �
y

h
y� EðYjX ¼ xÞ

i2
f ðyjxÞ

10A.2 ITERATED EXPECTIONS

The law of iterated expectations says that the expected value of Y is equal to the expected

value of the conditional expectation of Y given X. That is,

EðYÞ ¼ EX½EðY jXÞ� (10A.2)

What this means becomes clearer with the following demonstration that it is true in the

discrete case. We will use two facts about probability distributions discussed in Appendix

B.1.3. First, the marginal pdf of Y is f ðyÞ ¼ �x f ðx; yÞ and second, the joint pdf of X and Y

can be expressed as f ðx; yÞ ¼ f ðyjxÞ f ðxÞ [see Appendix B, (B.14)]. Then,

EðYÞ ¼ �
y
yf ðyÞ ¼ �

y
y
h
�
x
f ðx; yÞ

i

¼ �
y
y
h
�
x
f ðyjxÞ f ðxÞ

i

¼ �
x

h
�
y
yf ðyjxÞ

i
f ðxÞ ðby changing order of summationÞ

¼ �
x
EðYjX ¼ xÞ f ðxÞ

¼ EX½EðYjXÞ�

In the final expression EX ½ � means that the expectation of the term in brackets is taken

assuming that X is random. So the expected value of Y can be found by finding its

conditional expectation given X, and then taking the expected value of the result with

respect to X.

Two other results can be shown to be true in the same way:

EðXYÞ ¼ EX½XEðY jXÞ� (10A.3)
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and

covðX; YÞ ¼ EX ½ðX � mXÞEðY jXÞ� (10A.4)

10A.3 REGRESSION MODEL APPLICATIONS

The results above relate to assumption A10.3� made in Section 10.1.2. In the regression

model y ¼ b1 þ b2xþ e, we have assumed that the conditional mean of y is

EðyjxÞ ¼ b1 þ b2x. Equivalently we have assumed that EðejxÞ ¼ 0. Conditional on x,

the expected value of the error term is zero. Using the law of iterated expectations (10A.2), it

then follows that the unconditional expectation of the error is also zero,

EðeÞ ¼ Ex½EðejxÞ� ¼ Ex½0� ¼ 0 (10A.5)

Next, using (10A.3),

EðxeÞ ¼ Ex½xEðejxÞ� ¼ Ex½x� 0� ¼ 0 (10A.6)

and using (10A.4),

covðx; eÞ ¼ Ex½ðx� mxÞEðejxÞ� ¼ Ex½ðx� mxÞ0� ¼ 0 (10A.7)

Thus, if EðejxÞ ¼ 0 it follows that EðeÞ ¼ 0; EðxeÞ ¼ 0; and covðx; eÞ ¼ 0. However, from

(10A.7), if EðejxÞ 6¼ 0 then covðx; eÞ 6¼ 0.

Appendix 10B The Inconsistency of the
Least Squares Estimator

Here we provide an algebraic proof that the least squares estimator is not consistent when

covðx; eÞ 6¼ 0. Our regression model is y ¼ b1 þ b2xþ e. Under A10.3� EðeÞ ¼ 0, so that

EðyÞ ¼ b1 þ b2EðxÞ. Then,

� Subtract this expectation from the original equation,

y� EðyÞ ¼ b2½x� EðxÞ� þ e

� Multiply both sides by x� EðxÞ;

½x� EðxÞ�½y� EðyÞ� ¼ b2½x� EðxÞ�2 þ ½x� EðxÞ�e

� Take expected values of both sides,

E½x� EðxÞ�½y� EðyÞ� ¼ b2E½x� EðxÞ�2 þ Ef½x� EðxÞ�eg;

or

covðx; yÞ ¼ b2varðxÞ þ covðx; eÞ
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� Solve for b2:

b2 ¼ covðx; yÞ
varðxÞ � covðx; eÞ

varðxÞ (10B.1)

Equation (10B.1) is the basis for showingwhen the least squares estimator is consistent, and

when it is not.

If we can assume that covðx; eÞ ¼ 0, then

b2 ¼ covðx; yÞ
varðxÞ (10B.2)

The least squares estimator can be expressed as

b2 ¼ �ðxi � xÞðyi � yÞ
�ðxi � xÞ2 ¼ �ðxi � xÞðyi � yÞ=ðN � 1Þ

�ðxi � xÞ2=ðN � 1Þ ¼
bcovðx; yÞbvarðxÞ (10B.3)

This shows that the least squares estimator b2 is the sample analog of the population

relationship in (10B.2). The sample variance and covariance converge to the true variance

and covariance as the sample size N increases, so that the least squares estimator converges

to b2. That is, if covðx; eÞ ¼ 0 then

b2 ¼
bcovðx; yÞbvarðxÞ ! covðx; yÞ

varðxÞ ¼ b2

showing that the least squares estimator is consistent.

On the other hand, if x and e are correlated, then

b2 ¼ covðx; yÞ
varðxÞ � covðx; eÞ

varðxÞ

The least squares estimator now converges to

b2 ! covðx; yÞ
varðxÞ ¼ b2 þ covðx; eÞ

varðxÞ 6¼b2 (10B.4)

In this case b2 is an inconsistent estimator of b2 and the amount of bias that exists even

asymptotically, when samples can be assumed to be very large, is covðx; eÞ=varðxÞ. The
direction of the bias depends on the sign of the covariance between x and e. If factors in the

error are positively correlated with the explanatory variable x, then the least squares

estimator will overestimate the true parameter.

Appendix 10C The Consistency of the IV Estimator

The demonstration that the instrumental variables estimator is consistent follows the logic

used in Appendix 10B. The IV estimator can be expressed as

b̂2 ¼ �ðzi � zÞðyi � yÞ=ðN � 1Þ
�ðzi � zÞðxi � xÞ=ðN � 1Þ ¼

bcovðz; yÞbcovðz; xÞ (10C.1)
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The sample covariance converges to the true covariance in large samples, so we can say

b̂2 ! covðz; yÞ
covðz; xÞ (10C.2)

If the instrumental variable z is not correlated with x in both the sample data and

the population, then the instrumental variable estimator fails, since that would mean a

zero in the denominator of b̂2 in (10C.1) and (10C.2). Thus for an instrumental variable to be

valid, it must be uncorrelated with the error term e but correlated with the explanatory

variable x.

Now, follow the same steps that led to (10B.1). We obtain

b2 ¼ covðz; yÞ
covðz; xÞ �

covðz; eÞ
covðz; xÞ (10C.3)

If we can assume that covðz; eÞ ¼ 0, a condition we imposed on the choice of the

instrumental variable z, then the instrumental variables estimator in (10C.2) converges

in large samples to b2,

b̂2 ! covðz; yÞ
covðz; xÞ ¼ b2 (10C.4)

Thus if covðz; eÞ ¼ 0 and covðz; xÞ 6¼ 0, then the instrumental variable estimator of b2 is

consistent, in a situation in which the least squares estimator is not consistent due to

correlation between x and e.

Appendix 10D The Logic of the Hausman Test

In Section 10.4.1 we present a test for whether or not an explanatory variable is endogenous

using an artificial regression. Let us explore how and why this test might work. The simple

regression model is

y ¼ b1 þ b2xþ e (10D.1)

If x is correlatedwith the error term e, then x is endogenous and the least squares estimator is

biased and inconsistent.

An instrumental variable z must be correlated with x but uncorrelated with e in order to

be valid. A correlation between z and x implies that there is a linear association between

them (see the Probability Primer, Section P.5.6). This means that we can describe their

relationship as a regression:

x ¼ p0 þ p1zþ v (10D.2)

There is a correlation between x and z if, and only if,p1 6¼ 0. This regression is called a ‘‘first-

stage’’ equation. The standard regression assumptions apply to (10D.2), in particular the

error term v has mean zero,EðvÞ ¼ 0.We can divide x into two parts, a systematic part and a

random part, as

x ¼ EðxÞ þ v (10D.3)
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where EðxÞ ¼ p0 þ p1z. If we knewp0 andp1, we could substitute (10D.3) into the simple

regression model (10D.1) to obtain

y ¼ b1 þ b2xþ e ¼ b1 þ b2½EðxÞ þ v� þ e

¼ b1 þ b2EðxÞ þ b2vþ e
(10D.4)

Now, suppose for a moment that E(x) and v can be observed and are viewed as explanatory

variables in the regression y ¼ b1 þ b2EðxÞ þ b2vþ e. Will least squares work when

applied to this equation?The explanatory variableE(x) is not correlatedwith the error term e

(or v). The problem, if there is one, comes froma correlation betweenv (the randompart of x)

and e. In fact, in the regression (10D.1), any correlation between x and e implies correlation

between v and e, because v ¼ x� EðxÞ.
We cannot exactly create the partition in (10D.3), because we do not know p0 and p1.

However, we can consistently estimate the first-stage (10D.2) by least squares to obtain the

fitted first-stagemodel x̂ ¼ p̂0 þ p̂1z and the residuals v̂ ¼ x� x̂, whichwe can rearrange to

obtain an estimated analog of (10D.3),

x ¼ x̂þ v̂ (10D.5)

Substitute (10D.5) into the original (10D.1) to obtain

y ¼ b1 þ b2xþ e ¼ b1 þ b2½x̂þ v̂� þ e

¼ b1 þ b2 x̂þ b2 v̂þ e
(10D.6)

To reduce confusion, let the coefficient of v̂ be denoted as g, so that (10D.6) becomes

y ¼ b1 þ b2 x̂þ g v̂þ e (10D.7)

If we omit v̂ from (10D.7), the regression becomes

y ¼ b1 þ b2 x̂þ e (10D.8)

The least squares estimates of b1 and b2 in (10D.8) are the IV estimates, as defined in

(10.22). Then recall from Chapter 6.3.1, (6.23), that if we omit a variable from a

regression that is uncorrelated with the included variable(s), there is no omitted variables

bias, and in fact the least squares estimates are unchanged! This holds true in (10D.7)

because the least squares residuals v̂ are uncorrelated with x̂ and the intercept variable.

Thus the least squares estimates of b1 and b2 in (10D.7) and (10D.8) are identical, and

are equal to the IV estimates. Consequently, the least squares estimators of b1 and b2 in

(10D.7) are consistent whether or not x is exogenous, because they are the IV estimators.

What aboutg? If x is exogenous, and hence vand e are uncorrelated, then the least squares
estimator of g in (10D.7) will also converge in large samples to b2. However, if x is

endogenous, then the least squares estimator of g in (10D.7) will not converge to b2 in large

samples, because v̂, like v, is correlated with the error term e. This observation makes it

possible to test forwhether x is exogenous by testing the equality of the estimates ofb2 and g
in (10D.7). If we reject the null hypothesis H0 :b2 ¼ g, then we reject the exogeneity of x,
and conclude that it is endogenous.
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Carrying out the test is made simpler by playing a trick on (10D.7). Add and subtract b2v̂

to the right-hand side to obtain

y ¼ b1 þ b2 x̂þ gv̂þ eþ b2 v̂� b2 v̂

¼ b1 þ b2ðx̂þ v̂Þ þ ðg� b2Þv̂þ e

¼ b1 þ b2xþ dv̂þ e

(10D.9)

Thus, instead of testing H0 :b2 ¼ g, we can simply use an ordinary t-test of the null

hypothesis H0 :d ¼ 0 in (10D.9), which is exactly the test we described in Section 10.4.1.

This is much easier, because ordinary software automatically prints out the

t-statistic for this hypothesis test.

Appendix 10E Testing for Weak Instruments

As discussed in Section 10.3.8a, theF-test for weak instruments discussed in Section 10.3.5

is not valid for models with more than one endogenous variable on the right side of the

equation.8 Using canonical correlations there is a solution to the problem of identifying

weak instruments when an equation has more than one endogenous variable. Canonical

correlations are a generalization of the usual concept of a correlation between two variables

and attempt to describe the association between two sets of variables. The association in

which we are interested is the association between the pair of endogenous variables (xGþ1,

xGþ2) and the pair of additional, external, instrumental variables (z1, z2) after controlling for

the effect of the otherG exogenous variables x1 
 1, x2, . . . , xG. We introduced this idea in

Section 10.3.7. The effects of theG exogenous variables are ‘‘removed’’ by first regressing

(xGþ1, xGþ2) and (z1, z2) on x1 
 1, x2, . . . , xG and then computing the residuals

~xGþ1; ~xGþ2ð Þ and ~z1; ~z2ð Þ. This process is often called partialing out or netting out the

effect of x1 
 1, x2, . . . , xG.
9

Suppose that x�1 ¼ h11~xGþ1 þ h21~xGþ2 is a linear combination of the ‘‘partialed out’’

endogenous variables ~xGþ1; ~xGþ2ð Þ and z�1 ¼ k11~z1 þ k21~z2 is a linear combination of the

‘‘partialed out’’ instrumental variables ~z1; ~z2ð Þ. Using canonical correlation analysis, we

can determine values h11, h21, k11, and k21, resulting in the largest correlation between x
�
1 and

z�1.
10 It is called the first canonical correlation, r1. Similarly, we can determine values h12,

h22, k12, and k22, resulting in the second largest correlation between x
�
2 ¼ h12~xGþ1 þ h22~xGþ2

and z�2 ¼ k12~z1 þ k22~z2, which is called the second canonical correlation, r2—and so on.

If we have two variables in the first set of variables and two variables in the second set,

then there are two canonical correlations, r1 and r2. If we have B variables in the first group

(the endogenous variables with the effects of x1 
 1, x2, . . . , xG removed) and L 	 B

variables in the second group (the group of instrumentswith the effects of x1 
 1, x2, . . . , xG
removed), then there are B possible canonical correlations, r1 	 r2 	 � � � 	 rB. If the

8 The F> 10 rule of thumb comes from D. Staiger and J. H. Stock (1997) ‘‘Instrumental Variables with Weak

Instruments,’’ Econometrica, 65, pp. 557–586.
9 See, for example, William Greene, Econometric Analysis, 6th Edition, Pearson Prentice Hall, 2008,

pp. 25–29.
10 Certain normalizations on h and k constants are necessary to make the solutions unique. The algebra and

calculations are beyond the scope of this book. An online search will reveal many sources, but virtually all use

matrix algebra and multidimensional calculus. Harold Hotelling did research in mathematical statistics and

economic theory and introduced the concept of canonical correlation in a 1935 publication, ‘‘The most predictable

criterion,’’ in the Journal of Educational Psychology.
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smallest canonical correlation rB ¼ 0, then we do not have enough relationships between

the instruments and the endogenous variables, and the equation is not identified.

10E.1 A TEST FOR WEAK IDENTIFICATION

Using the smallest canonical correlation, we are able to test whether any relationship

between the instruments and the endogenous variables is sufficiently strong for reliable

econometric inferences.11 Let N denote the sample size, B the number of right-hand-side

endogenous variables, G the number of exogenous variables included in the equation

(including the intercept),L the number of ‘‘external’’ instruments that are not included in the

model, and rB the minimum canonical correlation. A test for weak identification, the

situation that arises when the instruments are correlated with the endogenous regressors but

only weakly, is based on the Cragg-Donald F-test statistic12

Cragg-Donald F ¼ N � G� Bð Þ=L½ �� r2B
�

1� r2B
� �� �

(10E.1)

The Cragg-Donald statistic reduces to the usual weak instruments F-test when the number

of endogenous variables is B ¼ 1. Critical values for this test statistic have been tabulated

by James Stock and Motohiro Yogo (2005),13 so that we can test the null hypothesis that

the instruments are weak against the alternative that they are not, for two particular

consequences of weak instruments.

� Relative Bias: In the presence of weak instruments the amount of bias in the IV

estimator can become large. Stock and Yogo consider the bias when estimating the

coefficients of the endogenous variables. They examine the maximum IV estimator

bias relative to the bias of the least squares estimator. Stock and Yogo give the

illustration of estimating the return to education. If a researcher believes that the least

squares estimator suffers a maximum bias of 10%, and if the relative bias is 0.1, then

the maximum bias of the IV estimator is 1%.

� Rejection Rate (Test Size): When estimating a model with endogenous regressors,

testing hypotheses about the coefficients of the endogenous variables is frequently of

interest. If we choose the a ¼ 0.05 level of significance we expect that a true null

hypothesis is rejected 5% of the time in repeated samples. If instruments are weak,

then the actual rejection rate of the null hypothesis, also known as the test size,may be

larger. Stock and Yogo’s second criterion is the maximum rejection rate of a true null

hypothesis if we choose a ¼ 0.05. For example, we may be willing to accept a

maximum rejection rate of 10% for a test at the 5% level, but wemay not bewilling to

accept a rejection rate of 20% for a 5% level test.
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Variables/Generalized Method of Moments Estimation and Testing,’’ by Christopher F. Baum, Mark E. Schaffer,

and Steven Stillman, The Stata Journal (2007), 7, pp. 465–506. Further discussion is provided by Alastair R. Hall,

Glenn D. Rudebusch and David W. Wilcox (1996) ‘‘Judging Instrument Relevance in Instrumental Variables

Estimation,’’ International Economic Review, 37(2), pp. 283–298.
12 Cragg, J. G. and S. G. Donald (1993) ‘‘Testing Identifiability and Specification in Instrumental Variable

Models,’’ Econometric Theory, 9, 222–240. D. Poskitt and C. Skeels (2009), ‘‘Assessing the magnitude of the

concentration parameter in a simultaneous equations model,’’ The Econometrics Journal, 12, pp. 26–44, showed

that the Cragg-Donald statistic could be conveniently written in terms of the smallest canonical correlation.
13 ‘‘Testing for Weak Instruments in Linear IV Regression,’’ in Identification and Inference for Econometric

Models: Essays in Honor of Thomas Rothenberg, eds, Donald W. K. Andrews and James H. Stock, Cambridge

University Press, Chapter 5.



To test the null hypothesis that instruments areweak against the alternative that they are not,

we compare the Cragg-Donald F-test statistic to a critical value chosen from Table 10E.1 or

Table 10E.2.

1. First choose either the maximum relative bias or maximum test size criterion.

You must also choose the maximum relative bias or maximum test size you are

willing to accept.

2a. If youchoose themaximumtest size criterion, select fromTable10E.1 the critical

value associated with a maximum test size of 0.10, 0.15, 0.20 or 0.25 for B ¼ 1

or B ¼ 2 endogenous variables using L ¼ 1 to L ¼ 4 instrumental variables.

2b. If you choose the maximum relative bias criterion, select from Table 10E.2 the

critical value associated with amaximum relative bias of 0.05, 0.10, 0.20 or 0.30

for B ¼ 1 or B ¼ 2 endogenous variables using L ¼ 3 or L ¼ 4 instrumental

variables. There are no critical values using this criterion if L < 3.

3. Reject the null hypothesis that the instruments are weak if the Cragg-Donald

F-test statistic is larger than the tabled critical value. If the F-test statistic is not

larger than the critical value, then do not reject the null hypothesis that the

instruments are weak.

Ta b l e 1 0 E . 1 Critical Values for the Weak Instrument Test Based

on IV Test Size (5% level of significance)14

B ¼ 1 Maximum Test Size B ¼ 2 Maximum Test Size

L 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25

1 16.38 8.96 6.66 5.53

2 19.93 11.59 8.75 7.25 7.03 4.58 3.95 3.63

3 22.30 12.83 9.54 7.80 13.43 8.18 6.40 5.45

4 24.58 13.96 10.26 8.31 16.87 9.93 7.54 6.28

Ta b l e 1 0 E . 2 Critical Values for the Weak Instrument Test Based

on IV Relative Bias (5% level of significance)15

B ¼ 1 Maximum Relative Bias B ¼ 2 Maximum Relative Bias

L 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30

3 13.91 9.08 6.46 5.39

4 16.85 10.27 6.71 5.34 11.04 7.56 5.57 4.73

14 These values are from Table 5.2, page 101, in Stock and Yogo (2005), op cit. The authors thank James Stock

andMotohiro Yogo for permission to use these results. (Their tables are more extensive than the ones we provide.)
15 Thesevalues are fromTable 5.1, page 100, in JamesH. Stock andMotohiroYogo (2005),op cit. In their paper

Stock and Yogo explain that the F > 10 rule introduced by Staiger and Stock (1997), op cit., is for B ¼ 1

approximately the critical value for a maximum relative bias of 0.10 for all values of L. Their critical values can be

considered refinements of the Staiger-Stock rule of thumb.
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10E.2 EXAMPLES OF TESTING FORWEAK IDENTIFICATION

In Section 10.2.4 we introduced an example of awage equation formarriedworkingwomen

using Thomas Mroz’s data. Consider the following HOURS supply equation specification:

HOURS ¼ b1 þ b2MTR þ b3EDUC þ b4KIDSL6 þ b5NWIFEINC þ e (10E.4)

The variable NWIFEINC ¼ ðFAMINC �WAGE�HOURSÞ=1000 is household income

attributable to sources other than the wife’s income. The variable MTR is the marginal tax

rate facing the wife, including Social Security taxes. In this equation we expect the signs of

coefficients onMTR, KIDSL6 and NWIFEINC to be negative, and the coefficient on EDUC

is of uncertain sign. In this examplewe treat the marginal tax rate as endogenous.16 Initially

we treatEDUC as exogenous and use thewife’s previous years of work experience,EXPER,

as an instrumental variable for MTR.

Weak IV Example 1: Endogenous: MTR; Instrument: EXPER

Suppose that we choose the maximum test size criterion and are willing to accept a

maximum test size of 0.15 for a 5% test. In Table 10E.1we see that forB ¼ 1 (one right-side

endogenous variable) and L ¼ 1 (one instrument) that the Stock-Yogo critical value is 8.96.

The estimated first-stage equation forMTR is Model (1) of Table 10E.3. The F-statistic for

the hypothesis that the coefficient of experience is zero is 30.61. The Cragg-Donald

F-statistic is also 30.61 in this case. Since the Cragg-Donald F-test statistic is larger

than the Stock-Yogo critical value 8.96,we reject the null hypothesis that the instruments are

weak and accept the alternative that they are not weak. This conclusion is conditional upon

the test criterion we have chosen and the maximum size selected. The relative bias criterion

cannot be used in this case because it requires at least three instruments. The estimated

coefficient ofMTR in the estimatedHOURS supply equation in Model (1) of Table 10E.4 is

negative and significant at the 5% level.

Weak IV Example 2: Endogenous: MTR; Instruments: EXPER, EXPER2, LARGECITY

For the sake of illustration, consider using the L ¼ 3 instruments EXPER, EXPER2, and the

indicator variable LARGECITY, which ¼ 1 if the city is large. Suppose we choose

the maximum relative bias criterion and are willing to tolerate a maximum relative bias

of 0.10. From Table 10E.2 the Stock-Yogo critical value is 9.08. If the Cragg-Donald F-test

statistic is greater than this value, we reject the null hypothesis that the instruments areweak.

The first-stage equation estimates are reported in Model (2) of Table 10E.3. The Cragg-

DonaldF-statistic is 13.22.We conclude that using this test the instruments are not weak. If,

however, we are only willing to accept a 0.05 relative bias, then the Stock-Yogo critical

value is 13.91. Since theCragg-DonaldF-statistic is less than this value,we cannot reject the

null hypothesis that the instruments are weak. The estimated coefficient of MTR in the

estimatedHOURS supply equation inModel (2) of Table 10E.4 is negative and significant at

the 5% level, although themagnitudes of all the coefficients are smaller in absolute value for

this estimation than the model in Model (1). Qualitatively the estimates of Model (1) and

Model (2), using L ¼ 1 instrument and L ¼ 3 instruments are much the same, with likely

thanks to the strong instrument EXPER. This example illustrates the point that having more

instrumental variables is not necessarily beneficial from the standpoint of weak instrument

diagnostics.

16 This idea is explored by Mroz (1987, p. 786).
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Weak IV Example 3 Endogenous: MTR, EDUC; Instruments:

MOTHEREDUC, FATHEREDUC

Now treat both marginal tax rateMTR and education EDUC as endogenous, so that B ¼ 2.

Following Section 10.3.6 we use mother’s and father’s education, MOTHEREDUC and

FATHEREDUC, as instruments, so that L ¼ 2. Suppose that we are willing to accept a

maximum test size of 15% for a 5% test. From Table 10E.1 the critical value for the weak

instrument test is 4.58. The first-stage equations for MTR and EDUC are Model (3) and

Model (4) of Table 10E.3. These instruments are strong for EDUC as we have earlier seen,

with the first-stage weak instrument F-test statistic 49.02. ForMTR [Model (3)] these two

instruments are less strong. FATHEREDUC is significant at the 5% level, and the first-stage

weak instrument F-test statistic is 8.14, which has a p-value of 0.0003. While this does not

satisfy the F 	 10 rule of thumb, it is ‘‘close,’’ and we may have concluded that these two

instruments were adequately strong. The Cragg-Donald F-test statistic value is only 0.101,

which is far below the critical value 4.58 for 15%maximum test size (for a 5% test onMTR

and EDUC). We cannot reject the null hypothesis that the instruments are weak, despite the

favorable first stage F-test values. The estimates of theHOURS supply equation, Model (3)

Ta b l e 1 0 E . 3 First-stage Equations

MODEL

Dependent/

independent

(1)

MTR

(2)

MTR

(3)

MTR

(4)

EDUC

(5)

MTR

(6)

EDUC

C 0.87930 0.88470 0.79907 8.71459 0.82960 8.17622

(74.33) (71.93) (103.22) (25.83) (93.34) (20.34)

EXPER �0.00142 �0.00217 �0.00168 0.02957

(�5.53) (�2.65) (�6.23) (2.43)

EDUC �0.00718 �0.00689

(�7.76) (�7.45)

KIDSL6 0.02037 0.02039 0.02189 0.61812 0.01559 0.72921

(3.86) (3.89) (3.92) (2.54) (2.87) (2.96)

NWIFEINC �0.00551 �0.00539 �0.00565 0.04961 �0.00585 0.05304

(�27.40) (�26.35) (�27.15) (5.46) (�28.96) (5.81)

EXPER2 0.00002

(1.01)

LARGECITY �0.01163

(�2.70)

MOTHEREDUC �0.00111 0.15202 �0.00134 0.15601

(�1.40) (4.40) (�1.76) (4.54)

FATHEREDUC �0.00180 0.16371 �0.00202 0.16754

(�2.40) (5.01) (�2.81) (5.15)

N 428 428 428 428 428 428

Weak IV F 30.61 13.22 8.14 49.02 18.86 35.03

Number IV L 1 3 2 2 3 3

Number Endog B 1 1 2 2 2 2

t statistics in parentheses.
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of Table 10E.4, shows parameter estimates that are wildly different from those inModel (1)

andModel (2), and the very small t-statistic values imply very large standard errors, another

consequence for instrumental variables estimation in the presence of weak instruments.

Weak IV Example 4 Endogenous: MTR, EDUC; Instruments: MOTHEREDUC,

FATHEREDUC, EXPER

If we include the additional instrument EXPER, so that L ¼ 3, we obtain the first stage

estimates in Model (5) and Model (6) of Table 10E.3. Once again the first-stage weak

instrumentF-test statistic values appear strong, with values forMTR of 18.86 and forEDUC

of 35.03. Using the F> 10 rule of thumb wewould be comfortable that our instruments are

strong. The Cragg-Donald F-test statistic value is 8.60 which tells a slightly different story.

Our instruments are not quite as strong as the first-stage weak instrument F-test statistics

imply. If we choose a maximum test size of 0.15, we can reject the null hypothesis of weak

instruments. If, however, we are prepared to accept only amaximum10% rejection rate for a

5% test, the critical value is 13.43, and we do not reject the null hypothesis that the

instruments are weak. The instrumental variables estimates of theHOURS supply equation

areModel (4) of Table 10E.4, andwe see that they aremore in linewithModel (1) andModel

(2) than those in Model (3).

10E.3 TESTING FORWEAK IDENTIFICATION: CONCLUSIONS

If instrumental variables are ‘‘weak,’’ then the instrumental variables, or two-stage least

squares, estimator is unreliable. When there is a single endogenous variable, the first-stage

F-test of the joint significance of the external instruments is an indicator of instrument

strength. The F> 10 rule of thumb has been refined by Stock and Yogo, who provide tables

of critical values for the null hypothesis ‘‘the instruments are weak’’ using two criteria: the

bias of the IVestimator relative to the bias of the least squares estimator, and the maximum

size of a 5% test of the coefficients of the endogenous variables. If there is more than one

endogenous variable on the right-hand side of an equation, then theF-test statistics from the

first stage equations do not provide reliable information about instrument strength. In this
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Ta b l e 1 0 E . 4 IV Estimation of Hours Equation

MODEL (1) (2) (3) (4)

C 17423.7211 14394.1144 �24491.5995 18067.8425

(5.56) (5.68) (�0.31) (5.11)

MTR �18456.5896 �14934.3696 29709.4677 �18633.9223

(�5.08) (�5.09) (0.33) (�4.85)

EDUC �145.2928 �118.8846 258.5590 �189.8611

(�4.40) (�4.28) (0.32) (�3.04)

KIDSL6 151.0229 58.7879 �1144.4779 190.2755

(1.07) (0.48) (�0.46) (1.20)

NWIFEINC �103.8983 �85.1934 149.2325 �102.1516

(�5.27) (�5.32) (0.31) (�5.11)

N 428 428 428 428

CRAGG-DONALD F 30.61 13.22 0.10 8.60

t statistics in parentheses.



case the Cragg-Donald F-test statistic should be used to test for weak instruments, along

with the Stock-Yogo tables of critical values.

Econometric research continues for alternatives to the IV/2SLS estimator in the weak

instrument case. Some progress has been made; these results are summarized in Appendix

11B. The discussion is deferred until the next chapter, as the advances have their genesis in

discussions of estimation of simultaneous equations models.

Appendix 10F Monte Carlo Simulation

In this appendix we do two sorts of simulations. First, we generate a sample of artificial data

and give numerical illustrations of the estimators and tests discussed in the chapter. In the

chapter the illustrations used real data. The advantage gained here is that we can see how

the estimators and tests perform using datawe knowcomes from a particular data generation

process. Secondly, we carry out aMonteCarlo simulation to illustrate the repeated sampling

properties of the least squares and IV/2SLS estimators under various conditions.

10F.1 ILLUSTRATIONS USING SIMULATED DATA

In this section we demonstrate, using a simulated sample of data, that the least squares

estimator fails when cov x; eð Þ 6¼ 0, and that instrumental variables estimators ‘‘work’’when

conditions listed in Section 10.3.3 are satisfied. For the simulated data we specify a simple

regression model in which the parameter values are b1 ¼ 1 and b2 ¼ 1. Thus, the

systematic part of the regression model is EðyÞ ¼ b1 þ b2x ¼ 1þ 1� x. By adding to

E(y) an error term value, which will be a random number we create, we can create a sample

value of y.

We want to explore the properties of the least squares estimator when x and e are

correlated. Using random number generators, we create N ¼ 100 pairs of x and e values,

such that each has a normal distribution with mean zero and variance one. The population

correlation between the x and e values is rxe. We then create an artificial sample of y values

by adding e to the systematic portion of the regression,

y ¼ E yð Þ þ e ¼ b1 þ b2xþ e ¼ 1þ 1�xþ e

The data values are contained in ch10.dat. The least squares estimates are

ŷLS ¼ 0:9789þ 1:7034x

(se) (0:088Þ ð0:090Þ

When x and e are positively correlated, the estimated slope tends to be too large—here,

b2 ¼ 1.7034 compared to the true b2 ¼ 1. Furthermore, the systematic overestimation of

the slopewill not go away in larger samples, so the least squares estimators are not correct on

average even in large samples. The least squares estimators are inconsistent.

In the process of creating the artificial data (ch10.dat) we also created two instrumental

variables, both uncorrelatedwith the error term. The correlation between the first instrument

z1 and x is rxz1 ¼ 0:5, and the correlation between the second instrument z2 and x is

rxz2 ¼ 0:3. The IV estimates using z1 are

ŷIV z1 ¼ 1:1011 þ 1:1924x

(se) (0:109Þ ð0:195Þ
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and the IV estimates using z2 are

ŷIV z2 ¼ 1:3451þ 0:1724x

(se) (0:256Þ ð0:797Þ
Using z1, the stronger instrument, yields an estimate of the slope of 1.1924 with a standard

error of 0.195, about twice the standard error of the least squares estimate. Using theweaker

instrument z2 produces a slope estimate of 0.1724, which is far from the true value, and a

standard error of 0.797, about eight times as large as the least squares standard error. The

results with the weaker instrument are far less satisfactory than the estimates based on

the stronger instrument z1.

Another problem that an instrument can have is that it is not uncorrelated with the error

term as it is supposed to be. The variable z3 is correlated with x, with correlation rxz3 ¼ 0:5,
but it is correlated with the error term e, with correlation rez3 ¼ 0:3. Thus, z3 is not a valid
instrument. What happens if we use instrumental variables estimation with the invalid

instrument? The results are

ŷIV z3 ¼ 0:9640þ 1:7657x

(se) (0.095) (0:172Þ

As you can see, using the invalid instrument produces a slope estimate even further from the

true value than the least squares estimate. Using an invalid instrumental variable means that

the instrumental variables estimatorwill be inconsistent, just like the least squares estimator.

What is the outcome of two-stage least squares estimation using the two instruments z1
and z2? Obtain the first-stage regression of x on the two instruments z1 and z2,

x̂ ¼ 0:1947þ 0:5700z1 þ 0:2068z2

(se) (0.079) (0.089) (0:077Þ (10F.1)

Using the predicted value x̂ to replace x, then applying least squares to the modified

equation, as in (10.22), we obtain the instrumental variables estimates

ŷIV z1;z2 ¼ 1:1376þ 1:0399x

(se) (0.116) (0:194Þ (10F.2)

The standard errors are based on an estimated error variance as in (10.23). Using the two

valid instruments yields an estimate of the slope of 1.0399,which, in this example, is close to

the true value of b2 ¼ 1.

10F.1.1 The Hausman Test

To implement the Hausman test we estimate the first-stage equation, which is shown in

(10F.1) using the instruments z1 and z2. Compute the residuals

v̂ ¼ x� x̂ ¼ x� 0:1947� 0:5700z1 � 0:2068z2

Include the residuals as an extra variable in the regression equation and apply least squares,

ŷ ¼ 1:1376þ 1:0399xþ 0:9957v̂

(se) (0.080) (0.133) (0.163)
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The t-statistic for the null hypothesis that the coefficient of v̂ is zero is 6.11. The critical

value comes from the t-distribution with 97 degrees of freedom and is 1.985, so we reject

the null hypothesis that x is uncorrelated with the error term and correctly conclude that

it is endogenous.

10F.1.2 Test for Weak Instruments

The test for weak instruments again begins with estimation of the first-stage regression. If

we consider using just z1 as an instrument, the estimated first-stage equation is

x̂ ¼ 0:2196þ 0:5711z1

ðtÞ (6:24Þ

The t-statistic 6.24 corresponds to an F-value of 38.92, which is well above the guideline

value of 10. If we use just z2 as an instrument, the estimated first-stage equation is

x̂ ¼ 0:2140þ 0:2090z2

ðtÞ (2:28Þ

While the t-statistic 2.28 indicates statistical significance at the 0.05 level, the correspond-

ing F value is 5.21 < 10, indicating that z2 is a weak instrument. The first-stage equation

using both instruments is shown in (10F.1), and theF-test for their joint significance is 24.28,

indicating that we have at least one strong instrument.

10F.1.3 Testing the Validity of Surplus Instruments

If we use z1 and z2 as instruments, there is one extra. The number of instruments is L ¼ 2 and

the number of endogenous regressors is B ¼ 1. The IV estimates are shown in (10F.2).

Calculate the residuals from this equation and then regress them on an intercept, z1 and z2,

to obtain ê ¼ 0:0189 þ 0:0881z1 � 0:1818z2. The R2 from this regression is 0.03628,

and NR2 ¼ 3.628. The 0.05 critical value for the chi-square distribution with one degree

of freedom is 3.84, so we fail to reject the validity of the surplus moment condition.

If we use z1, z2, and z3 as instruments, there are two surplus moment conditions. The IV

estimates using these three instruments are ŷIV z1;z2;z3 ¼ 1:0626þ 1:3535x. Obtaining the

residuals and regressing them on the instruments yields

ê¼0:0207� 0:1033z1 � 0:2355z2 þ 0:1798z3

The R2 from this regression is 0.1311, and NR2 ¼ 13.11. The 0.05 critical value for the chi-

square distribution with two degrees of freedom is 5.99, so we reject the validity of the two

surplus moment conditions. This test does not identify the problem instrument, but sincewe

first tested the validity of z1 and z2 and failed to reject their validity, and then found that

adding z3 led us to reject the validity of the surplus moment conditions, the instrument z3
seems to be the culprit.

10F.2 THE REPEATED SAMPLING PROPERTIES OF IV/2SLS

To illustrate the repeated sampling properties of the least squares and IV/2SLS estimators,

we use an experimental design based on the discussion in Appendix 10D. In the simple
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regression model y ¼ b1 þ b2xþ e, if x is correlated with the error term e, then x is

endogenous and the least squares estimator is biased and inconsistent. An instrumental

variable zmust be correlatedwith x but uncorrelatedwith e in order to be valid. A correlation

between z and x implies that there is a linear association between them. This means that we

can describe their relationship as a regression x ¼ p0 þ p1zþ v. There is a correlation

between x and z if, and only if, p1 6¼ 0. If we knew p0 and p1 we could substitute E xð Þ ¼
p0 þ p1z into the simple regression model to obtain y ¼ b1 þ b2E xð Þ þ b2vþ e. Suppose

for a moment that E(x) and v can be observed and are viewed as explanatory variables in the

regression y ¼ b1 þ b2E xð Þ þ b2vþ e. The explanatory variable E(x) is not correlated

with the error term e (or v). Any correlation between x and e implies correlation between v

and e because v ¼ x� EðxÞ.
In the simulation17 we use the data generation process y ¼ x þ e, so that the intercept

parameter is 0 and the slope parameter is 1. The first-stage regression is x ¼ pz1þ
pz2 þ pz3 þ v. Note that we have L ¼ 3 instruments, each of which has an independent

standard normal N(0,1) distribution. The parameter p controls the instrument strength. If

p ¼ 0, the instruments are not correlated with x, and instrumental variables estimation

will fail. The larger p becomes, the stronger the instruments become. Finally, we create

the random errors e and v to have standard normal distributions with correlation r, which
controls the endogeneity of x. If r ¼ 0, then x is not endogenous. The larger r becomes,

the stronger the endogeneity. We create 10,000 samples of size N ¼ 100 and then try out

least squares and IV/2SLS under several scenarios. We let p ¼ 0.1 (weak instruments)

and p ¼ 0.5 (strong instruments). We let r ¼ 0 (x exogenous) and r ¼ 0.8 (x highly

endogenous).

In Table 10F.1 the reported values are:

� F is the average first stage F: compare these values to 10. Note that the average value

of F is about 2 when p ¼ 0.1 indicating weak instruments. The average value of F is

about 21 when p ¼ 0.5 indicating strong instruments.

� b2 is the average of the least squares estimates of b2 ¼ 1. The least squares estimator

is unbiased when r ¼ 0, but when r ¼ 0.8, the least squares estimator shows severe

bias.

� s.d.(b2) is the sample standard deviation of the 10,000 Monte Carlo values of b2. It

tells us how much variation the least squares estimates exhibit in repeated

sampling.

� t(b2) is the percentage of rejections of the true null hypothesis b2 ¼ 1 using the 0.05

level of significance t-test based on the least squares estimator. If there is no
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17 This design is similar to that used by JinyongHahn and JerryHausman (2003) ‘‘Weak Instruments:Diagnosis

and Cures in Empirical Economics,’’ American Economic Review, 93(2), pp. 118–125.

Ta b l e 1 0 F. 1 Monte Carlo Simulation Results

r p F b2 s.d.(b2) t(b2) t(H) b̂2 s:d: b̂2

� �
t b̂2

� �
0.0 0.1 1.98 1.0000 0.1000 0.0499 0.0510 0.9941 0.6378 0.0049

0.0 0.5 21.17 0.9999 0.0765 0.0484 0.0518 0.9998 0.1184 0.0441

0.8 0.1 2.00 1.7762 0.0610 1.0000 0.3077 1.3311 0.9483 0.2886

0.8 0.5 21.18 1.4568 0.0610 1.0000 0.9989 1.0111 0.1174 0.0636



endogeneity, the percent rejections is very close to the 0.05 value, but if there is

strong endogeneity, the least squares estimator rejects the true null hypothesis 100%

of the time. That is not good.

� t(H) is the percentage rejections of the regression-based Hausman test for endo-

geneity using the 0.05 level of significance. If there is no endogeneity, the test rejects

5% of the time, which is what we expect. If there is strong endogeneity but weak

instruments, p ¼ 0.1, the test rejects only 31% of the time, failing to indicate the

endogeneity problem. If instruments are not strong, nothing is going to work well. If

the instruments are strong, then the test for endogeneity is very successful in detecting

strong endogeneity.

� b̂2 is the average of the instrumental variables estimates of b2 ¼ 1. The IV estimator

is unbiased when r ¼ 0. When endogeneity is strong, with weak instruments the IV

estimator has a 33% bias, but when instruments are strong it has an average very close

to the true value.

� s:d: b̂2

� �
is the sample standard deviation of the IV estimates in the 10,000 Monte

Carlo samples. If there is no endogeneity, note how large its standard deviation is

relative to the least squares estimator. With weak instruments its standard deviation

is six times that of the least squares estimator. Even with strong instruments, it is

substantially larger. The IV estimator is inefficient relative to the least squares

estimator when endogeneity is absent. When endogeneity is present, the effect of

weak instruments shows up in the large standard deviation of the estimates. When

instruments are stronger, the standard deviation of the IVestimates falls from 0.95 to

0.12, a substantial improvement.

� Finally, we see the rate of rejections of the true null hypothesis b2 ¼ 1 under the

scenarios. When x is endogenous and the instruments are weak, the t-test rejects far

too often, but it is better than the t-test based on the least squares estimator. Otherwise,

the rejection rate is close to the 5% that we expect.

These results are based on a sample size ofN ¼ 100, which is neither large nor small. What

results do you anticipate with larger or smaller samples?

Advice about what to do when there is uncertainty as to whether a regressor is

endogenous or not is somewhat mixed. In Table 10.2, the Hausman test statistic p-value is

0.0954. The prevailing attitude is probably summarized by Jeffrey Wooldridge,18 who

says, ‘‘We find evidence of endogeneity of EDUC at the 10% significance level against a

two-sided alternative, and so 2SLS is probably a good idea (assuming that we trust

the instruments.)’’ On the other hand, Patrik Guggenberger19 advises, that if testing the

coefficient of the endogenous regressor is the objective, then we should avoid considering

the Hausman test result and use 2SLS. On the other hand, if we consider how close the

estimates are to the true value on average, the ‘‘mean square error,’’ Chmelarova and

Hill20 advise that perhaps IV/2SLS should be used only if a Hausman pretest has a

much smaller p-value. This result is revealed somewhat in the Monte Carlo simulation.

18 Econometric Analysis of Cross Section and Panel Data, 2nd Edition, The MIT Press, 2010, p. 132.
19 ‘‘The Impact of aHausmanPretest on theAsymptotic Size of aHypothesis Test,’’Econometric Theory, 2010,

26(2), pp. 369–382.
20 ‘‘The Hausman Pretest Estimator,’’ Economics Letters, 2010, Vol. 108, 96–99.
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In the case in which r ¼ 0.8 and p ¼ 0.1, the mean square error for the least squares

estimator is

�10000
m¼1 b2m � b2ð Þ2

.
10000 ¼ 0:6062

while for the IV estimator it is

�10000
m¼1 b̂2m � b2

� �2.
10000 ¼ 1:0088

In other words, in this experimental setting with strong endogeneity and weak instruments,

the least squares estimator is, on average, closer to the true parameter value than the

IV estimator.
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C h a p t e r 11
Simultaneous Equations
Models

Learning Objectives

Based on the material in this chapter you should be able to:

1. Explain why estimation of a supply and demand model requires an alternative to

least squares.

2. Explain the difference between exogenous and endogenous variables.

3. Define the ‘‘identification’’ problem in simultaneous equations models.

4. Define the reduced form of a simultaneous equations model and explain its

usefulness.

5. Explain why it is acceptable to estimate reduced-form equations by least squares.

6. Describe the two-stage least squares estimation procedure for estimating an equation

in a simultaneous equations model, and explain how it resolves the estimation

problem for least squares.

For most of us, our first encounter with economic models comes through studying supply

and demand models, in which the market price and quantity of goods sold are jointly

determined by the equilibrium of supply and demand. In this chapter we consider

econometric models for data that are jointly determined by two or more economic relations.

These simultaneous equations models differ from those we have considered in previous

chapters because in each model there are two or more dependent variables rather than just

one.

Simultaneous equationsmodels also differ frommost of the econometricmodelswe have

considered so far, because they consist of a set of equations. For example, price and quantity

are determined by the interaction of two equations, one for supply and the other for demand.

Simultaneous equationsmodels, which contain more than one dependent variable andmore

than one equation, require special statistical treatment. The least squares estimation

Keywords

endogenous variables

exogenous variables

identification

reduced-form equation

reduced-form errors

reduced-form parameters

simultaneous equations

structural parameters

two-stage least squares
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procedure is not appropriate in these models, and we must develop new ways to obtain

reliable estimates of economic parameters.

Some of the concepts in this chapter were introduced in Chapter 10. However, reading

Chapter 10 is not a prerequisite for reading Chapter 11, which is self-contained. If you have

read Chapter 10, youwill observe that much of what you learned therewill carry over to this

chapter, including how simultaneous equations models fit into the big picture. If you have

not read Chapter 10, referring back to portions of it will provide a deeper understanding of

material presented in this chapter. This chapter on simultaneous equations is presented

separately because its treatment was the first major contribution of econometrics to the

wider field of statistics, and because of its importance in economic analysis.

11.1 A Supply and Demand Model

Supply and demand jointly determine themarket price of a good and the quantity of it that is

sold. Graphically, you recall that market equilibrium occurs at the intersection of the supply

and demand curves, as shown in Figure 11.1. An econometric model that explains market

price and quantity should consist of two equations, one for supply and the other for demand.

It will be a simultaneous equations model, since both equations working together determine

price and quantity. A very simple model might look like the following:

Demand: Q ¼ a1Pþ a2X þ ed (11.1)

Supply: Q ¼ b1Pþ es (11.2)

Based on economic theory we expect the supply curve to be positively sloped, b1 > 0, and

the demand curve to be negatively sloped, a1 < 0. In this model we assume that the quantity

demanded (Q) is a function of price (P) and income (X). Quantity supplied is taken to be a

function of only price. (We have omitted the intercepts to make the algebra easier. In

practice, we would include intercept terms in these models.)

The point wewish to make very clear is that it takes two equations to describe the supply

and demand equilibrium. The two equilibrium values, for price and quantity, P� and Q�;
respectively, are determined at the same time. In this model the variables P andQ are called

endogenous variables because their values are determined within the system we have

created. The endogenous variables P and Q are dependent variables and both are random

Q

d

P

P*

Q*

s

FIGURE 11.1 Supply and demand equilibrium.
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variables. The income variable X has a value that is determined outside this system. Such

variables are said to be exogenous, and these variables are treated like usual ‘‘x’’ expla-

natory variables.

Random errors are added to the supply and demand equations for the usual reasons, and

we assume that they have the usual properties

EðedÞ ¼ 0; varðedÞ ¼ s2
d

EðesÞ ¼ 0; varðesÞ ¼ s2
s

covðed; esÞ ¼ 0

(11.3)

Let us emphasize the difference between simultaneous equations models and regression

models using influence diagrams. An ‘‘influence diagram’’ is a graphical representation of

relationships between model components. In the previous chapters we would have modeled

the supply and demand relationships as separate regressions, implying the influence diagrams

in Figure 11.2. In this diagram the circles represent endogenous dependent variables and error

terms. The squares represent exogenous explanatory variables. In regression analysis the

direction of the influence is one-way: from the explanatory variable and the error term to

the dependent variable. In this case there is no equilibratingmechanism thatwill lead quantity

demanded to equal quantity supplied at a market-clearing price. For price to adjust to the

market clearing equilibrium, there must be an influence running fromP toQ and fromQ toP.

Recognizing that priceP and quantityQ are jointly determined, and that there is feedback

between them, suggests the influence diagram in Figure 11.3. In the simultaneous equations

model we see the two-way influence, or feedback, betweenP andQ because they are jointly

determined. The random error terms ed and es affect both P andQ, suggesting a correlation

between each of the endogenous variables and each of the random error terms. As we will

see, this leads to failure of the least squares estimator in simultaneous equations models.

Income X is an exogenous variable that affects the endogenous variables, but there is no

feedback from P and Q to X.

The fact thatP is an endogenous variable on the right-hand side of the supply and demand

equations means that we have an explanatory variable that is random. This is contrary to the

usual assumption of ‘‘fixed explanatory variables,’’ but as we explained in Chapter 10, this

by itself does not mean that standard regression analysis is inappropriate. The real problem

X

ed

Qd

P

es

Qs

P

FIGURE 11.2 Influence diagrams for two regression models.

P

esed Q

X

FIGURE 11.3 Influence diagram for a simultaneous equations model.
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is that the endogenous regressorP is correlatedwith the randomerrors, ed and es, which has a

devastating impact on our usual least squares estimation procedure,making the least squares

estimator biased and inconsistent.

11.2 The Reduced-Form Equations

The two structural equations (11.1) and (11.2) can be solved to express the endogenous

variables P andQ as functions of the exogenous variableX. This reformulation of the model

is called the reduced form of the structural equation system. The reduced form is very

important in its own right, and also helps us understand the structural equation system. To

find the reduced form, we solve (11.1) and (11.2) simultaneously for P and Q.

To solve for P, set Q in the demand and supply equations to be equal,

b1Pþ es ¼ a1Pþ a2X þ ed

Then solve for P,

P ¼ a2

ðb1 � a1ÞX þ ed � es

ðb1 � a1Þ
¼ p1X þ v1

(11.4)

To solve for Q, substitute the value of P in (11.4) into either the demand or supply equa-

tion. The supply equation is simpler, so we will substitute P into (11.2) and simplify:

Q ¼ b1Pþ es

¼ b1

a2

ðb1 � a1ÞX þ ed � es

ðb1 � a1Þ
� �

þ es

¼ b1a2

ðb1 � a1ÞX þ b1ed � a1es

ðb1 � a1Þ

¼ p2X þ v2

(11.5)

The parameters p1 and p2 in (11.4) and (11.5) are called reduced-form parameters. The
error terms v1 and v2 are called reduced-form errors.

The reduced-form equations can be estimated consistently by least squares. The

explanatory variable X is determined outside this system. It is not correlated with the

disturbances v1 and v2, which themselves have the usual properties of zero mean, constant

variances, and zero covariance. Thus the least squares estimator is BLUE for the purposes of

estimating p1 and p2.

The reduced-form equations are important for economic analysis. These equations relate

the equilibrium values of the endogenous variables to the exogenous variables. Thus, if there

is an increase in incomeX,p1 is the expected increase in price, aftermarket adjustments lead

to a new equilibrium for P and Q. Similarly, p2 is the expected increase in the equilibrium

value ofQ. (Question: howdidwe determine the directions of these changes?) Secondly, and

using the same logic, the estimated reduced-form equations can be used to predict values of

equilibrium price and quantity for different levels of income. Clearly CEOs and other

market analysts are interested in the ability to forecast both prices and quantities sold of their

products. It is the estimated reduced-form equations that make such predictions possible.
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11.3 The Failure of Least Squares Estimation

In this section we explain why the least squares estimator should not be used to estimate an

equation in a simultaneous equations model. For reasons that will become clear in the next

section, we focus on the supply equation. In the supply equation (11.2), the endogenous

variable P on the right-hand side of the equation is correlatedwith the error term es.Wewill

give an intuitive explanation for the existence of this correlation here. An algebraic

explanation is in Appendix 11A.

Suppose there is a small change, or blip, in the error term es, say Des. Trace the effect of
this change through the system. The blip Des in the error term of (11.2) is directly

transmitted to the equilibrium value of P. This follows from the reduced form (11.4)

that hasP on the left and es on the right. Every change in the supply equation error term es has

a direct linear effect upon P. Since b1 > 0 and a1 < 0, if Des > 0, then DP< 0. Thus, every

time there is a change in es, there is an associated change in P in the opposite direction.

Consequently, P and es are negatively correlated.

The failure of least squares estimation for the supply equation can be explained as

follows: least squares estimation of the relation betweenQ and P gives ‘‘credit’’ to price (P)

for the effect of changes in the error term (es). This occurs because we do not observe the

change in the error term, but rather only the change in P resulting from its correlation with

the error es. The least squares estimator ofb1 will understate the true parameter value in this

model, because of the negative correlation between the endogenous variable P and the error

term es. In large samples, the least squares estimator will tend to be negatively biased in this

model. This bias persists even if the sample size goes to infinity, and thus the least squares

estimator is inconsistent. This means that the probability distribution of the least squares

estimator will ultimately ‘‘collapse’’ about a point that is not the true parameter value as the

sample sizeN!1. SeeAppendix 5B for a general discussion of ‘‘large sample’’ properties

of estimators, and see Appendix 11A for an algebraic derivation. Here, we summarize

by saying:

The least squares estimator of parameters in a structural simultaneous equation is biased

and inconsistent because of the correlation between the random error and the endogenous

variables on the right-hand side of the equation.

11.4 The Identification Problem

In the supply and demand model given by (11.1) and (11.2),

� The parameters of the demand equation,a1 anda2, cannot be consistently estimated

by any estimation method

� The slope of the supply equation, b1, can be consistently estimated.

How are we able to make such statements? The answer is quite intuitive, and it can be

illustrated graphically. What happens when income X changes? The demand curve

shifts and a new equilibrium price and quantity are created. In Figure 11.4 we show the

demand curves d1, d2, and d3 and equilibria, at points a, b, and c, for three levels of

income. As income changes, data on price and quantity will be observed around the
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intersections of supply and demand. The random errors ed and es cause small shifts in

the supply and demand curves, creating equilibrium observations on price and quantity

that are scattered about the intersections at points a, b, and c.

The data values will trace out the supply curve, suggesting that we can fit a line through

them to estimate the slope b1. The data values fall along the supply curve because income is

present in the demand curve and absent from the supply curve. As income changes, the

demand curve shifts but the supply curve remains fixed, resulting in observations along

the supply curve.

There are no data values falling along any of the demand curves, and there is no way to

estimate their slope. Any one of an infinite number of demand curves passing through the

equilibrium points could be correct. Given the data, there is no way to distinguish the true

demand curve from all the rest. Through the equilibrium point a we have drawn a few

demand curves, each of which could have generated the data we observe.

The problem lies with the model that we are using. There is no variable in the supply

equation that will shift it relative to the demand curve. If we were to add a variable to the

supply curve, say W, then each time W changed, the supply curve would shift, and

the demand curve would stay fixed. The shifting of supply relative to a fixed demand

curve (sinceW is absent from the demand equation) would create equilibrium observations

along the demand curve, making it possible to estimate the slope of the demand curve and

the effect of income on demand.

It is the absence of variables in one equation that are present in another equation that

makes parameter estimation possible. A general rule, which is called a necessary condition

for identification of an equation, is this:

A NECESSARY CONDITION FOR IDENTIFICATION: In a system of M simul-

taneous equations, which jointly determine the values of M endogenous variables, at least

M � 1 variables must be absent from an equation for estimation of its parameters to be

possible. When estimation of an equation’s parameters is possible, then the equation is

said to be identified, and its parameters can be estimated consistently. If fewer thanM � 1

variables are omitted from an equation, then it is said to be unidentified, and its parameters

cannot be consistently estimated.

In our supply and demand model there are M ¼ 2 equations, so we require at least

M � 1 ¼ 1 variable to be omitted from an equation to identify it. There are a total of

Q

a

b

c

s

d3

d2

d1

P

FIGURE 11.4 The effect of changing income.
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three variables:P,Q, andX. In the demand equation none of the variables are omitted; thus it

is unidentified and its parameters cannot be estimated consistently. In the supply equation,

one variable, income (X ), is omitted; the supply curve is identified, and its parameter can be

estimated.

The identification condition must be checked before trying to estimate an equation. If an

equation is not identified, then changing themodelmust be considered before it is estimated.

However, changing themodel should not be done in a haphazard way; no important variable

should be omitted from an equation just to identify it. The structure of a simultaneous

equations model should reflect your understanding of how equilibrium is achieved and

should be consistent with economic theory. Creating a false model is not a good solution to

the identification problem.

This paragraph is for those who have read Chapter 10. The necessary condition for

identification can be expressed in an alternative but equivalent fashion. The two-stage least

squares estimation procedurewas developed in Chapter 10 and shown to be an instrumental

variables estimator. This procedure is developed further in the next section. The number

of instrumental variables required for estimation of an equation within a simultaneous

equationsmodel is equal to the number of right-hand-side endogenous variables. In a typical

equation within a simultaneous equations model, several exogenous variables appear on

the right-hand side. Thus instruments must come from those exogenous variables omitted

from the equation in question. Consequently, identification requires that the number of

excluded exogenous variables in an equation be at least as large as the number of included

right-hand-side endogenous variables. This ensures an adequate number of instrumental

variables.

11.5 Two-Stage Least Squares Estimation

The most widely used method for estimating the parameters of an identified structural

equation is called two-stage least squares, which is often abbreviated as 2SLS. The

name comes from the fact that it can be calculated using two least squares regressions.

We will explain how it works by considering the supply equation in (11.2). Recall that we

cannot apply the usual least squares procedure to estimate b1 in this equation, because

the endogenous variable P on the right-hand side of the equation is correlated with the error

term es.

The variable P is composed of a systematic part, which is its expected value E(P), and a

random part, which is the reduced-form random error v1. That is,

P ¼ EðPÞ þ v1 ¼ p1X þ v1 (11.6)

In the supply equation (11.2) the portion of P that causes problems for the least squares

estimator is v1, the random part. It is v1 that causes P to be correlated with the error term es.

Suppose we knew the value of p1. Then we could replace P in (11.2) with (11.6) to obtain

Q ¼ b1½EðPÞ þ v1� þ es

¼ b1EðPÞ þ ðb1v1 þ esÞ
(11.7)

In (11.7) the explanatory variable on the right-hand side is E(P). It is not a random variable

and it is not correlated with the error term. We could apply least squares to (11.7) to

consistently estimate b1.
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Of course, we cannot use the variable EðPÞ ¼ p1X in place of P, since we do not know

the value of p1. However, we can estimate p1 using p̂1 from the reduced-form equation

for P. Then, a consistent estimator for E(P) is

P̂ ¼ p̂1X

Using P̂ as a replacement for E(P) in (11.7) we obtain

Q ¼ b1P̂ þ e� (11.8)

In large samples, P̂ and the random error e� are uncorrelated, and consequently the

parameter b1 can be consistently estimated by applying least squares to (11.8).

Estimating (11.8) by least squares generates the so-called two-stage least squares

estimator of b1, which is consistent and normally distributed in large samples. To

summarize, the two stages of the estimation procedure are

1. Least squares estimation of the reduced-form equation for P and the calculation of

its predicted value, P̂

2. Least squares estimation of the structural equation in which the right-hand-side

endogenous variable P is replaced by its predicted value P̂1

11.5.1 THE GENERAL TWO-STAGE LEAST SQUARES ESTIMATION PROCEDURE

The two-stage least squares estimation procedure can be used to estimate the parameters

of any identified equation within a simultaneous equations system. In a system of M

simultaneous equations, let the endogenous variables be y1, y2, . . . , yM . Let there be K

exogenous variables, x1, x2, . . . , xK . Suppose the first structural equation within this

system is

y1 ¼ a2y2 þ a3y3 þ b1x1 þ b2x2 þ e1 (11.9)

If this equation is identified, then its parameters can be estimated in the two steps:

1. Estimate the parameters of the reduced-form equations

y2 ¼ p12x1 þ p22x2 þ � � � þ pK2xK þ v2

y3 ¼ p13x1 þ p23x2 þ � � � þ pK3xK þ v3

by least squares and obtain the predicted values

ŷ2 ¼ p̂12x1 þ p̂22x2 þ � � � þ p̂K2xK

ŷ3 ¼ p̂13x1 þ p̂23x2 þ � � � þ p̂K3xK
(11.10)

1 The discussion above is an intuitive explanation of the two-stage least squares estimator. For a general

explanation of this estimation method, see Section 10.3. There we derive the two-stage least squares estimator and

discuss its properties.
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2. Replace the endogenous variables, y2 and y3, on the right-hand side of the structural

(11.9) by their predicted values from (11.10)

y1 ¼ a2 ŷ2 þ a3 ŷ3 þ b1x1 þ b2x2 þ e�1

Estimate the parameters of this equation by least squares.

11.5.2 THE PROPERTIES OF THE TWO-STAGE LEAST SQUARES ESTIMATOR

We have described how to obtain estimates for structural equation parameters in identified

equations. The properties of the two-stage least squares estimator are as follows:

� The 2SLS estimator is a biased estimator, but it is consistent.

� In large samples the 2SLS estimator is approximately normally distributed.

� The variances and covariances of the 2SLS estimator are unknown in small samples,

but for large sampleswe have expressions for them thatwe can use as approximations.

These formulas are built into econometric software packages, which report standard

errors and t-values, just like an ordinary least squares regression program.

� If you obtain 2SLS estimates by applying two least squares regressions using ordinary

least squares regression software, the standard errors and t-values reported in the

second regression are not correct for the 2SLS estimator. Always use specialized

2SLS or instrumental variables software when obtaining estimates of structural

equations.

11.6 An Example of Two-Stage Least
Squares Estimation

Truffles are a gourmet delight. They are edible fungi that grow below the ground. In France

they are often located by collectorswho use pigs to sniff out the truffles and ‘‘point’’ to them.

Actually the pigs dig frantically for the truffles because pigs have an insatiable taste for

them, as do the French, and theymust be restrained from ‘‘pigging out’’ on them. Consider a

supply and demand model for truffles:

Demand: Qi ¼ a1 þ a2Pi þ a3PSi þ a4DIi þ edi (11.11)

In the demand equation Q is the quantity of truffles traded in a particular French market-

place, indexed by i, P is the market price of truffles, PS is the market price of a substitute for

real truffles (another fungus much less highly prized), and DI is per capita monthly

disposable income of local residents. The supply equation contains the market price and

quantity supplied. Also it includes PF, the price of a factor of production, which in this case

is the hourly rental price of truffle-pigs used in the search process. In this model we assume

that P and Q are endogenous variables. The exogenous variables are PS, DI, PF, and the

intercept.

Supply: Qi ¼ b1 þ b2Pi þ b3PFi þ esi (11.12)
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11.6.1 IDENTIFICATION

Before thinking about estimation, check the identification of each equation. The rule for

identifying an equation is that in a system ofM equations at leastM � 1 variables must be

omitted from each equation in order for it to be identified. In the demand equation the

variable PF is not included; thus the necessaryM � 1 ¼ 1 variable is omitted. In the supply

equation bothPS andDI are absent;more than enough to satisfy the identification condition.

Note too that the variables that are omitted are different for each equation, ensuring that

each contains at least one shift variable not present in the other. We conclude that each

equation in this system is identified and can thus be estimated by two-stage least squares.

Why are the variables omitted from their respective equations?Because economic theory

says that the price of a factor of production should affect supply but not demand, and that the

price of substitute goods and income should affect demand and not supply. The specifica-

tions we used are based on the microeconomic theory of supply and demand.

11.6.2 THE REDUCED-FORM EQUATIONS

The reduced-form equations express each endogenous variable, P and Q, in terms of the

exogenous variables PS, DI, PF, and the intercept, plus an error term. They are

Qi ¼ p11 þ p21PSi þ p31DIi þ p41PFi þ vi1

Pi ¼ p12 þ p22PSi þ p32DIi þ p42PFi þ vi2

We can estimate these equations by least squares since the right-hand-side variables are

exogenous and uncorrelated with the random errors vi1 and vi2. The data file truffles.dat

contains 30 observations on each of the endogenous and exogenous variables. The units of

measurement are $ per ounce for price P, ounces for Q, $ per ounce for PS, and thousands

of dollars for DI; PF is the hourly rental rate ($) for a truffle-finding pig. A few of the

observations are shown in Table 11.1. The results of the least squares estimations of

the reduced-form equations for Q and P are reported in Table 11.2.

In Table 11.2a we see that the estimated coefficients are statistically significant, and thus

we conclude that the exogenous variables affect the quantity of truffles traded, Q, in this

reduced-form equation. The R2 ¼ 0:697, and the overall F-statistic is 19.973, which has a

p-value of less than 0.0001. In Table 11.2b the estimated coefficients are statistically

Ta b l e 1 1 . 1 Representative Truffle Data

OBS P Q PS DI PF

1 29.64 19.89 19.97 2.103 10.52

2 40.23 13.04 18.04 2.043 19.67

3 34.71 19.61 22.36 1.870 13.74

4 41.43 17.13 20.87 1.525 17.95

5 53.37 22.55 19.79 2.709 13.71

Summary Statistics

Mean 62.72 18.46 22.02 3.53 22.75

Std. Dev. 18.72 4.61 4.08 1.04 5.33
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significant, indicating that the exogenous variables have an effect on market price P.

The R2 ¼ 0:889 implies a good fit of the reduced-form equation to the data. The overall

F-statistic value is 69.189 that has a p-value of less than 0.0001, indicating that the model

has statistically significant explanatory power.

11.6.3 THE STRUCTURAL EQUATIONS

The reduced-form equations are used to obtain P̂ that will be used in place of P on the right-

hand side of the supply and demand equations in the second stage of two-stage least squares.

From Table 11.2b we have

P̂ ¼ p̂12 þ p̂22PSþ p̂32DI þ p̂42PF

¼ �32:512þ 1:708PSþ 7:603DI þ 1:354PF

The 2SLS results are given in Tables 11.3a and 11.3b. The estimated demand curve results

are in Table 11.3a. Note that the coefficient of price is negative, indicating that as themarket

price rises, the quantity demanded of truffles declines, as predicted by the law of demand.

The standard errors that are reported are obtained from 2SLS software. They and the t-values

are valid in large samples. The p-value indicates that the estimated slope of the demand

curve is significantly different from zero. Increases in the price of the substitute for truffles

increase the demand for truffles, which is a characteristic of substitute goods. Finally the

effect of income is positive, indicating that truffles are a normal good. All of these variables

Ta b l e 1 1 . 2 a Reduced Form for Quantity of Truffles (Q)

Variable Coefficient Std. Error t-Statistic Prob.

C 7.8951 3.2434 2.4342 0.0221

PS 0.6564 0.1425 4.6051 0.0001

DI 2.1672 0.7005 3.0938 0.0047

PF �0.5070 0.1213 �4.1809 0.0003

Ta b l e 1 1 . 3 a 2SLS Estimates for Truffle Demand

Variable Coefficient Std. Error t-Statistic Prob.

C �4.2795 5.5439 �0.7719 0.4471

P �0.3745 0.1648 �2.2729 0.0315

PS 1.2960 0.3552 3.6488 0.0012

DI 5.0140 2.2836 2.1957 0.0372

Ta b l e 1 1 . 2 b Reduced Form for Price of Truffles (P)

Variable Coefficient Std. Error t-Statistic Prob.

C �32.5124 7.9842 �4.0721 0.0004

PS 1.7081 0.3509 4.8682 0.0000

DI 7.6025 1.7243 4.4089 0.0002

PF 1.3539 0.2985 4.5356 0.0001
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have statistically significant coefficients and thus have an effect upon the quantity

demanded.

The supply equation results appear in Table 11.3b. As anticipated, increases in the price

of truffles increase the quantity supplied, and increases in the rental rate for truffle-seeking

pigs, which is an increase in the cost of a factor of production, reduces supply. Both of these

variables have statistically significant coefficient estimates.

11.7 Supply and Demand at the Fulton Fish Market

TheFulton FishMarket has operated inNewYorkCity for over 150 years. The prices for fish

are determined daily by the forces of supply and demand. Kathryn Graddy2 collected daily

data on the price of whiting (a common type of fish), quantities sold, andweather conditions

during the periodDecember 2, 1991, toMay 8, 1992. These data are in the file fultonfish.dat.

Fresh fish arrive at themarket about midnight. Thewholesalers, or dealers, sell to buyers for

retail shops and restaurants. The first interesting feature of this example is to consider

whether prices and quantities are simultaneously determined by supply and demand at all.3

We might consider this a market with a fixed, perfectly inelastic supply. At the start of the

day, when the market is opened, the supply of fish available for the day is fixed. If supply is

fixed, with a vertical supply curve, then price is demand-determined, with higher demand

leading to higher prices but no increase in the quantity supplied. If this is true, then the

feedback between prices and quantities is eliminated. Such models are said to be recursive

and the demand equation can be estimated by ordinary least squares rather than the more

complicated two-stage least squares procedure.

However whiting fish can be kept for several days before going bad, and dealers can

decide to sell less, and add to their inventory, or buffer stock, if the price is judged too low, in

hope for better prices the next day. Or, if the price is unusually high on a given day, then

sellers can increase the day’s catch with additional fish from their buffer stock. Thus despite

the perishable nature of the product, and the daily resupply of fresh fish, daily price is

simultaneously determined by supply and demand forces. The key point here is that

‘‘simultaneity’’ does not require that events occur at a simultaneous moment in time.

Let us specify the demand equation for this market as

lnðQUANtÞ ¼ a1 þ a2lnðPRICEtÞ þ a3MONt þ a4TUEt þ a5WEDt

þ a6THUt þ edt
(11.13)

Ta b l e 1 1 . 3 b 2SLS Estimates for Truffle Supply

Variable Coefficient Std. Error t-Statistic Prob.

C 20.0328 1.2231 16.3785 0.0000

P 0.3380 0.0249 13.5629 0.0000

PF �1.0009 0.0825 �12.1281 0.0000

2 See Kathryn Graddy (2006) ‘‘The Fulton Fish Market,’’ Journal of Economic Perspectives, 20(2), 207–220.

The authors would like to thank Professor Graddy for permission to use the data from her study.
3 The authors thank Peter Kennedy for this observation. See Kathryn Graddy and Peter E. Kennedy (2010)

‘‘When are supply and demand determined recursively rather than simultaneously?’’ Eastern Economic Journal,

36, pp. 188–197.
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where QUANt is the quantity sold, in pounds, and PRICEt is the average daily price per

pound. Note that we are using the subscript ‘‘t’’ to index observations for this relationship

because of the time series nature of the data. The remaining variables are indicator variables

for the days of theweek, with Friday being omitted. The coefficient a2 is the price elasticity

of demand, whichwe expect to be negative. The daily indicator variables capture day-to-day

shifts in demand. The supply equation is

lnðQUANtÞ ¼ b1 þ b2lnðPRICEtÞ þ b3STORMYt þ est (11.14)

The coefficient b2 is the price elasticity of supply. The variable STORMY is an indicator

variable indicating stormy weather during the previous three days. This variable is

important in the supply equation because stormy weather makes fishing more difficult,

reducing the supply of fish brought to market.

11.7.1 IDENTIFICATION

Prior to estimation, wemust determinewhether the supply and demand equation parameters

are identified. The necessary condition for an equation to be identified is that in this system

ofM ¼ 2 equations, it must be true that at leastM � 1 ¼ 1 variable must be omitted from

each equation. In the demand equation theweather variable STORMY is omitted, and it does

appear in the supply equation. In the supply equation, the four daily indicator variables

that are included in the demand equation are omitted. Thus the demand equation shifts

daily, while the supply remains fixed (since the supply equation does not contain the daily

indicator variables), thus tracing out the supply curve, making it identified, as shown in

Figure 11.4. Similarly, stormy conditions shift the supply curve relative to a fixed demand,

tracing out the demand curve and making it identified.

11.7.2 THE REDUCED-FORM EQUATIONS

The reduced-form equations specify each endogenous variable as a function of all

exogenous variables

lnðQUANtÞ ¼ p11 þ p21MONt þ p31TUEt þ p41WEDt þ p51THUt

þ p61STORMYt þ vt1
(11.15)

These reduced-formequations can be estimated by least squares because the right-hand-side

variables are all exogenous and uncorrelated with the reduced-form errors vt1 and vt2. Using

theGraddys’data (fultonfish.dat)we estimate these reduced-form equations and report them

in Table 11.4. Estimation of the reduced-form equations is the first step of two-stage least

squares estimation of the supply and demand equations. It is a requirement for successful

two-stage least squares estimation that the estimated coefficients in the reduced form for

the right-hand-side endogenous variable be statistically significant. We have specified the

lnðPRICEtÞ ¼ p12 þ p22MONt þ p32TUEt þ p42WEDt þ p52THUt

þ p62STORMYt þ vt2
(11.16)
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structural equations (11.13) and (11.14) with ln(QUAN) as the left-hand-side variable and

ln(PRICE) as the right-hand-side endogenous variable. Thus the key reduced-form equation

is (11.16) for ln(PRICE). In this equation

� To identify the supply curve, the daily indicator variables must be jointly significant.

This implies that at least one of their coefficients is statistically different from zero,

meaning that there is at least one significant shift variable in the demand equation,

which permits us to reliably estimate the supply equation.

� To identify the demand curve, the variable STORMY must be statistically significant,

meaning that supply has a significant shift variable, so that we can reliably estimate

the demand equation.

Why is this so? The identification discussion in Section 11.4 requires only the presence of

shift variables, not their significance. The answer comes from a great deal of econometric

research in the past decade, which shows that the two-stage least squares estimator performs

very poorly if the shift variables are not strongly significant.4 Recall that to implement two-

stage least squares we take the predicted value from the reduced-form regression and

include it in the structural equations in place of the right-hand-side endogenous variable.

That is, we calculate

blnðPRICEtÞ ¼ p̂12 þ p̂22MONt þ p̂32TUEt þ p̂42WEDt þ p̂52THUt þ p̂62STORMYt

where p̂k2 are the least squares estimates of the reduced-form coefficients, and then

replace ln(PRICE) withblnðPRICEÞ. To illustrate our point, let us focus on the problem

Ta b l e 1 1 . 4 b Reduced Form for ln(Price) Fish

Variable Coefficient Std. Error t-Statistic Prob.

C �0.2717 0.0764 �3.5569 0.0006

STORMY 0.3464 0.0747 4.6387 0.0000

MON �0.1129 0.1073 �1.0525 0.2950

TUE �0.0411 0.1045 �0.3937 0.6946

WED �0.0118 0.1069 �0.1106 0.9122

THU 0.0496 0.1045 0.4753 0.6356

4 See Chapter 10.3.5 for further discussion of this point.

Ta b l e 1 1 . 4 a Reduced Form for ln(Quantity) Fish

Variable Coefficient Std. Error t-Statistic Prob.

C 8.8101 0.1470 59.9225 0.0000

STORMY �0.3878 0.1437 �2.6979 0.0081

MON 0.1010 0.2065 0.4891 0.6258

TUE �0.4847 0.2011 �2.4097 0.0177

WED �0.5531 0.2058 �2.6876 0.0084

THU 0.0537 0.2010 0.2671 0.7899
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of estimating the supply equation (11.14) and take the extreme case that p̂22 ¼ p̂32 ¼
p̂42 ¼ p̂52 ¼ 0, meaning that the coefficients on the daily indicator variables are all

identically zero. Then

blnðPRICEtÞ ¼ p̂12 þ p̂62STORMYt

If we replace ln(PRICE) in the supply equation (11.14) with this predicted value, there will

be exact collinearity betweenblnðPRICEÞ and the variable STORMY, which is already in the

supply equation, and two-stage least squareswill fail. If the coefficient estimates on the daily

indicator variables are not exactly zero, but are jointly insignificant, it means there will be

severe collinearity in the second stage, and although the two-stage least squares estimates of

the supply equation can be computed, they will be unreliable. In Table 11.4b, showing the

reduced-form estimates for (11.16), none of the daily indicator variables are statistically

significant. Also, the joint F-test of significance of the daily indicator variables has p-value

0.65, so that we cannot reject the null hypothesis that all these coefficients are zero.5 In

this case the supply equation is not identified in practice, and we will not report estimates

for it.

However, STORMY is statistically significant in Table 11.4b, meaning that the demand

equation may be reliably estimated by two-stage least squares. An advantage of two-stage

least squares estimation is that each equation can be treated and estimated separately, so the

fact that the supply equation is not reliably estimable does not mean that we cannot proceed

with estimation of the demand equation. The check of statistical significance of the sets of

shift variables for the structural equations should be carried out each time a simultaneous

equations model is formulated.

11.7.3 TWO-STAGE LEAST SQUARES ESTIMATION OF FISH DEMAND

Applying two-stage least squares estimation to the demand equationwe obtain the results as

given in Table 11.5. The price elasticity of demand is estimated to be�1.12, meaning that a

1% increase in fish price leads to about a 1.12% decrease in the quantity demanded; this

estimate is statistically significant at the 5% level. The indicator variable coefficients are

negative and statistically significant for Tuesday and Wednesday, meaning that demand is

lower on these days relative to Friday.

460 S IMULTANEOUS EQUAT IONS MODELS

5 Even if the variables are jointly significant, there may be a problem. The significance must be ‘‘strong.’’ An

F-value <10 is cause for concern. This problem is the same as that of weak instruments in instrumental variables

estimation. See Section 10.3.5.

Ta b l e 1 1 . 5 2SLS Estimates for Fish Demand

Variable Coefficient Std. Error t-Statistic Prob.

C 8.5059 0.1662 51.1890 0.0000

ln(PRICE) �1.1194 0.4286 �2.6115 0.0103

MON �0.0254 0.2148 �0.1183 0.9061

TUE �0.5308 0.2080 �2.5518 0.0122

WED �0.5664 0.2128 �2.6620 0.0090

THU 0.1093 0.2088 0.5233 0.6018



11.8 Exercises

Answers to exercises marked * appear at www.wiley.com/college/hill.

11.8.1 PROBLEMS

11.1 Can you suggest a method for using the reduced-form (11.4) and (11.5) to obtain an

estimate of the slope of the supply functionQ ¼ b1Pþ es? In particular, suppose that

the estimated reduced-form equations are P̂ ¼ 18X and Q̂¼ 5X. What is an

estimated value of b1? (Hint: look at the expressions for p1 and p2.)

11.2 Supply and demand curves as traditionally drawn in economics principles classes

have price (P) on the vertical axis and quantity (Q) on the horizontal axis.

(a) Take the estimates in Table 11.3 and on graph paper accurately sketch the supply

and demand equations. For these sketches, set the values of the exogenous

variables DI, PS, and PF to be DI� ¼ 3:5, PF� ¼ 23, and PS� ¼ 22.

(b) What are the equilibrium values of P and Q from (a)?

(c) Calculate the predicted equilibrium values of P and Q using the estimated

reduced-form equations fromTable 11.2, using the same values of the exogenous

variables as those in (a). Compare these predicted equilibrium values to those in

(b). Do they seem to agree, or not?

(d) On the graph from part (a), show the consequences of increasing income from

DI� ¼ 3:5 toDI�� ¼ 4:5,holding thevaluesofPF and PSat thevaluesgivenin(a).

(e) Calculate the change in equilibrium price P and quantity Q in (d) based on your

sketch.

(f) Using the results in part (e), calculate the income elasticity of demand implied by

the shift in part (d). Calculate an estimate of the income elasticity of demand from

theestimated reduced-formequation inTable11.2aandcompare toyourgraphical

solution.

11.3 Suppose you want to estimate a wage equation for married women of the form

lnðWAGEÞ ¼ b1 þ b2HOURSþ b3EDUC þ b4EXPERþ e

where WAGE is hourly wage, HOURS is the number of hours worked per week,

EDUC is years of education, and EXPER is years of experience. Your classmate

observes that higher wages can bring forth increased work effort, and that married

women with young children may reduce their hours of work to take care of them, so

that there may be an auxiliary relationship such as

HOURS ¼ a1 þ a2lnðWAGEÞ þ a3KIDSþ u

whereKIDS is the number of children under the age of six in thewoman’s household.

(a) Can the wage equation be estimated satisfactorily using the least squares

estimator? If not, why not?

(b) Is the wage equation ‘‘identified’’? What does the term identification mean in

this context?

(c) If you seek an alternative to least squares estimation for the wage equation,

suggest an estimation procedure and how (step by step, and not a computer

command) it is carried out.
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11.4 Consider the following simultaneous equations model. Assume that x is exogenous.

y1 ¼ bxþ e

y2 ¼ ay1 þ u

(a) How would you estimate the parameter b? Is it identified?

(b) How would you estimate the parameter a? Is it identified?

11.8.2 COMPUTER EXERCISES

11.5 (a) Use your computer software for two-stage least squares or instrumental variables

estimation, and the 30 observations in the file truffles.dat to obtain 2SLS

estimates of the system in (11.11) and (11.12). Compare your results to those

in Table 11.3.

(b) Using the 2SLS estimated equations, compute the price elasticity of supply and

demand ‘‘at the means.’’ The summary statistics for the data are given in Table

11.1. [Hint: See Appendix A, equation (A.8).] Comment on the signs and

magnitudes of these elasticities.

11.6 Estimate (11.11)and (11.12)by least squares regression, ignoring the fact that they form

a simultaneous system. Use the data in truffles.dat. Compare your results to those in

Table 11.3. Do the signs of the least squares estimates agreewith economic reasoning?

11.7* Supply and demand curves as traditionally drawn in economics principles classes

have price (P) on the vertical axis and quantity (Q) on the horizontal axis.

(a) Rewrite the truffle demand and supply equations in (11.11) and (11.12) with

price P on the left-hand side. What are the anticipated signs of the parameters in

this rewritten system of equations?

(b) Using the data in the file truffles.dat, estimate the supply and demand equations

that you have formulated in (a) using two-stage least squares. Are the signs

correct? Are the estimated coefficients significantly different from zero?

(c) Estimate the price elasticity of demand ‘‘at themeans’’ using the results from (b).

(d) On graph paper accurately sketch the supply and demand equations using the

estimates from part (b). For these sketches set the values of the exogenous

variables DI, PS, and PF to be DI� ¼ 3:5, PF� ¼ 23, and PS� ¼ 22.

(e) What are the equilibrium values of P and Q obtained in part (d)? Calculate the

predicted equilibrium values of P and Q using the estimated reduced-form

equations from Table 11.2, using the same values of the exogenous variables.

How well do they agree?

(f) Estimate the supply and demand equations that you have formulated in (a) using

ordinary least squares. Are the signs correct? Are the estimated coefficients

significantly different from zero? Compare the results to those in part (b).

11.8* The labor supply of married women has been a subject of a great deal of economic

research. A classic work6 is that of Professor Tom Mroz, who kindly provided his

data to us. The data file is mroz.dat and the variable definitions are in the file mroz.

def. The data file contains information on women who have worked in the previous

6 Mroz, T.A. (1987) ‘‘The sensitivity of an empirical model of a married woman’s hours of work to economic

and statistical assumptions,’’ Econometrica, 55, 765–800.
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year and those who have not. The variable indicating whether a woman worked is

LFP, labor force participation, which takes the value 1 if a woman worked and 0 if

she did not.

(a) Calculate the summary statistics for the variables: wife’s age, number of children

younger than six years old in the household, and the family income for the

women who worked (LFP ¼ 1) and those who did not (LFP ¼ 0). Comment on

any differences you observe.

(b) Consider the following supply equation specification

HOURS ¼ b1 þ b2lnðWAGEÞ þ b3EDUC þ b4AGE þ b5KIDSL6

þ b6KIDS618þ b7NWIFEINC þ e

The variable NWIFEINC is defined as

NWIFEINC ¼ FAMINC �WAGE�HOURS

What signs do you expect each of the coefficients to have, and why? What does

NWIFEINC measure?

(c) Estimate the supply equation in (b) using least squares regression on only the

womenwhoworked (LFP ¼ 1). Youmust createNWIFEINC and ln(WAGE). Did

things come out as expected? If not, why not?

(d) Estimate the reduced-form equation by least squares for thewomen whoworked

lnðWAGEÞ ¼ p1 þ p2EDUC þ p3AGE þ p4KIDSL6 þ p5KIDS618

þ p6NWIFEINC þ p7EXPER þ p8EXPER
2 þ v

Based on the estimated reduced form, what is the effect upon wage of an

additional year of education?

(e) Check the identification of the supply equation, considering the availability of

the extra instruments EXPER and its square.

(f) Estimate the supply equation by two-stage least squares, using software designed

for this purpose. Discuss the signs and significance of the estimated coefficients.

11.9 This exercise examines a supply and demand model for edible chicken, which the

U. S. Department of Agriculture calls ‘‘broilers.’’ The data for this exercise is

in the file newbroiler.dat, which is adapted from the data provided by Epple and

McCallum (2006).7

(a) Consider the demand equation

lnðQtÞ ¼ a1 þ a2lnðYtÞ þ a3lnðPtÞ þ a4lnðPBtÞ þ edt

where Q ¼ per capita consumption of chicken, in pounds; Y ¼ real per capita

income; P ¼ real price of chicken; PB ¼ real price of beef. What are the

endogenous variables? What are the exogenous variables?

7 ‘‘Simultaneous equation econometrics: The missing example,’’ Economic Inquiry, 44(2), 374–384.We thank

Professor Bennett McCallum for his generous help.
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(b) The demand equation in (a) suffers from severe serial correlation. In the AR(1)

model edt ¼ red; t�1 þ vdt, the value of r is near 1. Epple andMcCallum estimate

the model in ‘‘first difference’’ form,

lnðQtÞ ¼ a1 þ a2lnðYtÞ þ a3lnðPtÞ þ a4lnðPBtÞ þ edt

�½lnðQt�1Þ ¼ a1 þ a2lnðYt�1Þ þ a3lnðPt�1Þ þ a4lnðPBt�1Þþ ed, t�1�
DlnðQtÞ ¼ a2DlnðYtÞ þ a3DlnðPtÞ þ a4DlnðPBtÞ þ vdt

(i)What changes do you notice after this transformation? (ii) Are the parameters

of interest affected? (iii) If r ¼ 1, havewe solved the serial correlation problem?

(iv) What is the interpretation of the ‘‘D’’ variables like DlnðQtÞ? (Hint: see

Appendix A.1.6) (v) What is the interpretation of the parameter a2? (vi) What

signs do you expect for each of the coefficients? Explain.

(c) The supply equation is

lnðQPRODtÞ ¼ b1 þ b2lnðPtÞ þ b3lnðPFtÞ þ b4TIMEt

þ b5lnðQPRODt�1Þ þ est

whereQPROD ¼ aggregate production of young chickens,PF ¼ nominal price

index of broiler feed, TIME ¼ time index with 1950 ¼ 1 to 2001 ¼ 52. This

supply equation is dynamic, with lagged production on the right-hand side. This

predetermined variable is known at time t and is treated as exogenous. TIME is

included to capture technical progress in production. (i) What are the endogenous

variables? (ii)What are the exogenous variables? (iii)What is the interpretation of

the parameter b2? (iv) What signs do you expect for each of the parameters?

(d) Is the order condition for identification satisfied for the demand equation in

(b) (in differenced form) and the supply equation in (c)?

(e) Use the data from 1960 to 1999 to estimate the reduced-form equation for

DlnðPtÞ. (i) Discuss the estimated model, including the signs and significance

of the estimated coefficients. (ii) Use the estimated reduced-form equation to

predict the approximate percentage change in prices for the year 2000 and its

95% prediction (confidence) interval. Set PF ¼ 0:61765 for year 2000. Is the

actual value within the interval?

(f) Use the data from 1960 to 1999 to estimate the reduced form equation for lnðPtÞ.
(i) Discuss the estimated model, including the signs and significance of the

estimated coefficients. (ii) Use the estimated reduced-form equation to predict

the real price for the year 2000 and its 95% prediction (confidence) interval. Set

PF ¼ 0:61765 for year 2000. Is the actual value within the interval?

(g) Use the data from 1960 to 1999 to estimate the two equations by two-stage least

squares, using the exogenous variables in the system as instruments. (i) Discuss

your results, paying particular attention to the signs, magnitudes, and signifi-

cance of the estimated coefficients. (ii) Interpret the numerical magnitudes of the

estimates for a2 and b2.

(h) Reestimate the supply equation using the log of exports, ln(EXPTS), as an

additional instrumental variable. Discuss the logic of using this variable as

an instrument? (Hint: What characteristics do good instruments have?)

11.10 Reconsider the example used in Section 11.7 on the supply and demand for fish at the

Fulton Fish Market. The data are in the file fultonfish.dat.
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(a) Carry out two-stage least squares estimation of the supply equation in (11.14).

Comment on the signs and significance of the estimated coefficients. What is

your estimate of the elasticity of supply?

(b) It is possible that bad weather on shore reduces attendance at restaurants, which

in turn may reduce the demand for fish at the market. Add the variables

RAINY and COLD to the demand equation in (11.13). Derive the algebraic

reduced form for ln(PRICE) for this new specification.

(c) Estimate the reduced form you derived in (b) by least squares. Test the joint

significance of the variables MON, TUE, WED, THU, RAINY, and COLD. Are

these variables jointly significant at the a ¼ 0:05 level? Is the addition of RAINY
and COLD to the demand sufficient to allow reliable two-stage least squares

estimation of the supply equation? Explain.

(d) Obtain two-stage least squares estimates and ordinary least squares estimates of

the augmented demand equation in part (b) and the supply equation (11.14).

Discuss the estimates and their signs and significance. Are the estimates

consistent with economic theory?

(e) Augment the supply equation with the variable MIXED, which indicates poor

but not STORMY weather conditons. For the demand equation, use the aug-

mented model in part (b). Derive the algebraic reduced form for ln(PRICE) for

this new specification. Estimate this reduced form by least squares. Test the joint

significance of the variables MON, TUE, WED, THU, RAINY, and COLD. Has

this improved the chances of estimating the supply equation by two-stage least

squares? Explain your answer.

(f) Estimate the supply and demand equations in (e) by two-stage least squares and

ordinary least squares and discuss the results.

11.11 Reconsider the example used in Section 11.7 on the supply and demand for fish at the

Fulton Fish Market. The data are in the file fultonfish.dat. In this exercise we explore

the behavior of the market on days in which changes in fish inventories are large

relative to those days on which inventory changes are small. Graddy and Kennedy

(2006) anticipate that prices and quantities will demonstrate simultaneity on days

with large changes in inventories, as these are days when sellers are demonstrating

their responsiveness to prices. On days when inventory changes are small, the

anticipation is that feedback between prices and quantities is broken, and simulta-

neity is no longer an issue.

(a) Use the subset of data for days inwhich inventory change is large, as indicated by

the variable CHANGE ¼ 1. Estimate the reduced-form (11.16) and test the

significance of STORMY. Discuss the importance of this test for the purpose of

estimating the demand equation by two-stage least squares.

(b) Obtain the least squares residuals v̂t2 from the reduced-form equation estimated

in (a). Carry out a Hausman test8 for the endogeneity of ln(PRICE) by adding v̂t2
as an extra variable to the demand equation in (11.13), estimating the resulting

model by least squares, and testing the significance of v̂t2 using a standard t-test.

If v̂t2 is a significant variable in this augmented regression then wemay conclude

that ln(PRICE) is endogenous. Based on this test, what do you conclude?

(c) Estimate the demand equation using two-stage least squares and ordinary least

squares using the data when CHANGE ¼ 1, and discuss these estimates.

Compare them to the estimates in Table 11.5.

8 This test is introduced in Section 10.4.1 and is further discussed in Appendix 10D.
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(d) Estimate the reduced-form equation (11.16) for the data when CHANGE ¼ 0.

Compare these reduced-form estimates to those in (a) and those in Table 11.4b.

(e) Obtain the least squares residuals v̂t2 from the reduced-form equation estimated

in (d). Carry out a Hausman test for the endogeneity of ln(PRICE), as described

in part (b). Based on this test, what do you conclude?

(f) Obtain the two-stage least squares and the ordinary least squares estimates for

the demand equation for the data when CHANGE ¼ 0. Compare these esti-

mates to each other and to the estimates in (c). Discuss the relationships

between them.

Appendix 11A An Algebraic Explanation of the Failure
of Least Squares

Consider the supply and demand model in (11.1) and (11.2). To explain the failure of least

squares estimation of the supply equation, let us first obtain the covariance betweenP and es.

covðP; esÞ ¼ E½P� EðPÞ�½es � EðesÞ�
¼ EðPesÞ ðsinceEðesÞ ¼ 0Þ
¼ E½p1X þ v1�es ðsubstitute forPÞ

¼ E
ed � es

b1 � a1

� �
es ðsincep1X is exogenousÞ

¼ �Eðe2s Þ
b1 � a1

ðsince ed; es assumed uncorrelatedÞ

¼ �s2
s

b1 � a1

< 0

What impact does the negative covariance in (11A.1) have on the least squares estimator?

The least squares estimator of the supply equation (11.2) (which does not have an

intercept term) is

b1 ¼ �PiQi

�P2
i

(11A.2)

Substitute for Q from the supply equation (11.2) and simplify,

b1 ¼ �Piðb1Pi þ esiÞ
�P2

i

¼ b1 þ �
Pi

�P2
i

� �
esi ¼ b1 þ �hiesi (11A.3)

where hi ¼ Pi=�P2
i . The expected value of the least squares estimator is

Eðb1Þ ¼ b1 þ �EðhiesiÞ 6¼b1

The least squares estimator is biased because es and P are correlated, implying EðhiesiÞ 6¼ 0:

(11A:1)
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In large samples there is a similar failure. Multiply through the supply equation by price

P, take expectations, and solve.

PQ ¼ b1P
2 þ Pes

EðPQÞ ¼ b1E(P
2)þ EðPesÞ

b1 ¼ EðPQÞ
E(P2)

�EðPesÞ
E(P2)

In large samples, asN!1, sample analogs of expectations,which are averages, converge to

the expectations. That is, �QiPi=N!EðPQÞ; �P2
i =N!EðP2Þ. Consequently, because

the covariance between P and es is negative, from (11A.1),

b1 ¼ �QiPi=N

�P2
i =N

! EðPQÞ
EðP2Þ ¼ b1 þ EðPesÞ

EðP2Þ ¼ b1 � s2
s=ðb1 � a1Þ
EðP2Þ <b1

The least squares estimator of the slope of the supply equation (11.2), in large samples,

converges to a value less than b1.

Appendix 11B 2SLS Alternatives

There has always been great interest in alternatives to the standard IV/2SLS estimator. The

search for better alternatives was energized by the discovery of the problems weak

instruments pose for the usual IV/2SLS estimator. In this appendix we examine a few

alternative estimators for a single equationwith endogenous regressors. The equationmight

be part of a simultaneous equations system, or a standalone equation with an endogenous

regressor, as we studied in Chapter 10. The limited information maximum likelihood

(LIML) estimator was first derived by Anderson and Rubin in 1949.9 It has played a ‘‘back

seat’’ role relative to 2SLS over the years, but this is no longer true. There is renewed interest

in LIML in the presence of weak instruments. Several modifications of LIML have been

suggested by Fuller (1977) and others. These estimators are unified in a common

framework, along with 2SLS, using the idea of a k-class of estimators. Later in this

appendix we provide Stock-Yogo tables of critical values for weak instruments that apply to

the LIML estimator and Fuller modifications.What is illustrated by these tables is that LIML

suffers less from test size aberrations than the 2SLS estimator, and that the Fuller

modification suffers less from bias.

11B.1 THE k-CLASS OF ESTIMATORS

In a system of M simultaneous equations let the endogenous variables be y1, y2, . . . , yM.
Let there be K exogenous variables, x1, x2, . . . , xK. Suppose the first structural equation

within this system is

y1 ¼ a2y2 þ b1x1 þ b2x2 þ e1 (11B.1)

9 Anderson, T.W. and H. Rubin (1949) ‘‘Estimation of the Parameters of a Single Equation in a Complete

System of Stochastic Equations,’’ Annals of Mathematical Statistics, 21, pp. 46–63.
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If this equation is identified, then its parameters can be estimated. The variable y2 is

endogenous because it is correlated with the regression error term e1. The endogenous

variable y2 has reduced form y2 ¼ p12x1 þ p22x2 þ � � � þ pK2xK þ v2 ¼ E y2ð Þ þ v2. The

source of the endogeneity of y2 is not the systematic portion E(y2), which is not random.

The random component v2 is the source of the endogeneity problem.Oneway to think about

developing an instrumental variable for y2 is to remove, or ‘‘purge,’’ v2 from it. That is, use

the instrumental variable y2 � v2 ¼ E(y2). This instrument has the essential properties of an

instrument: It is correlated with the endogenous variable y2 and it is uncorrelated with the

structural equation error e1. The difficulty is thatE(y2) is unknown.However, the parameters

of the reduced form equation are consistently estimated by least squares, so that

bE y2ð Þ ¼ p̂12x1 þ p̂22x2 þ � � � þ p̂K2xK (11B.2)

The reduced form residuals are

v̂2 ¼ y2 �bE y2ð Þ

In large samples the reduced-form estimators p̂k2 converge in probability to their true

values. This means that in large samples we can substitute for E(y2) its estimated value

bE y2ð Þ ¼ y2 � v̂2 (11B.3)

The two-stage least squares estimator is an IV estimator using dE y2ð Þ as an instrument.

Equation (11B.3) shows that the instrument used in 2SLS can be thought of as the

endogenous variable y2 ‘‘purged’’ of the troublesome error term v2.

The k-class of estimators is a unifying framework. A k-class estimator is an IVestimator

using instrumental variable y2 � kv̂2. It is called a class of estimators because it represents

the least squares estimator if k ¼ 0 and the 2SLS estimator if k ¼ 1. Why would we be

interested in using values of k other than 1? Hopefully by adjusting this value we can

improve upon the performance of the k-class estimator relative to the 2SLS estimator.

11B.2 THE LIML ESTIMATOR

As noted earlier, the LIML estimator is one of the oldest estimators for an equation within a

systemof simultaneous equations, or any equationwith an endogenous variable on the right-

hand side. Rather than obtaining the LIML estimates by maximizing a likelihood function

(see Appendix C.8 for an introduction to maximum likelihood estimation) we will exploit

the fact that the LIML estimator is a member of the k-class.

The equation y1 ¼ a2y2 þ b1x1 þ b2x2 þ e1 is in normalized form, meaning that we

have chosen one variable to appear as the dependent variable. In general the first equation

can be written in implicit form as a1y1 þ a2y2 þ b1x1 þ b2x2 þ e1 ¼ 0. There is no rule

that says y1 has to be the dependent variable in the first equation.Normalization amounts to

setting a1 or a2 to the value�1. One parameter ai must be set to�1 so that we can identify

the equation, but it does notmatter which one. Let y� ¼ a1y1 þ a2y2, then the unnormalized

equation can be written y� þ b1x1 þ b2x2 þ e1 ¼ 0, or

y� ¼ �b1x1 � b2x2 � e1 ¼ u1x1 þ u2x2 þ h (11B.4)
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In (11B.1) the exogenous variables x3, . . . , xK were omitted. If we had included them,

(11B.4) would be

y� ¼ u1x1 þ � � � þ uKxK þ h (11B.5)

The least variance ratio estimator chooses a1 and a2 so that the ratio of the sum of squared

residuals from (11B.4) relative to the sum of squared residuals from (11B.5) is as small as

possible. Define the ratio of sum of squared residuals from the two models as

‘ ¼ SSE from regression of y� on x1; x2
SSE from regression of y� on x1; . . . ; xK

� 1 (11B.6)

We assume that the variables x3, . . . , xK were omitted from (11B.1) for a reason based in

economic theory. The estimates of a1 and a2, one of which will be set to �1, should be

chosen so to make the reduced regression (11B.4) fit the data as well as possible while still

imposing the condition that x3, . . . , xK are omitted.

The algebra required for the solution is beyond the scope of this book.10 The interesting

result is that the minimum value of ‘ in (11B.6), call it ‘̂, results in the LIML estimator when

used as k in the k-class estimator. That is, use k ¼ ‘̂when forming the instrument y2 � kv̂2,

and the resulting IV estimator is the LIML estimator.

11B.2.1 Fuller’s Modified LIML

A modification suggested by Wayne Fuller (1977)11 uses the k-class value

k ¼ ‘̂� a

N � K
(11B.7)

where K is the total number of instrumental variables (included and excluded exogenous

variables) and N is the sample size. The value of a is a constant. Fuller says (1977, p. 951),

‘‘If one desires estimates that are nearly unbiased ‘a’ is set equal to 1. Presumably ‘a’ ¼ 1

would be used when one is interested in testing hypotheses or setting approximate

confidence intervals for the parameters.’’ Fuller also showed that a value a ¼ 4 leads to

an estimator that minimizes the ‘‘mean square error’’ of estimation. If we are estimating

some parameter d using an estimator d̂, then the mean square error of estimation is

MSE
�
d̂
� ¼ E

�
d̂� d

�2 ¼ var
�
d̂
�þ �

E
�
d̂
�� d

	2 ¼ var
�
d̂
�þ �

bias
�
d̂
�	2

Estimator MSE combines both variance and bias into a single measure.

11B.2.2 Advantages of LIML

A great deal of research has been devoted to the performance of the LIML estimator relative

to the 2SLS estimator when instruments are weak and/or there are a large number of

instruments. Stock andYogo (2005, p. 106), say, ‘‘Our findings support theview thatLIML is

far superior to (2)SLS when the researcher has weak instruments . . .’’ when using interval

estimates’ coverage rate as the criterion. Also ‘‘. . . the Fuller-k estimator is more robust to

10 Advanced students should consider reading Peter Schmidt’s Econometrics, 1976 (New York, NY: Marcel

Dekker, Inc.) Chapter 4.
11 Wayne Fuller, ‘‘Some Properties of a Modification of the Limited Information Estimator,’’ Econometrica,

45, pp. 939–953.
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weak instruments than (2)SLS when viewed from the perspective of bias.’’ Some other

findings are discussed by Mariano (2001):12

� For the 2SLS estimator the amount of bias is an increasing function of the degree of

over identification. The distributions of the 2SLS and least squares estimators tend to

become similar when overidentification is large. LIML has the advantage over 2SLS

when there are a large number of instruments.

� The LIML estimator converges to normality faster than the 2SLS estimator and is

generally more symmetric.

11B.2.3 Stock-Yogo Weak IV Tests for LIML

Tables 11B.1 and 11B.2 contain Stock-Yogo critical values for testing weak instruments.

These tests are discussed inChapter 10,AppendixE. Table 11B.1 contains the critical values

using the criterion of maximum LIML test size for a 5% test. Note that for L > 1, LIML

critical values are lower than the 2SLS critical values in Table 10E.1. This means that the

Cragg-Donald F-test statistic does not have to be as large for us to reject the null hypothesis

that the instruments are weak when using LIML instead of 2SLS. Table 11B.2 contains the

12 R. S. Mariano (2001) ‘‘Simultaneous Equation Model Estimators,’’ in The Companion to Theoretical

Econometrics, Badi Baltagi ed. (Oxford: Blackwell Publishing), pp. 139–142.
13 These values are from Table 5.4, page 103, in Stock and Yogo (2005), op. cit. The authors thank James Stock

and Motohiro Yogo for permission to use these results. Their tables are more extensive than the ones we provide.

The significance level of the test for weak instruments is 5%.
14 These values are from Table 5.3, page 102, in James H. Stock and Motohiro Yogo (2005), op. cit.

Ta b l e 1 1 B . 1 Critical Values for the Weak Instrument Test Based on LIML

Test Size (5% level of significance)13

B ¼ 1 B ¼ 2

Maximum Test Size Maximum Test Size

L 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25

1 16.38 8.96 6.66 5.53

2 8.68 5.33 4.42 3.92 7.03 4.58 3.95 3.63

3 6.46 4.36 3.69 3.32 5.44 3.81 3.32 3.09

4 5.44 3.87 3.30 2.98 4.72 3.39 2.99 2.79

Ta b l e 1 1 B . 2 Critical Values for the Weak Instrument Test Based on Fuller-k

Relative Bias (5% level of significance)14

B ¼ 1 B ¼ 2

Maximum Relative Bias Maximum Relative Bias

L 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30

1 24.09 19.36 15.64 12.71

2 13.46 10.89 9.00 7.49 15.50 12.55 9.72 8.03

3 9.61 7.90 6.61 5.60 10.83 8.96 7.18 6.15

4 7.63 6.37 5.38 4.63 8.53 7.15 5.85 5.10
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critical values for the test of weak instruments using the relative bias criterion for the

Fuller modification of LIML, using a ¼ 1. There is no similar table for LIML, because

the LIML estimator does not have a finite expected value, and thus the concept of bias

breaks down.

11B.2.3a Testing for Weak Instruments with LIML This illustration was introduced

in Chapter 10 Appendix E, Section 10E.2.1. With the Mroz data we estimate the HOURS

supply equation

HOURS ¼ b1 þ b2MTRþ b3EDUC þ b4KIDSL6 þ b5NWIFEINC þ e (11B.8)

The reduced form estimates are in Table 10E.3. The LIML estimates are given in Table

11B.3. The models we consider are:

Model 1: endogenous: MTR; IV: EXPER

Model 2: endogenous: MTR; IV: EXPER, EXPER2, LARGECITY

Model 3: endogenous: MTR, EDUC; IV: MOTHEREDUC, FATHEREDUC

Model 4: endogenous: MTR, EDUC; IV: MOTHEREDUC, FATHEREDUC, EXPER

First, for the just identified equations forwhich the number of instruments equals the number

of endogenous variables inModels (1) and (3), the LIML estimates are identical to the 2SLS

estimators. This identity is always true for just-identified equations. For the overidentified

Models (2) and (4), the estimated values ‘̂ are close to 1, so that the estimates are not too far

from the 2SLS estimates.

The estimates are not the important aspect of this illustration. The Cragg-Donald F-test

statistic is the same for all the estimators. For convenience its values for each equation are

given at the bottom of Table 11B.3. In Model (2) we have B ¼ 1 endogenous variable and

Ta b l e 1 1 B . 3 LIML Estimations

MODEL (1) (2) (3) (4)

C 17423.7211 16191.3338 �24491.5972 18587.9064

(5.56) (5.40) (�0.31) (5.05)

MTR �18456.5896 �17023.8164 29709.4652 �19196.5172

(�5.08) (�4.90) (0.33) (�4.79)

EDUC �145.2928 �134.5504 258.5590 �197.2591

(�4.40) (�4.26) (0.31) (�3.05)

KIDSL6 151.0229 113.5034 �1144.4778 207.5531

(1.07) (0.84) (�0.46) (1.27)

NWIFEINC �103.8983 �96.2895 149.2325 �104.9415

(�5.27) (�5.11) (0.32) (�5.07)

N 428 428 428 428

‘̂ 1.0000 1.0195 1.0000 1.0029

CRAGG-DONALD F 30.61 13.22 0.10 8.60

NUMBER IV L 1 3 2 3

NUMBER ENDOG B 1 1 2 2

t statistics in parentheses
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L ¼ 3 instruments. Using the LIMLmaximum size of 10% as our criterion, the Stock-Yogo

critical value is 6.46. The Cragg-Donald F-test statistic 13.22 exceeds this value, so we

reject the null hypothesis that the instruments areweak and conclude that they are not weak.

This is not the conclusion we would have drawn based on IV/2SLS estimation. The critical

value fromTable 10E.1 is 22.30, and wewould have not rejected the null hypothesis that the

instruments are weak.

In Model (4) there are B ¼ 2 endogenous variables and L ¼ 3 instruments. Using the

maximum size of 10% critical value from Table 11B.1 of 5.44, we reject the null hypothesis

that the instruments are weak using the Cragg-Donald F-test statistic of 8.60. If we were

using the 2SLS/IVestimator, wewould have not rejected the hypothesis that the instruments

are weak because the critical value from Table 10E.1 is 13.43.

What is indicated by these examples is that the LIML estimator performs better, at least

potentially, in the face of weak instruments. We cannot prove anything based on one result

from one sample, which is why we present a Monte Carlo simulation experiment in

Appendix 11B.3.

11B.2.3b Testing for Weak Instruments with Fuller Modified LIML Using the

Fuller modification of LIML, and setting the constant a ¼ 1, we obtain the estimates in

Table 11B.4. All the results are at least somewhat different from the 2SLS/IV estimations,

because even for just-identified equations, the Fuller estimator is different from the 2SLS

estimator. The only extremely dramatic change now comes in Model (3), where coefficient

signs become more in line with the other models, although still nothing is significant. In

Model (4) if we adopt the criterion of 10% maximum relative bias, then the Stock-Yogo

critical value is 8.96. The Cragg-Donald F-test statistic is 8.6, so we fail to reject the null

hypothesis that the instruments are weak.

Ta b l e 1 1 B . 4 Fuller (a ¼ 1) Estimations

MODEL (1) (2) (3) (4)

C 17108.0110 15924.1895 2817.5400 18156.7850

(5.60) (5.44) (0.20) (5.10)

MTR �18089.5451 �16713.2345 �1304.8205 �18730.1617

(�5.11) (�4.93) (�0.08) (�4.84)

EDUC �142.5409 �132.2218 �29.6043 �191.1248

(�4.41) (�4.27) (�0.20) (�3.05)

KIDSL6 141.4113 105.3703 �287.7915 193.2295

(1.02) (0.79) (�0.65) (1.21)

NWIFEINC �101.9491 �94.6401 �12.0108 �102.6290

(�5.31) (�5.14) (�0.15) (�5.12)

N 428 428 428 428

k 0.9976 1.0172 0.9976 1.0005

FULLER a 1.0000 1.0000 1.0000 1.0000

NUMBER IV L 1 3 2 3

CRAGG-DONALD F 30.61 13.22 0.10 8.60

NUMBER ENDOG B 1 1 2 2

t statistics in parentheses
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11B.3 MONTE CARLO SIMULATION RESULTS

In Appendix 10F.2 we carried out a Monte Carlo simulation to explore the properties of the

IV/2SLS estimators. Here we employ the same experiment, adding aspects of the new

estimators we have introduced in this appendix.

First, examine the percentage rejections of the true null hypothesis b2 ¼ 1 using a two-

tail test at the 5% level of significance. The Monte Carlo rejection rate for the IV/2SLS

estimator is in the column labeled t b̂2

� �
, and for the LIML estimator in the column t b̂2;liml

� �
.

The largest difference is in the case of strong endogeneity with weak instruments, in which

the test based upon the two-stage least squares estimator rejects 28.86% of the time, while

the test based on the LIML estimator rejects 13.47% of the time. Recall that a two-tail test at

the 5% level of significance corresponds to determining whether the 95% interval estimate

contains the hypothesized parameter value. In these Monte Carlo experiments, the 95%

interval estimate based on the LIML estimator contains the true parameter 86.53% of the

time, whereas the 95% interval estimate using IV/2SLS contains the true parameter only

71.14% of the time. This finding is consistent with Stock and Yogo’s conclusion about

coverage rates of the two interval estimation approaches.

In these experiments, there is little difference between the averages of the two-stage least

squares estimates, b̂2 and the Fuller modified (a ¼ 1) LIML estimates b̂2;F. A greater

contrast shows up when comparing how close the estimates are to the true parameter value

using the mean square error criterion. In Table 11B.5 we report the empirical mean square

error for the IV/2SLS estimator, mse b̂2

� �
and that for the Fuller modification of LIML with

a ¼ 4,mse b̂2;F

� �
. Recall that themean square errormeasures how close the estimates are to

the true parameter value. For the IV/2SLS estimator, the empirical mean square error is

mse b̂2

� � ¼ �10000
m¼1 b̂2m � b2

� �2.
10; 000

The Fuller modified LIML has lower mean square error than the IV/2SLS estimator in each

experiment, and when the instruments are weak, the improvement is large.

Ta b l e 1 1 B . 5 Monte Carlo Simulation Results

r p F b̂2 t b̂2

� �
t b̂2;liml

� �
b̂2;F mse b̂2

� �
mse b̂2;F

� �
0.0 0.1 1.98 0.9941 0.0049 0.0049 0.9941 0.4068 0.0748

0.0 0.5 21.17 0.9998 0.0441 0.0473 0.9997 0.0140 0.0132

0.8 0.1 2.00 1.3311 0.2886 0.1347 1.3375 1.0088 0.3289

0.8 0.5 21.18 1.0111 0.0636 0.0509 1.0000 0.0139 0.0127

APPENDIX 1 1B 2SL S ALTERNAT IVES 473



C h a p t e r 12
Regression with
Time-Series Data:
Nonstationary Variables

Learning Objectives

Based on the material in this chapter, you should be able to

1. Explain the differences between stationary and nonstationary time-series processes.

2. Describe the general behavior of an autoregressive process and a random walk

process.

3. Explain why we need ‘‘unit root’’ tests, and state implications of the null and

alternative hypotheses.

4. Explainwhatismeantbythestatement thataseries is‘‘integratedoforderone’’or I(1).

5. Perform Dickey–Fuller and augmented Dickey–Fuller tests for stationarity.

6. Explain the meaning of a ‘‘spurious regression’’.

7. Explain the concept of cointegration and test whether two series are cointegrated.

8. Explain how to choose an appropriate model for regression analysis with time-series

data.

In 2003 the Nobel Prize in Economics1 was awarded jointly to two distinguished

econometricians: Professor Robert F. Engle ‘‘for methods of analyzing economic time

series with time-varying volatility (ARCH)’’ and Professor Clive W. J. Granger ‘‘for

Keywords

autoregressive process

cointegration

Dickey–Fuller tests

difference stationary

mean reversion

nonstationary

order of integration

random walk process

random walk with drift

spurious regressions

stationary

stochastic process

stochastic trend

tau statistic

trend stationary

unit root tests

1 For more details, see http://nobelprize.org/nobel_prizes/economics/.
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methods of analyzing economic time series with common trends (cointegration).’’ The aim

of this and the following two chapters is to discuss the background that prompted these

contributions, and to show how the proposed methods have revolutionized the way we

conduct econometrics with time-series data.

The analysis of time-series data is of vital interest to many groups, such as macro-

economists studying the behavior of national and international economies, finance econ-

omists analyzing the stock market, and agricultural economists predicting supplies and

demands for agricultural products. For example, if we are interested in forecasting the

growth of gross domestic product or inflation, we look at various indicators of economic

performance and consider their behavior over recent years. Alternatively, if we are

interested in a particular business, we analyze the history of the industry in an attempt

to predict potential sales. In each of these cases, we are analyzing time-series data.

We have already worked with time-series data in Chapter 9 and have discovered how

regression models for these data often have special characteristics designed to capture their

dynamic nature. We saw how including lagged values of the dependent variable or

explanatory variables as regressors, or considering lags in the errors, can be used to model

dynamic relationships. We also showed how autoregressive models can be used in fore-

casting. However, an important assumption maintained throughout Chapter 9 was that the

variables have a property called stationarity. It is time now to learn the difference between

stationary and nonstationary variables. Many economic variables are nonstationary and, as

you will learn, the consequences of nonstationary variables for regression modeling are

profound.

The aim of this chapter is to describe how to estimate regression models involving

nonstationary variables. The first step in this direction is to examine the time-series concepts

of stationarity (and nonstationarity) and how we distinguish between them. Cointegra-
tion is another important related concept that has a bearing on our choice of a regression

model. The seminal contributions of the Nobel laureates show that the econometric

consequences of nonstationarity can be quite severe, and offer methods to overcome them.

12.1 Stationary and Nonstationary Variables

Plots of the time series of some important economic variables for the U.S. economy are

displayed in Figure 12.1. The data for these figures can be found in the file usa.dat.

The figures on the left-hand side are the real gross domestic product (ameasure of aggregate

economic production), the annual inflation rate (ameasure of changes in the aggregate price

level), the federal funds rate (the interest rate on overnight loans between banks), and the

three-year bond rate (interest rate on a financial asset to be held for three years). Observe

how the GDP variable displays upward trending behavior, while the inflation rate appears to

‘‘wander up and down’’ with no discernable pattern or trend. Similarly, both the federal

funds rate and the bond rate show ‘‘wandering up and down’’ behavior. The figures on the

right-hand side of Figure 12.1 are the changes of the corresponding variables on the left-

hand side.

The change in a variable is an important concept that is used repeatedly in this chapter; it

is worth dwelling on its definition. The change in a variable yt, also known as its first

difference, is given by Dyt ¼ yt � yt�1. Thus Dyt is the change in the value of the variable y
from period t � 1 to period t.

The time series of the changes on the right-hand side of Figure 12.1 display behavior that

can be described as irregular ups and downs, or fluctuations. Note that while changes in

the inflation rate and the two interest rates appear to fluctuate around a constant value, the
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changes in the GDP variable appear to fluctuate around an upward trend, until the financial

crisis. The first question we address in this chapter is:Which data series represent stationary

variables and which are observations on nonstationary variables?

Formally, a time series yt is stationary if itsmean and variance are constant over time, and

if the covariance between two values from the series depends only on the length of time

separating the two values, and not on the actual times at which the variables are observed.

That is, the time series yt is stationary if for all values, and every time period, it is true that
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FIGURE 12.1 U.S. economic time series.
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EðytÞ ¼ m ðconstant meanÞ (12.1a)

varðytÞ ¼ s2 ðconstant varianceÞ (12.1b)

covðyt; ytþsÞ ¼ covðyt; yt�sÞ ¼ gs ðcovariance depends on s; not tÞ (12.1c)

The first condition, that of a constant mean, is the feature that has received the most

attention. To appreciate this condition for stationarity, look at the plots shown in Figure 12.1

and their sample means shown in Table 12.1. The sample means for the changes in the two

interest rates are similar across different sample periods, whereas the sample means for the

variables in the original levels, as well as the changes in GDP and inflation, differ across

sample periods. Thus, while the federal funds rate, and the bond rate display characteristics

of nonstationarity, their changes display characteristics of stationarity. For inflation and

GDP, both their levels and their changes display characteristics of nonstationarity. Non-

stationary series with nonconstant means are often described as not having the property of

mean reversion. That is, stationary series have the property of mean reversion.

Looking at the sample means of time-series variables is a convenient indicator as to

whether a series is stationary or nonstationary, but this does not constitute a hypothesis test.

A formal test is described in Section 12.3. However, beforewe introduce the test, it is useful

to revisit the first-order autoregressive model that was introduced in Chapter 9.

12.1.1 THE FIRST-ORDER AUTOREGRESSIVE MODEL

Let yt be an economic variable that we observe over time. In line with most economic

variables, we assume that yt is random, since we cannot perfectly predict it. We never know

the values of random variables until they are observed. The econometric model generating a

time-series variable yt is called a stochastic or random process. A sample of observed yt
values is called a particular realization of the stochastic process. It is one of many possible

paths that the stochastic process could have taken. Univariate time-series models are

examples of stochastic processes where a single variable y is related to past values of itself

and current and past error terms. In contrast to regression modeling, univariate time-series

models do not contain any explanatory variables (no x’s).

Ta b l e 1 2 . 1 Sample Means of Time Series Shown in Figure 12.1

Sample periods

Variable 1984:2 to 1996:4 1997:1 to 2009:4

Real GDP (a) 5813.0 11458.2

Inflation rate (c) 6.9 3.2

Federal funds rate (e) 6.4 3.5

Bond rate (g) 7.3 4.0

Change in GDP (b) 82.7 120.3

Change in the inflation rate (d) �0.16 0.02

Change in the federal funds rate (f) �0.09 �0.10

Change in the bond rate (h) �0.10 �0.09
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The autoregressive model of order one, the AR(1) model, is a useful univariate time-

series model for explaining the difference between stationary and nonstationary series. It is

given by

yt ¼ ryt�1 þ vt; jrj< 1 (12.2a)

where the errors vt are independent, with zero mean and constant variance s2
v , and may be

normally distributed. In the context of time-series models, the errors are sometimes known

as ‘‘shocks’’ or ‘‘innovations.’’ As we will see, the assumption jrj< 1 implies that yt is

stationary. TheAR(1) process shows that each realization of the random variable yt contains

a proportion r of last period’s value yt�1 plus an error vt drawn from a distributionwithmean

zero and variances2
v . Sincewe are concerned with only one lag, themodel is described as an

autoregressive model of order one. In general an AR(p) model includes lags of the variable

yt up to yt�p. An example of an AR(1) time series with r ¼ 0:7, and independent N(0,1)

random errors is shown in Figure 12.2a. Note that the data have been artificially generated.

Observe how the time series fluctuates around zero and has no trend-like behavior, a

characteristic of stationary series.

The value ‘‘zero’’ is the constant mean of the series, and it can be determined by doing

some algebra known as recursive substitution.2 Consider the value of y at time t ¼ 1, then its

value at time t ¼ 2 and so on. These values are

y1 ¼ ry0 þ v1

y2 ¼ ry1 þ v2 ¼ rðry0 þ v1Þ þ v2 ¼ r2y0 þ rv1 þ v2

..

.

yt ¼ vt þ rvt�1 þ r2vt�2 þ � � � þ rty0

The mean of yt is

EðytÞ ¼ Eðvt þ rvt�1 þ r2vt�2 þ � � �Þ ¼ 0

since the error vt has zero mean and the value of rty0 is negligible for a large t. The variance
can be shown to be a constants2

v=ð1� r2Þwhile the covariance between two errors speriods
apart gs can be shown to be s2

vr
s=ð1� r2Þ. Thus, the AR(1) model in (12.2a) is a classic

example of a stationary process with a zero mean.

Real-world data rarely have a zero mean. We can introduce a nonzero mean m by

replacing yt in (12.2a) with ðyt � mÞ as follows:

ðyt � mÞ ¼ rðyt�1 � mÞ þ vt

which can then be rearranged as

yt ¼ aþ ryt�1 þ vt; jrj< 1 (12.2b)

2 An alternative to recursive substitution when the variable is stationary is to use the lag operator algebra

discussed in Chapter 9.8.
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where a ¼ mð1� rÞ. That is, we can accommodate a nonzero mean in yt by either working

with the ‘‘de-meaned’’ variable ðyt � mÞ or introducing the intercept term a in the

autoregressive process of yt as in (12.2b). Corresponding to these two ways, we describe

the ‘‘de-meaned’’ variable ðyt � mÞ as being stationary around zero, or the variable yt as

stationary around its mean value m ¼ a=ð1� rÞ.
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FIGURE 12.2 Time-series models.
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An example of a time series that follows this model, with a ¼ 1, r ¼ 0:7 is shown in

Figure 12.2(b).We have used the samevalues of the error vt as in Figure 12.2(a), so the figure

shows the added influence of the constant term. Note that the series now fluctuates around a

nonzero value. This nonzero value is the constant mean of the series

EðytÞ ¼ m ¼ a=ð1� rÞ ¼ 1=ð1� 0:7Þ ¼ 3:33

Another extension to (12.2a) is to consider an AR(1)model fluctuating around a linear trend

ðmþ dtÞ. As we have seen in Figure 12.1, some real-world data appear to exhibit a trend. In

this case, we let the ‘‘de-trended’’ series ðyt � m� dtÞ behave like an autoregressive model

ðyt � m� dtÞ ¼ rðyt�1 � m� dðt � 1ÞÞ þ vt; jrj< 1

which can be rearranged as

yt ¼ aþ ryt�1 þ lt þ vt (12.2c)

where a ¼ ðmð1� rÞ þ rdÞ and l ¼ dð1� rÞ. An example of a time series that can be

described by this model with r ¼ 0:7, a ¼ 1, and d ¼ 0:01 is shown in Figure 12.2(c). The
de-trended series ðyt � m� dtÞ also has a constant variance and covariances that depend

only on the time separating observations, not the time at which they are observed. In other

words, the ‘‘de-trended’’ series is stationary. An astute reader may have noted that the mean

of yt, EðytÞ ¼ mþ dt depends on t, which implies that yt is nonstationary. While this

observation is correct, when jrj< 1, yt is more usually described as stationary around the

deterministic trend line mþ dt. This is discussed further in Section 12.5.2.

12.1.2 RANDOM WALK MODELS

Consider the special case of r ¼ 1 in (12.2a):

yt ¼ yt�1 þ vt (12.3a)

This model is known as the random walk model. Equation (12.3a) shows that each

realization of the random variable yt contains last period’s value yt�1 plus an error vt.

An example of a time series that can be described by this model is shown in Figure 12.2(d).

These time series are called randomwalks because they appear towander slowly upward or

downward with no real pattern; the values of sample means calculated from subsamples

of observations will be dependent on the sample period. This is a characteristic of

nonstationary series.

We can understand the ‘‘wandering’’ behavior of random walk models by doing some

recursive substitution.

y1 ¼ y0 þ v1

y2 ¼ y1 þ v2 ¼ ðy0 þ v1Þ þ v2 ¼ y0 þ �
2

s¼1
vs

..

.

yt ¼ yt�1 þ vt ¼ y0 þ �
t

s¼1
vs

The random walk model contains an initial value y0 (often set to zero because it is so

far in the past that its contribution to yt is negligible) plus a component that is the sum of the
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past stochastic terms �t
s¼1vs. This latter component is often called the stochastic trend.

This term arises because a stochastic component vt is added for each time t, and because it

causes the time series to trend in unpredictable directions. If the variable yt is subjected to

a sequence of positive shocks, vt > 0, followed by a sequence of negative shocks, vt < 0,

it will have the appearance of wandering upward, then downward.

We have used the fact that yt is a sum of errors to explain graphically the nonstationary

nature of the random walk. We can also use it to show algebraically that the conditions for

stationarity do not hold. Recognizing that the vt are independent, taking the expectation and

the variance of yt yields, for a fixed initial value y0,

EðytÞ ¼ y0 þ Eðv1 þ v2 þ � � � þ vtÞ ¼ y0

varðytÞ ¼ varðv1 þ v2 þ � � � þ vtÞ ¼ ts2
v

The randomwalk has amean equal to its initial value and a variance that increases over time,

eventually becoming infinite. Although the mean is constant, the increasing variance

implies that the series may not return to its mean, and so sample means taken for different

periods are not the same.

Another nonstationary model is obtained by adding a constant term to (12.3a):

yt ¼ aþ yt�1 þ vt (12.3b)

This model is known as the random walk with drift. Equation (12.3b) shows that each

realization of the random variable yt contains an intercept (the drift component a) plus last
period’s value yt�1 plus the error vt. An example of a time series that can be described by this

model (with a ¼ 0:1) is shown in Figure 12.2(e). Notice how the time-series data appear to

be ‘‘wandering’’ as well as ‘‘trending’’ upward. In general, random walk with drift models

showdefinite trends either upward (when the drifta is positive) or downward (when the drift

a is negative).

Again, we can get a better understanding of this behavior by applying recursive

substitution:

y1 ¼ aþ y0 þ v1

y2 ¼ aþ y1 þ v2 ¼ aþ ðaþ y0 þ v1Þ þ v2 ¼ 2aþ y0 þ �
2

s¼1
vs

..

.

yt ¼ aþ yt�1 þ vt ¼ taþ y0 þ �
t

s¼1
vs

The value of y at time t is made up of an initial value y0, the stochastic trend component

ð�t
s¼1vsÞ, and now a deterministic trend component ta. It is called a deterministic trend

because a fixed value a is added for each time t. The variable ywanders up and down as well

as increases by a fixed amount at each time t. The mean and variance of yt are

EðytÞ ¼ taþ y0 þ Eðv1 þ v2 þ v3 þ � � � þ vtÞ ¼ taþ y0

varðytÞ ¼ varðv1 þ v2 þ v3 þ � � � þ vtÞ ¼ ts2
v

In this case both the constant mean and constant variance conditions for stationarity are

violated.
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We can extend the random walk model even further by adding a time trend:

yt ¼ aþ dt þ yt�1 þ vt (12.3c)

An example of a time series that can be described by this model (with a ¼ 0:1; d ¼ 0:01) is
shown in Figure 12.2(f). Note how the addition of a time-trend variable t strengthens the trend

behavior. We can see the amplification using the same algebraic manipulation as before:

y1 ¼ aþ dþ y0 þ v1

y2 ¼ aþ d2þ y1 þ v2 ¼ aþ 2dþ ðaþ dþ y0 þ v1Þ þ v2 ¼ 2aþ 3dþ y0 þ �
2

s¼1
vs

..

.

yt ¼ aþ dt þ yt�1 þ vt ¼ taþ tðt þ 1Þ
2

� �
dþ y0 þ �

t

s¼1
vs

where we have used the formula for a sum of an arithmetic progression,

1þ 2þ 3þ � � � þ t ¼ tðt þ 1Þ=2

The additional term has the effect of strengthening the trend behavior.

To recap, we have considered the autoregressive class of models and have shown that

they display properties of stationaritywhen jrj< 1.Wehave also discussed the randomwalk

class of models when r ¼ 1. We showed that random walk models display properties of

nonstationarity. Now, go back and compare the real-world data in Figure 12.1 with those

in Figure 12.2. Ask yourself what models might have generated the different data series in

Figure 12.1. In the next few sectionswe shall consider how to testwhich series in Figure 12.1

exhibit properties associated with stationarity, as well as which series exhibit properties

associated with nonstationarity.

12.2 Spurious Regressions

The main reason why it is important to know whether a time series is stationary or

nonstationary before one embarks on a regression analysis is that there is a danger of

obtaining apparently significant regression results from unrelated data when nonstationary

series are used in regression analysis. Such regressions are said to be spurious.

To illustrate the problem, let us take two independent random walks:

rw1 : yt ¼ yt�1 þ v1t

rw2 : xt ¼ xt�1 þ v2t

where v1t and v2t are independent N(0,1) random errors. Two such series are shown in

Figure 12.3(a)—the data are in the file spurious dat. These series were generated

independently and, in truth, have no relation to one another, yet when we plot them, as

we have done in Figure 12.3(b), we see a positive relationship between them. If we estimate

a simple regression of series one ðrw1Þ on series two ðrw2Þ, we obtain the following results:

brw1t ¼ 17:818þ 0:842 rw2t; R2 ¼ 0:70

ðtÞ ð40:837Þ
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This result suggests that the simple regression model fits the data well ðR2 ¼ 0:70Þ, and
that the estimated slope is significantly different from zero. In fact, the t-statistic is

huge! These results are, however, completely meaningless, or spurious. The apparent

significance of the relationship is false. It results from the fact that we have related one

series with a stochastic trend to another series with another stochastic trend. In fact,

these series have nothing in common, nor are they causally related in any way. Similar

and more dramatic results are obtained when random walk with drift series are used in

regressions. Typically the residuals from such regressions will be highly correlated. For

this example, the LM test value to test for first-order autocorrelation ( p-value in

parenthesis) is 682.958 (0.000); a sure sign that there is a problem with the regression.

In other words, when nonstationary time series are used in a regression model, the results

may spuriously indicate a significant relationship when there is none. In these cases the

least squares estimator and least squares predictor do not have their usual properties, and

t-statistics are not reliable. Since many macroeconomic time series are nonstationary, it is

particularly important to take carewhen estimating regressionswithmacroeconomic variables.

How then can we test whether a series is stationary or nonstationary, and how do we

conduct regression analysis with nonstationary data? The former is discussed in Section

12.3, while the latter is considered in Section 12.4.
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FIGURE 12.3 Time series and scatter plot of two random walk variables.
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12.3 Unit Root Tests for Stationarity

There are many tests for determining whether a series is stationary or nonstationary. The

most popular one, and the one that we discuss, is the Dickey–Fuller test. As noted in our

discussion of the autoregressive and randomwalk models, stochastic processes can include

or exclude a constant term and can include or exclude a time trend. There are three variations

of the Dickey–Fuller test designed to take account of the role of the constant term and the

trend. We begin by describing the test equations and hypotheses for these three cases and

then outline the testing procedure.

12.3.1 DICKEY–FULLER TEST 1 (NO CONSTANT AND NO TREND)

This test is based on the discussion in Section 12.1 where we note that the AR(1) process

yt ¼ ryt�1 þ vt is stationary when jrj< 1, but, when r ¼ 1, it becomes the nonstationary

randomwalk process yt ¼ yt�1 þ vt. Hence, oneway to test for stationarity is to examine the

value of r. In other words, we test whether r is equal to one or significantly less than one.

Tests for this purpose are known as unit root tests for stationarity.
To formalize this procedure a little more, consider again the AR(1) model:

yt ¼ ryt�1 þ vt (12.4)

where the vt are independent random errors with zero mean and constant variance s2
v . We

can test for nonstationarity by testing the null hypothesis that r ¼ 1 against the alternative

that jrj< 1, or simply r< 1. This one-sided (left tail) test is put into a more convenient form

by subtracting yt�1 from both sides of (12.4) to obtain

yt � yt�1 ¼ ryt�1 � yt�1 þ vt

Dyt ¼ ðr� 1Þyt�1 þ vt

¼ g yt�1 þ vt ð12:5aÞ

where g ¼ r� 1 andDyt ¼ yt � yt�1. Then, the hypotheses can bewritten in terms of either

r or g:

H0 :r ¼ 1 , H0 :g ¼ 0

H1 :r< 1 , H1 :g< 0

Note that the null hypothesis is that the series is nonstationary. In other words, if we do not

reject the null, we conclude that it is a nonstationary process; if we reject the null hypothesis

that g ¼ 0, then we conclude that the series is stationary.

12.3.2 DICKEY–FULLER TEST 2 (WITH CONSTANT BUT NO TREND)

The second Dickey–Fuller test includes a constant term in the test equation:

Dyt ¼ aþ gyt�1 þ vt (12.5b)

The null and alternative hypotheses are the same as before. In this case, if we do not reject

the null hypothesis that g ¼ 0 (or r ¼ 1), we conclude that the series is nonstationary. If we

reject the null hypothesis that g ¼ 0, we conclude that the series is stationary.
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12.3.3 DICKEY–FULLER TEST 3 (WITH CONSTANT AND WITH TREND)

The third Dickey–Fuller test includes a constant and a trend in the test equation:

Dyt ¼ aþ gyt�1 þ lt þ vt (12.5c)

As before, the null and alternative hypotheses are H0 :g ¼ 0 and H1 :g< 0. If we do not

reject the null hypothesis that g ¼ 0 ðr ¼ 1Þ, we conclude that the series is nonstationary. If
we reject the null hypothesis that g ¼ 0, we conclude that the series is stationary.

12.3.4 THE DICKEY–FULLER CRITICAL VALUES

To test the hypothesis in all three cases, we simply estimate the test equation by least squares

and examine the t-statistic for the hypothesis that g ¼ 0. Unfortunately this t-statistic no

longer has the t-distribution that we have used previously to test zero null hypotheses for

regression coefficients. A problem arises because when the null hypothesis is true, yt is

nonstationary and has a variance that increases as the sample size increases. This increasing

variance alters the distribution of the usual t-statistic whenH0 is true. To recognize this fact,

the statistic is often called a t (tau) statistic, and its value must be compared to specially

generated critical values. Note that critical values are generated for the three different tests

because, aswe have seen in Section 12.1, the addition of the constant term and the time-trend

term changes the behavior of the time series.

Originally these critical values were tabulated by the statisticians Professor David

Dickey and Professor Wayne Fuller. The values have since been refined, but in deference to

the seminal work, unit root tests using these critical values have become known asDickey–

Fuller tests. Table 12.2 contains the critical values for the tau (t) statistic for the three cases;
they are valid in large samples for a one-tail test.

Note that the Dickey–Fuller critical values are more negative than the standard

critical values (shown in the last row). This implies that the t-statistic must take larger

(negative) values than usual for the null hypothesis of nonstationarity g ¼ 0 to be rejected in

favor of the alternative of stationarity g< 0. Specifically, to carry out this one-tail test of

significance, if tc is the critical value obtained from Table 12.2, we reject the null hypothesis

of nonstationarity if t � tc. If t> tc thenwe do not reject the null hypothesis that the series yt
is nonstationary. Expressed in a casual way, but one that avoids the proliferation of ‘‘double

negatives,’’ t � tc suggests that the series is stationary while t> tc suggests nonstationarity.
An important extension of the Dickey–Fuller test allows for the possibility that the error

term is autocorrelated. Such autocorrelation is likely to occur if our earlier models did not

have sufficient lag terms to capture the full dynamic nature of the process. Using the model

with an intercept as an example, the extended test equation is

Dyt ¼ aþ gyt�1 þ �
m

s¼1
asDyt�s þ vt (12.6)

where Dyt�1 ¼ ðyt�1 � yt�2Þ; Dyt�2 ¼ ðyt�2 � yt�3Þ; . . . . We add as many lagged first

difference terms as we need to ensure that the residuals are not autocorrelated. As we

discovered in Section 9.6, including lags of the dependent variable can be used to eliminate

autocorrelation in the errors. The number of lagged terms can be determined by examining

the autocorrelation function (ACF) of the residuals vt, or the significance of the estimated lag

coefficients as. The unit root tests based on (12.6) and its variants (intercept excluded or trend

included) are referred to as augmented Dickey–Fuller tests. The hypotheses for stationarity
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and nonstationarity are expressed in terms of g in the sameway and the test critical values are

the same as those for the Dickey–Fuller test shown in Table 12.2. When g ¼ 0, in addition to

saying that the series is nonstationary, we also say the series has a unit root. In practice, we

always use the augmented Dickey–Fuller test (rather than the nonaugmented version) to

ensure the errors are uncorrelated.

12.3.5 THE DICKEY FULLER TESTING PROCEDURES

Up to now, we have discussed a number of stationary and nonstationary processes as well as

threeDickey-Fuller tests. Howdowego about decidingwhich test to use? To understand the

rationale forwhatwe suggest, it is useful to first take a look at the design of the unit root tests.

The critical values for the three tests shown inTable 12.2were derived from the following

simulations:

� true process; yt ¼ yt�1 þ vt; vt � Nð0;s2Þ, test equation: yt ¼ ryt�1 þ vt

� true process; yt ¼ yt�1 þ vt; vt � Nð0;s2Þ, test equation: yt ¼ aþ ryt�1 þ vt

� true process; yt¼dþ yt�1 þ vt; vt�Nð0;s2Þ, test equation: yt ¼ aþ ryt�1 þ ltþ vt

Now take a look at Table 12.3. Column one shows the stationary autoregressive models

covered in Section 12.1.1, and column two shows the corresponding nonstationary pro-

cesses when r ¼ 1. As we can see the processes in column two correspond to the true

processes underlying the Dickey-Fuller tests described in column three while the processes

in column one are the test equations.

This then suggests the following Dickey-Fuller testing procedure. First plot the time

series of the variable and select a suitable Dickey-Fuller test based on a visual inspection of

the plot.

Ta b l e 1 2 . 3 AR processes and the Dickey-Fuller Tests

AR processes: rj j < 1 Setting r ¼ 1 Dickey Fuller Tests

yt ¼ ryt�1 þ ut yt ¼ yt�1 þ ut Test with no constant and no trend

yt ¼ aþ ryt�1 þ vt yt ¼ yt�1 þ vt Test with constant and no trend

a ¼ m(1�r) a ¼ 0

yt ¼ aþ ryt�1 þ lt þ vt yt ¼ dþ yt�1 þ vt Test with constant and trend

a ¼ ðmð1� rÞ þ rdÞ a ¼ d

l ¼ dð1� rÞ l ¼ 0

Ta b l e 1 2 . 2 Critical Values for the Dickey–Fuller Test

Model 1% 5% 10%

Dyt ¼ gyt�1 þ vt �2.56 �1.94 �1.62

Dyt ¼ aþ gyt�1 þ vt �3.43 �2.86 �2.57

Dyt ¼ aþ lt þ gyt�1 þ vt �3.96 �3.41 �3.13

Standard critical values �2.33 �1.65 �1.28

Note: These critical values are taken from R. Davidson and J. G. MacKinnon (1993), Estimation and Inference in

Econometrics, New York: Oxford University Press, p. 708.
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� If the series appears to be wandering or fluctuating around a sample average of zero

(see for example Figure 12.2(a) or Figure 12.2(d) with mean around zero), use test

equation (12.5a).

� If the series appears to be wandering or fluctuating around a sample average which is

nonzero (see for example Figure 12.2(b) or Figure 12.2(d) with a non-zero mean),

use test equation (12.5b).

� If the series appears to be wandering or fluctuating around a linear trend (see, for

example, Figure 12.5(c) or Figure 12.2(e)), use test equation (12.5c).

Second, proceed with one of the unit root tests described in Sections 12.3.1 to 12.3.3,

bearing in mind that it is important to choose the correct critical values as they depend upon

the test equation estimated, which, in turn, depends on the absence or presence of the

constant and trend terms.

12.3.6 THE DICKEY–FULLER TESTS: AN EXAMPLE

As an example, consider the two interest rate series—the federal funds rate ðFtÞ and the

three-year bond rate ðBtÞ—plotted in Figure 12.1(e) and 12.1(g), respectively. Both series

exhibit wandering behavior, so we suspect that they may be nonstationary variables. When

performing Dickey–Fuller tests, we need to decide whether to use (12.5a) with no constant,

or (12.5b) that includes a constant term, or (12.5c) that includes a constant and a

deterministic time trend t. As suggested earlier, (12.5b) is the appropriate test equation

because the series fluctuate around a nonzero mean. We also have to decide on how many

lagged difference terms to include on the right-hand side of the equation. Following

procedures described in Sections 9.3 and 9.4, we find that the inclusion of one lagged

difference term is sufficient to eliminate autocorrelation in the residuals in both cases. The

results from estimating the resulting equations are

bDFt ¼ 0:173� 0:045Ft�1 þ 0:561DFt�1

ðtauÞ ð�2:505Þ

bDBt ¼ 0:237� 0:056Bt�1 þ 0:237DBt�1

ðtauÞ ð�2:703Þ

The tau value ðtÞ for the federal funds rate is�2.505, and the 5% critical value for tau ðtcÞ
is �2.86. Again, recall that to carry out this one-tail test of significance, we reject the

null hypothesis of nonstationarity if t � tc. If t> tc thenwe donot reject the null hypothesis
that the series is nonstationary. In this case, since �2:505>�2:86, we do not reject the

null hypothesis that the series is nonstationary. Similarly, the tau value for the bond rate is

greater than the 5% critical value of �2.86 and again we do not reject the null hypothesis

that the series is nonstationary. Expressed another way, there is insufficient evidence to

suggest Ft and Bt are stationary.

12.3.7 ORDER OF INTEGRATION

Up to this stage, we have discussed only whether a series is stationary or nonstationary.

We can take the analysis another step forward and consider a concept called the ‘‘order of
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integration.’’ Recall that if yt follows a randomwalk, then g ¼ 0 and the first difference of yt
becomes

Dyt ¼ yt � yt�1 ¼ vt

An interesting feature of the series Dyt ¼ yt � yt�1 is that it is stationary since vt, being an

independent ð0;s2
vÞ random variable, is stationary. Series like yt, which can be made

stationary by taking the first difference, are said to be integrated of order one, and denoted

as I(1). Stationary series are said to be integrated of order zero, I(0). In general, the order of

integration of a series is the minimum number of times it must be differenced to make it

stationary.

For example, to determine the order of integration of F and B, we then ask the next

question: is the first difference of the federal funds rate ðDFt ¼ Ft � Ft�1Þ stationary?

Is the first difference of the bond rate ðDBt ¼ Bt � Bt�1Þ stationary? Their plots, in

Figure 12.1(f ) and 12.1(h), seem to suggest that they are stationary.

The results of theDickey–Fuller test for a randomwalk applied to the first differences are

given below:

bDðDFÞt ¼ �0:447ðDFÞt�1

ðtauÞ ð�5:487Þ

bDðDBÞt ¼ �0:701ðDBÞt�1

ðtauÞ ð�7:662Þ

where DðDFÞt ¼ DFt � DFt�1 and DðDBÞt ¼ DBt � DBt�1. Note that the null hypotheses

are that the variables DF and DB are not stationary. Also, because the series DF and DB
appear to fluctuate around zero,we use the test equationwithout the intercept term.Based on

the large negative value of the tau statistic ð�5:487<�1:94Þ, we reject the null hypothesis
that DFt is nonstationary and accept the alternative that it is stationary. We similarly

conclude that DBt is stationary ð�7:662<�1:94Þ.
This result implies that while the level of the federal funds rate ðFtÞ is nonstationary, its

first difference ðDFtÞ is stationary. We say that the series Ft is I(1) because it had to be

differenced once to make it stationary ½DFt is Ið0Þ�. Similarly we have also shown that the

bond rate ðBtÞ is integrated of order one. In the next section we investigate the implications

of these results for regression modeling.

12.4 Cointegration

As a general rule, nonstationary time-series variables should not be used in regression

models, to avoid the problem of spurious regression. However, there is an exception to this

rule. If yt and xt are nonstationary I(1) variables, then we expect their difference, or any

linear combination of them, such as et ¼ yt � b1 � b2xt,
3 to be I(1) as well. However, there

is an important casewhen et ¼ yt � b1 � b2xt is a stationary I(0) process. In this case yt and

xt are said to be cointegrated. Cointegration implies that yt and xt share similar stochastic

trends, and, since the difference et is stationary, they never diverge too far from each other.

A natural way to test whether yt and xt are cointegrated is to test whether the errors et ¼
yt � b1 � b2xt are stationary. Since we cannot observe et, we test the stationarity of the

3 A linear combination of x and y is a new variable z ¼ a0 þ a1xþ a2y. Here we set the constants a0 ¼
�b1; a1 ¼ �b2; and a2 ¼ 1, and call z the series e.
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least squares residuals, êt ¼ yt � b1 � b2xt using a Dickey–Fuller test. The test for co-

integrationiseffectivelyatestof thestationarityof theresiduals. If theresidualsarestationary,

thenyt andxt aresaid tobecointegrated; if the residualsarenonstationary, thenyt andxt arenot

cointegrated, and any apparent regression relationship between them is said to be spurious.

The test for stationarity of the residuals is based on the test equation

Dêt ¼ gêt�1 þ vt (12.7)

where Dêt ¼ êt � êt�1. As before, we examine the t (or tau) statistic for the estimated slope

coefficient. Note that the regression has no constant term because themean of the regression

residuals is zero.Also, sincewearebasing this testuponestimatedvaluesof the residuals, the

critical valueswill bedifferent from those inTable12.2.Theproper critical values for a test of

cointegration are given in Table 12.4. The test equation can also include extra terms like

Dêt�1;Dêt�2; . . . on the right-hand side if they are needed to eliminate autocorrelation in vt.

There are three sets of critical values.Which set we use depends onwhether the residuals

êt are derived from a regression equation without a constant term [like (12.8a)] or a

regression equation with a constant term [like (12.8b)], or a regression equation with

a constant and a time trend [like (12.8c)].

Equation 1 : êt ¼ yt � b xt (12.8a)

Equation 2 : êt ¼ yt � b2xt � b1 (12.8b)

Equation 3 : êt ¼ yt � b2xt � b1 � d̂t (12.8c)

12.4.1 AN EXAMPLE OF A COINTEGRATION TEST

To illustrate, let us test whether yt ¼ Bt and xt ¼ Ft, as plotted in Figure 12.1(e) and 12.1(g),

are cointegrated. We have already shown that both series are nonstationary. The estimated

least squares regression between these variables is

B̂t ¼ 1:140þ 0:914Ft; R2 ¼ 0:881

ðtÞ ð6:548Þð29:421Þ (12.9)

and the unit root test for stationarity in the estimated residuals ðêt ¼ Bt � 1:140
�0:914FtÞ is

Dêt ¼ �0:225êt�1 þ 0:254Dêt�1

ðtauÞ ð�4:196Þ

Ta b l e 1 2 . 4 Critical Values for the Cointegration Test

Regression model 1% 5% 10%

ð1Þ yt ¼ bxt þ et �3.39 �2.76 �2.45

ð2Þ yt ¼ b1 þ b2xt þ et �3.96 �3.37 �3.07

ð3Þ yt ¼ b1 þ dt þ b2xt þ et �3.98 �3.42 �3.13

Note: These critical values are taken from J. Hamilton (1994), Time Series Analysis, Princeton University Press,

p. 766.
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Note that this is the augmentedDickey–Fuller version of the test with one lagged termDet�1

to correct for autocorrelation. Since there is a constant term in (12.9), we use the equation

(2) critical values in Table 12.4.

The null and alternative hypotheses in the test for cointegration are

H0 : the series are not cointegrated , residuals are nonstationary

H1 : the series are cointegrated , residuals are stationary

Similar to the one-tail unit root tests, we reject the null hypothesis of no cointegration if

t � tc, and we do not reject the null hypothesis that the series are not cointegrated if t> tc.
The tau statistic in this case is�4.196 which is less than the critical value �3.37 at the 5%

level of significance. Thus, we reject the null hypothesis that the least squares residuals are

nonstationary and conclude that they are stationary. This implies that the bond rate and the

federal funds rate are cointegrated. In other words, there is a fundamental relationship

between these two variables (the estimated regression relationship between them is valid

and not spurious) and the estimated values of the intercept and slope are 1.140 and 0.914,

respectively.

The result—that the federal funds and bond rates are cointegrated—has major economic

implications! It means that when the Federal Reserve implements monetary policy by

changing the federal funds rate, the bond rate will also change thereby ensuring that

the effects of monetary policy are transmitted to the rest of the economy. In contrast, the

effectiveness of monetary policy would be severely hampered if the bond and federal funds

rates were spuriously related as this implies that their movements, fundamentally, have little

to do with each other.

12.4.2 THE ERROR CORRECTION MODEL

In the previous section, we discussed the concept of cointegration as the relationship

between I(1) variables such that the residuals are I(0). A relationship between I(1) variables

is also often referred to as a long run relationship while a relationship between I(0)

variables is often referred to as a short run relationship. In this section, we describe a

dynamic relationship between I(0) variables, which embeds a cointegrating relationship,

known as the short-run error correction model.

As discussed inChapter 9, when one is workingwith time-series data, it is quite common,

and in fact, is quite important to allow for dynamic effects. To derive the error correction

model requires a bit of algebra, but we shall persevere as this model offers a coherent way to

combine the long- and short-run effects.

Let us start with a general model that contains lags of y and x, namely the autoregressive

distributed lag (ARDL) model introduced in Chapter 9, except that now the variables are

nonstationary:

yt ¼ dþ u1yt�1 þ d0xt þ d1xt�1 þ vt

For simplicity, we shall consider lags up to order one, but the following analysis holds for

any order of lags. Now recognize that if y and x are cointegrated, itmeans that there is a long-

run relationship between them. To derive this exact relationship, we set yt ¼ yt�1 ¼ y, xt ¼
xt�1 ¼ x and vt ¼ 0 and then, imposing this concept in the ARDL, we obtain

yð1� u1Þ ¼ dþ ðd0 þ d1Þx
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This equation can be rewritten as y ¼ b1 þ b2x where b1 ¼ d=ð1� u1Þ and

b2 ¼ ðd0 þ d1Þ=ð1� u1Þ. To repeat, we have now derived the implied cointegrating

relationship between y and x; alternatively, we have derived the long-run relationship

that holds between the two I(1) variables.

Wewill nowmanipulate the ARDL to see how it embeds the cointegrating relation. First,

add the term, �yt�1, to both sides of the equation:

yt � yt�1 ¼ dþ ðu1 � 1Þyt�1 þ d0xt þ d1xt�1 þ vt:

Second, add the term �d0xt�1 þ d0xt�1 to the right-hand side to obtain

Dyt ¼ dþ ðu1 � 1Þyt�1 þ d0ðxt � xt�1Þ þ ðd0 þ d1Þxt�1 þ vt

where Dyt ¼ yt � yt�1. If we then manipulate the equation to look like

Dyt ¼ ðu1 � 1Þ d

ðu1 � 1Þ þ yt�1 þ ðd0 þ d1Þ
ðu1 � 1Þ xt�1

� �
þ d0Dxt þ vt

where Dxt ¼ xt � xt�1, and do a bit more tidying, using the definitions b1 and b2, we get

Dyt ¼ �a yt�1 � b1 � b2xt�1ð Þ þ d0Dxt þ vt (12.10)

where a ¼ ð1� u1Þ. As you can see, the expression in parenthesis is the cointegrating

relationship. In other words, we have embedded the cointegrating relationship between y

and x in a general ARDL framework.

Equation (12.10) is called an error correction equation because (a) the expression

yt�1 � b1 � b1xt�1ð Þ shows the deviation of yt�1 from its long run value, b1 þ b2xt�1—in

other words, the ‘‘error’’ in the previous period—and (b) the term (u1�1) shows the

‘‘correction’’ of Dyt to the ‘‘error.’’ More specifically, if the error in the previous period is

positive so that yt�1 > b0 þ b1xt�1ð Þ, then yt should fall and Dyt should be negative;

conversely, if the error in the previous period is negative so that yt�1 < b0 þ b1xt�1ð Þ, then
yt should rise and Dyt should be positive. This means that if a cointegrating relationship

between y and x exists, so that adjustments always work to ‘‘error-correct,’’ then empirically

we should also find that ð1� u1Þ > 0, which implies that u1 < 1. If there is no evidence of

cointegration between the variables, then the term u1 would be insignificant.

The error correction model is a very popular model because it allows for the existence of

an underlying or fundamental link between variables (the long-run relationship) as well as

for short-run adjustments (i.e. changes) betweenvariables, including adjustments to achieve

the cointegrating relationship. It also shows that we can work with I(1) variables ðyt�1; xt�1Þ
and I(0) variables (Dyt, Dxt) in the same equation provided that (y, x) are cointegrated,

meaning that the term ðyt�1 � b0 � b1xt�1Þ contains stationary residuals. In fact, this

formulation can also be used to test for cointegration between y and x.

To illustrate, consider our earlier example of the bond and federal funds rates. The result

from estimating (12.10) using nonlinear least squares is

DB̂t ¼ �0:142ðBt�1 � 1:429� 0:777Ft�1Þ þ 0:842DFt � 0:327DFt�1

ðtÞ ð2:857Þ ð9:387Þ ð3:855Þ

Note first that we need two lags ðDFt;DFt�1Þ to ensure that the residuals are purged of all
serial correlation effects. Second, note that the estimate û1 ¼ �0:142þ 1 ¼ 0:858 is less

than one, as expected.
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We can now generate the estimated residuals:

êt�1 ¼ ðBt�1 � 1:429� 0:777Ft�1Þ

The result from applying the ADF test for stationarity is

Dêt ¼ �0:169êt�1 þ 0:180Dêt�1

ðtÞ ð�3:929Þ

As before, the null is that (B, F) are not cointegrated. Since the cointegrating relationship

includes a constant term, the critical value is �3.37. Comparing the calculated value

(�3.929) with the critical value, we reject the null hypothesis and conclude that (B, F) are

cointegrated.

12.5 Regression When There Is No Cointegration

Thus far, we have shown that regression with I(1) variables is acceptable providing those

variables are cointegrated, allowing us to avoid the problem of spurious results. We also

know that regression with stationary I(0) variables, that we studied in Chapter 9, is

acceptable. What happens when there is no cointegration between I(1) variables? In this

case, the sensible thing to do is to convert the nonstationary series to stationary series and to

use the techniques discussed in Chapter 9 to estimate dynamic relationships between the

stationary variables. However, we stress that this step should be taken only when we fail to

find cointegration between the I(1) variables. Regression with cointegrated I(1) variables

makes the least squares estimator ‘‘super-consistent’’4 and, moreover, is economically

useful to establish relationships between the levels of economic variables.

How we convert nonstationary series to stationary series, and the kind of model we

estimate, depend on whether the variables are difference stationary or trend stationary.

In the former case, we convert the nonstationary series to its stationary counterpart by taking

first differences. In the latter case, we convert the nonstationary series to its stationary

counterpart by de-trending. We now explore these issues.

12.5.1 FIRST DIFFERENCE STATIONARY

Consider a variable yt that behaves like the random walk model:

yt ¼ yt�1 þ vt

This is a nonstationary series with a ‘‘stochastic’’ trend, but it can be rendered stationary by

taking the first difference:

Dyt ¼ yt � yt�1 ¼ vt

The variable yt is said to be a first difference stationary series. Recall that this means that y

is said to be integrated of order 1. Now suppose that Dickey–Fuller tests reveal that two

variables, y and x, that youwould like to relate in a regression, are first difference stationary,

4Consistency means that as T!1 the least squares estimator converges to the true parameter value. See

Appendix 5B. Super-consistency means that it converges to the true value at a faster rate.
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I(1), and not cointegrated. Then, a suitable regression involving only stationary variables is

one that relates changes in y to changes in x, with relevant lags included, and no intercept.

For example, using one lagged Dyt and a current and lagged Dxt, we have

Dyt ¼ uDyt�1 þ b0Dxt þ b1Dxt�1 þ et (12.11a)

Now consider a series yt that behaves like a random walk with drift,

yt ¼ aþ yt�1 þ vt

and note that y can be rendered stationary by taking the first difference:

Dyt ¼ aþ vt

The variable yt is also said to be a first difference stationary series, even though it is

stationary around a constant term. Now suppose again that y and x are I(1) and not

cointegrated. Then an example of a suitable regression equation, again involving stationary

variables, is obtained by adding a constant to (12.11a). That is,

Dyt ¼ aþ uDyt�1 þ b0Dxt þ b1Dxt�1 þ et (12.11b)

In line with Section 9.7, the models in (12.11a) and (12.11b) are autoregressive

distributed lag models with first-differenced variables. In general, since there is often

doubt about the role of the constant term, the usual practice is to include an intercept term

in the regression.

12.5.2 TREND STATIONARY

Consider a model with a constant term, a trend term, and a stationary error term:

yt ¼ aþ dt þ vt

The variable yt is said to be trend stationary because it can bemade stationary by removing

the effect of the deterministic (constant and trend) components

yt � a� dt ¼ vt

A series like this is, strictly speaking, not an I(1) variable, but is described as stationary

around a deterministic trend. Thus, if y and x are two trend-stationary variables, a possible

autoregressive distributed lag model is

y�t ¼ uy�t�1 þ b0x
�
t þ b1x

�
t�1 þ et (12.12)

where y�t ¼ yt � a1 � d1t and x
�
t ¼ xt � a2 � d2t are the de-trended data (the coefficients

ða1; d1Þ and ða2; d2Þ can be estimated by least squares).

As an alternative to using the de-trended data for estimation, a constant term and a trend

term can be included directly in the equation. For example, by substituting y�t and x�t into
(12.12), it can be shown that estimating (12.12) is equivalent to estimating

yt ¼ aþ dt þ uyt�1 þ b0xt þ b1xt�1 þ et
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where a ¼ a1ð1� u1Þ � a2ðb0 þ b1Þ þ u1d1 þ b1d2 and d ¼ d1ð1� u1Þ � d2ðb0 þ b1Þ.
In practice, this is usually the preferred option as it is relatively more straightforward.

12.5.3 SUMMARY

� If variables are stationary, or I(1) and cointegrated, we can estimate a regression

relationship between the levels of those variables without fear of encountering a

spurious regression. In the later case, we can do this by estimating a least squares

equation between the I(1) variables or by estimating a nonlinear least squares error

correction model which embeds the I(1) variables.

� If the variables are I(1) and not cointegrated, we need to estimate a relationship in first

differences, with or without the constant term.

� If they are trend stationary, we can either de-trend the series first and then perform

regression analysis with the stationary (de-trended) variables or, alternatively,

estimate a regression relationship that includes a trend variable. The latter alternative

is typically applied.

These options are shown in Figure 12.4.

12.6 Exercises

12.6.1 Problems

12.1 (a) Consider an AR(1) model

yt ¼ ryt�1 þ vt; jrj< 1

Rewrite y as a function of lagged errors. (Hint: perform recursive substitution.)

What is the mean and variance of y?What is the covariance between yt and yt�2?

Regressions with Nonstationary Variables

Stochastic TrendTrend Stationary

Cointegrated Not cointegrated
Estimate an ARDL
model in levels with

a trend term
included

Estimate long-run
equation with least

squares

Estimate short-run
error correction

model

Estimate ARDL
model in first
differences

FIGURE 12.4 Regression with time-series data: nonstationary variables.
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(b) Consider a random walk model

yt ¼ yt�1 þ vt

Rewrite y as a function of lagged errors. What is the mean and variance of y?

What is the covariance between yt and yt�2?

12.2 Figure 12.5 (data file unit.dat) shows plots of four time series. SinceWandY appear to

be fluctuating around a nonzero mean, a Dickey–Fuller test 2 (with constant but no

trend) was performed on these variables. Since X and Z appear to be fluctuating

around a trend, a Dickey–Fuller test 3 (with constant and trend) was performed for

these two variables. The results are shown below.

bDWt ¼ 0:757� 0:091Wt�1

ðtauÞ ð�3:178Þ
bDYt ¼ 0:031� 0:039Yt�1

ðtauÞ ð�1:975Þ
bDXt ¼ 0:782� 0:092Xt�1 þ 0:009t

ðtauÞ ð�3:099Þ
bDZt ¼ 0:332� 0:036Zt�1 þ 0:005t
ðtauÞ ð�1:913Þ

Which series are stationary, and which are nonstationary?
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FIGURE 12.5 Time series for Exercise 12.2.
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12.3 A time series process of the form yt ¼ aþ yt�1 þ vt; vt � Nð0;s2Þ can be

rearranged as yt � yt�1 ¼ Dyt ¼ aþ vt. This shows that yt is integrated of order

one, since its first difference is stationary. Show that a time series of the form yt ¼
2yt�1 � yt�2 þ aþ vt is integrated of order two.

12.6.2 COMPUTER EXERCISES

12.4 The data file oil.dat contains 88 annual observations on the price of oil (in 1967

constant dollars) for the period 1883–1970.

(a) Plot the data. Do the data look stationary, or nonstationary?

(b) Use a unit root test to demonstrate that the series is stationary.

(c) What do you conclude about the order of integration of this series?

12.5 The data file bond.dat contains 102monthly observations onAA railroad bond yields

for the period January 1968 to June 1976.

(a) Plot the data. Do railroad bond yields appear stationary, or nonstationary?

(b) Use a unit root test to demonstrate that the series is nonstationary.

(c) Find the first difference of the bond yield series and test for stationarity.

(d) What do you conclude about the order of integration of this series?

12.6 The data file oz.dat contains quarterly data on disposable income and consumption in

Australia from 1985:1 to 2005:2.

(a) Test each of these series for stationarity.

(b) What do you conclude about the ‘‘order of integration’’ of each of these series?

(c) Is consumption cointegrated with, or spuriously related to, disposable income?

12.7 The data file texas.dat contains 57 quarterly observations on the real price of oil

(RPO), Texas nonagricultural employment (TXNAG), and nonagricultural employ-

ment in the rest of the United States (USNAG). The data cover the period 1974Q1

through 1988Q1 and were used in a study by Fomby and Hirschberg [T. B. Fomby

and J. G. Hirschberg, ‘‘Texas in Transition: Dependence on Oil and the National

Economy,’’FederalReserveBankofDallasEconomicReview, January1989, 11–28].

(a) Show that the levels of the variables TXNAG and USNAG are nonstationary

variables.

(b) Atwhat significance level do you conclude that the changes DTX ¼ TXNAG�
TXNAG(�1) and DUS ¼ USNAG�USNAG(�1) are stationary variables?

(c) Are the nonstationary variables TXNAG andUSNAG cointegrated, or spuriously

related?

(d) Are the stationary variables DTX and DUS related?

(e) What is the difference between (d) and (c)?

12.8 The data file usa.dat contains the data shown in Figure 12.1. Consider the two time

series, real GDP and the inflation rate.

(a) Are the series stationary, or nonstationary?Which Dickey–Fuller test (no constant,

no trend; with constant, no trend; or with constant and with trend) did you use?

(b) What do you conclude about the order of integration of these series?

(c) Forecast GDP and inflation for 2010:1.

12.9 The data file canada.dat contains monthly Canadian/U.S. exchange rates for the

period 1971:01 to 2006:12. Split the observations into two sample periods—a

1971:01–1987:12 sample period and a 1988:01–2006:12 sample period.

(a) Perform a unit root test on the data for each sample period.WhichDickey–Fuller

test did you use?

(b) Are the results for the two sample periods consistent?
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(c) Perform a unit root test for the full sample 1971:01–2006:12.What is the order of

integration of the data?

12.10 The data file csi.dat contains the Consumer Sentiment Index (CSI), produced by the

University of Michigan for the sample period 1978:01–2006:12.

(a) Perform all threeDickey–Fuller tests. Are the results consistent? If not, why not?

(b) Based on a graphical inspection of the data, which test should you have used?

(c) Does the CSI suggest that consumers ‘‘remember’’ and ‘‘retain’’ news infor-

mation for a short time, or for a long time?

12.11 The data filemexico.dat contains real GDP forMexico and theUnites States from the

first quarter of 1980 to the third quarter of 2006. Both series have been standardized

so that the average value in 2,000 is 100.

(a) Perform the test for cointegration between Mexico and the Unites States for all

three test equations in (12.8). Are the results consistent?

(b) The theory of convergence in economic growth suggests the twoGDPs should be

proportionalandcointegrated.That is, thereshouldbeacointegratingrelationship

that does not contain an intercept or a trend. Do your results support this theory?

(c) If the variables are not cointegrated, what should you do if you are interested in

testing the relationship between Mexico and the United States?

12.12 The file inter2.dat contains 300 observations of a generated I(2) process shown in

Figure 12.6 below. Show that the variable called inter2 is indeed an I(2) variable by

conducting a number of unit root tests—first on the level of the data, then on the first

difference and finally on the second difference.

12.13 Prices around the world tend to move together. The data file ukpi.dat contains

information about the price indices in the United Kingdom and in the Euro Area (the

United Kingdom is a member of the European Union, but not a member of the single

European currency zone) for the period 1996:1–2009:12.

(a) Plot the data. Are the series I(1) or I(0)?

(b) Are prices in the UK and in the Euro Area cointegrated, or spuriously related?

Use both the least squares and the error correctionmethod to test this proposition.
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FIGURE 12.6 A generated I(2) process.
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C h a p t e r 13
Vector Error Correction and
Vector Autoregressive Models

Learning Objectives

Based on the material in this chapter, you should be able to do the following:

1. Explain why economic variables are dynamically interdependent.

2. Explain the VEC model.

3. Explain the importance of error correction.

4. Explain the VAR model.

5. Explain the relationship between a VEC model and a VAR model.

6. Explain how to estimate the VEC and VAR models for the bivariate case.

7. Explain how to generate impulse response functions and variance decompositions

for the simple case when the variables are not contemporaneously interdependent

and the shocks are not correlated.

In Chapter 12, we studied the time-series properties of data and cointegrating relationships

between pairs of nonstationary series. In those examples, we assumed that one of the

variables was the dependent variable (let us call it yt) and that the other was the independent

variable ðsay xtÞ, and we treated the relationship between yt and xt like a regression model.

However, a priori, unless we have good reasons not to, we could just as easily have assumed

that yt is the independent variable and xt is the dependent variable. Put simply, we

are working with two variables fyt; xtg and the two possible regression models relating

them are

yt ¼ b10 þ b11xt þ e
y
t ; e

y
t �Nð0;s2

yÞ (13.1a)

Keywords

dynamic relationships

error correction

forecast error variance decomposition

identification problem

impulse response functions

VAR model

VEC model
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xt ¼ b20 þ b21yt þ e x
t ; e x

t �Nð0;s2
xÞ (13.1b)

In this bivariate (two series) system there can be only one unique relationship between xt and

yt, and so it must be the case that b21 ¼ 1=b11 and b20 ¼ �b10=b11. A bit of terminology:

for (13.1a) we say that we have normalized on y (meaning that the coefficient in front of y is

set to 1), whereas for (13.1b) we say that we have normalized on x (meaning that the

coefficient in front of x is set to 1).

Is it better towrite the relationship as (13.1a) or (13.1b), or is it better to recognize that in

many relationships, variables like y and x are simultaneously determined? The aim of this

chapter is to explore the causal relationship between pairs of time-series variables. In doing

so, we shall be extending our study of time-series data to take account of their dynamic

properties and interactions. In particular, we will discuss the vector error correction

(VEC) and vector autoregressive (VAR) models. We will learn how to estimate a VEC

model when there is cointegration between I(1) variables, and how to estimate a VARmodel

when there is no cointegration. Note that this is an extension of the single-equation models

examined in chapter 12.

Some important terminology emerges here. Univariate analysis examines a single data

series. Bivariate analysis examines a pair of series. The term vector indicates that we are
considering a number of series: two, three, ormore. The term ‘‘vector’’ is a generalization of

the univariate and bivariate cases.

13.1 VEC and VAR Models

Let us begin with two time-series variables yt and xt and generalize the discussion about

dynamic relationships in Chapter 9 to yield a system of equations:

yt ¼ b10 þ b11yt�1 þ b12xt�1 þ v
y
t

xt ¼ b20 þ b21yt�1 þ b22xt�1 þ v x
t

(13.2)

The equations in (13.2) describe a system in which each variable is a function of its own lag

and the lag of the other variable in the system. In this case, the system contains two variables

y and x. In the first equation yt is a function of its own lag yt�1 and the lag of the other variable

in the system xt�1. In the second equation xt is a function of its own lag xt�1 and the lag of the

other variable in the system yt�1. Together the equations constitute a system known as a

vector autoregression (VAR). In this example, since the maximum lag is of order 1, we have

a VAR(1).

If y and x are stationary I(0) variables, the above system can be estimated using least

squares applied to each equation. If, however, y and x are nonstationary I(1) and not

cointegrated, then as discussed inChapter 12,weworkwith the first differences. In this case,

the VAR model is

Dyt ¼ b11Dyt�1 þ b12Dxt�1 þ v
Dy
t

Dxt ¼ b21Dyt�1 þ b22Dxt�1 þ vDxt
(13.3)

All variables are now I(0), and the system can again be estimated by least squares. To recap: the

VARmodel is a general framework todescribe thedynamic interrelationship between stationary

variables. Thus, if y and x are stationary I(0) variables, the system in (13.2) is used. On the other

hand, if y and x are I(1) variables but are not cointegrated, we examine the interrelation between

them using a VAR framework in first differences (13.3).
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If y and x are I(1) and cointegrated, then we need to modify the system of equations to allow

for the cointegrating relationship between the I(1) variables.We do this for two reasons. First, as

economists, we like to retain and use valuable information about the cointegrating relationship,

and second, as econometricians, we like to ensure that we use the best technique that takes into

account the properties of the time-series data. Recall the chapter on simultaneous equations—

the cointegrating equation is one way of introducing simultaneous interactions without req-

uiring the data to be stationary. Introducing the cointegrating relationship leads to a model

known as the VEC model. We turn now to this model.

Consider two nonstationary variables yt and xt that are integrated of order 1: yt � Ið1Þ
and xt � Ið1Þ and which we have shown to be cointegrated, so that

yt ¼ b0 þ b1xt þ et (13.4)

and êt � Ið0Þ where êt are the estimated residuals. Note that we could have chosen to

normalize on x. Whether we normalize on y or x is often determined from economic theory;

the critical point is that there can be at most one fundamental relationship between the two

variables.

The VECmodel is a special form of the VAR for I(1) variables that are cointegrated. The

VEC model is

Dyt ¼ a10 þ a11ðyt�1 � b0 � b1xt�1Þ þ v
y
t

Dxt ¼ a20 þ a21ðyt�1 � b0 � b1xt�1Þ þ v x
t

(13.5a)

which we can expand as

yt ¼ a10 þ ða11 þ 1Þyt�1 � a11b0 � a11b1xt�1 þ v
y
t

xt ¼ a20 þ a21yt�1 � a21b0 � ða21b1 � 1Þxt�1 þ v x
t

(13.5b)

Comparing (13.5b) with (13.2) shows the VEC as a VARwhere the I(1) variable yt is related

to other lagged variables (yt�1 and xt�1) and where the I(1) variable xt is also related to

the other lagged variables (yt�1 and xt�1). Note, however, that the two equations contain the

common cointegrating relationship.

The coefficients a11,a21 are known as error correction coefficients, so named because

they show how much Dyt and Dxt respond to the cointegrating error yt�1 � b0 � b1xt�1 ¼
et�1. The idea that the error leads to a correction comes about because of the conditions put

ona11;a21 to ensure stability, namely ð�1<a11 � 0Þ and ð0 � a21 < 1Þ. To appreciate this
idea, consider a positive error et�1 > 0 that occurred because yt�1 > ðb0 þ b1xt�1Þ. A
negative error correction coefficient in the first equation ða11Þ ensures that Dy falls, while
the positive error correction coefficient in the second equation ða21Þ ensures that Dx rises,
thereby correcting the error. Having the error correction coefficients less than 1 in absolute

value ensures that the system is not explosive. Note that the VEC is a generalization of the

error-correction (single-equation) model discussed in Chapter 12. In the VEC (system)

model, both yt and xt ‘‘error-correct.’’

The error correction model has become an extremely popular model because its interpret-

ation is intuitively appealing. Think about two nonstationary variables, say consumption (let us

call it yt) and income (let us call it xt), that we expect to be related (cointegrated). Now think

about a change inyour incomeDxt, say a pay raise!Consumptionwillmost likely increase, but it

may take you a while to change your consumption pattern in response to a change in your pay.

The VEC model allows us to examine how much consumption will change in response to a
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change in the explanatory variable (the cointegration part, yt ¼ b0 þ b1xt þ etÞ, as well as the
speed of the change (the error correction part, Dyt ¼ a10 þ a11ðet�1Þ þ v

y
t where et�1 is

the cointegrating error).

There is one final point to discuss—the role of the intercept terms. Thus far, we have

introduced an intercept term in the cointegrating equation ðb0Þ as well as in the VEC (a10

and a20). However, doing so can create a problem. To see why, we collect all the intercept

terms and rewrite (13.5b) as

yt ¼ ða10 � a11b0Þ þ ða11 þ 1Þyt�1 � a11b1xt�1 þ v
y
t

xt ¼ ða20 � a21b0Þ þ a21yt�1 � ða21b1 � 1Þxt�1 þ v x
t

(13.5c)

If we estimate each equation by least squares, we obtain estimates of composite terms

ða10 � a11b0Þ and ða20 � a21b0Þ, and we are not able to disentangle the separate effects of
b0; a10, and a20. In the next section, we discuss a simple two-step least squares procedure

that gets around this problem. However, the lesson here is to check whether, and where, an

intercept term is needed.

13.2 Estimating a Vector Error Correction Model

There are many econometric methods to estimate the error correction model. Nonlinear

(system) least squares is one method, but the most straightforward method is to use a two-

step least squares procedure. First, use least squares to estimate the cointegrating relation-

ship yt ¼ b0 þ b1xt þ et and generate the lagged residuals êt�1 ¼ yt�1 � b0 � b1xt�1.

Second, use least squares to estimate the equations:

Dyt ¼ a10 þ a11 êt�1 þ v y
t (13:6a)

Dxt ¼ a20 þ a21 êt�1 þ v x
t (13:6b)

Note that all the variables in (13.6) ðDy;Dx and êÞ are stationary (recall that for y and x to be
cointegrated, the residuals ê must be stationary). Hence, the standard regression analysis

studied in earlier chapters may be used to test the significance of the parameters. The usual

residual diagnostic tests may be applied.

Weneed to be careful here about howwe combine stationary and nonstationary variables in a

regression model. Cointegration is about the relationship between I(1) variables. The co-

integrating equation does not contain I(0) variables. The corresponding VEC model, however,

relates the change in an I(1) variable ðthe Ið0Þ variables Dy and Dx) to other I(0) variables,

namely the cointegration residuals êt�1; if required, other stationary variablesmay be added. In

other words, we should not mix stationary and nonstationary variables: an I(0) dependent

variable on the left-hand side of a regression equation should be ‘‘explained’’ by other I(0)

variables on the right-hand side and an I(1) dependent variable on the left-hand side of a

regression equation should be explained by other I(1) variables on the right-hand side.

13.2.1 EXAMPLE

In Figure 13.1 the quarterly real GDP of a small economy (Australia) and a large economy

(United States) for the sample period 1970:1 to 2000:4 are displayed. Note that the series have

beenscaledsothatbotheconomiesshowarealGDPvalueof100in2000.Theyappearinthefile

gdp.dat. It appears from thefigure that both series are nonstationary and possibly cointegrated.
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Formal unit root tests of the series confirm that they are indeed nonstationary. To check

for cointegration we obtain the fitted equation in (13.7) (the intercept term is omitted

because it has no economic meaning):

Ât ¼ 0:985Ut; (13.7)

where A denotes real GDP for Australia and U denotes real GDP for the United States.

Note that we have normalized on A because it makes more sense to think of a small

economy responding to a large economy. The residuals derived from the cointegrating

relationship êt ¼ At � 0:985Ut are shown in Figure 13.2. Their first order autocorrelation

is 0.870, and a visual inspection of the time series suggests that the residuals may be

stationary.

A formal unit root test is performed, and the estimated unit root test equation is

bDet ¼ �0:128êt�1

ðtauÞ ð�2:889Þ
(13.8)
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FIGURE 13.2 Residuals derived from the cointegrating relationship.
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FIGURE 13.1 Real gross domestic products (GDP ¼ 100 in 2000).
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Since the cointegrating relationship does not contain an intercept term [see Chapter 12,

(12.8a)], the 5% critical value is �2.76. The unit root t-value of �2.889 is less than �2.76.

We reject the null of no cointegration and we conclude that the two real GDP series are

cointegrated. This result implies that economic activity in the small economy (Australia, At)

is linked to economic activity in the large economy (United States, Ut). If Ut were to

increase by one unit, At would increase by 0.985. But the Australian economy may not

respond fully by this amount within the quarter. To ascertain how much it will respond with

in a quarter, we estimate the error correction model by least squares. The estimated VEC

model for fAt; Utg is

bDAt ¼ 0:492� 0:099êt�1

ðtÞ ð2:077Þ
bDUt ¼ 0:510þ 0:030êt�1

ðtÞ ð0:789Þ

(13.9)

The results show that both error correction coefficients are of the appropriate sign. The

negative error correction coefficient in the first equation (�0.099) indicates that DA falls

(i.e., At falls or DAt is negative) while the positive error correction coefficient in the second

equation (0.030) indicates that DU rises (i.e., Ut rises or DUt is positive), when there is a

positive cointegrating error (êt�1 > 0 or At�1 > 0:985Ut�1). This behavior (negative change

in A and positive change in U) ‘‘corrects’’ the cointegrating error. The error correction

coefficient (�0.099) is significant at the 5% level; it indicates that the quarterly adjustment

ofAt will be about 10% of the deviation ofAt�1 from its cointegrating value 0:985Ut�1. This

is a slow rate of adjustment. However, the error correction coefficient in the second equation

(0.030) is insignificant; it suggests that DU does not react to the cointegrating error. This

outcome is consistent with the view that the small economy is likely to react to economic

conditions in the large economy, but not vice versa.

13.3 Estimating a VAR Model

The VEC is a multivariate dynamic model that incorporates a cointegrating equation. It is

relevant when, for the bivariate case, we have two variables, say y and x, that are both I(1),

but are cointegrated. Now we ask: what should we do if we are interested in the

interdependencies between y and x, but they are not cointegrated? In this case, we estimate

a vector autoregressive (VAR) model as shown in (13.3).

As an example, consider Figure 13.3, which shows the log of real personal disposable

income (denoted as Y ) and log of real personal consumption expenditure (denoted as C) for

the U.S. economy over the period 1960:1 to 2009:4. Both series appear to be nonstationary,

but are they cointegrated? The data are in the file fred.dat.

The ADF tests for unit roots for C and Y (for the case with an intercept only) give values

�1.995 and �2.741, respectively. Given a critical value of �2.876 at the 5% level of

significance, we may conclude that the series are nonstationary. The test for cointegration

for the case normalized on C is shown below:

êt ¼ Ct þ 0:404� 1:035Yt

Dêt ¼ �0:088êt�1 � 0:299Dêt�1

ðtauÞ ð� 2:873Þ
(13.10)
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This is a Case 2 test [see Chapter 12, (12.8b)], since the cointegrating relationship

contains an intercept term. Note that an intercept term has been included here to capture

the component of (log) consumption that is independent of disposable income. The 5%

critical value of the test for stationarity in the cointegrating residuals is �3.37. Since the

tau (unit root t-value) of �2.873 is greater than �3.37, it indicates that the errors are not

stationary, and hence that the relationship between C (i.e., ln(RPCE)) and Y (i.e.,

ln(RPDI)) is spurious—that is, we have no cointegration. Thus, we would not apply

a VEC model to examine the dynamic relationship between aggregate consumption

C and income Y. Instead we would estimate a VAR model for the set of I(0) variables

{DCt, DYt}.

For illustrative purposes, the order of lag in this example has been restricted to one. In

general, we should test for the significance of lag terms greater than one. The results are

DĈt ¼ 0:005þ 0:215DCt�1 þ 0:149DYt�1

ðtÞ ð6:969Þ ð2:884Þ ð2:587Þ ð13:11aÞ
DŶ t ¼ 0:006þ 0:475DCt�1 � 0:217DYt�1

ðtÞ ð6:122Þ ð4:885Þ ð2:889Þ ð13:11bÞ

The first equation (13.11a) shows that the quarterly growth in consumption (DCt) is

significantly related to its own past value (DCt�1) and also significantly related to the

quarterly growth in the last period’s income (DYt�1). The second equation (13.11b) shows

that DYt is significantly negatively related to its own past value but significantly positively

related to the last period’s change in consumption. The constant terms capture the fixed

component in the change in log consumption and the change in log income.

Having estimated these models, can we infer anything else? If the system is subjected to

an income shock, what is the effect of the shock on the dynamic path of the quarterly growth

in consumption and income? Will they rise, and if so, by how much? If the system is also

subjected to a consumption shock, what is the contribution of an income versus a

consumption shock on the variation of income? We turn now to some analysis suited to

addressing these questions.
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FIGURE 13.3 Real personal disposable income and real personal consumption expenditure (in

logarithms).
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13.4 Impulse Responses and Variance Decompositions

Impulse response functions and variance decompositions are techniques that are used by

macroeconometricians to analyze problems such as the effect of an oil price shock on

inflation and GDP growth, and the effect of a change in monetary policy on the economy.

13.4.1 IMPULSE RESPONSE FUNCTIONS

Impulse response functions show the effects of shocks on the adjustment path of the

variables. To help us understand this, we shall first consider a univariate series.

13.4.1a The Univariate Case

Consider a univariate series yt ¼ ryt�1 þ vt and subject it to a shock of size v in period one.

Assume an arbitrary starting value of y at time zero: y0 ¼ 0. (Since we are interested in the

dynamic path, the starting point is irrelevant.) At time t ¼ 1; following the shock, the value
of y will be: y1 ¼ ry0 þ v1 ¼ v. Assume that there are no subsequent shocks in later time

periods ½v2 ¼ v3 ¼ � � � ¼ 0�, at time t ¼ 2, y2 ¼ ry1 ¼ rv. At time t ¼ 3,

y3 ¼ ry2 ¼ rðry1Þ ¼ r2v, and so on. Thus the time-path of y following the shock is

fv; rv; r2v; . . .g. The values of the coefficients f1; r; r2; . . .g are known as multipliers,

and the time-path of y following the shock is known as the impulse response function.

To illustrate, assume that r ¼ 0:9 and let the shock be unity: v ¼ 1. According to the

analysis, y will be f1, 0:9, 0:81, . . .g; approaching zero over time. This impulse response

function is plotted in Figure 13.4. It shows us what happens to y after a shock. In this case, y

initially rises by the full amount of the shock and then it gradually returns to the value before

the shock.

13.4.1b The Bivariate Case

Now, let us consider an impulse response function analysis with two time series based on a

bivariate VAR system of stationary variables:

yt ¼ d10 þ d11yt�1 þ d12xt�1 þ v
y
t

xt ¼ d20 þ d21yt�1 þ d22xt�1 þ v x
t

(13.12)
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FIGURE 13.4 Impulse responses for an AR(1) model yt ¼ 0:9 yt�1 þ et following a unit shock.
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In this case, there are two possible shocks to the system—one to y and the other to x. Thuswe

are interested in four impulse response functions—the effect of a shock to y on the time-

paths of y and x and the effect of a shock to x on the time-paths of y and x.

The actual mechanics of generating impulse responses in a system is complicated by the

facts that (i) one has to allow for interdependent dynamics (the multivariate analog of

generating the multipliers) and (ii) one has to identify the correct shock from unobservable

data. Taken together, these two complications lead to what is known as the identification

problem. In this chapter, we consider a special case where there is no identification

problem.1 This special case occurs when the system that is described in (13.12) is a true

representation of the dynamic system—namely, y is related only to lags of y and x, and x is

related only to lags of y and x. In other words, y and x are related dynamically, but not

contemporaneously. The current value xt does not appear in the equation for yt and the

current value yt does not appear in the equation for xt. Also, we need to assume that the errors

v x
t and v

y
t are independent of each other (contemporaneously uncorrelated). In addition, we

assume that v y �Nð0;s2
yÞ and v x �Nð0;s2

xÞ.
Consider the case when there is a one–standard deviation shock (alternatively called

an innovation) to y so that at time t ¼ 1, v
y
1 ¼ sy, and v

y
t is zero thereafter. Assume

vxt ¼ 0 for all t. It is traditional to consider a standard deviation shock (innovation)

rather than a unit shock to overcome measurement issues. Assume y0 ¼ x0 ¼ 0. Also,

since we are focusing on how a shock changes the paths of y and x, we can ignore the

intercepts. Then

1. When t ¼ 1, the effect of a shock of size sy on y is y1 ¼ v
y
1 ¼ sy, and the effect on x

is x1 ¼ v x
1 ¼ 0.

2. When t ¼ 2, the effect of the shock on y is

y2 ¼ d11y1 þ d12x1 ¼ d11sy þ d120 ¼ d11sy

and the effect on x is

x2 ¼ d21y1 þ d22x1 ¼ d21sy þ d220 ¼ d21sy:

3. When t ¼ 3, the effect of the shock on y is

y3 ¼ d11y2 þ d12x2 ¼ d11d11sy þ d12d21sy

and the effect on x is

x3 ¼ d21y2 þ d22x2 ¼ d21d11sy þ d22d21sy:

By repeating the substitutions for t ¼ 4; 5; . . . ; we obtain further expressions. The impulse

response of the shock (or innovation) to y on y is syf1; d11; ðd11d11 þ d12d21Þ; . . .g and the
impulse response of a shock to y on x is syf0; d21; ðd21d11 þ d22d21Þ; . . .g:

Now consider what happens when there is a one standard deviation shock to x so that at

time t ¼ 1; v x
1 ¼ sx, and v

x
t is zero thereafter. Assume v

y
t ¼ 0 for all t. In the first period after

1 Appendix 13A introduces the general problem.
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the shock, the effect of a shock of sizesx on y is y1 ¼ v
y
1 ¼ 0, and the effect of the shock on x

is x1 ¼ v x
t ¼ sx. Two periods after the shock, when t ¼ 2; the effect on y is

y2 ¼ d11y1 þ d12x1 ¼ d110þ d12sx ¼ d12sx

and the effect on x is

x2 ¼ d21y1 þ d22x1 ¼ d210þ d22sx ¼ d22sx

Again, by repeated substitutions, we obtain the impulse response of a shock to x on y as

sxf0; d12; ðd11d12 þ d12d22Þ; . . .g, and the impulse response of a shock to x on x

assxf1; d22; ðd21d12 þ d22d22Þ; . . .g. Figure 13.5 shows the four impulse response functions

for numerical values: sy ¼ 1,sx ¼ 2,d11 ¼ 0:7, d12 ¼ 0:2,d21 ¼ 0:3 and d22 ¼ 0:6:
The advantage of examining impulse response functions (and not just VAR coefficients)

is that they show the size of the impact of the shock plus the rate at which the shock

dissipates, allowing for interdependencies.

13.4.2 FORECAST ERROR VARIANCE DECOMPOSITIONS

Another way to disentangle the effects of various shocks is to consider the contribution of

each type of shock to the forecast error variance.
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FIGURE 13.5 Impulse responses to standard deviation shock.
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13.4.2a Univariate Analysis

Consider again the univariate series, yt ¼ ryt�1 þ vt. The best one-step-ahead forecast

(alternatively the forecast one period ahead) is

yFtþ1 ¼ Et½ryt þ vtþ1�

where Et is the expected value conditional on information at time t (i.e., we are interested in

the mean value of ytþ1 using what is known at time t). At time t the conditional expectation

Et½ryt� ¼ ryt is known, but the error vtþ1 is unknown, and so its conditional expectation is

zero. Thus the best forecast of ytþ1 is ryt, and the forecast error is

ytþ1 � Et½ytþ1� ¼ ytþ1 � ryt ¼ vtþ1

The variance of the one-step forecast error is varðvtþ1Þ ¼ s2. Suppose we wish to forecast

two steps ahead; using the same logic, the two-step forecast becomes

yFtþ2 ¼ Et½rytþ1 þ vtþ2� ¼ Et½rðryt þ vtþ1Þ þ vtþ2� ¼ r2yt

and the two-step forecast error becomes

ytþ2 � Et½ytþ2� ¼ ytþ2 � r2yt ¼ rvtþ1 þ vtþ2

In this case, the variance of the forecast error is varðrvtþ1 þ vtþ2Þ ¼ s2ðr2 þ 1Þ, showing
that the variance of forecast error increases as we increase the forecast horizon.

In this univariate example, there is only one shock that leads to a forecast error. Hence the

forecast error variance is 100%due to its own shock. The exercise of attributing the source of

the variation in the forecast error is known as variance decomposition.

13.4.2b Bivariate Analysis

We can perform a variance decomposition for our special bivariate example where there is

no identification problem. Ignoring the intercepts (since they are constants), the one–step

ahead forecasts are

yFtþ1 ¼ Et½d11yt þ d12xt þ v
y
tþ1� ¼ d11yt þ d12xt

xFtþ1 ¼ Et½d21yt þ d22xt þ v x
tþ1� ¼ d21yt þ d22xt

The corresponding one-step-ahead forecast errors and variances are

FE
y
1 ¼ ytþ1 � Et½ytþ1� ¼ v

y
tþ1 varðFEy

1 Þ ¼ s2
y

FE x
1 ¼ xtþ1 � Et½xtþ1� ¼ v x

tþ1 varðFEx
1 Þ ¼ s2

x

Hence in the first period, all variation in the forecast error for y is due to its own shock.

Likewise, 100% of the forecast error for x can be explained by its own shock. Using the

same technique, the two–step ahead forecast for y is

yFtþ2 ¼ Et½d11ytþ1 þ d12xtþ1 þ v
y
tþ2�

¼ Et½d11ðd11yt þ d12xt þ v
y
tþ1Þ þ d12ðd21yt þ d22xt þ v x

tþ1Þ þ v
y
tþ2�

¼ d11ðd11yt þ d12xtÞ þ d12ðd21yt þ d22xtÞ
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and that for x is

xFtþ2 ¼ Et½d21ytþ1 þ d22xtþ1 þ v x
tþ2�

¼ Et½d21ðd11yt þ d12xt þ v
y
tþ1Þ þ d22ðd21yt þ d22xt þ v x

tþ1Þ þ v x
tþ2�

¼ d21ðd11yt þ d12xtÞ þ d22ðd21yt þ d22xtÞ

The corresponding two-step-ahead forecast errors and variances are (recall that we are

working with the special case of independent errors)

FE
y
2 ¼ ytþ2 � Et½ytþ2� ¼ ½d11v y

tþ1 þ d12v
x
tþ1 þ v

y
tþ2�

varðFEy
2Þ ¼ d211s

2
y þ d212s

2
x þ s2

y

FE x
2 ¼ xtþ2 � Et½xtþ2� ¼ ½d21v y

tþ1 þ d22v
x
tþ1 þ v x

tþ2�
varðFEx

2Þ ¼ d221s
2
y þ d222s

2
x þ s2

x

We can decompose the total variance of the forecast error for y, ðd211s2
y þ d212s

2
x þ s2

yÞ,
into that due to shocks to y, ðd211s2

y þ s2
yÞ, and that due to shocks to x, ðd212s2

xÞ. This
decomposition is often expressed in proportional terms. The proportion of the two-

step forecast error variance of y explained by its ‘‘own’’ shock is

ðd211s2
y þ s2

yÞ=ðd211s2
y þ d212s

2
x þ s2

yÞ

and the proportion of the two-step forecast error variance of y explained by the ‘‘other’’

shock is

ðd212s2
xÞ=ðd211s2

y þ d212s
2
x þ s2

yÞ

Similarly, the proportion of the two-step forecast error variance of x explained by its own

shock is

ðd222s2
x þ s2

xÞ=ðd221s2
y þ d222s

2
x þ s2

xÞ

and the proportion of the forecast error of x explained by the other shock is

ðd221s2
yÞ=ðd221s2

y þ d222s
2
x þ s2

xÞ

For our numerical example with sy ¼ 1, sx ¼ 2, d11 ¼ 0:7, d12 ¼ 0:2, d21 ¼ 0:3, and
d22 ¼ 0:6, we find that 90.303% of the two-step forecast error variance of y is due to y,

and only 9.697% is due to x.

To sumup, supposeyouwere interested in the relationship between economic growth and

inflation. AVARmodel will tell you whether they are significantly related to each other; an

impulse response analysis will show how growth and inflation react dynamically to shocks,

and a variance decomposition analysis will be informative about the sources of volatility.

13.4.2c The General Case

The example above assumes that x and y are not contemporaneously related and that the

shocks are uncorrelated. There is no identification problem, and the generation and
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interpretation of the impulse response functions and decomposition of the forecast error

variance are straightforward. In general, this is unlikely to be the case. Contemporaneous

interactions and correlated errors complicate the identification of the nature of shocks

and hence the interpretation of the impulses and decomposition of the causes of the

forecast error variance. This topic is discussed in greater detail in textbooks devoted to

time-series analysis.2 A description of how the identification problem can arise is given

in Appendix 13A.

13.5 Exercises

13.5.1 PROBLEMS

13.1 Consider the following first-order VAR model of stationary variables:

yt ¼ d11yt�1 þ d12xt�1 þ v
y
t

xt ¼ d21yt�1 þ d22xt�1 þ v x
t

Under the assumption that there is no contemporaneous dependence, determine the

impulse responses, four periods after a standard deviation shock for

(a) y following a shock to y

(b) y following a shock to x

(c) x following a shock to y

(d) x following a shock to x

13.2 Consider the first-orderVARmodel in Exercise 13.1.Under the assumption that there

is no contemporaneous dependence, determine

(a) the contribution of a shock to y on the variance of the three-step ahead forecast

error for y

(b) the contribution of a shock to x on the variance of the three-step ahead forecast

error for y

(c) the contribution of a shock to y on the variance of the three-step ahead forecast

error for x

(d) the contribution of a shock to x on the variance of the three-step ahead forecast

error for x

13.3 The VECmodel is a special form of the VAR for I(1) variables that are cointegrated.

Consider the following VEC model:

Dyt ¼ a10 þ a11ðyt�1 � b0 � b1xt�1Þ þ v
y
t

Dxt ¼ a20 þ a21ðyt�1 � b0 � b1xt�1Þ þ v x
t

The VEC model may also be rewritten as a VAR, but the two equations will contain

common parameters:

yt ¼ a10 þ ða11 þ 1Þyt�1 � a11b0 � a11b1xt�1 þ v
y
t

xt ¼ a20 þ a21yt�1 � a21b0 � ða21b1 � 1Þxt�1 þ v x
t

2 One reference you might consider is Lütkepohl, H. (2005) Introduction to Multiple Time Series Analysis,

Springer, Chapter 9.
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(a) Suppose you were given the following results of an estimated VEC model:

bDyt ¼ 2� 0:5ðyt�1 � 1� 0:7xt�1Þ
bDxt ¼ 3þ 0:3ðyt�1 � 1� 0:7xt�1Þ

Rewrite the model in the VAR form.

(b) Now suppose you were given the following results of an estimated VAR model,

but you were also told that y and x are cointegrated.

ŷt ¼ 0:7yt�1 þ 0:3þ 0:24xt�1

x̂t ¼ 0:6yt�1 � 0:6þ 0:52xt�1

Rewrite the model in the VEC form.

13.4 VAR and VEC models are popular forecasting models because they rely on the past

history of observed outcomes to predict the expected future values.

(a) Consider the following estimated VAR model:

yt ¼ d̂11yt�1 þ d̂12xt�1 þ v̂1t

xt ¼ d̂21yt�1 þ d̂22xt�1 þ v̂2t

What are the forecasts for ytþ1 and xtþ1?

What are the forecasts for ytþ2 and xtþ2?

(b) Consider the following estimated VEC model:

Dyt ¼ â11ðyt�1 � b̂1xt�1Þ þ v̂1t

Dxt ¼ â21ðyt�1 � b̂1xt�1Þ þ v̂2t

What are the forecasts for ytþ1 and xtþ1?

What are the forecasts for ytþ2 and xtþ2?

13.5.2 COMPUTER EXERCISES

13.5 The data file gdp.dat contains quarterly data on the real GDP of Australia (AUS) and

real GDP of the United States (USA ) for the sample period 1970:1 to 2000:4.

(a) Are the series stationary or nonstationary?

(b) Test for cointegration allowing for an intercept term. You will find that the

intercept is negative. Is this sensible? If not, repeat the test for cointegration

excluding the constant term.

(c) Save the cointegrating residuals and estimate the VEC model.

13.6 The data file fred.dat contains the log of real personal disposable income (Y) and the

log of real personal consumption expenditure (C) for the U.S. economy over

the period 1960:1 to 2009:4.

(a) Are the series stationary, or nonstationary? In particular, test whether the series

are trend stationary.

(b) Test for cointegration allowing for an intercept term. Are the series cointegrated?

(c) Estimate a VAR model for the set of I(0) variables {DCt, DYt}. Pay particular

attention to the order of lags.
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13.7 The data file vec.dat contains 100 observations on two generated series of data, x and

y. The variables are nonstationary and cointegrated without a constant term. Save the

cointegrating residuals (ê) and estimate the VEC model. As a check, the results for

the case normalized on y are bDyt ¼ �0:576ðêt�1Þ
ðtÞ ð�6:158Þ
bDxt ¼ 0:450ðêt�1Þ
ðtÞ ð4:448Þ

(a) The residuals from the error correction model should not be autocorrelated. Are

they?

(b) Note that one of the error correction terms is negative and the other is positive.

Explain why this is necessary.

13.8 The data file var.dat contains 100 observations on two generated series of data,w and

z. The variables are nonstationary but not cointegrated. Estimate a VAR model of

changes in the variables. As a check, the results are (the intercept terms were not

significant):

bDwt ¼ 0:743Dwt�1 þ 0:214Dzt�1

ðtÞ ð11:403Þ ð2:893Þ
bDzt ¼ �0:155Dwt�1 þ 0:641Dzt�1

ðtÞ ð�2:293Þ ð8:338Þ

(a) The residuals from the VARmodel should not be autocorrelated. Is this the case?

(b) Determine the impulse responses for the first two periods. (You may assume the

special condition that there is no contemporaneous dependence.)

(c) Determine the variance decompositions for the first two periods.

13.9 The quantity theory of money says that there is a direct relationship between the

quantity of money in the economy and the aggregate price level. Put simply, if

the quantity of money doubles, then the price level should also double. Figure 13.6

shows the percentage change in a measure of the quantity of money (M) and the
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FIGURE 13.6 Percentage changes in money and price.
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percentage change in ameasure of aggregate prices (P) for theUnited States between

1961:1 and 2005:4 (data file qtm.dat). AVEC model was estimated as follows:

bDPt ¼ �0:016ðPt�1 � 1:004Mt�1 þ 0:039Þ þ 0:514DPt�1 � 0:005DMt�1

ðtÞ ð2:127Þ ð3:696Þ ð1:714Þ ð7:999Þ ð0:215Þ
bDMt ¼ 0:067ðPt�1 � 1:004Mt�1 þ 0:039Þ � 0:336DPt�1 � 0:340DMt�1

ðtÞ ð3:017Þ ð3:696Þ ð1:714Þ ð1:796Þ ð4:802Þ

(a) Identify the cointegrating relationship betweenP andM. Is the quantity theory of

money supported?

(b) Identify the error-correction coefficients. Is the system stable?

(c) The above results were estimated using a system approach. Derive the co-

integrating residuals and confirm that the series is indeed an I(0) variable.

(d) Estimate a VECmodel using the cointegrating residuals. (Your results should be

the same as above.)

13.10 Research into the Phillips curve is concerned with providing empirical evidence of a

tradeoff between inflation and unemployment. Can an economy experience lower

unemployment if it is prepared to accept higher inflation? Figure 13.7 plots the

changes in ameasure of the unemployment rate (DU) and the changes in ameasure of

inflation (DP) for the United States for the sample period 1970:07 to 2009:06 (data

file phillips.dat). AVAR model was estimated as follows:

DDUt ¼ 0:180DUt�1 � 0:046DPt�1

ðtÞ ð3:905Þ ð0:909Þ
DDPt ¼ �0:098DUt�1 þ 0:373DPt�1

ðtÞ ð�2:522Þ ð8:711Þ
(a) Is there evidence of an inverse relationship between the change in the unemploy-

ment rate (DU) and the change in the inflation rate (DP)?

(b) What is the response ofDU at time t þ 1 following a unit shock toDU at time t?

(c) What is the response of DP at time t þ 1 following a unit shock toDU at time t?

(d) What is the response of DU at time t þ 2?

(e) What is the response of DP at time t þ 2?
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FIGURE 13.7 Changes in the unemployment and inflation rates.

1 3 . 5 EXERCI SES 513



13.11 Figure 13.8 shows the time series for two exchange rates—theEURO per $US and the

STERLING per $US (data file sterling.dat). Both the levels and the changes in the

data are shown.

(a) Which set of data would you consider using to estimate a VECmodel, and which

set to estimate a VAR? Why?

(b) Apply the two-step approach suggested in this chapter to estimate a VECmodel.

(c) Estimate a VAR model paying attention to the order of the lag.

13.12 Financial analysts often debate the role of dividends in the determination of share

prices. Figure 13.9 shows plots of the rate of change in dividends and price

computed as

DVt ¼ 100 lnðDNt=DNt�1Þ; SPt ¼ 100 lnðPNt=PNt�1Þ

where PN is the Standard and Poor Composite Price Index; DN is the nominal

dividends per share (source: Prescott, E. C. and Mehra, R. ‘‘The Equity Premium: A

Puzzle,’’ Journal of Monetary Economics, 15 March, 1985, pp. 145–161). The data

are annual observations over the period 1889–1979. The data file is called equity.dat.

Estimate a first-orderVAR for SP andDV by applying least-squares to each equation:

SPt ¼ b10 þ b11SPt�1 þ b12DVt�1 þ vst

DVt ¼ b20 þ b21SPt�1 þ b22DVt�1 þ vdt
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Estimate an ARDL for each equation:

SPt ¼ a10 þ a11SPt�1 þ a12DVt�1 þ a13DVt þ est

DVt ¼ a20 þ a21SPt�1 þ a22DVt�1 þ a23SPt þ edt

Compare the two sets of results and note the importance of the contemporaneous

endogenous variable (SP, DV) in each equation.

(a) Explain why least squares estimation of the VARmodel with lagged variables on

the right-hand side yields consistent estimates.

(b) Explain why least squares estimation of the model with lagged and contem-

poraneous variables on the right-hand side yields inconsistent estimates. (You

might like to refer to the material in Chapter 11).

(c) What do you infer about the role of dividends in the determination of share

prices?

13.13 The file gfc.dat contains data about economic activity in two major economies: the

United States and the Euro Area (the group of countries in Europe where the Euro

currency is the legal tender). Specifically, the data are the logs of their Gross

Domestic Product (GDP), standardized so that the value of GDP is equal to 100 in

2000. The levels and the change in economic activity are shown in Figure 13.10 (a)

and (b). The sample period is from 1995Q1 to 2009Q4 and includes the global

financial crisis that began in September 2007.
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(a) Based on a visual inspection of the data, what would you infer about the

interactions between the GDPs in the two economies?

(b) Do the economies have a long-run relationship? Specify the econometric model

and estimate the model. Plot the residuals and comment on their properties.

(c) Do the economies have a short-run relationship? Specify the econometric model

and estimate the model. Plot the residuals and comment on their properties.

Appendix 13A The Identification Problem3

A bivariate dynamic system with contemporaneous interactions (also known as a structural

model) is written as

yt þ b1xt ¼ a1yt�1 þ a2xt�1 þ e
y
t

xt þ b2yt ¼ a3yt�1 þ a4xt�1 þ e x
t

(13A.1)

which can be more conveniently expressed in matrix form as

1 b1

b2 1

� �
yt
xt

� �
¼ a1 a2

a3 a4

� �
yt�1

xt�1

� �
þ e

y
t

e x
t

� �

or rewritten in symbolic form as BYt ¼ AYt�1 þ Et, where

Y ¼ yt
xt

� �
B ¼ 1 b1

b2 1

� �
A ¼ a1 a2

a3 a4

� �
Et ¼ e

y
t

e x
t

� �

AVAR representation (also known as reduced-form model) is written as

yt ¼ d1yt�1 þ d2xt�1 þ v
y
t

xt ¼ d3yt�1 þ d4xt�1 þ v x
t

(13A.2)

or in matrix form as: Yt ¼ CYt�1 þ Vt, where

C ¼ d1 d2
d3 d4

� �
Vt ¼ v

y
t

v x
t

� �

Clearly, there is a relationship between (13.A.1) and (13A.2): C ¼ B�1A and Vt ¼ B�1Et.

The special case considered in the chapter assumes that there are no contemporaneous

interactions (b1 ¼ b2 ¼ 0), makingB an identity matrix. There is no identification problem

in this case because the VAR residuals can be unambiguously ‘‘identified’’ as shocks to y or

as shocks to x: v y ¼ e y, v x ¼ e x. The generation and interpretation of the impulse responses

and variance decompositions are unambiguous.

In general, however,B is not an identitymatrix,making v y and v xweighted averages of e y

and e x. In this general case, impulse responses and variance decompositions based on v y and

v x arenotmeaningful oruseful becausewecannotbecertain about the sourceof the shocks.A

number of methods exist for ‘‘identifying’’ the structural model from its reduced form.

3 This appendix requires a basic understanding of matrix notation.
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C h a p t e r 14
Time-Varying Volatility
and ARCH Models

Learning Objectives

Based on the material in this chapter, you should be able to do the following:

1. Explain the difference between a constant and a time-varying variance of the error

term.

2. Explain the term ‘‘conditionally normal.’’

3. Perform a test for ARCH effects.

4. Estimate an ARCH model.

5. Forecast volatility.

6. Explain the difference between ARCH and GARCH specifications.

7. Explain the distinctive features of a T-GARCH model and a GARCH-in-mean

model.

In Chapter 12, our focus was on time-varying mean processes and macroeconomic time

series. We were concerned with stationary and nonstationary variables, and, in particular,

macroeconomic variables likeGDP, inflation, and interest rates. The nonstationary nature of

the variables implied that they had means that change over time. In this chapter we are

concerned with stationary series, but with conditional variances that change over time.

The model we focus on is called the autoregressive conditional heteroskedastic (ARCH)

model.

Nobel Prize winner Robert Engle’s original work on ARCH was concerned with the

volatility of inflation. However, it was applications of the ARCH model to financial time

series that established and consolidated the significance of his contribution. For this reason,

the examples used in this chapter will be based on financial time series. As we will see,

financial time series have characteristics that are well represented by models with dynamic

Keywords

ARCH

ARCH-in-mean

conditional and unconditional forecasts

conditionally normal

GARCH

GARCH-in-mean

T-ARCH and T-GARCH

time-varying variance
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variances. The particular aims of this chapter are to discuss the modeling of dynamic

variances using the ARCH class of models of volatility, the estimation of these models, and

their use in forecasting.

14.1 The ARCH Model

ARCH stands for auto-regressive conditional heteroskedasticity. We have covered the

concepts of autoregressive and heteroskedastic errors in Chapters 9 and 8, respectively, so

let us begin with a discussion of the concepts of conditional and unconditional means and

variances of the error term.

Consider a model with an AR(1) error term

yt ¼ fþ et (14.1a)

et ¼ ret�1 þ vt; rj j < 1 (14.1b)

vt � Nð0; s2
vÞ (14.1c)

For convenience of exposition, first perform some successive substitution to obtain et as

the sum of an infinite series of the error term vt. To do this, note that if et ¼ ret�1 þ vt,

then et�1 ¼ ret�2 þ vt�1 and et�2 ¼ ret�3 þ vt�2, and so on. Hence et ¼ vt þ rvt�1 þ
r2vt�2 þ � � � þ rte0 where the final term rte0 is negligible.

The unconditional mean of the error is

E½et� ¼ E½vt þ rvt�1 þ r2vt�2 þ � � �� ¼ 0

because E½vt�j� ¼ 0 for all j, whereas the conditional mean for the error is

E½etjIt�1� ¼ E½ret�1jIt�1� þ E½vt� ¼ ret�1

because the information set at time t�1, It�1, includes knowing ret�1. Put simply,

‘‘unconditional’’describes the situationwhenyou have no information,whereas conditional

describes the situation when you have information, up to a certain point in time.

The unconditional variance of the error is

E½et � 0�2 ¼ E½vt þ rvt�1 þ r2vt�2 þ � � ��2
¼ E½v2t þ r2v2t�1 þ r4v2t�2 þ � � � �

¼ sv
2½1þ r2 þ r4 þ � � � � ¼ sv

2

1� r2

because E½vt�jvt�i� ¼ sv
2 when i ¼ j; E½vt�jvt�i� ¼ 0 when i 6¼ j and the sum of a geo-

metric series ½1þ r2 þ r4 þ � � � � is 1=ð1� r2Þ. The conditional variance for the error is

E½ðet � ret�1Þ2jIt�1� ¼ E½v2t jIt�1� ¼ s2
v

Note, as an aside, that since 1=ð1� r2Þ½ � > 1, it follows that the unconditional variance

sv
2=ð1� r2Þ½ � is always greater than the conditional variance [sv

2]. This result is a general

one; conditioning improves precision.
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Now notice, for this model, that the conditional mean of the error varies over time, while

the conditional variance does not. Suppose that instead of a conditional mean that changes

over time we have a conditional variance that changes over time. To introduce this

modification, consider a variant of the above model

yt ¼ fþ et (14.2a)

etjIt�1 � Nð0; htÞ (14.2b)

ht ¼ a0 þ a1e
2
t�1; a0 > 0; 0 � a1 < 1 (14.2c)

Equations (14.2b and 14.2c) describe the autoregressive conditional heteroskedastic

(ARCH) class of models. The second equation (14.2b) says that the error term is

conditionally normal etjIt�1 � Nð0; htÞ where It�1 represents the information available

at time t�1 with mean 0 and time-varying variance, denoted as ht, following popular

terminology. The third equation (14.2c) models ht as a function of a constant term and the

lagged error squared e2t�1.

The name—ARCH—conveys the fact that we areworkingwith time-varying variances

(heteroskedasticity) that depend on (are conditional on) lagged effects (autocorrelation).

This particular example is an ARCH(1) model since the time-varying variance ht is a

function of a constant term (a0) plus a term lagged once, the square of the error in the

previous period (a1e
2
t�1). The coefficients,a0 anda1, have to be positive to ensure a positive

variance. The coefficient a1 must be less than 1, or ht will continue to increase over time,

eventually exploding.Conditional normalitymeans that the normal distribution is a function

of known information at time t�1 i.e., when t ¼ 2, e2jI1 � Nð0;a0 þ a1e
2
1Þ and when

t ¼ 3, e3jI2 � Nð0;a0 þ a1e
2
2Þ, and so on. In this particular case, conditioning on It�1 is

equivalent to conditioning on the square of the error in the previous period e2t�1.

Note that while the conditional distribution of the error et is assumed to be normal, the

unconditional distribution of the error et will not be normal. This is not an inconsequential

consideration given that a lot of real-world data appear to be drawn from non-normal

distributions.

We have noted that, conditional on e2t�1, the mean and variance of the error term et are

zero and ht, respectively. To find the mean and variance of the unconditional distribution of

et, we note that, conditional on e2t�1, the standardized errors are standard normal. That is,

etffiffiffiffi
ht

p
����It�1

� �
¼ z � Nð0; 1Þ

Because this distribution does not depend on e2t�1, it follows that the unconditional

distribution of z ¼ et=
ffiffiffiffi
ht

p� �
is also N(0,1), and that z and e2t�1 are independent. Thus,

we can write

E etð Þ ¼ E ztð ÞE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ a1e

2
t�1

q� �
and

E e2t
� � ¼ E z2t

� �
E a0 þ a1e

2
t�1

� � ¼ a0 þ a1E e2t�1

� �
From the first of these equations we get E etð Þ ¼ 0, because E(zt) ¼ 0. From the second

of the equations we get var e2tð Þ ¼ E e2tð Þ ¼ a0= 1� a1ð Þ, because E z2tð Þ ¼ 1 and E e2tð Þ ¼
E e2t�1ð Þ.

1 4 . 1 THE ARCH MODEL 519



The ARCH model has become a very important econometric model because it is able

to capture stylized features of real-world volatility. Furthermore, in the context of the

ARCH(1) model, knowing the squared error in the previous period e2t�1 improves our

knowledge about the likelymagnitude of thevariance in period t. This is useful for situations

when it is important to understand risk, as measured by the volatility of the variable.

14.2 Time-Varying Volatility

The ARCHmodel has become a popular one because its variance specification can capture

commonly observed features of the time series of financial variables; in particular, it is

useful for modeling volatility and especially changes in volatility over time. To appreciate

what we mean by volatility and time-varying volatility, and how it relates to the ARCH

model, let us look at some stylized facts about the behavior of financial variables—for

example, the returns to stock price indices (also known as share price indices).

Figure 14.1 shows the time series of the monthly returns to a number of stock prices;

namely, the US Nasdaq, the Australian All Ordinaries, the Japanese Nikkei, and the UK

FTSE over the period 1988:01 to 2010:07 (data file returns.dat). The values of these series

change rapidly from period to period in an apparently unpredictable manner; we say the

series are volatile. Furthermore, there are periods when large changes are followed by

further large changes and periods when small changes are followed by further small

changes. In this case the series are said to display time-varying volatility as well as

‘‘clustering’’ of changes.

Figure 14.2 shows the histograms of the returns. All returns display non-normal

properties. We can see this more clearly if we draw normal distributions (using the respective
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FIGURE 14.1 Time series of returns to stock indices.
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sample means and sample variances) on top of these histograms. Note that there are more

observations around the mean and in the tails. Distributions with these properties—

more peaked around the mean and relatively fat tails—are said to be leptokurtic.

Note that the assumption that the conditional distribution for ðytjIt�1Þ is normal, an

assumption that we made in (14.2b), does not necessarily imply that the unconditional

distribution for yt is normal.When we collect empirical observations on yt into a histogram,

we are constructing an estimate of the unconditional distribution for yt. What we have

observed is that the unconditional distribution for yt is leptokurtic.

To illustrate how the ARCH model can be used to capture changing volatility and the

leptokurtic nature of the distribution for yt, we generate some simulated data for twomodels.

In both cases we set b0 ¼ 0 so that yt ¼ et. The top panel in Figure 14.3 illustrates the

case when a0 ¼ 1; a1 ¼ 0. These values imply varðytjIt�1Þ ¼ ht ¼ 1. This variance is

constant, and not time-varying, because a1 ¼ 0. The bottom panel in Figure 14.3

illustrates the case when a0 ¼ 1; a1 ¼ 0:8, the case of a time-varying variance given by

varðytjIt�1Þ ¼ ht ¼ a0 þ a1e
2
t�1 ¼ 1þ 0:8e2t�1. Note that relative to the series in the top

panel, volatility in the bottom panel is not constant; rather, it changes over time and it

clusters—there are periods of small changes (for example, around observation 100) and

periods of big changes (around observation 175).

In Figure 14.4 we present histograms of yt for the two cases. The top panel is the

histogram for the constant variance case where ðytjIt�1Þ and yt have the same distribution,

namely the noise process yt �Nð0; 1Þ because ht ¼ 1. The bottom panel is the histogram for

the time-varying variance case. We know that the conditional distribution for ðytjIt�1Þ is
Nð0; htÞ. But what about the unconditional distribution for yt? Again, we can check for

normality by superimposing a normal distribution on top of the histogram. In this case, to

allow for a meaningful comparison with the histogram in the top panel, we plot the

standardized observations of yt. That is for each observation we subtract the sample mean
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and divide by the sample standard deviation. This transformation ensures that the distri-

bution will have a zero mean and variance one, but it preserves the shape of the distribution.

Comparing the two panels, we note that the second distribution has higher frequencies

around themean (zero) and higher frequencies in the tails (outside�3). This feature of time

series with ARCH errors—the unconditional distribution of yt is non-normal—is consistent

with what we observed in the stock return series.

Thus, the ARCH model is intuitively appealing because it seems sensible to explain

volatility as a function of the errors et. These errors are often called ‘‘shocks’’ or ‘‘news’’ by

financial analysts. They represent the unexpected!According to theARCHmodel, the larger

the shock, the greater the volatility in the series. In addition, this model captures volatility

clustering, as big changes in et are fed into further big changes in ht via the lagged effect et�1.

The simulations show how well the ARCH model mimics the behavior of financial time

series shown in Figure 14.1, including their non-normal distributions.

14.3 Testing, Estimating, and Forecasting

14.3.1 TESTING FOR ARCH EFFECTS

A Lagrange multiplier (LM) test is often used to test for the presence of ARCH effects.

To perform this test, first estimate the mean equation, which can be a regression of

the variable on a constant (like 14.1) ormay include other variables. Then save the estimated

residuals êt and obtain their squares ê2t . To test for first-order ARCH, regress ê2t on the

squared residuals lagged ê2t�1,

ê2t ¼ g0 þ g1ê
2
t�1 þ vt (14.3)

where vt is a random term. The null and alternative hypotheses are

H0 :g1 ¼ 0 H1 :g1 6¼ 0

If there are no ARCH effects, then g1 ¼ 0 and the fit of (14.3) will be poor, and the equation

R2 will be low. If there are ARCH effects, we expect the magnitude of ê2t to depend on its

lagged values, and the R2 will be relatively high. The LM test statistic is ðT � qÞR2 where T

is the sample size, q is the number of ê2t� j terms on the right-hand side of (14.3), andR2 is the

coefficient of determination. If the null hypothesis is true, then the test statistic ðT � qÞR2 is

distributed (in large samples) as x2ðqÞ, where q is the order of lag, and T � q is the number of

complete observations; in this case, q ¼ 1. If ðT � qÞR2 � x2ð1�a;qÞ, then we reject the null

hypothesis that g1 ¼ 0 and conclude that ARCH effects are present.

To illustrate the test, consider the returns frombuying shares in the hypothetical company

BrightenYourDay (BYD) Lighting. The time series and histogram of the returns are shown

in Figure 14.5 (data file byd.dat). The time series shows evidence of time-varying volatility

and clustering, and the unconditional distribution is non-normal.

To perform the test for ARCH effects, first estimate a mean equation that in this

example is rt ¼ b0 þ et, where rt is the monthly return on shares of BYD. Second,

retrieve the estimated residuals. Third, estimate (14.3). The results for the ARCH test are

ê2t ¼ 0:908þ 0:353ê2t�1 R2 ¼ 0:124

ðtÞ ð8:409Þ
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The t-statistic suggests a significant first-order coefficient. The sample size is 500, giving an

LM test value of ðT � qÞR2 ¼ 61:876. Comparing the computed test value to the 5% critical

value of a x2ð1Þ distribution ðx2ð0:95;1Þ ¼ 3:841Þ leads to the rejection of the null hypothesis. In
other words, the residuals show the presence of ARCH(1) effects.

14.3.2 ESTIMATING ARCH MODELS

ARCH models are estimated by the maximum likelihood method. Estimation details are

beyond the scope of this book, but the maximum likelihood method (see Appendix C.8) is

programmed in most econometric software.

Equation (14.4) shows the results from estimating an ARCH(1) model applied to the

monthly returns from buying shares in Brighten Your Day Lighting. The estimated mean

of the series is described in (14.4a), while the estimated variance is given in (14.4b).

r̂ t ¼ b̂0 ¼ 1:063 (14.4a)

ĥt ¼ â0 þ â1 ê
2
t�1 ¼ 0:642þ 0:569ê2t�1

ðtÞ ð5:536Þ
(14.4b)
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FIGURE 14.5 Time series and histogram of returns for BYD Lighting.
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The t-statistic of the first-order coefficient (5.536) suggests a significant ARCH(1)

coefficient. Recall that one of the requirements of the ARCH model is that a0 > 0 and

a1 > 0, so that the implied variances are positive.Note that the estimated coefficients â0 and

â1 satisfy this condition.

14.3.3 FORECASTING VOLATILITY

Oncewe have estimated themodel, we can use it to forecast next period’s return rtþ1 and the

conditional volatility htþ1. When one invests in shares (or stocks), it is important to choose

them not just on the basis of their mean returns, but also on the basis of their risk. Volatility

gives us a measure of their risk.

For our case study of investing in BrightenYourDayLighting, the forecast return and

volatility are

r̂ tþ1 ¼ b̂0 ¼ 1:063 (14.5a)

ĥtþ1 ¼ â0 þ â1ðrt � b̂0Þ2 ¼ 0:642þ 0:569ðrt � 1:063Þ2 (14.5b)

Equation (14.5a) gives the estimated return that—because it does not change over time—is

both the conditional and unconditionalmean return. The estimated error in period t, given by

êt ¼ rt � r̂t, can then be used to obtain the estimated conditional variance (14.5b). The time

series of the conditional variance does change over time and is shown in Figure 14.6. Note

how the conditional variance around observation 370 coincides with the period of large

changes in returns shown in Figure 14.5.

14.4 Extensions

The ARCH(1) model can be extended in a number of ways. One obvious extension is to

allow for more lags. In general, an ARCH(q) model that includes lags e2t�1; . . . ; e
2
t�q has a

conditional variance function that is given by

ht ¼ a0 þ a1e
2
t�1 þ a2e

2
t�2 � � � þ aqe

2
t�q (14.6)
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FIGURE 14.6 Plot of conditional variance.
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In this case the variance or volatility in a given period depends on the magnitudes of the

squared errors in the past q periods. Testing, estimating, and forecasting, are natural

extensions of the case with one lag.

14.4.1 THE GARCH MODEL—GENERALIZED ARCH

One of the shortcomings of an ARCH(q) model is that there are qþ 1 parameters to

estimate. If q is a large number, we may lose accuracy in the estimation. The generalized

ARCH model, or GARCH, is an alternative way to capture long lagged effects with fewer

parameters. It is a special generalization of the ARCH model and it can be derived as

follows. First, consider (14.6) but write it as

ht ¼ a0 þ a1e
2
t�1 þ b1a1e

2
t�2 þ b2

1a1e
2
t�3 þ � � �

In other words, we have imposed a geometric lag structure on the lagged coefficients of the

form as ¼ a1 b
s�1
1 . Next, add and subtract b1a0 and rearrange terms as follows:

ht ¼ ða0 � b1a0Þ þ a1e
2
t�1 þ b1ða0 þ a1e

2
t�2 þ b1a1e

2
t�3 þ � � �Þ

Then, since ht�1 ¼ a0 þ a1e
2
t�2 þ b1a1e

2
t�3 þ b2

1a1e
2
t�4 þ � � �, we may simplify to

ht ¼ dþ a1e
2
t�1 þ b1ht�1 (14.7)

where d ¼ ða0 � b1a0Þ. This generalized ARCHmodel is denoted as GARCH(1,1). It can

be viewed as a special case of the more general GARCH (p,q) model, where p is the number

of lagged h terms and q is the number of lagged e2 terms. We also note that we need

a1 þ b1 < 1 for stationarity; if a1 þ b1 � 1 we have a so-called ‘‘integrated GARCH’’

process, or IGARCH.

The GARCH(1,1) model is a very popular specification because it fits many data series

well. It tells us that the volatility changes with lagged shocks ðe2t�1Þ but there is also

momentum in the systemworking via ht�1. One reasonwhy thismodel is so popular is that it

can capture long lags in the shocks with only a few parameters. AGARCH(1,1) model with

three parameters ðd;a1;b1Þ can capture similar effects to an ARCH(q) model requiring the

estimation of ðqþ 1Þ parameters, where q is large, say q� 6.

To illustrate the GARCH(1,1) specification, consider again the returns to our shares in

BrightenYourDayLighting, which we reestimate (by maximum likelihood) under the new

model. The results are

r̂ t ¼ 1:049

ĥt ¼ 0:401þ 0:492 ê2t�1 þ 0:238 ĥt�1

ðtÞ ð4:834Þ ð2:136Þ
The significance of the coefficient in front of ĥt�1 suggests that the GARCH(1,1) model is

better than the ARCH(1) results shown in (14.4). Plots of the mean equation and the time-

varying variance are shown in Figures 14.7(a) and 14.7(b) respectively.

14.4.2 ALLOWING FOR AN ASYMMETRIC EFFECT

A standard ARCHmodel treats bad ‘‘news’’ (negative et�1 < 0) and good ‘‘news’’ (positive

et�1 > 0) symmetrically: that is, the effect on the volatility ht is the same ða1e
2
t�1Þ. However,
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the effects of good and bad newsmay have asymmetric effects onvolatility. In general, when

negative news hits a financial market, asset prices tend to enter a turbulent phase and

volatility increases, but with positive news volatility tends to be small and the market enters

a period of tranquility.

The threshold ARCH model, or T-ARCH, is one example where positive and negative

news are treated asymmetrically. In the T-GARCH version of themodel, the specification of

the conditional variance is

ht ¼ dþ a1e
2
t�1 þ gdt�1e

2
t�1 þ b1ht�1

dt ¼
1 et < 0 ðbad newsÞ
0 et � 0 ðgood newsÞ

(
(14.8)
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FIGURE 14.7 Estimated means and variances of ARCH models.
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where g is known as the asymmetry or leverage term. When g ¼ 0, the model collapses to

the standard GARCH form. Otherwise, when the shock is positive (i.e., good news) the

effect onvolatility isa1, butwhen the news is negative (i.e., bad news) the effect onvolatility

is a1 þ g. Hence, if g is significant and positive, negative shocks have a larger effect on ht
than positive shocks.

The returns to our shares in BrightenYourDayLighting were reestimated with a

T-GARCH(1,1) specification:

r̂t ¼ 0:994

ĥt ¼ 0:356þ 0:263ê2t�1 þ 0:492dt�1 ê
2
t�1 þ 0:287 ĥt�1

ðtÞ ð3:267Þ ð2:405Þ ð2:488Þ

These results show that when themarket observes good news (positive et), the contribution of

e2t to volatilityhtþ1 is by a factor 0.263,whereaswhen themarket observes bad news (negative

et), the contribution of e
2
t to volatility htþ1 is by a factor ð0:263þ 0:492Þ. Overall, negative

shocks create greater volatility in financial markets. Figures 14.7(b) and 14.7(d) compare the

conditional variance of the symmetric GARCHmodel with that generated by the T-GARCH

model. Note how the T-GARCH model highlighted the period around observation 200 as

another period of turbulence (see Figure 14.5 for the time series of the returns).

14.4.3 GARCH-IN-MEAN AND TIME-VARYING RISK PREMIUM

Another popular extension of the GARCH model is the ‘‘GARCH-in-mean’’ model. The

positive relationship between risk (often measured by volatility) and return is one of the

basic tenets of financial economics. As risk increases, so does the mean return. Intuitively,

the return to risky assets tends to be higher than the return to safe assets (low variation in

returns) to compensate an investor for taking on the risk of buying the volatile share.

However,whilewe have estimated themean equation tomodel returns, and have estimated a

GARCH model to capture time-varying volatility, we have not used the risk to explain

returns. This is the aim of the GARCH-in-mean models.

The equations of a GARCH-in-mean model are shown below:

yt ¼ b0 þ uht þ et (14.9a)

etjIt�1 �Nð0; htÞ (14.9b)

ht ¼ dþ a1e
2
t�1 þ b1ht�1; d> 0; 0 � a1 < 1; 0 � b1 < 1 (14.9c)

The first equation is the mean equation; it now shows the effect of the conditional variance

on the dependent variable. In particular, note that the model postulates that the conditional

variance ht affects yt by a factor u. The other two equations are as before.

The returns to shares in BrightenYourDayLighting were reestimated as a GARCH-in-

mean model:

r̂t ¼ 0:818þ 0:196ht

ðtÞ ð2:915Þ
ĥt ¼ 0:370þ 0:295ê2t�1 þ 0:321dt�1ê

2
t�1 þ 0:278ĥt�1

ðtÞ ð3:426Þ ð1:979Þ ð2:678Þ

The results show that as volatility increases, the returns correspondingly increase by a

factor of 0.196. In otherwords, this result supports the usual view in financialmarkets—high
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risk, high return. TheGARCH-in-meanmodel is shown in Figures 14.7(e) and 14.7(f ). Note

that the expected mean return is no longer a constant value, but rather has high values (e.g.,

around observation 200) that coincide with higher conditional variances.

One last point before we leave this section. The first equation of the GARCH-in-mean

model is sometimes written as a function of the time-varying standard deviation
ffiffiffiffi
ht

p
—that

is, yt ¼ b0 þ u
ffiffiffiffi
ht

p þ et. This is because bothmeasures—variance and standard deviation—

are used by financial analysts to measure risk. There are no hard-and-fast rules about which

measure to use. Exercise 14.8 illustrates the case when we use
ffiffiffiffi
ht

p
. A standard t test of

significance is often used to decide which is the more suitable measure.

14.5 Exercises

14.5.1 PROBLEMS

14.1 The ARCH model is sometimes presented in the following multiplicative form:

yt ¼ b0 þ et

et ¼ zt
ffiffiffiffi
ht

p
; zt �Nð0; 1Þ

ht ¼ a0 þ a1e
2
t�1; a0 > 0; 0 � a1 < 1:

This form describes the distribution of the standardized residuals et=
ffiffiffiffi
ht

p
as standard

normal zt. However, the properties of et are not altered.

(a) Show that the conditional mean EðetjIt�1Þ ¼ 0.

(b) Show that the conditional variance Eðe2t jIt�1Þ ¼ ht.

(c) Show that etjIt�1 �Nð0; htÞ.
14.2 The equations of an ARCH-in-mean model are shown below:

yt ¼ b0 þ uht þ et

etjIt�1 �Nð0; htÞ
ht ¼ dþ a1e

2
t�1 d> 0; 0 � a1 < 1

Let yt represent the return from a financial asset and let et represent ‘‘news’’ in the

financial market. Now use the third equation to substitute out ht in the first equation,

to express the return as

yt ¼ b0 þ uðdþ a1e
2
t�1Þ þ et

(a) If u is zero, what is Etðytþ1Þ, the conditional mean of ytþ1? In other words, what

do you expect next period’s return to be, given information today?

(b) If u is not zero, what is Etðytþ1Þ? What extra information have you used here to

forecast the return?

14.3 Consider the following T-ARCH model:

ht ¼ dþ a1e
2
t�1 þ gdt�1e

2
t�1

dt ¼
1 et < 0 ðbad newsÞ
0 et � 0 ðgood newsÞ

(
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(a) If g is zero, what are the values of ht when et�1 ¼ �1, when et�1 ¼ 0, and when

et�1 ¼ 1?

(b) If g is not zero, what are the values of ht when et�1 ¼ �1, when et�1 ¼ 0, and

when et�1 ¼ 1? What is the key difference between the case g ¼ 0 and g 6¼ 0?

14.4 The GARCH(1,1) model shown below can also be re-expressed as an ARCH (q)

model, where q is a large number (in fact, infinity). Derive the ARCH form of a

GARCH model using the method of recursive substitution.

ht ¼ dþ a1e
2
t�1 þ b1ht�1

14.5.2 COMPUTER EXERCISES

14.5 The data file share.dat contains time-series data on the Straits Times share price index

of Singapore.

(a) Compute the time series of returns using the formula rt ¼ 100 lnðyt=yt�1Þ, where
yt is the share price index. Generate the correlogram of returns up to at

least order 12, since the frequency of the data is monthly. Is there evidence

of autocorrelation? If so, it indicates the presence of significant lagged mean

effects.

(b) Square the returns and generate the correlogram of squared returns. Is there

evidence of significant lagged effects? If so, it indicates the presence of

significant lagged variance effects.

14.6 The data file euro.dat contains 204 monthly observations on the returns to the Euro

share price index for the period 1988:01 to 2004:12. A plot of the returns data is

shown in Figure 14.8(a), together with its histogram in Figure 14.8(b).

(a) What do you notice about the volatility of returns? Identify the periods of big

changes and the periods of small changes.

(b) Is the distribution of returns normal? Is this the unconditional, or conditional,

distribution?

(c) Perform a Lagrange multiplier test for the presence of first-order ARCH and

check that you obtain the following results:

ê2t ¼ 20:509þ 0:237ê2t�1; ðT � 1ÞR2 ¼ 11:431

ðtÞ ð3:463Þ

Is there evidence of ARCH effects?

(d) Estimate an ARCH(1) model and check that you obtain the following results:

r̂ t ¼ 0:879; ĥt ¼ 20:604þ 0:230ê2t�1

ðtÞ ð2:383Þ ð10:968Þ ð2:198Þ

Interpret the results.

(e) A plot of the conditional variance is shown in Figure 14.8(c). Do the periods of

high and low conditional variance coincide with the periods of big and small

changes in returns?

14.7 Figure 14.9 (see page 532) shows the time series for monthly changes to the $US/$A

exchange rate and its histogram for the period 1985:07 to 2010:06 (data file exrate.dat).
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(a) Comment on the unconditional distribution of the series. Is it normal?

(b) Estimate a GARCH(1,1) model and check that you obtain the following results:

ŝt ¼ 0:042; ĥt ¼ 0:615þ 0:149ê2t�1 þ 0:800ĥt�1

ðtÞ ð0:269Þ ð1:511Þ ð1:735Þ ð8:406Þ

where s denotes the change in the exchange rate. Interpret the results.

(b) Histogram of returns
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(c) The table below contains information about actual changes and the estimated

conditional variance for the last six months of the sample.What is the forecast of

the conditional variance for 2010:07?

14.8 Figure 14.10 shows the weekly returns to the US S&P 500 for the sample period

January 1990 to December 2004 (data file sp.dat).

(a) Estimate an ARCH(1) model and check that you obtain the following results:

r̂ t ¼ 0:197 ĥt ¼ 3:442þ 0:253ê2t�1

ðtÞ ð2:899Þ ð22:436Þ ð5:850Þ
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FIGURE 14.9 Graphs for Exercise 14.7: Changes in $US/$A exchange rate.

Actual change Expected change Estimated conditional variance

s ŝ ĥt

2010:01 �0.11 0.042 15.31

2010:02 2.88 0.042 12.94

2010:03 1.53 0.042 10.98

2010:04 �9.11 0.042 10.59

2010:05 0.39 0.042 9.42

2010:06 5.29 0.042 20.61

2010:07
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What is the value of the conditional variance when the last period’s shock was

positive, et�1 ¼ þ1? What about when the last period’s shock was negative,

et�1 ¼ �1?

(b) Estimate a T-ARCH model and check that you obtain the following results:

r̂ t ¼ 0:147; ĥt ¼ 3:437þ ð0:123þ 0:268dt�1Þê2t�1

ðtÞ ð2:049Þ ð22:963Þ ð2:330Þ ð2:944Þ
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(c) What is the value of the conditional variance when the last period’s shock was

positive, et�1 ¼ þ1? When the last period’s shock was negative, et�1 ¼ �1?

(d) Is the asymmetric T-ARCH model better than the symmetric ARCH model

in a financial econometric sense? (Hint: look at the statistical tests for signifi-

cance.) Is the asymmetric T-ARCH model better than the symmetric ARCH

model inafinancial economicsense?(Hint: lookat the implicationsof the results.)

14.9 Figure 14.11 shows the daily term premiums between a 180-day bank bill

rate and a 90-day bank rate for the period July 1996 to December 1998 (data

file term.dat). Preliminary unit root tests confirm that the series may be treated

as a stationary series, although the value of r, the autocorrelation coefficient, is

quite high (about 0.9).

(a) Estimate a GARCH model and check that you obtain the following results:

r̂ t ¼ �2:272; ĥt ¼ 1:729þ 0:719ê2t�1 þ 0:224 ĥt�1

ðtÞ ð6:271Þ ð6:282Þ ð3:993Þ
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(b) Estimate a GARCH-in-mean model and check that you obtain the following

results:

r̂ t ¼ �3:376þ 0:211
ffiffiffiffi
ht

p
; ĥt ¼ 1:631þ 0:730ê2t�1 þ 0:231 ĥt�1

ðtÞ ð2:807Þ ð5:333Þ ð6:327Þ ð4:171Þ

What is the contribution of volatility to the term premium?

(c) Is the GARCH-in-mean model better than the GARCH model in a financial

econometric sense? (Hint: look at the statistical tests for significance.) Is the

GARCH-in-mean model better than the GARCHmodel in a financial economic

sense? (Hint: look at the implications of the results, in particular the behavior of

the term premium.) A plot of the expected term premium estimated for parts (a)

and (b) is shown in Figure 14.11.

14.10 The data file gold.dat contains 200 daily observations on the returns to shares in

a company specializing in gold bullion for the period December 13, 2005 to

September 19, 2006.

(a) Plot the returns data. What do you notice about the volatility of returns? Identify

the periods of big changes and the periods of small changes.

(b) Generate the histogramof returns. Is the distribution of returns normal? Is this the

unconditional or conditional distribution?

(c) Perform a Lagrange multiplier test for the presence of first-order ARCH.

(d) Estimate a GARCH(1,1) model. Are the coefficients of the correct sign and

magnitude?

(e) Howwould you use the estimatedGARCH(1,1)model to improve your forecasts

of returns?

14.11 The seminal paper about ARCH by Robert Englewas concerned with the variance of

UK inflation. The data file uk.dat contains seasonally adjusted data on the UK

consumer price index (UKCPI) for the sample period 1957:06 to 2006:06.

(a) Compute the monthly rate of inflation (y) for the sample period 1957:07 to

2006:06 using the formula

yt ¼ 100
UKCPIt � UKCPIt�1

UKCPIt�1

� 	

(b) Estimate a T-GARCH-in-mean model and check that you obtain the following

results:

ŷt ¼ �0:407þ 1:983
ffiffiffiffi
ht

p
ðtÞ ð�2:862Þ ð5:243Þ

ĥt ¼ 0:022þ ð0:211 � 0:221dt�1Þe2t�1 þ 0:782 ĥt�1

ð4:697Þ ð8:952Þð�8:728Þ ð27:677Þ

(c) The negative asymmetric effect (�0.221) suggests that negative shocks (such

as falls in prices) reduce volatility in inflation. Is this a sensible result for

inflation?

(d) What does the positive in-mean effect (1.983) tell you about inflation in the UK

and volatility in prices?
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14.12 The data filewarner.dat contains daily returns to holding shares in TimeWarner Inc.

The sample period is from January 3, 2008 to December 31, 2008 (260 observations)

and a graph of the returns appears in Figure 14.12.

(a) Estimate a GARCH(1,1) model and an ARCH(5) model. Which model would

you prefer, and why?

(b) What is the expected return next period? The expected volatility next period?

(c) Use your preferred model to forecast next period’s return and next period’s

volatility.

(d) Do good news and bad news have the same effect on return? On volatility?

14.13 Consider the quarterly rates of growth contained in gfc.dat used in Exercise 13.13. A

researcher in the Euro area (this is the group of countries in Europe where the Euro

currency is the legal tender) is interested in testing the proposition that growth in the

Euro region is affected by its own history, growth in the United States, and shocks to

economic activity.

(a) Specify an econometric model for the Euro Area based only on its own history

and where the expected effect of shocks on the expected quarterly rate of growth

is zero.

(b) Specify an econometric model for the Euro Area based only on its own history

andwhere shocksmay come fromdistributionswith zeromean, but time-varying

variances.

(c) Specify an econometric model for the Euro Area based on its own history, the

history of growth in theUnited States, andwhere the expected effect of shocks on

the expected quarterly rate of growth is zero.

(d) Specify an econometric model for the Euro Area based on its own history and

allow shocks in the Euro area to have an effect of zero on the quarterly rate of

growth.

(e) Specify an econometric model for the Euro Area based on its own history, the

history of growth in the United States, and where shocks in the Euro area and in

the United States have an effect on the expected quarterly rate of growth.
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FIGURE 14.12 Returns to shares in Time Warner.
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C h a p t e r 15
Panel Data Models

Learning Objectives

Based on the material in this chapter you should be able to

1. Explain how a data panel differs from either a cross section or a time series of data.

2. Explain the different ways in which individual heterogeneity can be modeled using

panel data, and the assumptions underlying each approach.

3. Explain how the fixed effects model allows for differences in the parameter values

for each individual cross section in a data panel.

4. Compare and contrast the least squares dummy variable estimator and the fixed

effects estimator.

5. Compare and contrast the fixed effects model and the random effects model.

Explain what leads us to consider individual differences to be random.

6. Explain the error assumptions in the random effects model, and what characteristic

leads us to consider generalized least squares estimation.

7. Describe the steps required to obtain generalized least squares estimates for the

random effects estimator.

8. Explain the meaning of cluster-robust standard errors, and describe how they

can be used with pooled least squares, fixed effects, and random effects

estimators.

9. Explain why endogeneity is a potential problem in random effects models, and

how it affects our choice of estimator.

10. Test for the existence of fixed and/or random effects, and use the Hausman test to

assess whether the random effects estimator is inconsistent.

11. Explain how the Hausman-Taylor estimator can be used to obtain con-

sistent estimates of coefficients of time-invariant variables in a random effects

model.

12. Explain how ‘‘seemingly unrelated regressions’’ are related to one another, and how

this knowledge leads to improved estimation.

13. Use your software to estimate fixed effects models, random effects models, and

seemingly unrelated regressions for panel data.

14. Test for contemporaneous correlation in a seemingly unrelated regression model.

15. Test cross-equation hypotheses on the coefficients in a seemingly unrelated

regression model.
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Apanel of data consists of a group of cross-sectional units (people, households, firms, states,

countries) who are observed over time.Wewill often refer to such units as individuals, with

the term ‘‘individual’’ being used generically, even when the unit of interest is not a person.

Let us denote the number of cross-sectional units (individuals) by N, and number of time

periods inwhichwe observe them as T. Panel data comes in several different ‘‘flavors,’’ each

of which introduces new challenges and opportunities. Peter Kennedy1 describes the

different types of panel data sets as

� ‘‘Long and narrow,’’ with ‘‘long’’ describing the time dimension and ‘‘narrow’’

implying a relatively small number of cross sectional units

� ‘‘Short and wide,’’ indicating that there are many individuals observed over a

relatively short period of time

� ‘‘Long and wide,’’ indicating that both N and T are relatively large

A ‘‘long and narrow’’ panel may consist of data on several firms over a period of time. A

classic example is a data set analyzed byGrunfeld and used subsequently bymany authors.2

These data track investment in plant and equipment byN ¼ 11 large firms for T ¼ 20 years.

This panel is narrow because it consists of onlyN ¼ 11firms. It is relatively ‘‘long’’ because

T > N. We use this data set later in the chapter.

Many microeconomic analyses are performed on panel data sets with thousands of

individuals who are followed through time. For example, the Panel Study of Income

Dynamics (PSID) has followed approximately 8,000 families since 1968.3 The U.S.

Department of Labor conducts National Longitudinal Surveys (NLS) such as NLSY79,

‘‘a nationally representative sample of 12,686 youngmen andwomenwhowere 14–22 years

old when they were first surveyed in 1979.4 These individuals were interviewed annually

through 1994 and are currently interviewed on a biennial basis.’’ Such data sets are ‘‘wide’’

and ‘‘short,’’ becauseN ismuch,much larger thanT. Using panel data sets of this kindwe can

account for unobserved individual differences, or heterogeneity. Furthermore, these data

panels are becoming long enough so that dynamic factors, such as spells of employment

and unemployment, can be studied. These very large data sets are rich in information, and

require the use of considerable computing power.

Keywords

Balanced panel

Cluster-robust standard errors

Contemporaneous correlation

Cross-equation hypotheses

Deviations from individual

means

Endogeneity

Error components model

Fixed effects estimator

Fixed effects model

Hausman test

Hausman-Taylor estimator

Heterogeneity

Instrumental variables

Least squares dummy

variable model

LM test

Panel corrected

standard errors

Pooled least squares

Pooled model

Random effects estimator

Random effects model

Seemingly unrelated

regressions

Time-invariant variables

Time-varying variables

Unbalanced panel

1 A Guide to Econometrics, 5th edition (2003), MIT Press, Chapter 17.
2 See Kleiber and Zeileis (2010), ‘‘The Grunfeld Data at 50,’’ German Economic Review, forthcoming and

http://statmath.wu-wien.ac.at/~zeileis/grunfeld/.
3 See http://psidonline.isr.umich.edu/.
4 See www.bls.gov/nls/.
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Macroeconomists who study economic growth across nations employ data that is

‘‘long’’ and ‘‘wide.’’ The Penn World Table5 provides purchasing power parity and

national income accounts converted to international prices for 189 countries for some or

all of the years 1950–2007, which we may roughly characterize as having both large N and

large T.

Finally, it is possible to have data that combines cross-sectional and time-series data

which do not constitute a panel. We may collect a sample of data on individuals from a

population at several points in time, but the individuals are not the same in each time period.

Such data can be used to analyze a ‘‘natural experiment,’’ for example when a law affecting

some individuals changes, such as a change in unemployment insurance in a particular state.

Using data before and after the policy change, and on groups of affected and unaffected

people, the effects of the policy change can be measured. Methods for estimating effects of

this type were introduced in Chapter 7.5.

Our interest in this chapter is how to use all available data to estimate econometric

models describing the behavior of the individual cross-section units over time. Such

data allow us to control for individual differences and study dynamic adjustment, and to

measure the effects of policy changes. For each type of data we must take care not only

with error assumptions, but also with our assumptions about whether, how, and when

parameters may change across individuals and/or time.

15.1 A Microeconomic Panel

Our first example is of a data set that is short and wide. It is typical of many microecono-

metric analyses that use large data sets with many individuals, coming from the National

Longitudinal Surveys (NLS) conducted by the U.S. Department of Labor, which has a

database on women whowere between 14 and 24 in 1968. To illustrate, we use a subsample

ofN ¼ 716womenwhowere interviewed in 1982, 1983, 1985, 1987, and 1988. The sample

consists of women who were employed, and whose schooling was completed, when

interviewed. The data file is named nls_ panel.dat6 and contains 3,580 lines of data. Panel

data observations are usually stacked, with all the time series observations for one individual

on top of the next. The observations on a few variables for the first three women in the NLS

panel are shown in Table 15.1. The first column ID identifies the individual and YEAR

represents the year inwhich the informationwas collected. These identifying variablesmust

be present so that your softwarewill properly identify the cross-section and time series units.

Then there are observations on each of the variables. In a typical panel there are some

observations with missing values, usually denoted as ‘‘.’’ or ‘‘NA’’. We have removed all

the missing values in the data file nls_panel.dat. In microeconomic panels the individuals

are not always interviewed the same number of times, leading to an unbalanced panel

in which the number of time series observations is different across individuals. The data

file nls_ panel.dat is, however, a balanced panel; for each individual, we observe five time-

series observations. A larger, unbalanced panel, is in the file nls.dat. Most modern software

packages can handle both balanced and unbalanced panels.

In the sections that follow we consider various models and estimators for estimating a

wage equation, with dependent variable ln(WAGE) and explanatory variables years of

5 See http://pwt.econ.upenn.edu/.
6 The data in nls_panel.dat and nls.dat are subsets of the nlswork.dta data used by the software Stata as an

illustration. See Stata Longitudinal/Panel Data, ReferenceManual, Release 9, StataCorp, 2005.We thank Stata for

permission to use the data for illustration purposes.
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education (EDUC), total labor force experience (EXPER) and its square (EXPER2), tenure

in current job (TENURE) and its square (TENURE2), and indicator or dummy variables

BLACK, SOUTH, and UNION.

15.2 Pooled Model

A pooled model is one where the data on different individuals are simply pooled together

with no provision for individual differences that might lead to different coefficients. For an

equation with two explanatory variables x2 and x3, a pooled model can be written as

yit ¼ b1 þ b2x2it þ b3x3it þ eit (15.1)

The first thing to notice about (15.1) is the two subscripts: i to denote the ith individual and

t to denote the tth time period. Thus, yit, for example, represents the tth observation

on the dependent variable for the ith individual. Assuming we have T observations on

N individuals, the indices i and t are such that i ¼ 1; 2; . . . ;N and t ¼ 1; 2; . . . ; T , implying a

total of NT observations. For the data set illustrated in Table 15.1, i ¼ ID, t ¼ 1 for 1982,

t ¼ 2 for 1983, and so on up to t ¼ 5 for 1988, with N ¼ 716 and T ¼ 5. If a panel is

unbalanced, T is different for each individual, andwewrite t ¼ 1; 2; . . . ; Ti; the total number

of observations is �N
i¼1Ti.

The second thing to notice in (15.1) is that the coefficients (b1, b2, b3) do not have i or t

subscripts. They are assumed to be constant for all individuals in all time periods, and do not

allow for possible individual heterogeneity. It is this characteristic that leads to (15.1) being

called a pooled model. If, in addition, we assume the errors eit have zero mean and constant

variance, are uncorrelated over time (t) and individuals (i), and are uncorrelated with x2 and

x3, then there is nothing special about (15.1) that distinguishes it from the multiple

regression model studied in Chapters 5–7. The least squares estimator for (b1,b2,b3) has

all its desirable properties. It is consistent, and the usual t and F statistics are valid in large

samples for hypothesis testing and interval estimation. If we also assume x2 and x3 are

nonrandom, the least squares estimator is the minimum variance linear unbiased estimator

Ta b l e 1 5 . 1 Representative Observations from NLS Panel Data

ID YEAR LWAGE EDUC SOUTH BLACK UNION EXPER TENURE

1 82 1.8083 12 0 1 1 7.6667 7.6667

1 83 1.8634 12 0 1 1 8.5833 8.5833

1 85 1.7894 12 0 1 1 10.1795 1.8333

1 87 1.8465 12 0 1 1 12.1795 3.7500

1 88 1.8564 12 0 1 1 13.6218 5.2500

2 82 1.2809 17 0 0 0 7.5769 2.4167

2 83 1.5159 17 0 0 0 8.3846 3.4167

2 85 1.9302 17 0 0 0 10.3846 5.4167

2 87 1.9190 17 0 0 1 12.0385 0.3333

2 88 2.2010 17 0 0 1 13.2115 1.7500

3 82 1.8148 12 0 0 0 11.4167 11.4167

3 83 1.9199 12 0 0 1 12.4167 12.4167

3 85 1.9584 12 0 0 0 14.4167 14.4167

3 87 2.0071 12 0 0 0 16.4167 16.4167

3 88 2.0899 12 0 0 0 17.8205 17.7500
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in finite samples. We will focus on large sample properties, however, because it is typically

unrealistic to assume x2 and x3 are nonrandom, and our sample sizes are usually large. In the

panel data set introduced in Section 15.1 each woman is selected at random, implying that

ln(WAGE), EDUC, EXPER, UNION, etc., are random outcomes, and the total sample size

NT ¼ 3580 is large. The least squares estimator, when applied to a pooledmodel, is referred

to as pooled least squares. The data for different individuals are pooled together, and the

equation is estimated using least squares.

For future reference it is useful to write explicitly the error assumptions required for

pooled least squares to be consistent and for the t and F statistics to be valid when computed

using the usual least squares variance estimates and standard errors. They are

E eitð Þ ¼ 0 (zero mean) (15.2)

varðeitÞ ¼ E e2it
� � ¼ s2

e (homoskedasticity) (15.3)

cov eit;ejs
� � ¼ E eit;ejs

� � ¼ 0 for i 6¼ j or t 6¼ s (all errors are uncorrelated) (15.4)

covðeit; x2itÞ ¼ 0; covðeit; x3itÞ ¼ 0 (errors uncorrelated with x’sÞ (15.5)

15.2.1 CLUSTER-ROBUST STANDARD ERRORS

Applying pooled least squares in a way that ignores the panel nature of the data is restrictive

in a number of ways. The first unrealistic assumption that we consider is the lack of

correlation between errors corresponding to the same individual. If, for a given level

of education, experience, education, etc., awoman’swage is higher than average in one year,

it is also likely to be higher than average in the other years. Looked at another way, if there

are unobservable individual characteristics that by necessity are excluded from the set of

explanatory variables, and hence are included in the error term, then those characteristics

will lead to similar effects in different years for the same individual.

To relax the assumption of zero error correlation over time for the same individual, we

write

cov eit; eisð Þ ¼ cts (15.6)

Notice that this alternative assumption also relaxes the assumption of homoskedasticity

because, when t ¼ s, we have

cov eit; eitð Þ ¼ var eitð Þ ¼ ctt

The error variance can be different in different time periods, but is constant over individuals.

To avoid confusion with different s2’s that will be used later, we have introduced another

Greek letter ‘‘psi’’ (c) to denote the variances and covariances.

Notice that assumption (15.6) does not say anything about the nature ofwithin-individual

correlation, just that it is nonzero. It does not assume the correlation is constant over time—

an assumption of the random effects model that we consider later in this chapter. Nor does it

assume the correlation declines as the errors become further apart in time—an assumption

of the stationary time series models considered in Chapter 9.

We continue to assume that the errors for different individuals are uncorrelated. This is a

reasonable assumption if the individuals constitute a random sample from some population.

Thus, we have
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cov eit; ejs
� � ¼ 0 for i 6¼ j

What are the consequences of using pooled least squares in the presence of the hetero-

skedasticity and correlation described by (15.6)? The least squares estimator is still

consistent, but its standard errors are incorrect, implying that hypothesis tests and interval

estimates based on these standard errors will be invalid. Typically, the standard errors will

be too small, overstating the reliability of the least squares estimator. Fortunately, there

is a way of correcting the standard errors to reflect the more realistic assumption in (15.6).

We had a similar situation in Chapters 8 and 9. In Chapter 8 we saw how White’s

heteroskedasticity-consistent standard errors could be used for assessing the reliability

of least squares estimates in a regression model with heteroskedasticity of unknown form.

Least squares is not efficient in these circumstances—the generalized least squares

estimator has lower variance—but using least squares avoids the need to specify the nature

of the heteroskedasticity, and using least squares withWhite standard errors provides a valid

basis for interval estimation and hypothesis testing. The Newey-West standard errors

introduced in Chapter 9 served a similar function in an autocorrelated error model. They

provided a valid basis for inference using least squares estimates without the need to specify

the nature of the autocorrelated error process.

In a similar way standard errors that are valid for the pooled least squares estimator under

the assumption in (15.6) can be computed. These standard errors have various names, being

referred to as panel-robust standard errors or cluster-robust standard errors. The time-

series observations on individuals are the clusters.

Derivation of cluster-robust standard errors requires some advanced algebra which you

can avoid by using standard options in computer software. However, it is useful to gain some

understanding and appreciation of how they are calculated. Some details are provided for

this purpose in Appendix 15A.

15.2.2 POOLED LEAST SQUARES ESTIMATES OF WAGE EQUATION

Pooled least squares estimates of the wage equation are displayed in Table 15.2 alongside

least-squares standard errors, t-values and p-values, and the corresponding cluster-robust

standard errors, t-values and p-values.7 Looking first at the estimates, we find there is a 7%

return to an extra year of education. Overall market experience and job tenure have positive

but diminishing effects on ln(WAGE). Wages are 12% lower for black workers, and 11%

lower for workers living in the South. Union members enjoy wages that are 13% higher.

These estimates have their usual partial derivative interpretation—other factors are held

constant in each case.

A comparison of the least-squares standard errors with the corresponding cluster-robust

standard errors reveals some dramatic differences. Almost all of the cluster-robust standard

errors are at least 50% higher than their least squares counterparts and consequently have

t-values that are at least 50% lower. Ignoring the within-individual correlation means that

the reliability of the pooled least squares estimates is overstated. In this particular example,

there is little effect on conclusions about the significance of the estimated coefficients,

because the p-values for hypothesis tests of significance are mostly 0.000 (correct to three

decimal places) for both sets of standard errors. However, for those coefficients with

7 The cluster-robust standard errors are computedwith degrees of freedom correction in Stata 11.0. Some other

software packages use different degrees of freedom corrections, which can lead to slightly different cluster-robust

standard errors. See Appendix 15A for details.
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p-values greater than 0.000, there are large changes in those p-values. That for TENURE2

changes from0.059 to 0.236, casting doubt aboutwhether this variable should be included in

the equation. Allowing for correlation between the errors for each individual is clearly

important; there are individual characteristics that are not completely captured by the

included explanatory variables.

15.3 The Fixed Effects Model

In the previous section we saw that one way to recognize the existence of individual

characteristics in a panel data model is to allow individual errors in different time periods to

be correlated. A second way is to relax the assumption that all individuals have the same

coefficients. Extending the model in (15.1) along these lines, we can write

yit ¼ b1i þ b2ix2it þ b3ix3it þ eit (15.7)

An i subscript has been added to each of the subscripts, implying that (b1, b2, b3) can be

different for each individual. This model is a legitimate panel data model, but it is not

suitable for panels that are short and wide. In the wage equation example, we have 716

individuals, and only five time-series observations on each individual. Thus, to estimate

(15.7) with this data set, we would be using only five observations to estimate three

coefficients for each individual. The resulting estimates would not be precise, and do not

have desirable large sample properties. If (15.7) is extended to include all the explanatory

variables in the wage equation, we have more coefficients than time-series observations,

making estimation impossible.

A popular simplification of (15.7) from which meaningful estimates can be obtained in

short and wide panels is one where the intercepts b1i are different for different individuals

but the slope coefficients b2 and b3 are assumed to be constant for all individuals. In this

case, the model becomes

yit ¼ b1i þ b2x2it þ b3x3it þ eit (15.8)

All behavioral differences between individuals, referred to as individual heterogeneity,
are assumed to be captured by the intercept. Individual intercepts are included to ‘‘control’’

Ta b l e 1 5 . 2 Pooled Least Squares Estimates of Wage Equation

Least Squares Standard Errors Cluster-Robust Standard Errors

Variable Coefficient Std. Error t-value p-value Std. Error t-value p-value

C 0.47660 0.05616 8.49 0.000 0.08456 5.64 0.000

EDUC 0.07145 0.00269 26.57 0.000 0.00550 12.99 0.000

EXPER 0.05569 0.00861 6.47 0.000 0.01130 4.92 0.000

EXPER2 �0.00115 0.00036 �3.18 0.002 0.00049 �2.33 0.020

TENURE 0.01496 0.00441 3.39 0.001 0.00712 2.10 0.036

TENURE2 �0.00049 0.00026 �1.89 0.059 0.00041 �1.18 0.236

BLACK �0.11671 0.01572 �7.43 0.000 0.02813 �4.15 0.000

SOUTH �0.10600 0.01420 �7.46 0.000 0.02706 �3.92 0.000

UNION 0.13224 0.01496 8.84 0.000 0.02707 4.88 0.000
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for individual-specific, time-invariant characteristics.Amodelwith these features is called a

fixed effects model. The intercepts are called fixed effects.

As we will see, the term ‘‘fixed effects’’ often relates more to the estimation procedure

and to other assumptions that we make than it does to whether the intercepts are fixed or

random. In thewage equation example the sample of women is selected randomly, implying

that their intercepts are random. However, when estimated within the framework of a fixed

effects model, they are treated as nonrandom. In some cases, such as models where the

individuals are geographical regions such as states, and all states are included, the intercepts

are more clearly ‘‘fixed.’’

We consider twomethods for estimating (15.8). These methods are identical in the sense

that they give the same estimates, but they differ computationally. One is the least squares

dummy variable estimator and the other is the fixed effects estimator.

15.3.1 THE LEAST SQUARES DUMMY VARIABLE ESTIMATOR FOR SMALL N

Oneway to estimate themodel in (15.8) is to include an intercept dummy variable (indicator

variable) for each individual. If the number of individuals is small, this can be done by brute

force. In our example N ¼ 716 is not small. Including 716 indicator variables, while

possible, is tedious. Thus, to illustrate the least squares dummyvariable estimatorwe use the

first 10 individuals in the file nls_ panel.dat. The observations for these 10 individuals have

been stored in a new file called nls_ panel10.dat. We begin by defining 10 dummy

(indicator) variables, such as

D1i ¼ 1 i ¼ 1

0 otherwise

�
D2i ¼ 1 i ¼ 2

0 otherwise

�
D3i ¼ 1 i ¼ 3

0 otherwise

�

Then (15.8) can be written

yit ¼ b11D1i þ b12D2i þ � � � þ b1;10D10i þ b2x2it þ b3x3it þ eit (15.9)

The equation for women’s wages has more than two explanatory variables, but we confine

this discussion to two x’s to avoid notational overload.

To make (15.9) consistent with our earlier treatment of indicator variables in Chapter 7,

we would specify a constant and nine dummy variables. Each dummy variable coefficient

would be equal to the difference between the intercept for its individual and the intercept for

the base individual for which we did not specify a dummy variable. The specification in

(15.9) ismore convenient for our current discussion.However, you should recognize that the

two alternatives are just different ways of looking at the same model.

If the error terms eit are uncorrelated with mean zero and constant variance s2
e for all

observations—they satisfy the assumptions in (15.2) to (15.5)—the best linear unbiased

estimator of (15.9) is the least squares estimator. In a panel data context, it is called the least

squares dummy variable estimator. Its large sample properties need a special mention.

Since N is large and T is small the large sample properties relevant for approximating the

finite sample properties of the estimator are those obtained for N ! 1. In this sense,

the least squares estimator for the slope coefficientsb2 andb3 is consistent, but the estimator

for the intercepts is not. The intercepts are not estimated consistently because as N gets

larger we get more intercepts, not more information on the existing intercepts, and so

the distributions of their estimators do not collapse to their true values as is required

for consistency. The implications of these results are that inferences about b2 and b3

can proceed with a large sample justification, but inferences drawn about the b1i are
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conditional on the individuals selected and their x’s, and need normally distributed errors in

order to be valid.

The results from applying the least squares dummy variable estimator to the wage

equation for the first 10 individuals (a total of 50 observations) appear in Table 15.3. The

variables EDUC, BLACK, and SOUTH have been omitted. Why? First consider BLACK.

This variable is an individual characteristic that does not change over time; for each

individual it is one or zero in all five time periods. Since individual indicator variables have

been included to capture all time-invariant, individual-specific characteristics, the effect of

BLACK will form part of each indicator variable coefficient, and the variable BLACK

becomes redundant. If you try to include the variableBLACK in the least squares regression,

your software will either give you an error message or throw out the variable because of

exact collinearity. Exact collinearity occurs because the sum of the all the individual

indicator variables for black women will be equal to the variable BLACK.

The situation is similar for EDUC. Since all women had completed their education at

the beginning of the sample, their numbers of years of schooling will not change over

time. For each woman EDUC is the same in all five years. Thus, the effect of EDUC will

also be picked up by the coefficients of the indicator variables for each of the women. The

source of the collinearity in this case is EDUC ¼ �10
i¼1EDUCi�Di where EDUCi is

the number of years of schooling for the ith woman and Di is her corresponding individual

indicator variable.

The reason for omitting SOUTH is slightly different. It turns out that none of the first 10

individuals in the data nls_ panel.dat had ever lived in the South, and so all values of this

variable are zero. It is impossible to measure the effects of living in the South when nobody

lives in the South. Later, when we include all individuals, we discover some did live in the

South, and that some changed their location during the time defined by the five time-series

observations. If nobody changed their location, then the variable SOUTH would be similar

to EDUC and BLACK. Its individual effect would be picked up by the coefficients of the

Ta b l e 1 5 . 3 Dummy Variable Estimation of Wage Equation for N ¼ 10

Variable Coefficient Std. Error t-value p-value

D1 0.1519 1.0967 0.139 0.891

D2 0.1869 1.0715 0.174 0.863

D3 �0.0630 1.3509 �0.047 0.963

D4 0.1856 1.3435 0.138 0.891

D5 0.9390 1.0978 0.855 0.398

D6 0.7945 1.1118 0.715 0.480

D7 0.5812 1.2359 0.470 0.641

D8 0.5379 1.0975 0.490 0.627

D9 0.4183 1.0840 0.386 0.702

D10 0.6146 1.0902 0.564 0.577

EXPER 0.2380 0.1878 1.268 0.213

EXPER2 �0.0082 0.0079 �1.036 0.307

TENURE �0.0124 0.0341 �0.362 0.720

TENURE2 0.0023 0.0027 0.854 0.399

UNION 0.1135 0.1509 0.753 0.457

SSE ¼ 2.667190
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dummy variables. The variable UNION can be included because individuals 2, 3, 8, and 9

changed their union status over the sample time period.

Turning to the estimates in Table 15.3, we find that none of them are significantly

different from zero at even a 20% level of significance. Using only 10 individuals has not

given us enough information to get reliable estimates. The individual intercepts vary

considerably, suggesting that the assumption of different intercepts for different individuals

could be appropriate. Since these intercepts have relatively large standard errors, it is

advisable to formally test whether they might be all equal, in which case there is no

individual heterogeneity. To do so, we set up the following hypotheses:

H0 : b11 ¼ b12 ¼ � � � ¼ b1;10

H1 : the b1i are not all equal
(15.10)

These N�1 ¼ 9 joint null hypotheses are tested using the usual F-test statistic. In the

restricted model all the intercept parameters are equal. If we call their common value b1,

then the restricted model is the pooled model

lnðWAGEÞ ¼ b1 þ b2EXPERþ b3EXPER
2 þ b4TENURE þ b5TENURE

2

þ b6UNION þ e

The pooled least squares estimates of this restricted model are shown in Table 15.4. Again,

the standard errors are relatively large, indicating that the estimates are not precise. To test

whether there are individual fixed effects, we are interested in the sum of squared errors

SSER ¼ 5.502466, where the subscript ‘‘R’’ is used to indicate this is the restricted model

that assumesH0 is true. The unrestricted sum of squared residuals SSEU ¼ 2.667190 comes

from the dummy variable model. With these two values we can construct the F-statistic as

F ¼ SSER � SSEUð Þ=J
SSEU= NT � Kð Þ

¼ 5:502466� 2:667190ð Þ=9
2:667190= 50� 15ð Þ

¼ 4:134

If the null hypothesis is true, then F � Fð9; 35Þ. The value of the test statistic F ¼ 4.134

yields a p-value of 0.0011; we reject the null hypothesis that the intercept parameters for all

individuals are equal. We conclude that there are differences in individual intercepts, and

that the data should not be pooled into a single model with a common intercept parameter.

Ta b l e 1 5 . 4 Pooled Least Squares Estimates of Wage Equation for N ¼ 10

Variable Coefficient Std. Error t-value p-value

C 0.6209 1.0172 0.610 0.545

EXPER 0.1947 0.1730 1.125 0.267

EXPER2 �0.0049 0.0071 �0.688 0.495

TENURE 0.0014 0.0375 0.036 0.971

TENURE2 �0.0009 0.0023 �0.371 0.712

UNION �0.0175 0.1024 �0.171 0.865

SSE ¼ 5.502466.
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15.3.2 THE FIXED EFFECTS ESTIMATOR

The technique of including a dummy variable for each individual is feasible when the

number of individuals is small. However, if we have a very large number of individuals, this

approachwill notwork. Today’s typical computer simply cannot handle that computing task

quickly and accurately. Luckily there is a fantastic trick that makes estimating the fixed

effects model with a large number of individuals relatively easy.

Take the data on individual i:

yit ¼ b1i þ b2x2it þ b3x3it þ eit t ¼ 1; . . . ; T (15.11)

Average the data across time, by summing both sides of the equation and dividing by T

1

T
�
T

t¼1
yit ¼ b1i þ b2x2it þ b3x3it þ eitð Þ

Using the fact that the parameters do not change over time, we can simplify this as

yi ¼ 1

T
�
T

t¼1
yit ¼ b1i þ b2

1

T
�
T

t¼1
x2it þ b3

1

T
�
T

t¼1
x3it þ 1

T
�
T

t¼1
eit

¼ b1i þ b2x2i þ b3x3i þ ei (15.12)

The ‘‘bar’’ notation yi indicates that we have averaged the values of yit over time. Then,

subtract (15.12) from (15.11), term by term, to obtain

yit ¼ b1i þ b2x2it þ b3x3it þ eit

�ðyi ¼ b1i þ b2x2i þ b3x3i þ eiÞ

yit � yi ¼ b2ðx2it � x2iÞ þ b3ðx3it � x3iÞ þ ðeit � eiÞ
(15.13)

In the last line of (15.13) note that the intercept parameter b1i has fallen out. These data are

said to be in ‘‘deviation from the individual’s mean’’ form, and if we repeat this process for

each individual, then we have a transformed model

~yit ¼ b2~x2it þ b3~x3it þ ~eit (15.14)

The ‘‘tilde’’ notation~yit ¼ yit � yi indicates that thevariables are in deviation from themean

form. In Table 15.5 we show the observations for the first three individuals for the variables

y ¼ LWAGE and x2 ¼ EXPER. The average of the T ¼ 5 years of data on each individual is

computed. For example, the average value of LWAGE for the first individual (i ¼ 1) over the

five-year period was 1.8328. This value is subtracted from each value of LWAGE for

individual one. This process is repeated for each variable for each individual. Notice what

would happen if one of the variables was time-invariant—for each individual it is constant

over time, likeEDUC andBLACK. The corresponding deviation frommeans variablewould

consist completely of zeros, and, as in the dummy variable model, cannot be included.

The advantage from the transformation in (15.14) is that the least squares estimates of the

parameters b2 and b3 from (15.14) are identical to the least squares estimates from the full

dummy variable model shown in (15.9), and they can be obtained without having to include
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all the dummy variables. Furthermore, the least squares residuals from (15.14) are the same

as the least squares residuals from (15.9).8

Writing the fixed effects model in terms of deviations from individual means, as in

(15.14), emphasizes another important characteristic of the fixed effects estimator: the

coefficient estimates depend only on the variation of the dependent and explanatory

variables within individuals. Thus, when estimating the effect of experience on wages,

for example, it is only the variation in wages and experience over time for each individual

that contributes to the estimated coefficients. The variation in wages from different

individuals with different levels of experience does not play a role.

15.3.2a Fixed Effects Estimates of Wage Equation for N ¼ 10

In this section we estimate the wage equation for the first 10 individuals using data in the

form of deviations from individual means and demonstrate the equivalence of the results

with those from the least squares dummy variable estimator. The data file nls_ panel_devn

.dat contains observations on the variables LWAGE, EXPER, EXPER2, TENURE,

TENURE2, and UNION for the first 10 individuals, expressed in terms of deviations

from individual means.

The least squares estimates and standard errors from estimating (15.14) are those

displayed on the left side of Table 15.6. Notice that the estimates for the coefficients b2

and b3 and the sum of squared errors are identical to those in Table 15.3, obtained using the

least squares dummy variable estimator. The standard errors are slightly different, however.

The difference arises because the estimate of the error variance used by the least squares

software when estimating (15.14) is ~s2
e ¼ SSE=ðNT � 5Þ when what is required is

ŝ2
e ¼ SSE=ðNT � N � 5Þ. The calculation of ~s2

e ignores the loss of N ¼ 10 degrees of

freedom that occurs when the variables are corrected by their sample means. The correct

divisor is NT � N � 5 ¼ 35, which is the degrees of freedom in the dummy variable

Ta b l e 1 5 . 5 Data in Deviation from Individual Mean Form

i t yit yi ~yit ¼ yit � yi x2it x2i ~x2it ¼ x2it � x2i

1 1 1.8083 1.8328 �0.0245 7.667 10.446 �2.779

1 2 1.8634 1.8328 0.0306 8.583 10.446 �1.863

1 3 1.7894 1.8328 �0.0434 10.179 10.446 �0.267

1 4 1.8465 1.8328 0.0137 12.179 10.446 1.733

1 5 1.8564 1.8328 0.0236 13.622 10.446 3.176

2 1 1.2809 1.7694 �0.4885 7.577 10.319 �2.742

2 2 1.5159 1.7694 �0.2535 8.385 10.319 �1.935

2 3 1.9302 1.7694 0.1608 10.385 10.319 0.065

2 4 1.9190 1.7694 0.1496 12.038 10.319 1.719

2 5 2.2010 1.7694 0.4316 13.212 10.319 2.892

3 1 1.8148 1.9580 �0.1432 11.417 14.497 �3.081

3 2 1.9199 1.9580 �0.0381 12.417 14.497 �2.081

3 3 1.9584 1.9580 0.0004 14.417 14.497 �0.081

3 4 2.0071 1.9580 0.0491 16.417 14.497 1.919

3 5 2.0899 1.9580 0.1318 17.821 14.497 3.323

yit ¼ LWAGEit; x2it ¼ EXPERit.

8 The proofs of these results involve matrix algebra. See William Greene (2008), Econometric Analysis, 6th

edition, Pearson Prentice Hall, Chapter 3.3.

548 PANEL DATA MODELS



model, taking into account both the dummy variables and explanatory variables. If we

multiply the standard errors from estimating (15.4) by the correction factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNT � 5Þ=ðNT � N � 5Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
45=35

p
¼ 1:133893

the resulting standard errors are identical to those in Table 15.3.

When using software designed to carry out fixed effects estimation automatically, these

corrections will have already been done. In the right side of Table 15.6 we report the results

in the format used by two econometric software packages (EViews 7.0 and Stata 11.0). Note

that the coefficient estimates and standard errors are identical to those from the dummy

variable model in Table 15.3. The reported constant term C is the average of the estimated

coefficients on the cross section dummy variables. That is C ¼ N�1�N
i¼1b1i, where the b1i

are the least squares estimates of the parameters b1i in (15.9), and are the coefficients of the

dummy variables in Table 15.3. Other software may report the results in a different format.

It is usually the case thatwhen estimating panel datamodels,we aremost interested in the

coefficients of the explanatory variables and not the individual intercept parameters. Recall

that the intercept parameters are the coefficients of the dummy variables and are also called

the fixed effects. Although they are typically of lower priority, these coefficients can be

‘‘recovered’’ by using the fact that the least squares fitted regression passes through the point

of the means, just as it did in the simple regression model. That is,

yi ¼ b1i þ b2x2i þ b3x3i

where b2 and b3 are the estimates obtained from (15.14) and b1i denotes the estimates of

individual specific constants, or fixed effects. Given b2 and b3, we can compute the fixed

effects as

b1i ¼ yi � b2x2i � b3x3i i ¼ 1; . . . ;N (15.15)

Econometric software packages usually make it possible to recover these estimates.

15.3.3 FIXED EFFECTS ESTIMATES OF WAGE EQUATION FROM COMPLETE PANEL

The estimates in Tables 15.3, 15.4, and 15.6 were included for illustrative purposes only.

Panel-data samples are typically much larger thanN ¼ 10 and T ¼ 5. The need for a larger

Ta b l e 1 5 . 6 Fixed Effects Estimation of Wage Equation for N ¼ 10

Using Least Squares

Deviation Form

Using Fixed Effects

Software Command

Variable Coefficient Std. Error Coefficient Std. Error

C 0.4347 1.1452

EXPER 0.2380 0.1656 0.2380 0.1878

EXPER2 –0.0082 0.0070 –0.0082 0.0079

TENURE –0.0124 0.0301 –0.0124 0.0341

TENURE2 0.0023 0.0024 0.0023 0.0027

UNION 0.1135 0.1330 0.1135 0.1509

SSE ¼ 2:66719 SSE ¼ 2:66719
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sample was evident from the large standard errors and the failure to find any coefficient

estimates that were significantly different from zero. In this section we improve the

precision of estimation by using the complete sample of N ¼ 716 individuals.

Also considered in this section is a relaxation of the assumption that the errors eit are

uncorrelated over time for each individual. When considering the pooled model in Section

15.2, we argued that unobserved individual characteristics captured by the error term are

likely to lead to similar effects in different years for the same individual. This implies that

each individual’s errors are correlated, an assumption wewrote as cov eit; eisð Þ ¼ cts. Under

this assumption, least squares standard errors are invalid and cluster-robust standard errors

should be used. In the fixed effects model time-invariant individual characteristics are

included in the fixed effects, and so nonzero values for cts (for t 6¼ s) are less likely.

Nevertheless, within-individual error correlations can still remain, in which case cluster-

robust standard errors should be used in conjunction with the fixed-effects estimator. In the

illustrative example with N ¼ 10 individuals we assumed that all eit were uncorrelated—

the assumptions in (15.2) to (15.5). For the N ¼ 716 individuals considered in this section

two sets of standard errors are computed—those which assume completely uncorrelated eit,

and cluster robust standard errors to allow for the possibility that eit and eis are correlated.

The estimates, and the two sets of standard errors, t-values and p-values are displayed

in Table 15.7.9 Since some individuals in the sample of N ¼ 716 moved into or out of

the South during the sample period, it is now possible to include SOUTH as a variable. The

variables EDUC and BLACK continue to be omitted because they are exactly collinear with

the implied dummy variables. A relevant question to ask is: What impact does including

fixed effects to allow for individual heterogeneity have on the coefficient estimates? Howdo

the estimated effects on wages of more experience, longer tenure, living in the South, and

belonging to a union change? The answer to this question is given by comparing the pooled

least squares estimates in Table 15.2 with those in Table 15.7. What we discover is that

ignoring individual heterogeneity leads to coefficient estimates that are much larger in

absolute value. For SOUTH and UNION, this means that their effect on wages is grossly

overstated when the fixed effects are omitted. It is less clear how the estimated effects of

experience and tenure change because both linear and quadratic terms are included for

these variables. Table 15.8 contains a comparison of the two sets of estimates of the

percentage change in wages attributable to changes in each of the variables. For experience

Ta b l e 1 5 . 7 Fixed Effects Estimates of Wage Equation for N¼ 716

Least Squares Standard Errors Cluster-Robust Standard Errors

Variable Coefficient Std. Error t-value p-value Std. Error t-value p-value

C 1.45003 0.04014 36.12 0.000 0.06153 23.57 0.000

EXPER 0.04108 0.00662 6.21 0.000 0.00921 4.46 0.000

EXPER2 –0.00041 0.00027 –1.50 0.135 0.00037 –1.11 0.268

TENURE 0.01391 0.00328 4.24 0.000 0.00471 2.95 0.003

TENURE2 –0.00090 0.00021 –4.35 0.000 0.00028 –3.21 0.001

SOUTH –0.01632 0.03615 –0.45 0.652 0.06539 –0.25 0.803

UNION 0.06370 0.01425 4.47 0.000 0.01885 3.38 0.001

9 The cluster-robust standard errors are computed with the degrees of freedom correction in Stata 11.0. Some

other software packages use different degrees of freedom corrections which can lead to slightly different cluster-

robust standard errors. See Appendix 15A.
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and tenure the percentage changes are evaluated at the approximate sample means

EXPER ¼ 12 and TENURE ¼ 7. There are some large differences. The wage benefit

from being a member of a union has halved from 13% to 6.4%. The negative effect of being

in the South has fallen from 10.6% to 1.6%. The marginal effect of experience is slightly

larger when the fixed effects are included, but that for tenure declines from 0.82% to 0.14%.

Turning now to the standard errors, t-values and p-values, we find that inferences about

what variables are relevant can also be sensitive to whether or not the fixed effects are

included. From the results in Table 15.2, therewas doubt aboutwhetherTENURE2 should be

included. The results in Table 15.7 suggest that EXPER2 and SOUTH are possible

exclusions. A comparison of the least squares standard errors with the cluster-robust

standard errors in Table 15.7 suggests that some within-individual error correlation still

remains after including the fixed effects. The differences are not as large as they were in

Table 15.2, but ignoring the correlation does lead to smaller standard errors, suggesting that

these standard errors overstate the precision of estimation.

15.4 The Random Effects Model

In the fixed-effects model (15.8) we assumed that all individual differences were captured

by differences in the intercept parameter. The intercepts b1i were considered to be ‘‘fixed’’

parameters that we could estimate directly using the least squares estimator. In the random

effects model we again assume that all individual differences are captured by the intercept

parameters, but we also recognize that the individuals in our sample were randomly

selected, and thus we treat the individual differences as random rather than fixed, as we

did in the fixed-effects dummy variable model. Random individual differences can be

included in ourmodel by specifying the intercept parametersb1i to consist of a fixedpart that

represents the population average, b1, and random individual differences from the popu-

lation average, ui. In equation form this breakdown is

b1i ¼ b1 þ ui (15.16)

The random individual differences ui, which are called random effects, are analogous to

random error terms, and we make the standard assumptions about them—namely, that

they have zero mean, are uncorrelated across individuals, and have a constant variance s2
u,

so that

E uið Þ ¼ 0; cov ui; uj
� � ¼ 0 i 6¼ j; var uið Þ ¼ s2

u (15.17)

If we substitute (15.16) into (15.8) we obtain

yit ¼ b1i þ b2x2it þ b3x3it þ eit

¼ b1 þ ui
� �þ b2x2it þ b3x3it þ eit

(15.18)

Ta b l e 1 5 . 8 Percentage Marginal Effects on Wages

Variable

Pooled Least

Squares

Fixed Effects

Estimator

EXPER 2.81 3.13

TENURE 0.82 0.14

SOUTH –10.60 –1.63

UNION 13.22 6.37
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In this expression b1 is a fixed population parameter, and ui is a random effect. We can

rearrange (15.18) to make it resemble a familiar regression equation,

yit ¼ b1 þ b2x2it þ b3x3it þ eit þ uið Þ
¼ b1 þ b2x2it þ b3x3it þ vit

(15.19)

where nowb1 is the intercept parameter and the error term vit is composed of a component ui
that represents a random individual effect and the component eit which is the usual

regression random error. The combined error is

vit ¼ ui þ eit (15.20)

Because the random effects regression error in (15.20) has two components, one for the

individual and one for the regression, the random effects model is often called an error

components model.

15.4.1 ERROR TERM ASSUMPTIONS

The assumptions we make for eit are those given in (15.2) to (15.6)—namely, that the eit
have zero mean and constant variance s2

e and are uncorrelated over time and individuals

so that cov eit; ejs
� � ¼ 0 for i 6¼ j or t 6¼ s. They are also assumed to be uncorrelated with

the explanatory variables so that cov eit; x2itð Þ ¼ 0 and cov eit; x3itð Þ ¼ 0. Further, we

assume the individual effects ui are not correlated with the regression error eit, so that

cov ui; eitð Þ ¼ 0, and not correlated with the explanatory variables, so that cov ui; x2itð Þ ¼ 0

and cov ui; x3itð Þ ¼ 0.

Using these assumptions about ui and eit, we can derive the properties of the combined

error term vit ¼ ui þ eit. It has zero mean

E vitð Þ ¼ E ui þ eitð Þ ¼ E uið Þ þ E eitð Þ ¼ 0þ 0 ¼ 0

and a constant, homoskedastic, variance:

s2
v ¼ var vitð Þ ¼ var ui þ eitð Þ
¼ var uið Þ þ var eitð Þ þ 2cov ui; eitð Þ
¼ s2

u þ s2
e

(15.21)

So far these error properties are the usual ones. Differences appear when we consider

correlations between the error terms vit. There are several correlations that can be considered.

1. The correlation between two individuals, i and j, at the same point in time, t. The

covariance for this case is given by

cov vit; vjt
� � ¼ E vitvjt

� � ¼ E ui þ eitð Þ uj þ ejt
� �� �

¼ E uiuj
� �þ E uiejt

� �þ E eituj
� �þ E eitejt

� �
¼ 0þ 0þ 0þ 0 ¼ 0

2. The correlation between errors on the same individual (i) at different points in time, t

and s. The covariance for this case is given by

cov vit; visð Þ ¼ E vitvisð Þ ¼ E ui þ eitð Þ ui þ eisð Þ½ �
¼ E u2i

� �þ E uieisð Þ þ E eituið Þ þ E eiteisð Þ
¼ s2

u þ 0þ 0þ 0

¼ s2
u

(15.22)

552 PANEL DATA MODELS



3. The correlation between errors for different individuals in different time periods. The

covariance for this case is

cov vit; vjs
� � ¼ E vitvjs

� � ¼ E ui þ eitð Þ uj þ ejs
� �� �

¼ E uiuj
� �þ E uiejs

� �þ E eituj
� �þ E eitejs

� �
¼ 0þ 0þ 0þ 0 ¼ 0

What we have shown is that the errors vit ¼ ui þ eit are correlated over time for a given

individual, but are otherwise uncorrelated. This is the type of correlation we allowed for

when using cluster-robust standard errors. The correlation is caused by the component ui
that is common to all time periods. It is constant over time and, in contrast to the AR(1) error

model [Chapter 9.5.2a], it does not decline as the observations get further apart in time. It is

given by

r ¼ corr vit; visð Þ ¼ cov vit; visð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var vitð Þvar visð Þp ¼ s2

u

s2
u þ s2

e
t 6¼ s (15.23)

The correlation equals the proportion of the variance in the total error term vit that is

attributable to the variance of the individual component ui.

In terms of the notation introduced to explain the assumptions that motivate the use of

cluster-robust standard errors

var vitð Þ ¼ ctt ¼ s2
u þ s2

e and cov vit; visð Þ ¼ cts ¼ s2
u t 6¼ s

The variance and correlation structure of the random effects model is a special case of the

assumptions used for cluster-robust errors, where both thevariancectt and the covariancects

are constant over time.

It is convenient to summarize the error term assumptions of the random effects model as

follows:

E vitð Þ ¼ 0 (zero mean) (15.24)

var vitð Þ ¼ s2
e þ s2

u (homoskedasticity) (15.25)

cov vit; visð Þ ¼ s2
u for t 6¼ s (errors for individual i are correlatedÞ (15.26)

cov vit; vjs
� � ¼ 0 for i 6¼ j (errors for different individuals are uncorrelated) (15.27)

covðeit; x2itÞ ¼ 0; covðeit; x3itÞ ¼ 0 (errors eit uncorrelated with x’sÞ (15.28)

covðui; x2itÞ ¼ 0; covðui; x3itÞ ¼ 0 (random effects uncorrelated with x’sÞ (15.29)

15.4.2 TESTING FOR RANDOM EFFECTS

The magnitude of the correlation r in (15.23) is an important feature of the random effects

model. If ui ¼ 0 for every individual, then there are no individual differences and no

heterogeneity to account for. In such a case the pooled linear regression model (15.1) is

appropriate, and there is no need for either a fixed or a random effects model. We are
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assuming that the error component ui has expectation zero, E uið Þ ¼ 0. If, in addition, ui has

a variance of zero, then it is said to be a degenerate random variable; it is a constant

with value equal to zero. In this case, if s2
u ¼ 0, then the correlation r ¼ 0, and there is no

random individual heterogeneity present in the data. We can test for the presence of

heterogeneity by testing the null hypothesis H0 : s
2
u ¼ 0 against the alternative hypothesis

H1 : s
2
u > 0. If the null hypothesis is rejected, then we conclude that there are random

individual differences among sample members, and that the random effects model is

appropriate. On the other hand, if we fail to reject the null hypothesis, then we have no

evidence to conclude that random effects are present.

The Lagrange multiplier (LM) principle for test construction is very convenient in this

case, because LM tests require estimation of only the restricted model that assumes that the

null hypothesis is true. If the null hypothesis is true, then ui ¼ 0 and the random effects

model in (15.19) reduces to

yit ¼ b1 þ b2x2it þ b3x3it þ eit

The best estimator for this model is the least squares estimator. The test statistic is based on

the least squares residuals

êit ¼ yit � b1 � b2x2it � b3x3it

The test statistic for balanced panels is

LM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NT

2 T � 1ð Þ

s �
N

i¼1
�
T

t¼1
êit

� 	2

�
N

i¼1
�
T

t¼1
ê2it

� 1

8>>><
>>>:

9>>>=
>>>;

(15.30)

The numerator of the first term in curly brackets differs from the denominator because it

contains terms like 2êi1êi2 þ 2êi1êi3 þ 2êi2êi3 þ � � � whose sum will not be significantly

different from zero if there is no correlation over time for each individual, and will reflect a

positive correlation if there is one. If the sum of the cross-product terms is not significant,

the first term in the curly brackets is not significantly different from one, and the term in the

curly brackets is not significantly different from zero. If the sumof the cross-product terms is

significant, then the first term in the curly brackets will be significantly greater than one, and

LM will be positive.

If the null hypothesis H0 : s
2
u ¼ 0 is true, i.e., there are no random effects, then LM �

Nð0; 1Þ in large samples. Thus, we rejectH0 at significance levela and accept the alternative

H1 : s
2
u > 0 if LM > zð1�aÞ, where zð1�aÞ is the 100(1–a) percentile of the standard normal

[N(0, 1)] distribution.10 This critical value is 1.645 if a ¼ 0.05 and 2.326 if a ¼ 0.01.

Rejecting the null hypothesis leads us to conclude that random effects are present.

10 The original LM test due to Breusch and Pagan used LM2 with the distribution underH0 as x
2
ð1Þ. Subsequent

authors pointed out that the alternative hypothesis for using LM2 isH1 : s
2
u 6¼ 0, and that we can do better by using

LM as a one-sided N(0,1) test with alternative hypothesis H1 : s
2
u > 0. Some software, for example Stata, reports

LM2. The danger from using LM2 is that LM < 0 is possible and should not be taken as evidence that s2
u > 0. The

adjustment for a chi-square test at significance a is to use the 100(1 – 2a) percentile of the x2-distribution. This

critical value for an a ¼ 0.05 test is 2.706, which is equal to 1.6452. It should only be used for LM > 0.
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15.4.3 ESTIMATION OF THE RANDOM EFFECTS MODEL

The random effects model (15.19) has errors with zero expectation, and a constant variance

s2
v ¼ s2

u þ s2
e . The complicating factor is a special type of serial correlation—the errors for

each cross-sectional unit are intercorrelated with correlation r ¼ s2
u



s2
u þ s2

eð Þ. Under
these assumptions, the least squares estimator is unbiased and consistent, but not minimum

variance. Also, the usual least squares standard errors are incorrect, but they can be

‘‘corrected’’ using cluster-robust standard errors.

The minimum variance estimator for the random effects model is a generalized least

squares (GLS) estimator explicitly developed for the assumptions in (15.24)–(15.29). As

was the case when we had heteroskedasticity or autocorrelation, we can obtain the

generalized least squares estimator in the random effects model by applying least squares

to a transformed model. The transformed model is

y�it ¼ b1x
�
1it þ b2x

�
2it þ b3x

�
3it þ v�it (15.31)

where the transformed variables are

y�it ¼ yit � ayi; x�1it ¼ 1� a; x�2it ¼ x2it � ax2i; x�3it ¼ x3it � ax3i (15.32)

The variables yi, x2i and x3i are the individual means defined in (15.12). The transformed

error term is v�it ¼ vit � avi. The key transformation parameter a is defined as

a ¼ 1� seffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ts2

u þ s2
e

p (15.33)

It can be shown that the v�it have constant variance s
2
e and are uncorrelated. The proof is long

and tedious, so we will not inflict it on you.11

Because the transformation parameter a depends on the unknown variances s2
e and s

2
u,

these variances need to be estimated before least squares can be applied to (15.31). Some

details of how the estimates ŝ2
e and ŝ2

u are obtained can be found in Appendix 15B. Then,

least squares is applied to (15.31) with s2
e and s2

u replaced by ŝ2
e and ŝ2

u.

From (15.32) we can see that whena ¼ 1, the random effects estimator is identical to the

fixed effects estimator. For a < 1, it can be shown that the random effects estimator is a

‘‘matrix-weighted average’’ of the fixed effects estimator that utilizes only within-

individual variation and a ‘‘between estimator’’ which utilizes variation between individ-

uals.12 Suppose that we are interested in the coefficients showing the effect of experience on

wages. In contrast to the fixed effects estimator, the random effects estimator uses both

variation in experience and wages over time for each individual, and variation in wages for

individuals with different levels of experience.

15.4.4 RANDOM EFFECTS ESTIMATION OF THE WAGE EQUATION

Because thewomen in our microeconomic data panel were randomly selected from a larger

population, it seems sensible to treat individual differences between the 716 women as

11 The details can be found in Econometric Analysis of Cross Section an Panel Data, 2nd Edition, by Jeffrey

Wooldridge (MIT Press, 2010), p. 326. This text is very advanced and presumes skill with matrix algebra.
12 Advanced algebra is needed to study the details of this relationship. See, for example, Badi Baltagi (2008),

Econometric Analysis of Panel Data, 4th edition, John Wiley and Sons, p. 20.
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random effects. Recall that the wage equation has dependent variable ln(WAGE) and

explanatory variables years of education (EDUC), total labor force experience (EXPER) and

its square, tenure in current job (TENURE) and its square, and dummy variables BLACK,

SOUTH, and UNION. Before carrying out random effects estimation, we test for the

presence of randomeffects using theLM test statistic in (15.30). Thevalue of the test statistic

is LM ¼ 62.1, which of course far exceeds a critical value from the N(0,1) distribution for

any reasonable significance level. We conclude that there is strong evidence of individual

heterogeneity.

The random effects estimates are given in Table 15.9. Because the random effects

estimator utilizes both between and within individual variation, we are able to estimate the

effects of years of education and race on ln(WAGE). The problem of exact collinearity

between these variables and individual dummy variables no longer exists. We estimate that

the return to education is about 7.3%, and that blacks have wages about 12% lower than

whites, everything else held constant. These effects are not estimable using the fixed effects

approach which only utilizes within individual variation. Living in the South leads towages

about 8% lower, and union membership leads to wages about 8% higher, everything else

held constant.

Two sets of standard errors, t-values and p-values are presented in Table 15.9—those

using GLS standard errors calculated under the random effects assumptions in (15.24)–

(15.29), and those using cluster-robust standard errors which relax assumptions about

var vitð Þ and cov vit; visð Þ. When we use cluster-robust standard errors in conjunction with

pooled least squares or fixed effects estimation, we are replacing the assumptions var eitð Þ ¼
s2
e and cov eit; eisð Þ ¼ 0 for t 6¼ s with the more general assumptions var eitð Þ ¼ ctt and

cov eit; eisð Þ ¼ cts for t 6¼ s. The cluster-robust standard errors are valid in the presence of

heteroskedasticity and correlation within individuals, although the estimators are no longer

minimum variance under these circumstances. When we use cluster-robust standard errors

with the random effects estimator, we are replacing the assumptions var vitð Þ ¼ s2
e þ s2

u and

cov vit; visð Þ ¼ s2
u for t 6¼ s with the more general assumptions var vitð Þ ¼ ctt and

cov vit; visð Þ ¼ cts. We are allowing for the possible existence of heteroskedasticity and

a less restrictive correlation structure. The random effects estimator will no longer be

minimum variance under this less restrictive structure, but the cluster-robust standard

errors will be valid. A comparison of the two sets of standard errors in Table 15.9 does not

reveal anybig differences.With the exception of that forBLACK, the cluster-robust standard

errors are slightly larger. Similar inferences would be made about the coefficients with the

Ta b l e 1 5 . 9 Random Effects Estimates of Wage Equation

GLS Standard Errorsa Cluster-Robust Standard Errorsa

Variable Coefficient Std. Error t-value p-value Std. Error t-value p-value

C 0.53393 0.07988 6.68 0.000 0.08209 6.50 0.000

EDUC 0.07325 0.00533 13.74 0.000 0.00540 13.57 0.000

EXPER 0.04362 0.00636 6.86 0.000 0.00755 5.78 0.000

EXPER2 –0.00056 0.00026 –2.14 0.033 0.00031 –1.83 0.068

TENURE 0.01415 0.00317 4.47 0.000 0.00400 3.54 0.000

TENURE2 –0.00076 0.00019 –3.88 0.000 0.00024 –3.21 0.001

BLACK –0.11674 0.03021 –3.86 0.000 0.02928 –3.99 0.000

SOUTH –0.08181 0.02241 –3.65 0.000 0.02833 –2.89 0.004

UNION 0.08024 0.01321 6.07 0.000 0.01547 5.19 0.000

aDifferent software can give standard errorswith very slight differences. Those reported are fromStataVersion11.0.
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possible exception of that for TENURE2, which would no longer be significantly different

from zero using a two-tail test and a 5% significance level.

As a final note, the estimates of the error components (their standard deviations) are

ŝu ¼ 0:3290 and ŝe ¼ 0:1951. The estimated correlation in (15.23) is r̂ ¼ 0:74. Thus a
large fraction of the total error variance is attributable to individual heterogeneity. The

estimate of the transformation parameter a is

â ¼ 1� ŝeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tŝ2

u þ ŝ2
e

p ¼ 1� 0:1951ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 0:1083þ 0:0381

p ¼ 0:7437

Using this value to transform the data as in (15.32), then applying least squares to the

transformed regression model in (15.31), yields the random effects estimates.

15.5 Comparing Fixed and Random Effects Estimators

We have two sets of estimates for the wage equation based on the NLS data. Naturally, we

would like to know which one to use and report in our research report. If random effects are

present, so that s2
u > 0, and the assumptions in (15.24)–(15.29) hold, then the random

effects estimator is preferred for several reasons. First, the random effects estimator takes

into account the random sampling process by which the data were obtained. Second, the

random effects estimator permits us to estimate the effects of variables that are individually

time-invariant, such as race or gender, and in the NLS data, the years of education. Thirdly,

the random effects estimator is a generalized least squares estimation procedure, and the

fixed effects estimator is a least squares estimator. In large samples, the GLS estimator has a

smaller variance than the least squares estimator.

The greater precision of the randomeffects estimator and its ability to estimate the effects

of time invariant variables are related. As noted earlier, to estimate the effects of the

explanatory variables on y, the fixed effects estimator only uses information from variation

in the x’s and y over time, for each individual. It does not use information on howchanges in y

across different individuals could be attributable to the different x-values for those

individuals. These differences are not picked up by the fixed effects estimator. In contrast,

the random effects estimator uses both sources of information.

15.5.1 ENDOGENEITY IN THE RANDOM EFFECTS MODEL

However, there is a potential problemwhen using random effects estimation, which has one

critical assumption that is often violated. If the random error vit ¼ ui þ eit is correlated with

any of the right-hand-side explanatory variables in a random effects model, then the least

squares and GLS estimators of the parameters are biased and inconsistent. The problem of

endogenous regressors was first considered in a general context in Chapter 10, where we

considered the general problem of using regression analysis when explanatory variables are

random. The problem arose again in Chapter 11, when we considered simultaneous

equations models. The problem is common in random effects models, because the

individual specific error component uimay well be correlated with some of the explanatory

variables. In the NLS wage equation example we considered in the previous section, think

about the individual characteristics that are captured by the error component ui. A person’s

ability, industriousness, and perseverance are variables not explicitly included in the wage

equation, and thus these factors are included in ui. These characteristics may well be
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correlated with a woman’s years of education completed and her previous job market

experience and job tenure. If this is the case, then the random effects estimator is

inconsistent; it will attribute the effects of the error component to the included explanatory

factors. The assumption covðui; x2itÞ ¼ 0, covðui; x3itÞ ¼ 0 given in (15.29) will be violated.

Another examplemay help reinforce the idea. Let us consider the problemof estimating a

cost function for producing a particular output. Suppose we have a panel of data consisting

of time series observations on outputs, costs, and inputs from various production facilities

scattered across the country. Each plant has a manager, or management team, whose quality

is not always directly measurable. If we estimate a cost function, with cost per unit as the

dependent variable, and inputs (labor, materials, energy, etc.) as explanatory variables, then

it is very possible that unmeasured managerial qualities, contained in ui, will be correlated

with the explanatory variables. More efficient, better managers may use fewer inputs to

produce the same level of output. Such a correlation will cause the random effects estimator

to be inconsistent.

15.5.2 THE FIXED EFFECTS ESTIMATOR IN A RANDOM EFFECTS MODEL

In the panel data context a simple alternative to random effects exists that is consistent in the

presence of a correlation between the random error component ui and any of the explanatory

variables xkit. The fixed effects estimator is consistent even in the presence of such

correlation. To see why, let us return to the derivation of the fixed effects estimator in

Section 15.3.2. The panel data regression (15.19), including the error component ui, is

yit ¼ b1 þ b2x2it þ b3x3it þ ui þ eitð Þ (15.34)

The first step in fixed effects estimation is to average the panel observations for each

individual over time,

yi ¼ 1

T
�
T

t¼1
yit ¼ b1 þ b2

1

T
�
T

t¼1
x2it þ b3

1

T
�
T

t¼1
x3it þ 1

T
�
T

t¼1
ui þ 1

T
�
T

t¼1
eit

¼ b1 þ b2x2i þ b3x3i þ ui þ ei

(15.35)

Subtracting (15.35) from (15.34), term by term, we have

yit ¼ b1 þ b2x2it þ b3x3it þ ui þ eit

�ðyi ¼ b1 þ b2x2i þ b3x3i þ ui þ eiÞ

yit � yi ¼ b2ðx2it � x2iÞ þ b3ðx3it � x3iÞ þ ðeit � eiÞ
(15.36)

which is exactly the same result as in (15.13). The fixed effects transformation, putting the

data in deviation from the mean form, eliminates the random effect ui as well as any other

time-invariant factors. The least squares estimator of (15.14) is consistent, converging to the

true values asN ! 1, whether the random effect ui is correlated with the regressors or not.

In this sense, it is always safe to use the fixed effects estimator to estimate panel datamodels.

15.5.3 A HAUSMAN TEST

To check for any correlation between the error component ui and the regressors in a

random effects model, we can use a Hausman test. This test compares the coefficient
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estimates from the random effects model to those from the fixed effects model. The idea

underlying the Hausman test is that both the random effects and fixed effects estimators are

consistent if there is no correlation between ui and the explanatory variables xkit. If both

estimators are consistent, then they should converge to the true parameter values bk in large

samples. That is, in large samples, the random effects and fixed effects estimates should be

similar. On the other hand, if ui is correlated with any xkit, the random effects estimator is

inconsistent, while the fixed effects estimator remains consistent. Thus, in large samples the

fixed effects estimator converges to the true parameter values, but the random effects

estimator converges to some other value that is not the value of the true parameters. In this

case, we expect to see differences between the fixed and random effects estimates.

Examine the fixed effects and random effects estimates in Tables 15.7 and Table 15.9.

Recall that the fixed effects estimator is unable to estimate coefficients on time-invariant

variables like BLACK and, in the NLS data, EDUC. Except for the coefficients on SOUTH,

the estimates do not seem very different, but as we have learned many times, casual

inspection of the values is not a statistical test. The Hausman test in this context can be

carried out for specific coefficients, using a t-test, or jointly, using an F-test or a chi-square

test. Let us consider the t-test first. Let the parameter of interest be bk; denote the fixed

effects estimate as bFE;k and the random effects estimate as bRE;k. Then the t-statistic for

testing that there is no difference between the estimators is

t ¼ bFE;k � bRE;k

bvarðbFE;kÞ �bvar bRE;k
� �h i1=2 ¼ bFE;k � bRE;k

se bFE;k
� �2 � se bRE;k

� �2h i1=2 (15.37)

In this t-statistic it is important that the denominator is the estimated variance of the fixed

effects estimatorminus the estimated variance of the random effects estimator. The reason is

that under the null hypothesis that ui is uncorrelated with any of the explanatory variables,

the random effects estimator will have a smaller variance than the fixed effects estimator, at

least in large samples. Consequently, we expect to findbvar bFE;k
� ��bvar bRE;k

� �
> 0, which

is necessary for a valid test. A second interesting feature of this test statistic is that

var bFE;k � bRE;k
� � ¼ var bFE;k

� �þ var bRE;k
� �� 2cov bFE;k; bRE;k

� �
¼ var bFE;k

� �� var bRE;k
� �

The unexpected result in the last line occurs because Hausman proved that in this particular

case, cov bFE;k; bRE;k
� � ¼ var bRE;k

� �
.

Let us apply the t-test to the coefficients of SOUTH in Tables 15.7 and 15.9. Using the

conventional (not robust) standard errors, the test statistic value is

t ¼ bFE;k � bRE;k

se bFE;k
� �2 � se bRE;k

� �2h i1=2 ¼ �0:01632� ð�0:08181Þ
0:03615ð Þ2 � 0:02241ð Þ2

h i1=2 ¼ 2:31

Using the standard 5% large sample critical value of 1.96, we reject the hypothesis that the

estimators yield identical results. Our conclusion is that the random effects estimator is

inconsistent, and that we should use the fixed effects estimator, or should attempt to improve

the model specification. The null hypothesis will be rejected for any reason that makes the

two sets of estimates differ, including a misspecified model. There may be nonlinearities in

the relationship we have not captured with our model, and other explanatory variables may

be relevant. The p-value of the test is 0.021. Thus, if we had chosen the 1% level of

significance, we would have not rejected the null hypothesis.
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More commonly, the Hausman test is automated by software packages to contrast the

complete set of common estimates. That is, we carry out a test of a joint hypothesis

comparing all the coefficients in Table 15.7, except the intercept, to the corresponding

estimates in Table 15.9. If there is no correlation between the error component ui and the

values of xkit, then the six variables common to the two tables (EXPER, EXPER2, TENURE,

TENURE2, SOUTH, and UNION) will have coefficient estimates with similar magnitudes.

The Hausman contrast13 test jointly checks how close the differences between the pairs of

coefficients are to zero. The calculated value of this chi-square statistic is 20.73. We are

comparing the values of six coefficients, and the test statistic has an asymptotic chi-square

distributionwith six degrees of freedom.The 5%critical value for this distribution is 12.592,

and the 1%critical value is 16.812. On the basis of the joint test, we reject the null hypothesis

that the difference between the estimators is zero even at the 1% level of significance. Again

this implies that we should use the fixed effects estimator in this case, or revisit the

specification of our model.

The form of the Hausman test in (15.37) and its x2 equivalent are not valid for cluster-

robust standard errors, because under these more general assumptions, it is no longer true

that var bFE;k � bRE;k
� � ¼ var bFE;k

� �� var bRE;k
� �

.

15.6 The Hausman-Taylor Estimator

The outcome from our comparison of the fixed and random effects estimates of the wage

equation poses a dilemma. Correlation between the explanatory variables and the random

effects means that the random effects estimator will be inconsistent. We can overcome the

inconsistency problem by using the fixed effects estimator, but doing so means that we can

no longer estimate the effects of the time invariant variables EDUC and BLACK. The wage

return to an extra year of education, and whether or not there is wage discrimination on the

basis of race, might be two important questions that we would like to answer.

To solve this dilemma we ask: How did we cope with the endogeneity problem in

Chapter 10? We did so by using instrumental variable estimation. Variables known as

‘‘instruments,’’ which are correlated with the endogenous variables but uncorrelated with

the equation error, were introduced, leading to an instrumental variables estimator that has

the desirable property of consistency. The Hausman-Taylor estimator is an instrumental

variables estimator applied to the random effects model to overcome the problem of

inconsistency caused by correlation between the random effects and some of the expla-

natory variables. To explain how it works consider the regression model

yit ¼ b1 þ b2xit;exog þ b3xit;endog þ b3wi;exog þ b4wi;endog þ ui þ eit (15.38)

We have divided the explanatory variables into four categories:

xit;exog: exogenous variables that vary over time and individuals

xit;endog: endogenous variables that vary over time and individuals

wi;exog: time-invariant exogenous variables

wi;endog: time-invariant endogenous variables

13 Details of the joint test are beyond the scope of this book. For a very advanced reference that contains a careful

expositionof the t-test, thechi-square test,andaregression-basedalternativethatmaybepreferable,seeEconometric

Analysis of Cross Section and Panel Data, 2nd Edition, by Jeffrey Wooldridge (MIT, 2010), p. 328.
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Equation (15.38) is written as if there is one variable of each type, but in practice there could

bemore than one. For theHausman-Taylor estimator towork the number of exogenous time-

varying variables xit;exog
� �

must be at least as great as the number of endogenous time-

invariant variables wi;endog

� �
.

For the wage equation we will make the following assumptions

xit;exog ¼ fEXPER; EXPER2; TENURE; TENURE2; UNIONg
xit;endog ¼ fSOUTHg
wi;exog ¼ fBLACKg
wi;endog ¼ fEDUCg

The variable EDUC is chosen as an endogenous variable on the grounds that it will be

correlated with personal attributes such as ability and perseverance. It is less clear why

SOUTH should be endogenous, but we include it as endogenous because its fixed and

random effects estimates were vastly different. Perhaps those living in the South have

special attributes. The remaining variables—experience, tenure,UNION, and BLACK—are

assumed uncorrelated with the random effects.

Following Chapter 10, we need instruments for xit;endog and wi;endog. Since the fixed

effects transformation ~xit;endog ¼ xit;endog � xi;endog eliminates correlation with ui, we have

~xit;endog as a suitable instrument for xit;endog. Also, thevariables xi;exog are suitable instruments

forwi;endog. The exogenous variables in (15.38) can beviewed as instruments for themselves,

making the complete instrument set xit;exog, ~xit;endog, wi;exog, xi;exog. Hausman and Taylor

modify this set slightly using ~xit;exog, ~xit;endog, wi;exog, xi;exog which can be shown to yield the

same results. Their estimator is applied to the transformed generalized least squares model

from (15.31)

y�it ¼ b1 þ b2x
�
it;exog þ b3x

�
it;endog þ b3w

�
i;exog þ b4w

�
i;endog þ v�it (15.39)

where, for example, y�it ¼ yit � âyi, and â ¼ 1� ŝe=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tŝ2

u þ ŝ2
e

p
. The estimate ŝ2

e is

obtained from fixed-effects residuals; an auxiliary instrumental variables regression14

is needed to find ŝ2
u.

Estimates for the wage equation are presented in Table 15.10. Compared to the random

effects estimates, there has been a dramatic increase in the estimated wage returns to

education from 7.3% to 17%. The estimated effects for experience and tenure are similar.

The wage reduction for BLACK is estimated as 3.6% rather than 11.7%, and the penalty for

being in the SOUTH is also less, 3.1% instead of 8.2%. The instrumental-variable standard

errors are mostly larger, particularly for EDUC and BLACK where the biggest changes in

estimates have been observed. Which set of estimates is better will depend on how

successful we have been at making the partition into exogenous and endogenous variables

in (15.38), and whether the gain from having consistent estimates is sufficiently large to

compensate for the increased variance of the instrumental variables estimators.

15.7 Sets of Regression Equations

So far in this chapter, we have considered methods for estimating panel data models when

the panel is short and wide:N is large and T is small. We now turn to a model and estimation

14 Details can be found in the advanced book, Jeffrey Wooldridge (2010), Econometric Analysis of Cross-

Section and Panel Data, 2nd Edition, MIT Press, pp. 358–361.
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procedures for a panel that is long and narrow: T is large relative toN. If the number of time-

series observations is sufficiently large, and N is small, we can estimate separate equations

for each individual. These separate equations can be specified as

yit ¼ b1i þ b2ix2it þ b3ix3it þ eit (15.40)

The i subscript on the b’s means that they can be different for each individual. Thus, this

model can be used to represent N different equations, one for each individual. There are T

observations on each of the N equations. For the short and wide panel considered in earlier

sections, T was not sufficiently large to estimate separate equations for each individual.

We assumedb2i ¼ b2 andb3i ¼ b3; the slope coefficients were the same for all individuals,

but the intercept b1i was allowed to vary.

15.7.1 GRUNFELD’S INVESTMENT DATA

The example we use for this section is an old but very famous one. The factors affecting the

investment behavior by firms was studied by Grunfeld15 using a panel of data. His example

and data, which is simply referred to in the literature as ‘‘the Grunfeld data,’’ have been used

many times to illustrate the issues involved in modeling panel data.

Investment demand is the purchase of durable goods by both households and firms. In

terms of total spending, investment spending is the volatile component. Therefore, under-

standing what determines investment is crucial to understanding the sources of fluctuations

in aggregate demand. In addition, a firm’s net fixed investment, which is the flow of

additions to capital stock or replacements for worn-out capital, is important because it

determines the future value of the capital stock and thus affects future labor productivity and

aggregate supply.

There are several interesting and elaborate theories that seek to describe the determinants

of the investment process for the firm. Most of these theories evolve to the conclusion that

perceived profit opportunities (expected profits or present discounted value of future

15 Grunfeld, Y. (1958) The Determinants of Corporate Investment. Unpublished Ph.D. thesis, Department of

Economics, University of Chicago. Grunfeld, Y. and Z. Griliches (1960) ‘‘Is Aggregation Necessarily Bad?’’

Review of Economics and Statistics, 42, 1–13.

Ta b l e 1 5 . 1 0 Hausman-Taylor Estimates of Wage Equation

Variable Coefficient Std. Error t-value p-value

C �0.75077 0.58624 �1.28 0.200

EDUC 0.17051 0.04446 3.83 0.000

EXPER 0.03991 0.00647 6.16 0.000

EXPER2 �0.00039 0.00027 �1.46 0.144

TENURE 0.01433 0.00316 4.53 0.000

TENURE2 �0.00085 0.00020 �4.32 0.000

BLACK �0.03591 0.06007 �0.60 0.550

SOUTH �0.03171 0.03485 �0.91 0.363

UNION 0.07197 0.01345 5.35 0.000
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earnings) and desired capital stock are two important determinants of a firm’s fixed business

investment. Unfortunately, neither of these variables are directly observable.

Therefore, in formulating our economic model, we use observable proxies for these

variables instead.

In terms of expected profits, one alternative is to identify the present discounted value of

future earnings as the market value of the firm’s securities. The price of a firm’s stock

represents and contains information about these expected profits. Consequently, the

stock market value of the firm at the beginning of the year, denoted for firm i in time

period t as Vit, may be used as a proxy for expected profits.

In terms of desired capital stock, expectations play a definite role. To catch these

expectations effects, one possibility is to use amodel that recognizes that actual capital stock

in any period is the sum of a large number of past desired capital stocks. Thus, we use the

beginning of the year actual capital stock, denoted for the ith firm as Kit, as a proxy for

permanent desired capital stock.

Focusing on these explanatory variables, an economic model for describing gross firm

investment for the ith firm in the tth time period, denoted INVit, may be expressed as

INVit ¼ f ðVit;KitÞ (15.41)

Our concern is how we might take this general economic model and specify an

econometric model that adequately represents a panel of real-world data. The data

(see grunfeld11.dat) consist of T ¼ 20 years of data (1935–1954) for N ¼ 11 large

firms.16 For expository purposes we will consider only two firms at this point, General

Electric and Westinghouse, and we will specify the cross-sectional indicator i to be either

GE orWE. These two firms are similar in the range of products they offer, which includes

everything from home appliances to light bulbs. Their observations are stored in the file

grunfeld2.dat.

In line with (15.40) and (15.41), we specify the following two equations for General

Electric and Westinghouse.

INVGE; t ¼ b1;GE þ b2;GEVGE; t þ b3;GEKGE; t þ eGE; t t ¼ 1935; . . . ; 1954

INVWE; t ¼ b1;WE þ b2;WEVWE; t þ b3;WEKWE; t þ eWE; t t ¼ 1935; . . . ; 1954
(15.42)

Wewill consider various ways of estimating these two investment equations. The choice of

estimator depends on what assumptions we make about the coefficients and the error terms.

Specifically,

1. Are the GE coefficients equal to the WE coefficients?

2. Do the equation errors eGE; t and eWE; t have the same variance?

3. Are the equation errors eGE; t and eWE; t correlated?

16 The long history of use of this data is well documented byKleiber and Zeileis (2010), ‘‘The Grunfeld Data at

50,’’ German Economic Review, forthcoming. See also http://statmath.wu-wien.ac.at/~zeileis/grunfeld/. They

point out a number of errors and inconsistencies that have crept into the data, leading to a number of incorrect

versions that have been propagated over time. The file grunfeld11.dat is the corrected version kindly supplied by

Kleiber and Zeileis. It differs from the earlier version grunfeld.dat used in the 3rd edition of this textbook.
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15.7.2 ESTIMATION: EQUAL COEFFICIENTS, EQUAL ERROR VARIANCES

The assumption that both firms have the same coefficients and the same error variances can

be written as

b1;GE ¼ b1;WE b2;GE ¼ b2;WE b3;GE ¼ b3;WE s2
GE ¼ s2

WE (15.43)

where var eGE; t
� � ¼ s2

GE and var eWE; t

� � ¼ s2
WE denote the two error variances. If, in

addition, we assume the errors are uncorrelated, both over time for each firm and between

firms, pooled least squares as discussed in Section 15.2 is a suitable estimation technique.

No distinction is made between the observations from the two firms. The pooled least

squares estimates, standard errors, and t- and p-values are given in Table 15.11. The

coefficients of V and K have their expected signs and, under the assumption of equal

variances and uncorrelated errors, are significantly different from zero at a 5% level of

significance. The standard errors are the conventional ones. We will say more about cluster

error variances shortly, noting at this point that the cluster-robust standard errors described

in Section 15.2 are not suitable in this case where N is small.

15.7.3 ESTIMATION: DIFFERENT COEFFICIENTS, EQUAL ERROR VARIANCES

If we relax the assumption that both firms have the same coefficients, but retain the

assumption that the error variances are the same, then the two equations in (15.42) can be

combined using the indicator (dummy) variable format described in Sections 7.1.2 and

7.2.3. Let Di be an indicator variable equal to one for the Westinghouse observations

and zero for the General Electric observations. Specify a model with slope and intercept

indicator variables,

INVit ¼ b1;GE þ d1Di þ b2;GEVit þ d2 Di�Vitð Þ þ b3;GEKit þ d3 Di�Kitð Þ þ eit (15.44)

Equation (15.44) represents a pooled set of 40 observations, and as we learned in Section

7.2.3, it is just another way of writing (15.42) where b1;WE ¼ b1;GE þ d1, b2;WE ¼
b2;GE þ d2, and b3;WE ¼ b3;GE þ d3. The least squares estimates from (15.44) will be

identical to the least squares estimates obtained by estimating the two equations in (15.42)

separately, although, as we will see, the standard errors will be different. In Table 15.12 we

report the dummy variable model estimates.

The small t-values and large p-values on the coefficients forD,D�V andD�K suggest

that the null hypothesisH0 : d1 ¼ 0; d2 ¼ 0; d3 ¼ 0may not be rejected, in which case we

do not have evidence to suggest that General Electric’s coefficients differ from those of

Westinghouse. However, as we discovered in Chapter 6, this hypothesis should be tested

using a joint F-test rather than separate t-tests. For this purpose we have SSER ¼ 16563:00

Ta b l e 1 5 . 1 1 Pooled Least Squares Estimates of Investment Equations

Variable Coefficient Std. Error t-value p-value

C 17.8720 7.0241 2.54 0.015

V 0.0152 0.0062 2.45 0.019

K 0.1436 0.0186 7.72 0.000

SSE ¼ 16563:00 ŝ2 ¼ 447:65
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from Table 15.11, SSEU ¼ 14989:82 from Table 15.12, and, using the Chow test described

in Chapter 7,

F ¼ SSER � SSEUð Þ=J
SSEU=ðNT � NKÞ ¼

16563:00� 14989:82ð Þ=3
14989:82=ð40� 6Þ ¼ 1:189 (15.45)

where NT � NK is the total number of degrees of freedom in the unrestricted model. The

p-value for an Fð3;34Þ-distribution is 0.328, implying that the null hypothesis of equal

coefficients cannot be rejected.

Aword of warning is in order at this point. Any t and F-tests performed using the results

in Table 15.12 are only valid if the error variances of the two equations are the same and

the errors are uncorrelated over time and over the two firms. This result is similar to the

consequences of using least squares when the errors are heteroskedastic or autocorrelated. If

robust standard errors are not used, hypothesis tests and interval estimates will not be valid.

In the next two subsections, we relax, in turn, the assumption of equal variances and the

assumption of uncorrelated errors, after which we reconsider the test for equality of

coefficients for General Electric and Westinghouse.17

15.7.4 ESTIMATION: DIFFERENT COEFFICIENTS, DIFFERENT ERROR VARIANCES

When both the coefficients and the error variances of the two equations differ, and in the

absence of contemporaneous correlation that we introduce in the next section, there is no

connection between the two equations, and the best we can do is apply least squares to each

equation separately. These results are reported in Table 15.13.

Note that the estimates of bk;GE, k ¼ 1, 2, 3 in Table 15.13 are identical to those in Table

15.12, and the estimates of bk;WE, k ¼ 1, 2, 3 in Table 15.13 are given by the estimates of

bk;GE þ dk, k ¼ 1, 2, 3 in Table 15.12. However, their standard errors are different, a

consequence of the fact that the two separate regressions in Table 15.13 allow the variances

of the error terms to differ for the two firms, whereas the dummyvariable regression in Table

15.12 assumes that the variance of the error term is constant across all 40 observations.

The large difference in the estimates of the error variances in Table 15.13 suggests that

the assumption of different error variances is more realistic. We can use the Goldfeld-

Quandt test (Chapter 8.2.3) to test the null hypothesis H0 : s
2
GE ¼ s2

WE, which we reject at

Ta b l e 1 5 . 1 2 Least Squares Estimates from the Dummy Variable Model

Variable Coefficient Std. Error t-value p-value

C �9.9563 23.6264 �0.42 0.676

D 9.4469 28.8054 0.33 0.745

V 0.0266 0.0117 2.27 0.030

D � V 0.0263 0.0344 0.77 0.448

K 0.1517 0.0194 7.84 0.000

D � K �0.0593 0.1169 �0.51 0.615

SSE ¼ 14989:82 ŝ2 ¼ 440:877

17 We are omitting the case where the two equations have identical coefficients and different error variances.

Details for this case are given in Section 8.4.2.
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thea ¼ 0.05 level of significance ðF ¼ 7:45; Fð0:975; 37; 37Þ ¼ 1:92Þ, leading us to prefer the
results in Table 15.13.

15.7.5 SEEMINGLY UNRELATED REGRESSIONS

In the previous section the two investment equations appeared unrelated. They had different

coefficientsanddifferenterrorvariances,andweestimatedthemseparately.If, inaddition, the

errors inoneequationareuncorrelatedwith theerrors in theotherequation,wedoindeedhave

nothing to link the two equations together. Combining the data from the two firms brings no

gains. In this section we introduce an assumption about the correlation between the General

Electric errors and the Westinghouse errors. This link makes it possible to utilize a joint

estimation procedure that is better than separate least squares estimation. The assumption is

cov eGE; t; eWE; t

� � ¼ sGE;WE sGE;WE 6¼ 0 (15.46)

The error terms in the two equations, at the same point in time, are correlated. This kind of

correlation is called contemporaneous correlation. To understand why eGE; t and eWE; t

might be correlated, recall that these errors contain the influence on investment of factors

that have been omitted from the equations. Such factors might include capacity utilization,

current and past interest rates, liquidity, and the general state of the economy. Since the two

firms are similar in many respects, it is likely that the effects of the omitted factors on

investment by General Electric will be similar to their effect on investment by Westing-

house. If so, then eGE; t and eWE; t will be capturing similar effects and will be correlated.

Adding the contemporaneous correlation assumption (15.46) has the effect of introducing

additional information that is not included when we carry out separate least squares

estimation of the two equations.

The dummy-variable model (15.44) represents a way to ‘‘stack’’ the 40 observations for

theGEandWEequations intoone regression.Allowing for thevariancesof theerror terms for

the twofirms todiffer,s2
GE 6¼ s2

WE,means that the error term eit in thedummy-variablemodel

in (15.44) will be heteroskedastic; it will have variance s2
GE when i ¼ GE and variance s2

WE

when i ¼ WE. What happens if we also add the contemporaneous correlation assumption

in (15.46)? It means that all 40 errors will not be uncorrelated. We continue to assume

that the errors are not serially correlated over time. In other words, the 20 General Electric

errors are uncorrelated with each other, and the 20 Westinghouse errors are uncorrelated

with each other. However, the first Westinghouse error will be correlated with the

Ta b l e 1 5 . 1 3 Least Squares Estimates of Separate Investment Equations

Equation Variable Coefficient Std. Error t-value p-value

C �9.9563 31.3743 �0.32 0.755

GE V 0.0266 0.0156 1.71 0.106

K 0.1517 0.0257 5.90 0.000

SSE ¼ 13216.59 ŝ2
GE ¼ 777:446

C �0.5094 8.0153 �0.06 0.950

WE V 0.0529 0.0157 3.37 0.004

K 0.0924 0.0561 1.65 0.118

SSE ¼ 1773.23 ŝ2
WE ¼ 104:308
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first General Electric error, the second Westinghouse error will be correlated with the

second General Electric error, and so on. This information cannot be utilized when the

equations are estimated separately, but it can be utilized to produce better estimates when

the equations are jointly estimated as they are in the dummy variable model.

To improve the precision of the dummy variable model estimates, we use seemingly

unrelated regressions (SUR) estimation, which is a generalized least squares estimation

procedure. It estimates the two investment equations jointly, accounting for the fact that

the variances of the error terms are different for the two equations and accounting for the

contemporaneous correlation between the errors of the GE and WE equations. There are

three stages in the SUR estimation procedure.

1. Estimate the equations separately using least squares.

2. Use the least squares residuals from step (1) to estimate s2
GE, s

2
WE and sGE;WE. The

estimates ŝ2
GE ¼ 777:446 and ŝ2

WE ¼ 104:308 are given by the usual variance

estimates from each equation. The estimated covariance is given by

ŝGE;WE ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � KGE

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � KWE

p �
20

t¼1
êGE; t êWE; t ¼ 1

T � 3
�
20

t¼1
êGE; t êWE; t

¼ 207:587

where KGE and KWE are the numbers of parameters in the GE and WE equations,

respectively. The reason for the odd-looking divisor is that in seemingly unrelated

regressions the number of variables in each equation might be different, and this is

one way to correct for the number of parameters estimated. In this case

KGE ¼ KWE ¼ 3.

3. Use the estimates from step (2) to estimate the two equations jointly within a

generalized least squares framework.18

Econometric software includes commands for SUR (or SURE) that automatically perform

all three steps.

More insights into the contemporaneous correlation assumption and the estimation

procedure can be obtained by recalling the assumption we used earlier when computing

cluster-robust standard errors. In earlier parts of this chapter, each individualwas treated as a

cluster of time-series observations that were correlated within clusters. With the con-

temporaneous correlation assumption, each time period represents a cluster of observations

on individuals (firms). Again, the observations are correlated within clusters. Another

difference is that previously, within-cluster correlation was used to correct standard

errors for estimation procedures that were optimal under error assumptions more restrictive

than those used to get the standard errors. The SUR estimation procedure is optimal

under the contemporaneous correlation assumption, so no standard error adjustment is

necessary.

Estimates of the coefficients of the two investment functions are presented in Table

15.14. Since the SUR technique utilizes the information on the correlation between the error

terms, it is more precise than the least squares estimation procedure. This fact is supported

by the standard errors of the SUR estimates in Table 15.14 that are lower than those of the

18 For details, see William E. Griffiths, R. Carter Hill and George G. Judge (1993) Learning and Practicing

Econometrics Wiley, Chapter 17. A more advanced reference is William Greene (2008) Econometric Analysis,

6th edition, Pearson Prentice Hall, Chapter 10.
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least squares estimates in Table 15.13.19 You should be cautious, however, when making

judgments about precision on the basis of standard errors. Standard errors are themselves

estimates; it is possible for a standard error for SUR to be greater than a corresponding least

squares standard error even when SUR is a better estimator than least squares. From an

economic standpoint our estimated coefficients for the capital stock and value variables

have the expected positive signs. Also, all are significantly different from zero except for the

coefficient of capital stock in the Westinghouse equation. This coefficient has a low t value

and hence is estimated with limited precision.

Equations that exhibit contemporaneous correlation were called ‘‘seemingly unrelated’’

by University of Chicago econometrician Arnold Zellner when he developed the SUR

estimation procedure. The equations seem to be unrelated, but the additional information

provided by the correlation between the equation errors means that joint generalized least

squares estimation is better than single-equation least squares estimation.

15.7.5a Separate or Joint Estimation?

Is it always better to estimate two ormore equations jointly, or are there circumstanceswhen

it is just as good to estimate each equation separately?

There are two situations in which separate least squares estimation is just as good as the

SUR technique. The first of these cases is when the equation errors are not contempor-

aneously correlated. If the errors are not contemporaneously correlated, there is nothing

linking the two equations, and separate estimation cannot be improved upon.

The second situation is less obvious. Indeed, some advanced algebra is needed to

prove that least squares and SUR give identical estimates when the same explanatory

variables appear in each equation. By the ‘‘same explanatory variables,’’ we mean more than

variables with similar definitions, like the value and capital stock variables for General

Electric andWestinghouse.Wemean the same variables with the same observations on those

variables. For example, suppose we are interested in estimating demand equations for beef,

chicken, and pork. Since these commodities are all substitutes, it is reasonable to specify the

quantity demanded for each as a function of the price of beef, the price of chicken, and the

price of pork, as well as income. The same variables with the same observations appear in all

three equations. Even if the errors of these equations are correlated, as is quite likely, the use of

SUR will not yield an improvement over separate estimation.

If the explanatory variables in each equation are different, then a test to see if the

correlation between the errors is significantly different from zero is of interest. If a null

hypothesis of zero correlation is not rejected, then there is no evidence to suggest that SUR

Ta b l e 1 5 . 1 4 SUR Estimates of Investment Equations

Equation Variable Coefficient Std. Error t-values p-values

C –27.7193 29.3212 –0.95 0.351

GE V 0.0383 0.0144 2.66 0.012

K 0.1390 0.0250 5.56 0.000

C –1.2520 7.5452 –0.17 0.869

WE V 0.0576 0.0145 3.96 0.000

K 0.0640 0.0530 1.21 0.236

Note: p-values computed from t(34) distribution.

19 Note that we do not compare the SUR estimates to those in Table 15.12, because the latter incorporate the

assumption that the two error variances are equal, a hypothesis that we have rejected.

568 PANEL DATA MODELS



will improve on separate least squares estimation. To carry out such a test we compute the

squared correlation

r2GE;WE ¼ ŝ2
GE;WE

ŝ2
GEŝ

2
WE

¼ 207:5871ð Þ2
777:4463ð Þ 104:3079ð Þ ¼ 0:729

The correlation rGE;WE ¼ 0:854 (the square root of 0.729) indicates a strong contempora-

neous correlation between errors of the General Electric and Westinghouse investment

equations. To check the statistical significance of r2GE;WE, we can test the null hypothesis

H0 : sGE;WE ¼ 0. If sGE;WE ¼ 0, then LM ¼ T � r2GE;WE is a Lagrange Multiplier test

statistic that is distributed as a x2
ð1Þ random variable in large samples. The 5% critical

value of a x2-distribution with one degree of freedom is 3.841. The value of the test statistic

from our data is LM ¼ 10.628. Hence we reject the null hypothesis of no correlation

between eGE; t and eWE; t, and conclude that there are potential efficiency gains from

estimating the two investment equations jointly using SUR.

If we are testing for the existence of correlated errors for more than two equations, the

relevant test statistic is equal to T times the sum of squares of all the correlations;

the probability distribution under H0 is a x2-distribution with degrees of freedom equal

to the number of correlations. For example, with three equations, denoted by subscripts 1, 2

and 3, the null hypothesis is

H0 : s12 ¼ s13 ¼ s23 ¼ 0

and the x2
ð3Þ test statistic is

LM ¼ T r212 þ r213 þ r223
� �

In the general case of an SUR system with M equations, the statistic becomes

LM ¼ T �
M

i¼2
�
i�1

j¼1
r2ij

Under the null hypothesis that there are no contemporaneous correlations, this LM statistic

has a x2-distribution with MðM � 1Þ=2 degrees of freedom, in large samples.

There are many economic problems where we have cause to consider a system of

equations. The investment function example was one; estimation of demand functions, like

the meat demand functions we alluded to in this section, is another. Further examples are

given in the exercises.

15.7.5b Testing Cross-Equation Hypotheses

In Section 15.7.4 we used the dummy variablemodel and the Chow test originally discussed

in Chapter 7 to test whether the two equations had identical coefficients. That is,

H0 : b1;GE ¼ b1;WE b2;GE ¼ b2;WE b3;GE ¼ b3;WE (15.47)

We did not rejectH0, butwe issued a caution about this conclusion since the dummyvariable

model ignored the presence of heteroskedastcity and contemporaneous correlation. It is also

possible to test hypotheses such as (15.47) when the more general error assumptions of the

SUR model are relevant. Because of the complicated nature of the model, the test statistic

can no longer be calculated simply as an F-test statistic based on residuals from restricted

and unrestricted models. Most econometric software will perform an F-test and/or a Wald
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x2-test in amulti-equation framework such aswe have here. In the context of SUR equations

both tests are large sample approximate tests. The F-statistic has J numerator degrees of

freedom and (MT – K) denominator degrees of freedom, where J is the number of

hypotheses, M is the number of equations, K is the total number of coefficients in the

whole system, and T is the number of time series observations per equation. The x2-statistic
has J degrees of freedom.For our particular example,wefind thatF ¼ 2.92with a p-value of

0.0479, using the F 3;34ð Þ-distribution. The chi-square test statistic is x2 ¼ 8:77 with a p-

value of 0.0326, using thex2
ð3Þ-distribution. Thus, from the results of both tests, we reject the

null hypothesis of equal coefficients at a 5% significance level.

The equality of coefficients is not the only cross-equation hypothesis that can be tested.

Any restrictions on parameters in different equations can be tested. Such restrictions are

particularly relevant when estimating equations derived from demand and production

theory. Tests for hypotheses involving coefficients within each equation are valid whether

done on each equation separately or using the SUR framework. However, tests involving

cross-equation hypotheses need to be carried out within an SUR framework if contem-

poraneous correlation exists.

15.8 Exercises

15.8.1 PROBLEMS

15.1 This exercise uses data from the paper: Zhenjuan Liu and Thanasis Stengos, ‘‘Non-

linearities in Cross Country Growth Regressions: A Semiparametric Approach,’’

Journal of Applied Econometrics, Vol. 14, No. 5, 1999, pp. 527–538. There are

observations on 86 countries, in three time periods, 1960, 1970, and 1980. The authors

attempt to explain each country’s growth rate (G) in terms of the explanatory variables:

POP¼ population growth, INV¼ the share of output allocated to investment, IGDP¼
initial level of GDP in 1960 in real terms, SEC ¼ human capital measured as the

enrollment rate in secondary schools. We are considering three cross-sectional

regressions, one for each of the years 1960, 1970, and 1980.

G60 ¼ a1 þ a2POP60 þ a3INV60 þ a4IGDP60 þ a5SEC60 þ e60

G70 ¼ b1 þ b2POP70 þ b3INV70 þ b4IGDP70 þ b5SEC70 þ e70

G80 ¼ �1 þ �2POP80 þ �3INV80 þ �4IGDP80 þ �5SEC80 þ e80

Estimating a three-equation, seemingly unrelated regression system, we obtain the

estimated equations

G60 ¼ 0:0231� 0:2435POP60 þ 0:1280INV60 � 0:0000021IGDP60 þ 0:0410SEC60

ðseÞ ð0:0195Þ ð0:2384Þ ð0:0333Þ ð0:0000020Þ ð0:0172Þ

G70 ¼ 0:0185� 0:4336POP70 þ 0:1870INV70 � 0:0000026IGDP70 þ 0:0127SEC70

ðseÞ ð0:0313Þ ð0:4029Þ ð0:0397Þ ð0:0000018Þ ð0:0184Þ

G80 ¼ 0:0423� 0:8156POP80 þ 0:1155INV80 � 0:0000007IGDP80 þ 0:0028SEC80

ðseÞ ð0:0265Þ ð0:2997Þ ð0:0297Þ ð0:0000013Þ ð0:0141Þ
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(a) Comment on the signs of the coefficients. Can you explain these signs in terms of

the expected impact of the explanatory variables on growth rate?

(b) Does human capital appear to influence growth rate?

(c) The estimated correlations between the errors for the three equations are

r12 ¼ 0:1084 r13 ¼ 0:1287 r23 ¼ 0:3987

Carry out a hypothesis test to see if SUR estimation is preferred over separate

least squares estimation.

(d) Consider the following null hypothesis:

H0 : a2 ¼ b2 b2 ¼ �2; a3 ¼ b3; b3 ¼ �3; a4 ¼ b4; b4 ¼ �4;

a5 ¼ b5; b5 ¼ �5

with the alternative hypothesis being that at least one of the equalities being tested

is false. What is the economic interpretation of these hypotheses?

(e) The appropriate chi-squared test statistic value (Hint: see Section 15.7.5b) is

12.309. Using Table 3 at the end of the book, do you reject the null hypothesis, or

not, at the 5% level of significance? Using your statistical software, compute the

p-value for this test.

(f) Using the information in (e) carry out an F-test of the null hypothesis in (d). What

do you conclude? What is the p-value of this test?

15.2 The system of equations in Exercise 15.1 is estimated with some restrictions imposed

on the parameters. The restricted estimations are

G60 ¼ 0:0352� 0:4286POP60 þ 0:1361 INV60 � 0:0000011 IGDP60 þ 0:0150 SEC60

ðseÞ ð0:0153Þ ð0:1889Þ ð0:0206Þ ð0:0000010Þ ð0:0100Þ

G70 ¼ 0:0251� 0:4286POP70 þ 0:1361 INV70 � 0:0000011 IGDP70 þ 0:0150 SEC70

ðseÞ ð0:0159Þ ð0:1889Þ ð0:0206Þ ð0:0000010Þ ð0:0100Þ

G80 ¼ 0:0068� 0:4286POP80 þ 0:1361 INV80 � 0:0000011 IGDP80 þ 0:0150 SEC80

ðseÞ ð0:0164Þ ð0:1889Þ ð0:0206Þ ð0:0000010Þ ð0:0100Þ

(a) What restrictions have been imposed?

(b) Comment on any substantial differences between these results and those in

Exercise 15.1.

(c) The null hypothesis H0 : a1 ¼ b1; b1 ¼ �1 is tested against the alternative that

at least one of the equalities is not true. The resulting chi-square test statistic value

is 93.098. Using Table 3 at the end of the book, test the null hypothesis at the 1%

level of significance. (Hint: see Section 15.7.5b). Compute the p-value for the test.

15.3 Another way to estimate the model in Exercise 15.2 is to pool all the observations and

use dummy variables for each of the years 1960, 1970, and 1980.

(a) If you estimate the model this way, what different assumptions are you making

about the error terms, relative to the assumptions made for Exercise 15.2?

(b) The results for the estimated dummy variable model appear in Table 15.15.

Report the estimated equation. Comment on any differences or similarities with

the estimates obtained in Exercise 15.2.

(c) Does RESET suggest the equation is misspecified?
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15.4 Consider the model

yit ¼ b1i þ b2xit þ eit

(a) Show that the fixed effects estimator for b2 can be written as

b̂2;FE ¼
�
N

i¼1
�
T

t¼1
xit � xið Þ yit � yið Þ

�
N

i¼1
�
T

t¼1
xit � xið Þ2

(b) Show that the random effects estimator for b2 can be written as

b̂2;RE ¼
�
N

i¼1
�
T

t¼1
xit � â xi � x

� �� x
� �

yit � â yi � y
� �� y

� �
�
N

i¼1
�
T

t¼1
xit � â xi � x

� �� x
� �2

where y and x are the overall means.

(c) Write down an expression for the pooled least squares estimator of b2.

Discuss the differences between the three estimators.

15.8.2 COMPUTER EXERCISES

15.5* The file liquor.dat contains observations on annual expenditure on liquor (L) and

annual income (X), (both in thousands of dollars) for 40 randomly selected

households for three consecutive years. Consider the model

Lit ¼ b1i þ b2Xit þ eit

Ta b l e 1 5 . 1 5 Dummy Variable Regression Model for Exercise 15.3

Dependent Variable: G

Included observations: 258

Variable Coefficient Std. Error t-value p-value

D60 0.031527 0.014673 2.149 0.0326

D70 0.020514 0.015297 1.341 0.1811

D80 0.002896 0.015794 0.183 0.8546

POP �0.436464 0.182325 �2.394 0.0174

INV 0.162829 0.020750 7.847 0.0000

IGDP �1.43E-06 9.42E-07 �1.517 0.1306

SEC 0.014886 0.009759 1.525 0.1284

R2 ¼ 0.406 SSE ¼ 0.094778

Ramsey RESET:

F-value ¼ 1.207756 p-value ¼ 0.300612
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where i ¼ 1,2,...,40 refers to household and t ¼ 1,2,3 refers to year; the eit are

assumed to be uncorrelated with eit � N 0;s2
eð Þ.

(a) Compare the alternative estimates for b2, and their corresponding standard errors,

that are obtained under the following circumstances:

(i) The different household intercepts are modeled using dummy variables.

(ii) Only average data are available, averaged over the three years.

(iii) The b1i are random drawings with mean b1 and variance s2
u.

Comment on the estimates and their relative precision.

(b) Test the hypothesis that all household intercepts are equal.

15.6 The file mexican.dat contains data collected in 2001 from the transactions of 754

Mexican sex workers. There is information on four transactions per worker.20 The

labels ID and TRANS are used to describe a particular woman and a particular

transaction. There are three categories of variables.

1. Sex worker characteristics: (i) AGE, (ii) an indicator variable ATTRACTIVE equal

to 1 if the worker is attractive, and (iii) an indicator variable SCHOOL if she has

completed secondary school or higher.

2. Client characteristics: (i) an indicator variable REGULAR equal to one if the client

is a regular, (ii) an indicator variable RICH equal to one if the client is rich, and (iii)

an indicator variable ALCOHOL if the client has consumed alcohol before the

transaction.

3. Transaction characteristics: (i) the log of the price of the transaction LNPRICE,

(ii) an indicator variable NOCONDOM equal to one if a condom was not used, and

(iii) two indicator variables for location, BAR equal to one if the transaction

originated in a bar and STREET if the transaction originated in the street.

(a) Estimate a fixed effects model with LNPRICE as the dependent variable, and as

explanatory variables the client characteristics, and the remaining transaction

characteristics.

(i) Why did we omit the sex worker characteristics?

(ii) What coefficient estimates are significantly different from zero at a 5% level

of significance?

(iii) Gertler, Shah, and Bertozzi argue that the coefficient of NOCONDOM is a

risk premium. Some sex workers are willing to take the risk of having

unprotected sex because of the extra price some clients are willing to pay to

avoid using a condom. What is your estimate of the risk premium? Interpret

each of the other coefficient estimates. How is the price affected when clients

are rich, are regular, and have consumed alcohol? How does the location of

the transaction influence the price?

(b) Estimate the model assuming random effects and with the characteristics of the

sex workers added to the model. Compare the estimates with those from fixed

effects. How have the coefficients of the common variables changed? How do the

sex worker characteristics affect the price of commercial sex? How much extra

does a client have to pay to have unprotected sex with an attractive secondary-

educated sex worker?

20 These data are a subset of those used by Paul Gertler, Manisha Shah, and Stefano Bertozzi in their study

‘‘Risky Business: The Market for Unprotected Sex,’’ Journal of Political Economy, (2005), 113, 518–550. We are

grateful to the authors for permission to use their data and to Manisha Shah for compiling the subset used in this

exercise.
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(c) Using the t-test statistic in (15.37) and a 5% significance level, test whether there

are any significant differences between the fixed effects and random effects

estimates of the coefficients on NOCONDOM, RICH, REGULAR, ALCOHOL,

BAR, and STREET. If there are significant differences between any of the

coefficients, should we rely on the fixed effects estimates or on the random

effects estimates? Explain your choice.

(d) Reconsider the random effects model from part (b), but assume that NOCONDOM

is correlated with the random effects. Why might there be such a correlation? Re-

estimate the model using the Hausman-Taylor estimator with NOCONDOM

treated as endogenous. Compare the results with those obtained in part (b).

How much extra does a client have to pay to have unprotected sex with an

attractive secondary-educated sex worker?

15.7 This exercise uses data from the STAR experiment introduced in Chapter 7, Sections

7.5.3 and 7.5.4. In the STAR experiment children were randomly assigned within

schools into three types of classes: small classes with 13–17 students, regular-sized

classes with 22–25 students, and regular-sized classes with a full-time teacher aide to

assist the teacher. Student scores on achievement tests were recorded, as was some

information about the students, teachers, and schools. Data for the kindergarten classes

is contained in the data file star.dat.

(a) Estimate a regression equation (with no fixed or random effects) where

MATHSCORE is related to SMALL, AIDE, TCHEXPER, BOY, and

WHITE_ASIAN. Discuss the results. Do students perform better at math when

they are in small classes? Does a teacher’s aide improve scores? Do the students

of more experienced teachers score higher on math tests? Does gender or race

make a difference?

(b) Re-estimate the model in part (a) with school fixed effects. Compare the results

with those in part (a). Have any of your conclusions changed?

(c) Test for the significance of the school fixed effects. Under what conditions would

we expect the inclusion of significant fixed effects to have little influence on the

coefficient estimates of the remaining variables?

(d) Re-estimate the model in part (a) with school random effects. Compare the results

with those from parts (a) and (b). Are there any variables in the equation that

might be correlated with the school effects?

(e) Using the t-test statistic in (15.37) and a 5% significance level, test whether there

are any significant differences between the fixed effects and random effects

estimates of the coefficients on SMALL, AIDE, TCHEXPER, andWHITE_ASIAN.

What are the implications of the test outcomes?What happens if we apply the test

to the fixed and random effects estimates of the coefficient on BOY?

(f) Estimate a random effects model omitting AIDE and including TCHMASTERS

and SCHURBAN. What do you conclude about the effect of the two new variables

on MATHSCORE? What happens if you try to get fixed effects estimates of this

model?

15.8 Consider the NLS panel data on young women discussed in Section 15.4.3. However,

let us consider only years 1987 and 1988. These data are contained in the file

nls_panel2.dat. We are interested in the wage equation that relates the logarithm

of WAGE to EXPER, its square EXPER2, SOUTH, and UNION.

(a) Estimate the ln(WAGE) model by least squares separately for each of the years

1987 and 1988. How do the results compare? For these individual year
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estimations, what are you assuming about the regression parameter values across

individuals (heterogeneity)?

(b) Estimate the ln(WAGE) equation using both years of data, pooling them into a

single regression. For this estimation, what are you assuming about the regression

parameter values across individuals (heterogeneity) and the variance of the error

term?

(c) The ln(WAGE) equation specified as a fixed effects model that allows for

heterogeneity across individuals is

ln WAGEitð Þ ¼ b1i þ b2EXPERit þ b3EXPER
2
it þ b4SOUTHit þ b5UNIONit þ eit

Explain any differences in assumptions between this model and the models in

parts (a) and (b).

(d) Estimate the fixed effects model in part (c) and test the null hypothesis that the

intercept parameter is identical for all women in the sample. What does this imply

about the estimation results in (b)?

(e) Re-estimate the model in part (c) using cluster-robust standard errors. In the

context of this sample, explain the different assumptions you are making when

you estimate with and without cluster-robust standard errors. Compare the

standard errors with those that you obtained in part (d).

(f) Suppose you wish to obtain the results in (d) but do not have access to specialized

software for fixed effects estimation. The model in part (c) holds for all time

periods t. Write down the model for time period t � 1. Subtract this model from

the one in part (c). What happens to the heterogeneity term? Using your computer

software, create the necessary first differences of the variables, for example,

DLWAGEit ¼ ln WAGEitð Þ � ln WAGEi; t�1

� �
. Estimate the wage equation using

the differenced data, omitting an intercept term. Compare your results to the fixed

effects estimates in part (d).

(g) Create a dummy variable that is one for 1988 and zero otherwise. Add it to the

specification in part (c) and estimate the resulting model by fixed effects. What is

the interpretation of the coefficient of this variable? Is it statistically significant?

(h) Using the differenced data in part (e), estimate the wage equation in part (f), but

including an intercept term. What is the interpretation of the intercept?

15.9 Consider the NLS panel data on young women discussed in Section 15.4.3. However,

let us consider only years 1987 and 1988. These data are contained in the file

nls_panel2.dat. We are interested in the wage equation that relates the logarithm

of WAGE to EDUC, EXPER, its square EXPER2, BLACK, SOUTH, and UNION.

(a) Estimate the ln(WAGE) model by least squares separately for each of the years

1987 and 1988. How do the results compare? For these individual year esti-

mations, what are you assuming about the regression parameter values across

individuals (heterogeneity)?

(b) Estimate the ln(WAGE) equation using both years of data, pooling them into a

single regression. For this estimation, what are you assuming about the regression

parameter values across individuals (heterogeneity), the variance of the error

term, and the correlation between the errors?

(c) Re-estimate the model in part (b) using cluster-robust standard errors with the

individuals as clusters. How do the assumptions you are making differ from those

in part (b)? Compare the standard errors with those that you obtained in part (b).
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(d) Allowing heterogeneity across individuals, the wage equation is

lnðWAGEitÞ ¼ b1i þ b2EDUCi þ b3EXPERit þ b4EXPER
2
it

þ b5BLACKi þ b6SOUTHit þ b7UNIONit þ eit

Explain any differences in assumptions between this model and the models in

parts (a) and (b). Explain why the variables EDUC and BLACK have the

subscripts i rather than i and t, like the other variables.

(e) Estimate the model shown in part (d) using the fixed effects estimator. Test

the null hypothesis that the intercept parameter is identical for all women in the

sample. What do you conclude?

(f) Estimate the model shown in part (d) using the random effects estimator. Test the

null hypothesis that there are no random effects. What do you conclude?

(g) What is the estimated return on an additional year of education in the random

effects model? Is it statistically significant? Construct a 95% interval estimate for

this parameter.

(h) Explain why it is possible to estimate a return to education in part (f) but not in

part (e).

(i) Using the t-test statistic in (15.37) and a 5% significance level, test whether there

are any significant differences between the fixed effects and random effects

estimates of the coefficients on EXPER, its square EXPER2, SOUTH, and

UNION. If there are significant differences between any of the coefficients,

should we rely on the fixed effects estimates or on the random effects estimates?

Explain your choice.

15.10 What is the relationship between crime and punishment? This important question has

been examined by Cornwell and Trumbull21 using a panel of data from North

Carolina. The cross sections are 90 counties, and the data are annual for the years

1981–1987. The data are in the file crime.dat. In these models the crime rate is

explained by variables describing the deterrence effect of the legal system, wages in

the private sector (which represents returns to legal activities), socioeconomic

conditions such as population density and the percentage of young males in the

population, and annual dummy variables to control for time effects. The authors

argue that there may be heterogeneity across counties (unobservable county specific

characteristics).

(a) What do you expect will happen to the crime rate if (i) deterrence increases, (ii)

wages in the private sector increase, (iii) population density increases, (iv) the

percentage of young males increases?

(b) Consider a model in which the crime rate (LCRMRTE) is a function of the

probability of arrest (LPRBARR), the probability of conviction (LPRBCONV),

the probability of a prison sentence (LPRBPRIS), the average prison sentence

(LAVGSEN), and the average weekly wage in the manufacturing sector

(LWMFG). Note that the logarithms of the variables are used in each case.

Estimate this model by least squares. (i) Discuss the signs of the estimated

coefficients and their significance. Are they as you expected? (ii) Interpret the

coefficient on LPRBARR.

21 ‘‘Estimating the EconomicModel of Crimewith Panel Data,’’ Review of Economics and Statistics, 76, 1994,

360–366. The data were kindly provided by the authors.
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(c) Estimate the model in (b) using a fixed effects estimator. (i) Discuss the signs of

the estimated coefficients and their significance. Are they as you expected? (ii)

Interpret the coefficient on LPRBARR and compare it to the estimate in (b). What

do you conclude about the deterrent effect of the probability of arrest? (iii)

Interpret the coefficient on LAVGSEN. What do you conclude about the severity

of punishment as a deterrent?

(d) In the fixed effects estimation from part (c), test whether the county level effects

are all equal.

(e) To the specification in part (b) add the population density (LDENSITY) and the

percentage of young males (LPCTYMLE), as well as dummy variables for

the years 1982–1987 (D82–D87). (i) Compare the results obtained by using least

squares (with no county effects) and the fixed effects estimator. (ii) Test the joint

significance of the year dummy variables. Does there appear to be a trend effect?

(iii) Interpret the coefficient of LWMFG in both estimations.

(f) Based on these results, what public policies would you advocate to deal with

crime in the community?

15.11 Macroeconomists are interested in factors that explain economic growth. An

aggregate production function specification was studied by Duffy and Papageor-

giou.22 The data are in the file ces.dat. They consist of cross sectional data on 82

countries for 28 years, 1960 to 1987.

(a) Estimate a Cobb-Douglas production function

LYit ¼ b1 þ b2LKit þ b3LLit þ eit

where LY is the log of GDP, LK is the log of capital, and LL is the log of labor.

Interpret the coefficients on LK and LL. Test the hypothesis that there are

constant returns to scale, b2 þ b3 ¼ 1.

(b) Add a time trend variable t ¼ 1, 2, . . ., 28, to the specification in (a). Interpret the
coefficient of this variable. Test its significance. What effect does this addition

have on the estimates of b2 and b3?

(c) Assume b2 þ b3 ¼ 1. Solve for b3 and substitute this expression into the model

in (b). Show that the resulting model is LYLit ¼ b1 þ b2LKLit þ lt þ eit where

LYL is the log of the output-labor ratio, and LKL is the log of the capital-labor

ratio. Estimate this restricted, constant returns to scale, version of the Cobb-

Douglas production function. Compare the estimate of b2 from this specification

to that in part (b).

(d) Estimate the model in (b) using a fixed effects estimator. Test the hypothesis that

there are no cross-country differences. Compare the estimates to those in part (b).

(e) Using the results in (d), test the hypothesis that b2 þ b3 ¼ 1. What do you

conclude about constant returns to scale?

(f) Estimate the restricted version of the Cobb-Douglas model in (c) using the fixed

effects estimator. Compare the results to those in part (c). Which specification do

you prefer? Explain your choice.

(g) Using the specification in (b), replace the time trend variable t with dummy

variables D2–D28.What is the effect of using this dummy variable specification

rather than the single time trend variable?

22 ‘‘ACross-Country Empirical Investigation of the Aggregate Production Function Specification,’’ Journal of

Economic Growth, 5, 83–116: March 2000. The authors thank Chris Papageorgiou for providing the data.
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15.12 This exercise uses the data file nls_panel.dat that was introduced in Section 15.1 and

carried through as an example in Sections 15.2 to 15.6.We are interested in estimating

the equation

LWAGEit ¼ b1i þ b2EDUCi þ b3EXPERit þ b4EXPER
2
it þ b5HOURSit

þ b6BLACKi þ eit

Our primary focus is on estimating the percentage return to education f ¼ 100b2

and the percentage return to experience for a woman with five years of experience,

u ¼ 100 b3 þ 10b4ð Þ.
(a) Why is the percentage return to experience for a woman with five years of

experience equal to 100 b3 þ 10b4ð Þ?
(b) Estimate the model assuming that the intercept b1i is the same for all individuals

b1i ¼ b1ð Þ and that the errors eit are homoskedastic and uncorrelated. Find 95%

interval estimates for f and u.
(c) Estimate the model assuming that the intercept b1i is the same for all individuals

b1i ¼ b1ð Þ, computing standard errors consistent with the assumption

cov eit; eisð Þ ¼ cts. Find 95% interval estimates for f and u. Discuss any

differences between these results and those from part (b).

(d) Estimate the model assuming that the intercept b1i is a random variable with

mean b1 and variance s
2
u, and the errors eit are homoskedastic and uncorrelated.

Find 95% interval estimates for f and u. Discuss any differences between these
results and those from parts (b) and (c).

(e) Are there any variables in the model that might be correlated with the b1i in part

(d)? Use t tests and an overall x2-test to test for correlation between the b1i and

the variables in the model.

(f) Re-estimate the model in (d) assuming that EDUC and HOURS are correlated

with the b1i. Find 95% interval estimates for f and u. Discuss any differences

between these results and those from parts (b), (c), and (d).

15.13 This exercise illustrates the transformation that is necessary to produce generalized

least squares estimates for the random effectsmodel. It utilizes the data on investment

(INV), value (V), and capital (K) in the file grunfeld11.dat. The model is

INVit ¼ b1 þ b2Vit þ b3Kit þ ui þ eit

We assume that the random effects assumptions of Section 15.4 hold.

(a) Find fixed effects estimates of b2 and b3. Check that the variance estimate that

you obtain is ŝ2
e ¼ 2530:042.

(b) Compute the sample means INVi, Vi and Ki for each of the 11 firms. (Hint:

Regress each of the variables (INV, then V, then K) on 11 indicator variables, one

for each firm, and in each case save the predictions.)

(c) Estimate b1, b2, and b3 from the between regression

INVi ¼ b1 þ b2Vi þ b3Ki þ ui þ ei

Check that the variance estimate for s2� ¼ var ui þ eið Þ is ŝ2� ¼ 6328:554. (Hint:
Use the predictions obtained in (b) to run the regression. If you do so, you will be

using each of the N observations repeated T times. The coefficient estimates will

be unaffected, but the sum of squared errors will be T ¼ 20 times bigger than it
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should be, and the divisor used to estimate the error variance will be NT � K

instead of N � K. You will need to make adjustments accordingly.)

(d) Show that

â ¼ 1�
ffiffiffiffiffiffiffiffi
ŝ2
e

Tŝ2�

s
¼ 0:85862

(e) Apply least squares to the regression model

INV�
it ¼ b1x

�
1 þ b2V

�
it þ b3K

�
it þ v�it

where the transformed variables are given by INV�
it ¼ INVit � â INVi,

V�
it ¼ Vit � âVi, and K�

it ¼ Kit � âKi.

(f) Use your software to obtain random effects estimates of the original equation.

Compare the estimates with those you obtained in part (e).

15.14* Consider the three demand equations

ln Q1tð Þ ¼ b11 þ b12 ln P1tð Þ þ b13 ln Ytð Þ þ e1t

ln Q2tð Þ ¼ b21 þ b22 ln P2tð Þ þ b23 ln Ytð Þ þ e2t

ln Q3tð Þ ¼ b31 þ b32 ln P3tð Þ þ b33 ln Ytð Þ þ e3t

where Qit is the quantity consumed of the ith commodity, i = 1,2,3, in the tth time

period, t ¼ 1,2,...,30, Pit is the price of the ith commodity in time t, and Yt is

disposable income in period t. The commodities aremeat (i = 1), fruits and vegetables

(i ¼ 2), and cereals and bakery products (i ¼ 3). Prices and income are in real terms,

and all data are in index form. They can be found in the file demand.dat.

(a) Estimate each equation by least squares and test whether the equation errors for

each household are correlated. Report the estimates and their standard errors.

Do the elasticities have the expected signs?

(b) Estimate the system jointly using the SUR estimator. Report the estimates and

their standard errors. Do they differ much from your results in part (a)?

(c) Test the null hypothesis that all income elasticities are equal to unity. (Consult

your software to see how such a test is implemented.)

15.15 In the model

ln
GAS

CAR

� 	
¼ b1 þ b2 ln

Y

POP

� 	
þ b3 ln

PMG

PGDP

� 	
þ b4 ln

CAR

POP

� 	
þ e

GAS=CAR is motor gasoline consumption per car, Y=POP is per capita real income,

PMG=PGDP is real motor gasoline price, and CAR=POP is the stock of cars per

capita. The data file gascar.dat contains 19 time-series observations on the above

variables, for the countries Austria, Belgium, Canada, Denmark, France, and

Germany, respectively. The data are a subset of those used by Baltagi, B. H.

and J. M. Griffin (1983), ‘‘Gasoline Demand in the OECD: An Application of

Pooling and Testing Procedures,’’ European Economic Review, 22, 117–137.

Consider a set of six equations, one for each country.
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(a) Compare least squares and SUR estimates of the coefficients of each equation.

Comment on the signs.

(b) Test for contemporaneous correlation.

(c) Using the SUR-estimated equations:

(i) Test the hypothesis that corresponding slope coefficients in different

equations are equal.

(ii) Test the hypothesis that lnðCAR=POPÞ should be omitted from all six

equations.

15.16 The U.S. Secretary of Agriculture asks a staff economist to provide a basis for

determining cattle inventories in the Midwest, Southwest, and West. Let i ¼ 1,2,3

denote the three regions. The economist hypothesizes that in each region cattle

numbers at the end of the year Citð Þ depend on average price during the year Pitð Þ,
rainfall during the year Ritð Þ, and cattle numbers at the end of the previous year

Ci; t�1

� �
. Because growing conditions are quite different in the three regions, three

separate equations are specified, one for each region:

C1t ¼ b11 þ b12P1t þ b13R1t þ b14C1; t�1 þ e1t

C2t ¼ b21 þ b22P2t þ b23R2t þ b24C2; t�1 þ e2t

C3t ¼ b31 þ b32P3t þ b33R3t þ b34C3; t�1 þ e3t

(a) What signs would you expect on the various coefficients? Why?

(b) Under what assumptions about the eit should the three equations be estimated

jointly as a set rather than individually?

(c) Use the data that appear in the file cattle.dat to find separate least squares

estimates for each equation, and the corresponding standard errors.

(d) Test for the existence of contemporaneous correlation between the eit.

(e) Estimate the three equations jointly using the seemingly unrelated regression

technique. Compare these results with those obtained in (c) in terms of reliability

and economic feasibility.

15.17^Consider the production function

Q ¼ f K; Lð Þ

whereQ is output,K is capital, and L is labor. Suppose that the function f ð�Þ is a CES
or constant elasticity of substitution production function. The elasticity of substi-

tution, which we denote by v, measures the degree to which capital and labor are

substituted when the factor price ratio changes. Let P be the price of output, R be

the price of capital, andW the price of labor. If the function f ð�Þ is a CES production
function, then the conditions for profit maximization, with errors attached, are

ln
Q

L

� 	
¼ �1 þ v ln

W

P

� 	
þ e1 where e1 � N 0;s2

1

� �

ln
Q

K

� 	
¼ �2 þ v ln

R

P

� 	
þ e2 where e2 � N 0;s2

2

� �

Since these equations are linear in �1, �2, andv, someversion(s) of least squares can

be used to estimate these parameters. Data on 20 firms appear in the file cespro.dat.
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(a) Find separate least squares estimates of each of the first-order conditions.

Compare the two estimates of the elasticity of substitution.

(b) Test for contemporaneous correlation between e1 and e2.

(c) Estimate the two equations using generalized least squares, allowing for the

existence of contemporaneous correlation.

(d) Repeat part (c), but impose a restriction so that only one estimate of the elasticity

of substitution is obtained. (Consult your software to see how to impose such a

restriction.) Comment on the results.

(e) Compare the standard errors obtained in parts (a), (c), and (d). Do they reflect the

efficiency gains that you would expect?

(f) If v ¼ 1, the CES production function becomes a Cobb-Douglas production

function. Use the results in (d) to test whether a Cobb-Douglas production function

is adequate.

15.18 The file rice.dat contains 352 observations on 44 rice farmers in the Tarlac region of

the Phillipines for the eight years 1990 to 1997. Variables in the dataset are tonnes

of freshly threshed rice (PROD), hectares planted (AREA), person-days of hired and

family labor (LABOR), and kilograms of fertilizer (FERT).

(a) Using a fixed effects estimator where relevant, estimate the production function

ln PRODitð Þ ¼ b1it þ b2 ln AREAitð Þ þ b3 ln LABORitð Þ þ b4 ln FERTitð Þ þ eit

under the following assumptions: (i) b1it ¼ b1, (ii) b1it ¼ b1i, (iii) b1it ¼ b1t,

and (iv) b1it can be different over time and farms.

(b) Comment on the sensitivity of the estimates of the input elasticities to the

assumption made about the intercept.

(c) Which of the estimated models do you prefer? Perform a series of hypothesis

tests to help you make your decision.

(d) For the model estimated in part (a)(iv), find 95% interval estimates for the input

elasticities using (i) conventional standard errors and using (ii) cluster-robust

standard errors. Comment on any differences.

15.19 Using the data set from Exercise 15.18, consider the model

ln PRODitð Þ ¼ b1t þ b2t ln AREAitð Þ þ b3t ln LABORitð Þ þ b4t ln FERTitð Þ þ eit

(a) Estimate three seemingly unrelated regressions for the years 1995, 1996, and

1997 and report the results.

(b) What assumptions are you making when you estimate the equations in (a)? How

would you interpret what was called contemporaneous correlation in Section

15.3? Is this correlation significant?

(c) Test the hypothesis that the input elasticities are the same in all three years.

Appendix 15A Cluster-Robust Standard Errors:
Some Details

To appreciate the nature of cluster-robust standard errors, we returnmomentarily to a simple

regression model for cross sectional data
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yi ¼ b1 þ b2xi þ ei

Using the result b2 ¼ b2 þ �N
i¼1wiei, where wi ¼ xi � xð Þ

.
�N

i¼1 xi � xð Þ2, in Appendix 8A
we showed that the variance of the least squares estimator b2, in the presence of hetero-

skedasticity, is given by

var b2ð Þ ¼ var �
N

i¼1
wiei

� 	
¼ �

N

i¼1
w2
i var eið Þ þ �

N

i¼1
�
N

j¼iþ1
2wiwjcov ei; ej

� �

¼ �
N

i¼1
w2
i var eið Þ ¼ �

N

i¼1
w2
i s

2
i

Because we are assuming a random sample of cross-sectional individuals, cov ei; ej
� � ¼ 0

for i 6¼ j, leading to the simplification in the second line of the above equation.

Now suppose we have a panel simple regression model

yit ¼ b1 þ b2xit þ eit (15A.1)

with the assumptions cov eit; eisð Þ ¼ cts and cov eit; ejs
� � ¼ 0 for i 6¼ j. The pooled least

squares estimator for b2 is given by

b2 ¼ b2 þ �
N

i¼1
�
T

t¼1
witeit (15A.2)

where

wit ¼ xit � x

�
N

i¼1
�
T

t¼1
xit � x
� �2

with x ¼ �N
i¼1�

T
t¼1xit



NT . The variance of the pooled least squares estimator b2 is given by

var b2ð Þ ¼ var �
N

i¼1
�
T

t¼1
witeit

� 	
¼ var �

N

i¼1
gi

� 	
(15A.3)

where gi ¼ �T
t¼1witeit is a weighted sum of the errors for individual i. Because we have a

random sample, the errors for different individuals are uncorrelated, implying that gi is

uncorrelated with gj for i6¼j. Thus,

var b2ð Þ ¼ var �
N

i¼1
gi

� 	
¼ �

N

i¼1
var gið Þ þ �

N

i¼1
�
N

j¼iþ1
2cov gi; gj

� � ¼ �
N

i¼1
var gið Þ (15A.4)

To find var gið Þ suppose for the moment that T ¼ 2, then

var gið Þ ¼ var �
2

t¼1
witeit

� 	
¼ w2

i1var ei1ð Þ þ w2
i2var ei2ð Þ þ 2wi1wi2cov ei1; ei2ð Þ

¼ w2
i1c11 þ w2

i2c22 þ 2wi1wi2c12

¼ �
2

t¼1
�
2

s¼1
witwiscts
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For T > 2, varðgiÞ ¼ �T
t¼1�

T
s¼1witwiscts. Substituting this expression into (15A.4), we have

var b2ð Þ ¼ �
N

i¼1
�
T

t¼1
�
T

s¼1
witwiscts

¼
�
N

i¼1
�
T

t¼1
�
T

s¼1
xit � x
� �

xis � x
� �

cts

�
N

i¼1
�
T

t¼1
xit � x
� �2� 	2

(15A.5)

Recall that cov eit; eisð Þ ¼ E eiteisð Þ ¼ cts. A cluster-robust variance estimate is obtained

from (15A.5) by replacingcts with êit êis. Thus, a cluster-robust standard error for b2 is given

by the square root of

bvar b2ð Þ ¼
�
N

i¼1
�
T

t¼1
�
T

s¼1
xit � x
� �

xis � x
� �

êitêis

�
N

i¼1
�
T

t¼1
xit � x
� �2� 	2

(15A.6)

The above description of how cluster-robust standard errors are calculated and the logic

behind themwas done in terms of amodelwith just one explanatory variable. To describe the

robust variance estimator for models with more than one explanatory variable, matrix

algebra is required, but the principle is the same.

Finally, you will find that the cluster robust standard errors produced by most software

packages apply a degrees of freedom correction to the expression in (15A.6). Unfortunately,

they do not all use the same correction factor. For example, Stata 11.0 multiplies the

expression in (15A.6) by N=ðN � 1Þð Þ� ðNT � 1Þ=ðNT � KÞð Þ. EViews 7.0multiplies it by

NT=ðNT � KÞ. In these expressions NT is the total number of observations in a balanced

panel and K is the number of parameters being estimated. Note that in the fixed effects

model, K > N. For unbalanced panels NT is replaced by �N
i¼1Ti.

Appendix 15B Estimation of Error Components

The random effects model is

yit ¼ b1 þ b2x2it þ b3x3it þ ui þ eitð Þ (15B.1)

where ui is the individual specific error and eit is the usual regression error. We will discuss

the case for a balanced panel, with T time series observations for each of N individuals. To

implement generalized least squares estimation we need to consistently estimate s2
u, the

variance of the individual specific error component, and s2
e , the variance of the regression

error.

The regression error variance s2
e comes from the fixed effects estimator. In (15.14) we

transform the panel data regression into ‘‘deviation about the individual mean’’ form

yit � yi ¼ b2 x2it � x2ið Þ þ b3 x3it � x3ið Þ þ eit � eið Þ (15B.2)
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The least squares estimator of this equation yields the same estimates and sum of squared

errors (denoted here by SSEDV) as least squares applied to a model that includes a dummy

variable for each individual in the sample. A consistent estimator of s2
e is obtained by

dividing SSEDV by the appropriate degrees of freedom, which is NT � N � Kslopes, where

Kslopes is the number of parameters that are present in the transformed model (15B.2)

ŝ2
e ¼ SSEDV

NT � N � Kslopes

(15B.3)

The estimator ofs2
u requires a bit morework.We beginwith the time-averaged observations

in (15.12)

yi ¼ b1 þ b2x2i þ b3x3i þ ui þ ei i ¼ 1; 2; . . . ;N (15B.4)

The least squares estimator of (15B.4) is called the between estimator, as it uses variation

between individuals as a basis for estimating the regression parameters. This estimator is

unbiased and consistent, but not minimum variance under the error assumptions of the

random effects model. The error term in this model is ui þ ei; it is uncorrelated across

individuals, and has homoskedastic variance

var ui þ eið Þ ¼ var uið Þ þ var eið Þ ¼ var uið Þ þ var �
T

t¼1
eit


T

� 	

¼ s2
u þ 1

T2
var �T

t¼1eit
� � ¼ s2

u þ Ts2
e

T2

¼ s2
u þ s2

e

T

(15B.5)

We can estimate the variance in (15B.5) by estimating the between regression in (15B.4),

and dividing the sum of squared errors, SSEBE, by the degrees of freedom N � KBE, where

KBE is the total number of parameters in the between regression, including the intercept

parameter. Then

b
s2
u þ s2

e

T
¼ SSEBE

N � KBE

(15B.6)

With this estimate in hand we can estimate s2
u as

ŝ2
u ¼
b
s2
u þ s2

e

T
� ŝ2

e

T
¼ SSEBE

N � KBE

� SSEDV

T NT � N � Kslopes

� � (15B.7)

We have obtained the estimates ofs2
u ands

2
e using what is called the Swamy-Arora method.

This method is implemented in software packages and is well established. We note,

however, that it is possible in finite samples to obtain an estimate ŝ2
u in (15B.7) that is

negative, which is obviously infeasible. If this should happen, one option is simply to set

ŝ2
u ¼ 0, which implies that there are no random effects. Alternatively, your software may

offer other options for estimating the variance components, which you might try.
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C h a p t e r 16
Qualitative and Limited
Dependent Variable Models

Learning Objectives

Based on the material in this chapter, you should be able to:

1. Give some examples of economic decisions in which the observed outcome is a

binary variable.

2. Explain why probit, or logit, is usually preferred to least squares when estimating a

model in which the dependent variable is binary.

3. Give some examples of economic decisions in which the observed outcome is a

choice among several alternatives, both ordered and unordered.

4. Compare and contrast the multinomial logit model to the conditional logit model.

5. Give some examples of models in which the dependent variable is a count variable.

6. Discuss the implications of censored data for least squares estimation.

7. Describe what is meant by the phrase ‘‘sample selection.’’

Keywords

binary choice models

censored data

conditional logit

count data models

feasible generalized least squares

Heckit

identification problem

independence of irrelevant alternatives (IIA)

index models

individual and alternative specific variables

individual specific variables

latent variables

likelihood function

limited dependent variables

linear probability model

logistic random variable

logit

log-likelihood function

marginal effect

maximum likelihood estimation

multinomial choice models

multinomial logit

odds ratio

ordered choice models

ordered probit

ordinal variables

Poisson random variable

Poisson regression model

probit

selection bias

Tobit model

truncated data
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In this book we focus primarily on econometric models in which the dependent variable is

continuous and fully observable; quantities, prices, and outputs are examples of such

variables. However, microeconomics is a general theory of choice, and many of the choices

that individuals andfirmsmakecannot bemeasuredbyacontinuousoutcomevariable. In this

chapter we examine some fascinating models that are used to describe choice behavior, and

which do not have the usual continuous dependent variable. Our descriptions will be brief,

since we will not go into all the theory, but we will reveal to you a rich area of economic

applications.

We also introduce a class of models with dependent variables that are limited. By that we

mean that they are continuous, but that their range of values is constrained in some way,

and their values not completely observable. Alternatives to least squares estimation must

be considered for such cases, since the least squares estimator is both biased and

inconsistent.

16.1 Models with Binary Dependent Variables

Manyof thechoices that individuals andfirmsmakeare ‘‘either–or’’ innature.For example, a

highschoolgraduatedecideseither toattendcollegeornot.Aworkerdecideseither todrive to

work or to get there using a different means of transportation. A household decides either to

purchase a house or to rent. Afirmdecides either to advertise its product in a local newspaper

or it decides not to. As economists we are interested in explainingwhy particular choices are

made, andwhat factors enter into the decision process.We alsowant to know howmuch each

factor affects the outcome. Such questions lead us to the problemof constructing a statistical

model of binary, either–or, choices. Such choices can be represented by a binary (indicator)

variable that takes the value 1 if one outcome is chosen and the value 0 otherwise. The binary

variable describing a choice is the dependent variable rather than an independent variable.

This fact affects our choice of a statistical model.

The list of economic applications in which choice models may be useful is a long one.

These models are useful in any economic setting in which an agent must choose one of two

alternatives. Examples include the following:

� An economic model explaining why some individuals take a second or third job, and

engage in ‘‘moonlighting.’’

� An economic model of why some legislators in the U.S. House of Representatives

vote for a particular bill and others do not.

� An economic model explaining why some loan applications are accepted and others

are not at a large metropolitan bank.

� An economic model explaining why some individuals vote for increased spending in

a school board election and others vote against.

� An economic model explaining why some female college students decide to study

engineering and others do not.

This list illustrates the great variety of circumstances in which a model of binary choice

may be used. In each case an economic decision maker chooses between two mutually

exclusive outcomes.

Wewill illustrate binary choicemodels using an important problem from transportation

economics. How can we explain an individual’s choice between driving (private transpor-

tation) and taking the bus (public transportation) when commuting to work, assuming, for
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simplicity, that these are the only two alternatives? We represent an individual’s choice by

the indicator variable

y ¼ 1 individual drives to work

0 individual takes bus to work

�
(16.1)

If we collect a random sample of workers who commute towork, then the outcome ywill be

unknown to us until the sample is drawn. Thus, y is a random variable. If the probability that

an individual drives to work is p, then P½y ¼ 1� ¼ p. It follows that the probability

that a person uses public transportation is P½y ¼ 0� ¼ 1� p. The probability function

for such a binary random variable is

f ðyÞ ¼ pyð1� pÞ1�y; y ¼ 0; 1 (16.2)

where p is the probability that y takes the value one. This discrete random variable has

expected value EðyÞ ¼ p and variance varðyÞ ¼ pð1� pÞ.
What factors might affect the probability that an individual chooses one transportation

mode over the other? One factor will certainly be how long it takes to get towork oneway or

the other. Define the explanatory variable

x ¼ ðcommuting time by bus� commuting time by carÞ

There are other factors that affect the decision, but let us focus on this single explanatory

variable. A priori we expect that as x increases, and commuting time by bus increases

relative to commuting time by car, an individual would be more inclined to drive. That is,

we expect a positive relationship between x and p, the probability that an individual will

drive to work.

16.1.1 THE LINEAR PROBABILITY MODEL

One way to model binary choice is with the linear probability model that was introduced in

Chapter 7.4. There we noted several problems with using the linear probability model. It

implies marginal effects of changes in continuous explanatory variables are constant, which

cannot be the case for a probability model. This feature also can result in predicted

probabilities outside the [0, 1] interval. The linear probability model error term is hetero-

skedastic, so that a better estimator is generalized least squares, as discussed in Chapter 8.6.

You should review the earlier sections for the best understanding. Here we briefly

summarize the issues for completeness.

In regression analysis we break the dependent variable into fixed and random parts. If we

do this for the indicator variable y, we have

y ¼ EðyÞ þ e ¼ pþ e (16.3)

We then relate the fixed, systematic portion of y, the probability p that y¼ 1, to explanatory

variables that we believe help explain the choice probability. We are assuming that the

probability of driving is related to the difference in driving times, x, in the transportation

example. Assuming that the relationship is linear,

EðyÞ ¼ p ¼ b1 þ b2x (16.4)
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The linear regression model for explaining the choice variable y is called the linear
probability model. It is given by

y ¼ EðyÞ þ e ¼ b1 þ b2xþ e (16.5)

One problem with the linear probability model is that the error term is heteroskedastic; the

variance of the error term e varies from one observation to another. The probability density

functions for y and e are as follows:

y-Value e-Value Probability

1 1� ðb1 þ b2xÞ p ¼ b1 þ b2x

0 �ðb1 þ b2xÞ 1� p ¼ 1� ðb1 þ b2xÞ

Using these values it can be shown that the variance of the error term e is

varðeÞ ¼ ðb1 þ b2xÞð1� b1 � b2xÞ

If we adopt the linear probability model (16.5), we should use generalized least squares

estimation. This is generally done by first estimating the model (16.5) by least squares; then

the estimated variance of the error term is

ŝ2
i ¼bvarðeiÞ ¼ ðb1 þ b2xiÞð1� b1 � b2xiÞ (16.6)

Using this estimated variance the data can be transformed as y�i ¼ yi=ŝi and x
�
i ¼ xi=ŝi, then

the model y�i ¼ b1ŝ
�1
i þ b2x

�
i þ e�i is estimated by least squares to produce the feasible

generalized least squares estimates. Both least squares and feasible generalized least

squares are consistent estimators of the regression parameters.

In practice certain difficulties may arisewith the implementation of this procedure. They

are related to another problem with the linear probability model—that of obtaining

probability values that are less than zero or greater than one. If we estimate the parameters

of (16.5) by least squares, we obtain the fitted model explaining the systematic portion of y.

This systematic portion is p, the probability that an individual chooses to drive to work.

That is,

p̂ ¼ b1 þ b2x (16.7)

When using this model to predict behavior, by substituting alternative values of x, we can

easily obtainvalues of p̂ that are less than zero or greater than one. Values like these do not

make sense as probabilities, and we are left in a difficult situation. It also means that some

of the estimated variances in (16.6) may be negative. The standard fix-up is to set

negative p̂ values to a small value like 0.01, and values of p̂ greater than one to 0.99.

Making these changes will not hurt in large samples.

The underlying feature that causes these problems is that the linear probability model

(16.4) implicitly assumes that increases in x have a constant effect on the probability of

choosing to drive,

dp

dx
¼ b2 (16.8)
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That is, as x increases the probability of driving continues to increase at a constant rate.

However, since 0 � p � 1, a constant rate of increase is impossible. To overcome this

problem we consider the nonlinear probit model.

16.1.2 THE PROBIT MODEL

To keep the choice probability pwithin the interval [0, 1], a nonlinear S-shaped relationship

between x and p can be used. In Figure 16.1(a) such a curve is illustrated. As x increases, the

probability curve rises rapidly at first, and then begins to increase at a decreasing rate.

The slope of this curve gives the change in probability given a unit change in x. The slope is

not constant as in the linear probability model.
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FIGURE 16.1 (a) Standard normal cumulative distribution function. (b) Standard normal
probability density function.
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A functional relationship that is used to represent such a curve is the probit function. The

probit function is related to the standard normal probability distribution. If Z is a standard

normal random variable, then its probability density function is

fðzÞ ¼ 1ffiffiffiffiffiffi
2p

p e�0:5z2

The probit function is

FðzÞ ¼ P½Z � z� ¼
ðz
�1

1ffiffiffiffiffiffi
2p

p e�0:5u2du (16.9)

This integral expression is the probability that a standard normal random variable falls to the

left of point z. In geometric terms it is the area under the standard normal probability density

function to the left of z. The functionFðzÞ is the cumulative distribution function (cdf ) that

we have worked with to compute normal probabilities.

The probit statistical model expresses the probability p that y takes the value 1 to be

p ¼ P½Z � b1 þ b2x� ¼ Fðb1 þ b2xÞ (16.10)

whereFðzÞ is the probit function. The probit model is said to be nonlinear because (16.10)

is a nonlinear function of b1 and b2. If b1 and b2 were known, we could use (16.10) to find

the probability that an individual will drive towork. However, since these parameters are not

known, we will estimate them.

16.1.3 INTERPRETATION OF THE PROBIT MODEL

The probit model is represented by (16.10). In this model we can examine the marginal

effect of a one-unit change in x on the probability that y ¼ 1 by considering the derivative,

dp

dx
¼ dFðtÞ

dt
� dt
dx

¼ fðb1 þ b2xÞb2 (16.11)

where t ¼ b1 þ b2x and fðb1 þ b2xÞ is the standard normal probability density function

evaluated at b1 þ b2x. To obtain this result we have used the chain rule of differentiation

(See Derivative Rule 9 in Appendix A.3.1). We estimate this effect by replacing the

unknown parameters by their estimates ~b1 and ~b2.

In Figure 16.1 we show the probit function FðzÞ and the standard normal probability

density function fðzÞ just below it. The expression in (16.11) shows the effect of an

increase in x on p. The effect depends on the slope of the probit function, which is given

by fðb1 þ b2xÞ and the magnitude of the parameter b2. Equation (16.11) has the

following implications:

1. Since fðb1 þ b2xÞ is a probability density function, its value is always positive.

Consequently the sign of dp=dx is determined by the sign of b2. In the transportation

problem, we expectb2 to be positive so that dp=dx> 0; as x increases, we expect p to

increase.

2. As x changes, the value of the function fðb1 þ b2xÞ changes. The standard normal

probability density function reaches its maximumwhen z ¼ 0 or when b1 þ b2x ¼ 0.
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In this case p ¼ Fð0Þ ¼ 0:5 and an individual is equally likely to choose car or bus

transportation. It makes sense that in this case the effect of a change in x has its greatest

effect, since the individual is ‘‘on the borderline’’ between car and bus transportation.

The slope of the probit function p ¼ FðzÞ is at its maximum when z ¼ 0, the

borderline case.

3. On the other hand, if b1 þ b2x is large, say, near three, then the probability that the

individual chooses to drive is very large and close to one. In this case a change in

x will have relatively little effect, since fðb1 þ b2xÞwill be nearly zero. The same

is true ifb1 þ b2x is a large negative value, say, near�3. These results are consistent

with the notion that if an individual is ‘‘set’’ in their ways, with p near zero or one, the

effect of a small change in commuting time will be negligible.

The results of a probit model can also be used to predict an individual’s choice. The

ability to predict discrete outcomes is very important inmany applications. For example,

prior to approving loans, banks predict the probability that an applicant will default. If

the probability of default is high, then the loan is either not approved or additional

conditions, such as extra collateral or a higher interest rate, are imposed.

In order to predict the probability that an individual chooses the alternative y ¼ 1, we

can use the probability model p ¼ Fðb1 þ b2xÞ. In the following section we describe how
to obtain estimates ~b1 and ~b2 of the unknown parameters. Using these we estimate the

probability p to be

p̂ ¼ Fð~b1 þ ~b2xÞ (16.12)

By comparing to a threshold value, like 0.5, we can predict choice using the rule

ŷ ¼ 1 p̂� 0:5

0 p̂ < 0:5

�

16.1.4 MAXIMUM LIKELIHOOD ESTIMATION OF THE PROBIT MODEL

Suppose we randomly select three individuals and observe that the first two drive to work

and the third takes the bus: y1 ¼ 1, y2 ¼ 1, and y3 ¼ 0. Furthermore, suppose that the values

of x, in minutes, for these individuals are x1 ¼ 15, x2 ¼ 6, and x3 ¼ 7. What is the joint

probability of observing y1 ¼ 1, y2 ¼ 1, and y3 ¼ 0? The probability function for y is given

by (16.2), which we now combine with the probit model (16.10) to obtain

f ðyiÞ ¼ ½Fðb1 þ b2xiÞ�yi ½1�Fðb1 þ b2xiÞ�1�yi ; yi ¼ 0; 1 (16.13)

If the three individuals are independently drawn, then the joint probability density function

for y1, y2, and y3 is the product of the marginal probability functions:

f ðy1; y2; y3Þ ¼ f ðy1Þ f ðy2Þ f ðy3Þ

Consequently, the probability of observing y1 ¼ 1, y2 ¼ 1; and y3 ¼ 0 is

P½y1 ¼ 1; y2 ¼ 1; y3 ¼ 0� ¼ f ð1; 1; 0Þ ¼ f ð1Þ f ð1Þ f ð0Þ
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Substituting the y and x values into (16.13) we have

P y1 ¼ 1; y2 ¼ 1; y3 ¼ 0½ � ¼ F b1 þ b2ð15Þð Þ 	F b1 þ b2ð6Þð Þ
	 1�F b1 þ b2ð7Þð Þ½ �

¼ L b1;b2ð Þ
(16.14)

In statistics, the function (16.14), which gives us the probability of observing the sample

data, is called the likelihood function. The notation L(b1, b2) indicates that the likelihood

function is a function of the unknown parameters, b1 and b2. Intuitively, it makes sense to

choose as estimates for b1 and b2 the values ~b1 and ~b2 that maximize the probability, or

likelihood, of observing the sample. Unfortunately, there are no formulas that give us the

values for ~b1 and ~b2 as there are in least squares estimation of the linear regression model.

Consequently, we must use the computer and techniques from numerical analysis to obtain
~b1 and ~b2. In practice, instead of maximizing (16.14), we maximize the logarithm of

(16.14), which is called the log-likelihood function

ln L b1;b2ð Þ ¼ ln F b1 þ b2ð15Þð Þ 	F b1 þ b2ð6Þð Þ 	 1�F b1 þ b2ð7Þð Þ½ �f g
¼ lnF b1 þ b2ð15Þð Þ þ lnF b1 þ b2ð6Þð Þ þ ln 1�F b1 þ b2ð7Þð Þ½ � (16.15)

Themaximization of the log-likelihood function ln L(b1,b2) is easier than themaximization

of (16.14), because it is a sum of terms and not a product of terms. The logarithm is a

nondecreasing, or monotonic, function so that the maximum values of the two functions

L(b1, b2) and ln L(b1, b2) occur at the same values of b1 and b2, ~b1 and ~b2. The value of the

log-likelihood function (16.15) evaluated at the maximizing values ~b1 and ~b2 is very useful

for hypothesis testing,which is discussed in Section 16.2.3.Using econometric software,we

find that the parameter values that maximize (16.15) are ~b1 ¼ �1:1525 and ~b2 ¼ 0:1892.
These values maximize the log-likelihood function, ln L(b1, b2), and also maximize the

likelihood function L(b1, b2). They are the maximum likelihood estimates. Any other

values of the parameters that we might try will yield a lower value of the log-likelihood

function. Plugging these values into (16.15) we obtain the value of the log-likelihood

function evaluated at themaximum likelihood estimates, which is ln L ~b1; ~b2

� � ¼ �1:5940.
An interesting feature of the maximum likelihood estimation procedure is that while its

properties in small samples are not known, we can show that in large samples the maximum

likelihood estimator is normally distributed, consistent and best, in the sense that no

competing estimator has smaller variance. The properties of maximum likelihood estima-

tors are fully discussed in Appendix C.8.

We have used only three observations in the numerical illustration above for demon-

stration purposes only. In practice such maximum likelihood estimation procedures should

only be usedwhen large samples are available. In the next sectionwe present another simple

example that will demonstrate more aspects of the probit choice model.

16.1.5 A TRANSPORTATION EXAMPLE

Ben-Akiva and Lerman1 have sample data on automobile and public transportation travel

times and the alternative chosen for N ¼ 21 individuals. The complete set of data is in the

file transport.dat. In the data file, AUTO is an indicator variable taking the value one if

automobile transportation is chosen and zero otherwise. The data set also includes the

1Moshe Ben-Akiva and Steven Lerman, Discrete Choice Analysis (Cambridge, MA: MIT Press, 1985).
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variables AUTOTIME and BUSTIME, which are commuting times, in minutes. The explan-

atory variable we consider is DTIME ¼ (BUSTIME�AUTOTIME)
10, which is the com-

muting time differential in 10-minute increments. The probit model is P AUTO ¼ 1ð Þ ¼
F b1 þ b2DTIMEð Þ. The maximum likelihood estimates of the parameters are

~b1 þ ~b2DTIME ¼ �0:0644þ 0:3000DTIME

(se) (0:3992Þ ð0:1029Þ

The values in parentheses below the parameter estimates are estimated standard errors that

are valid in large samples. These standard errors can be used to carry out hypothesis tests and

construct interval estimates in the usual way, with the qualification that they are valid in

large samples. The negative sign of ~b1 implies that when commuting times via bus and auto

are equal so DTIME ¼ 0, individuals have a bias against driving to work, relative to public

transportation, though the estimated coefficient is not statistically significant. The positive

sign of ~b2 indicates that an increase in public transportation travel time, relative to auto

travel time, increases the probability that an individual will choose to drive towork, and this

coefficient is statistically significant.

Suppose that we wish to estimate the marginal effect of increasing public transportation

time, given that travel via public transportation currently takes 20 minutes longer than auto

travel. Using (16.11),

ddp
dDTIME

¼ fð~b1 þ ~b2DTIMEÞ~b2 ¼ fð�0:0644þ 0:3000	 2Þð0:3000Þ
¼ fð0:5355Þð0:3000Þ ¼ 0:3456	0:3000 ¼ 0:1037

For the probit probability model, an incremental (10-minute) increase in the travel time via

public transportation increases the probability of travel via auto by approximately 0.1037,

given that taking the bus already requires 20 minutes more travel time than driving.

The estimated parameters of the probit model can also be used to ‘‘predict’’ the behavior

of an individualwhomust choose between auto and public transportation to travel towork. If

an individual is faced with the situation that it takes 30 minutes longer to take public

transportation than to drive to work, then the estimated probability that auto transportation

will be selected is calculated using (16.12):

p̂ ¼ Fð~b1 þ ~b2DTIMEÞ ¼ Fð�0:0644þ 0:3000	3Þ ¼ 0:7983

Since the estimated probability that the individual will choose to drive to work is 0.7983,

which is greater than 0.5, we ‘‘predict’’ that when public transportation takes 30 minutes

longer than driving to work, the individual will choose to drive.

16.1.6 FURTHER POST-ESTIMATION ANALYSIS

In the previous section we computed the marginal effect of an increase of travel time on the

probability of choosing AUTO given that travel via public transportation takes 20 minutes

longer than auto travel as 0.1037. A 20-minute differential is a scenario in which we might

be interested. If particular values of interest are difficult to identify, many researchers

evaluate themarginal effect ‘‘at themeans.’’ In these data, the average time travel differential

is DTIME ¼ �0:1224 (1.2 minutes), and for this value the marginal effect of a 10-minute

increase in the time travel differential is 0.1191. The slightly larger effect is consistent
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with the second point in the Section 16.1.3 discussion. When the mean difference in travel

time is near zero, the effect of a change in travel time difference is greater.

Rather than evaluate the marginal effect at a specific value, or the mean value, the

average marginal effect (AME) is often considered. It is the average of the marginal

effects evaluated at each sample data point. That is,

dAME ¼ 1

N
�N

i¼1fð~b1 þ ~b2DTIMEiÞ~b2

The average marginal effect has become a popular alternative to computing the marginal

effect at the mean as it summarizes the response of individuals in the sample to a change in

the value of an explanatory variable. For the current example, dAME ¼ 0:0484, which is the
average estimated increase in probability given a 10-minute increase in bus travel time

relative to auto travel time. Because the estimated marginal effect is different for each

individual in the sample, we are interested in not only its average value, but also in its

variation in the sample. The sample standard deviation of fð~b1 þ ~b2DTIMEiÞ~b2 is 0.0365,

and its minimum and maximum values are 0.0025 and 0.1153.

A second point has to do with the nature of the marginal effect

ddp
dDTIME

¼ fð~b1 þ ~b2DTIMEÞ~b2 ¼ g ~b1; ~b2

� �
The marginal effect is an estimator, since it is a function of the estimators ~b1 and ~b2. Based

on the discussion of the ‘‘delta method’’ in Appendix 5B.5, which is relevant because the

marginal effect is a nonlinear function of ~b1 and ~b2, the marginal effect estimator is

consistent and asymptotically normal with a variance given by (5B.8). Using this result, we

can test marginal effects or compute interval estimates for them. For example, if the time

differential is currently 20 minutes, so that DTIME ¼ 2, the estimated marginal effect is

0.1037 and the estimated standard error of the marginal effect is 0.0326 using the delta

method. Therefore a 95% interval estimate of the marginal effect, using the t-critical value

t 0:975;19ð Þ ¼ 2:093, is [0.0354, 0.1720]. This interval is fairly wide. Recall, however, that the
maximum likelihood estimates are based on only 21 observations, which is a very small

sample. The details of the calculation of the standard error are given in Appendix 16A.1.We

can also evaluate the standard error of the average marginal effect using the delta method.

Recall that dAME ¼ 0:0484. Its standard error estimated using the delta method is 0.0034.

Details of this calculation are given in Appendix 16A.2. A 95% interval estimate of the

population average marginal effect, using the t-critical value, is [0.0413, 0.0556]. This is

much narrower than the previous interval estimate, because we are estimating a different

quantity, namely AME ¼ 1
N
�N

i¼1fðb1 þ b2DTIMEiÞb2.

Thepredictedprobability thatAUTO ¼ 1, given that the commuting timedifferenceof30

minutes is calculated as p̂ ¼ F ~b1 þ ~b2DTIME
� � ¼ F �0:0644þ 0:3000 	 3ð Þ ¼ 0:7983.

This was shown in Section 16.1.5. Note that the predicted probability is a nonlinear function

of the parameter estimates. Using the delta method we can compute a standard error for the

prediction and, thus, an interval estimate. The calculated standard error is 0.1425, so that a

95% prediction interval, again using the t-critical value t 0:975;19ð Þ ¼ 2:093, is [0.5000,

1.0966]. Note that the upper endpoint of the interval is greater than one, which means that

some of the values are infeasible. This example has been designed to illustrate in a simple

problem how probit works. In reality, estimating complicated models like probit and logit,

with as few observations as we are using, N ¼ 21, is not a good idea. In fact, microecono-

metric models can have many more parameters and sometimes are estimated using very

large data sets.
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16.2 The Logit Model for Binary Choice

Probit model estimation is numerically complicated because it is based on the normal

distribution. A frequently used alternative to the probit model for binary choice situations is

the logit model. These models differ only in the particular S-shaped curve used to constrain

probabilities to the [0, 1] interval. If L is a logistic random variable, then its probability

density function is

lðlÞ ¼ e�l

ð1þ e�lÞ2 ; �1< l<1 (16.16)

The corresponding cumulative distribution function, unlike the normal distribution, has a

closed form expression, which makes analysis somewhat easier. The cumulative distri-

bution function for a logistic random variable is

LðlÞ ¼ P½L � l� ¼ 1

1þ e�l
(16.17)

In the logit model, the probability p that the observed value y takes the value 1 is

p ¼ P½L � b1 þ b2x� ¼ Lðb1 þ b2xÞ ¼ 1

1þ e�ðb1þb2xÞ (16.18)

This can be expressed in a more generally useful form. The probability that y ¼ 1 can be

written as

p ¼ 1

1þ e�ðb1þb2xÞ ¼
expðb1 þ b2xÞ

1þ expðb1 þ b2xÞ

The probability that y ¼ 0 is

1� p ¼ 1

1þ expðb1 þ b2xÞ

Represented in this way, the logit model can be extended to cases in which the choice is

between more than two alternatives, as we will see in Section 16.3.

In maximum likelihood estimation of the logit model, the probability given in (16.18) is

used to form the likelihood function (16.14) by inserting ‘‘L’’ for ‘‘F’’. To interpret the logit

estimates, the derivative in (16.11) is still valid, using (16.16) instead of the normal

probability density function.

The shapes of the logistic and normal probability density functions are somewhat

different, and maximum likelihood estimates of b1 and b2 will be different. However, the

marginal probabilities and the predicted probabilities differ very little in most cases.

16.2.1 AN EMPIRICAL EXAMPLE FROM MARKETING

In Chapter 7.4.1 we introduced the example of a linear probability model for the choice

between Coke and Pepsi. Here we compare the linear probability model to the probit and

logit models for this binary choice. The variable COKE

COKE ¼ 1 if Coke is chosen

0 if Pepsi is chosen

�
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The expected value of this variable is E(COKE) ¼ pCOKE ¼ probability that Coke is

chosen. We use the relative price of Coke to Pepsi (PRATIO) as an explanatory variable,

aswell asDISP_COKE andDISP_PEPSI, which are indicator variables taking thevalue one

if the respective store display is present and zero if it is not. We expect that the presence of a

Coke display will increase the probability of a Coke purchase, and the presence of a Pepsi

display will decrease the probability of a Coke purchase.

The data file coke.dat contains ‘‘scanner’’ data on 1,140 individuals who purchased

Coke or Pepsi. The probit and logit models for the choice are

pCOKE ¼ E COKEð Þ ¼ F b1 þ b2PRATIOþ b3DISP COKE þ b4DISP PEPSIð Þ
pCOKE ¼ E COKEð Þ ¼ L g1 þ g2PRATIO þ g3DISP COKE þ g4DISP PEPSIð Þ

We have given the logit choice model parameters different symbols to emphasize that they

will be different values than those for probit. The estimates are given in Table 16.1.

The parameters and their estimates vary across the models and no direct comparison is

very useful, but some rules of thumb exist.2 Roughly

~gLogit ffi 4b̂LPM

~bProbit ffi 2:5b̂LPM

~gLogit ffi 1:6~bProbit

More relevant, however, is the comparison of the predicted probabilities and marginal

effects implied by the alternative models. Suppose that PRATIO ¼ 1.1, indicating that the

price of Coke is 10% higher than the price of Pepsi, and no store displays are present. Using

the linear probability model, the predicted probability of Coke choice is 0.4493 with

standard error 0.0202. Using probit the predicted probability is 0.4394 with standard error

0.0218, and for logit the predicted probability is 0.4323 with standard error 0.0224.

In the linear probability model the marginal effect of PRATIO is�0.4009. This does not

depend on the values of the variables. For the probit model the average marginal effect

(AME) of PRATIO is�0.4097 with standard error 0.0616. For the logit model the average

marginal effect (AME) of PRATIO is�0.4333 with standard error 0.0639. In this example,

Ta b l e 1 6 . 1 Coke-Pepsi Choice Models

LPM probit logit

C 0.89022***

(0.0653)

1.10806***

(0.1900)

1.92297***

(0.3258)

PRATIO �0.40086***

(0.0604)

�1.14596***

(0.1809)

�1.99574***

(0.3146)

DISP_COKE 0.07717**

(0.0339)

0.21719**

(0.0966)

0.35160**

(0.1585)

DISP_PEPSI �0.16566***

(0.0344)

�0.44730***

(0.1014)

�0.73099***

(0.1678)

Standard errors in parentheses (White robust se for LPM) * p<0.10, ** p<0.05, *** p<0.01.

2 T. Amemiya (1981) ‘‘Qualitative response models: A Survey,’’ Journal of Economic Literature, 19,

pp. 1483–1536, or A. Colin Cameron and Pravin K. Trivedi Microeconometrics Using Stata: Revised Edition

(College Station, Tx: Stata Press), p. 465.
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the average marginal effects from the probit and logit models are not too different from that

implied by the linear probability model. If we examine specific scenarios, then differences

appear. For example, suppose PRATIO ¼ 1.1, indicating that the price of Coke is 10%

higher than the price of Pepsi, and no store displays are present. The marginal effect of

PRATIO from the probit model is �0.4519, with standard error 0.0703. For logit the

marginal effect of PRATIO is estimated to be �0.4898 with standard error 0.0753.

Another basis for comparison is how well the alternative models predict choice out-

comes. For the linear probability model, compute the predicted valuebCOKE, then predict

consumer choice by comparing this value to 0.5. IfbCOKE is greater than 0.5, we predict

the consumer will choose Coke. For the probit model, we estimate the probability of

choosing Coke using (16.10). For logit, again use (16.10) with the logistic cdf,L, replacing
the standard normal cdf,F. Using the 0.5 threshold for all three estimationmethods, we find

that of the 510 consumers who chose COKE, 247 were correctly predicted. Of the 630 who

chose PEPSI, 507 were corrected predicted. In this example, the number of correct

predictions is identical for the three estimation methods.

16.2.2 WALD HYPOTHESIS TESTS

Hypothesis tests concerning individual coefficients in probit and logitmodels are carried out

in the usual way based on an ‘‘asymptotic-t’’ test. If the null hypothesis isH0 : bk ¼ c, then

the test statistic using the probit model is

t ¼
~bk � c

se ~bk

� � a� t N�Kð Þ

where ~bk is the probit parameter estimator, N is the sample size, and K is the number of

parameters estimated. The test is asymptotically justified, and ifN is large the critical values

from the t(N�K) distributionwill be very close to those from the standard normal distribution.

In smaller samples, however, the use of the t-distribution critical values can make minor

differences and is the more ‘‘conservative’’ choice.

The t-test is based on theWald principle. This testing principle is discussed inAppendix

C.8.4b. It is common for software packages to have ‘‘built-in’’ Wald test statements

(something like ‘‘TEST’’) that are convenient to use. To illustrate, using the probit model,

consider the two hypotheses

Hypothesis 1ð Þ H0 : b3 ¼ �b4; H1 : b3 6¼ �b4

Hypothesis 2ð Þ H0 : b3 ¼ 0; b4 ¼ 0; H1 : either b3 or b4 is not zero

Hypothesis (1) is that the coefficients on the display variables are equal in magnitude but

opposite in sign, or that the effect of the Coke and Pepsi displays have an equal but opposite

effect on the probability of choosing Coke. To test hypothesis (1) in a linear model, we

would compute

t ¼
~bDISP COKE þ ~bDISP PEPSI

se ~bDISP COKE þ ~bDISP PEPSI

� � a� t 1140�4¼1136ð Þ

Noting that it is a two-tail hypothesis, we reject the null hypothesis at the a ¼ 0.05

level if t � 1.96 or t � �1.96. The calculated t-value is t ¼ �2.3247, so we reject the

null hypothesis and conclude that the effects of the Coke and Pepsi displays are not of
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equal magnitude with opposite sign. This test is asymptotically valid because N�K ¼
1140�4 ¼ 1136 is a large sample.

Automatic TEST statements usually generate the chi-square distribution version of the

test, which in this case is the square of the t-statistic,W ¼ 5.4040. If the null hypothesis is

true, theWald test statistic has an asymptoticx2
1ð Þ distribution.Using Table 3 at the end of the

book, the 0.95 percentile value for this distribution is 3.841.Using aWald chi-square test, we

reject the null hypothesis if the test statistic value is greater than the critical value.We reach

the same conclusion as using the t-test. The link between the t and chi-square test is fully

explained in Appendix C.8.4b.

A generalization of the Wald statistic is used to test the joint null hypothesis (2) that

neither the Coke nor Pepsi display affects the probability of choosing Coke. Here we are

testing two hypotheses, so that the Wald statistic has an asymptotic x2
2ð Þ distribution. Using

Table 3 at the end of the book, the 0.95 percentile value for this distribution is 5.991. In this

case, thevalueof theWaldstatistic isW ¼ 19.4594, and thuswe reject thenullhypothesis (2).

16.2.3 LIKELIHOOD RATIO HYPOTHESIS TESTS

When using maximum likelihood estimators, such as probit and logit, tests based on the

likelihood ratio principle are generally preferred. Appendix C.8.4a contains a discussion of

this methodology. The idea is much like the F-test in the linear regression model. One test

component is the log-likelihood function value in the unrestricted, full model (call it ln LU)

evaluated at the maximum likelihood estimates. This calculation was illustrated in Section

16.1.4. The second ingredient is the log-likelihood function value from the model that is

‘‘restricted’’ by imposing the condition that the null hypothesis is true (call it ln LR). The

likelihood ratio test statistic is LR ¼ 2 ln LU � ln LRð Þ. If the null hypothesis is true,

the statistic has an asymptotic chi-square distribution with degrees of freedom equal

to the number of hypotheses being tested. The null hypothesis is rejected if the value LR

is larger than the chi-square distribution critical value.

To test hypothesis (1) from the previous section, H0 : b3 ¼ �b4, we first obtain the

unrestricted probit model log-likelihood value. This value, ln LU ¼ � 710:9486, is

reported by econometric software when a probit model is estimated. The restricted probit

model is obtained by imposing the condition b3 ¼ �b4, leading to

pCOKE ¼ E COKEð Þ ¼ F b1 þ b2PRATIOþ b3DISP COKE þ b4DISP PEPSIð Þ
¼ F b1 þ b2PRATIO� b4DISP COKE þ b4DISP PEPSIð Þ
¼ F b1 þ b2PRATIOþ b4 DISP PEPSI � DISP COKEð Þð Þ

Estimating this model by maximum likelihood probit, we obtain ln LR ¼ �713:6595. The
likelihood ratio test statistic value is then

LR ¼ 2 ln LU � ln LRð Þ ¼ 2 �710:9486� �713:6595ð Þð Þ ¼ 5:4218

This value is larger than the 0.95 percentile from the x2
1ð Þ distribution, 3.841, and thus we

reject the null hypothesis (1). Note that the values of the LR and Wald statistics are not the

same but are close in this case. The Wald test statistic value is easier to compute, since it

requires only the maximum likelihood estimates for the original, unrestricted model.

However the likelihood ratio test has been found to be more reliable in a wide variety

of more complex testing situations, and it is the preferred test.

To test the null hypothesis (2), H0 : b3 ¼ 0; b4 ¼ 0, use the restricted model

E COKEð Þ ¼ F b1 þ b2PRATIOð Þ. The value of the likelihood ratio test statistic is
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19.55, which is larger than thex2
2ð Þ 0.95 percentile value 5.991.We reject the null hypothesis

that neither the Coke nor Pepsi display has an effect on the choice of Coke.

As in the linear regression model, we are interested in testing the overall significance of

the probit model. In the Coke choice example, the null hypothesis for this test is

H0 : b2 ¼ 0; b3 ¼ 0; b4 ¼ 0. The alternative hypothesis is that at least one of the parameters

is not zero. If the null hypothesis is true, the restricted model is E COKEð Þ ¼ F b1ð Þ. The
log-likelihood value for this restricted model is ln LR ¼ �783.8603, and the value of

the likelihood ratio test statistic is LR ¼ 145.8234. The test statistic has an asymptotic x2
3ð Þ

distribution if the null hypothesis is true. The 0.95 percentile value for this distribution is 7.815,

sowe reject thenull hypothesis that none of the explanatory variables help explain the choice of

Coke versus Pepsi. Also, like the linear regression model, this ‘‘overall’’ test is reported in

standard probit computer output.

16.3 Multinomial Logit

In probit and logit models the decision maker chooses between two alternatives. Clearly we

are often faced with choices involving more than two alternatives. These are called

multinomial choice situations. Examples include the following:

� If you are shopping for a laundry detergent, which one do you choose? Tide, Cheer,

Arm & Hammer, Wisk, and so on. The consumer is faced with a wide array of

alternatives. Marketing researchers relate these choices to prices of the alternatives,

advertising, and product characteristics.

� If you enroll in the business school, will you major in economics, marketing,

management, finance, or accounting?

� If you are going to a mall on a shopping spree, which mall will you go to, and why?

� When you graduated from high school, you had to choose between not going to

college and going to a private four-year college, a public four-year college, or a

two-year college. What factors led to your decision among these alternatives?

Itwould not take you long to come upwith other illustrations. In each of these cases, wewish

to relate the observed choice to a set of explanatory variables. More specifically, as in probit

and logit models, we wish to explain and predict the probability that an individual with a

certain set of characteristics chooses one of the alternatives. The estimation and interpret-

ation of such models is, in principle, similar to that in logit and probit models. The models

themselves go under the names multinomial logit, conditional logit, and multinomial

probit. We will discuss the most commonly used logit models.

16.3.1 MULTINOMIAL LOGIT CHOICE PROBABILITIES

Suppose that a decision maker must choose between several distinct alternatives. Let us focus

on a problem with J ¼ 3 alternatives. An example might be the choice facing a high school

graduate. Shall I attend a two-year college, a four-year college, or not go to college? The

factors affecting this choicemight include household income, the student’s high school grades,

family size, race, and gender, and the parents’ education. As in the logit and probit models, we

will try to explain the probability that the ith person will choose alternative j,

pij ¼ P½individual i chooses alternative j�
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In our example there are J ¼ 3 alternatives, denoted by j ¼ 1; 2, or 3. These numerical

values have no meaning, because the alternatives in general have no particular ordering and

are assigned arbitrarily. You can think of them as categories A, B, and C.

If we assume a single explanatory factor, xi, then, in the multinomial logit specification,

the probabilities of individual i choosing alternatives j ¼ 1; 2; 3 are

pi1 ¼ 1

1þ expðb12 þ b22xiÞ þ expðb13 þ b23xiÞ ; j ¼ 1 (16.19a)

pi2 ¼ expðb12 þ b22xiÞ
1þ expðb12 þ b22xiÞ þ expðb13 þ b23xiÞ ; j ¼ 2 (16.19b)

pi3 ¼ expðb13 þ b23xiÞ
1þ expðb12 þ b22xiÞ þ expðb13 þ b23xiÞ ; j ¼ 3 (16.19c)

The parametersb12 andb22 are specific to the second alternative, andb13 andb23 are specific

to the third alternative. The parameters specific to the first alternative are set to zero to solve

an identification problem and tomake the probabilities sum to one.3 Settingb11 ¼ b21 ¼ 0

leads to the 1 in the numerator of pi1 and the 1 in the denominator of each part of (16.19).

Specifically, the term that would be there is expðb11 þ b21xiÞ ¼ expð0þ 0xiÞ ¼ 1.

A distinguishing feature of the multinomial logit model in (16.19) is that there is a single

explanatory variable that describes the individual, not the alternatives facing the individual.

Such variables are called individual specific. To distinguish the alternatives, we give them

different parameter values. This situation is common in the social sciences, where surveys

record many characteristics of the individuals, and choices they made.

16.3.2 MAXIMUM LIKELIHOOD ESTIMATION

Let yi1, yi2, and yi3 be indicator variables representing the choice made by individual i. If

alternative 1 is selected, then yi1 ¼ 1, yi2 ¼ 0, and yi3 ¼ 0. If alternative 2 is selected, then

yi1 ¼ 0, yi2 ¼ 1, and yi3 ¼ 0. In thismodel each individualmust choose one, and only one, of

the available alternatives.

Estimation of this model is by maximum likelihood. Suppose that we observe three

individuals, who choose alternatives 1, 2, and 3, respectively. Assuming that their choices

are independent, then the probability of observing this outcome is

Pðy11 ¼ 1; y22 ¼ 1; y33 ¼ 1Þ ¼ p11	 p22	 p33

¼ 1

1þ expðb12 þ b22x1Þ þ expðb13 þ b23x1Þ

	 expðb12 þ b22x2Þ
1þ expðb12 þ b22x2Þ þ expðb13 þ b23x2Þ

	 expðb13 þ b23x3Þ
1þ expðb12 þ b22x3Þ þ expðb13 þ b23x3Þ

¼ Lðb12;b22;b13;b23Þ

3 Some software may choose the parameters of the last (Jth) alternative to set to zero, or perhaps the most

frequently chosen group. Check your software documentation.
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In the last line we recognize that this joint probability depends on the unknown parameters

and is in fact the likelihood function. Maximum likelihood estimation seeks those values of

the parameters that maximize the likelihood or, more specifically, the log-likelihood

function, which is easier to work with mathematically. In a real application the number

of individualswill be greater than three, and computer softwarewill be used tomaximize the

log-likelihood function numerically. While the task might look daunting, finding

the maximum likelihood estimates in this type of model is fairly simple.

16.3.3 POST-ESTIMATION ANALYSIS

Given thatwe can obtainmaximum likelihood estimates of the parameters, whichwe denote

as ~b12, ~b22, ~b13, and ~b23, what can we do then? The first thing we might do is estimate the

probability that an individual will choose alternative 1, 2, or 3. For the value of the

explanatory variable x0, we can calculate the predicted probabilities of each outcome being

selected using (16.19). For example, the probability that such an individual will choose

alternative 1 is

~p01 ¼ 1

1þ expð~b12 þ ~b22x0Þ þ expð~b13 þ ~b23x0Þ
The predicted probabilities for alternatives 2 and 3, ~p02 and ~p03, can similarly be obtained. If

we wanted to predict which alternative would be chosen, we might choose to predict that

alternative j will be chosen if ~p0 j is the maximum of the estimated probabilities.

Because the model is such a complicated nonlinear function of the parameters, it will not

surprise you to learn that the bs are not ‘‘slopes.’’ In these models themarginal effect is the

effect of a change in x, everything else held constant, on the probability that an individual

chooses alternative m ¼ 1; 2, or 3. It can be shown4 that

D pim

Dxi

����
all else constant

¼ qpim
qxi

¼ pim b2m � �
3

j¼1
b2 j pi j

� �
(16.20)

Recall that the model we are discussing has a single explanatory variable, xi, and that

b21 ¼ 0.

Alternatively, and somewhat more simply, the difference in probabilities can be

calculated for two specific values of xi. If xa and xb are two values of xi, then the estimated

change in probability of choosing alternative 1 ½m ¼ 1� when changing from xa to xb is

gD p1 ¼ ~pb1 � ~pa1

¼ 1

1þ expð~b12 þ ~b22xbÞ þ expð~b13 þ ~b23xbÞ
� 1

1þ expð~b12 þ ~b22xaÞ þ expð~b13 þ ~b23xaÞ

4One can quickly become overwhelmed by the mathematics when seeking references on this topic. Two

relatively friendly sources, with good examples, are Regression Models for Categorical and Limited Dependent

Variables by J. Scott Long (ThousandOaks, CA: Sage Publications, 1997) [see Chapter 6] andQuantitativeModels

in Marketing Research by Philip Hans Franses and Richard Paap (Cambridge University Press, 2001) [see Chapter

5]. At amuchmore advanced level, seeEconometric Analysis, 6th edition byWilliamGreene (Upper Saddle River,

NJ: Pearson Prentice Hall, 2008) [see Section 23.11.1].
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This approach is good if there are certain scenarios that you as a researcher have in mind as

typical or important cases, or if x is an indicator variable with only two values, xa ¼ 0 and

xb ¼ 1.

Another useful interpretive device is the probability ratio. It shows how many times

more likely category j is to be chosen relative to the first category and is given by

Pðyi ¼ jÞ
Pðyi ¼ 1Þ ¼

pi j

pi1
¼ expðb1 j þ b2 jxiÞ; j ¼ 2; 3 (16.21)

The effect on the probability ratio of changing the value of xi is given by the derivative

qð pi j= pi1Þ
qxi

¼ b2 j expðb1 j þ b2 jxiÞ; j ¼ 2; 3 (16.22)

The value of the exponential function expðb1 j þ b2 jxiÞ is always positive. Thus the sign of
b2 j tells uswhether a change in xiwillmake the jth categorymore or less likely relative to the

first category.

An interesting feature of the probability ratio (16.21) is that it does not depend on how

many alternatives there are in total. There is the implicit assumption in logit models that the

probability ratio between any pair of alternatives is independent of irrelevant alternatives

(IIA). This is a strong assumption, and if it is violated, multinomial logit may not be a good

modeling choice. It is especially likely to fail if several alternatives are similar. Tests for the IIA

assumption work by dropping one or more of the available options from the choice set and then

re-estimating themultinomialmodel. If the IIA assumption holds, then the estimates should not

change verymuch. A statistical comparison of the two sets of estimates, one set from themodel

with a full set of alternatives, and the other from themodel using a reduced set of alternatives, is

carried out using a Hausman contrast test proposed by Hausman and McFadden (1984).5

16.3.4 AN EXAMPLE

The National Education Longitudinal Study of 1988 (NELS:88) was the first nationally

representative longitudinal study of eighth-grade students in public and private schools in

the United States. It was sponsored by the National Center for Education Statistics. In 1988,

some 25,000 eighth-graders and their parents, teachers, and principals were surveyed. In

1990, these same students (who were then mostly 10th-graders, and some dropouts) and

their teachers, and principalswere surveyed again. In 1992, the second follow-up surveywas

conducted of students, mostly in the 12th grade, but dropouts, parents, teachers, school

administrators, and high school transcripts were also surveyed. The third follow-up was in

1994, after most students had graduated.6

We have taken a subset of the total data, namely those who stayed in the panel of data

through the third follow-up. On this group we have complete data on the individuals and

their households, high school grades, and test scores, as well as their post-secondary

education choices. In the file nels_small.dat we have 1,000 observations on students who

5 ‘‘Specification Tests for the Multinomial Logit Model,’’ Econometrica, 49, pp. 1219–1240. A brief

explanation of the test may be found in Greene (2008), op. cit., p. 847.
6 The study and data are summarized in National Education Longitudinal Study: 1988–1994, Descriptive

Summary Report With an Essay on Access and Choice in Post-Secondary Education, by Allen Sanderson, Bernard

Dugoni, Kenneth Rasinski, and John Taylor, C. Dennis Carroll project officer, NCES 96-175, National Center for

Education Statistics, March 1996.
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chose, upon graduating from high school, either no college (PSECHOICE ¼ 1), a two-year

college (PSECHOICE ¼ 2), or a four-year college (PSECHOICE ¼ 3). For illustration

purposes we focus on the explanatory variableGRADES, which is an index ranging from 1.0

(highest level, Aþ grade) to 13.0 (lowest level, F grade) and represents combined

performance in English, math, and social studies.

Of the 1,000 students, 22.2% selected not to attend a college upon graduation, 25.1%

selected to attend a two-year college, and 52.7% attended a four-year college. The average

value of GRADES is 6.53, with highest grade 1.74 and lowest grade 12.33. The estimated

values of the parameters and their standard errors are given in Table 16.2. We selected the

group who did not attend a college to be our base group, so that the parameters

b11 ¼ b21 ¼ 0.

Based on these estimates, what can we say? Recall that a larger numerical value of

GRADES represents a poorer academic performance. The parameter estimates for the

coefficients ofGRADES are negative and statistically significant. Using expression (16.22)

on the effect of a change in an explanatory variable on the probability ratio, thismeans that if

the value of GRADES increases, the probability that high school graduates will choose a

two-year or a four-year college goes down, relative to the probability of not attending

college. This is the anticipated effect, as we expect that a poorer academic performancewill

increase the odds of not attending college.

We can also compute the predicted probability of each type of college choice using

(16.19) for given values ofGRADES. In our sample the median value ofGRADES is 6.64,

and the top 5th percentile value is 2.635.7 What are the choice probabilities of students

with these grades? In Table 16.3 we show that the probability of choosing no college is

0.1810 for the student with median grades, but this probability is reduced to 0.0178 for

students with top grades. Similarly, the probability of choosing a two-year school is

0.2856 for the average student but is 0.0966 for the better student. Finally, the average

student has a 0.5334 chance of selecting a four-year college, but the better student has a

0.8857 chance of selecting a four-year college.

Themarginal effect of a change inGRADES on the choice probabilities can be calculated

using (16.20). The marginal effect again depends on particular values forGRADES, and we

report these in Table 16.3 for the median and 5th percentile students. An increase in

GRADES of one point (worse performance) increases the probabilities of choosing either no

college or a two-year college and reduces the probability of attending a four-year college.

The probability of attending a four-year college declines more for the average student than

Ta b l e 1 6 . 2 Maximum Likelihood Estimates of PSE Choice

Parameters Estimates Standard errors t-Statistics

b12 2.5064 0.4183 5.99

b22 �0:3088 0.0523 �5:91

b13 5.7699 0.4043 14.27

b23 �0:7062 0.0529 �13:34

7The 5th percentile value ofGRADES is given as 2.635which is halfway between observations 50 and 51 in this

1,000-observation data set. While this is a commonway to calculate the 5th percentile, it is not the only way. Since

0.05 	 1000 ¼ 50, some software will report the 50th value, after sorting according to increasing value, 2.63.

Others may take a weighted average of the 50th and 51st values, such as 0.95 	 2.63 þ 0.05 	 2.64 ¼ 2.6305.

Thanks to TomDoan (Estima) for noting this. Standard errors in Table 16.3 are computed via ‘‘the deltamethod,’’ in

a fashion similar to that described in Appendix 16A.
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for the top student, given the 1-point increase in GRADES. Note that for each value of

GRADES the sum of the predicted probabilities is one, and the sum of themarginal effects is

zero, except for rounding error. This is a feature of the multinomial logit specification.

As you can see there aremany interesting questionswe can address with this type ofmodel.

16.4 Conditional Logit

Suppose that a decision maker must choose between several distinct alternatives, just as in

the multinomial logit model. In a marketing context, suppose our decision is between three

types ðJ ¼ 3Þ of soft drinks, say Pepsi, 7-Up, and Coke Classic, in 2-liter bottles. Shoppers
will visit their supermarkets and make a choice, based on prices of the products and other

factors. With the advent of supermarket scanners at checkout, data on purchases (what

brand, how many units, and the price paid) are recorded. Of course we also know the prices

of the products that the consumer did not buy on a particular shopping occasion. The key

point is that if we collect data on soda purchases from a variety of supermarkets, over a

period of time, we observe consumer choices from the set of alternatives and we know the

prices facing the shopper on each trip to the supermarket.

Let yi1, yi2, and yi3 be indicator variables that indicate the choice made by individual i.

If alternative one (Pepsi) is selected, then yi1 ¼ 1, yi2 ¼ 0, and yi3 ¼ 0. If alternative two

(7-Up) is selected, then yi1 ¼ 0, yi2 ¼ 1, and yi3 ¼ 0. If alternative 3 (Coke) is selected,

then yi1 ¼ 0, yi2 ¼ 0, and yi3 ¼ 1. The price facing individual i for brand j is PRICEi j. That

is, the price of Pepsi, 7-Up, and Coke is potentially different for each customer who

purchases soda. Remember, different customers can shop at different supermarkets and at

different times. Variables like PRICE are individual- and alternative-specific because

they vary from individual to individual and are different for each choice the consumer

might make. This type of information is very different fromwhat we assumedwas available

in the multinomial logit model, where the explanatory variable xi was individual-specific;

it did not change across alternatives.

16.4.1 CONDITIONAL LOGIT CHOICE PROBABILITIES

Our objective is to understand the factors that lead a consumer to choose one alternative

over another. We construct a model for the probability that individual i chooses alternative j

pi j ¼ P½individual i chooses alternative j�

Ta b l e 1 6 . 3 Effects of Grades on Probability of PSE Choice

PSE Choice GRADES p̂ se p̂ð Þ Marginal effect se(ME)

No College 6.64 0.1810 0.0149 0.0841 0.0063

2.635 0.0178 0.0047 0.0116 0.0022

Two-Year College 6.64 0.2856 0.0161 0.0446 0.0076

2.635 0.0966 0.0160 0.0335 0.0024

Four-Year College 6.64 0.5334 0.0182 �0.1287 0.0095

2.635 0.8857 0.0174 �0.0451 0.0030
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The conditional logit model specifies these probabilities as

pi j ¼ expðb1 j þ b2PRICEi jÞ
expðb11 þ b2PRICEi1Þ þ expðb12 þ b2PRICEi2Þ þ expðb13 þ b2PRICEi3Þ

(16.23)

Note that unlike the probabilities for the multinomial logit model in (16.19), there is only

one parameter b2 relating the effect of each price to the choice probability pi j. We have also

included alternative specific constants (intercept terms). These cannot all be estimated, and

one must be set to zero. We will set b13 ¼ 0.

Estimation of the unknown parameters is by maximum likelihood. Suppose that we

observe three individuals,who choosealternativesone, two, and three, respectively.Assuming

that their choices are independent, then the probability of observing this outcome is

Pðy11 ¼ 1; y22 ¼ 1; y33 ¼ 1Þ ¼ p11	 p22	p33

¼ expðb11 þ b2PRICE11Þ
expðb11 þ b2PRICE11Þ þ expðb12 þ b2PRICE12Þ þ expðb2PRICE13Þ

	 expðb12 þ b2PRICE22Þ
expðb11 þ b2PRICE21Þ þ expðb12 þ b2PRICE22Þ þ expðb2PRICE23Þ

	 expðb2PRICE33Þ
expðb11 þ b2PRICE31Þ þ expðb12 þ b2PRICE32Þ þ expðb2PRICE33Þ

¼ Lðb11;b12;b2Þ

16.4.2 POST-ESTIMATION ANALYSIS

How a change in price affects the choice probability is different for ‘‘own price’’ changes

and ‘‘cross-price’’ changes. Specifically it can be shown that the own price effect is

q pi j
qPRICEi j

¼ pi jð1� pi jÞb2 (16.24)

The sign of b2 indicates the direction of the own price effect.

The change in probability of alternative j being selected if the price of alternative k

changes ðk 6¼ jÞ is
q pi j

qPRICEik

¼ � pi j pikb2 (16.25)

The cross-price effect is in the opposite direction of the own price effect.

An important feature of the conditional logit model is that the probability ratio between

alternatives j and k is

pi j

pik
¼ expðb1 j þ b2PRICEi jÞ

expðb1k þ b2PRICEikÞ ¼ exp½ðb1 j � b1kÞ þ b2ðPRICEi j � PRICEikÞ�

Theprobability ratio depends on the difference in prices, but not on the prices themselves.As

in themultinomial logit model this ratio does not depend on the total number of alternatives,
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and there is the implicit assumption of the independence of irrelevant alternatives (IIA). See

the discussion at the end of Section 16.3.3. Models that do not require the IIA assumption

have been developed, but they are difficult. These include the multinomial probit model,

which is based on the normal distribution, and the nested logit and mixed logit models.8

16.4.3 AN EXAMPLE

We observe 1,822 purchases, covering 104 weeks and 5 stores, in which a consumer

purchased 2-liter bottles of either Pepsi (34.6%), 7-Up (37.4%), or Coke Classic (28%).

These data are in the file cola.dat. In the sample the average price of Pepsi was $1.23, of

7-Up $1.12, and of Coke $1.21. We estimate the conditional logit model shown in (16.23),

and the estimates are shown in Table 16.4a.

We see that all the parameter estimates are significantly different from zero at a 10%

level of significance, and the sign of the coefficient of PRICE is negative. This means that a

rise in the price of an individual brandwill reduce the probability of its purchase, and the rise

in the price of a competitive brand will increase the probability of its purchase. Table 16.4b

contains the marginal effects of price changes on the probablity of choosing Pepsi. The

marginal effects are calculated using (16.24) and (16.25) with prices of Pepsi, 7-Up and

Coke set to $1.00, $1.25 and $1.10, respectively. The standard errors are calculated using the

deltamethod. Note two things about these estimates. First, they have the signswe anticipate.

An increase in the price of Pepsi is estimated to have a negative effect on the probability of

Pepsi purchase, while an increase in the price of either Coke or 7-Up increases the

probability that Pepsi will be selected. Secondly, these values are very large for changes

in probabilities because a ‘‘one-unit change’’ is $1, which then represents almost a 100%

change in price. For a 10 cent increase in the prices the marginal effects, standard errors and

interval estimate bounds should be multiplied by 0.10.

As an alternative to computingmarginal effects, we can compute specific probabilities at

givenvalues of the explanatory variables. For example, at the prices used for Table 16.4b, the

estimated probability of selecting Pepsi is then

p̂i1 ¼
exp ~b11 þ ~b2 	 1:00

� �
exp ~b11 þ ~b2 	 1:00

� �þ exp ~b12 þ ~b2 	 1:25
� �þ exp ~b2 	 1:10

� � ¼ 0:4832

8 For a brief description of these models at an advanced level see William Greene, Econometric Analysis, 6th

Edition by (Upper Saddle River, NJ: Pearson Prentice Hall, 2008), pp. 831–835.

Ta b l e 1 6 . 4 a Conditional Logit Parameter Estimates

Variable Estimate Standard error t-Statistic p-value

PRICE (b2) �2.2964 0.1377 �16.68 0.000

PEPSI (b11) 0.2832 0.0624 4.54 0.000

7-UP (b12) 0.1038 0.0625 1.66 0.096

Ta b l e 1 6 . 4 b Marginal Effect of Price on Probability of Pepsi Choice

PRICE Marginal effect Standard error 95% Interval estimate

COKE 0.3211 0.0254 [0.2712, 0.3709]

PEPSI �0.5734 0.0350 [�0.6421, �0.5048]

7-UP 0.2524 0.0142 [0.2246, 0.2802]
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The standard error for this predicted probability is 0.0154, which is computed via ‘‘the delta

method.’’ If we raise the price of Pepsi to $1.10, we estimate that the probability of its

purchase falls to 0.4263 (se ¼ 0.0135). If the price of Pepsi stays at $1.00 but we increase

the price of Coke by 15 cents, then we estimate that the probability of a consumer selecting

Pepsi rises by 0.0445 (se ¼ 0.0033). These numbers indicate to us the responsiveness of

brand choice to changes in prices, much like elasticities.

16.5 Ordered Choice Models

The choice options in multinomial and conditional logit models have no natural ordering or

arrangement. However, in some cases choices are ordered in a specific way. Examples

include the following:

1. Results of opinion surveys in which responses can be strongly in disagreement, in

disagreement, neutral, in agreement, or strongly in agreement.

2. Assignment of grades or work performance ratings. Students receive grades A, B, C,

D, and F, which are ordered on the basis of a teacher’s evaluation of their

performance. Employees are often given evaluations on scales such as Outstanding,

Very Good, Good, Fair, and Poor, which are similar in spirit.

3. Standard and Poor’s rates bonds as AAA, AA, A, BBB, and so on, as a judgment

about the credit worthiness of the company or country issuing a bond, and how risky

the investment might be.

4. Levels of employment as unemployed, part-time, or full-time.

Whenmodeling these types of outcomes, numerical values are assigned to the outcomes, but

the numerical values are ordinal and reflect only the ranking of the outcomes. In the first

example, we might assign a dependent variable y the values

y ¼

1 strongly disagree

2 disagree

3 neutral

4 agree

5 strongly agree

8>>>><
>>>>:

In Section 16.3 we considered the problem of choosing what type of college to attend after

graduating from high school as an illustration of a choice among unordered alternatives.

However, in this particular case there may in fact be natural ordering. We might rank the

possibilities as

y ¼
3 four-year college ðthe full college experienceÞ
2 two-year college ða partial college experienceÞ
1 no college

8<
: (16.26)

The usual linear regression model is not appropriate for such data, because in regression we

would treat the y-values as having some numerical meaning when they do not. In the next

section we discuss how probabilities of each choice might be modeled.

16.5.1 ORDINAL PROBIT CHOICE PROBABILITIES

When faced with a ranking problem, we develop a ‘‘sentiment’’ about how we feel

concerning the alternative choices, and the higher the sentiment, the more likely a
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higher-ranked alternative will be chosen. This sentiment is, of course, unobservable to the

econometrician. Unobservable variables that enter decisions are called latent variables,

and we will denote our sentiment toward the ranked alternatives by y�i , with the ‘‘star’’

reminding us that this variable is unobserved.

Microeconomics iswell describedas the ‘‘scienceof choice.’’ Economic theorywill suggest

that certain factors (observable variables) may affect howwe feel about the alternatives facing

us. As a concrete example, let us think about what factors might lead a high school graduate to

choose among the alternatives ‘‘no college,’’ ‘‘two-year college,’’ and ‘‘four-year college’’ as

described by the ordered choices in (16.26). Some factors that affect this choice are household

income, the student’s high school grades, how close a two- or four-year college is to the home,

whether parents had attended a four-year college, and so on. For simplicity, let us focus on the

single explanatory variable GRADES. The model is then

y�i ¼ bGRADESi þ ei

This model is not a regression model, because the dependent variable is unobservable.

Consequently it is sometimes called an index model. The error term is present for the usual

reasons. The choices we observe are based on a comparison of ‘‘sentiment’’ toward higher

education y�i relative to certain thresholds, as shown in Figure 16.2.

Because there are M ¼ 3 alternatives, there are M � 1 ¼ 2 thresholds m1 and m2, with

m1 <m2. The index model does not contain an intercept, because it would be exactly

collinear with the threshold variables. If sentiment toward higher education is in the lowest

category, then y�i � m1 and the alternative ‘‘no college’’ is chosen, if m1 < y�i � m2 then the

alternative ‘‘two-year college’’ is chosen, and if sentiment toward higher education is in the

highest category, then y�i >m2 and ‘‘four-year college’’ is chosen. That is,

y ¼
3 ðfour-year collegeÞ if y�i >m2

2 ðtwo-year collegeÞ if m1 < y�i � m2

1 ðno collegeÞ if y�i � m1

8><
>:

We are able to represent the probabilities of these outcomes if we assume a particular

probability distribution for y�i , or equivalently for the random error ei. If we assume that

the errors have the standard normal distribution, Nð0; 1Þ, an assumption that defines the

ordered probit model, then we can calculate the following:

Pðy ¼ 1Þ ¼ Pðy�i � m1Þ ¼ PðbGRADESi þ ei � m1Þ
¼ Pðei � m1 � bGRADESiÞ
¼ Fðm1 � bGRADESiÞ

µ 1 µ 2

–∞ +∞
*
iy

iy  = 1 (no college) yi = 2 (two-year college) yi = 3 (four-year college)

FIGURE 16.2 Ordinal choices relative to thresholds.
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Pðy ¼ 2Þ ¼ Pðm1 < y�i � m2Þ ¼ Pðm1 <bGRADESi þ ei � m2Þ
¼ Pðm1 � bGRADESi < ei � m2 � bGRADESiÞ
¼ Fðm2 � bGRADESiÞ �Fðm1 � bGRADESiÞ

and the probability that y ¼ 3 is

Pðy ¼ 3Þ ¼ Pðy�i >m2Þ ¼ PðbGRADESi þ ei >m2Þ
¼ Pðei >m2 � bGRADESiÞ
¼ 1�Fðm2 � bGRADESiÞ

16.5.2 ESTIMATION AND INTERPRETATION

Estimation, as with previous choice models, is by maximum likelihood. If we observe a

random sample ofN ¼ 3 individuals, with the first not going to college (y1 ¼ 1), the second

attending a two-year college ðy2 ¼ 2Þ, and the third attending a four-year college ðy3 ¼ 3Þ,
then the likelihood function is

Lðb;m1;m2Þ ¼ Pðy1 ¼ 1Þ	Pðy2 ¼ 2Þ	Pðy3 ¼ 3Þ

Note that the probabilities depend on the unknown parameters m1 and m2 as well as the

index function parameter b. These parameters are obtained by maximizing the log-

likelihood function using numerical methods. Econometric software includes options for

both ordered probit, which depends on the errors being standard normal, and ordered

logit, which depends on the assumption that the random errors follow a logistic

distribution. Most economists will use the normality assumption, but many other social

scientists use the logistic. In the end, there is little difference between the results.

The types of questions we can answer with this model are the following:

1. What is the probability that a high school graduate with GRADES ¼ 2:5 (on a

13-point scale, with one being the highest) will attend a two-year college? The

answer is obtained by plugging in the specific value of GRADES into the predicted

probability based on the maximum likelihood estimates of the parameters,

P̂ðy ¼ 2jGRADES ¼ 2:5Þ ¼ Fð~m2 � ~b	2:5Þ �Fð~m1 � ~b	2:5Þ

2. What is the difference in probability of attending a four-year college for two

students, one with GRADES ¼ 2:5 and another with GRADES ¼ 4:5? The differ-

ence in the probabilities is calculated directly as

P̂ðy ¼ 3jGRADES ¼ 4:5Þ �P̂ðy ¼ 3jGRADES ¼ 2:5Þ
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3. If we treat GRADES as a continuous variable, what is the marginal effect on the

probability of each outcome, given a one-unit change inGRADES? These derivatives

are

qPðy ¼ 1Þ
qGRADES

¼ �fðm1 � bGRADESÞ	b

qPðy ¼ 2Þ
qGRADES

¼ ½fðm1 � bGRADESÞ � fðm2 � bGRADESÞ�	b

qPðy ¼ 3Þ
qGRADES

¼ fðm2 � bGRADESÞ	b

In these expressions ‘‘fð�Þ’’ denotes the probability density function of a standard normal

distribution, and its values are always positive. Consequently the sign of the parameter b
is opposite the direction of the marginal effect for the lowest category, but it indicates the

direction of the marginal effect for the highest category. The direction of the marginal

effect for the middle category goes one way or the other, depending on the sign of the

difference in brackets.

There are a variety of other devices that can be used to analyze the outcomes of ordered

choicemodels, including some useful graphics. Formore on these see (from a social science

perspective) Regression Models for Categorical and Limited Dependent Variables by

J. Scott Long (Sage Publications, 1997, Chapter 5) or (from a marketing perspective)

Quantitative Models in Marketing Research by Philip Hans Franses and Richard Paap

(Cambridge University Press, 2001, Chapter 6).

16.5.3 AN EXAMPLE

To illustrate, we use the college choice data introduced in Section 16.3 and contained in the

file nels_small.dat. We treat PSECHOICE as an ordered variable with 1 representing

the least favored alternative (no college) and 3 denoting the most favored alternative

(four-year college). The estimation results are in Table 16.5.

The estimated coefficient of GRADES is negative, indicating that the probability of

attending a four-year college goes down when GRADES increase (indicating a worse

performance), and the probability of the lowest ranked choice, attending no college,

increases. Let us examine the marginal effects of an increase in GRADES on attending

a four-year college. For a student with median grades (6.64) the marginal effect is�0.1221,

and for a student in the 5th percentile (2.635) the marginal effect is �0.0538. These are

similar in magnitude to the marginal effects shown in Table 16.3.

Ta b l e 1 6 . 5 Ordered Probit Parameter Estimates

Parameters Estimates Standard errors

b �0:3066 0.0191

m1 �2:9456 0.1468

m2 �2:0900 0.1358
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16.6 Models for Count Data

When the dependent variable in a regression model is a count of the number of occurrences

of an event, the outcome variable is y ¼ 0; 1; 2; 3; . . . These numbers are actual counts, and

thus different from the ordinal numbers of the previous section. Examples include the

following:

� The number of trips to a physician a person makes during a year.

� The number of fishing trips taken by a person during the previous year.

� The number of children in a household.

� The number of automobile accidents at a particular intersection during a month.

� The number of televisions in a household.

� The number of alcoholic drinks a college student takes in a week.

While we are again interested in explaining and predicting probabilities, such as the

probability that an individual will take two or more trips to the doctor during a year,

the probability distribution we use as a foundation is the Poisson, not the normal or the

logistic. If Y is a Poisson random variable, then its probability function is

f ðyÞ ¼ PðY ¼ yÞ ¼ e�lly

y!
; y ¼ 0; 1; 2; . . . (16.27)

The factorial (!) term y! ¼ y	ðy� 1Þ	ðy� 2Þ	 � � � 	1. This probability function has one

parameter, l, which is the mean (and variance) of Y. That is, EðYÞ ¼ varðYÞ ¼ l. In a

regression model, we try to explain the behavior of EðYÞ as a function of some explanatory

variables. We do the same here, keeping the value of EðYÞ� 0 by defining

EðYÞ ¼ l ¼ expðb1 þ b2xÞ (16.28)

This choice defines the Poisson regression model for count data.

16.6.1 MAXIMUM LIKELIHOOD ESTIMATION

The parameters b1 and b2 can be estimated by maximum likelihood. Suppose we randomly

selectN ¼ 3 individuals from a population and observe that their counts are y1 ¼ 0, y2 ¼ 2,

and y3 ¼ 2, indicating 0, 2, and 2 occurrences of the event for these three individuals. Recall

that the likelihood function is the joint probability function of the observed data, interpreted

as a function of the unknown parameters. That is,

Lðb1;b2Þ ¼ PðY ¼ 0Þ	PðY ¼ 2Þ	PðY ¼ 2Þ

This product of functions like (16.27) will be very complicated and difficult to maximize.

However, in practice, maximum likelihood estimation is carried out by maximizing the

logarithm of the likelihood function, or

lnLðb1;b2Þ ¼ lnPðY ¼ 0Þ þ lnPðY ¼ 2Þ þ lnPðY ¼ 2Þ
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Using (16.28) for l, the log of the probability function is

ln½PðY ¼ yÞ� ¼ ln
e�lly

y!

� �
¼ �lþ y lnðlÞ � lnðy!Þ

¼ �expðb1 þ b2xÞ þ y	ðb1 þ b2xÞ � lnðy!Þ

Then the log-likelihood function, given a sample of N observations, becomes

ln Lðb1;b2Þ ¼ �
N

i¼1
f�expðb1 þ b2xiÞ þ yi	ðb1 þ b2xiÞ � lnðyi!Þg

This log-likelihood function is a function of only b1 and b2 once we substitute in the data

values ðyi; xiÞ. The log-likelihood function itself is still a nonlinear function of the unknown
parameters, and themaximum likelihood estimatesmust be obtained by numericalmethods.

Econometric software has options that allow for the maximum likelihood estimation of

count models with the click of a button.

16.6.2 INTERPRETATION IN THE POISSON REGRESSION MODEL

As in other modeling situations, we would like to use the estimated model to predict

outcomes, determine themarginal effect of a change in an explanatory variable on themean

of the dependent variable, and test the significance of coefficients.

Prediction of the conditional mean of y is straightforward. Given the maximum like-

lihood estimates ~b1 and ~b2, and given a value of the explanatory variable x0,

bEðy0Þ ¼ ~l0 ¼ expð~b1 þ ~b2x0Þ

This value is an estimate of the expected number of occurrences observed if x takes the

value x0. The probability of a particular number of occurrences can be estimated by inserting

the estimated conditional mean into the probability function, as

bPðY ¼ yÞ ¼ expð�~l0Þ~ly0
y!

; y ¼ 0; 1; 2; . . .

Themarginal effect of a change in a continuous variable x in the Poisson regressionmodel is

not simply given by the parameter, because the conditional mean model is a nonlinear

function of the parameters. Using our specification that the conditional mean is given by

EðyiÞ ¼ li ¼ expðb1 þ b2xiÞ, and using rules for derivatives of exponential functions, we

obtain the marginal effect

qEðyiÞ
qxi

¼ lib2 (16.29)

To estimate this marginal effect, replace the parameters by their maximum likelihood

estimates and select a value for x. Themarginal effect is different depending on the value of x

chosen. A useful fact about the Poisson model is that the conditional mean EðyiÞ ¼ li ¼
expðb1 þ b2xiÞ is always positive, because the exponential function is always positive.Thus
the direction of the marginal effect can be determined from the sign of the coefficient b2.
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Equation (16.29) can be expressed as a percentage, which can be useful:

%DEðyÞ
Dxi

¼ 100
qEðyiÞ=EðyiÞ

qxi
¼ 100b2%

If x is not transformed, then a one-unit change in x leads to 100b2% change in the conditional

mean.

Suppose the conditionalmean function contains a indicator variable, howdowe calculate

its effect? If EðyiÞ ¼ li ¼ expðb1 þ b2xi þ dDiÞ, we can examine the conditional expec-

tation when D ¼ 0 and when D ¼ 1.

EðyijDi ¼ 0Þ ¼ expðb1 þ b2xiÞ

EðyijDi ¼ 1Þ ¼ expðb1 þ b2xi þ dÞ

Then, the percentage change in the conditional mean is

100
expðb1 þ b2xi þ dÞ � expðb1 þ b2xiÞ

expðb1 þ b2xiÞ
� �

% ¼ 100½ed � 1�%

This is identical to the expression we obtained for the effect of an indicator variable in a log-

linear model. See Section 7.3.

Finally, hypothesis testing can be carried out using standard methods. The maximum

likelihood estimators are asymptotically normalwith a variance of a known form. The actual

expression for the variance is complicated and involves matrix expressions, so we will not

report the formula here.9 Econometric software has the variance expressions encoded, and

along with parameter estimates, it will provide standard errors, t-statistics, and p-values,

which are used as always.

16.6.3 AN EXAMPLE

The Olympic Games are a subject of great interest to the global community. Rightly or

wrongly, the attention focuses on the number of medals won by each country. Andrew

Bernard andMeghan Busse10 examined the effect of a country’s economic resources on the

number of medals won. The data are in the file olympics.dat. Using the data from 1988, we

estimate a Poisson regression explaining the number of medals won (MEDALTOT) as a

function of the logarithms of population and gross domestic product (1995 dollars). These

results are given in Table 16.6.

Both the size and the wealth of the country have a positive and significant effect on

the number of medals won. Using these estimates, the estimated conditional mean number

of medals won for the country with median population (5,921,270) and median GDP

ð5:51Eþ 09Þ is 0.8634. If we keep GDP at the median value but raise population to the 75th

percentile ð1:75Eþ 07Þ, the estimated mean is 1.0495. And if we keep population at the

9 See J. Scott Long,RegressionModels for Categorical and LimitedDependent Variables (ThousandOaks, CA:

Sage Publications, 1997), Chapter 8. A much more advanced and specialized reference is Regression Analysis of

Count Data by A. Colin Cameron and Pravin K. Trivedi (Cambridge, UK: Cambridge University Press, 1998).
10 ‘‘Who Wins the Olympic Games: Economic Resources and Medal Totals,’’ The Review of Economics and

Statistics, 2004, 86(1), 413–417. The data were kindly provided by Andrew Bernard.
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median but raise GDP to the 75th percentile ð5:18Eþ 10Þ, the estimated mean number of

medals is 3.1432. Alternatively, we can estimate the mean outcome for a specific county. In

1988 the population in the United Kingdom was 5:72Eþ 07 and its GDP was 1:01Eþ 12.

The estimated mean number of medals was 26.2131. They in fact won a total of 24 medals.

16.7 Limited Dependent Variables

In the previous sections of this chapter we reviewed choice behavior models that have

dependent variables that are discrete variables. When a model has a discrete dependent

variable, the usual regression methods we have studied must be modified. In this section we

present another case in which standard least squares estimation of a regression model fails.

16.7.1 CENSORED DATA

An example that illustrates the situation is based on Thomas Mroz’s (1987) study of

married women’s labor force participation and wages. The data are in the file mroz.dat

and consist of 753 observations on married women. Of these 325 did not work outside

the home, and thus had no hours worked and no reported wages. The histogram of

hours worked is shown in Figure 16.3. The histogram shows the large fraction of women
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FIGURE 16.3 Histogram of wife’s hours of work in 1975.

Ta b l e 1 6 . 6 Poisson Regression Estimates

Variable Coefficient Std. Error t-Statistic p-Value

INTERCEPT �15:8875 0.5118 �31:0420 0.0000

ln(POP) 0.1800 0.0323 5.5773 0.0000

ln(GDP) 0.5766 0.0247 23.3238 0.0000
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who did not enter the labor force. This is an example of censored data, meaning that a

substantial fraction of the observations on the dependent variable take a limit value,

which is zero in the case of market hours worked by married women. Other natural

examples include variables like charitable giving or damage caused by a hurricane. In

these examples a sample of households will yield a large number of households who give

nothing or who have no hurricane damage.

In Section 2.2 we explained the type of data generation process for which least squares

regression can be successful. Refer back to Figure 2.3. There we show the probability density

functions for the dependent variable y, at different x-values, centered on the regression function

EðyjxÞ ¼ b1 þ b2x (16.30)

This leads to sample data being scattered along the regression function. Least squares

regression works by fitting a line through the center of a data scatter, and in this case such a

strategy works fine, because the true regression function also fits through the middle of the

data scatter.

Unfortunately, in situations like we have with the supply of labor by married women,

when a substantial number of observations have dependent variable values taking the limit

value of zero, the regression functionEðyjxÞ is no longer given by (16.30). InsteadEðyjxÞ is a
complicated nonlinear function of the regression parameters b1 and b2, the error variance

s2, and x. The least squares estimators of the regression parameters obtained by running a

regression of y on x are biased and inconsistent—least squares estimation fails.

If having all the limit observations present is the cause of the problem, then why not drop

themout? This does notwork, either. The regression function becomes the expected value of

y, conditional on the y-values being positive, or Eðyjx; y> 0Þ. Once again it can be shown

that this regression function is nonlinear and not equal to (16.30).

16.7.2 A MONTE CARLO EXPERIMENT

Let us illustrate these concepts using a simulated sample of data (tobit.dat). Using

simulation is an excellent way to learn econometrics. It requires us to understand how

the data are obtained under a particular set of assumptions.11 In this example we give the

parameters the specific valuesb1 ¼ �9 andb2 ¼ 1. The observed sample is obtainedwithin

the framework of an index or latent variablemodel, similar to the one discussed in Section

16.5 on the ordered probit model. Let the latent variable be

y�i ¼ b1 þ b2xi þ ei ¼ �9þ xi þ ei (16.31)

with the error term assumed to have a normal distribution, ei �Nð0;s2 ¼ 16Þ. The observable
outcome yi takes the value zero if y�i � 0, but yi ¼ y�i if y

�
i > 0. In the simulation we

� Create N ¼ 200 random values of xi that are spread evenly (or uniformly) over the

interval [0, 20]. We will keep these fixed in further simulations.

� Obtain N ¼ 200 random values ei from a normal distribution with mean zero and

variance 16.

11 PeterKennedy is an advocate of usingMonteCarlo experiments in teaching econometrics. See ‘‘UsingMonte

Carlo Studies for Teaching Econometrics,’’ in W. Becker and M. Watts (Eds.), Teaching Undergraduate

Economics: Alternatives to Chalk and Talk, Cheltenham, UK: Edward Elgar, 1998, pp. 141–159; see also Peter

Kennedy (2003) A Guide to Econometrics, 5th edition, Cambridge, MA: MIT Press, pp. 24–27.
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� Create N ¼ 200 values of the latent variable y�i ¼ �9þ xi þ ei.

� Obtain N ¼ 200 values of the observed yi using

yi ¼
0 if y�i � 0

y�i if y�i > 0

(

The 200 observations obtained this way constitute a sample that is censored with a lower

limit of zero. The latent data are plotted in Figure 16.4. In this figure the line labeled Eðy�Þ
has intercept �9 and slope one. The values of the latent variable y�i are scattered along this
regression function. If we observed these data we could estimate the parameters using the

least squares principle, by fitting a line through the center of the data.

However, we do not observe all the latent data. When the values of y�i are zero or less, we
observe yi ¼ 0.We observe y�i when they are positive. These observable data, alongwith the
fitted least squares regression, are shown in Figure 16.5.

The least squares principlewill fail to estimate b1 ¼ �9 andb2 ¼ 1, because the observed

data do not fall along the underlying regression function Eðy�jxÞ ¼ b1 þ b2x ¼ �9þ x. In

Figure 16.5we show the estimated regression function for the 200 observed y-values, which is

given by

ŷ ¼ �2:1477þ 0:5161x
ðseÞ ð0:3706Þ ð0:0326Þ (16.32a)

If we restrict our sample to include only the 100 positive y-values, the fitted regression is

ŷ ¼ �3:1399þ 0:6388x
ðseÞ ð1:2055Þ ð0:0827Þ (16.32b)

In a Monte Carlo simulation we repeat this process of creating N ¼ 200 observations, and

applying least squares estimation, many times. This is analogous to ‘‘repeated sampling’’ in

the context of experimental statistics. In this case we repeat the process NSAM ¼ 1; 000

E(y*)
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FIGURE 16.4 Uncensored sample data and regression function.
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times, keeping the x-values fixed and drawing new error values e, recording each time the

values of the estimates we obtain. At the end, we can compute the average values of

the estimates, recorded in tobitmc.dat, which is the Monte Carlo ‘‘expected value,’’

EMCðbkÞ ¼ 1

NSAM
�

NSAM

m¼1
bkðmÞ (16.33)

where bkðmÞ is the estimate of bk in the mth Monte Carlo sample.

If we apply the least squares estimation procedure to all the observed censored data

(i.e., including observations y ¼ 0), the average value of the estimated intercept

is �2.0465 and the average value of the estimated slope is 0.5434. If we discard the

y ¼ 0 observations and apply least squares to just the positive y observations, these

averages are�1.9194 and 0.5854, respectively. The least squares estimates are biased by

a substantial amount, compared to the true valuesb1 ¼ �9 andb2 ¼ 1. This bias will not

disappear, no matter how large the sample size we consider, because the least squares

estimators are inconsistent when data are censored.

16.7.3 MAXIMUM LIKELIHOOD ESTIMATION

If the dependent variable is censored, having a lower limit and/or an upper limit, then the

least squares estimators of the regression parameters are biased and inconsistent. In this case

we can apply an alternative estimation procedure, which is called Tobit in honor of James

Tobin, winner of the 1981 Nobel Prize in Economics, who first studied this model. Tobit is a

maximum likelihood procedure that recognizes that we have data of two sorts, the limit

observations ðy ¼ 0Þ and the nonlimit observations ðy> 0Þ. The two types of observations
that we observe, the limit observations and those that are positive, are generated by the latent

variable y� crossing the zero threshold or not crossing that threshold. The (probit)
probability that y ¼ 0 is

Pðy ¼ 0Þ ¼ Pðy� � 0Þ ¼ 1�F½ðb1 þ b2xÞ=s�

Fitted LS
E(y*)

20181614121086420
�10

�6

�2

 2

6

10

14

18

FIGURE 16.5 Censored sample data, and latent regression function and least squares fitted line.
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If we observe a positive value of yi, then the term that enters the likelihood function is

the normal probability density function with mean b1 þ b2xi and variance s2. The full

likelihood function is the product of the probabilities that the limit observations occur

times the probability density functions for all the positive, nonlimit, observations.

Using ‘‘large pi’’ notation to denote multiplication, the likelihood function is

Lðb1;b2;sÞ ¼
Y
yi¼0

1�F
b1 þ b2xi

s

	 
� �

	
Y
yi > 0

ð2ps2Þ�1
2exp � 1

2s2
ðyi � b1 � b2xiÞ2

	 
� �

This complicated-looking likelihood function ismaximized numerically using econometric

software.12 The maximum likelihood estimator is consistent and asymptotically normal,

with a known covariance matrix.13

Using the artificial data in tobit.dat, we obtain the fitted values

~y ¼ �10:2773þ 1:0487x
ðseÞ ð1:0970Þ ð0:0790Þ (16.34)

These estimates are much closer to the true values b1 ¼ �9 and b2 ¼ 1, especially when

compared to the least squares estimates in (16.32). Maximum likelihood estimation also

yields an estimate of s (true value equals 4) of 3.5756 with a standard error of 0.2610.

The Monte Carlo simulation experiment results from Section 16.7.2 are summarized in

Table 16.7. The column ‘‘MC average’’ reports the average estimates over the 1,000 Monte

Carlo samples, as calculated using (16.33). While the least squares estimates based on all the

data and the least squares estimates based only on data corresponding to positive y-values are

not close to the true values, the Tobit estimates are very close. The standard errors reported in

12 Tobit requires data on both the limit values of y ¼ 0, and also the nonlimit values for which y> 0. Sometimes

it is possible that we do not observe the limit values; in such a case the sample is said to be truncated. In this case

Tobit does not apply; however, there is a similar maximum likelihood procedure, called truncated regression, for

such a case. An advanced reference is William Greene (2008) Econometric Analysis, 6th edition, Pearson Prentice

Hall, Section 24.2.3.
13 The asymptotic covariance matrix can be found in Introduction to the Theory and Practice of Econometrics,

2nd edition, by George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and Tsoung-Chao Lee

(John Wiley and Sons, 1988), Section 19.3.2.

Ta b l e 1 6 . 7 Censored Data Monte Carlo Results

Estimator Parameter MC average Std. Dev.

Least squares b1 �2:0465 0.2238

b2 0.5434 0.0351

s 2.9324 0.1675

Least squares b1 �1:9194 0.9419

y > 0 b2 0.5854 0.0739

s 3.3282 0.2335

Tobit b1 �9:0600 1.0248

b2 1.0039 0.0776

s 3.9813 0.2799
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(16.34) arevalid in large samples, andwecan see that they do reflect the actual variability of the

estimates, as measured by their sample standard deviation, labeled ‘‘Std. Dev.’’ in Table 16.7.

A word of caution is in order about commercial software packages: There are many

algorithms available for obtaining maximum likelihood estimates, and different packages

use different ones, which may lead to slight differences (in perhaps the third or fourth

decimal) in the parameter estimates and their standard errors. When carrying out important

research, it is a good tip to confirm empirical results with a second software package, just to

be sure they give essentially the same numbers.

16.7.4 TOBIT MODEL INTERPRETATION

In the Tobit model the parameters b1 and b2 are the intercept and slope of the latent variable

model (16.31). In practice we are interested in the marginal effect of a change in x on either

the regression function of the observed dataEðyjxÞ or the regression function conditional on
y> 0, Eðyjx; y> 0Þ. As we indicated earlier, these functions are not straight lines. Their

graphs are shown in Figure 16.6. The slope of each changes at each value of x. The slope of

EðyjxÞ has a relatively simple form, being a scale factor times the parameter value; it is

qEðyjxÞ
qx

¼ b2F
b1 þ b2x

s

	 

(16.35)

whereF is the cumulativedistribution function (cdf ) of the standardnormal randomvariable

that is evaluated at the estimates and a particular x-value. Because the cdf values are positive,

the sign of the coefficient tells the direction of the marginal effect, but the magnitude of the

marginal effect depends on both the coefficient and the cdf. If b2 > 0, as x increases, the cdf

functionapproachesone, and the slopeof the regression functionapproaches that of the latent

variable model, as is shown in Figure 16.6. Themarginal effect can be decomposed into two

factors called the ‘‘McDonald-Moffit’’ decomposition:

@E yjxð Þ
@x

¼ Prob y > 0ð Þ @E yjx; y > 0ð Þ
@x

þ E yjx; y > 0ð Þ @Prob y > 0ð Þ
@x

E(y*)

E(y)
E(y|y > 0)

20181614121086420
–10

–6

–2

 2

6

10

14

18

FIGURE 16.6 Censored sample data, and regression functions for observed and positive y-values.
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The first factor accounts for the marginal effect of a change in x for the portion of the

population whose y-data is observed already. The second factor accounts for changes in the

proportion of the population who switch from the y-unobserved category to the y-observed

category when x changes.14

16.7.5 AN EXAMPLE

If we wish to estimate a model explaining the market hours worked by a married woman,

what explanatory variables would we include? Factors that would tend to pull a woman into

the labor force are her education and her prior labor market experience. Factors that may

reduce her incentive to work are her age and the presence of young children in the home.15

Thus, we might propose the regression model

HOURS ¼ b1 þ b2EDUC þ b3EXPERþ b4AGE þ b4KIDSL6 þ e (16.36)

where KIDSL6 is the number of children less than six years old in the household. Using

Mroz’s data, we obtain the estimates shown in Table 16.8. As previously argued, the least

squares estimates are unreliable because the least squares estimator is both biased and

inconsistent. The Tobit estimates have the anticipated signs and are all statistically

significant at the 0.01 level. To compute the scale factor required for calculation of the

marginal effects, wemust choose values of the explanatory variables.We choose the sample

means for EDUC (12.29), EXPER (10.63), and AGE (42.54) and assume one small child at

home (rather than the mean value of 0.24). The calculated scale factor is ~F ¼ 0:3638. Thus
the marginal effect on observed hours of work of another year of education is

qEðHOURSÞ
qEDUC

¼ ~b2
~F ¼ 73:29	0:3638 ¼ 26:34

That is, we estimate that another year of education will increase a wife’s hours of work

by about 26 hours, conditional upon the assumed values of the explanatory variables.

16.7.6 SAMPLE SELECTION

If you consult an econometrician concerning an estimation problem, the first question

you will usually hear is, ‘‘How were the data obtained?’’ If the data are obtained by

random sampling, then classic regression methods, such as least squares, work well.

However, if the data are obtained by a sampling procedure that is not random, then

standard procedures do not work well. Economists regularly face such data problems. A

famous illustration comes from labor economics. If we wish to study the determinants of

the wages of married women, we face a sample selection problem. If we collect data on

married women, and ask them what wage rate they earn, many will respond that the

question is not relevant since they are homemakers. We only observe data on market

wages when the woman chooses to enter the workforce. One strategy is to ignore the

14 J. F. McDonald and R. A. Moffit (1980) ‘‘The Uses of Tobit Analysis,’’ Review of Economics and Statistics,

62, 318–321. Jeffrey M. Wooldridge (2009) Introductory Econometrics: A Modern Approach, 4th edition, South-

Western Cengage Learning, Section 17.2 has a relatively friendly presentation.
15 This equation does not includewages, which is jointly determined with hours. Themodel we proposemay be

considered a reduced-form equation. See Section 11.2.
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women who are homemakers, omit them from the sample, then use least squares to

estimate awage equation for thosewhowork. This strategy fails, the reason for the failure

being that our sample is not a random sample. The data we observe are ‘‘selected’’ by a

systematic process for which we do not account.

A solution to this problem is a technique calledHeckit, named after its developer, Nobel

Prize winning econometrician James Heckman. This simple procedure uses two estimation

steps. In the context of the problem of estimating the wage equation for married women, a

probit model is first estimated explaining why a woman is in the labor force or not. In the

second stage, a least squares regression is estimated relating the wage of a working woman

to education, experience, and so on, and a variable called the ‘‘inverseMills ratio,’’ or IMR.

The IMR is created from the first step probit estimation and accounts for the fact that the

observed sample of working women is not random.

16.7.6a The Econometric Model

The econometric model describing the situation is composed of two equations. The first is

the selection equation that determines whether the variable of interest is observed. The

sample consists of N observations; however, the variable of interest is observed only for

n<N of these. The selection equation is expressed in terms of a latent variable z�i that

depends on one or more explanatory variables wi, and is given by

z�i ¼ g1 þ g2wi þ ui; i ¼ 1; . . . ;N (16.37)

For simplicity we will include only one explanatory variable in the selection equation. The

latent variable is not observed, but we do observe the indicator variable

zi ¼
1 z�i > 0

0 otherwise

(
(16.38)

Ta b l e 1 6 . 8 Estimates of Labor Supply Function

Estimator Variable Estimate Std. Error

Least squares INTERCEPT 1335.31 235.65

EDUC 27.09 12.24

EXPER 48.04 3.64

AGE � 31.31 3.96

KIDSL6 �447.85 58.41

Least squares INTERCEPT 1829.75 292.54

y > 0 EDUC �16.46 15.58

EXPER 33.94 5.01

AGE �17.11 5.46

KIDSL6 �305.31 96.45

Tobit INTERCEPT 1349.88 386.30

EDUC 73.29 20.47

EXPER 80.54 6.29

AGE �60.77 6.89

KIDSL6 �918.92 111.66

SIGMA 1133.70 42.06
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The second equation is the linear model of interest. It is

yi ¼ b1 þ b2xi þ ei; i ¼ 1; . . . ; n; N > n (16.39)

A selectivity problem arises when yi is observed only when zi ¼ 1 and if the errors of the

two equations are correlated. In such a situation the usual least squares estimators of b1 and

b2 are biased and inconsistent.

Consistent estimators are based on the conditional regression function16

Eðyijz�i > 0Þ ¼ b1 þ b2xi þ blli; i ¼ 1; . . . ; n (16.40)

where the additional variable li is the ‘‘inverse Mills ratio.’’ It is equal to

li ¼ fðg1 þ g2wiÞ
Fðg1 þ g2wiÞ (16.41)

where, as usual, fð�Þ denotes the standard normal probability density function andFð�Þ
denotes the cumulative distribution function for a standard normal random variable.

While the value of li is not known, the parameters g1 and g2 can be estimated using a

probit model, based on the observed binary outcome zi in (16.38). Then the estimated

IMR

~li ¼ fð~g1 þ ~g2wiÞ
Fð~g1 þ ~g2wiÞ

is inserted into the regression equation as an extra explanatory variable, yielding the

estimating equation

yi ¼ b1 þ b2xi þ bl
~li þ vi; i ¼ 1; . . . ; n (16.42)

Least squares estimation of this equation yields consistent estimators of b1 and b2. Aword

of caution, however, as the least squares estimator is inefficient relative to the maximum

likelihood estimator, and the usual standard errors and t-statistics produced after estimation

of (16.42) are incorrect. Proper estimation of standard errors requires the use of specialized

software for the ‘‘Heckit’’ model.

16.7.6b Heckit Example: Wages of Married Women

As an example we will reconsider the analysis of wages earned by married women

using the Mroz (1987) data, mroz.dat. In the sample of 753 married women, 428 have

market employment and nonzero earnings. First, let us estimate a simple wage equation,

explaining ln(WAGE) as a function of the woman’s education, EDUC, and years of

market work experience (EXPER), using the 428 women who have positive wages. The

result is

lnðWAGEÞ ¼ �0:4002þ 0:1095EDUC þ 0:0157EXPER R2 ¼ 0:1484

ðtÞ ð�2:10Þ ð7:73Þ ð3:90Þ (16.43)

16 Further explanation of this material requires understanding the truncated normal distribution, which is

beyond the scope of this book. See William Greene (2008) Econometric Analysis, 6th edition, Pearson Prentice

Hall, Chapter 24.5.
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The estimated return to education is about 11%, and the estimated coefficients of both

education and experience are statistically significant.

The Heckit procedure starts by estimating a probit model of labor force participation.

As explanatory variables we use the woman’s age, her years of education, an indicator

variable for whether she has children, and the marginal tax rate that she would pay upon

earnings if employed. The estimated probit model is

bPðLFP ¼ 1Þ ¼ Fð1:1923� 0:0206AGE þ 0:0838EDUC � 0:3139KIDS� 1:3939MTRÞ
ðtÞ ð�2:93Þ ð3:61Þ ð�2:54Þ ð�2:26Þ

As expected, the effects of age, the presence of children, and the prospects of higher taxes

significantly reduce the probability that a woman will join the labor force, while

education increases it. Using the estimated coefficients we compute the inverse Mills

ratio for the 428 women with market wages

~l ¼ IMR ¼ fð1:1923 � 0:0206AGE þ 0:0838EDUC � 0:3139KIDS� 1:3939MTRÞ
Fð1:1923� 0:0206AGE þ 0:0838EDUC � 0:3139KIDS� 1:3939MTRÞ

This is then included in the wage equation, and least squares estimation applied to obtain

lnðWAGEÞ ¼ 0:8105þ 0:0585EDUC þ 0:0163EXPER� 0:8664IMR

ðtÞ ð1:64Þ ð2:45Þ ð4:08Þ ð�2:65Þ
ðt-adjÞ ð1:33Þ ð1:97Þ ð3:88Þ ð�2:17Þ

(16.44)

Two results are of note. First, the estimated coefficient of the inverse Mills ratio is

statistically significant, implying that there is a selection bias present in the least squares

results (16.43). Second, the estimated return to education has fallen from approximately

11% to approximately 6%. The upper row of t-statistics is based on standard errors as

usually computed when using least squares regression. The usual standard errors do not

account for the fact that the inverse Mills ratio is itself an estimated value. The correct

standard errors,17 which do account for the first stage probit estimation, are used to

construct the ‘‘adjusted t-statistics’’ reported in (16.44). As you can see the adjusted

t-statistics are slightly smaller, indicating that the adjusted standard errors are somewhat

larger than the usual ones.

In most instances it is preferable to estimate the full model, both the selection equation

and the equation of interest, jointly by maximum likelihood. While the nature of this

procedure is beyond the scope of this book, it is available in some software packages. The

maximum likelihood estimated wage equation is

lnðWAGEÞ ¼ 0:6686þ 0:0658EDUC þ 0:0118EXPER
ðtÞ ð2:84Þ ð3:96Þ ð2:87Þ

The standard errors based on the full information maximum likelihood procedure are

smaller than those yielded by the two-step estimation method.

17 The formulas are very complicated. See William Greene (2008) Econometric Analysis, 6th edition, Pearson

Prentice Hall, p. 887. There are several software packages, such as Stata and LIMDEP, that report correct standard

errors.
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16.8 Exercises18

Answers to exercises marked * can be found at www.wiley.com/college/hill.

16.1 InSection16.1.5wepresentanexampleoftransportationchoice.Use thesampledataon

automobile and public transportation times in transport.dat for the followingexercises.

(a) Estimate the linear probability model AUTO ¼ b1 þ b2DTIME þ e using least

squares estimation. What is the estimated marginal effect of an increase in

DTIME on the probability of a person choosing automobile transportation given

that DTIME ¼ 2?

(b) For each sample observation, calculate the predicted probability of choosing

automobile transportationbPðAUTOÞ ¼ b1 þ b2DTIME. Are all the predicted

probabilities plausible?

(c) Using the error variance in (16.6) compute the feasible generalized least squares

estimates of the linear probability model. If a predicted probability is zero or

negative, replace it by 0.01; if a predicted probability is greater than or equal to

one, replace it by 0.99. Compare these estimates to those from part (a).

(d) Using generalized least squares, as we have done in part (c), cures the basic

deficiency of the linear probability model. True or false? Explain your answer.

(e) For each of the 21 observations, estimate the probability of choosing automobile

transportation using the generalized least squares estimates of the linear prob-

abilitymodel. Predict the choice of transportationmodeusing the rulebAUTO ¼ 1

if the predicted probability is 0.5 or larger, otherwise bAUTO ¼ 0. Define a

successful prediction to be when we predict that a person will choose the

automobile ðbAUTO ¼ 1Þ when they actually did ðAUTO ¼ 1Þ, OR when we

predict that apersonwill choosepublic transportation ðbAUTO ¼ 0Þwhen theydid
ðAUTO ¼ 0Þ.Calculate thepercentageof correct predictions in theN ¼ 21cases.

(f) Compare the percentage of correct predictions from the linear probability model

to that for the probit model.

16.2* In Section 16.1.5 we present an example of transportation choice. Use the sample

data on automobile and public transportation times in transport.dat for the following

exercises.

(a) Estimate the logit model explaining the choice of automobile transportation as a

function of difference in travel time (DTIME). Compare the parameter estimates

and their standard errors to the estimates from the probit model.

(b) Based on the logit model results, estimate the marginal effect of an increase in

DTIME given that DTIME ¼ 2. Use (16.11) but replace the standard normal

density function fð�Þ by the logistic density function lð�Þ given in (16.16).

Compare this result to that for the probit model in Section 16.1.5, where the

estimated marginal effect is 0.1037.

(c) Using the logit estimates, calculate the probability of a person choosing

automobile transportation given that the time differentialDTIME ¼ 3. Compare

this value to the probit estimate of the probability of choosing automobile

transportation, which is 0.7983.

(d) For each of the 21 observations, estimate the probability of choosing automobile

transportation using the logit model. Predict the choice of transportation mode

using the rulebAUTO ¼ 1 if the predicted probability is 0.5 or larger, otherwise

18All exercises in this chapter are computer-based.
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bAUTO ¼ 0. Define a successful prediction to be when we predict that a person

will choose the automobile ðbAUTO ¼ 1Þ when they actually did ðAUTO ¼ 1Þ,
ORwhenwe predict that a personwill choose public transportation ðbAUTO ¼ 0Þ
when they did ðAUTO ¼ 0Þ. Calculate the percentage of correct predictions in
the N ¼ 21 cases.

16.3* Dhillon, Shilling, and Sirmans (‘‘Choosing between Fixed and Adjustable Rate Mort-

gages,’’ Journal of Money, Credit and Banking, 19(1), 1987, 260–267) estimate a probit

model designed to explain the choice by homebuyers of fixed versus adjustable rate

mortgages. They use 78 observations from a bank in Baton Rouge, Louisiana, taken

over the period January 1983 to February 1984. These data are contained in the file

sirmans.dat. ADJUST ¼ 1 if an adjustable mortgage is chosen. The explanatory

variables, and their anticipated signs, are FIXRATE ðþÞ ¼ fixed interest rate ;

MARGIN ð�Þ¼ the variable rate� the fixed rate; YIELD ð�Þ ¼ the ten-year Treas-

ury rate less the one-year rate; MATURITY ð�Þ ¼ ratio of maturities on adjustable to

fixed rates;POINTS (�)¼ ratio of points paid on anadjustablemortgage to thosepaidon

a fixed rate mortgage; NETWORTH (þ) ¼ borrower’s net worth.

(a) Obtain the least squares estimates of the linear probability model explaining the

choice of an adjustable mortgage, using the explanatory variables listed above.

Obtain the predicted values from this estimation. Are the signs consistent with

expectations? Are the predicted values between zero and one?

(b) Estimate the model of mortgage choice using probit. Are the signs consistent

with expectations? Are the estimated coefficients statistically significant?

(c) Using the probit estimates frompart (b), estimate the probability p̂ of choosing an

adjustable rate mortgage for each sample observation. What percentage of the

outcomes do we successfully predict, using the rule that if p̂� 0:5, we predict
that an adjustable rate mortgage will be chosen?

(d) Estimate the marginal effect of an increase in the variableMARGIN, with all

explanatory variables fixed at their sample means. Explain the meaning of

this value.

16.4 Use the data on college choice contained in nels_small.dat. These data are discussed

in Section 16.3.

(a) Define a variable COLLEGE that equals one if a high school graduate chooses

either a two-year or a four-year college, and zero otherwise. What percentage of

the high school graduates attended college?

(b) Estimate a probit model explaining COLLEGE, using as explanatory variables

GRADES, 13-point scale with 1 indicating the highest grade and 13 the lowest;

FAMINC, gross family income in $1,000 increments;FAMSIZ, number of family

members; PARCOLL ¼ 1 if the most educated parent had a college degree;

FEMALE ¼ 1 if female; and BLACK ¼ 1 if black. Are the signs of the esti-

mated coefficients consistentwith your expectations? Explain. Are the estimated

coefficients statistically significant?

(c) Using the estimates in (b), predict the probability of attending college for a black

female with GRADES ¼ 5, FAMINC ¼ sample mean, from a household with

five members, with a parent who attended college. Repeat this probability

calculation with GRADES ¼ 10.

(d) Repeat the calculations in (c) for (i) a white female and (ii) a white male.

(e) Reestimate the model in (b), but omitting the variables PARCOLL, BLACK, and

FEMALE. How are the signs and significance of the remaining coefficients

affected?
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(f) Test the joint significance of PARCOLL, BLACK, and FEMALE using a like-

lihood ratio test. [Hint: The test statistic is LR ¼ 2(log-likelihood of unrestricted

model – log-likelihood of restricted model). The test statistic is chi-square with

three degrees of freedom if the null hypothesis is true.]

16.5 Use the data on college choice contained in nels_small.dat. These data are

discussed in Section 16.3. In this exercise you will consider only those students

who chose to attend a college, whether a two-year or a four-year college. Within

this subsample, define a variable FOURYR ¼ 1 if the student attended a four-year

college, and zero otherwise.

(a) What percentage of the high school graduates who attended college selected a

four-year college? What percentage of those choosing a four-year college are

female? What percentage of those choosing a four-year college are black?

(b) Estimate a probit model explaining FOURYR, using as explanatory variables

GRADES, a 13-point scale with one indicating highest grade and 13 the lowest;

FAMINC, gross family income in $1,000 increments; and FAMSIZ, number of

family members. Are the signs of the estimated coefficients consistent with your

expectations? Explain. Are the estimated coefficients statistically significant?

(c) Reestimate the model in (b) separately for the populations of black students and

white students ðBLACK ¼ 0Þ. Compare and contrast these results.

16.6 Use the data on college choice contained in nels_small.dat. These data are discussed

in Section 16.3.

(a) Estimate a multinomial logit model explaining PSECHOICE. Use the group

who did not attend college as the base group. Use as explanatory variables

GRADES, FAMINC, FEMALE, and BLACK. Are the estimated coefficients

statistically significant?

(b) Compute the estimated probability that a white male student with median values

of GRADES and FAMINC will attend a four-year college.

(c) Compute the probability ratio that a white male student with median values of

GRADES andFAMINCwill attend a four-year college rather than not attend any

college.

(d) Compute the change in probability of attending a four-year college for a white

male student with median FAMINC whose GRADES change from 6.64 (the

median value) to 4.905 (top 25th percentile).

(e) From the full data set create a subsample, omitting the group who attended a

two-year college. Estimate a logit model explaining student’s choice between

attending a four-year college and not attending college, using the same

explanatory variables in (a). Compute the probability ratio that a white

male student with median values of GRADES and FAMINC will attend a

four-year college rather than not attend any college. Compare the result to that

in (c).

16.7 In Section 16.4.3 we considered a conditional logit model of choice among three

brands of soda: Coke, Pepsi, and 7-Up. The data are in the file cola.dat.

(a) In addition to PRICE, the data file contains variables indicating whether the

product was ‘‘featured’’ at the time (FEATURE) or whether there was a store

display (DISPLAY). Estimate a conditional logit model explaining choice of soda

using PRICE, DISPLAY, and FEATURE as explanatory variables. Discuss the

signs of the estimated coefficients and their significance. (Note: In this model, do

not include alternative specific intercept terms.)
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(b) Compute the probability ratio of choosing Coke relative to Pepsi and 7-Up if the

price of each is $1.25 and no display or feature is present.

(c) Compute the probability ratio of choosing Coke relative to Pepsi and 7-Up if the

price of each is $1.25, a display is present for Coke but not for the others, and

none of the items is featured.

(d) Compute the change in the probability of purchase of each type of soda if the

price of Coke changes from $1.25 to $1.30, with the prices of the Pepsi and 7-Up

remaining at $1.25. Assume that a display is present for Coke, but not for the

others, and none of the items is featured.

(e) Add the alternative specific ‘‘intercept’’ terms for Pepsi and 7-Up to themodel in

(a). Estimate the conditional logit model. Compute the probability ratio in (c)

based upon these new estimates.

(f) Based on the estimates in (e), calculate the effects of the price change in (d) on the

choice probability for each brand.

16.8 In Section 16.5.1 we described an ordinal probit model for post-secondary education

choice and estimated a simple model in which the choice depended simply on the

student’s GRADES.

(a) Using the estimates in Table 16.5, calculate the probability that a student will

choose no college, a two-year college, and a four-year college if the student’s

grades are the median value, GRADES ¼ 6:64. Recompute these probabilities

assuming that GRADES ¼ 4:905. Discuss the probability changes. Are they

what you anticipated? Explain.

(b) Expand the ordered probit model to include family income (FAMINC), family

size (FAMSIZ), and the indicator variables BLACK and PARCOLL. Discuss the

estimates and their signs and significance. (Hint: Recall that the sign indicates

the direction of the effect for the highest category, but is opposite for the lowest

category).

(c) Test the joint significance of the variables added in (b) using a likelihood ratio test.

(d) Compute the probability that a black student from a household of four members,

including a parent who went to college, and household income of $52,000, will

attend a four-year college if (i) GRADES ¼ 6:64 and (ii) GRADES ¼ 4:905.
(e) Repeat (d) for a ‘‘nonblack’’ student and discuss the differences in your findings.

16.9 In Section 16.6.3 we estimated a Poisson regression explaining the number of

Olympic Games medals won by various countries as a function of the logarithms of

population and gross domestic product (in 1995 dollars). The estimated coefficients

are in Table 16.6.

(a) In 1988 Australia had GDP ¼ 3:0Eþ 11 and a population of 16.5 million.

Predict the number of medals that Australia would win. (They did win

14 medals.) Calculate the probability that Australia would win 10 medals or

more.

(b) In 1988 Canada had GDP ¼ 5:19Eþ 11 and a population of 26.9 million.

Predict the number of medals that Canada would win. (They did win 10medals.)

Calculate the probability that they would win 15 medals or less.

(c) Use the combined data on years 1992 and 1996 to estimate the model explaining

medals won as a function of the logarithms of population and gross domestic

product. Compare these estimates to those in Table 16.6.

(d) In addition to population and GDP, the file olympics.dat contains an indicator

variable (SOVIET) to indicate that a country was part of the former Soviet

Union. The variable HOST indicates the country hosting the Olympic Games.
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Using again the combined data for 1992 and 1996, estimate the Poisson

regression model that adds these two variables to the specification. Discuss

the results. Are the signs what you expected? Are the added variables

statistically significant?

(e) A variable similar to SOVIET is PLANNED, which includes nonmarket, typi-

cally communist countries. Use this variable instead of SOVIET and repeat (d).

Which model do you prefer, the one with SOVIET, or the one with PLANNED?

Why?

(f) In 2000, the GDP (in 1995 US $) of Australia was 3:22224Eþ 11, and that of

Canada was 6:41256Eþ 11. The Australian population in 2000 was 19.071

million, and that of Canada was 30.689 million. Using these figures, predict

the number of medals won by Canada and Australia based on the estimates

in part (e). Note that the 2000 games were held in Sydney, Australia. In

2000, Australia won 58 medals and Canada won 14. How close were your

predictions?

16.10 Bernard and Busse use the OlympicGames data in olympics.dat to examine the share

ofmedals won by countries. The total number ofmedals awarded in 1988was 738; in

1992 there were 815 medals awarded, and in 1996, 842 medals were awarded. Using

these totals, compute the share of medals (SHARE) won by each country in each

of these years.

(a) Construct a histogram for the variable SHARE. What do you observe? What

percent of the observations are zero?

(b) Estimate a least squares regression explaining SHARE as a function of the

logarithms of population and real GDP, and the variables HOST and SOVIET.

(i) Discuss the estimation results. (ii) Plot the residuals against ln(GDP). Do

they appear random? (iii) Use your computer software to compute the

skewness and kurtosis values of the residuals. How do these values compare

to those for the normal distribution, which has skewness of zero and kurtosis

of three?

(c) In 2000, the GDP (in 1995 US $) of Australia was 3:22224E þ 11, and that of

Canada was 6:41256Eþ 11. The Australian population in 2000 was 19.071

million, and that of Canada was 30.689 million. Predict the share of medals won

by Canada and Australia based on the estimates in part (b). Note that the 2,000

games were held in Sydney, Australia. In 2000, Australia won 58 medals and

Canada won 14 out of the 929 medals awarded. How close were your predicted

shares?

(d) Estimate the model described in (b) using Tobit. Compare the parameter

estimates to those in (b).

(e)̂ In the Tobit model the expected value of the dependent variable, conditional on

the fact that it is positive, is given by an expression like (16.40). Specifically, it is

Eðyijyi > 0Þ ¼ b1 þ b2xi þ sli where li ¼ fðziÞ=FðziÞ is the inverse Mills

ratio and zi ¼ ðb1 þ b2xiÞ=s. Use the information in part (c) to predict the

share of medals won by Australia and Canada. Are these predicted shares closer

to the true shares, or not?

16.11 In Chapter 7.5.3 we examined the Tennessee’s Project STAR.19 In the experiment,

children were randomly assigned within schools into three types of classes: small

19 See www.heros-inc.org/star.htm for program description, public use data and extensive literature.
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classes with 13–17 students, regular-sized classes with 22–25 students, and regular-

sized classes with a full-time teacher aide to assist the teacher. In Chapter 7.5.4b, using

the data in star.dat, we checked for random assignment of children to the three types

of classes using a linear probability model, regressing the indicator SMALL (small

class) on student characteristics. Let us reconsider this regression using probit rather

than the linear probabilitymodel. If there is random assignmentwe should not find any

significant relationships.

(a) Estimate a probit model with outcome variable SMALL and explanatory vari-

ables BOY, WHITE_ASIAN, and BLACK. Individually test the coefficients of

these variables for significance. What do you find? Test the coefficients jointly

for significance using the likelihood ratio test. What do you find? Can we reject

the null hypothesis that assignment to small classes is done randomly?

(b) Repeat the estimation and testing in part (a) using outcome variables AIDE and

REGULAR. Do you find any evidence that students were not randomly assigned?

(c) Add the variables FREELUNCH to the models in (a) and (b) and re-estimate

them. Do you find any evidence that there is a systematic pattern between class

assignment and this variables?

(d) Add the two variables TCHWHITE and TCHMASTERS to the models in (c) and

re-estimate them. In each, carry out a likelihood ratio test for the joint

significance of TCHWHITE and TCHMASTERS. What do you conclude? In

the experiment students were randomized within schools but not across schools.

Does this offer any explanation of your findings? If so, how?

16.12 Mortgage lenders are interested in determining borrower and loan factors that may

lead to delinquency or foreclosure. In the file lasvegas.dat are 1,000 observations on

mortgages for single family homes in Las Vegas, Nevada during 2008. The variable

of interest isDELINQUENT, an indicator variable ¼ 1 if the borrowermissed at least

three payments (90þ days late), but 0 otherwise. Explanatory variables: are LVR

¼ the ratio of the loan amount to the value of the property;REF ¼ 1 if purpose of the

loan was a ‘‘refinance’’ and ¼ 0 if loan was for a purchase; INSUR ¼ 1 if mortgage

carries mortgage insurance, 0 otherwise; RATE ¼ initial interest rate of the mort-

gage;AMOUNT ¼ dollar value ofmortgage (in $100,000);CREDIT ¼ credit score,

TERM ¼ number of years between disbursement of the loan and the date it is

expected to be fully repaid, ARM ¼ 1 if mortgage has an adjustable rate, and ¼ 0 if

mortgage has a fixed rate.

(a) Estimate the linear probability (regression) model explainingDELINQUENT as

a function of the remaining variables. Use White robust standard errors. Are the

signs of the estimated coefficients reasonable?

(b) Use probit to estimate the model in (a). Are the signs and significance of the

estimated coefficients the same as for the linear probability model?

(c) Compute the predicted value of DELINQUENT for the 500th and 1,000th

observations using both the linear probability model and the probit model.

Interpret the values.

(d) Construct a histogram of CREDIT. Using both linear probability and probit

models, calculate the probability of delinquency for CREDIT ¼ 500, 600, and

700 for a loan of $250,000 (AMOUNT ¼ 2.5). For the other variables, loan to

value ratio (LVR) is 80%, initial interest rate is 8%, indicator variables take

the value one, and TERM ¼ 30. Discuss similarities and differences among the

predicted probabilities from the two models.
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(e) Compute the marginal effect of CREDIT on the probability of delinquency for

CREDIT ¼ 500, 600, and 700, given that the other explanatory variables take the

values in (d). Discuss the interpretation of the marginal effect.

(f) Construct a histogram of LVR. Using both linear probability and probit models,

calculate theprobabilityofdelinquencyforLVR ¼ 20andLVR ¼ 80,withCREDIT

¼ 600 and other variables set as they are in (d). Compare and contrast the results.

(g) Compare the percentage of correct predictions from the linear probability model

and the probit model, using a predicted probability of 0.5 as the threshold.

(h) As a loan officer, you wish to provide loans to customers who repay on schedule

and are not delinquent. Suppose you have available to you the first 500

observations in the data on which to base your loan decision on the second

500 applications (501–1,000). Is using the probit model, with a threshold of 0.5

for the predicted probability the best decision rule for deciding on loan

applications? If not, what is a better rule?

16.13 This exercise deals with the loan data described in Exercise 6.12. The ‘‘Chow’’ test

was introduced in Chapter 7.2.3 for testing the equality of coefficients in two

regressions on subsets of observations. Here we ask a similar question concerning

the parameters of the probit model for deliquency for the two subpopulations of

borrowerswho either havemortgage insurance (INSUR ¼ 1) or donot (INSUR ¼ 0).

(a) Estimate the probit model for DELINQUENT using all explanatory variables

except INSUR and all observations. Call the value of the log-likelihood function

evaluated at the maximum likelihood estimates ln LR.

(b) Re-estimate the model in (a) using the sample observations for which INSUR

¼ 0. Call the value of the log-likelihood function evaluated at the maximum

likelihood estimates ln L0.

(c) Re-estimate the model in (b) using the sample observations for which INSUR

¼ 1. Call the value of the log-likelihood function evaluated at the maximum

likelihood estimates ln L1.

(d) Compare the estimates from the models in (a), (b) and (c). What major

differences in coefficient signs, magnitudes, and significance do you observe?

(e) Re-estimate the model in (a), including each explanatory variable, INSUR, and

interactions with INSUR. Compare the value of the log-likelihood function from

the fully interacted model, call it ln LU, to ln L0þln L1. If you have done things

correctly, thenlnLUshouldequal lnL0þlnL1.Canyouexplainwhythismustbeso?

(f) Carry out a likelihood ratio version of the Chow test by computing

LR ¼ 2 lnLU � ln LRð Þ. What is the appropriate critical value for a test at the

5% level of significance? What conclusion do you draw about the subgroups of

individuals who do and do not have mortgage insurance? Do the two groups

behave in the same way?

16.14 Data on 1,500 purchases of canned lite tuna are in the file tunafish.dat. There are four

brands of tuna (Starkist–water, Starkist–oil,Chickenof theSea–water,Chickenof the

Sea–oil). The A.C. Nielsen data are available through the University of Chicago’s

Graduate School of Business.20 The data file tunafish_small.dat is a smaller dataset

with 250 purchases. The data are in ‘‘stacked’’ format with four datalines per

purchase, one for each tuna brand. The consumer choice is indicated by the indicator

variable CHOICE. Relevant variables are NETPRICE ¼ price minus coupon value,

20 http://research.chicagobooth.edu/marketing/databases/erim/index.aspx.
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if used;DISPLAY ¼ 1 if product is on display,FEATURE ¼ 1 if item is featured, and

INCOME ¼ household income.

(a) What is the primary variable-type distinction between the NETPRICE and

INCOME?

(b) What is the sample percentage of purchases for each brand?What do you observe

about consumer preferences for these product choices?

(c) Using the conditional logit model, write the probability of choosing each brand

using as explanatory variables NETPRICE, DISPLAY, and FEATURE, plus an

alternative specific constant using Starkist packed in water as the base category.

(d) Estimate the model specified in part (c).

(e) For the model in (d) find the marginal effect ofNETPRICE on the probability of

choice of each brand, using for all brandsDISPLAY ¼ FEATURE ¼ 0. Do these

marginal effects have the signs you anticipate? Are the marginal effects

statistically significant?

(f) Add the variable INCOME to the model specified in (c). Perform a likelihood

ratio test of its significance.

(g) For the model in (f) find the marginal effect ofNETPRICE on the probability of

choice of each brand, using for all brands DISPLAY ¼ FEATURE ¼ 0 and

INCOME ¼ 30.

Appendix 16A21 Probit Marginal Effects: Details

16A.1 STANDARD ERROR OF MARGINAL EFFECT AT A GIVEN POINT

Consider the probit model p ¼ Fðb1 þ b2xÞ. The marginal effect of a continuous x,

evaluated at a specific point x ¼ x0, is

dp

dx

����
x¼x0

¼ fðb1 þ b2x0Þb2 ¼ g b1;b2ð Þ

The estimator of the marginal effect is g ~b1; ~b2

� �
, where ~b1 and ~b2 are the maximum

likelihood estimators of the unknown parameters. The variance of this estimator was

developed in Appendix 5B.5, in (5B.8), and is given by

var g ~b1; ~b2

� �� 
 ffi qg b1;b2ð Þ
qb1

� �2
var ~b1

� �þ qg b1;b2ð Þ
qb2

� �2
var ~b2

� �
þ 2

qg b1;b2ð Þ
qb1

� �
qg b1;b2ð Þ

qb2

� �
cov ~b1; ~b2

� � (16A.1)

The variances and covariances of the estimators come from maximum likelihood esti-

mation. The essence of these calculations is given in Appendix C.8.2. To implement the

delta method we require the derivative
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qg b1;b2ð Þ
qb1

¼ q fðb1 þ b2x0Þb2½ �
qb1

¼ qfðb1 þ b2x0Þ
qb1

	 b2

� �
þ fðb1 þ b2x0Þ 	 qb2

qb1

¼ �fðb1 þ b2x0Þ 	 ðb1 þ b2x0Þ 	 b2

The second line above uses the product rule, Derivative Rule 6. To obtain the final result we

used qb2=qb1 ¼ 0 and

qfðb1 þ b2x0Þ
qb1

¼ q
qb1

1ffiffiffiffiffiffi
2p

p e�
1
2 b1þb2x0ð Þ2

� �

¼ 1ffiffiffiffiffiffi
2p

p e�
1
2 b1þb2x0ð Þ2 2	� 1

2
	 ðb1 þ b2x0Þ

	 

¼ �fðb1 þ b2x0Þ 	 ðb1 þ b2x0Þ

The second step uses Derivative Rule 7 for exponential functions. Using similar steps we

obtain the other key derivative,

qg b1;b2ð Þ
qb2

¼ fðb1 þ b2x0Þ 1� ðb1 þ b2x0Þ 	 b2x0½ �

From the maximum likelihood estimation results using the transportation data example we

obtain the estimator variances and covariances22

bvar ~b1

� � bcov ~b1; ~b2

� �
bcov ~b1; ~b2

� � bvar ~b2

� �
" #

¼ 0:1593956 0:0003261
0:0003261 0:0105817

� �

The derivatives must be evaluated at the maximum likelihood estimates. For the transpor-

tation data used in Chapter 16.1.5, and For DTIME ¼ 2 (x0 ¼ 2), the calculated values of

the derivatives are

bqg b1;b2ð Þ
qb1

¼ �0:055531 and
bqg b1;b2ð Þ

qb2

¼ 0:2345835

Using (16A.1), and carrying out the required multiplication we obtain the estimated

variance and standard error of the marginal effect

b
var g ~b1; ~b2

� �� 
 ¼ 0:0010653 and se g ~b1; ~b2

� �� 
 ¼ 0:0326394

16A.2 STANDARD ERROR OF AVERAGE MARGINAL EFFECT

Consider the probit model p ¼ Fðb1 þ b2xÞ. For the transportation data example, the

explanatory variable x ¼ DTIME. The averagemarginal effect of this continuous variable is

AME ¼ 1

N
�N

i¼1fðb1 þ b2DTIMEiÞb2 ¼ g2 b1;b2ð Þ

22 Using minus the inverse matrix of second derivatives.
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The estimator of the averagemarginal effect is g2 ~b1; ~b2

� �
. To apply the delta method to find

var g2 ~b1; ~b2

� �� 

, we require the derivatives

qg2 b1;b2ð Þ
qb1

¼ q
qb1

1

N
�N

i¼1fðb1 þ b2DTIMEiÞb2

� �

¼ 1

N
�N

i¼1

q
qb1

fðb1 þ b2DTIMEiÞb2½ �

¼ 1

N
�N

i¼1

qg b1;b2ð Þ
qb1

The term
qg b1;b2ð Þ

qb1

we evaluated in the previous section. Similarly, the derivative

qg2 b1;b2ð Þ
qb2

¼ q
qb2

1

N
�N

i¼1fðb1 þ b2DTIMEiÞb2

� �

¼ 1

N
�N

i¼1

q
qb2

fðb1 þ b2DTIMEiÞb2½ �

¼ 1

N
�N

i¼1

qg b1;b2ð Þ
qb2

For the transportation data we compute

bqg2 b1;b2ð Þ
qb1

¼ �0:00185 and
bqg2 b1;b2ð Þ

qb2

¼ �0:032366

Using (16A.1) with g replaced by g2, and carrying out the requiredmultiplication, we obtain

the estimated variance and standard error of the average marginal effect

b
var g2 ~b1; ~b2

� �� 
 ¼ 0:0000117 and se g2 ~b1; ~b2

� �� 
 ¼ 0:003416
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A p p e n d i x A
Mathematical Tools

Learning Objectives

Based on the material in this appendix, you should be able to:

1. Explain the relationship between exponential functions and natural logarithms.

2. Explain and apply scientific notation.

3. Define a linear relationship, as opposed to a nonlinear relationship.

4. Compute the elasticity at a point on a function.

5. Explain the concept of a derivative, and its relationship to the slope of a function.

6. Compute the derivatives of simple functions and provide their interpretations.

7. Describe the relationship between a derivative and a partial derivative.

8. Explain the concept of an integral.

We assume that you have studied basic math. Hopefully you understand the calculus

concepts of differentiation and integration, though these tools are not required for success in

this class. In this appendix we review some essential concepts that you may wish to consult

from time to time.1

Keywords

absolute value

antilogarithm

ceteris paribus

derivative

e

elasticity

exponential function

exponents

inequalities

integers

integral

intercept

irrational numbers

linear relationship

logarithm

marginal effect

natural logarithm

nonlinear relationship

partial derivative

percentage change

quadratic function

rational numbers

real numbers

relative change

scientific notation

slope

Taylor series

1 Summation signs and operations are covered in the Probability Primer that precedes Chapter 2.
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A.1 Some Basics

A.1.1 NUMBERS

Integers are the whole numbers, 0; � 1; � 2; � 3; . . . : The positive integers are the

counting numbers.Rational numbers can be written as a=b, where a and b are integers and
b 6¼ 0. The real numbers can be represented by points on a line. There are an uncountable

number of real numbers, and they are not all rational. Numbers such asp ffi 3:1415927 andffiffiffi
2

p
are said to be irrational since they cannot be expressed as ratios, and have only decimal

representations. Numbers like
ffiffiffiffiffiffiffi�2

p
are not real numbers. The absolute value of a number is

denoted aj j. It is the positive part of the number: 3j j ¼ 3 and �3j j ¼ 3.

Inequalities among numbers obey certain rules. The notation a < b, a is less than b,

means that a is to the left of b on the number line, and that b� a > 0. If a is less than or equal

to b, it is written a � b. Three basic rules are

If a < b, then aþ c < bþ c

If a < b, then
ac < bc if c > 0

ac > bc if c < 0

(

If a < b and b < c, then a < c

A.1.2 EXPONENTS

Exponents are defined as follows:

xn ¼ xx � � � x (n terms) if n is a positive integer

x0 ¼ 1 if x 6¼ 0. [00 is does not have meaning and is ‘‘undefined.’’]

Some common rules for working with exponents, assuming x and y are real, m and n are

integers, and a and b are rational, are as follows:

x�n ¼ 1

xn
if x 6¼ 0. For example, x�1 ¼ 1

x

x1=n ¼ ffiffiffi
xn

p
. For example, x1=2 ¼ ffiffiffi

x
p

and x�1=2 ¼ 1ffiffiffi
x

p

xm=n ¼ x1=n
� �m

. For example, 84=3 ¼ 81=3
� �4 ¼ 24 ¼ 16

xaxb ¼ xaþb,
xa

xb
¼ xa�b

x

y

� �a

¼ xa

ya
, xyð Þa ¼ xaya

A.1.3 SCIENTIFIC NOTATION

Scientific notation is useful for very large or very small numbers. A number in scientific

notation is written as a number between 1 and 10 multiplied by a power of 10. So, for

example: 5.1�105 ¼ 510,000, and 0.00000034 ¼ 3.4 � 10�7. Scientific notation makes
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handling large numbers much easier, because complex operations can be broken into

simpler ones. For example,

510; 000� 0:00000034 ¼ ð5:1� 105Þ � ð3:4� 10�7Þ
¼ ð5:1� 3:4Þ � ð105 � 10�7Þ
¼ 17:34� 10�2

¼ 0:1734

and

510; 000

0:00000034
¼ 5:1� 105

3:4� 10�7
¼ 5:1

3:4
� 105

10�7
¼ 1:5� 1012

Computer programs sometimeswrite 5.1�105 ¼ 5.1E5 or 5.1D5 and 3:4� 10�7 ¼ 3:4E� 7

or 3:4D� 7.

A.1.4 LOGARITHMS AND THE NUMBER e

Logarithms are exponents. If x ¼ 10b, then b is the logarithm of x using the base 10. The

irrational number e ffi 2:718282 is used in mathematics and statistics as the base for

logarithms. If x ¼ eb, then b is the logarithm of x using the base e. Logarithms using the

number e as base are called natural logarithms. All logarithms in this book are natural

logarithms. We express the natural logarithm of x as ln(x),

ln xð Þ ¼ ln eb
� � ¼ b

Note that ln(1) ¼ 0, using the laws of exponents. Table A.1 gives the logarithms of some

powers of 10.

Note that logarithms have a compressed scale compared to the original numbers. Since

logarithms are exponents, they follow similar rules:

lnðxyÞ ¼ lnðxÞ þ lnðyÞ
lnðx=yÞ ¼ lnðxÞ � lnðyÞ
lnðxaÞ ¼ a lnðxÞ

Ta b l e A . 1 Some Natural Logarithms

x ln(x)

1 0

10 2.3025851

100 4.6051702

1000 6.9077553

10,000 9.2103404

100,000 11.512925

1,000,000 13.815511
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For example, if x ¼ 1000 and y ¼ 10,000, then

lnð1000� 10; 000Þ ¼ lnð1000Þ þ lnð10; 000Þ
¼ 6:9077553þ 9:2103404

¼ 16:118096

What is the advantage of this? The value of xy is a multiplication problem, which by using

logarithms we can turn into an addition problem.We need a way to go backwards, from the

logarithm of a number to the number itself. By definition,

x ¼ eln xð Þ ¼ exp ln xð Þ½ �

When there is an exponential function with a complicated exponent, the notation exp is

often used, so that eð�Þ ¼ expð�Þ. The exponential function is the antilogarithm, becausewe

can recover the value of x using it. Then,

1000� 10; 000¼ expð16:118096Þ ¼ 10; 000; 000

You will not be doing many calculations like these, but the knowledge of logarithms and

exponents is quite critical in economics and econometrics.

A.1.5 DECIMALS AND PERCENTAGES

Suppose the value of a variable y changes from the value y ¼ y0 to y ¼ y1. The difference

between these values is often denoted Dy ¼ y1 � y0, where the notation Dy is read ‘‘change
in y’’, or ‘‘delta-y.’’ The relative change in y is defined to be

relative change in y ¼ y1 � y0

y0
¼ Dy

y0
(A.1)

For example, if y0 ¼ 3 and y1 ¼ 3.02, then the relative change in y is

y1 � y0

y0
¼ 3:02� 3

3
¼ 0:0067

Often the relative change in y is written as Dy=y, omitting the subscript.

A relative change is a decimal. The corresponding percentage change in y is 100 times

the relative change.

percentage change in y ¼ 100
y1 � y0

y0
¼ %Dy (A.2)

If y0 ¼ 3 and y1 ¼ 3.02, then the percentage change in y is

%Dy ¼ 100
y1 � y0

y0
¼ 100

3:02� 3

3
¼ 0:67%
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A.1.6 LOGARITHMS AND PERCENTAGES

A feature of logarithms that helps greatly in their economic interpretation is that they can be

approximated very simply. Let y1 be a positive value of y, and let y0 be a value of y that is

‘‘close’’ to y1. A useful approximation rule is

100 lnðy1Þ � lnðy0Þ½ � ffi %Dy ¼ percentage change in y (A.3)

That is, 100 times the difference in the logarithms is the approximate percentage difference

between y0 and y1, if y0 and y1 are close.

A.1.6a Derivation of the Approximation

The result in (A.3) follows from themathematical tool called a Taylor series approximation,

which is developed in Example A.3 in Section A.3.1. Using this approximation, the value of

ln(y1) can be written

ln y1ð Þ ffi lnðy0Þ þ 1

y0
ðy1 � y0Þ (A.4)

For example, let y1 ¼ 1 + x and let y0 ¼ 1. Then, as long as x is small,

lnð1þ xÞ ffi x

Subtracting ln(y0) from both sides of (A.4), we obtain

ln y1ð Þ � lnðy0Þ ¼ D ln yð Þ ffi 1

y0
ðy1 � y0Þ ¼ relative change in y

The symbol D ln yð Þ represents the ‘‘difference’’ between two logarithms. Using (A.2),

100D lnðyÞ ¼ 100 lnðy1Þ � lnðy0Þ½ �

ffi 100� y1 � y0ð Þ
y0

¼ %Dy ¼ percentage change in y

A.1.6b Approximation Error

The approximation (A.3) works well for values of y1 and y0 that are close to each other. For

example, suppose that y0 ¼ 1. The percentage difference between y1 and y0 is

%Dy ¼ 100� y1 � y0ð Þ
y0

¼ 100ðy1 � 1Þ

The quantity we are approximating is 100D lnðyÞ ¼ 100 lnðy1Þ � lnð1Þ½ � ¼ 100� lnðy1Þ
using ln(1) ¼ 0. The percentage error in the approximation is

% approximation error ¼ 100
%Dy� 100D lnðyÞ

100D lnðyÞ
� �

¼ 100
y1 � 1ð Þ � ln y1ð Þ

lnðy1Þ
� �

A few values are reported in Table A.2.
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As you can see, if y1 and y0 differ by 10%, then the approximation error is 4.92%. If y1 and

y0 differ by 20%, then the approximation error is 9.7%.

A.2 Linear Relationships

In economics, and in econometrics, we study linear and nonlinear relationships between

variables. In this section, we review basic characteristics of linear relationships. Let y and x

be variables. The standard form for a linear relationship is

y ¼ mxþ b (A.5)

In FigureA.1, the slope ism and the y-intercept is b. The symbolD represents ‘‘a change in,’’

so Dx is read as a ‘‘change in x.’’ The slope of the line is

m ¼ y2 � y1

x2 � x1
¼ Dy

Dx

For the straight-line relationship in Figure A.1, the slope m is the ratio of the change in

vertical distance (rise) to the change in horizontal distance (run) as a point moves along the

line in either direction. The slope of a straight line is constant; the rate atwhich y changes as x

changes is constant over the length of the straight line.

The slopem is verymeaningful to economists as it is themarginal effect of a change in x

on y. To see this, solve the slope definition m ¼ Dy=Dx for Dy, obtaining

Dy ¼ m Dx (A.6)

Ta b l e A . 2 Log Difference Approximation Errors

y1 %Dy 100D lnðyÞð%Þ Approximation error (%)

1.01 1.00 0.995 0.50

1.05 5.00 4.88 2.48

1.10 10.00 9.53 4.92

1.15 15.00 13.98 7.33

1.20 20.00 18.23 9.70

1.25 25.00 22.31 12.04

b � y-intercept
Slope � m � �y/�x

 �y

y

x

�x
(x2, y1)

(x2, y2)

y � mx � b

(x1, y1)

FIGURE A.1 A linear relationship.
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If x changes by one unit, Dx ¼ 1, then the corresponding change in y is Dy ¼ m. The

marginal effect,m, is always the same for a linear relationship like (A.5), because the slope

is constant.

The intercept parameter indicates where the linear relationship crosses the vertical

axis—that is, it is the value of y when x is zero,

y ¼ mxþ b ¼ m� 0þ b ¼ b

A.2.1 SLOPES AND DERIVATIVES

Derivatives have an important role in econometrics. In a relationship between two variables,

y ¼ f xð Þ, the first derivativemeasures the slope. The slope of the line y ¼ f xð Þ ¼ mxþ b is

denoted as dy=dx. The notation dy=dx is a ‘‘stylized’’ version of Dy=Dx, and for the linear

relationship (A.5) the first derivative is

dy=dx ¼ m (A.7)

In general, the first derivative measures the change in the function value y given an

infinitesimal change in x. For the linear function the first derivative is the constant

m ¼ Dy=Dx. The ‘‘infinitesimal’’ does not matter in this case, because the rate of change

of y with respect to changes in x is a constant.

A.2.2 ELASTICITY

A favorite tool of the economist is elasticity. It is the percentage change in one variable

associated with a 1% change in another variable for movements along a specific curve. That

is, if we move from one point on a curve to another point on the curve, what are the relative

percentage changes? For example, in Figure A.1, what is the percentage change in y

relative to the percentage change in x as we move from the point x1; y1ð Þ to x2; y2ð Þ? For a
linear relationship, the elasticity of y with respect to a change in x is

eyx ¼ %Dy

%Dx
¼ 100 Dy=yð Þ

100 Dx=xð Þ ¼
Dy=y

Dx=x
¼ Dy

Dx
� x

y
¼ slope� x

y
(A.8)

The elasticity is seen to be a product of the slope of the relationship and the ratio of an x value

to a y value. In a linear relationship, such as Figure A.1, while the slope is constant,

m ¼ Dy=Dx, the elasticity changes at every point on the line.

Consider, for example, the linear function y ¼ 1xþ 1. At the point x ¼ 2 and y ¼ 3,

which is on the line, the elasticity is eyx ¼ m x=yð Þ ¼ 1� 2=3ð Þ ¼ 0:67. That is, at the point
(x ¼ 2, y ¼ 3) a 1% change in x is associated with a 0.67% change in y. Specifically, at

x ¼ 2 a 1% (1% ¼ 0.01 in decimal form) change isDx ¼ 0:01� 2 ¼ 0:02. If x increases to
x ¼ 2.02, the value of y increases to 3.02. The relative change in y is

Dy=y ¼ 0:02=3 ¼ 0:0067. This, however, is not the percentage change in y, but rather

the decimal equivalent. To obtain the percentage change in y, which we denote %Dy, we
multiply the relative change Dy=y by 100. The percentage change in y is

%Dy ¼ 100� Dy=yð Þ ¼ 100� 0:02=3 ¼ 100� 0:0067 ¼ 0:67%
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A.3 Nonlinear Relationships

While linear relationships are intuitive and easy to work with, many real-world economic

relationships are nonlinear, as illustrated in Figure A.2.

The slope of this curve is not constant. The slope measures the marginal effect of x on y,

and for a nonlinear relationship like that in FigureA.2, the slope is different at every point on

the curve. The changing slope tells us that the relationship is not linear. Since the slope is

different at every point, we can only talk about the effect of small changes in x on y. In (A.6)

we replace D, the symbol for ‘‘a change in,’’ with d, which we will take to mean an

‘‘infinitesimal change in.’’ In the linear case when we made this replacement, the slope was

given by dy=dx ¼ m, where m, was a constant. See (A.7).

However, with nonlinear functions such as that in Figure A.2, the slope (derivative) is not

constant, but changes as x changes, andmust be determined at each point. Strictly speaking,

the slope of a curve is the slope of the tangent to the curve at a specific point. Towork out the

slope at different points on a nonlinear curve, we need some rules for obtaining the

derivative dy=dx.

A.3.1 RULES FOR DERIVATIVES

Some rules for finding derivatives are the following:

Derivative Rule 1. The derivative of a constant c is zero. That is, if y ¼ f xð Þ ¼ c; then

dy

dx
¼ 0

Derivative Rule 2. If y ¼ xn, then

dy

dx
¼ nxn�1

Derivative Rule 3. If y ¼ cu and u ¼ f (x), then

dy

dx
¼ c

du

dx

Constants can be factored out of functions before taking the derivative.

y 

x

y � f(x)

Slope of the curve at 
point A is the slope of 
the tangent line 

A

FIGURE A.2 A nonlinear relationship.

A . 3 NONL INEAR RELAT IONSHIPS 641



Derivative Rule 4. If y ¼ cxn, using Rules 2 and 3,

dy

dx
¼ cnxn�1

Derivative Rule 5. If y ¼ u þ v, where u ¼ f (x) and v ¼ g(x) are functions of x, then

dy

dx
¼ du

dx
þ dv

dx

The derivative of the sum (or difference) of two functions is the sum of the derivatives. This

rule extends to more than two terms in a sum.

Derivative Rule 6. If y ¼ uv, where u ¼ f (x) and v ¼ g(x) are functions of x, then

dy

dx
¼ du

dx
vþ u

dv

dx

This is called the product rule. The quotient rule, for y¼ u=v, is obtained by inserting v�1 for

v in the product rule.

Derivative Rule 7. If y ¼ ex, then

dy

dx
¼ ex

If y ¼ exp(ax þ b), then

dy

dx
¼ exp axþ bð Þ � a

In general, the derivative of the exponential function is the exponential function times the

derivative of the exponent.

Derivative Rule 8. If y ¼ ln(x), then

dy

dx
¼ 1

x
; x > 0

If y ¼ ln(ax þ b), then

dy

dx
¼ 1

axþ b
� a

Derivative Rule 9 (The Chain Rule of Differentiation). Let y ¼ f(u(x)), so that y

depends on u which in turn depends on x. Then

dy

dx
¼ dy

du
� du

dx

For example, in Derivative Rule 8, y¼ ln(ax þ b), or y¼ ln(u(x)) where u¼ axþ b. Then

dy

dx
¼ dy

du
� du

dx
¼ 1

u
� a ¼ 1

axþ b
� a
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Example A.1
The derivative of y ¼ f(x) ¼ 4x þ 1 is

dy

dx
¼ d 4xð Þ

dx
þ d 1ð Þ

dx
¼ 4

Because this function is the equation of a straight line, y ¼ mxþb, its slope is constant and

given by the coefficient of x, which in this case is 4.

Example A.2

Consider the function y ¼ x2 � 8x þ 16, shown in Figure A.3. This quadratic function is a

parabola. Using the rules of derivatives, the slope of a line tangent to the curve is

dy

dx
¼ d x2 � 8xþ 16ð Þ

dx

¼ d x2ð Þ
dx

� 8
d x1ð Þ
dx

þ d 16ð Þ
dx

¼ 2x1 � 8x0 þ 0

¼ 2x� 8

This result means that the slope of the tangent line to this curve is dy=dx ¼ 2x� 8. The

derivative and function values are shown for several values of x in Table A.3

Note a few things. First, the slope is different at each value of x. The slope is negative for

values of x < 4, the slope is zero when x ¼ 4, and the slope is positive for values of x > 4.

To interpret these slopes, recall that the derivative of a function at a point is the slope of the

tangent at that point. The slope of the tangent is the rate of change of the function—how

muchy¼ f(x) ischangingasxchanges.Atx ¼ 0, thederivative is�8, indicatingthaty is falling

as x increases, and that the rate of change is 8 units in y per unit change in x. At x ¼ 2, the rate

of change of the function has diminished, and at x ¼ 4, the rate of change of the function is

dy=dx¼ 0. That is, at x ¼ 4, the slope of the tangent to the curve is zero. For values of x > 4,

the derivative is positive,which indicates that the function y¼ f(x) is increasing as x increases.

2 4 6 8

y � f (x)

y � f (x)

dy/dx � 4

FIGURE A.3 The function y = x2�8xþ16.
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Example A.3

The approximation of the logarithm in (A.4) uses a very powerful tool called a Taylor series

approximation. For the function f (y)¼ ln(y) it is illustrated in Figure A.4. Assume that we

know the point A on the function: for y ¼ y0, we know the function value f (y0). The

approximation idea is to draw a line tangent to the curve f (y)¼ ln(y) at A, then approximate

the point on the curve f (y1)¼ ln(y1) by the point B on the tangent line. For a smooth curve

like ln(y), this strategy works well, and the approximation error will be small if y1 is close to

y0. The slope of the tangent line at point A, y0; f y0ð Þ ¼ ln y0ð Þð Þ, is the derivative of the

function f yð Þ ¼ ln yð Þ evaluated at y0. Using Derivative Rule 8, we have

d ln yð Þ
dy

				
y¼y0

¼ 1

y

				
y¼y0

¼ 1

y0

The value of the linear approximation at B is given by geometry. Recall that the slope of the

tangent (straight) line is ‘‘the rise over the run.’’ The ‘‘run’’ is A to C, or y1 � y0ð Þ, and
the corresponding ‘‘rise’’ is C to B. Then

tangent slope ¼ d ln yð Þ
dy

				
y¼y0

¼ rise

run
¼ CB

AC
¼ B� ln y0ð Þ

y1 � y0

Ta b l e A . 3 The Function y = x2 � 8x þ 16

and Derivative Values

x y = f (x) dy=dx

0 16 �8

2 4 �4

4 0 0

6 4 4

8 16 8

approximation error

B � linear approximation of ln(y1)

ln(y0)

slope of tangent line
� dln(y)/dy � 1/y

A

y0 y1

C

f(y) � ln(y)

f(y1) � ln(y1)

FIGURE A.4 Taylor series approximation of ln(y).
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Solving this equation for B ¼ approximate value of f(y1), we obtain the expression in (A.4),

B ¼ ln y0ð Þ þ d ln yð Þ
dy

				
y¼y0

y1 � y0ð Þ ¼ ln y0ð Þ þ 1

y0
y1 � y0ð Þ

The Taylor series approximation is used in many contexts.

Derivative Rule 10 (Taylor Series Approximation). If f (x) is a smooth function, then

f xð Þ ffi f að Þ þ df xð Þ
dx

				
x¼a

x� að Þ ¼ f að Þ þ f 0 að Þ x� að Þ

where f 0 að Þ is a common notation for the first derivative of the function f (x) evaluated at

x ¼ a. The approximation is good for x close to a.

A.3.2 ELASTICITY OF A NONLINEAR RELATIONSHIP

Given the slope of a curve, the elasticity of ywith respect to changes in x is given by a slightly

modified (A.8),

eyx ¼ dy=y

dx=x
¼ dy

dx
� x

y
¼ slope� x

y

For example, the quadratic function y ¼ ax2 þ bxþ c is a parabola. The slope (derivative) is

dy=dx ¼ 2axþ b. The elasticity is

eyx ¼ slope� x

y
¼ 2axþ bð Þ x

y

As a numerical example, consider the curve defined by y ¼ f xð Þ ¼ x2 � 8xþ 16. The graph

of this quadratic function is shown in Figure A.3. The slope of the curve is dy=dx ¼ 2x� 8.

When x ¼ 6, the slope of the tangent line is dy=dx ¼ 4. When x ¼ 6, the corresponding

value of y ¼ 4. So the elasticity at that point is

exy ¼ dy=dxð Þ � x=yð Þ ¼ 2x� 8ð Þ x=yð Þ ¼ 4 6=4ð Þ ¼ 6

A 1% increase in x corresponds to a 6% change in y.

A.3.3 PARTIAL DERIVATIVES

When a functional relationship includes several variables, such as y ¼ f x; zð Þ, the slope

depends on the values of x and z, and there are slopes in two directions rather than one. In

Figure A.5, we illustrate the partial derivative of the function with respect to x, holding z

constant at the value z ¼ z0.

At the point x0; z0ð Þ the value of the function is y0 ¼ f x0; z0ð Þ. The slope of the tangent
line CD is the partial derivative.

Slope of CD ¼ @f x; zð Þ
@x

				
x¼x0; z¼z0
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The vertical bar indicates that the partial derivative function is evaluated at the point x0; z0ð Þ.
To find the partial derivative we use the already established rules. Consider the function

y ¼ f x; zð Þ ¼ ax2 þ bxþ czþ d

To find the partial derivative of y with respect to x, treat z as a constant. Then

@y

@x
¼ d ax2ð Þ

dx
þ d bxð Þ

dx
þ d czð Þ

dx
þ d dð Þ

dx

¼ 2axþ b

Using Derivative Rule 1, the third and fourth terms in the derivative are zero, because cz

and d are treated as constants.

A.3.4 THEORY OF DERIVATIVES
2

Many rules for derivatives can be obtained using limit operations. Consider the curve

y ¼ f xð Þ shown in Figure A.6 on page 645.

Two points on the curve are x1; y1ð Þ and x2; y2ð Þ. The slope of the line segment joining

x1; y1ð Þ and x2; y2ð Þ is

Dy

Dx
¼ y2 � y1

x2 � x1
(A.9)

Suppose that x1; y1ð Þ remains a fixed point and that we slide the point x2; y2ð Þ along the curve
towards x1; y1ð Þ.Theslopeofthelinesegmentwillvaryfrompoint topoint.Forasmoothcurve

like the onewehave shown, as x2; y2ð Þmoves closer and closer to x1; y1ð Þ, the slopeof the line
segmentwillchangelessandless,approachingalimitingvalue.Whenthisoccurs, thelimiting

value is said to be the slope of the tangent at x1; y1ð Þ, or the slope of the curve at x1; y1ð Þ.

y � f (x,z)

z

C

A

D

�y

�x

z0

x0
x

y

B

( ),
Slope of 

f x z
CD

x
0 0,x x z z� �

∂
=

∂

FIGURE A.5 Three-dimensional diagram of a partial derivative.

2 This section contains advanced material.

646 MATHEMAT ICAL TOOLS



The slope of the curve f xð Þ is the derivative of the function f xð Þ, with respect to x, at the
point x1; y1ð Þ. Algebraically, the first derivative is defined as

dy

dx
¼ lim

Dx!0

Dy

Dx
(A.10)

The notation dy=dx can be thought of as a stylized version of Dy=Dx, with the reminder that

the changes in x are infinitesimal.

To calculate the derivative using (A.10), it is convenient to let the stationary point

x1; y1ð Þ ¼ x; yð Þ and the moving point x2; y2ð Þ ¼ xþ Dx; yþ Dyð Þ. Then the derivative of

f xð Þ at (x,y) is
dy

dx
¼ lim

Dx!0

Dy

Dx
¼ lim

Dx!0

y2 � y1

Dx

¼ lim
Dx!0

f xþ Dxð Þ � f xð Þ
Dx

(A.11)

The derivative dy=dx is a function of x, whichmust be evaluated at specific points in order to

obtain the slope of the function at those points.

Example A.4

Consider the function y ¼ f xð Þ ¼ 4xþ 1. The slope of this function is

dy

dx
¼ lim

Dx!0

f xþ Dxð Þ � f xð Þ
Dx

¼ lim
Dx!0

4 xþ Dxð Þ þ 1� 4xþ 1ð Þ
Dx

¼ lim
Dx!0

4Dx

Dx
¼ lim

Dx!0
4 ¼ 4

The slope of the straight line y ¼ f xð Þ ¼ 4xþ 1 is dy=dx ¼ 4. The rate of change of the

function is constant, since it is a straight line. For each one-unit increase in x, the value of y

increases by four units. For a straight line y ¼ f xð Þ ¼ mxþ bwith slopem, the derivative is

dy=dx ¼ m.

y � f(x)

y � f(x)

�x

�y

x

Tangent

(x1, y1)
(x2, y1)

(x2, y2)

FIGURE A.6 The slope of a curve.
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Example A.5
The quadratic function y ¼ f xð Þ ¼ x2 � 8xþ 16 is shown in Figure A.3. Applying the

derivative formula in (A.11), we have

dy

dx
¼ lim

Dx!0

f xþ Dxð Þ � f xð Þ
Dx

¼ lim
Dx!0

xþ Dxð Þ2 � 8 xþ Dxð Þ þ 16� x2 � 8xþ 16ð Þ
h i

Dx

¼ lim
Dx!0

x2 þ 2x Dxð Þ þ Dxð Þ2 � 8x� 8Dxþ 16� x2 þ 8x� 16
h i

Dx

¼ lim
Dx!0

2x Dxð Þ þ Dxð Þ2 � 8Dx

Dx
¼ lim

Dx!0
2xþ Dx� 8 ¼ 2x� 8

This is the same result obtained in Example A.2 using rules for derivatives.

A.4 Integrals

An integral is an ‘‘anti-derivative.’’ If f xð Þ is a function, we can ask the question, ‘‘Of what
function F xð Þ is this the derivative?’’ The answer is given by the indefinite integralð

f xð Þ dx ¼ F xð Þ þ C

The function F xð Þ þ C, where C is a constant called the constant of integration, is an anti-

derivative of f xð Þ, because
d F xð Þ þ C½ �

dx
¼ d F xð Þ½ �

dx
þ d C½ �

dx
¼ f xð Þ

Finding F xð Þ is an application of reversing the rules for derivatives. For example, using the

rules of derivatives,

d xn þ Cð Þ
dx

¼ nxn�1

Thus,
Ð
nxn�1dx ¼ xn þ C ¼ F xð Þ þ C, so in this case F xð Þ ¼ xn. Many indefinite integrals

have been worked out and are tabled in your favorite calculus book and at many websites.

Two handy facts about integrals are as follows:

Integral Rule 1. ð
f xð Þ þ g xð Þ½ � dx ¼

ð
f xð Þdxþ

ð
g xð Þdx

An integral of a sum is the sum of the integrals.

Integral Rule 2.

ð
cf xð Þ dx ¼ c

ð
f xð Þ dx

Constants can be factored out of integrals.

These rules can be combined so that
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Integral Rule 3.

ð
c1f xð Þ þ c2g xð Þ½ � dx ¼ c1

ð
f xð Þdxþ c2

ð
g xð Þdx

Also,

Integral Rule 4 (power rule).

ð
xndx ¼ 1

nþ 1
xnþ1 þ C, where n 6¼ �1

A.4.1 COMPUTING THE AREA UNDER A CURVE

An important use of integrals in econometrics and statistics is to calculate areas under

curves. For example, in Figure A.7, what is the shaded area under the curve f xð Þ?
The area between a curve f xð Þ and the x-axis, between the limits a and b, is given by the

definite integral

ðb
a
f xð Þdx

The value of this integral is provided by the fundamental theorem of calculus, which

says that ðb
a
f xð Þdx ¼ FðbÞ � FðaÞ

Example A.6

Consider the function

f xð Þ ¼ 2x 0 � x � 1

0 otherwise



(A.12)

This is the equation of a straight line through the origin, as shown in Figure A.8.

a b
x

f (x)

f (x)

FIGURE A.7 Area under a curve.
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What is the shaded area in Figure A.8, the area under the line between a and b? The

answer can be found using the geometry of triangles. The area of a triangle is half

the base times the height, 1
2
� base� height. Triangles can be identified by their corners.

Let D0bc represent the area of the triangle formed by the points 0 (the origin), b, and c.

Similarly D0ad represents the area of the smaller triangle formed by the points 0, a and d.

The shaded area that represents the area under f xð Þ ¼ 2x between a and b is the difference

between the areas of these two triangles.

Area ¼ D0bc� D0ad

¼ 1

2
b

� �
2bð Þ � 1

2
a 2að Þ

¼ b2 � a2

(A.13)

Equation (A.13) gives us an easy formula for calculating the area under f xð Þ ¼ 2x falling

between a and b.

Using integration, the area under the curve f xð Þ ¼ 2x and above the x-axis between the

limits x ¼ a and x ¼ b is obtained by finding the definite integral of f xð Þ ¼ 2x. To use

the fundamental theorem of calculus we need the indefinite integral. Use the power

rule, Integral Rule 4, we obtain

ð
2x dx ¼ 2

ð
x dx ¼ 2

1

2
x2 þ C

� �
¼ x2 þ 2C ¼ x2 þ C1 ¼ F xð Þ þ C1

2

2b

2a

0 1a
x

b

c

d

f(x)

f(x) � 2x

FIGURE A.8 Area under the curve f xð Þ ¼ 2x; 0 � x � 1.
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where F xð Þ ¼ x2 and the constant of integration is C1. The area we seek is given by

ðb
a
2xdx ¼ F bð Þ � F að Þ ¼ b2 � a2 (A.14)

This is the same answer we obtained in (A.13) using geometry.

Many times the algebra is abbreviated, because the constant of integration does not affect

the definite integral. You will see for definite integrals

ðb
a
2xdx ¼ x2

		b
a¼ b2 � a2

The vertical bar notation means: Evaluate the expression first at b and subtract from it the

value of the expression at a.

A.4.2 THE DEFINITE INTEGRAL

Let us take a more general approach to finding the area under the curve f xð Þ ¼ 2x that will

lead to the concept of an integral. Divide the interval a; b½ � into n sub-intervals of width

Dx ¼ b� að Þ=n by inserting the n – 1 equally spaced points x1; x2; . . . ; xn�1 between

a ¼ x0 and b ¼ xn, as shown in Figure A.9.

f(x) � 2x

f(b)

f(xn�1)

f(x2)

f(x1)

f(a)

0 a bx1 x2 xn�1. . .

FIGURE A.9 Area under the curve f xð Þ ¼ 2x; a � x � b.
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The n – 1 points are

x1 ¼ aþ Dx

x2 ¼ aþ 2 Dxð Þ
..
.

xi ¼ aþ i Dxð Þ
..
.

xn�1 ¼ aþ n� 1ð Þ Dxð Þ

(A.15)

By placing these points we are able to construct n rectangles underneath the line f xð Þ ¼ 2x.

The idea is now that we can approximate the area under the curve by summing the areas of

the inscribed rectangles. The approximation will be off a little, because we are not counting

the little triangular area at the top of each rectangle.However, ifwe put inmany rectangles of

narrowwidth, then the approximation area will be small. The ‘‘exact’’ area will be obtained

if we let the number of rectangles go to infinity.

A.4.3 THE DEFINITE INTEGRAL: DETAILS
3

The area of a rectangle is height � width. The first and smallest rectangle has

width ¼ x1 � x0 ¼ Dx, height ¼ f x0ð Þ ¼ 2a, and area

A1 ¼ f x0ð ÞDx ¼ 2að Þ Dxð Þ

Similarly, the second rectangle has the samewidth, and height f x1ð Þ, where x1 is expressed in
(A.15), and it has area

A2 ¼ f x1ð ÞDx ¼ 2 aþ Dxð Þ Dxð Þ

The area of the last and largest rectangle is

An ¼ f xn�1ð ÞDx ¼ 2 aþ n� 1ð ÞDx½ � Dxð Þ

In order to develop a general expression, it is useful to have a representation for the ith

rectangle

Ai ¼ f xi�1ð ÞDx ¼ 2 aþ i� 1ð ÞDx½ � Dxð Þ

We can approximate the area A ¼ D0bc� D0ad by adding up the areas of the n rectangles.
This sum, Sn, is

Sn ¼ A1 þ A2 þ � � � þ An ¼ �
n

i¼1
f xi�1ð ÞDx ¼ �

n

i¼1
2 aþ i� 1ð ÞDx½ �Dx

¼ 2aDx �
n

i¼1
1þ 2 Dxð Þ2 �

n

i¼1
i� 1ð Þ

(A.16)

3 This section contains advanced material.
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There are two tricks with summations that now come in handy. First, if c is a constant,

then �n
i¼1c ¼ nc, so �n

i¼11 ¼ 1þ 1þ � � � þ 1 ¼ n. Second, �k
i¼1i ¼ k k þ 1ð Þ=2, so

�n
i¼1 i� 1ð Þ ¼ 0þ 1þ � � � þ n� 1ð Þ ¼ �

n�1

i¼1
i ¼ n� 1ð Þ nð Þ

2

Using these two expressions, we can simplify the second line of (A.16) as

Sn ¼ 2a
b� að Þ
n

nþ 2 b� að Þ2
n2

� n� 1ð Þ nð Þ
2

¼ 2a b� að Þ þ b� að Þ2 � n� 1

n

(A.17)

This sum, Sn, is an approximation to the area under the line f xð Þ ¼ 2x between the points a

and b. The approximation becomes better when more rectangles are used—that is, when n,

the number of divisions between a and b, is larger. In fact, the exact area under the graph can

be obtained by evaluating the limit of Sn as n ! 1. The only place in (A.17) where n

appears is in the last term. The limit of this term is

lim
n!1

n� 1

n
¼ lim

n!1 1� 1

n

� �
¼ 1� lim

n!1
1

n
¼ 1 (A.18)

Using (A.18) we can take the limit of (A.17) to obtain

Area ¼ lim
n!1 Sn ¼ lim

n!1 �
n

i¼1
f xið ÞDx ¼ 2a b� að Þ þ b� að Þ2

¼ b� að Þ bþ að Þ ¼ b2 � a2

This solution is identical to the result in (A.13) using the geometry of triangles and the

fundamental theorem of calculus.

A.5 Exercises

Answers to exercises marked * can be found at www.wiley.com/college/hill.

A.1* LetQs ¼ �3þ 1:5P, whereQs is the quantity supplied of a good and P is the market

price.

(a) State the interpretation of the slope in economic terms.

(b) Calculate the elasticity at x ¼ 10 and at x ¼ 50, and state their interpretations.

A.2 Suppose the rate of inflation INF, the annual percentage increase in the general price

level, is related to the annual unemployment rate UNEMP by the equation

INF ¼ �2 þ 6� 1=UNEMPð Þ.
(a) Sketch the curve for values of UNEMP between 1 and 10.

(b) Where is the impact of a change in the unemployment rate the largest?

(c) If the unemployment rate is 5%, what is the marginal effect of an increase in the

unemployment rate on the inflation rate?

A.3* Simplify the following expressions:
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(a) x1=2x1=6

(b) x2=3 	 x7=8

(c) x4y3ð Þ�1=2

A.4 (a) The velocity of light is 186,000 miles per second. Write the velocity of light in

scientific notation.

(b) Find the number of seconds in a year and write in scientific notation.

(c) Express the distance light travels in one year in scientific notation.

A.5* Technology affects agricultural production by increasing yield over time. Let

WHEATt ¼ average wheat production (tonnes per hectare) for the period 1950–

2000 (t ¼ 1, . . ., 51) in the Western Australia shire of Chapman Valley.

(a) Suppose production is defined by WHEATt ¼ 0:5þ 0:20 lnðtÞ. Plot this curve.
Find the slope and elasticity at the point t ¼ 49 (1998).

(b) Suppose production is defined byWHEATt ¼ 0:80þ 0:0004 t2. Plot this curve.
Find the slope and elasticity at the point t ¼ 49 (1998).

A.6 Forensic scientists can deduce the amount of arsenic in drinking water from

concentrations (in parts per million) in toenails. Let y ¼ toenail concentration of

arsenic and x ¼ drinking water concentration of arsenic. The following three

equations describe the relationship:

lnðyÞ ¼ 0:8þ 0:4 lnðxÞ
y ¼ 1:5þ 0:2 lnðxÞ
lnðyÞ ¼ �1:75þ 20x

(a) Plot each of the functions for x ¼ 0 to x ¼ 0.15

(b) Calculate the slope of each function at x ¼ 0.10. State the interpretation of the

slope.

(c) Calculate the elasticity of each function at x ¼ 0.10 and give its interpretation.

A.7* Consider the numbers x ¼ 4573239 and y ¼ 59757.11.

(a) Write each number in scientific notation.

(b) Use scientific notation to obtain the product xy.

(c) Use scientific notation to obtain the quotient x=y.
(d) Use scientific notation to obtain the sum x þ y. [Hint: write each number as a

numeric part times 106.]

A.8 Consider the function y ¼ f xð Þ ¼ 3þ 2xþ 3x2.

(a) Sketch the curve for values of x between x ¼ 0 and x ¼ 4.

(b) Find the derivative dy=dx and evaluate it at x ¼ 2. Sketch the tangent to the

curve at this point.

(c) Compute y1 ¼ f 1:99ð Þ and y2 ¼ f 2:01ð Þ. Locate these values (approximately)

on your sketch.

(d) Evaluate m ¼ f 2:01ð Þ � f 1:99ð Þ½ �=:02. Compare this value to the value of the

derivative computed in (b). Explain, geometrically, why the values should be

close. The value m is a ‘‘numerical derivative,’’ which is useful for approxi-

mating derivatives.
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A p p e n d i x B
Probability Concepts

Learning Objectives

Based on the material in this appendix you should be able to:

1. Explain the difference between a random variable and its values, and give an

example.

2. Explain the difference between discrete and continuous random variables, and give

examples of each.

3. State the characteristics of probability density functions (pdf ) for discrete and

continuous random variables, and give examples illustrating these characteristics.

4. Compute probabilities of events, given the probability density function for a

discrete or continuous random variable.

5. Show, geometrically and algebraically, using integration, how to compute prob-

abilities given a pdf for a continuous random variable.

6. Use the definitions of expected values for discrete and continuous randomvariables

to compute expectations, given a pdf f xð Þ and a function g xð Þ.
7. Define the variance of a random variable, and explain in what sense the values of a

random variable are more spread out if the variance is larger.

8. Use a joint pdf for two continuous random variables to compute probabilities of

joint events, and to find the (marginal) pdf of each individual random variable.

9. Find the conditional pdf for one random variable given the value of another and

their joint pdf, and use it to compute conditional probabilities, the conditionalmean,

and conditional variance.

10. Define the covariance and correlation between two random variables, and compute

these values given a joint probability function.

11. Explain and apply the law of iterated expectations.

12. Find the distribution of a random variable Y ¼ g Xð Þ, when g Xð Þ is a strictly

increasing or decreasing function, given the probability density function f xð Þ for
the random variable X.

13. Obtain a random number from a probability density function f xð Þ when its

cumulative distribution function F xð Þ is invertible.
14. Explain inwhat sense random numbers generated by a computer are random, and in

what sense they are not.
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We assume that you have had a basic probability and statistics course and that you have read

the Probability Primer that precedes Chapter 2. If you have not read the Probability Primer,

then do so now.

In this appendix we summarize rules of expected values and variances for discrete

random variables for easy reference. We then develop similar rules for continuous random

variables that will require the use of integral concepts introduced in Appendix A.4. We

review the properties of some important discrete and continuous random variables,

including the t, chi-square, and F distributions. Finally, we introduce concepts related to

computer generated random numbers.

B.1 Discrete Random Variables

In this section we provide a summary of operations with discrete random variables. See the

Probability Primer for examples and general background discussion.

A random variable is a variable whose value is unknown until it is observed; in other

words, it is a variable that is not perfectly predictable. A discrete random variable can take

only a limited, or countable, number of values. An example of a discrete random variable is

the number of late credit card bill payments last year by a randomly selected individual. A

special case occurs when a random variable can only be one of two possible values.

A payment is either late or it is not. Outcomes like this can be characterized by a binary

variable, say LATE, taking the value one for late payments and zero for those that are on

time. Such variables are also called indicator variables, or dummy variables.

We summarize the probabilities of possible outcomes using a probability density

function (pdf ). The pdf for a discrete random variable indicates the probability of each

possible value occurring. For a discrete random variable X the value of the probability

density function f xð Þ is the probability that the random variable X takes the value x,

f ðxÞ ¼ P X ¼ xð Þ. Because f xð Þ is a probability, it must be true that 0 � f ðxÞ � 1 and, if X

takes n possible values x1; . . . ; xn, then the sum of their probabilities must be one

P X ¼ x1ð Þ þ P X ¼ x2ð Þ þ � � � þ P X ¼ xnð Þ ¼ f ðx1Þ þ f ðx2Þ þ � � � þ f ðxnÞ ¼ 1

Keywords

binary variable
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cdf

change-of-variable technique

chi-square distribution

conditional pdf

conditional probability
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covariance

cumulative distribution

function

degrees of freedom
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The cumulative distribution function (cdf ) is an alternativeway to represent probabilities.
The cdf of the random variable X, denoted F xð Þ, gives the probability that X is less than or

equal to a specific value x. That is,

F xð Þ ¼ P X � xð Þ (B.1)

Twokey features of a probability distribution are its center (location) andwidth (dispersion).

A measure of the center is the mean, or expected value; measures of dispersion are

variance, and its square root—the standard deviation.

B.1.1 EXPECTED VALUE OF A DISCRETE RANDOM VARIABLE

Themean of a random variable is given by itsmathematical expectation. If X is a discrete

randomvariable taking thevalues x1; . . . ; xn then themathematical expectation, or expected

value, of X is

mX ¼ E Xð Þ ¼ x1P X ¼ x1ð Þ þ x2P X ¼ x2ð Þ þ � � � þ xnP X ¼ xnð Þ (B.2a)

The expected value, or mean, of X is a weighted average of its values, the weights being the

probabilities that the values occur. The mean is often symbolized by m, or mX. It is the

average value of the random variable in an infinite number of repetitions of the underlying

experiment. Because the probability that the discrete random variable X takes the value x is

given by its pdf f xð Þ, P X ¼ xð Þ ¼ f xð Þ, the expected value in (B.2a) can be written

equivalently as

mX ¼ E Xð Þ ¼ x1 f ðx1Þ þ x2 f ðx2Þ þ � � � þ xn f ðxnÞ
¼ �

n

i¼1
xi f ðxiÞ ¼ �

x
xf ðxÞ (B.2b)

Functions of random variables are also random. Expected values are obtained using

calculations similar to those in (B.2). If X is a discrete random variable and g(X) is a

function of it, then

E½gðXÞ� ¼ �
x
gðxÞf ðxÞ (B.3)

Using (B.3) we can develop some frequently used rules. If a is a constant, then

E aXð Þ ¼ aE Xð Þ (B.4)

Similarly, if a and b are constants, then we can show that

E aX þ bð Þ ¼ aE Xð Þ þ b (B.5)

To see how this result is obtained, we apply the definition in (B.3) to the function g Xð Þ ¼
aX þ b

E g Xð Þ½ � ¼ �g xð Þf xð Þ ¼� axþ bð Þf xð Þ ¼ � axf xð Þ þ bf xð Þ½ �
¼ � axf xð Þ½ � þ � bf xð Þ½ � ¼ a� xf xð Þ þ b� f xð Þ
¼ aE Xð Þ þ b
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In the final step we recognize E(X) from its definition in (B.2), and use the fact that

� f xð Þ ¼ 1.

If g1ðXÞ, g2ðXÞ, . . ., gM Xð Þ are functions of X, then

E g1 Xð Þ þ g2 Xð Þ þ � � � þ gM Xð Þ½ � ¼ E g1 Xð Þ½ � þ E g2 Xð Þ½ � þ � � � þ E gM Xð Þ½ � (B.6)

This rule extends to any number of functions. The expected value of a sum is always the

sum of the expected values.

A similar rule does not work, in general, for nonlinear functions. That is,

E gðXÞ½ � 6¼ g E Xð Þ½ �. For example, E X2ð Þ 6¼ E Xð Þ½ �2.

B.1.2 VARIANCE OF A DISCRETE RANDOM VARIABLE

The variance of a discrete random variable X is the expected value of

g Xð Þ ¼ X � E Xð Þ½ �2

The variance of a random variable is important in characterizing the scale of measurement

and the spread of the probability distribution.Wegive it the symbols2, which is read ‘‘sigma

squared,’’ or s2
X. Algebraically, letting E Xð Þ ¼ mX ,

var Xð Þ ¼ s2
X ¼ E X � mXð Þ2

h i
¼ E X2

� �� m2
X (B.7)

The variance of a random variable is the average squared difference between the random

variable X and its mean value m. The larger the variance of a random variable, the more

‘‘spread out’’ its values are. The square root of thevariance is called the standarddeviation;
it is denoted by s or sX. It measures the spread or dispersion of a distribution and has the

advantage of being in the same units of measure as the random variable.

A useful property of variances is the following. Let a and b be constants; then

var aX þ bð Þ ¼ a2var Xð Þ (B.8)

This result is proven in the Probability Primer, Section P.5.4.

Two other characteristics of a probability distribution are its skewness and kurtosis.

These are defined as

skewness ¼
E X � mXð Þ3
h i

s3
X

(B.9)

and

kurtosis ¼
E X � mXð Þ4
h i

s4
X

(B.10)

Skewness measures the lack of symmetry of a distribution. If the distribution is symmetric,

then its skewness ¼ 0. Distributions with long tails to the left are negatively skewed,

and skewness < 0. Distributions with long tails to the right are positively skewed, and
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skewness > 0. Kurtosis measures the ‘‘peakedness’’ of a distribution. A distribution with

large kurtosis hasmorevalues concentrated near themean and a relatively high central peak.

A distribution that is relatively flat has a lower kurtosis. The benchmark value for kurtosis is

3, which is the kurtosis of the normal distribution that we discuss later in this appendix

(Section B.3.5).

B.1.3 JOINT, MARGINAL, AND CONDITIONAL DISTRIBUTIONS

If X and Y are discrete random variables, then the joint probability that X ¼ a and Y ¼ b is

given by the joint pdf of X and Y, written as f (x,y), and P X ¼ a; Y ¼ b½ � ¼ f a; bð Þ. The sum
of the joint probabilities is one,�x�y f x; yð Þ ¼ 1.Given a joint probability density function,

we can obtain the probability distributions of individual random variables, which are also

known as marginal distributions. If X and Y are two discrete random variables, then

fXðxÞ ¼ �
y
f ðx; yÞ for each value X can take (B.11)

For discrete random variables, the probability that the random variable Y takes the value y

given that X ¼ x is written P Y ¼ yjX ¼ xð Þ. This conditional probability is given by the

conditional pdf f yjxð Þ:

f ðyjxÞ ¼ PðY ¼ yjX ¼ xÞ ¼ PðY ¼ y;X ¼ xÞ
P X ¼ xð Þ ¼ f ðx; yÞ

fXðxÞ (B.12)

Two random variables are statistically independent if the conditional probability that

Y ¼ y given that X ¼ x, is the same as the unconditional probability that Y ¼ y. In this

case, knowing the value of X does not alter the probability distribution of Y. If X and Y

are independent random variables, then

P Y ¼ yjX ¼ xð Þ ¼ P Y ¼ yð Þ (B.13)

Equivalently, if X and Y are independent, then the conditional pdf of Y given X ¼ x is the

same as the unconditional, or marginal, pdf of Y alone,

f ðyjxÞ ¼ f ðx; yÞ
fXðxÞ ¼ fYðyÞ (B.14)

The converse is also true, so that if (B.13) or (B.14) are true for every possible pair of x and y

values, then X and Y are statistically independent.

Solving (B.14) for the joint pdf, we can also say that X and Yare statistically independent

if their joint pdf factors into the product of their marginal pdfs

f ðx; yÞ ¼ fXðxÞfYðyÞ (B.15)

If (B.15) is true for each and every pair of values x and y, then X and Y are statistically

independent. This result extends to more than two random variables. If X, Y and Z are

statistically independent, then their joint probability density function can be factored and

written as f ðx; y; zÞ ¼ fXðxÞ � fYðyÞ � fZðzÞ.
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B.1.4 EXPECTATIONS INVOLVING SEVERAL RANDOM VARIABLES

A rule similar to (B.3) exists for functions of several random variables. Let X and Y be

discrete random variables with joint pdf f (x,y). If g(X,Y) is a function of X and Y, then

E g X; Yð Þ½ � ¼ �
x
�
y
g x; yð Þf x; yð Þ (B.16)

Using (B.16) we can show that

E X þ Yð Þ ¼ E Xð Þ þ E Yð Þ (B.17)

This follows by using the definition (B.16) and letting g X; Yð Þ ¼ X þ Y . Then

E X þ Yð Þ ¼ �
x
�
y
g x; yð Þf x; yð Þ

¼ �
x
�
y

xþ yð Þf x; yð Þ

¼ �
x
�
y
xf x; yð Þþ �

x
�
y
yf x; yð Þ

¼ �
x
x�

y
f x; yð Þþ �

y
y�

x
f x; yð Þ

¼ �
x
xf xð Þþ�

y
yf yð Þ

¼ E Xð Þ þ E Yð Þ
To go from the fourth to the fifth line, we have used (B.11) to obtain the marginal

distributions of X and Y, and the fact that the order of summation does not matter. Using

the same logic, we can show that

EðaX þ bY þ cÞ ¼ aEðXÞ þ bEðYÞ þ c (B.18)

In general, E g X; Yð Þ½ � 6¼ g E Xð Þ;E Yð Þ½ �. For example, in general, E XYð Þ 6¼ E Xð ÞE Yð Þ. If,
however, X and Y are statistically independent, then using (B.16), we can also show that

E XYð Þ ¼ E Xð ÞE Yð Þ. To see this, recall that if X and Y are independent, then their joint pdf

factors into the product of the marginal pdfs, f x; yð Þ ¼ f xð Þf yð Þ. Letting g X; Yð Þ ¼ XY , we

have

E XYð Þ ¼ E g X; Yð Þ½ � ¼ �
x
�
y
xyf x; yð Þ ¼�

x
�
y
xyf xð Þf yð Þ

¼ �
x
xf xð Þ�

y
yf yð Þ ¼ E Xð ÞE Yð Þ

This rule can be extended to more independent random variables.

B.1.5 COVARIANCE AND CORRELATION

One particular application of (B.16) is the derivation of the covariance between X and Y.

Define a function that is the product of X minus its mean times Y minus its mean,

gðX; YÞ ¼ ðX � mXÞðY � mYÞ (B.19)

The covariance is the expected value of (B.19)

covðX; YÞ ¼ sXY ¼ E X � mXð Þ Y � mYð Þ½ � ¼ E XYð Þ � mXmY (B.20)
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If the covariance sXY of the variables is positive, then when x values are greater than

their mean, the y values also tend to be greater than their mean, and when x values are below

their mean, then the y values also tend to be less than their mean. In this case the random

variables X and Y are said to be positively or directly associated. If sXY < 0, then the

association is negative, or inverse. If sXY ¼ 0, then there is neither a positive nor negative

relationship.

Interpreting the actual value of sXY is difficult, because X and Ymay have different units

of measurement. Scaling the covariance by the standard deviations of the variables

eliminates the units of measurement, and defines the correlation between X and Y :

r ¼ cov X; Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi

varðYÞp ¼ sXY

sXsY

(B.21)

Aswith the covariance, the correlation r between two randomvariablesmeasures the degree

of linear association between them.However, unlike the covariance, the correlationmust lie

between –1 and 1. The correlation between X and Y is 1 if there is a perfect positive linear

relationship between X and Y and –1 if there is a perfect negative, or inverse, association

between X and Y. If there is no linear association between X and Y, then cov(X,Y ) ¼ 0 and

r ¼ 0. For other values of correlation, the magnitude of the absolute value rj j indicates the
‘‘strength’’ of the linear association between the values of the random variables.

If X and Y are independent random variables, then the covariance and correlation

between them are zero. The converse of this relationship is not true. Independent random

variables X and Y have zero covariance, indicating that there is no linear association

between them. However, just because the covariance or correlation between two random

variables is zero does not mean that they are necessarily independent. There may be more

complicated nonlinear associations such as X2 þ Y2 ¼ 1.

In (B.17) we found the expected value of a sum of random variables. There are similar

rules for variances. If a and b are constants, then

var aX þ bYð Þ ¼ a2varðXÞ þ b2varðYÞ þ 2abcovðX; YÞ (B.22)

To see this, it is convenient to define a new discrete random variable Z ¼ aX þ bY . This

random variable has expected value

mZ ¼ E Zð Þ ¼ E aX þ bYð Þ ¼ aE Xð Þ þ bE Yð Þ ¼ amX þ bmY

The variance of Z is

var Zð Þ ¼ E Z � mZð Þ2
h i

¼ E aX þ bYð Þ � amX þ bmYð Þ½ �2
n o

¼ E aX � amXð Þ þ bY � bmYð Þ½ �2
n o

¼ E a X � mXð Þ þ b Y � mYð Þ½ �2
n o

¼ E a2 X � mXð Þ2 þ b2 Y � mYð Þ2 þ 2ab X � mXð Þ Y � mYð Þ
h i

¼ E a2 X � mXð Þ2
h i

þ E b2 Y � mYð Þ2
h i

þ E 2ab X � mXð Þ Y � mYð Þ½ �

¼ a2var Xð Þ þ b2var Yð Þ þ 2abcov X; Yð Þ
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These rules extend to more random variables. For example, if X, Y, and Z are random

variables, then

var aX þ bY þ cZð Þ ¼ a2var Xð Þ þ b2var Yð Þ þ c2var Zð Þ þ 2abcov X; Yð Þ
þ 2bccov Y; Zð Þ þ 2accov X; Zð Þ (B.23)

B.1.6 CONDITIONAL EXPECTATIONS

If X and Y are two random variables with joint probability distribution f (x,y), then the

conditional probability distribution of Y givenX is f yjxð Þ. We can use this conditional pdf to

compute the conditional mean of Y given X. That is, we can obtain the expected value of Y

given that X ¼ x. The conditional expectation E Y jX ¼ xð Þ is the average (or mean) value of

Y given that X takes the value x. In the discrete case, it is defined to be

E YjX ¼ xð Þ ¼ �
y
yP Y ¼ yjX ¼ xð Þ ¼�

y
yf yjxð Þ (B.24)

Similarly, we can define the conditional variance of Y given X. This is the variance of the

conditional distribution of Y given X. In the discrete case, it is

var Y jX ¼ xð Þ ¼ �
y

y� E Y jX ¼ xð Þ½ �2f yjxð Þ (B.25)

B.1.7 ITERATED EXPECTIONS

The law of iterated expectations says that the expected value of Y is equal to the expected

value of the conditional expectation of Y given X. That is,

E Yð Þ ¼ EX E YjXð Þ½ � (B.26)

What this means becomes clearer with the following demonstration that it is true in the

discrete case.Wewill use two facts about probability distributions. First, themarginal pdf of

Y is f yð Þ ¼ �
x
f x; yð Þ and second, the joint pdf of X and Y can be expressed as

f x; yð Þ ¼ f yjxð Þf xð Þ. Then,

E Yð Þ ¼ �
y
yf yð Þ ¼ �

y
y �

x
f x; yð Þ

� �

¼ �
y
y �

x
f yjxð Þf xð Þ

� �

¼ �
x

�
y
yf yjxð Þ

� �
f xð Þ ½by changing order of summation�

¼ �
x
E Y jX ¼ xð Þf xð Þ

¼ EX E YjXð Þ½ �

In the final expression the EX ½ �means that the expectation of the term in brackets is taken

assuming that X is random. Thus, the expected value of Y can be found by finding its
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conditional expectation given X and then taking the expected value of the result with

respect to X.

Two other results are shown to be true the same way:

E XYð Þ ¼ EX XE Y jXð Þ½ � (B.27)

and

cov X; Yð Þ ¼ EX X � mXð ÞE Y jXð Þ½ � (B.28)

B.2 Working With Continuous Random Variables

Continuous random variables can take any value in an interval. In economics variables

like income and market prices are treated as continuous random variables. In Figure P.2

of the Probability Primer, we depict the probability density function for a continuous

randomvariable that ranges between zero and infinity, or x � 0.Because continuous random

variables can take uncountablymany values, the probability that any single value occurs in a

random experiment is zero. For example, P X ¼ 100ð Þ ¼ 0 or P X ¼ 200ð Þ ¼ 0. Probability

statements for continuous random variables are meaningful when we ask about outcomes

within intervals, or ranges.We can ask, ‘‘What is the probability thatX takes a value between

100 and 200?’’ These ideaswere introduced in Sections P.1 and P.2 of the Probability Primer.

There we noted that probabilities like these are areas under a curve that is the probability

density function. It would be a good time to review those sections now if the concepts are not

fresh in yourminds.What we did not discuss in the Probability Primer was how exactly such

probabilities are calculated. We delayed that discussion until now, because tools from

integral calculus are required.

In this section, we discuss how to work with continuous random variables. The

interpretation of probabilities, expected values, and variances carries over from what

you learned about discrete random variables. What changes is the algebra—summation

signs turn into integrals, and this takes a little getting used to. If you have not done so, review

the discussion of integrals in Appendix A.4.

B.2.1 PROBABILITY CALCULATIONS

If X is a continuous random variable with probability density function f xð Þ, then f xð Þmust

obey certain properties:

f xð Þ � 0 (B.29)ð1
�1
f xð Þdx ¼ 1 (B.30)

P a � X � bð Þ ¼
ðb
a
f xð Þdx (B.31a)

Property (B.29) states that the pdf cannot take negativevalues. Property (B.30) states that the

total area under the pdf, which is the probability that X falls between �1 and 1, is one.
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Property (B.31a) states that the probability that X falls in the interval a; b½ � is the area under
the curve f xð Þ between those values. Because a single point has probability zero, it is also

true that

P a � X � bð Þ ¼ P a < X � bð Þ ¼ P a � X < bð Þ ¼ P a < X < bð Þ ¼
ðb
a
f xð Þdx (B.31b)

The cumulative distribution function, cdf, for a continuous random variable is

F xð Þ ¼ P X � xð Þ. Using the cdf we can compute

P X � að Þ ¼
ða
�1
f xð Þdx ¼ F að Þ (B.32a)

The cdf is obtained by integrating the pdf. The integral is an ‘‘anti-derivative,’’so thatwe can

obtain the pdf f xð Þ by differentiating the cdf F xð Þ. That is,

f xð Þ ¼ dF xð Þ
dx

¼ F0 xð Þ (B.32b)

The concept of a cdf is useful in many ways, including working with computer software,

which includes the cdfs of many random variables so that probabilities can be easily

computed.

Example B.1

Let X be a continuous random variable with pdf f xð Þ ¼ 2 1� xð Þ for 0 � x � 1. This pdf is

depicted in Figure B.1.

Property (B.29) holds for x in the interval 0; 1½ �. Furthermore, property (B.30) holds

because

ð1
�1
f xð Þdx ¼

ð1
0
2 1� xð Þdx ¼

ð1
0
2dx�

ð1
0
2xdx ¼ 2x

���1
0
� x2

���1
0
¼ 2� 1 ¼ 1

0
0

0.5

1y

1.5

2

0.25 0.75 1
x

f (x)

FIGURE B.1 Probability density function f xð Þ ¼ 2 1� xð Þ.
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Using Figure B.1, we can compute P 1
4
� X � 3

4

� � ¼ 1
2
using geometry. Using integration,

we come to the same conclusion:

P 1
4
� X � 3

4

� � ¼ ð3=4
1=4

f xð Þdx ¼
ð3=4
1=4

2 1� xð Þdx

¼
ð3=4
1=4

2dx�
ð3=4
1=4

2xdx ¼ 2x

����
3=4

1=4

� x2
����
3=4

1=4

¼ 1� 9

16
� 1

16

� 	
¼ 1

2

The cumulative distribution function is F xð Þ ¼ 2x� x2 for x in the interval 0;1½ �, so the

probability can also be computed as

P 1
4
� X � 3

4

� � ¼ F 3
4

� �� F 1
4

� �
Example B.2

Let X be a continuous random variable with pdf f xð Þ ¼ 3x2 for x in the interval 0; 1½ �.
Properties (B.29) and (B.30) hold. Because the pdf is a quadratic, we cannot use simple

geometry to compute P 1
4
� X � 3

4

� �
. We must use integration, obtaining

P 1
4
� X � 3

4

� � ¼ ð3=4
1=4

f xð Þdx ¼
ð3=4
1=4

3x2dx ¼ x3
����
3
4

1
4

¼ 9

64
� 1

64
¼ 1

8

B.2.2 PROPERTIES OF CONTINUOUS RANDOM VARIABLES

IfX is a continuous randomvariablewith probability density function f xð Þ, then its expected
value is

mX ¼ E Xð Þ ¼
ð1
�1

xf xð Þdx (B.33)

Compare this to the expected value of a discrete random variable in (B.2). An integral has

replaced the summation. The interpretation of E(X ) is exactly the same as in the discrete

case. It is the average value of X that occurs in an infinite number of repetitions of the

underlying experiment.

Example B.1 (continued)

The expected value of the random variable in Example B.1 is

ð1
�1

xf xð Þdx ¼
ð1
0
x � 2 1� xð Þdx ¼

ð1
0
2x� 2x2
� �

dx ¼ x2
����
1

0

� 2
3
x3
����
1

0

¼ 1� 2

3
¼ 1

3
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The variance of a random variable X is defined as s2
X ¼ E½ X � mXð Þ2�. This definition holds

for discrete and continuous random variables. In order to compute the variance we use the

analog to the rule in (B.3) for continuous random variables,

E g Xð Þ½ � ¼
ð1
�1
g xð Þf xð Þdx (B.34)

Then, letting g xð Þ ¼ X � mXð Þ2 we have

s2
X ¼ E X � mXð Þ2

h i
¼
ð1
�1

x� mXð Þ2f xð Þdx

¼
ð1
�1

x2 þ m2
X � 2xmX

� �
f xð Þdx

¼
ð1
�1
x2f xð Þdxþ m2

X

ð1
�1
f xð Þdx� 2mX

ð1
�1
xf xð Þdx

¼ E X2
� �þ m2

X � 2m2
X

¼ E X2
� �� m2

X

(B.35)

To go from the third line to the fourth line, we use property (B.30) and the definition of

expected value (B.33). The end result is that s2
X ¼ E½ X � mXð Þ2� ¼ E X2ð Þ � m2

X as in the

discrete case.

To obtain the variance of the random variable described in Example B.1, we first find

E X2
� � ¼ ð1

�1
x2f xð Þdx ¼

ð1
0
x2 � 2 1� xð Þdx ¼

ð1
0
2x2 � 2x3
� �

dx

¼ 2
3
x3
���1
0
� 2

4
x4
���1
0
¼ 2

3
� 1

2
¼ 1

6

Then,

var Xð Þ ¼ s2
X ¼ E X2

� �� m2
X ¼ 1

6
� 1

3

� 	2

¼ 1

18

B.2.3 JOINT, MARGINAL, AND CONDITIONAL PROBABILITY DISTRIBUTIONS

To make simultaneous probability statements about more than one continuous random

variable, we need the joint probability density function of the random variables. For

example, consider the two continuous random variables U ¼ unemployment and P ¼
inflation rate. Suppose that their joint pdf is as depicted in Figure B.2.

The joint pdf is a surface and probabilities are volumes under the surface. If the two

randomvariables are nonnegative, thenwemight ask, ‘‘What is the probability that inflation

is less than 5% and at the same time unemployment is less than 6%?’’ That is, what is

P U � 6; P � 5ð Þ? Geometrically the answer is that this is the volume under the surface

above the rectangle (in the base of the figure) defining the event. Just as an integral is used to
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obtain the area under a curve, a double integral is used to obtain volumes like that shown in

Figure B.2. Given the joint pdf f (u, p) we can compute the probability as

P U � 6; P � 5ð Þ ¼
ð6
u¼0

ð5
p¼0

f u; pð Þdp du

If we know the joint pdf, can we obtain the marginal pdf of one of the random variables?

If so, we can answer questions like ‘‘What is the probability that unemployment will be

between 2% and 5%?’’ Analogous to (B.11) for discrete random variables, we integrate

out the unwanted random variable. That is, the marginal probability density function

for U is

f uð Þ ¼
ð1
�1
f u; pð Þdp (B.36)

Then, for example, P 2 � U � 5ð Þ ¼
ð5
2
f uð Þdu.

Wemight ask ‘‘What is the probability that unemployment will be between 2% and 5% if

we can use monetary policy to keep the inflation rate at 2%?’’ This is a question about a

conditional probability. Given that P ¼ 2, what is the probability that 2 � U � 5? Or in

terms of conditioning notation, what is P 2 � U � 5jP ¼ 2ð Þ. To answer such questions for
continuous random variables, we need the conditional probability density function

f u j pð Þ, which is given by

f u j pð Þ ¼ f u; pð Þ
f pð Þ (B.37)

0
2

4
6

8
10p

12

10

8

6

4

2

u

0.05

0.04

0.03

0.02

0.01

f (u, p)

FIGURE B.2 A joint probability density function.
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Unlike the result (B.12) for discrete randomvariables, we do not obtain the probability from

this division, but rather a density function that can be used for probability calculations. Not

only can we obtain conditional probabilities using f u j pð Þ, but we can also obtain the

conditional expectation, or conditional mean,

E UjP ¼ pð Þ ¼
ð1
�1
uf u j pð Þdu (B.38)

Similarly, the conditional variance is

var UjP ¼ pð Þ ¼
ð1
�1
½u� E UjP ¼ pð Þ�2f ujpð Þdu (B.39)

The importance of questions involving unemployment and inflation are of great social

importance. Economists and econometricianswork on these problems, and youwill glimpse

the issues a few times throughout this book. But it is difficult. So we illustrate the above

concepts with a simpler example.

Example B.3

Let X and Y be continuous random variables with joint pdf f x; yð Þ ¼ xþ y for x in [0, 1]

and y in [0, 1]. You might test for geometric skills by creating a three-dimensional graph of

this joint density function. Is it a valid density function? It satisfies the more general version

of property (B.29), because f x; yð Þ � 0 for all points x 2 0; 1½ � and y 2 0; 1½ �. Also the total
amount of probability, the volume under the surface, is

ð1
y¼0

ð1
x¼0

f x; yð Þdx dy ¼
ð1
y¼0

ð1
x¼0

xþ yð Þdx dy

¼
ð1
y¼0

ð1
x¼0

xdx dy þ
ð1
y¼0

ð1
x¼0

ydx dy

¼
ð1
y¼0

ð1
x¼0

xdx

� �
dyþ

ð1
x¼0

ð1
y¼0

ydy

� �
dx

¼
ð1
y¼0

1
2
x2
���1
0

� �
dyþ

ð1
x¼0

1
2
y2
���1
0

� �
dx

¼
ð1
y¼0

1
2
dyþ

ð1
x¼0

1
2
dx ¼ 1

2
þ 1

2
¼ 1

In the third line, we have used a property of multiple integrals. In the Probability Primer,

Section P.4, the rule ‘‘Sum 9’’ states that the order of multiple summations does not matter.

Similarly, as long as the limits of integration for one variable do not depend on the value of
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the other, the order of integration does notmatterwhenwe havemultiple integrals.However,

we must keep the integral symbol with its lower and upper limits paired with the variable of

integration, indicated by dx ordy. In the first term in the third line above, we have isolated the

integral involving x inside the integral involving y. Multiple integrals are evaluated by

working from the ‘‘inside out.’’ Solve the inside integral with respect to x, and then solve the

outer integral with respect to y.

For further practicewith double integrals find the probability thatX is between zero and 1
2

while Y is between 1
4
and 3

4
. This is a joint probability and is computed as follows:

P 0 � X � 1
2
; 1

4
� Y � 3

4

� � ¼ ð3=4
y¼1=4

ð1=2
x¼0

f x; yð Þdx dy

¼
ð3=4
y¼1=4

ð1=2
x¼0

xþ yð Þdx dy

¼
ð3=4
y¼1=4

ð1=2
x¼0

xdx dyþ
ð3=4
y¼1=4

ð1=2
x¼0

ydx

� �
dy

¼
ð3=4
y¼1=4

ð1=2
x¼0

xdx

� �
dyþ

ð3=4
y¼1=4

y
ð1=2
x¼0

dx

� �
dy

¼
ð3=4
y¼1=4

1
2
x2
���1=2
0

� �
dyþ

ð3=4
y¼1=4

y x
���1=2
0

� �
dy

¼ 1
8

ð3=4
y¼1=4

dyþ 1
2

ð3=4
y¼1=4

dy

¼ 1
8
y
���3=4
1=4

� �
þ 1

2
y
���3=4
1=4

� �
¼ 1

8
� 1

2
þ 1

2
� 1

2
¼ 5

16

In the third step of this example, we did not change the order of integration in the second

term. This illustrates another feature of working with multiple integrals. When carrying out

the ‘‘inside’’ integration with respect to x the value of y is fixed, and because it is fixed it can

be factored out in the fourth line, leaving a simpler inside integral.

The marginal pdf of X, for x 2 0; 1½ �, is

f xð Þ ¼
ð1
y¼0

f x; yð Þdy ¼
ð1
y¼0

xþ yð Þdy ¼
ð1
y¼0

xdyþ
ð1
y¼0

ydy ¼ x � y
����
1

0

þ 1
2
y2
����
1

0

¼ xþ 1

2

Technicallywe should also say that f xð Þ= 0 for x =2 0;1½ �, butwewill generally not explicitly
include this extra information. Using similar steps the marginal pdf of Y is f yð Þ ¼ yþ 1

2

for values of y in the [0,1] interval. The marginal pdf for X can be used to compute

probabilities that X falls in intervals in the domain of X, x 2 0; 1½ �. For example,
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P 1
2
< X < 3

4

� � ¼ ð3=4
1=2

xþ 1
2

� �
dx ¼

ð3=4
1=2

xdxþ 1
2

ð3=4
1=2

dx

¼ 1
2
x2
����
3=4

1=2

þ 1
2
x

����
3=4

1=2

¼ 1

2

9

16
� 1

4

� 	
þ 1

2

3

4
� 1

2

� 	

¼ 1

2
� 5

16
þ 1

2
� 1

4
¼ 9

32

Using the marginal pdf of X, we can find its expected value.

mX ¼ E Xð Þ ¼
ð1
�1

xf xð Þdx ¼
ð1
0
x xþ 1

2

� �
dx

¼
ð1
0
x2dxþ

ð1
0

1
2
xdx

¼ 1
3
x3
����
1

0

þ 1
4
x2
����
1

0

¼ 1

3
þ 1

4
¼ 7

12

The limits of integration in the first line change from �1; 1ð Þ to [0,1], because for

x =2 0; 1½ �, f xð Þ ¼ 0 and the area (probability) under f xð Þ ¼ 0 is zero.

To find the variance of X, we first find

E X2ð Þ ¼
ð1
0
x2f xð Þdx ¼

ð1
0
x2 xþ 1

2

� �
dx

¼
ð1
0
x3dxþ

ð1
0

1
2
x2dx

¼ 1
4
x4
����
1

0

þ 1
6
x3
����
1

0

¼ 1

4
þ 1

6
¼ 5

12

Then

s2
X ¼ var Xð Þ ¼ E X2ð Þ � E Xð Þ½ �2 ¼ 5

12
� 7

12

� 	2
¼ 11

144

The conditional pdf of Y given that X ¼ x is

f yjxð Þ ¼ f x; yð Þ
f xð Þ

In Example, B.3, the conditional pdf is

f yjxð Þ ¼ f x; yð Þ
f xð Þ ¼ xþ y

xþ 1
2

for y 2 0;1½ �

As a specific example,

f y

����X ¼ 1
3

� 	
¼ yþ 1

3
1
3
þ 1

2

¼ 1

5
6yþ 2ð Þ for y 2 0;1½ �
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The conditional pdf can be used to compute probabilities thatY falls in a given interval. Also,

we can compute the conditional mean of Y given that x ¼ 1=3

mY jX¼1=3 ¼ E Y jX ¼ 1
3

� � ¼ ð1
y¼0

yf yjX ¼ 1
3

� �
dy

¼
ð1
y¼0

y � 1
5
6yþ 2ð Þdy

¼
ð1
y¼0

6
5
y2dyþ

ð1
y¼0

2
5
ydy

¼ 6
5

1
3
y3
����
1

0

 !
þ 2

5
1
2
y2
����
1

0

 !
¼ 2

5
þ 1

5
¼ 3

5

Note that the conditional expected value is not the same as theunconditional expected value

mY ¼ E Yð Þ ¼ 7
12
.

To calculate the conditional variance, we first calculate

E Y2

����X ¼ 1
3

� 	
¼
ð1
y¼0

y2f y

����X ¼ 1
3

� 	
dy ¼

ð1
y¼0

y21
5
6yþ 2ð Þdy ¼ 13

30

The conditional variance is then

var Y

����X ¼ 1
3

� 	
¼ E Y2

����X ¼ 1
3

� 	
� E Y

����X ¼ 1
3

� 	� �2
¼ 11

150
¼ 0:07333

The unconditional variance is s2
Y ¼ var Yð Þ ¼ 11

144
¼ 0:07639. The conditional variance is

smaller than the unconditional variance, which will always be the case unless the random

variables are independent.

The correlation between X and Y is

r ¼ cov X; Yð Þ
sXsY

The covariance between X and Y can be calculated using cov X; Yð Þ ¼ E XYð Þ � mXmY . To

compute the expected value of XY, we calculate the double integral

E XYð Þ ¼
ð1
y¼0

ð1
x¼0

xyf x; yð Þdx dy ¼
ð1
y¼0

ð1
x¼0

xy xþ yð Þdx dy

¼
ð1
y¼0

ð1
x¼0

x2ydx dy þ
ð1
y¼0

ð1
x¼0

xy2dx dy

¼
ð1
y¼0

y
ð1
x¼0

x2dx

� �
dyþ

ð1
y¼0

y2
ð1
x¼0

xdx

� �
dy ¼ 1

6
þ 1

6
¼ 1

3
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Then

cov X; Yð Þ ¼ E XYð Þ � mXmY ¼ 1

3
� 7

12

� 	
7

12

� 	
¼ �1

144

Finally, the correlation between X and Y is

r ¼ cov X; Yð Þ
sXsY

¼
�1=144ffiffiffiffiffiffiffiffiffiffi

11=144
p ffiffiffiffiffiffiffiffiffiffi

11=144
p ¼ �1

11
¼ �0:09091

B.2.4 ITERATED EXPECTATIONS

A useful result, proved in Section B.1.7 for the discrete case, is the law of iterated

expectations. If X and Y are continuous random variables with joint pdf f(x,y), then the

expected value of Y can be calculated as

E Yð Þ ¼ EX E YjXð Þ½ �

This is the same result as in (B.26) for the discrete case. The exactmeaning of this expression

is best understood by first deriving it and then carrying through an illustration. To establish

that this result is true, we proceed as follows:

E Yð Þ ¼
ð1
y¼�1

yf yð Þdy

¼
ð1
y¼�1

y
ð1
x¼�1

f x; yð Þdx
� �

dy replacing marginal pdf

¼
ð
y

ð
x
yf x; yð Þdx dy simplifying integral

¼
ð
y

ð
x
y f yjxð Þf xð Þ½ �dx dy replace joint pdf

¼
ð
x

ð
y
yf yjxð Þdy

� �
f xð Þdx reverse order of integration

¼
ð
x
E YjXð Þ½ � f xð Þdx recognize E YjXð Þ

¼ EX E YjXð Þ½ � recognize expectation wrt X

In the last line of the expression, the notation EX �½ � means that we take the expectation

of the term in brackets treating X as random. Note that we also replaced the �1;1ð Þ
integral formwith a simpler form in line three indicating ‘‘over all values’’ of the variable of

integration.
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To better understand the iterated expectation expression, for Example B.3 find the

conditional expectation of Y given that X ¼ x, where the value x is not specified:

E YjX ¼ xð Þ ¼
ð1
y¼0

yf yjxð Þdy ¼
ð1
y¼0

y
xþ y

xþ 1
2

" #
dy

¼ 2þ 3x

3 2xþ 1ð Þ

Note that the integration over the values of Y, treating x as given, leaves us with a function of

x. If we now recognize that x can take any value and is thus random,we can find the expected

value of the function

g Xð Þ ¼ 2þ 3X

3 2X þ 1ð Þ

The law of iterated expectations says that if we take the expectation of g Xð Þ, treating X as

random, we should obtain E Yð Þ. Just for fun, let’s try it.

E g Xð Þ½ � ¼
ð1
x¼0

2þ 3x

3 2xþ 1ð Þ f xð Þdx

¼
ð1
x¼0

2þ 3x

3 2xþ 1ð Þ xþ 1

2

� 	
dx

¼
ð1
x¼0

2þ 3x

3 2xþ 1ð Þ
1

2
ð2xþ 1Þdx ¼

ð1
x¼0

1

6
ð2þ 3xÞdx

¼
ð1
x¼0

1
3
dxþ

ð1
x¼0

1
2
x dx ¼ 1

3
x

����
1

0

þ 1
4
x2
����
1

0

¼ 1

3
þ 1

4
¼ 7

12
¼ E Yð Þ

It works!

Besides being a neat trick, there are a couple of important implications of the law of

iterated expectations. First, based on E Yð Þ ¼ EX E Y jXð Þ½ �, we can see that if E Y jXð Þ ¼ 0,

then E Yð Þ ¼ EX E Y jXð Þ½ � ¼ EX 0ð Þ ¼ 0. If the conditional expectation of Y is zero, then the

unconditional expectation of Y is also zero.

Second, if E YjXð Þ ¼ E Yð Þ, then cov X; Yð Þ ¼ 0. To see this, first rewrite E XYð Þ as

E XYð Þ ¼
ð
x

ð
y
xyf x; yð Þdy dx

¼
ð
x

ð
y
xyf yjxð Þf xð Þdy dx

¼
ð
x
x
ð
y
yf yjxð Þdy

� �
f xð Þdx

¼
ð
x
x E Y jXð Þ½ � f xð Þdx

(B.40)
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If E YjXð Þ ¼ E Yð Þ, then the last line of (B.40) becomes

E XYð Þ ¼
ð
x
x E Yð Þ½ � f xð Þdx ¼ E Yð Þ

ð
x
xf xð Þdx ¼ E Yð ÞE Xð Þ ¼ mYmX

The covariance between X and Y in this case is

cov X; Yð Þ ¼ E XYð Þ � mXmY ¼ mXmY � mYmX ¼ 0

An extremely important special case of these two results concerns the consequences of

E YjXð Þ ¼ 0.We have already seen thatE Y jXð Þ ¼ 0 ) E Yð Þ ¼ 0. Nowwe can also see that

if E Y jXð Þ ¼ E Yð Þ ¼ 0, then cov X; Yð Þ ¼ 0. This result plays an important role in Chapter

10.1.3 in Assumption A10.3*.

B.2.5 DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES

As we have noted several times, a function of a random variable is random itself. The

question we address in this section is, ‘‘What is the probability density function of the new

random variable?’’ For the case of a discrete random variable this problem is not too hard.

For example, consider the discrete random variable X that can take the values 1, 2, 3, or 4

with probabilities 0.1, 0.2, 0.3, and 0.4, respectively. Let Y ¼ 2þ 3X ¼ g Xð Þ. What is the

pdf for Y? In this case it is clear. The probability that Y ¼ 5, 8, 11, or 14 corresponds

exactly to the probability that X ¼ 1, 2, 3, or 4, respectively, as shown in Table B.1.

What makes this possible is that each value of y corresponds to a unique value of x, and

each value of x corresponds to a unique value of y. Another way to say this is that the

transformation from X to Y is ‘‘one-to-one.’’ This type of relationship is ensured to hold

when the function g Xð Þ relating Y to X is either strictly increasing or strictly decreasing.

Such functionsare said tobe strictlymonotonic.Our functionY ¼ 2þ 3X ¼ g Xð Þ is strictly
(monotonically) increasing. This guarantees that if x2 > x1, then y2 ¼ g x2ð Þ > y1 ¼ g x1ð Þ.
Note in particular that we are ruling out the possibility that y1 ¼ y2.

Determining the distribution of Y ¼ g Xð Þ in the continuous case is a bit more challen-

ging. In the following example, we present the change-of-variable technique that applies

when the function g Xð Þ is strictly increasing or decreasing.

Example B.4
Let X be a continuous random variable with pdf f xð Þ ¼ 2x for 0 < x < 1. Let Y ¼ g Xð Þ ¼
2X be another random variable. We want to compute probabilities that Y falls in certain

Ta b l e B . 1 Change of Variable: Discrete Case

x P X ¼ xð Þ ¼ P Y ¼ yð Þ y

1 0.1 5

2 0.2 8

3 0.3 11

4 0.4 14
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intervals. One solution is to compute probabilities for Y based on the probability of the

corresponding event for X. For example,

P 0 < Y < 1ð Þ ¼ P 0 < X <
1

2

� 	
¼
ð1=2
0

2xdx ¼ x2
����
1=2

0

¼ 1

4

Although this is reasonable and relatively simple in this case, it will not always be so. It is

preferable to determine the pdf of Y, say h yð Þ, and use it to compute probabilities for Y. Since

X ¼ Y=2, wemight be tempted to substitute this into the pdf f xð Þ to obtain h yð Þ ¼ 2 y=2ð Þ ¼
y for 0 < y < 2. This substitution does not work, however, because

ð1
�1

h yð Þdy ¼
ð2
0
y dy ¼ 1

2
y2
����
2

0

¼ 2

This violates property (B.30) for a probability density function. Furthermore, using h yð Þ to
compute the probability of Y falling in the interval (0,1) produces 0.5, which we know is

incorrect.

The problem is that we must adjust the height of h(y) to account for the fact that Y can

take values in the interval (0,2) whereas X can take values only in (0,1). In fact, a change

in Y of one unit corresponds to a change in X of half a unit. If we adjust h(y) by this

factor, we have

h yð Þ ¼ 2 y=2ð Þ 1
2

� � ¼ y=2; 0 < y < 2

Using this corrected pdf, property (B.30) is satisfied:

ð1
�1

h yð Þdy ¼
ð2
0

1
2
y dy ¼ 1

4
y2
����
2

0

¼ 1

Also, we obtain the correct probability that Y falls in the interval (0,1):

P 0 < Y < 1ð Þ ¼
ð1
0

1
2
y dy ¼ 1

4
y2
����
1

0

¼ 1

4

Another perspective on the change-of-variable technique is obtained by examining the

integral representation for the probability that Y falls in the interval (0,1):

P 0 < Y < 1ð Þ ¼
ð1
0
h yð Þ dy

The integral representation of the equivalentX event, showing explicitly the lower and upper

limits of the integral, is

P 0 < Y < 1ð Þ ¼ P 0 < X <
1

2

� 	
¼
ðx¼1=2

x¼0
f xð Þ dx ¼

ðx¼1=2

x¼0
2x dx
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Thinking of dx as a small change in X, and noting that x ¼ y=2, dx ¼ dy=2. Substituting this
into the integral above, we have

P 0 < Y < 1ð Þ ¼
ðy=2¼1=2

y=2¼0
2 1

2
y

� �
1
2
dy

� � ¼ ðy¼1

y¼0

1
2
y dy

The adjustment factor 1=2 that we obtained intuitively appears here in the relation of dx to

dy. The mathematical name for this adjustment factor is the Jacobian of the transform-
ation (actually its absolute value, as we will soon see). Its purpose is to make the integral

expression in terms of x equal to that in terms of y. Nowwe are ready to describe the change-

of-variable technique more precisely.

Let X be a continuous random variable with pdf f xð Þ. Let Y ¼ g Xð Þ be a function that is
strictly increasing or strictly decreasing. This condition ensures that the function is one-to-

one, so that there is exactly one Y value for each X value and exactly one X value for each Y

value. The importance of this condition on g(X) is that we can solve Y = g(X) for X. That is,

we can find an inverse function X = w(Y ). Then the pdf for Y is given by

h yð Þ ¼ f w yð Þ½ � � dw yð Þ
dy

����
���� (B.41)

where jj denotes the absolute value.
Change of variable technique to find the pdf of Y: Step by Step

1. Solve y = g(x) for x in terms of y;

2. Substitute this for x in f xð Þ,
3. Multiply by the absolute value of the derivative dw(y)=dy, which is called the

Jacobian of the transformation.

The scale factor dw yð Þ=dyj j is the adjustment factor that makes the probabilities (i.e., the

integrals) come out right. In the previous example the inverse function is X ¼ w Yð Þ ¼ Y=2.
The Jacobian term is dw yð Þ=dy ¼ d y=2ð Þ=dy ¼ 1

2
, and dw yð Þ=dyj j ¼ 1

2

�� �� ¼ 1
2
.

Example B.5

Let X be a continuous random variable with pdf f (x) = 2x for 0 < x < 1. Let Y ¼ g Xð Þ ¼
8X3 be the function ofX in whichwe are interested. The functionY ¼ g Xð Þ ¼ 8X3 is strictly

increasing for the set of values that X can take, 0 < x < 1. The corresponding set of values

that Y can take is 0 < y < 8. Because the function is strictly increasing, we can solve for the

inverse function

x ¼ w yð Þ ¼ 1
8
y

� �1=3 ¼ 1
2
y1=3

and

dw yð Þ
dy

¼ 1
6
y�2=3
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Applying the change-of-variable formula (B.41), we have

h yð Þ ¼ f w yð Þ½ � � dw yð Þ
dy

����
����

¼ 2 1
2
y1=3

� � � 1
6
y�2=3

�� ��
¼ 1

6
y�1=3; 0 < y < 8

The change-of-variable technique can be modified for the case of several random variables,

X1; X2 being transformed into Y1; Y2. For a description of the method, which requires

matrix algebra, see William Greene (2008) Econometric Analysis, 6th edition, Pearson

Prentice Hall, pp. 1004–1005.

B.3 Some Important Probability Distributions

In this section we give brief descriptions and summarize the properties of the probability

distributions used in this book.

B.3.1 THE BERNOULLI DISTRIBUTION

Let the random variable X denote an experimental outcome with only two possible

outcomes, A or B. Let X ¼ 1 if the outcome is A and let X ¼ 0 if the outcome is B. Let

the probabilities of the outcomes be P X ¼ 1ð Þ ¼ p and P X ¼ 0ð Þ ¼ 1� p where

0 � p � 1. X is said to have a Bernouilli distribution. The pdf of this Bernoulli random

variable is

f xjpð Þ ¼ pxð1� pÞ1�x
x ¼ 0; 1

0 otherwise

(
(B.42)

The expected value of X is E Xð Þ ¼ p, and its variance is var Xð Þ ¼ p 1� pð Þ. This random
variable arises in choicemodels, such as the linear probabilitymodel (Chapters 7, 8, and 16)

and in binary and multinomial choice models (Chapter 16).

B.3.2 THE BINOMIAL DISTRIBUTION

If X1; X2; . . . ; Xn are independent random variables, each having a Bernouilli distribution

with parameter p, then X ¼ X1 þ X2 þ � � � þ Xn is a discrete random variable that is the

number of successes (i.e., Bernoulli experiments with outcome Xi ¼ 1) in n trials of

the experiment. The random variable X is said to have a binomial distribution. The pdf of

this random variable is

P X ¼ xjn; pð Þ ¼ f xjn; pð Þ ¼ n

x

� 	
px 1� pð Þn�x

for x ¼ 0; 1; . . . ; n (B.43)

where

n

x

� 	
¼ n!

x! n� xð Þ!
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is the number of combinations of n things taken x at a time. This distribution has two

parameters, n and p, where n is a positive integer indicating the number of experimental

trials and 0 � p � 1. These probabilities are tedious to compute by hand, but econometric

software has functions to carry out the calculations. The discrete probabilities are illustrated

in Figure B.3.

The expected value and variance of X are

E Xð Þ ¼ �n
i¼1E Xið Þ ¼ np

var Xð Þ ¼ �n
i¼1var Xið Þ ¼ np 1� pð Þ

A related random variable is Y ¼ X=n, which is the proportion of successes in n trials of an
experiment. Its mean and variance are E Yð Þ ¼ p and var Yð Þ ¼ p 1� pð Þ=n.

B.3.3 THE POISSON DISTRIBUTION

Whereas a binomial random variable is the number of event occurrences in a given number

of experimental trials, n, the Poisson randomvariable is the number of event occurrences in a

given interval of time or space. The probability density function for the discrete random

variable X is

P X ¼ xjmð Þ ¼ f xjmð Þ ¼ e�mmx

x!
for x ¼ 0; 1; 2; 3; . . . (B.44)

Probabilities depend on the parameter m, and e ffi 2:71828 is the base of natural logarithms.

The expected value and variance of X are E Xð Þ ¼ var Xð Þ ¼ m. The Poisson distribution is
used inmodels involving count variables (Chapter 16), such as the number of visits a person

makes to a physician during a year. Probabilities for x ¼ 0 to 10 for distributions withm¼ 3

and m ¼ 4 are shown in Figure B.4.
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FIGURE B.3 Binomial distributions for n = 10.
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B.3.4 THE UNIFORM DISTRIBUTION

A continuous distribution that is vastly important for theoretical purposes is the uniform
distribution. The random variable Xwith values a � x � b has a uniform distribution if its

pdf is given by

f xja; bð Þ ¼ 1

b� a
for a � x � b (B.45)

The plot of the density function is given in Figure B.5

The area under f xð Þ between a and b is one which is required of any probability density
function for a continuous random variable. The expected value of X is the midpoint of the

interval [a, b], E Xð Þ ¼ aþ bð Þ=2. This can be deduced from the symmetry of the

distribution. The variance of X is var Xð Þ ¼ E X2ð Þ � m2 ¼ b� að Þ2=12.
An interesting special case occurs when a ¼ 0 and b ¼ 1, so that f xð Þ ¼ 1 for 0 �

x � 1. The distribution, shown in Figure B.6, describes one common meaning of ‘‘a

random number between zero and one.’’

a b
x

f (x)

1
b�a

FIGURE B.5 A uniform distribution.
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FIGURE B.4 Poisson distribution.
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The uniform distribution has the property that any two intervals of equal width have the

same probability of occurring. That is

P 0:1 � X � 0:6ð Þ ¼ P 0:3 � X � 0:8ð Þ ¼ P 0:21131 � X � 0:71131ð Þ ¼ 0:5

Picking a number randomly between zero and one is conceptually complicated by the fact

that the interval has an uncountably infinite number of values, and the probability of any one

of themoccurring is zero.What ismore likelymeant by such a statement is that each interval

of equal width has the same probability of occurring, no matter how narrow. This is exactly

the nature of the uniform distribution.

B.3.5 THE NORMAL DISTRIBUTION

The normal distribution was described in the Probability Primer, Section P.6. A point not

stressed at that time was why we must consult tables, like Table 1 at the end of the book, to

calculate normal probabilities. For example, we now know that for the continuous and

normally distributed random variableX, withmeanm and variances2, the probability thatX

falls in the interval [a, b] is

ðb
a
f xð Þdx ¼

ðb
a

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp � x� mð Þ2
.
2s2

h i
dx

Unfortunately this integral does not have a closed-form, algebraic solution. Consequently,

we wind up working with tabled values containing numerical approximations to areas

under the standard normal distribution, or we use computer software functions in a similar

manner.

The normal distribution is related to the chi-square, t, and F distributions, which we now

discuss.

x

f (x)

1

0 10.1 0.6

FIGURE B.6 A uniform distribution on [0, 1] interval.
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B.3.6 THE CHI-SQUARE DISTRIBUTION

Chi-square random variables arise when standard normal random variables are squared. If

Z1, Z2, . . ., Zm denote m independent N(0, 1) random variables, then

V ¼ Z2
1 þ Z2

2 þ . . .þ Z2
m 	 x2

ðmÞ (B.46)

The notationV 	 x2
ðmÞ is read as: The randomvariableV has a chi-square distributionwithm

degrees of freedom. The degrees of freedom parameter m indicates the number of

independent N(0,1) random variables that are squared and summed to form V. The value

of m determines the entire shape of the chi-square distribution, including its mean and

variance

E½V� ¼ E x2
ðmÞ

h i
¼ m

var½V� ¼ var x2
ðmÞ

h i
¼ 2m

(B.47)

In Figure B.7 graphs of the chi-square distribution for various degrees of freedom are

presented. The values of Vmust be nonnegative, v� 0, because V is formed by squaring and

summingm standardized normalN(0,1) randomvariables. The distribution has a long tail, or

is skewed, to the right. As the degrees of freedom m gets larger, however, the distribution

becomes more symmetric and ‘‘bell-shaped.’’ In fact, as m gets larger, the chi-square

distribution converges to, and essentially becomes, a normal distribution.
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df � 30

0.20
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pd
f o

f 
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FIGURE B.7 The chi-square distribution.
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The 90th, 95th, and 99th percentile values of the chi-square distribution for selected

values of the degrees of freedom are given in Table 3 at the end of the book. These values are

often of interest in hypothesis testing.

B.3.7 THE t-DISTRIBUTION

A t random variable (no upper case) is formed by dividing a standard normal random

variable Z 	 N 0; 1ð Þ by the square root of an independent chi-square random variable,

V 	 x2
ðmÞ, that has been divided by its degrees of freedom m. If Z 	 N 0; 1ð Þ and V 	 x2

ðmÞ,
and if Z and V are independent, then

t ¼ Zffiffiffiffiffiffiffiffiffi
V=m

p 	 tðmÞ (B.48)

The t-distribution’s shape is completely determined by the degrees of freedom parameter,m,

and the distribution is symbolized by t(m).

Figure B.8 shows a graph of the t-distribution withm ¼ 3 degrees of freedom relative to

theN(0,1). Note that the t-distribution is less ‘‘peaked,’’ andmore spread out than theN(0,1).

The t-distribution is symmetric, with mean E t mð Þ
� � ¼ 0 and variance var t mð Þ

� � ¼
m= m� 2ð Þ. As the degrees of freedom parameter m ! 1 the t(m) distribution approaches

the standard normal N(0,1).

Computer programs have functions for the cdf of t-random variables that can be used to

calculate probabilities. Since certain probabilities arewidely used, Table 2 at the back of this

book, also inside the front cover, contains frequently used percentiles of t-distributions,

called critical values of the distribution. For example, the 95th percentile of a t-distribution

with 20 degrees of freedom is t 0:95; 20ð Þ ¼ 1:725. The t-distribution is symmetric, so Table 2

shows only the right tail of the distribution.

N(0,1)
t(3)

0.40

0.30

0.20

0.10

0.00
–6 –4 –2 2 4 60

FIGURE B.8 The standard normal and t(3) probability density functions.
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B.3.8 THE F-DISTRIBUTION

An F random variable is formed by the ratio of two independent chi-square random

variables that have been divided by their degrees of freedom. If V1 	 x2
ðm1Þ and V2 	 x2

ðm2Þ,
and if V1 and V2 are independent, then

F ¼ V1=m1

V2=m2

	 Fðm1,m2Þ (B.49)

The F-distribution is said to have m1 numerator degrees of freedom and m2 deno-

minator degrees of freedom. The values of m1 and m2 determine the shape of the

distribution, which in general looks like Figure B.9. The range of the random variable

is (0,1) and it has a long tail to the right. For example, the 95th percentile value for an

F-distribution with m1 ¼ 8 numerator degrees of freedom and m2 ¼ 20 denominator

degrees of freedom is F 0:95;8;20ð Þ ¼ 2:45. Critical values for the F-distribution are given

in Table 4 (the 95th percentile) and Table 5 (the 99th percentile).

B.4 Random Numbers

In several chapters we carry out Monte Carlo simulations to illustrate the sampling

properties of estimators. See, for example, Chapters 3, 4, 5, 10, and 11. To use Monte

Carlo simulations we rely upon the ability to create random numbers from specific

probability distributions, such as the uniform and the normal. The use of computer

simulations is widespread in all sciences. In this section we introduce to you this aspect

of computing.1 You should first realize that the idea of creating random numbers using a

computer is paradoxical, because by definition random numbers that are ‘‘created’’ cannot

be truly random. The random numbers generated by a computer are pseudo-random

numbers in that they ‘‘behave as if they were random.’’ We present one method for

generating pseudo-random numbers called the inverse transformation approach, or the

1 A well-written book on the subject is by James E. Gentle (2003) Random Number Generation and Monte

Carlo Methods, New York: Springer.
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FIGURE B.9 The probability density function of an F 8;20ð Þ random variable.
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inversion method. This method assumes that we have the ability to generate pseudo-

random numbers from the uniform distribution (see Sections B.3.4 and B.4.1) on the

(0,1) interval. The uniformly distributed randomvariables are then transformed into random

variables with other distributions.

Example B.6

Let U be a random variable with a uniform distribution. It is a continuous random variable

with pdf h uð Þ ¼ 1 for x 2 0; 1ð Þ. See Figure B.6 for an illustration. If Y ¼ U1=2, then

0 < y < 1. Furthermore, the square root function is strictly increasing, so that we can apply

the change-of-variable technique to find the pdf of Y. The inverse function is

U ¼ w Yð Þ ¼ Y2, and the Jacobian of the transformation is dw yð Þ=dy ¼ d y2ð Þ
dy ¼ 2y.

The pdf of Y is then

f yð Þ ¼ h w yð Þ½ � � dw yð Þ
dy

����
���� ¼ 1 � 2yj j ¼ 2y; 0 < y < 1 (B.50)

This is a distribution that we have used in Examples B.4 and B.5. The importance of this

example is that it shows that we can obtain a random number from the distribution in (B.50)

by taking the square root of a random number from a uniform distribution.

Example B.6 leads us towards a general technique, the inversion method, for drawing

random numbers from certain distributions. Suppose you wish to obtain a random number

from a specific probability distribution, with pdf f (y) and cdf F(y).

The Inversion Method: Step by Step

1. Obtain a uniform random number u1 in the (0,1) interval.

2. Let u1 = F(y1)

3. Solve the equation in step 2 for y1.

4. The value y1 is a random number from the pdf f (y).

The inversionmethodcanbeused todrawrandomnumbers fromanydistribution thatpermits

you to carry out step 3. The solution is often denoted y1 ¼ F�1 u1ð Þ, where F�1 is called the

inverse cumulative distribution function. The cdf function F is said to be invertible.

Suppose the target distribution, from which we want a random number, is

f yð Þ ¼ 2y; 0 < y < 1. The cdf of Y is P Y � yð Þ ¼ F yð Þ ¼ y2; 0 < y < 1. The two distri-

butions are shown in Figure B.10. Set a uniform random number u1 ¼ F y1ð Þ ¼ y21 and solve

to obtain y1 ¼ F�1 u1ð Þ ¼ u1ð Þ1=2. The value y1 is a random value, or a random draw, from
the probability distribution f yð Þ ¼ 2y; 0 < y < 1. This agrees perfectly with the result

in Example B.6, where we showed that the square root of a uniform random variable has

this pdf.

In Figure B.10(a) suppose the uniform random number is u1 ¼ 0:16. It falls between
0 and 1, along the vertical axis of the cdf function F(y). The value u1 ¼ 0:16 corresponds

to the value y1 ¼ 0:4 ¼ ðu1Þ1=2 ¼ ð0:16Þ1=2 on the horizontal axis. In the lower panel we see
the connection between the pdf and the cdf. The area under the pdf to the left of y1 ¼ 0:4
is the probability P 0 < Y < 0:4ð Þ ¼ 0:16. For every randomly drawn uniform random

number ui there is a unique corresponding yi from the distribution f yð Þ ¼ 2y; 0 < y < 1.

To illustrate, in the file uniform1.dat we have 1,000 observations on two independent

uniform random variables U1 and U2. 2 Figure B.11 shows the histogram of U1. There

2 The file uniform2.dat contains 10,000 observations if you prefer a larger sample.
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FIGURE B.10 (a) Cumulative distribution function (b) Probability density function.
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are 10 intervals and approximately 10% of the values fall into each, as we would expect for

values from a uniform distribution.

Let Y1 be the square root of the U1 values. The histogram of these values is shown in

Figure B.12. It looks like a triangle, doesn’t it? Just like the density f yð Þ ¼ 2y; 0 < y < 1.

As a second example, let us consider a slightly more exotic distribution. The extreme

value distribution is the foundation of logit choicemodels that are discussed in Chapter 16.

It has probability density function f vð Þ ¼ exp �vð Þ � exp � exp �vð Þð Þ, depicted in

Figure B.13. The extreme value cdf is F vð Þ ¼ exp�exp �vð Þð Þ. Despite its complicated-

looking form,we can obtainvalues from this distribution using v ¼ F�1 uð Þ ¼ �ln �ln uð Þð Þ.
Using the 1,000 values U1 in uniform1.dat, we obtain the histogram of values from the
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FIGURE B.13 The extreme value distribution.
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extreme value distribution shown in Figure B.14.3 The solid curve superimposed on the

histogram looks much like the extreme value density function in Figure B.13.

To summarize, the inversion method for generating random numbers from specific

distributions depends upon (1) the ability to obtain uniform random numbers and (2) the

density having a cdf that is invertible. The procedure does not work for joint distributions.

Knowing the inversion method, you can generate random variables from other distri-

butions given a uniform random number generator. Books on statistical distributions4 have

instructions on how to transform uniform random numbers into a wide variety of distri-

butions. A particular method for generating normal random numbers is illustrated in

Exercise B.8.

B.4.1 UNIFORM RANDOM NUMBERS

The inversion method depends upon the ability to obtain random numbers from a uniform

distribution. The generation of ‘‘random numbers’’ when used without modifiers usually

means uniform random numbers, which is a field of study in and of itself. As noted earlier,

the notion of computer-generated randomnumbers is illogical. Computers use algorithms to

do theirwork; an algorithm is a formula so that the product is not ‘‘random,’’ but randomlike.

Computers generate pseudo-random numbers. Enter that term into your favorite search

engine and you will find many, many links.

One bit of notation that appears in citations is for the mathematical modulus, denoted

a mod b. This is shorthand for the remainder resulting from dividing a by b. One method

for calculating the modulus is5

n mod m ¼ n� m ceil n=mð Þ þ m (B.51)
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FIGURE B.14 Histogram of simulated draws from the extreme value distribution.

3 The solid curve is a kernel density fitted to the data using a Gaussian kernel. See Appendix C.10 for more on

kernel densities.
4 See, for example, Catherine Forbes, Merran Evans, Nicholas Hastings, Brian Peacock (2010) Statistical

Distributions, 4th edition, John Wiley and Sons, Inc.
5 www.functions.wolfram.com/IntegerFunctions/Mod/27/01/03/01/0001/.
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where ceil is short for the ceiling function that rounds up6 to the next integer. To see how

this works:

7 mod 3 ¼ 1 ¼ 7� 3ceil 7=3ð Þ þ 3 ¼ 7� 3ceil 2:3333ð Þ þ 3 ¼ 7� 3 � 3þ 3 ¼ 1

A standard method for creating a uniform random number is the linear congruential

generator7. Consider the recursive relationship

Xn ¼ aXn�1 þ cð Þmod m (B.52)

where a, c, andm are constants that we choose. It means that Xn takes the value equal to the

remainder obtained by dividing aXn�1 þ c bym. It is a recursive relationship because the nth

value depends on the n�1st. That means wemust choose a starting value X0, which is called

the randomnumber seed. Everyone using the same seed, and values a, c, andmwill generate

the same string of numbers. The value m is the divisor in (B.52), and it determines the

maximum period of the recursively generated values. The uniform random values falling in

the interval (0,1) are obtained asUn ¼ Xn=m. The value ofm is often chosen to be 232 when

using computers with 32-bit architecture. The values of a and c are critical to the success of

the random number generator. Bad choices result in sequences of numbers that are not

random. For example, type RANDU into your search engine. This was a popular random

number generator in the 1960s (I used it too!) that was later discovered to be very flawed,

failing tests of randomness.8

To illustrate that the process defined in (B.52) can generate apparently random numbers,

we choose X0 ¼ 1234567, a ¼ 1664525, b ¼ 1013904223, andm ¼ 232 and create 10,000

values, labeled U1 in the file uniform3.dat9. Using a histogram with 20 bins, we would

expect 5% of the values in each, and as Figure B.15 illustrates, that is about what we get.

The 10,000 values for U1 have sample mean 0.4987197 and variance 0.0820758

compared to the true mean and variance for a uniform distribution of 0.5 and 0.08333.

The minimum and maximum values are 0.0000327 and 0.9998433, respectively.

The lessons learned from these exercises are that random numbers are not random, and

some random number generators are better than others. Ones that are popularly cited are the

Mersenne twister (used in SAS 9.1) and the KISSþMonster algorithm (used by Gauss 10).

New ones continue to be developed, and each software provider uses different algorithms

which are predominately kept secret, or difficult to discover at any rate.

The third lesson is that you shouldprobablynotattempt towriteyourown randomnumber

algorithms.ProfessorKenTrain, an econometricianwhohas studied computationalmethods

a great deal, says,10 ‘‘From a practical perspective, my advice is the following: unless one is

willing to spend considerable time investigating and resolving (literally, re-solving). . .’’ the
issues related to designing pseudo-random number routines ‘‘. . . it is probably better to use
available routines rather thanwrite a newone.’’Our advice is to useyour software to generate

random numbers, but when documenting your work, cite the software used and the software

version, as revisions can change results from one version to another.

6 ceil(x) is the smallest integer not less than x.
7 A description and link to sources is www.en.wikipedia.org/wiki/Linear_congruential_generator.
8 George Marsaglia developed a series of tests for randomness that are widely used. They are available at

www.stat.fsu.edu/pub/diehard/.
9 The variable U2 in this file uses seed 987654321.
10 Discrete Choice Methods with Simulation, 2003, Cambridge University Press, p. 209.
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B.5 Exercises

Answers to exercise marked * can be found at www.wiley.com/college/hill.

B.1* Let X1, X2, . . ., Xn be independent random variables which all have the same

probability distribution, with mean m and variance s2. Let

X ¼ 1

n
�
n

i¼1
Xi

(a) Use the properties of expected values to show that E
�
X
� ¼ m:

(b) Use the properties of variance to show that var X
� � ¼ s2



n. How have you used

the assumption of independence?

B.2 Suppose that Y1; Y2; Y3 is a sample of observations from a Nðm;s2Þ population but

that Y1; Y2; and Y3 are not independent. In fact, suppose that

covðY1; Y2Þ ¼ covðY2; Y3Þ ¼ covðY1; Y3Þ ¼ s2

2

Let Y ¼ ðY1 þ Y2 þ Y3Þ=3.
(a) Find EðYÞ.
(b) Find varðYÞ.

B.3* Let X be a continuous random variable with probability density function given by

f xð Þ ¼ �1

2
xþ 1; 0 � x � 2

(a) Graph the density function f (x).

(b) Find the total area beneath f (x) for 0 � x � 2.

(c) Find P X � 1ð Þ using both geometry and integration.

(d) Find P X � 1
2

� �
.

(e) Find P X ¼ 11
2

� �
.

6

4

2

0
0 0.2 0.4

Uniform random numbers using seed = 1234567

Pe
rc

en
t

0.6 0.8 0

FIGURE B.15 Histogram of 10,000 generated random values.
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(f) Find the expected value and variance of X.

(g) Find the cumulative distribution function of X.

B.4 Let X be a uniform random variable on the interval (a,b).

(a) Use integration techniques to find the mean and variance of X.

(b) Find the cumulative distribution function of X.

B.5* Use the recursive relationship in (B.52) with X0 ¼ 79, m ¼ 100, a ¼ 263, and

c ¼ 71 to generate 40 values X1; X2; . . . ; X40. Do the resulting numbers appear

random? Is this a good random number generator, or not?

B.6 Let X have a normal distribution with mean m and variance s2. Use the change of

variable technique to find the probability density function of Y ¼ aX þ b.

B.7* Show that if E Y jXð Þ ¼ E Yð Þ, then cov Y; g Xð Þð Þ ¼ 0 for any function g(X ).

B.8 Normal random numbers are useful for Monte Carlo simulations. One way to

generate them is using the Box-Muller transformation. The Box-Muller transforma-

tion creates two new random variables, Z1 and Z2, that have independent N(0,1)

distributions, using

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln U1ð Þ

p
cos 2pU2ð Þ; Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln U1ð Þ

p
sin 2pU2ð Þ

(a) Construct a histogram of Z1 and Z2 obtained by using the 1,000 uniform

random values U1 and U2 in uniform1.dat (or the 10,000 values in

uniform2.dat). Is the distribution of values ‘‘bell-shaped’’?

(b) Calculate the summary statistics for Z1 and Z2. Are the sample mean and

variance close to zero and one, respectively?

(c) Construct a scatter diagram for Z1 and Z2. That is, plot Z1 (vertical axis) and Z2

(horizontal axis) in the x-y plane. Is there any evidence of positive or negative

correlation?

B.9* Let X be a continuous random variable with pdf f xð Þ ¼ 3x2


8 for 0 < x < 2.

Compute

(a) P 0 < X < 1
2

� �
(b) P 1 < X < 2ð Þ

B.10 A continuous randomvariableX is said to have an exponential distribution if its pdf is

f xð Þ ¼ e�x; x � 0.

(a) Plot this density function for 0 � x � 10.

(b) The cumulative distribution function for X is F xð Þ ¼ 1� e�x. Plot this function

over the interval 0 � x � 10. Is it strictly increasing or decreasing, or are you

unsure?

(c) Use the inverse transformation method to draw random values X1 from this

distribution. Use the 1,000 values forU1 in uniform1.dat or the 10,000 values for

U1 in uniform2.dat. Construct a histogramof the values you have created.Does it

resemble the plot in (a)?

(d) The truemean and variance ofX arem¼ 1 ands2¼ 1. How close are the sample

mean and the sample variance to the true values?

B.11 Use the recursive relationship in (B.52) with X0 ¼ 1234567, m ¼ 232,

a ¼ 1103515245, and c ¼ 12345 to generate 1,000 random values called U1. Do
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the resulting numbers appear random? Is this a good random number generator, or

not?Choose another seed value and generate another 1,000 values calledU2. Find the

summary statistics and sample correlation for U1 and U2. Do the values behave as

you expect them to, or not?

B.12* Suppose that the joint pdf of the continuous random variables X and Y is f x; yð Þ ¼
6x2y for 0 � x � 1; 0 � y � 1.

(a) Does this function satisfy the conditions for a valid pdf?

(b) Find the marginal pdf of X, as well as its mean and variance.

(c) Find the marginal pdf of Y.

(d) Find the conditional pdf of X given Y ¼ 1
2
.

(e) Find the conditional mean and variance of X given Y ¼ 1
2
.

(f) Are X and Y independent? Explain.

B.13 Suppose that X and Y are continuous random variables with joint pdf f x; yð Þ ¼ 1
2
for

0 � x � y � 2 and f x; yð Þ ¼ 0 otherwise. Note that the values of X are less than or

equal to the values of Y.

(a) Verify that the volume under the joint pdf is 1.

(b) Find the marginal pdfs of X and Y.

(c) Find P(X < 1
2
).

(d) Find the cdf of Y.

(e) Find the conditional probability P X < 1
2

� jY ¼ 1:5Þ. Are X and Y independent?

(f) Find the expected value and variance of Y.

(g) Use the law of iterated expectations to find E(X ).
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A p p e n d i x C
Review of Statistical
Inference

Learning Objectives

Based on the material in this appendix you should be able to

1. Discuss the difference between a population and a sample, andwhywe use samples

of data as a basis for inference about population parameters.

2. Connect the concepts of a population and a random variable, indicating how the

probability density function of a random variable, and the expected value and

variance of the random variable, inform us about the population.

3. Explain the difference between the population mean and the sample mean.

4. Explain the difference between an estimate and an estimator, and why the latter is a

random variable.

5. Explain the terms sampling variation and sampling distribution.

6. Explain the concept of unbiasedness, and use the rules of expected values to show

that the sample mean is unbiased.

7. Explain why we prefer unbiased estimators with smaller variances to those with

larger variances.

8. Describe the central limit theorem, and its implications for statistical inference.

9. Explain the relation between the population ‘‘standard deviation’’ and the standard

error of the sample mean.

10. Explain the difference between point and interval estimation, and construct and

interpret interval estimates of a population mean given a sample of data.

11. Give, in simple terms, a clarification of what the phrase ‘‘95% level of confidence’’

does and does not mean in relation to interval estimation.

12. Explain the purpose of hypothesis testing, and list the elements that must be present

when carrying out a test.

13. Discuss the implications of the possible alternative hypotheseswhen testing the null

hypothesis H0 :m ¼ 7. Give an economic example in which this hypothesis might

be tested against one of the alternatives.

14. Describe the level of significance of a test, and explain the difference between the

level of significance and the p-value of a test.

15. Define Type I error, and its relationship to the level of significance of a test.
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16. Explain the difference between one-tail tests and two-tail tests, describing when

one is preferred to the other.

17. Explain the difference and implications between the statements ‘‘I accept the null

hypothesis’’ and ‘‘I do not reject the null hypothesis.’’

18. Give an intuitive explanation of maximum likelihood estimation, and describe the

properties of the maximum likelihood estimator.

19. List the three types of tests associated with maximum likelihood estimation and

comment on their similarities and differences.

20. Distinguish between parametric and nonparametric estimation.

21. Understand how a kernel density estimator fits an empirical distribution.

Economists are interested in relationships between economic variables. For example, how

much can we expect the sales of Frozen Delight ice cream to rise if we reduce the price by

5%?Howmuch will household food expenditure rise if household income rises by $100 per

month? Questions such as these are the main focus of this book.

However, sometimes questions of interest focus on a single economic variable. For

example, an airplane seat designer must consider the average hip size of passengers in order

to allow adequate room for each person, while still designing the plane to carry the profit-

maximizing number of passengers. What is the average hip size, or more precisely hip

width, of U.S. flight passengers? If a seat 18 inches wide is planned, what percent of

customers will not be able to fit? Questions like this must be faced by manufacturers of

everything from golf carts to women’s jeans. How can we answer these questions? We

certainly cannot take the measurements of every man, woman, and child in the U.S.

population. This is a situation when statistical inference is used. Infer means ‘‘to conclude

by reasoning from something known or assumed.’’ Statistical inferencemeans that wewill

draw conclusions about a population based on a sample of data.

C.1 A Sample of Data

To carry out statistical inference, we need data. The data should be obtained from the

population in which we are interested. For the airplane seat designer this is essentially
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the entire U.S. population above the age of two, since small children can fly ‘‘free’’ on the

laps of their suffering parents. A separate branch of statistics, called experimental design, is

concerned with the question of how to actually collect a representative sample. How would

you proceed if you were asked to obtain 50 measurements of hip size representative of the

entire population? This is not such an easy task. Ideally the 50 individuals will be randomly

chosen from the population, in such a way that there is no pattern of choices. Suppose we

focus on only the population of adult flyers, since usually there are few children on planes.

Our experimental design specialist draws a sample that is shown in Table C.1 and stored in

the file hip.dat.

A first step when analyzing a sample of data is to examine it visually. Figure C.1 is a

histogram of the 50 data points. Based on this figure, the ‘‘average’’ hip size in this sample

seems to be between 16 and 18 inches. For our profit-maximizing designer this casual

estimate is not sufficiently precise. In the next section we set up an econometric model that

will be used as a basis for inference in this problem.

Ta b l e C . 1 Sample Hip Size Data

14.96 14.76 15.97 15.71 17.77

17.34 17.89 17.19 13.53 17.81

16.40 18.36 16.87 17.89 16.90

19.33 17.59 15.26 17.31 19.26

17.69 16.64 13.90 13.71 16.03

17.50 20.23 16.40 17.92 15.86

15.84 16.98 20.40 14.91 16.56

18.69 16.23 15.94 20.00 16.71

18.63 14.21 19.08 19.22 20.23

18.55 20.33 19.40 16.48 15.54
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FIGURE C.1 Histogram of hip sizes.
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C.2 An Econometric Model

The data in Table C.1 were obtained by sampling. Sampling from a population is

an experiment. The variable of interest in this experiment is an individual’s hip size.

Before the experiment is performed we do not know what the values will be, thus the

hip size of a randomly chosen person is a random variable. Let us denote this random

variable as Y. We choose a sample of N ¼ 50 individuals, Y1; Y2; . . . ; YN , where each Yi
represents the hip size of a different person. The data values in Table C.1 are specific

values of the variables, which we denote as y1; y2; . . . ; yN . We assume that

the population has a center, which we describe by the expected value of the random

variable Y,

EðYÞ ¼ m (C.1)

We use the Greek letter m (‘‘mu’’) to denote the mean of the random variable Y, and also the

mean of the population we are studying. Thus if we knewmwewould have the answer to the

question ‘‘What is the average hip size of adults in the United States?’’ To indicate its

importance to us in describing the population we call m a population parameter, or, more

briefly, a parameter. Our objective is to use the sample of data in Table C.1 to make

inferences, or judgments, about the unknown population parameter m.
The other random variable characteristic of interest is its variability, which we measure

by its variance,

varðYÞ ¼ E½Y � EðYÞ�2 ¼ E½Y � m�2 ¼ s2 (C.2)

The variance s2 is also an unknown population parameter. As described in the Probability

Primer, the variance of a random variable measures the ‘‘spread’’ of a probability

distribution about the population mean, with a larger variance meaning a wider spread,

as shown in Figure P.3. In the context of the hip data, the variance tells us how much hip

sizes can vary from one randomly chosen person to the next. To economize on space, we

will denote the mean and variance of a random variable as Y �ðm;s2Þwhere�means ‘‘is

distributed as.’’ The first element in parentheses is the population mean and the second is

the population variance. So far we have not said what kind of probability distribution we

think Y has.

The econometric model is not complete. If our sample is drawn randomly, we can

assume that Y1; Y2; . . . ; YN are statistically independent. The hip size of any one

individual is independent of the hip size of another randomly drawn individual.

Furthermore, we assume that each of the observations we collect is from the population

of interest, so each random variable Yi has the same mean and variance, or Yi �ðm;s2Þ.
The Yi constitute a random sample, in the statistical sense, because Y1; Y2; . . . ; YN are

statistically independent with identical probability distributions. It is sometimes reason-

able to assume that population values are normally distributed, which we represent by

Y �Nðm;s2Þ.

C.3 Estimating the Mean of a Population

How shall we estimate the population meanm given our sample of data values in Table C.1?

The population mean is given by the expected value EðYÞ ¼ m. The expected value of a

random variable is its average value in the population. It seems reasonable, by analogy, to
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use the average value in the sample, or sample mean, to estimate the population mean.

Denote by y1; y2; . . . ; yN the sample of N observations. Then the sample mean is

y ¼ � yi=N (C.3)

The notation y (pronounced ‘‘y-bar’’) is widely used for the sample mean, and you probably

encountered it in your statistics courses. For the hip data in Table C.1 we obtain

y ¼ 17:1582, thus we estimate that the average hip size in the population is 17.1582 inches.

Given the estimate y ¼ 17:1582 we are inclined to ask, ‘‘How good an estimate is

17.1582?’’ By that we mean how close is 17.1582 to the true population mean, m?
Unfortunately this is an ill-posed question in the sense that it can never be answered. In

order to answer it, we would have to know m, in which case we would not have tried to

estimate it in the first place!

Instead of asking about the quality of the estimate we will ask about the quality of the

estimation procedure, or estimator. How good is the sample mean as an estimator of the

mean of a population? This is a questionwe can answer. To distinguish between the estimate

and the estimator of the population mean m we will write the estimator as

Y ¼ �
N

i¼1
Yi=N (C.4)

In (C.4) we have used Yi instead of yi to indicate that this general formula is used whatever

the sample values turn out to be. In this context Yi are random variables, and thus the

estimator Y is random too.

We do not know the value of the estimator Y until a data sample is obtained, and different

samples will lead to different values. To illustrate, we collect 10 more samples of size

N ¼ 50 and calculate the average hip size, as shown in Table C.2. The estimates differ from

sample to sample because Y is a random variable. This variation, due to collection of

different random samples, is called sampling variation. It is an inescapable fact of

statistical analysis that the estimator Y—indeed, all statistical estimation procedures—

are subject to sampling variability. Because of this terminology, an estimator’s probability

density function is called its sampling distribution.

We can determine howgood the estimator Y is by examining its expected value, variance,

and sampling distribution.

Ta b l e C . 2 Sample Means from 10 Samples

Sample y

1 17.3544

2 16.8220

3 17.4114

4 17.1654

5 16.9004

6 16.9956

7 16.8368

8 16.7534

9 17.0974

10 16.8770
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C.3.1 THE EXPECTED VALUE OF Y

Write out formula (C.4) fully as

Y ¼ �
N

i¼1

1

N
Yi ¼ 1

N
Y1 þ 1

N
Y2 þ . . .þ 1

N
YN (C.5)

From (P.16) the expected value of this sum is the sum of expected values

EðYÞ ¼ E
1

N
Y1

� �
þ E

1

N
Y2

� �
þ . . .þ E

1

N
YN

� �

¼ 1

N
E½Y1� þ 1

N
E½Y2� þ . . .þ 1

N
E½YN �

¼ 1

N
mþ 1

N
mþ . . .þ 1

N
m

¼ m

The expected value of the estimator Y is the population mean m that we are trying to

estimate. What does this mean? The expectation of a random variable is its average value in

many repeated trials of an experiment, which amounts to collecting a large number of

random samples from the population. If we did obtain many samples of sizeN, and obtained

their average values, like those in Table C.2, then the average of all those values would equal

the true population mean m. This property is a good one for estimators to have. Estimators

with this property are called unbiased estimators. The sample mean Y is an unbiased

estimator of the population mean m.
Unfortunately, while unbiasedness is a good property for an estimator to have, it does not

tell us anything about whether our estimate y ¼ 17:1582, based on a single sample of data, is

close to the true population mean value m. To assess how far the estimate might be from m,
we will determine the variance of the estimator.

C.3.2 THE VARIANCE OF Y

The variance of Y is obtained using the procedure for finding the variance of a sum of

uncorrelated (zero covariance) random variables in (P.23).We can apply this rule if our data

are obtained by random sampling, because with random sampling the observations are

statistically independent, and thus are uncorrelated. Furthermore, we have assumed that

varðYiÞ ¼ s2 for all observations. Carefully note how these assumptions are used in the

derivation of the variance of Y , which we write as varðYÞ:

varðYÞ ¼ var
1

N
Y1 þ 1

N
Y2 þ � � � þ 1

N
YN

� �

¼ 1

N2
varðY1Þ þ 1

N2
varðY2Þ þ � � � þ 1

N2
varðYNÞ

¼ 1

N2
s2 þ 1

N2
s2 þ � � � þ 1

N2
s2

¼ s2

N

(C.6)

This result tells us that (i) the variance of Y is smaller than the population variance, because

the sample size N� 2, and (ii) the larger the sample size, the smaller the sampling variation

of Y as measured by its variance.
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C.3.3 THE SAMPLING DISTRIBUTION OF Y

If the population data are normally distributed, then we say that the random variable Yi
follows a normal distribution. In this case the estimator Y also follows a normal distribution.

In (P.30) it is noted that weighted averages of normal random variables are normal

themselves. From (C.5) we know that Y is a weighted average of Yi. If Yi �Nðm;s2Þ,
then Y is also normally distributed, or Y �Nðm;s2=NÞ.

We can gain some intuition about the meaning and usefulness of the finding that

Y �Nðm;s2=NÞ if we examine Figure C.2.

Each of the normal distributions in this figure is a sampling distribution of Y . The

differences among them are the samples sizes used in estimation. The sample size

N3 >N2 >N1. Increasing the sample size decreases the variance of the estimator Y,

varðYÞ ¼ s2=N, and this increases the probability that the sample mean will be ‘‘close’’

to the true population parameter m. When examining Figure C.2, recall that an area under a

probability density function (pdf ) measures the probability of an event. If e represents a
positive number, the probability that Y falls in the interval between m� e and mþ e is

greater for larger samples. The lesson here is that havingmore data is better than having less

data, because having a larger sample increases the probability of obtaining an estimate

‘‘close’’ or ‘‘within e’’ of the true population parameter m.
In our numerical example, suppose we want our estimate of m to be within 1 inch of the

true value. Let us compute the probability of getting an estimatewithin e ¼ 1 inch ofm—that

is, within the interval ½m� 1;mþ 1�. For the purpose of illustration assume that the popu-

lation is normal, s2 ¼ 10 and N ¼ 40. Then Y �Nðm;s2=N ¼ 10=40 ¼ 0:25Þ. We can

compute the probability thatY iswithin 1 inch ofmby calculatingP½m� 1 � Y � mþ 1�. To
do so we standardize Y by subtracting its mean m and dividing by its standard deviation

s=
ffiffiffiffi
N

p
, and then use the standard normal distribution and Table 1 at the end of the book:

P½m� 1 � Y � mþ 1� ¼ P
�1

s=
ffiffiffiffi
N

p � Y � m

s=
ffiffiffiffi
N

p � 1

s=
ffiffiffiffi
N

p
� �

¼ P
�1ffiffiffiffiffiffiffiffiffi
0:25

p � Z � 1ffiffiffiffiffiffiffiffiffi
0:25

p
� �

¼ P½�2 � Z � 2� ¼ 0:9544

pdf of Y

N1

N2

N3

μ+εμ–ε μ

FIGURE C.2 Increasing sample size and sampling distributions of Y .
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Thus, if we draw a random sample of sizeN ¼ 40 from a normal populationwith variance 10,

using the sample mean as an estimator will provide an estimate within 1 inch of the true value

about 95%of the time. IfN ¼ 80, theprobability thatY iswithin 1 inchofm increases to0.995.

C.3.4 THE CENTRAL LIMIT THEOREM

Wewere able to carry out the above analysis becausewe assumed that the population we are

considering, hip width of U.S. adults, has a normal distribution. This implies that

Yi �Nðm;s2Þ, and Y �Nðm;s2=NÞ. A question we need to ask is ‘‘If the population is

not normal, then what is the sampling distribution of the sample mean?’’ The central limit

theorem provides an answer to this question.

CENTRAL LIMIT THEOREM: If Y1; . . . ; YN are independent and identically dis-

tributed random variables with mean m and variance s2, and Y ¼ �Yi=N, then

has a probability distribution that converges to the standard normal Nð0; 1Þ as N!1:

This theorem says that the sample average of N independent random variables from any

probability distribution will have an approximate standard normal distribution after

standardizing (i.e., subtracting the mean and dividing by the standard deviation), if the

sample is sufficiently large. A shorthand notation is Y �a Nðm;s2=NÞ, where the symbol �a
means asymptotically distributed. The word asymptotic implies that the approximate

normality of Y depends on having a large sample. Thus even if the population is not normal,

ifwe have a sufficiently large sample,we can carry out calculations like those in the previous

section. How large does the sample have to be? In general, it depends on the complexity of

the problem, but in the simple case of estimating a population mean, if N � 30 then you can

feel pretty comfortable in assuming that the sample mean is approximately normally

distributed, Y �a Nðm;s2=NÞ, as indicated by the central limit theorem.

To illustrate howwell the central limit theorem actually works, we carry out a simulation

experiment. Let the continuous random variable Y have a triangular distribution, with

probability density function

f ðyÞ ¼ 2y 0< y< 1

0 otherwise

�

Draw a sketch of the triangular pdf to understand its name. The expected value of Y is

m ¼ EðYÞ ¼ 2=3, and its variance is s2 ¼ varðYÞ ¼ 1=18. The central limit theorem says

that if Y1; . . . ; YN are independent and identically distributed with density f ðyÞ then

ZN ¼ Y � 2=3ffiffiffiffiffiffiffiffiffiffi
1=18

N

r

has a probability distribution that approaches the standard normal distribution as N

approaches infinity.

We use a random number generator to create random values from the triangular pdf.

Plotting 10,000 values gives the histogram in Figure C.3(a). We generate 10,000 samples

of sizes N ¼ 3; 10, and 30, compute the sample means of each sample, and create ZN .

Their histograms are shown in Figure C.3 (b)–(d). You see the amazing convergence of the

ZN ¼ Y � m

s=
ffiffiffiffi
N

p
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standardized sample mean’s distribution to a distribution that is bell shaped, centered at

zero, symmetric, with almost all values between �3 and 3, just like a standard normal

distribution, with a sample size as small as N ¼ 10.

C.3.5 BEST LINEAR UNBIASED ESTIMATION

Another powerful finding about the estimatorY of the populationmean is that it is the best of

all possible estimators that are both linear and unbiased. A linear estimator is simply one

that is a weighted average of Yi ’s, such as ~Y ¼ � aiYi, where ai are constants. The sample

mean Y , given in (C.4), is a linear estimator with ai ¼ 1=N. The fact that Y is the ‘‘best’’

linear unbiased estimator (BLUE) accounts for its wide use. ‘‘Best’’ means that it is the

linear unbiased estimator with the smallest possible variance. In the previous section we

demonstrated that it is better to have an estimator with a smaller variance rather than a larger

one—because it increases the chances of getting an estimate close to the true population

mean m. This important result about the estimator Y is true if the sample values Yi �ðm;s2Þ
are uncorrelated and identically distributed. It does not depend on the population being

normally distributed. A proof of this result is in Section C.9.2.

C.4 Estimating the Population Variance
and Other Moments

The sample mean Y is an estimate of the population mean m. The population mean is often

called the ‘‘first moment’’ since it is the expected value of Y to the first power. Higher
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FIGURE C.3 Central limit theorem.
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moments are obtained by taking expected values of higher powers of the randomvariable, so

the second moment of Y is EðY2Þ, the third moment is EðY3Þ, and so on. When the random

variable has its population mean subtracted, it is said to be centered. Expected values of

powers of centered random variables are called central moments, and they are often

denoted as mr, so that the rth central moment of Y is

mr ¼ E
�ðY � mÞr	

The value of the first central moment is zero since m1 ¼ E
�ðY � mÞ1	 ¼ EðYÞ � m ¼ 0.

It is the higher central moments of Y that are interesting:

m2 ¼ E
�ðY � mÞ2	 ¼ s2

m3 ¼ E
�ðY � mÞ3	

m4 ¼ E
�ðY � mÞ4	

You recognize that the second central moment of Y is its variance, and the third and fourth

moments appear in the definitions of skewness and kurtosis introduced in Appendix B.1.2.

The question we address in this section is, now that we have an excellent estimator of the

mean of a population, how do we estimate these higher moments? We will first consider

estimation of the population variance, and then address the problem of estimating the third

and fourth moments.

C.4.1 ESTIMATING THE POPULATION VARIANCE

The populationvariance is varðYÞ ¼ s2 ¼ E½Y � m�2. An expected value is an ‘‘average’’ of
sorts, so if we knew m we could estimate the variance by using the sample analog

~s2 ¼ �ðYi � mÞ2=N. We do not know m, so replace it by its estimator Y, giving

~s2 ¼ �ðYi � YÞ2
N

This estimator is not a bad one. It has a logical appeal, and it can be shown to converge to the

truevalue ofs2 as the sample sizeN!1, but it is biased. Tomake it unbiased, we divide by

N � 1 instead of N. This correction is needed since the population mean m has to be

estimated before the variance can be estimated. This change does not matter much in

samples of at least 30 observations, but it does make a difference in smaller samples. The

unbiased estimator of the population variance s2 is

ŝ2 ¼ �ðYi � YÞ2
N � 1

(C.7)

You may remember this estimator from a prior statistics course as the ‘‘sample variance.’’

Using the sample variance we can estimate the variance of the estimator Y as

bvarðYÞ ¼ ŝ2=N (C.8)
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In (C.8) note that we have put a ‘‘hat’’ ðbÞ over this variance to indicate that it is an

estimated variance. The square root of the estimated variance is called the standard error of

Y and is also known as the standard error of the mean and the standard error of the

estimate,

seðYÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffibvarðYÞq

¼ ŝ=
ffiffiffiffi
N

p
(C.9)

C.4.2 ESTIMATING HIGHER MOMENTS

Recall that centralmoments are expected values,mr ¼ E½ðY � mÞr�, and thus are averages in
the population. In statistics the law of large numbers says that sample means converge to

population averages (expected values) as the sample size N!1. We can estimate the

higher moments by finding the sample analog and replacing the population mean m by its

estimate Y , so that

~m2 ¼ �ðYi � YÞ2=N ¼ ~s2

~m3 ¼ �ðYi � YÞ3=N
~m4 ¼ �ðYi � YÞ4=N

Note that in these calculations we divide by N and not N � 1, since we are using the law of

large numbers (i.e., large samples) as justification, and in large samples the correction has

little effect. Using these sample estimates of the central moments we can obtain estimates of

the skewness coefficient (S) and kurtosis coefficient (K ) as

bskewness ¼ S ¼ ~m3

~s3

bkurtosis ¼ K ¼ ~m4

~s4

C.4.3 THE HIP DATA

The sample variance for the hip data is

ŝ2 ¼ �ðyi � yÞ2
N � 1

¼ �ðyi � 17:1582Þ2
49

¼ 159:9995

49
¼ 3:2653

This means that the estimated variance of the sample mean is

bvarðYÞ ¼ ŝ2

N
¼ 3:2653

50
¼ 0:0653

and the standard error of the mean is

seðYÞ ¼ ŝ=
ffiffiffiffi
N

p
¼ 0:2556
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The estimated skewness is S ¼ �0:0138 and the estimated kurtosis is K ¼ 2:3315 using

Thus, the hip data is slightly negatively skewed and is slightly less peaked than would be

expected for a normal distribution. Nevertheless, as we will see in Section C.7.4, we cannot

conclude that the hip data follow a non-normal distribution.

C.4.4 USING THE ESTIMATES

How can we summarize what we have learned? Our estimates suggest that the hip size of

U.S. adults is normally distributed with mean 17.158 inches and with a variance of 3.265;

Y �Nð17:158; 3:265Þ. Based on this information, if an airplane seat is 18 inches wide, what

percentage of customerswill not be able to fit?We can recast this question as askingwhat the

probability is that a randomly drawn person will have hips larger than 18 inches,

PðY > 18Þ ¼ P
Y � m

s
>

18� m

s

� �

We can give an approximate answer to this question by replacing the unknown parameters

by their estimates,

bPðY > 18ÞffiP
Y � y

ŝ
>

18� 17:158

1:8070

� �
¼ PðZ> 0:4659Þ ¼ 0:3207

Based on our estimates, 32% of the population would not be able to fit into a seat 18 inches

wide.

How large would a seat have to be to fit 95% of the population? If we let y	 denote the
required seat size, then

bPðY � y	Þ ffiP
Y � y

ŝ
� y	 � 17:1582

1:8070

� �
¼ P Z � y	 � 17:1582

1:8070

� �
¼ 0:95

Using your computer software, or the table of normal probabilities, the value of Z such that

PðZ � z	Þ ¼ 0:95 is z	 ¼ 1:645. Then

y	 � 17:1582

1:8070
¼ 1:645) y	 ¼ 20:1305

Thus, to accommodate 95% of U.S. adult passengers, we estimate that the seats should be

slightly greater—20 inches wide.

C.5 Interval Estimation

In contrast to a point estimate of the population mean m, like y ¼ 17:158, a confidence

interval, or interval estimate, is a range of values that may contain the true population mean.

~s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðYi � YÞ2=N

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
159:9995=50

p
¼ 1:7889

~m3 ¼ �ðYi � YÞ3=N ¼ �0:0791

~m4 ¼ �ðYi � YÞ4=N ¼ 23:8748
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A confidence interval contains information not only about the location of the population

mean, but also about the precision with which we estimate it.

C.5.1 INTERVAL ESTIMATION: s2 KNOWN

Let Y be a normally distributed random variable, Y �Nðm;s2Þ. Assume that we have a

random sample of size N from this population, Y1; Y2; . . . ; YN . The estimator of the

populationmean isY ¼ �N
i¼1Yi=N. Becausewe have assumed thatY is normally distributed,

it is also true that Y �Nðm;s2=NÞ.
For the present, let us assume that the population variance s2 is known. This assumption

is not likely to be true, butmaking it allows us to introduce the notion of confidence intervals

with few complications. In the next section we introduce methods for the case when s2 is

unknown. Create a standard normal random variable

Z ¼ Y � mffiffiffiffiffiffiffiffiffiffiffi
s2=N

p ¼ Y � m

s=
ffiffiffiffi
N

p �Nð0; 1Þ (C.10)

Cumulative probabilities for the standard normal are given by its cumulative distribution

function (see the Probability Primer, Section P.6)

PðZ � zÞ ¼ FðzÞ

These values are given in Table 1 at the end of this book. Let zc be a ‘‘critical value’’ for the

standard normal distribution, such that a ¼ 0:05 of the probability is in the tails of the

distribution,witha=2 ¼ 0:025 of the probability in the tail to the right of zc anda=2 ¼ 0:025
of the probability in the tail to the left of�zc. The critical value is the 97.5 percentile of the

standard normal distribution, zc ¼ 1:96, with Fð1:96Þ ¼ 0:975. It is shown in Figure C.4.

Thus, PðZ� 1:96Þ ¼ PðZ � �1:96Þ ¼ 0:025 and

P

�1:96 � Z � 1:96

� ¼ 1� 0:05 ¼ 0:95 (C.11)

Substitute (C.10) into (C.11) and rearrange to obtain

P Y � 1:96s=
ffiffiffiffi
N

p
� m � Y þ 1:96s=

ffiffiffiffi
N

p� 

¼ 0:95

� 0.025α
2

� 0.025

1 � α � 0.95

α
2

�4 �3 �2 �1 0

�zc � �1.96 zc � 1.96

1 2 3 4 

FIGURE C.4 a ¼ 0:05 Critical values for the N(0, 1) distribution.
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In general,

P Y � zc
sffiffiffiffi
N

p � m � Y þ zc
sffiffiffiffi
N

p
� �

¼ 1� a (C.12)

where zc is the appropriate critical value for a given value of tail probability a such that

FðzcÞ ¼ 1� a=2. In (C.12) we have defined the interval estimator

Y 
 zc
sffiffiffiffi
N

p (C.13)

Our choice of the phrase interval estimator is a careful one. Intervals constructed using

(C.13), in repeated sampling from the population, have a 100ð1� aÞ% chance of containing

the population mean m.

C.5.2 A SIMULATION

In order to use the interval estimator in (C.13) we must have data from a normal population

with a known variance. To illustrate the computation, and the meaning of interval

estimation, wewill create a sample of data using a computer simulation. Statistical software

programs contain random number generators. These are routines that create values from a

given probability distribution. Table C.3 (table_c3.dat) contains 30 random values from a

normal population with mean m ¼ 10 and variance s2 ¼ 10.

The sample mean of these values is y ¼ 10:206 and the corresponding interval estimate

for m, obtained by applying the interval estimator in (C.13) with a 0.95 probability content,

is 10:206
 1:96� ffiffiffiffiffiffiffiffiffiffiffiffiffi
10=30

p ¼ ð9:074; 11:338Þ. To appreciate how the sampling variability

of an interval estimator arises, consider Table C.4, which contains the interval estimate for

the sample in Table C.3, as well as the sample means and interval estimates from another

9 samples of size 30, like that in Table C.3. The whole 10 samples are stored in the file

table_c4.dat.

Table C.4 illustrates the sampling variation of the estimator Y. The sample mean varies

from sample to sample. In this simulation, or Monte Carlo experiment, we know the true

population mean, m ¼ 10, and the estimates y are centered at that value. The half-width of

the interval estimates is 1:96s=
ffiffiffiffi
N

p
. Note that while the point estimates y in Table C.4 fall

near the true value m ¼ 10, not all of the interval estimates contain the true value. Intervals

from samples 3, 4, and 6 do not contain the true valuem ¼ 10. However, in 10,000 simulated

Ta b l e C . 3 30 Values from Nð10; 10Þ
11.939 11.407 13.809

10.706 12.157 7.443

6.644 10.829 8.855

13.187 12.368 9.461

8.433 10.052 2.439

9.210 5.036 5.527

7.961 14.799 9.921

14.921 10.478 11.814

6.223 13.859 13.403

10.123 12.355 10.819
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samples the average value of y ¼ 10:004 and 94.86% of intervals constructed using (C.13)

contain the true parameter value m ¼ 10.

These numbers reveal what is, and what is not, true about interval estimates.

� Any one interval estimate may or may not contain the true population parameter

value.

� If many samples of size N are obtained, and intervals are constructed using (C.13)

with ð1� aÞ ¼ 0:95, then 95% of them will contain the true parameter value.

� A95% level of ‘‘confidence’’ is the probability that the interval estimator will provide

an interval containing the true parameter value. Our confidence is in the procedure,

not in any one interval estimate.

Since 95% of intervals constructed using (C.13) will contain the true parameter m ¼ 10, we

will be surprised if an interval estimate based on one sample does not contain the true

parameter. Indeed, the fact that three of the 10 intervals in Table C.4 do not containm ¼ 10 is

surprising, since out of 10 we would assume that only one 95% interval estimate might not

contain the true parameter. This just goes to show that what happens in any one sample, or

just a few samples, is not what sampling properties tell us. Sampling properties tell us what

happens in many repeated experimental trials.

C.5.3 INTERVAL ESTIMATION: s2 UNKNOWN

The standardization in (C.10) assumes that the population variance s2 is known. When s2

is unknown, it is natural to replace it with its estimator ŝ2 given in (C.7)

ŝ2 ¼
�
N

i¼1
ðYi � YÞ2

N � 1

When we do so, the resulting standardized random variable has a t-distribution (see

Appendix B.3.7) with ðN � 1Þ degrees of freedom,

t ¼ Y � m

ŝ=
ffiffiffiffi
N

p � tðN�1Þ (C.14)

Ta b l e C . 4 Confidence Interval Estimates from 10 Samples of Data

Sample y Lower bound Upper bound

1 10.206 9.074 11.338

2 9.828 8.696 10.959

3 11.194 10.063 12.326

4 8.822 7.690 9.953

5 10.434 9.303 11.566

6 8.855 7.723 9.986

7 10.511 9.380 11.643

8 9.212 8.080 10.343

9 10.464 9.333 11.596

10 10.142 9.010 11.273
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The notation tðN�1Þ denotes a t-distribution with N � 1 ‘‘degrees of freedom.’’ Let the

critical value tc be the 100ð1� a=2Þ-percentile value tð1�a=2;N�1Þ. This critical value has

the property that P½tðN�1Þ � tð1�a=2;N�1Þ� ¼ 1� a=2. Critical values for the t-distribution

are contained in Table 2 at the end of the book, and also inside the front cover. If tc is a critical

value from the t-distribution, then

P �tc � Y � m

ŝ=
ffiffiffiffi
N

p � tc

� �
¼ 1� a

Rearranging, we obtain

P Y � tc
ŝffiffiffiffi
N

p � m � Y þ tc
ŝffiffiffiffi
N

p
� �

¼ 1� a

The 100ð1� aÞ% interval estimator for m is

Y 
 tc
ŝffiffiffiffi
N

p or Y 
 tcseðYÞ (C.15)

Unlike the interval estimator for the known s2 case in (C.13), the interval in (C.15) has

center and width that vary from sample to sample.

REMARK: The confidence interval (C.15) is based upon the assumption that the

population is normally distributed, so that Y is normally distributed. If the population is

not normal, then we invoke the central limit theorem, and say that Y is approximately

normal in ‘‘large’’ samples, which from Figure C.3 you can see might be as few as 30

observations. In this case, we can use (C.15), recognizing that there is an approximation

error introduced in smaller samples.

C.5.4 A SIMULATION (CONTINUED)

Table C.5 contains estimated values of s2 and interval estimates using (C.15) for the

same 10 samples used for Table C.4. For the sample size N ¼ 30 and the 95% con-

fidence level the t-distribution critical value tc ¼ tð0:975;29Þ ¼ 2:045. The estimates y are

the same as in Table C.4. The estimates ŝ2 vary about the true value s2 ¼ 10. Of these

Ta b l e C . 5 Interval Estimates Using (C.15) from 10 Samples

Sample y ŝ2 Lower bound Upper bound

1 10.206 9.199 9.073 11.338

2 9.828 6.876 8.849 10.807

3 11.194 10.330 9.994 12.394

4 8.822 9.867 7.649 9.995

5 10.434 7.985 9.379 11.489

6 8.855 6.230 7.923 9.787

7 10.511 7.333 9.500 11.523

8 9.212 14.687 7.781 10.643

9 10.464 10.414 9.259 11.669

10 10.142 17.689 8.571 11.712
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10 intervals, those for samples 4 and 6 do not contain the true parameter m ¼ 10. Never-

theless, in 10,000 simulated samples 94.82% of them contain the true population mean

m ¼ 10.

C.5.5 INTERVAL ESTIMATION USING THE HIP DATA

We have introduced the empirical problem faced by an airplane seat design engineer. Given

a random sample of size N ¼ 50 we estimated the mean U.S. hip width to be

y ¼ 17:158 inches. Furthermore we estimated the population variance to be ŝ2 ¼ 3:265;
thus the estimated standard deviation is ŝ ¼ 1:807. The standard error of the mean is

ŝ=
ffiffiffiffi
N

p ¼ 1:807=
ffiffiffiffiffi
50

p ¼ 0:2556. The critical value for interval estimation comes from a

t-distribution with N � 1 ¼ 49 degrees of freedom. While this value is not in Table 2, the

correct value using our software is tc ¼ tð0:975;49Þ ¼ 2:0095752, which we round to

tc ¼ 2:01. To construct a 95% interval estimate we use (C.15), replacing estimates for

the estimators, to give

y
 tc
ŝffiffiffiffi
N

p ¼ 17:1582
 2:01
1:807ffiffiffiffiffi

50
p

¼ ½16:6447; 17:6717�

We estimate that the population mean hip size falls between 16.645 and 17.672 inches.

Although we do not know if this interval contains the true population mean hip size for

sure, we know that the procedure used to create the interval ‘‘works’’ 95% of the time;

thus we would be surprised if the interval did not contain the true population value m.

C.6 Hypothesis Tests About a Population Mean

Hypothesis testing procedures compare a conjecture, or a hypothesis, that we have about a

population to the information contained in a sample of data. The conjectures we test here

concern themean of a normal population. In the context of the problem faced by the airplane

seat designer, suppose that airplanes since 1970 have been designed assuming the mean

population hip width is 16.5 inches. Is that figure still valid today?

C.6.1 COMPONENTS OF HYPOTHESIS TESTS

Hypothesis tests use sample information about a parameter—namely, its point estimate and

its standard error—to draw a conclusion about the hypothesis. In every hypothesis test, five

ingredients must be present:

COMPONENTS OF HYPOTHESIS TESTS

A null hypothesis, H0

An alternative hypothesis, H1

A test statistic

A rejection region

A conclusion
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C.6.1a The Null Hypothesis

The ‘‘null’’ hypothesis, which is denotedH0 (H-nought), specifies a value c for a parameter.

We write the null hypothesis as H0 :m ¼ c. A null hypothesis is the belief we will maintain

until we are convinced by the sample evidence that it is not true, in which case we reject the

null hypothesis.

C.6.1b The Alternative Hypothesis

Paired with every null hypothesis is a logical alternative hypothesis,H1, that we will accept

if the null hypothesis is rejected. The alternative hypothesis is flexible and depends to some

extent on the problem at hand. For the null hypothesis H0 :m ¼ c three possible alternative

hypotheses are

� H1 :m> c. If we reject the null hypothesis that m ¼ c, we accept the alternative that

m is greater than c.

� H1 :m< c. If we reject the null hypothesis that m ¼ c, we accept the alternative that

m is less than c.

� H1 :m 6¼ c. If we reject the null hypothesis that m ¼ c, we accept the alternative that

m takes a value other than (not equal to) c.

C.6.1c The Test Statistic

The sample information about the null hypothesis is embodied in the sample value of a test

statistic. Based on thevalue of a test statistic, we decide either to reject the null hypothesis or

not to reject it. A test statistic has a very special characteristic: its probability distribution is

completely known when the null hypothesis is true, and it has some other distribution if the

null hypothesis is not true.

Consider the null hypothesis H0 :m ¼ c. If the sample data come from a normal

population with mean m and variance s2, then

t ¼ Y � m

ŝ=
ffiffiffiffi
N

p � tðN�1Þ

If the null hypothesis H0 :m ¼ c is true, then

t ¼ Y � c

ŝ=
ffiffiffiffi
N

p � tðN�1Þ (C.16)

If the null hypothesis is not true, then the t-statistic in (C.16) does not have the usual

t-distribution.

REMARK: The test statistic distribution in (C.16) is based on an assumption that the

population is normally distributed. If the population is not normal, then we invoke the

central limit theorem, and say that Y is approximately normal in ‘‘large’’ samples. We can

use (C.16), recognizing that there is an approximation error introduced if our sample is

small.
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C.6.1d The Rejection Region

The rejection region depends on the formof the alternative. It is the range of values of the test

statistic that leads to rejection of the null hypothesis. They are values that are unlikely and

have low probability of occurringwhen the null hypothesis is true. The chain of logic is ‘‘If a

value of the test statistic is obtained that falls in a region of low probability, then it is unlikely

that the test statistic has the assumed distribution, and thus it is unlikely that the null

hypothesis is true.’’ If the alternative hypothesis is true, then values of the test statistic will

tend to be unusually large or unusually small. The terms ‘‘large’’ and ‘‘small’’ are

determined by choosing a probability a, called the level of significance of the test, which

provides a meaning for ‘‘an unlikely event.’’ The level of significance of the test a is usually

chosen to be 0.01, 0.05, or 0.10.

C.6.1e A Conclusion

When you have completed a hypothesis test, you should state your conclusion, whether you

reject the null hypothesis. However, we urge you tomake it standard practice to saywhat the

conclusion means in the economic context of the problem you are working on—that is,

interpret the results in a meaningful way. This should be a point of emphasis in all statistical

work that you do.

We will now discuss the mechanics of carrying out alternative versions of hypothesis

tests.

C.6.2 ONE-TAIL TESTS WITH ALTERNATIVE ‘‘GREATER THAN’’ (>)

If the alternative hypothesisH1 :m> c is true, then the value of the t-statistic (C.16) tends to

become larger than usual for the t-distribution. Let the critical value tc be the 100ð1� aÞ-
percentile tð1�a;N�1Þ from a t-distribution with N � 1 degrees of freedom. Then

Pðt � tcÞ ¼ 1� a, where a is the level of significance of the test. If the t-statistic is

greater than or equal to tc, then we reject H0 :m ¼ c and accept the alternativeH1 :m> c, as

shown in Figure C.5.

If the null hypothesis H0 :m ¼ c is true, then the test statistic (C.16) has a t-distribution,

and its values would tend to fall in the center of the distribution, where most of the

probability is contained. If t< tc, then there is no evidence against the null hypothesis, and

we do not reject it.

C.6.3 ONE-TAIL TESTS WITH ALTERNATIVE ‘‘LESS THAN’’ (<)

If the alternative hypothesisH1 :m< c is true, then the value of the t-statistic (C.16) tends to

become smaller than usual for the t-distribution. The critical value�tc is the 100-percentile

tða;N�1Þ from a t-distributionwithN � 1 degrees of freedom. ThenPðt � �tcÞ ¼ a, wherea

α
μ � c

μ � c

Reject H0:

Do not
reject H0:

tc � t(1�α,m)

t(m)

0

FIGURE C.5 The rejection region for the one-tail test of H0 :m ¼ c against H1 :m> c.
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is the level of significance of the test as shown in Figure C.6. If t ��tc, then we reject

H0 :m ¼ c and accept the alternativeH1 :m< c. If t> � tc, then we do not rejectH0 :m ¼ c.

MEMORY TRICK: The rejection region for a one-tail test is in the direction of the

arrow in the alternative. If alternative is ‘‘>’’, then reject in right tail. If alternative is ‘‘<’’,

reject in left tail.

C.6.4 TWO-TAIL TESTS WITH ALTERNATIVE ‘‘NOT EQUAL TO’’ (6¼)

If the alternative hypothesis H1 :m 6¼ c is true, then values of the test statistic may be

unusually ‘‘large’’ or unusually ‘‘small.’’ The rejection region consists of the two ‘‘tails’’ of

the t-distribution, and this is called a two-tail test. In Figure C.7, the critical values for

testing H0 :m ¼ c against H1 :m 6¼ c are depicted. The critical value is the 100ð1� a=2Þ-
percentile from a t-distribution with N � 1 degrees of freedom, tc ¼ tð1�a=2;N�1Þ, so that

Pðt� tcÞ ¼ Pðt � �tcÞ ¼ a=2.
If the value of the test statistic t falls in the rejection region, either tail of the tðN�1Þ

distribution, then we reject the null hypothesis H0 :m ¼ c and accept the alternative

H1 :m 6¼ c. If the value of the test statistic t falls in the nonrejection region, between the

critical values �tc and tc, then we do not reject the null hypothesis H0 :m ¼ c.

C.6.5 EXAMPLE OF A ONE-TAIL TEST USING THE HIP DATA

Let us illustrate by testing the null hypothesis that the population hip size is 16.5 inches,

against the alternative that it is greater than 16.5 inches. The following five-step format is

recommended.

t(m)

Do not
reject H0:

μ � c

Reject H0:
μ � c

�tc � t(α, m)

α

0

FIGURE C.6 Critical value for one-tail test H0 :m ¼ c versus H1 :m < c.

�tc � t(α/2,m) tc � t(1− α/2,m)

α/2 α/2

Reject H0: μ � c
Accept H1: μ ≠ cDo not reject

 H0: μ � c

Reject H0: μ � c
Accept H1: μ ≠ c

f(t)

t(m)

FIGURE C.7 Rejection region for a test of H0 :m ¼ c against H1 :m 6¼ c.
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1. The null hypothesis is H0 :m ¼ 16:5. The alternative hypothesis is H1 :m> 16:5.

2. The test statistic t ¼ ðY � 16:5Þ=ðŝ= ffiffiffiffi
N

p Þ� tðN�1Þ if the null hypothesis is true.

3. Let us select the level of significance a ¼ 0:05. The critical value tc ¼ tð0:95;49Þ ¼
1:6766 for a t-distribution with N � 1 ¼ 49 degrees of freedom. Thus we will reject

the null hypothesis in favor of the alternative if t� 1:68.

4. Using the hip data, the estimate of m is y ¼ 17:1582, with estimated variance

ŝ2 ¼ 3:2653, so ŝ ¼ 1:807. The value of the test statistic is

t ¼ 17:1582� 16:5

1:807=
ffiffiffiffiffi
50

p ¼ 2:5756:

5. Conclusion: Since t ¼ 2:5756> 1:68, we reject the null hypothesis. The sample

information we have is incompatible with the hypothesis that m ¼ 16:5. We accept

the alternative that the population mean hip size is greater than 16.5 inches, at the

a ¼ 0:05 level of significance.

C.6.6 EXAMPLE OF A TWO-TAIL TEST USING THE HIP DATA

Let us test the null hypothesis that the population hip size is 17 inches, against the alternative

that it is not equal to 17 inches. The steps of the test are

1. The null hypothesis is H0 :m ¼ 17. The alternative hypothesis is H1 :m 6¼ 17.

2. The test statistic t ¼ ðY � 17Þ=ðŝ= ffiffiffiffi
N

p Þ� tðN�1Þ if the null hypothesis is true.

3. Let us select the level of significance a ¼ 0:05. In a two-tail test a=2 ¼ 0:025 of

probability is allocated to each tail of the distribution. The critical value is the 97.5

percentile of the t-distribution, which leaves 2.5% of the probability in the upper tail,

tc ¼ tð0:975;49Þ ¼ 2:01 for a t-distribution withN � 1 ¼ 49 degrees of freedom. Thus,

wewill reject the null hypothesis in favor of the alternative if t� 2:01 or if t � �2:01.

4. Using the hip data, the estimate of m is y ¼ 17:1582, with estimated variance

ŝ2 ¼ 3:2653, so ŝ ¼ 1:807. The value of the test statistic is t ¼ ð17:1582� 17Þ=
ð1:807= ffiffiffiffiffi

50
p Þ ¼ 0:6191.

5. Conclusion: Since �2:01< t ¼ 0:6191< 2:01 we do not reject the null hypothesis.
The sample information we have is compatible with the hypothesis that the

population mean hip size m ¼ 17.

WARNING: Care must be taken here in interpreting the outcome of a statistical test.

One of the basic precepts of hypothesis testing is that finding a sample value of the test

statistic in the nonrejection region does not make the null hypothesis true! Suppose another

null hypothesis is H0 :m ¼ c	; where c	 is ‘‘close’’ to c. If we fail to reject the hypothesis

m ¼ c, then we will likely fail to reject the hypothesis that m ¼ c	. In the example above, at

the a ¼ 0:05 level, we fail to reject the hypothesis that m is 17, 16.8, 17.2, or 17.3. In fact,

in any problem there are many hypotheses that we would fail to reject, but that does not

make any of them true. The weaker statements ‘‘we do not reject the null hypothesis’’ or

‘‘we fail to reject the null hypothesis’’ do not send a misleading message.

712 REV IEW OF STAT I ST ICAL INFERENCE



C.6.7 THE p-VALUE

When reporting the outcome of statistical hypothesis tests it has become commonpractice to

report the p-value of the test. If we have the p-value of a test, p, we can determine the

outcome of the test by comparing the p-value to the chosen level of significance, a, without
looking up or calculating the critical values ourselves. The rule is

p-VALUE RULE: Reject the null hypothesis when the p-value is less than, or equal to,

the level of significance a. That is, if p � a then reject H0. If p>a, then do not reject H0.

If you have chosen the level of significance to be a ¼ 0:01; 0:05; 0:10, or any other value,
you can compare it to the p-value of a test and then reject, or not reject, without checking the

critical value tc.

How the p-value is computed depends on the alternative. If t is the calculated value (not

the critical value tc) of the t-statistic with N � 1 degrees of freedom, then

� if H1 :m> c; p ¼ probability to the right of t

� if H1 :m< c; p ¼ probability to the left of t

� if H1 :m 6¼ c; p ¼ sum of probabilities to the right of jtj and to the left of �jtj

The direction of the alternative indicates the tail(s) of the distribution in which the p-value

falls.

In Section C.6.5 we used the hip data to test H0 :m ¼ 16:5 against H1 :m> 16:5. The
calculated t-statistic value was t ¼ 2:5756. In this case, since the alternative is ‘‘greater

than’’ (>), the p-value of this test is the probability that a t-randomvariablewithN � 1 ¼ 49

degrees of freedom is greater than 2.5756. This probability value cannot be found in the

usual t-table of critical values, but it is easily found using the computer. Statistical software

packages, and spreadsheets such as Excel, have simple commands to evaluate the cumu-

lative distribution function (cdf ) (see the Probability Primer, Section P.2) for a variety of

probability distributions. If FXðxÞ is the cdf for a random variable X, then for any value

x ¼ c, P½X � c� ¼ FXðcÞ. Given such a function for the t-distribution, we compute the

desired p-value

p ¼ P


tð49Þ � 2:576

� ¼ 1� P


tð49Þ � 2:576

� ¼ 0:0065

Given the p-value, we can immediately conclude that at a ¼ 0:01 or 0.05 we reject the null
hypothesis in favor of the alternative, but if a ¼ 0:001 we would not reject the null

hypothesis.

The logic of the p-value rule is shown in Figure C.8. If 0.0065 of the probability lies to

the right of t ¼ 2:5756, then the critical value tc that leaves a probability of a ¼
0:01 ðtð0:99;49ÞÞ or a ¼ 0:05 ðtð0:95;49ÞÞ in the tail must be to the left of 2.5756. In this

case, when the p-value � a, it must be true that t� tc, and we should reject the null

hypothesis for either of these levels of significance. On the other hand, it must be true that

the critical value fora ¼ 0:001must fall to the right of 2.5756,meaning that we should not

reject the null hypothesis at this level of significance.

For a two-tail test, the rejection region is in the two tails of the t-distribution, and the

p-value must similarly be calculated in the two tails of the distribution. For the hip data,
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we tested the null hypothesis H0 :m ¼ 17 against H1 :m 6¼ 17, yielding the test statistic

value t ¼ 0:6191. The p-value is

p ¼ P½tð49Þ � 0:6191� þ P½tð49Þ � �0:6191� ¼ 2�0:2694 ¼ 0:5387

Since the p-value ¼ 0:5387>a ¼ 0:05, we do not reject the null hypothesisH0 :m ¼ 17 at

a ¼ 0:05 or any other common level of significance. The two-tail p-value is shown in

Figure C.9.

C.6.8 A COMMENT ON STATING NULL AND ALTERNATIVE HYPOTHESES

A statistical test procedure cannot prove the truth of a null hypothesis. When we fail to

reject a null hypothesis, all the hypothesis test can establish is that the information in a

sample of data is compatiblewith the null hypothesis. On the other hand, a statistical test can

lead us to reject the null hypothesis, with only a small probability, a, of rejecting the null

hypothesis when it is actually true. Thus rejecting a null hypothesis is a stronger conclusion

than failing to reject it.

The null hypothesis is usually stated in such away that if our theory is correct, thenwewill

reject the null hypothesis. For example, our airplane seat designer has been operating under

the assumption (themaintained or null hypothesis) that the populationmean hipwidth is 16.5

inches. Casual observation suggests that people are getting larger all the time. Ifwe are larger,

and if the airline wants to continue to accommodate the same percentage of the population,

then the seat widths must be increased. This costly change should be undertaken only if there

is statistical evidence that the population hip size is indeed larger. When using a hypothesis

test we would like to find out whether there is statistical evidence against our current

t � 0.6191
p � 0.5387

 � 0.2694
p
2  � 0.2694

p
2

�0.6191 0.6191

�t(0.975,49) t(0.975,49)

t(49)

FIGURE C.9 The p-value for a two-tail test.

�4 �3 �2 �1 0
t

t(49)

p � 0.0065

1 2 3 4
2.5756

t(0.95,49) t(0.99,49)

FIGURE C.8 p-value for a right-tail test.
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‘‘theory,’’ or whether the data are compatible with it. With this goal, we set up the null

hypothesis that the populationmean is 16.5 inches,H0 :m ¼ 16:5, against the alternative that
it is greater than 16.5 inches, H1 :m> 16:5. In this case, if we reject the null hypothesis, we
have shown that there has been a ‘‘statistically significant’’ increase in hip width.

Youmay view the null hypothesis to be too limited in this case, since it is feasible that the

population mean hip width is now smaller than 16.5 inches. The hypothesis test of the null

hypothesis H0 :m � 16:5 against the alternative hypothesis H1 :m> 16:5 is exactly the

same as the test for H0 :m ¼ 16:5 against the alternative hypothesis H1 :m> 16:5. The test
statistic and rejection region are exactly the same. For a one-tail test you can form the null

hypothesis in either of these ways.

Finally, it is important to set up the null and alternative hypotheses before you analyze or

even collect the sample of data. Failing to do so can lead to errors in formulating the

alternative hypothesis. Suppose that we wish to test whether m> 16:5 and the sample mean

is y ¼ 15:5. Does that mean we should set up the alternativem< 16:5, to be consistent with
the estimate? The answer is no. The alternative is formed to state the conjecture that wewish

to establish, m> 16:5.

C.6.9 TYPE I AND TYPE II ERRORS

Whenever we reject—or do not reject—a null hypothesis, there is a chance that we may be

making amistake. This is unavoidable. In any hypothesis testing situation, there are twoways

that we can make a correct decision and two ways that we can make an incorrect decision.

CORRECT DECISIONS

The null hypothesis is false and we decide to reject it.

The null hypothesis is true and we decide not to reject it.

INCORRECT DECISIONS

The null hypothesis is true and we decide to reject it (a Type I error).

The null hypothesis is false and we decide not to reject it (a Type II error).

Whenwe reject the null hypothesis we risk what is called a Type I error. The probability of a

Type I error is a, the level of significance of the test. When the null hypothesis is true, the

t-statistic falls in the rejection region with probability a. Thus hypothesis tests will reject a
true hypothesis 100a% of the time. Thegood news here is thatwe can control the probability

of a Type I error by choosing the level of significance of the test, a.
We risk a Type II error when we do not reject the null hypothesis. Hypothesis tests will

lead us to fail to reject null hypotheses that are false with a certain probability. The

magnitude of the probability of a Type II error is not under our control and cannot be

computed, because it depends on the true value of m, which is unknown. However, we do

know that

� The probability of a Type II error varies inversely with the level of significance of the

test, a, which is the probability of a Type I error. If you choose to make a smaller,

the probability of a Type II error increases.

� If the null hypothesis ism ¼ c, and if the true (unknown) value ofm is close to c, then

the probability of a Type II error is high.
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� The larger the sample sizeN, the lower the probability of a Type II error, given a level

of Type I error a.

An easy to remember example of the difference between Type I and Type II errors is from

theU.S. legal system. In a trial, a person is presumed innocent. This is the ‘‘null’’ hypothesis,

the alternative hypothesis being that the person is guilty. If we convict an innocent person,

then we have rejected a null hypothesis that is true, committing a Type I error. If we fail

to convict a guilty person, failing to reject the false null hypothesis, then we commit a Type

II error.Which is themore costly error in this context? Is it better to sendan innocent person to

jail, or to let a guilty person go free? It is better in this case tomake the probability of a Type I

error very small.

C.6.10 A RELATIONSHIP BETWEEN HYPOTHESIS TESTING

AND CONFIDENCE INTERVALS

There is an algebraic relationship between two-tail hypothesis tests and confidence interval

estimates that is sometimes useful. Suppose that we are testing the null hypothesis H0 :
m ¼ c against the alternativeH1 :m 6¼ c. If we fail to reject the null hypothesis at the a level

of significance, then the value cwill fall within a 100ð1� aÞ% confidence interval estimate

of m. Conversely, if we reject the null hypothesis, then c will fall outside the 100ð1� aÞ%
confidence interval estimate ofm. This algebraic relationship is true becausewe fail to reject
the null hypothesis when �tc � t � tc, or when

�tc � Y � c

ŝ=
ffiffiffiffi
N

p � tc

which when rearranged becomes

Y � tc
ŝffiffiffiffi
N

p � c � Y þ tc
ŝffiffiffiffi
N

p

The endpoints of this interval are the same as the endpoints of a 100ð1� aÞ% confidence

interval estimate ofm. Thus for anyvalue of cwithin the confidence interval, we do not reject
H0 :m ¼ c against the alternative H1 :m 6¼ c. For any value of c outside the confidence

interval, we reject H0 :m ¼ c and accept the alternative H1 :m 6¼ c.

This relationship can be handy if you are given only a confidence interval and want to

determine what the outcome of a two-tail test would be.

C.7 Some Other Useful Tests

In this section we very briefly summarize some additional tests. These tests are not only

useful in and of themselves, but also illustrate the use of test statistics with chi-square and

F-distributions. These distributions were introduced in Appendix B.3.

C.7.1 TESTING THE POPULATION VARIANCE

Let Y be a normally distributed random variable, Y �Nðm;s2Þ. Assume that we have a

random sample of size N from this population, Y1; Y2; . . . ; YN . The estimator of the
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population mean is Y ¼ �Yi=N, and the unbiased estimator of the population variance is

ŝ2 ¼ �ðYi � YÞ2=ðN � 1Þ. To test the null hypothesisH0 :s
2 ¼ s2

0, we use the test statistic

V ¼ ðN � 1Þŝ2

s2
0

� x2ðN�1Þ

If the null hypothesis is true, then the test statistic has the indicated chi-square distribution

with N � 1 degrees of freedom. If the alternative hypothesis is H1 :s
2 >s2

0, then we carry

out a one-tail test. If we choose the level of significancea ¼ 0:05, then the null hypothesis is
rejected if V � x2ð0:95;N�1Þ, where x2ð0:95;N�1Þ is the 95th percentile of the chi-square

distribution with N � 1 degrees of freedom. These values can be found in Table 3 at the

end of this book, or computed using statistical software. If the alternative hypothesis is

H1 :s
2 6¼s2

0, then we carry out a two-tail test, and the null hypothesis is rejected if

V � x2ð0:975;N�1Þ or if V � x2ð0:025;N�1Þ. The chi-square distribution is skewed, with a long

tail to the right, sowe cannot use the properties of symmetry when determining the left- and

right-tail critical values.

C.7.2 TESTING THE EQUALITY OF TWO POPULATION MEANS

Let two normal populations be denoted byNðm1;s
2
1Þ andNðm2;s

2
2Þ. In order to estimate and

test the difference betweenmeans,m1 � m2, wemust have randomsamples of data from each

of the twopopulations.Wedraw a sample of sizeN1 from thefirst population, and a sample of

sizeN2 from the second population. Using the first samplewe obtain the samplemeanY1 and

sample variance ŝ2
1; from the second sample we obtain Y2 and ŝ

2
2. How the null hypothesis

H0 :m1 � m2 ¼ c is tested depends onwhether the two population variances are equal or not.

Case 1: Population variances are equal If the population variances are equal, so that

s2
1 ¼ s2

2 ¼ s2
p, then we use information in both samples to estimate the common value s2

p.

This ‘‘pooled variance estimator’’ is

ŝ2
p ¼ ðN1 � 1Þŝ2

1 þ ðN2 � 1Þŝ2
2

N1 þ N2 � 2

If the null hypothesis H0 :m1 � m2 ¼ c is true, then

t ¼ ðY1 � Y2Þ � cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

p

1

N1

þ 1

N2

� �s � tðN1þN2�2Þ

Asusual, we can construct a one-sided alternative, such asH1 :m1 � m2 > c, or the two-sided

alternative H1 :m1 � m2 6¼ c.

Case 2: Population variances are unequal If the population variances are not equal,

then we cannot use the pooled variance estimate. Instead, we use

t	 ¼ ðY1 � Y2Þ � cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2
1

N1

þ ŝ2
2

N2

s
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The exact distribution of this test statistic is neither normal nor the usual t-distribution. The

distribution of t	 can be approximated by a t-distribution with degrees of freedom

df ¼ ðŝ2
1=N1 þ ŝ2

2=N2Þ2
ðŝ2

1=N1Þ2
N1 � 1

þðŝ2
2=N2Þ2

N2 � 1

 !

This is one of several approximations that appear in the statistics literature, and your

software may well use a different one.

C.7.3 TESTING THE RATIO OF TWO POPULATION VARIANCES

Given two normal populations, denoted by Nðm1;s
2
1Þ and Nðm2;s

2
2Þ, we can test the null

hypothesis H0 :s
2
1=s

2
2 ¼ 1. If the null hypothesis is true, then the population variances are

equal. The test statistic is derived from the results that ðN1 � 1Þŝ2
1=s

2
1 � x2ðN1�1Þ and

ðN2 � 1Þŝ2
2=s

2
2 � x2ðN2�1Þ. In Appendix B.3.8 we define an F random variable, which is

formed by taking the ratio of two independent chi-square random variables that have been

divided by their degrees of freedom. In this case, the relevant ratio is

F ¼
ðN1 � 1Þŝ2

1=s
2
1

ðN1 � 1Þ
ðN2 � 1Þŝ2

2=s
2
2

ðN2 � 1Þ
¼ ŝ2

1=s
2
1

ŝ2
2=s

2
2

�FðN1�1;N2�1Þ

If the null hypothesisH0 :s
2
1=s

2
2 ¼ 1 is true then the test statistic isF ¼ ŝ2

1=ŝ
2
2, which has an

F-distribution with N1 � 1 numerator and N2 � 1 denominator degrees of freedom. If the

alternative hypothesis isH1 :s
2
1=s

2
2 6¼ 1, thenwe carry out a two-tail test. Ifwe choose level of

significance a ¼ 0:05, then we reject the null hypothesis if F�Fð0:975;N1�1;N2�1Þ or if

F � Fð0:025;N1�1;N2�1Þ, whereFða;N1�1;N2�1Þ denotes the 100a-percentile of theF-distribution
with the specified degrees of freedom. If the alternative is one-sided,H1 :s

2
1=s

2
2 > 1, then we

reject the null hypothesis if F�Fð0:95;N1�1;N2�1Þ.

C.7.4 TESTING THE NORMALITY OF A POPULATION

The tests for means and variances we have developed began with the assumption that the

populations were normally distributed. Two questions immediately arise. How well do

the tests work when the population is not normal? Can we test for the normality of a

population? The answer to the first question is that the tests work pretty well even if the

population is not normal, so long as samples are sufficiently large. How large must the

samples be? There is no easy answer, since it depends on how ‘‘nonnormal’’ the populations

are.Theanswer to the secondquestion is yes,wecan test for normality. Statisticians have been

vitally interested in this question for a long time, and a variety of tests have been developed,

but the tests and underlying theory arevery complicated and far outside the scopeof this book.

However, we can present a test that is slightly less ambitious. The normal distribution is

symmetric and has a bell shape with a peakedness and tail thickness leading to a kurtosis of

three. Thuswe can test for departures from normality by checking the skewness and kurtosis

from a sample of data. If skewness is not close to zero, and if kurtosis is not close to three,
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then we reject the normality of the population. In Section C.4.2 we developed sample

measures of skewness and kurtosis

bskewness ¼ S ¼ ~m3

~s3

bkurtosis ¼ K ¼ ~m4

~s4

The Jarque–Bera test statistic allows a joint test of these two characteristics,

JB ¼ N

6
S2 þ ðK � 3Þ2

4

 !

If the true distribution is symmetric and has kurtosis three, which includes the normal

distribution, then the JB test statistic has a chi-square distribution with two degrees of

freedom if the sample size is sufficiently large. Ifa ¼ 0:05; then the critical value of the x2ð2Þ
distribution is 5.99.We reject the null hypothesis and conclude that the data are nonnormal if

JB� 5:99. If we reject the null hypothesis, then we know the data have nonnormal

characteristics, but we do not know what distribution the population might have.

For the hip data, skewness and kurtosis measures were estimated in Section C.4.3.

Plugging these values into the JB test statistic formula we obtain

JB ¼ N

6
S2 þ ðK � 3Þ2

4

 !
¼ 50

6
ð�0:0138Þ2 þ ð2:3315� 3Þ2

4

 !
¼ 0:9325

Since JB ¼ 0:9325 is less than the critical value 5.99, we conclude that we cannot reject the
normality of the hip data. The p-value for this test is the tail area of a x2ð2Þ-distribution to

the right of 0.9325,

p ¼ P x2ð2Þ � 0:9325
h i

¼ 0:6273

C.8 Introduction to Maximum Likelihood Estimation

Maximum likelihood estimation is a powerful procedure that can be used when the

population distribution is known. In this section we introduce the concept with a very

simple but revealing example. Consider the following ‘‘Wheel of Fortune’’ game. You are

a contestant faced with two wheels, each of which is partly shaded and partly nonshaded

(see Figure C.10). Suppose that after spinning awheel, youwin if a pointer is in the shaded

area, and you lose if the pointer is in the nonshaded area. On wheel A 25% of the area

is shaded so that the probability of winning is 1=4. On wheel B 75% of the area is shaded

so that the probability of winning is 3=4. The game that you must play is this. One of

the wheels is chosen and spun three times, with outcomes WIN, WIN, LOSS. You do not

know which wheel was chosen, and must pick which wheel was spun. Which would

you select?

1

1 This section contains some advanced material.
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One intuitive approach is the following: let p denote the probability of winning on one

spin of a wheel. Choosing between wheels A and Bmeans choosing between p ¼ 1=4 and
p ¼ 3=4. You are estimating p, but there are only two possible estimates, and you must

choose based on the observed data. Let us compute the probability of each sequence of

outcomes for each of the wheels.

For wheel A, with p ¼ 1=4, the probability of observing WIN, WIN, LOSS is

1

4
� 1

4
� 3

4
¼ 3

64
¼ 0:0469

That is, the probability, or likelihood, of observing the sequence WIN, WIN, LOSS when

p ¼ 1=4 is 0.0469.

For wheel B, with p ¼ 3=4, the probability of observing WIN, WIN, LOSS is

3

4
� 3

4
� 1

4
¼ 9

64
¼ 0:1406

The probability, or likelihood, of observing the sequenceWIN,WIN, LOSS when p ¼ 3=4
is 0.1406.

(a)
Wheel A

P(WIN) � 0.25

P(WIN) � 0.75
P(LOSE) � 0.25

P(LOSE) � 0.75

(b)
Wheel B

FIGURE C.10 Wheel of fortune game.

720 REV IEW OF STAT I ST ICAL INFERENCE



If we had to choose wheel A or B based on the available data, we would choose wheel B

because it has a higher probability of having produced the observed data. It is more likely

that wheel B was spun than wheel A, and p̂ ¼ 3=4 is called the maximum likelihood

estimate of p. The maximum likelihood principle seeks the parameter values that

maximize the probability, or likelihood, of observing the outcomes actually obtained.

Now suppose p can be any probability between zero and one, not just 1=4 or 3=4.We have

one wheel with a proportion of it shaded, which is the probability of WIN, but we do not

know the proportion. In three spins we observe WIN, WIN, LOSS. What is the most likely

value of p? The probability of observing WIN, WIN, LOSS is the likelihood L and is

Lð pÞ ¼ p�p�ð1� pÞ ¼ p2 � p3 (C.17)

The likelihood L depends on the unknown probability p of a WIN, which is why we have

given it the notation Lð pÞ, indicating a functional relationship. We would like to find the

value of p that maximizes the likelihood of observing the outcomes actually obtained.

The graph of the likelihood function (C.17) and the choice of p that maximizes this function

is shown in Figure C.11. The maximizing value is denoted as p̂ and is called the maximum

likelihood estimate of p. To find this value of pwe can use calculus. Differentiate Lð pÞwith
respect to p,

dLð pÞ
dp

¼ 2p� 3p2

Set this derivative to zero:

2p� 3p2 ¼ 0) pð2� 3pÞ ¼ 0

There are two solutions to this equation, p ¼ 0 or p ¼ 2=3. The value that maximizes Lð pÞ
is p̂ ¼ 2=3, which is the maximum likelihood estimate. That is, of all possible values of p,

between zero and one, the value that maximizes the probability of observing two wins and

one loss (the order does not matter) is p̂ ¼ 2=3.
Can we derive a more general formula that can be used for any observed data? In

AppendixB.3.1we introduced the Bernouilli distribution. Let us define the random variable

L(p)

0.67 1.0 p0

FIGURE C.11 A likelihood function.

C . 8 INTRODUCTION TO MAXIMUM L IKEL IHOOD EST IMAT ION 721



X that takes the values x ¼ 1 (WIN) and x ¼ 0 (LOSS) with probabilities p and 1� p. The

probability function for this random variable can be written in mathematical form as

PðX ¼ xÞ ¼ f ðxj pÞ ¼ pxð1� pÞ1�x; x ¼ 0; 1

If we spin the ‘‘wheel’’ N times we observe N sample values x1; x2; . . . ; xN . Assuming that

the spins are independent, we can form the joint probability function

f ðx1; . . . ; xN j pÞ ¼ f ðx1j pÞ� � � � � f ðxN j pÞ
¼ p�xið1� pÞN��xi

¼ Lð pjx1; . . . ; xNÞ
(C.18)

The joint probability function gives the probability of observing a specific set of outcomes,

and it is a generalization of (C.17). In the last linewe have indicated that the joint probability

function is algebraically equivalent to the likelihood function Lð pjx1; . . . ; xNÞ. The

notation emphasizes that the likelihood function depends upon the unknown probability

p given the sample outcomes, which we observe. For notational simplicity wewill continue

to denote the likelihood function as Lð pÞ.
In the ‘‘Wheel of Fortune’’ game, the maximum likelihood estimate is that value of p

that maximizes Lð pÞ. To find this estimate using calculus we use a trick to simplify the

algebra. The value of p that maximizes Lð pÞ ¼ p2ð1� pÞ is the same value of p that

maximizes the log-likelihood function ln Lð pÞ ¼ 2 lnð pÞ þ lnð1� pÞ, where ‘‘ln’’ is the
natural logarithm. The plot of the log-likelihood function is shown in Figure C.12. Compare

Figures C.11 and C.12. The maximum of the likelihood function is Lðp̂Þ ¼ 0:1481.
The maximum of the log-likelihood function is ln Lðp̂Þ ¼ �1:9095. Both of these

maximum values occur at p̂ ¼ 2=3 ¼ 0:6667.
This trick works for all likelihood and log-likelihood functions and their parameters, so

when you see maximum likelihood estimation being discussed it will always be in terms of

maximizing the log-likelihood function. For the general problem we are considering, the

log-likelihood function is the logarithm of (C.18)

ln Lð pÞ ¼ �
N

i¼1
ln f ðxij pÞ

¼ �
N

i¼1
xi

� �
lnð pÞ þ N � �

N

i¼1
xi

� �
lnð1� pÞ (C:19Þ

ln L(p)

0.67 p

FIGURE C.12 A log-likelihood function.
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The first derivative is

d ln Lð pÞ
dp

¼ � xi

p
�N � � xi

1� p

Setting this to zero and replacing p by p̂ to denote the value that maximizes ln Lð pÞ yields

� xi

p̂
�N � � xi

1� p̂
¼ 0

To solve this equation, multiply both sides by p̂ð1� p̂Þ. This gives

ð1� p̂Þ� xi � p̂ðN � � xiÞ ¼ 0

Finally, solving for p̂ yields

p̂ ¼ � xi

N
¼ x (C.20)

The estimator p̂ is the sample proportion;� xi is the total number of 1s (wins) out ofN spins.

As you can see, p̂ is also the samplemean of xi. This result is completely general. Any timewe

have two outcomes that can occur with probabilities p and 1� p, then the maximum

likelihood estimate based on a sample of N observations is the sample proportion (C.20).

This estimation strategy can be used if you are a pollster trying to estimate the proportion of

the population intending to vote for candidate A rather than candidate B, a medical re-

searcherwhowishes to estimate the proportion of the populationhaving a particular defective

gene, or amarketing researcher trying to discoverwhether the population of customers prefers

a blue box or a green box for their morning cereal. Suppose in this latter case that you select

200 cereal consumers at random and ask whether they prefer blue boxes or green. If 75

prefer a blue box, then we would estimate that the population proportion preferring blue is

p̂ ¼ � xi=N ¼ 75=200 ¼ 0:375. Thus, we estimate that 37.5% of the population prefers a

blue box.

C.8.1 INFERENCE WITH MAXIMUM LIKELIHOOD ESTIMATORS

If we use maximum likelihood estimation, how do we perform hypothesis tests and

construct confidence intervals? The answers to these questions are found in some remark-

able properties of estimators obtained using maximum likelihood methods. Let us consider

a general problem. Let X be a random variable (either discrete or continuous) with a

probability density function f ðxjuÞ, where u is an unknown parameter. The log-likelihood

function, based on a random sample x1; . . . ; xN of size N, is

ln LðuÞ ¼ �
N

i¼1
ln f ðxijuÞ

If the probability density function of the random variable involved is relatively smooth, and

if certain other technical conditions hold, then in large samples the maximum likelihood

estimator û of a parameter u has a probability distribution that is approximately normal, with

expected value u and a variance V ¼ varðûÞ that we will discuss in a moment. That is, we

can say

û�a Nðu;VÞ (C.21)
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where the symbol �a denotes ‘‘asymptotically distributed.’’ The word ‘‘asymptotic’’ refers

to estimator properties when the sample size N becomes large, or as N!1. To say that an

estimator is asymptotically normal means that its probability distribution, which may be

unknown when samples are small, becomes approximately normal in large samples. This is

analogous to the central limit theorem we discussed in Section C.3.4.

Based on the normality result in (C.21) it will not surprise you that we can immediately

construct a t-statistic and obtain both a confidence interval and a test statistic from it.

Specifically, if we wish to test the null hypothesis H0 :u ¼ c against a one-tail or two-tail

alternative hypothesis, then we can use the test statistic

t ¼ û�c

se


ûÞ �

a
tðN�1Þ (C.22)

If the null hypothesis is true, then this t-statistic has a distribution that can be approximated

by a t-distribution with N � 1 degrees of freedom in large samples. The mechanics of

carrying out the hypothesis test are exactly those in Section C.6.

If tc denotes the 100ð1� a=2Þ-percentile tð1�a=2;N�1Þ, then a 100ð1� aÞ% confidence

interval for u is

û 
 tcse


ûÞ

This confidence interval is interpreted just like those in Section C.5.

REMARK: These asymptotic results in (C.21) and (C.22) hold only in large samples.

We have indicated that the distribution of the test statistic can be approximated by a

t-distribution with N � 1 degrees of freedom. If N is truly large, then the tðN�1Þ-distribution
converges to the standard normal distribution Nð0; 1Þ and the 100ð1� a=2Þ-percentile
value tð1�a=2;N�1Þ converges to the corresponding percentile from the standard normal

distribution. Asymptotic results are used, rightly or wrongly, when the sample size N may

not be large. We prefer using the t-distribution critical values, which are adjusted for small

samples by the degrees of freedom correction, when obtaining interval estimates and

carrying out hypothesis tests.

C.8.2 THE VARIANCE OF THE MAXIMUM LIKELIHOOD ESTIMATOR

A key ingredient in both the test statistic and confidence interval expressions is the

standard error seðûÞ. Where does this come from? Standard errors are square roots of

estimated variances. The part we have delayed discussing until now is how we find the

variance of the maximum likelihood estimator, V ¼ varðûÞ. The variance V is given by

the inverse of the negative expectation of the second derivative of the log-likelihood

function,

V ¼ var


ûÞ ¼ �E

d2 ln LðuÞ
du2

� �� ��1

(C.23)

This looks quite intimidating, and you can seewhy we put it off.What does this mean? First

of all, the second derivativemeasures the curvature of the log-likelihood function. A second
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derivativeis literally thederivativeof thederivative.Asinglederivative, thefirst,measures the

slope of a function or the rate of change of the function. The second derivative measures

the rate of changeof the slope.Toobtain amaximumof the log-likelihood function, itmustbe

an ‘‘inverted bowl’’ shape, like those shown in Figure C.13.

At any point to the left of the maximum point, the slope of the log-likelihood function is

positive. At any point to the right of themaximum, the slope is negative. Aswe progress from

left to right the slope is decreasing (becoming less positive or more negative), so that the

second derivative must be negative. A larger absolute magnitude of the second derivative

implies amore rapidly changing slope, indicating amore sharply curved log-likelihood. This

is important. In Figure C.13 the two log-likelihood functions A and B have the same

maximizing value û. Imagine yourself a climber who is trekking up one of these mountains.

Forwhichmountain is the summitmost clearly defined?For log-likelihoodB, the summit is a

sharp peak, and its maximum is more easily located than that for log-likelihood A. The

sharper peak has less ‘‘wiggle room’’ at the summit. The smaller amount of wiggle room

means that there is less uncertainty as to the location of themaximizing value û; in estimation

terminology, less uncertainty means greater precision, and a smaller variance. The more

sharply curved log-likelihood function, the onewhose second derivative is larger in absolute

magnitude, leads to more precise maximum likelihood estimation, and to a maximum

likelihood estimator with smaller variance. Thus the variance V of the maximum likelihood

estimator is inversely related to the (negative) second derivative. The expected value ‘‘E’’

must be present because this quantity depends on the data and is thus random, sowe average

over all possible data outcomes.

C.8.3 THE DISTRIBUTION OF THE SAMPLE PROPORTION

It is time for an example. At the beginning of Section C.8we introduced a random variableX

that takes the values x ¼ 1 and x ¼ 0 with probabilities p and 1� p. It has log-likelihood

given in (C.19). In this problem the parameter u that we are estimating is the population

proportion p, the proportion of x ¼ 1 values in the population. We already know that the

maximum likelihood estimator of p is the sample proportion p̂ ¼ � xi=N. The second

derivative of the log-likelihood function (C.19) is

d2 ln Lð pÞ
dp2

¼ �� xi

p2
�N � � xi

ð1� pÞ2 (C.24)

B
ln L (θ)

θ

θ

A

ˆ

FIGURE C.13 Two log-likelihood functions.
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To calculate the variance of the maximum likelihood estimator we need the ‘‘expected

value’’ of expression (C.24). In the expectation we treat the xi values as random because

these values vary from sample to sample. The expected value of this discrete random

variable is obtained using (P.9) in the probability primer:

EðxiÞ ¼ 1�Pðxi ¼ 1Þ þ 0�Pðxi ¼ 0Þ ¼ 1�pþ 0�ð1� pÞ ¼ p

Then, using a generalization of (P.16) (the expected value of a sum is the sumof the expected

values and constants can be factored out of expectations) we find the expected value of the

second derivative as

E
d2 ln Lð pÞ

dp2

� �
¼ ��EðxiÞ

p2
�N � �EðxiÞ

ð1� pÞ2

¼ �Np

p2
� N � Np

ð1� pÞ2

¼ � N

pð1� pÞ

The variance of the sample proportion, which is the maximum likelihood estimator of p, is

then

V ¼ varðp̂Þ ¼ �E
d 2 ln Lð pÞ

dp2

� �� ��1

¼ pð1� pÞ
N

The asymptotic distribution of the sample proportion, which is valid in large samples, is

p̂�a N p;
pð1� pÞ

N

� �

To estimate the variance V we must replace the true population proportion by its estimate,

V̂ ¼ p̂ð1� p̂Þ
N

The standard error that we need for hypothesis testing and confidence interval estimation is

the square root of this estimated variance:

seðp̂Þ ¼
ffiffiffiffî
V

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

N

r

As a numerical example, suppose a cereal company CEO conjectures that 40% of the

population prefers a blue box. To test this hypothesis, we construct the null hypothesis

H0 : p ¼ 0:4 and use the two-tail alternative H1 :p 6¼ 0:4. If the null hypothesis is true, then
the test statistic t ¼ ðp̂� 0:4Þ=seðp̂Þ�a tðN�1Þ. For a sample of sizeN ¼ 200 the critical value

from the t-distribution is tc ¼ tð0:975;199Þ ¼ 1:96. Therefore we reject the null hypothesis

if the calculated value of t� 1:96 or t � �1:96. If 75 of the respondents prefer a blue box,
then the sample proportion is p̂ ¼ 75=200 ¼ 0:375. The standard error of this estimate is

seðp̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

N

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:375�0:625

200

r
¼ 0:0342
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The value of the test statistic is

t ¼ p̂� 0:4

seðp̂Þ ¼ 0:375� 0:4

0:0342
¼ �0:7303

This value is in the nonrejection region, �1:96< t ¼ �0:7303< 1:96, so we do not reject

the null hypothesis that p ¼ 0:4. The sample data are compatible with the conjecture that

40% of the population prefer a blue box.

The 95% interval estimate of the population proportion p who prefer a blue box is

p̂
 1:96 seðp̂Þ ¼ 0:375
 1:96ð0:0342Þ ¼ ½0:3075; 0:4425�

We estimate that between 30.8% and 44.3% of the population prefer a blue box.

C.8.4 ASYMPTOTIC TEST PROCEDURES

When using maximum likelihood estimation, there are three test procedures that can be

used, with the choice depending on which one is most convenient in a given case. The tests

are asymptotically equivalent andwill give the same result in large samples. Suppose thatwe

are testing the null hypothesis H0 :u ¼ c against the alternative hypothesis H1 :u 6¼ c. In

(C.22) we have the t-statistic for carrying out the test. How does this test really work?

Basically it is measuring the distance û�c between the estimate of u and the hypothesized
value c. This distance is normalized by the standard error of û to adjust for how precisely we

have estimated u. If the distance between the estimate û and the hypothesized value c is

large, then that is taken as evidence against the null hypothesis, and if the distance is large

enough, we conclude that the null hypothesis is not true.

There are other ways to measure the distance between û and c that can be used to

construct test statistics. Each of the three testing principles takes a different approach

to measuring the distance between û and the hypothesized value.

C.8.4a The Likelihood Ratio (LR) Test

Consider Figure C.14. A log-likelihood function is shown, along with the maximum

likelihood estimate û and the hypothesized value c. Note that the distance between û and c
is also reflected by the distance between the log-likelihood function value evaluated at the

maximum likelihood estimate ln LðûÞ and the log-likelihood function value evaluated at

ln L(c)

ln L(θ)

ln L(θ)

θ

θ

1 LR2

c ˆ

ˆ

FIGURE C.14 The likelihood ratio test.
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the hypothesized value lnLðcÞ. We have labeled the difference between these two log-

likelihood values ð1=2Þ LR for a reason that will become clear. If the estimate û is close to
c, then the difference between the log-likelihood values will be small. If û is far from c,

then the difference between the log-likelihood values will be large. This observation leads

us to the likelihood ratio statistic, which is twice the difference between ln LðûÞ and

ln LðcÞ,

LR ¼ 2½lnLðûÞ � ln LðcÞ� (C.25)

Based on some advanced statistical theory, it can be shown that if the null hypothesis is

true, then the LR test statistic has a chi-square distribution (see Appendix B.3.6) with

J ¼ 1 degree of freedom. In more general contexts J is the number of hypotheses being

tested and it can be greater than 1. If the null hypothesis is not true, then the LR test

statistic becomes large. We reject the null hypothesis at the a level of significance if

LR� x2ð1�a;JÞ, where x2ð1�a;JÞ is the 100ð1� aÞ percentile of a chi-square distribution

with J degrees of freedom, as shown in Figure C.15. The 90th, 95th, and 99th percentile

values of the chi-square distribution for various degrees of freedom are given in Table 3

at the end of the book.

When estimating a population proportion p the log-likelihood function is given by

(C.19). Thevalue of p thatmaximizes this function is p̂ ¼ � xi=N. Thus, themaximumvalue

of the log-likelihood function is

lnLðp̂Þ ¼ �
N

i¼1
xi

� �
ln p̂þ N � �

N

i¼1
xi

� �
lnð1� p̂Þ

¼ Np̂ ln p̂þ ðN � Np̂Þlnð1� p̂Þ
¼ N

�
p̂ ln p̂þ ð1� p̂Þlnð1� p̂Þ	

where we have used the fact that � xi ¼ Np̂. For our cereal box problem, p̂ ¼ 0:375 and

N ¼ 200, so we have

ln Lðp̂Þ ¼ 200
�
0:375�lnð0:375Þ þ ð1� 0:375Þlnð1� 0:375Þ	

¼ �132:3126

pd
f  

of
 χ

2  

χ2 - value
χ2

χ2

α

(J)

(1–α, J)

FIGURE C.15 Critical value from a chi-square distribution.

728 REV IEW OF STAT I ST ICAL INFERENCE



The value of the log-likelihood function assuming H0 : p ¼ 0:4 is true is

ln Lð0:4Þ ¼ �
N

i¼1
xi

� �
lnð0:4Þ þ N � �

N

i¼1
xi

� �
lnð1� 0:4Þ

¼ 75� lnð0:4Þ þ ð200� 75Þ � lnð0:6Þ
¼ �132:5750

The problem is to assess whether�132:3126 is significantly different from�132:5750. The
LR test statistic (C.25) is

LR ¼ 2½ln Lðp̂Þ � ln Lð0:4Þ� ¼ 2�
� 132:3126� ð�132:575Þ� ¼ 0:5247

If the null hypothesis p ¼ 0:4 is true, then the LR test statistic has a x2ð1Þ-distribution. If we
choose a ¼ 0:05, then the test critical value is x2ð0:95;1Þ ¼ 3:84, the 95th percentile from the

x2ð1Þ distribution. Since 0:5247< 3:84 we do not reject the null hypothesis.

C.8.4b The Wald Test

In Figure C.14 it is clear that the distance ð1=2Þ LRwill depend on the curvature of the log-

likelihood function. In Figure C.16 we show two log-likelihood functions with the

hypothesized value c and the distances ð1=2Þ LR for each of the log-likelihoods. The

log-likelihoods have the same maximum value ln LðûÞ, but the values of the log-likelihood
evaluated at the hypothesized value c are different.

The distance û�c translates into a larger value of ð1=2Þ LR for the more highly curved

log-likelihood, B, so it seems reasonable to construct a test measure by weighting the

distance û�c by the magnitude of the log-likelihood’s curvature, which we measure by

the negative of its second derivative. This is exactly what the Wald statistic does:

W ¼ ðû�cÞ2 � d 2 ln LðuÞ
du2

� �
(C.26)

Thevalue of theWald statistic is larger for log-likelihood functionB (more curved) than log-

likelihood function A (less curved).

If the null hypothesis is true, then theWald statistic (C.26) has a x2ð1Þ-distribution, and we
reject the null hypothesis if W � x2ð1�a;1Þ. In more general situations we may test J> 1

hypotheses jointly, in which case we work with a chi-square distribution with J degrees of

freedom, as shown in Figure C.15.

c

ln LA (c)

ln LB (c)

ln L(θ)

θ
θ

B A

ˆ

FIGURE C.16 The Wald statistic.
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There is a linkage between the curvature of the log-likelihood function and the precision

ofmaximum likelihood estimation. The greater the curvature of the log-likelihood function,

the smaller the variance V in (C.23) and the more precise maximum likelihood estimation

becomes, meaning that we have more information about the unknown parameter u.
Conversely, themore informationwe have about u, the smaller the variance of themaximum

likelihood estimator. Using this idea we define an information measure to be the reciprocal

of the variance V,

IðuÞ ¼ �E
d2 ln LðuÞ

du2

� �
¼ V�1 (C.27)

As the notation indicates the information measure IðuÞ is a function of the parameter u.
Substitute the informationmeasure for the second derivative in theWald statistic in (C.26) to

obtain

W ¼ ðû�cÞ2IðuÞ (C.28)

In large samples the two versions of the Wald statistic are the same. An interesting

connection here is obtained by rewriting (C.28) as

W ¼ ðû�cÞ2V�1 ¼ ðû�cÞ2=V (C.29)

To implement the Wald test, we use the estimated variance

V̂ ¼ ½IðûÞ��1
(C.30)

Then, taking the square root, we obtain the t-statistic in (C.22),

ffiffiffiffiffi
W

p
¼ û�cffiffiffiffî

V
p ¼ û�c

seðûÞ ¼ t

That is, the t-test is also a Wald test.

In our blue box–green box example, we know that the maximum likelihood estimate

p̂ ¼ 0:375. To implement the Wald test we calculate

Iðp̂Þ ¼ V̂
�1 ¼ N

p̂ð1� p̂Þ ¼
200

0:375ð1� 0:375Þ ¼ 853:3333

whereV ¼ pð1� pÞ=N and V̂ were obtained in Section C.7.3. Then the calculated value of

the Wald statistic is

W ¼ ðp̂� cÞ2Iðp̂Þ ¼ ð0:375� 0:4Þ2�853:3333 ¼ 0:5333

In this case the value of the Wald statistic is close in magnitude to the LR statistic and

the test conclusion is the same. Also, when testing one hypothesis, the Wald statistic is the

square of the t-statistic, W ¼ t2 ¼ ð�0:7303Þ2 ¼ 0:5333

C.8.4c The Lagrange Multiplier (LM ) Test

The third testing procedure that comes from maximum likelihood theory is the

Lagrange multiplier (LM) test. Figure C.17 illustrates another way to measure the distance

730 REV IEW OF STAT I ST ICAL INFERENCE



between û and c. The slope of the log-likelihood function, which is sometimes called

the score, is

sðuÞ ¼ d lnLðuÞ
du

(C.31)

The slope of the log-likelihood function depends on the value of u, as our function notation
sðuÞ indicates. The slope of the log-likelihood function at the maximizing value is zero,

sðûÞ ¼ 0. The LM test examines the slope of the log-likelihood function at the point c.

The logic of the test is that if û is close to c then the slope sðcÞ of the log-likelihood function
evaluated at c should be close to zero. In fact testing the null hypothesis u ¼ c is equivalent

to testing sðcÞ ¼ 0.

The difference between c and themaximum likelihood estimate ûB (maximizing ln LB) is

smaller than the difference between c and ûA. In contrast to theWald test, more curvature in

the log-likelihood function implies a smaller difference between the maximum likelihood

estimate and c. If we use the information measure IðuÞ as our measure of curvature (more

curvature means more information), the Lagrange multiplier test statistic can be written as

LM ¼ ½sðcÞ�2
IðuÞ ¼ ½sðcÞ�2½IðuÞ��1

(C.32)

The LM statistic for log-likelihood function A (less curved) is greater than the LM statistic

for log-likelihood function B (more curved). If the null hypothesis is true, LM test statistic

(C.32) has a x2ð1Þ-distribution, and the rejection region is the same as for the LR and Wald

tests. The LM, LR, and Wald tests are asymptotically equivalent and will lead to the same

conclusion in sufficiently large samples.

In order to implement the LM test we can evaluate the information measure at the point

u ¼ c, so that it becomes

LM ¼ ½sðcÞ�2½IðcÞ��1

In cases in which the maximum likelihood estimate is difficult to obtain (which it can be in

more complex problems) the LM test has an advantage because û is not required. On the

other hand, theWald test in (C.28) uses the information measure evaluated at the maximum

likelihood estimate û,

W ¼ ðû�cÞ2IðûÞ

s(c)

c

ln L(c)

AB

ˆθ̂B θA

θ

FIGURE C.17 Motivating the Lagrange multiplier test.
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It is preferred when the maximum likelihood estimate and its variance are easily obtained.

The likelihood ratio test statistic (C.25) requires calculation of the log-likelihood function at

both the maximum likelihood estimate and the hypothesized value c. As noted, the three

tests are asymptotically equivalent, and the choice of which to use is oftenmade on the basis

of convenience. In complex situations, however, the rule of convenience may not be a good

one. The likelihood ratio test is relatively reliable in most circumstances, so if you are in

doubt, it is a safe one to use.

In the blue box–green box example, the value of the score, based on the first derivative

shown just below (C.19), evaluated at the hypothesized value c ¼ 0:4 is

sð0:4Þ ¼ � xi

c
�N � � xi

1� c
¼ 75

0:4
� 200� 75

1� 0:4
¼ �20:8333

The calculated information measure is

Ið0:4Þ ¼ N

cð1� cÞ ¼
200

0:4ð1� 0:4Þ ¼ 833:3333

The value of the LM test statistic is

LM ¼ ½sð0:4Þ�2½Ið0:4Þ��1 ¼ ½�20:8333�2½833:3333��1 ¼ 0:5208

Thus, in our example, the values of the LR, Wald, and LM test statistics are very similar and

give the same conclusion. This was to be expected, since the sample size N ¼ 200 is large,

and the problem is a simple one.

C.9 Algebraic Supplements

C.9.1 DERIVATION OF LEAST SQUARES ESTIMATOR

In this section we illustrate how to use the least squares principle to obtain the sample mean

as an estimator of the population mean. Represent a sample of data as y1; y2; . . . ; yN . The
population mean is EðYÞ ¼ m. The least squares principle says to find the value of m that

minimizes

S ¼ �
N

i¼1
ðyi � mÞ2

where S is the sum of squared deviations of the data values from m.
The motivation for this approach can be deduced from the following example. Suppose

you are going shopping at a number of shops along a certain street. Your plan is to shop at one

store and return to your car to deposit your purchases. Then you visit a second store and

return again to your car, and so on. After visiting each shop you return to your car. Where

would you park to minimize the total amount of walking between your car and the shops

you visit? You want to minimize the distance traveled. Think of the street along which you

shop as a number line. The Euclidean distance between a shop located at yi and your car at

point m is

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyi � mÞ2

q
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The squared distance, which is mathematically more convenient to work with, is

d2i ¼ ðyi � mÞ2

To minimize the total squared distance between your parking spot m and all the shops

located at y1; y2; . . . ; yN you would minimize

SðmÞ ¼ �
N

i¼1
d2i ¼ �

N

i¼1
ðyi � mÞ2

which is the sum of squares function. Thus the least squares principle is really the least

squared distance principle.

Since the values of yi are known given the sample, the sum of squares function SðmÞ is a
function of the unknown parameter m. Multiplying out the sum of squares, we have

SðmÞ ¼ �
N

i¼1
y2i � 2m�

N

i¼1
yi þ Nm2 ¼ a0 � 2a1mþ a2m

2

For the data in Table C.1 we have

a0 ¼ �y2i ¼ 14880:1909; a1 ¼ �yi ¼ 857:9100; a2 ¼ N ¼ 50

The plot of the sum of squares parabola is shown in Figure C.18. The minimizing value

appears to be a bit larger than 17 in the figure. Now we will determine the minimizing

value exactly.

The value of m that minimizes SðmÞ is the ‘‘least squares estimate.’’ From calculus, we

know that the minimum of the function occurs where its slope is zero. The function’s

S(μ)
700

600

500

400

300

200

100
14 15 16 17 18 19 20

μ = 17.1582 μˆ

FIGURE C.18 The sum of squares parabola for the hip data.
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derivative gives its slope, so by equating the first derivative of SðmÞ to zero and solving, we
can obtain the minimizing value exactly. The derivative of SðmÞ is

dSðmÞ
dm

¼ �2a1 þ 2a2m

Setting the derivative to zero determines the least squares estimate ofm, which we denote as
m̂. Setting the derivative to zero,

�2a1 þ 2a2m̂ ¼ 0

Solving for m̂ yields the formula for the least squares estimate,

m̂ ¼ a1

a2
¼

�
N

i¼1
yi

N
¼ y

Thus, the least squares estimate of the population mean is the sample mean, y. This formula

can be used in general, for any sample values that might be obtained, meaning that the least

squares estimator is

m̂ ¼
�
N

i¼1
Yi

N
¼ Y

For the hip data in Table C.1

m̂ ¼
�
N

i¼1
yi

N
¼ 857:9100

50
¼ 17:1582

Thus, we estimate that the average hip size in the population is 17.1582 inches.

C.9.2 BEST LINEAR UNBIASED ESTIMATION

One of the powerful findings about the sample mean (which is also the least squares

estimator) is that it is the best of all possible estimators that are both linear and unbiased. The

fact that Y is the best linear unbiased estimator (BLUE) accounts for its wide use. In this

context we mean by best that it is the estimator with the smallest variance of all linear and

unbiased estimators. It is better to have an estimator with a smaller variance than one with a

larger variance; it increases the chances of getting an estimate close to the true population

mean m. This important result about the least squares estimator is true if the sample values

Yi �ðm;s2Þ are uncorrelated and identically distributed. It does not dependon the population
being normally distributed. The fact that Y is BLUE is so important that we will prove it.

The sample mean is a weighted average of the sample values,

Y ¼ �
N

i¼1
Yi=N ¼ 1

N
Y1 þ 1

N
Y2 þ ��� þ 1

N
YN

¼ a1Y1 þ a2Y2 þ ��� þ aNYN

¼ �
N

i¼1
aiYi
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where the weights ai ¼ 1=N. Weighted averages are also called linear combinations, so we

call the sample mean a linear estimator. In fact, any estimator that can be written like

�N
i¼1aiYi is a linear estimator. For example, suppose the weights a	i are constants different

from ai ¼ 1=N. Then we can define another linear estimator of m as

~Y ¼ �
N

i¼1
a	i Yi

To ensure that ~Y is different from Y , let us define

a	i ¼ ai þ ci ¼ 1

N
þci

where ci are constants that are not all zero. Thus,

~Y ¼ �
N

i¼1
a	i Yi ¼ �

N

i¼1

�
1

N
þ ci

�
Yi

¼ �
N

i¼1

1

N
Yi þ �

N

i¼1
ciYi

¼ Y þ �
N

i¼1
ciYi

The expected value of the new estimator ~Y is

E½~Y� ¼ E Y þ �
N

i¼1
ciYi

� �
¼ mþ �

N

i¼1
ciE½Yi�

¼ mþ m�
N

i¼1
ci

The estimator ~Y is not unbiased unless � ci ¼ 0. We want to compare the sample mean to

other linear and unbiased estimators, sowewill assume that� ci ¼ 0 holds. Nowwe find the

variance of ~Y . The linear unbiased estimator with the smaller variance will be best.

varð~YÞ ¼ var �
N

i¼1
a	i Yi

� �
¼ var �

N

i¼1

1

N
þ ci

� �
Yi

� �
¼ �

N

i¼1

1

N
þ ci

� �2

varðYiÞ

¼ s2 �
N

i¼1

1

N
þci

� �2

¼ s2 �
N

i¼1

1

N2
þ 2

N
ciþ c2i

� �
¼ s2 1

N
þ 2

N
�
N

i¼1
ci þ �

N

i¼1
c2i

� �

¼ s2=N þ s2 �
N

i¼1
c2i since �

N

i¼1
ci ¼ 0

� �

¼ varðYÞ þ s2 �
N

i¼1
c2i

It follows that the variance of ~Y must be greater than the variance ofY , unless all the ci values

are zero, in which case ~Y ¼ Y .

C.10 Kernel Density Estimator

As econometricians, we work with data that are drawings from unknown distributions. For

example, Figure C.19 shows the empirical distributions of two datasets, presented here as

histograms. The variables X and Y are in the file kernel.dat. The problem before us is to

estimate the density functions that yielded the observations. Knowledge about the distri-

butions is important for statistical inference.
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There are two main ways to estimate the distribution. We can use a parametric density

estimator, or we can use a nonparametric kernel density estimator. In the parametric

approach, we rely on density functionswithwell-defined functional forms characterized by

parameters. For example, the normal probability density distribution f ð�Þ has a specific

functional form defined by two parameters—the mean m and the standard deviation s:

f ðxjm;sÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp � 1

2

x� m

s

� 
2� �

Oncewe have estimates of the mean and the standard deviation, m̂ and ŝ, we plug these into
the normal density function formula to obtain

dfðxÞ ¼ 1

ŝ
ffiffiffiffiffiffi
2p

p exp � 1

2

x� m̂

ŝ

� �2
 !

Figure C.20 shows our application of this approach; the generated normal density functions

are superimposed onto the histograms of the data.We have applied this parametric approach

in the discussion about the Central Limit Theorem (C.3.4) and in discussion about ARCH

models (Chapter 14).

The histogram of the variable X, on the left in Figure C.20, is unimodal, and the normal

distribution appears to fit the shape of the datawell. In contrast, the histogram of the variable

Yon the right in Figure C.20 is bimodal, and the normal distribution is a poor representation

of the underlying density function. We could try fitting the data with other parametric

distributional forms, but rather than do that, let us adopt a nonparametric kernel density

estimator to capture the shape of the data in a smooth continuous form.

3
0

4

8

12

16

20

24

28

32

36
(a) (b)

4 5 6 7 8

X

9 10 11 12

Fr
eq

ue
nc

y

32
0

10

20

30

40

50

4 5 6 7 8

Y

9 10 11

Fr
eq

ue
nc

y

FIGURE C.19 Histograms of Variables (a) unimodal variable X (b) bimodal variable Y.
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FIGURE C.20 Parametric Density Estimator (a) unimodal variable X (b) bimodal variable Y.
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Nonparametric methods do not require specific functional forms (e.g., the normal

distribution formula) to generate the distribution. Instead, smoothing functions, called

kernels, are used to ‘‘fit’’ the shape of the distribution of the data.

The logic of the nonparametric approach can be grasped intuitively by thinking about

how we set up histograms. Figure C.21 shows two histograms for the dataset Y. The one

on the left has nine bins (i.e., the rectangles in the histogram) with bin width ¼ 1

whereas the one on the right has many bins each with bin width ¼ 0.1. The histogram

with less bins has the higher frequency per bin as more observations fall into the larger

bin width. More specifically, if xk is the midpoint of the kth bin and h is the bin width, the

range of values in the bin is xk 
 h=2, and the frequency count nk is the number of

observations which falls in that range. The sum of all frequencies equals the sample size

n, while the sum of the areas equals nh, since each area is nkh and �knk ¼ n. Note, too,

that the shapes of the histograms are similar, but that the one with the larger bin width is

‘‘smoother’’ (fewer spikes and dips).

We can think of the histogram as a density function estimator dfðxÞ, where x takes values
over the domain of x and

dfðxÞ ¼ 1

nh
�
n

i¼1
1 Aið Þ

The expression 1 Aið Þ is an indicator function taking on the value of 1 if Ai is true; Ai

is the condition that xi is in the same bin as x. For example, suppose wewish to find dfðxÞ for
an x that lies in the kth bin. Then, Ai is true for all xi such that xk � h=2 < xi < xk þ h=2.
Thus, in the kth bin,�n

i¼11 Aið Þ ¼ nk, and the histogram density estimator for all x in the kth

bin is dfðxÞ ¼ nk=nh. The divisor nh ensures that the bin areas sum to one.

Now consider another density estimator where, instead of having a number of a pre-

determined bins with midpoints xk, we consider a bin with midpoint x and count the number

of observations in the range x
 h=2. If we repeat this process for all values of x, we can
picture it as creating an infinite number of overlapping bins along the domain of x. In this

case the density estimator is given by

df xð Þ ¼ 1

nh
�
n

i¼1
1 x� h

2
< xi < xþ h

2

� �
¼ 1

nh
�
n

i¼1
1 � 1

2
<

xi � x

h
<

1

2

� �

In practice, as you sum over the observations, the indicator function ensures that you only

‘‘count’’ the relevant observations. However, this density function will not be smooth,

because each observation is given aweight of either zero or one—that is, it is either in or out,

according to the condition specified in the indicator function.
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FIGURE C.21 Histograms with different bin widths (a) width ¼ 1 (b) width ¼ 0.1.
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Suppose we now replace this simple counting rule with a more sophisticated weighting

function known as a kernel:

dfðxÞ ¼ 1

nh
�
n

i¼1
K

xi � x

h

� 


where K is a kernel, h is a smoothing parameter called the bandwidth, and x is any value

over the domain of possible values. There are many kernel functions; one of them is

Gaussian and is described as follows:

K
xi � x

h

� 

¼ 1ffiffiffiffiffiffi

2p
p exp � 1

2

xi � x

h

� 
2� �

Figure C.22 shows the application of this kernel estimator to variable Y in kernel.datwith

four different bandwidths. Note how the shape of the density function is controlled by the

bandwidth. The smaller the bandwidth, the better the fit, but there is a tradeoff between

the number of ‘‘humps’’ captured and the smoothness of the fit. Intuitively, decreasing the

bandwidth is like decreasing the bin width in the histogram, and the kernel is like a

‘‘counter’’—but one which puts less weight on observations that are further away from the

point being evaluated. (Imaginemoving from the histogramon the right in FigureC.21 to the

one on the left as you increase the bandwidth, and then imagine the use of the kernel to

smooth the bars.) The kernel (Gaussian) density function with bandwidth equal to 0.4

appears to have captured the bimodality in the data.

There is a vast literature about the optimal choice of bandwidth as well as extensions

of the nonparametric methods to regression analysis. Useful references include Pagan, A.
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FIGURE C.22 Fitting with a nonparametric density estimator (a) bandwidth ¼ 1.5,

(b) bandwidth ¼ 1, (c) bandwidth ¼ 0.4, (d) bandwidth 0.1.
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and Ullah, A., Nonparametric Econometrics, Cambridge University Press, 1999; and

Li, Q and Racine, J. S. Nonparametric Econometrics: Theory and Practice, Princeton

University Press, 2007.

C.11 Exercises

Answers to exercises marked * can be found at www.wiley.com/college/hill.

C.1 Suppose Y1; Y2; . . . ; YN is a random sample from a population with mean m and

variances2. Rather than using allN observations, consider an easy estimator ofm that

uses only the first two observations

Y	 ¼ Y1 þ Y2

2

(a) Show that Y	 is a linear estimator.

(b) Show that Y	 is an unbiased estimator.

(c) Find the variance of Y	.
(d) Explain why the sample mean of allN observations is a better estimator than Y	.

C.2 Suppose that Y1; Y2; Y3 is a random sample from a Nðm;s2Þ population. To estimate

m, consider the weighted estimator

~Y ¼ 1

2
Y1 þ 1

3
Y2 þ 1

6
Y3

(a) Show that ~Y is a linear estimator.

(b) Show that ~Y is an unbiased estimator.

(c) Find the variance of ~Y and compare it to the variance of the sample mean Y .

(d) Is ~Y as good an estimator as Y?

(e) Ifs2 ¼ 9, calculate the probability that each estimator iswithin one unit on either

side of m.

C.3* The hourly sales of fried chicken at Louisiana Fried Chicken are normally distributed

with mean 2,000 pieces and standard deviation 500 pieces. What is the probability

that in a nine-hour day more than 20,000 pieces will be sold?

C.4 Starting salaries for economics majors have a mean of $47,000 and a standard

deviation of $8,000. What is the probability that a random sample of 40 economics

majors will have an average salary of more than $50,000?

C.5* A store manager designs a new accounting system that will be cost-effective if the

mean monthly charge account balance is more than $170. A sample of 400 accounts

is randomly selected. The sample mean balance is $178 and the sample standard

deviation is $65. Can the manager conclude that the new system will be cost

effective?

(a) Carry out a hypothesis test to answer this question. Use the a ¼ 0:05 level of

significance.

(b) Compute the p-value of the test.

C.6 An econometric professor’s rule of thumb is that students should expect to spend two

hours outside of class on coursework for each hour in class. For a three-hour-per-week

class, this means that students are expected to do six hours of work outside class.

The professor randomly selects eight students from a class, and asks how many
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hours they studied econometrics during the past week. The sample values are 1, 3,

4, 4, 6, 6, 8, 12.

(a) Assuming that the population is normally distributed, can the professor conclude

at the 0.05 level of significance that the students are studying on average more

than six hours per week?

(b) Construct a 90% confidence interval for the population mean number of hours

studied per week.

C.7 Modern labor practices attempt to keep labor costs low by hiring and laying off

workers to meet demand. Newly hired workers are not as productive as experienced

ones. Assume that assembly lineworkers with experience handle 500 pieces per day.

A manager concludes that it is cost-effective to maintain the current practice if new

hires, with a week of training, can process more than 450 pieces per day. A random

sample of N ¼ 50 trainees is observed. Let Yi denote the number of pieces each

handles on a randomly selected day. The sample mean is y ¼ 460, and the estimated

sample standard deviation is ŝ ¼ 38.

(a) Carry out a test of whether or not there is evidence to support the conjecture that

current hiring procedures are effective, at the 5% level of significance. Pay

careful attention when formulating the null and alternative hypotheses.

(b) What exactly would a Type I error be in this example?Would it be a costly one to

make?

(c) Compute the p-value for this test.

C.8* To evaluate alternative retirement benefit packages for its employees, a large

corporation must determine the mean age of its workforce. Assume that the age

of its employees is normally distributed. Since the corporation has thousands of

workers, a sample is to be taken. If the standard deviation of ages is known to be

s ¼ 21 years, how large should the sample be to ensure that a 95% interval estimate

of mean age is no more than four years wide?

C.9 Consider the discrete random variable Y that takes the values y ¼ 1, 2, 3, and 4 with

probabilities 0.1, 0.2, 0.3, and 0.4, respectively.

(a) Sketch this pdf.

(b) Find the expected value of Y.

(c) Find the variance of Y.

(d) If we take a random sample of size N ¼ 3 from this distribution, what are the

mean and variance of the sample mean, Y ¼ ðY1 þ Y2 þ Y3Þ=3?
C.10 This exercise is a low-tech simulation experiment related to Exercise C.9. It can be a

group or class exercise if desired. Have each group member create a set of 10

numbered, identical, slips of paper like the following table.

(a) Draw a slip of paper at random and record its value, preferably entering each

number into a data file for use with your computer software. Draw a total of 10

times, each time replacing the slip into the pile and stirring them well. Compare

the average of these values to the expected value in Exercise C.9(b). Draw 10

more values with replacement. What is the average of all 20 values?

1 2 2 3 3

3 4 4 4 4

740 REV IEW OF STAT I ST ICAL INFERENCE



(b) Calculate the sample variance of the 20 values obtained in part (a). Compare this

value to the true variance in Exercise C.9(c).

(c) Draw three slips of paper at random, with replacement. Calculate the average

of the numbers on these N ¼ 3 slips of paper, Y ¼ ðY1 þ Y2 þ Y3Þ=3. Repeat
this process at least NSAM ¼ 20 times, obtaining NSAM average values,

Y1; Y2; . . . ; YNSAM . Calculate the sample average and sample variance of these

NSAM values. Compare these to the expected value and variance of the sample

mean obtained in Exercise C.9(d).

(d) Enter theNSAM valuesY1; Y2; . . . ; YNSAM into a data file. Standardize thesevalues

by subtracting the true mean and dividing by the true standard deviation of the

mean, from Exercise C9(d). Use your computer software to create a histogram.

Discuss the central limit theorem and how it relates to the figure you have created.

(e) Repeat parts (c) and (d) using NSAM samples of more than N ¼ 3 slips of paper,

perhaps five or seven. How do the histograms compare to the one in part (d)?

(f) Discuss the terms ‘‘sampling variation’’ and ‘‘sampling distribution’’ in the con-

text of the experiments you have performed.

C.11 At the famous Fulton Fish Market in New York City, sales of whiting (a type of fish)

vary from day to day. Over a period of several months, daily quantities sold (in

pounds) were observed. These data are in the file fultonfish.dat.

(a) Using the data for Monday sales, test the null hypothesis that the mean quantity

sold is greater than or equal to 10,000 pounds per day against the alternative that

the mean quantity sold is less than 10,000 pounds. Use the a ¼ 0:05 level of

significance. Be sure to (i) state the null and alternative hypotheses, (ii) give the

test statistic and its distribution, (iii) indicate the rejection region, including a

sketch, (iv) state your conclusion, and (v) calculate the p-value for the test.

Include a sketch showing the p-value.

(b) Assume that daily sales on Tuesday ðX2Þ and Wednesday ðX3Þ are normally

distributedwithmeansm2 andm3, and variancess
2
2 ands

2
3, respectively. Assume

that sales on Tuesday and Wednesday are independent of each other. Test the

hypothesis that the variances s2
2 and s2

3 are equal against the alternative that

the variance on Tuesday is larger. Use the a ¼ 0:05 level of significance. Be sure
to (i) state the null and alternative hypotheses, (ii) give the test statistic and

its distribution, (iii) indicate the rejection region, including a sketch, (iv) state

your conclusion, and (v) calculate the p-value for the test. Include a sketch showing

the p-value.

(c) Wewish to test the hypothesis that mean daily sales on Tuesday andWednesday

are equal against the alternative that they are not equal. Using the result in part (b)

as a guide to the appropriate version of the test (Section C.7), carry out this

hypothesis test using the 5% level of significance.

(d) Let the daily sales for Monday, Tuesday, Wednesday, Thursday, and Friday be

denoted as X1, X2, X3, X4, and X5, respectively. Assume that Xi �Nðmi;s
2
i Þ, and

that sales from day to day are independent. Define total weekly sales as

W ¼ X1 þ X2 þ X3 þ X4 þ X5. Derive the expected value and variance of W.

Be sure to show your work and justify your answer.

(e)̂ Referring to part (d), let EðWÞ ¼ m. Assume that we estimate m using

m̂ ¼ X1 þ X2 þ X3 þ X4 þ X5

where Xi is the sample mean for the ithday:Derive the probability distribution of
m̂ and construct an approximate (valid in large samples) 95% interval estimate

for m. Justify the validity of your interval estimator.
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A p p e n d i x D

Example:
P(Z ≤ 1.73) � Φ(1.73) � 0.9582

Standard Normal Distribution

�4 �3 �2 �1 0
z

1 2 3 4

Ta b l e 1 Cumulative Probabilities for the Standard Normal Distribution
F(z) ¼ P(Z � z)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Source: This table was generated using the SAS1 function PROBNORM.
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Example:
P(t(30) ≤ 1.697) � 0.95
P(t(30) > 1.697) � 0.05

�4 �3 �2 �1 0
t

1 2 3 4

Ta b l e 2 Percentiles of the t-distribution

df tð0:90,dfÞ tð0:95,dfÞ tð0:975,dfÞ tð0:99,dfÞ tð0:995,dfÞ
1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

31 1.309 1.696 2.040 2.453 2.744

32 1.309 1.694 2.037 2.449 2.738

33 1.308 1.692 2.035 2.445 2.733

34 1.307 1.691 2.032 2.441 2.728

35 1.306 1.690 2.030 2.438 2.724

36 1.306 1.688 2.028 2.434 2.719

37 1.305 1.687 2.026 2.431 2.715

38 1.304 1.686 2.024 2.429 2.712

39 1.304 1.685 2.023 2.426 2.708

40 1.303 1.684 2.021 2.423 2.704

50 1.299 1.676 2.009 2.403 2.678

1 1.282 1.645 1.960 2.326 2.576

Source: This table was generated using the SAS1 function TINV.
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Example:
P(χ2   ≤ 9.488) � 0.95
P(χ2

   > 9.488) � 0.05

0 10 20

(4)

(4)

2

Ta b l e 3 Percentiles of the Chi-square Distribution

df x2ð0.90;dfÞ x2ð0:95;dfÞ x2ð0:975;dfÞ x2ð0:99;dfÞ x2ð0:995;dfÞ
1 2.706 3.841 5.024 6.635 7.879

2 4.605 5.991 7.378 9.210 10.597

3 6.251 7.815 9.348 11.345 12.838

4 7.779 9.488 11.143 13.277 14.860

5 9.236 11.070 12.833 15.086 16.750

6 10.645 12.592 14.449 16.812 18.548

7 12.017 14.067 16.013 18.475 20.278

8 13.362 15.507 17.535 20.090 21.955

9 14.684 16.919 19.023 21.666 23.589

10 15.987 18.307 20.483 23.209 25.188

11 17.275 19.675 21.920 24.725 26.757

12 18.549 21.026 23.337 26.217 28.300

13 19.812 22.362 24.736 27.688 29.819

14 21.064 23.685 26.119 29.141 31.319

15 22.307 24.996 27.488 30.578 32.801

16 23.542 26.296 28.845 32.000 34.267

17 24.769 27.587 30.191 33.409 35.718

18 25.989 28.869 31.526 34.805 37.156

19 27.204 30.144 32.852 36.191 38.582

20 28.412 31.410 34.170 37.566 39.997

21 29.615 32.671 35.479 38.932 41.401

22 30.813 33.924 36.781 40.289 42.796

23 32.007 35.172 38.076 41.638 44.181

24 33.196 36.415 39.364 42.980 45.559

25 34.382 37.652 40.646 44.314 46.928

26 35.563 38.885 41.923 45.642 48.290

27 36.741 40.113 43.195 46.963 49.645

28 37.916 41.337 44.461 48.278 50.993

29 39.087 42.557 45.722 49.588 52.336

30 40.256 43.773 46.979 50.892 53.672

35 46.059 49.802 53.203 57.342 60.275

40 51.805 55.758 59.342 63.691 66.766

50 63.167 67.505 71.420 76.154 79.490

60 74.397 79.082 83.298 88.379 91.952

70 85.527 90.531 95.023 100.425 104.215

80 96.578 101.879 106.629 112.329 116.321

90 107.565 113.145 118.136 124.116 128.299

100 118.498 124.342 129.561 135.807 140.169

110 129.385 135.480 140.917 147.414 151.948

120 140.233 146.567 152.211 158.950 163.648

Source: This table was generated using the SAS1 function CINV.
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Example:
P(F(4,30) ≤ 2.69) � 0.95
P(F(4,30) > 2.69) � 0.05

0 1 2 3 4
F

65

Ta b l e 4 95th Percentile for the F-distribution

v2=v1 1 2 3 4 5 6 7 8 9 10 12 15 20 30 60 1
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 243.91 245.95 248.01 250.10 252.20 254.31

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.46 19.48 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.62 8.57 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.75 5.69 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.50 4.43 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.81 3.74 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.38 3.30 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.08 3.01 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.86 2.79 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.70 2.62 2.54

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.25 2.16 2.07

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.04 1.95 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.92 1.82 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.84 1.74 1.62

35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.04 1.96 1.88 1.79 1.68 1.56

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.74 1.64 1.51

45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 1.97 1.89 1.81 1.71 1.60 1.47

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87 1.78 1.69 1.58 1.44

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.65 1.53 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.55 1.43 1.25

1 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.46 1.32 1.00

Source: This table was generated using the SAS1 function FINV.
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Example:
P(F(4,30) ≤ 4.02) � 0.99
P(F(4,30) > 4.02) � 0.01

0 1 2 3 4
F

65

Ta b l e 5 99th Percentile for the F-distribution

v2=v1 1 2 3 4 5 6 7 8 9 10 12 15 20 30 60 1
1 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47 6055.85 6106.32 6157.28 6208.73 6260.65 6313.03 6365.87

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.47 99.48 99.50

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 z26.87 26.69 26.50 26.32 26.13

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.84 13.65 13.46

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.38 9.20 9.02

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.23 7.06 6.88

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 5.99 5.82 5.65

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.20 5.03 4.86

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.65 4.48 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.25 4.08 3.91

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.21 3.05 2.87

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.78 2.61 2.42

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.54 2.36 2.17

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.39 2.21 2.01

35 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.74 2.60 2.44 2.28 2.10 1.89

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.20 2.02 1.80

45 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.61 2.46 2.31 2.14 1.96 1.74

50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42 2.27 2.10 1.91 1.68

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.03 1.84 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.86 1.66 1.38

1 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.70 1.47 1.00

Source: This table was generated using the SAS1 function FINV.
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Index

A
Absolute value, of a number, 635

Adjusted coefficient of

determination, 237

Adjusted goodness-of-fit, 237

Akaike information criterion

(AIC), 238, 366

Alternative hypothesis, 101, 709

stating, 714–715

tests of, 101–105

Alternative-specific variables, 604

AME (average marginal effect),

594, 632–633

Annual indicator variables, 271

Antilogarithm, 637

Approximation error, 638–639

ARCH model, 517–529

allowing for asymmetric effect,

526–528

estimating, 524–525

extensions of, 525–526

forecasting volatility, 525

GARCH-in-mean model,

528–529

generalized, 526

testing for ARCH effects,

523–524

and time-varying volatility,

520–523

ARDL models, see Autoregressive

distributed lag models

AR(1) errors, 359–362

AR models, see Autoregressive

models

Assumptions:

distributed lag model, 343

independent of irrelevant

alternatives, 602

with lagged dependent variables,

356

least squares, 339

multiple regression model, 173

random effects model, 552–553

simple linear regression models,

44, 45, 47

time-series data, 339, 343

Asymmetric effect, allowing for,

526–528

Asymptotically normal estimators,

213

Asymptotic distribution, 699

Asymptotic properties:

defined, 211

in large sample analysis, 211.

See also Large samples

of least squares estimator,

403–404

Asymptotic test procedures,

727–732

Augmented Dickey–Fuller tests,

485–486

Autocorrelation, 338, 347

computing, 348–349

correlograms, 349–350

first-order, 348

HAC standard errors, 357

k-th order, 349

population, of order one, 348

Autoregressive distributed lags,

338

Autoregressive distributed lag

(ARDL) models, 365–372

applications of, 370–372

and AR(1) error, 363

defined, 338

finite distributed lag model, 370

forecasting with, 374–375

multiplier analysis, 378–382

with nonstationary variables,

490–492

Okun’s Law, 369–370

Autoregressive (AR[1]) errors,

359–362

Autoregressive (AR) models:

AR(1), 358–359, 478–480

AR(p), 370, 372–374

ARCH, 517–529

first-order, 477–480

vector, 499–500, 503–505

Auxiliary regressions, 242–243

Average marginal effect (AME),

594, 632–633

B
Balanced panels, 9, 539

Bandwidth, 738

Bayesian (Bayes) information

criterion (BIC), 238, 367

Bernoulli distributions, 677

Best linear unbiased estimators

(BLUE), 63, 177, 700,

734–735

Best linear unbiased predictor

(BLUP), 132

Between estimator, 584

Bias:

omitted-variable, 234, 256–257

relative, 435

selection, 275–276, 621

simultaneous equations,

406–407

Biased estimators, 58–59, 65

BIC (Bayesian information

criterion), 238, 367

Binary choice models, 586–599

linear probability, 587–589

logit, 595–599

probit, 589–594

Binary variables, 656

Binomial distribution, 129,

677–678

Binomial random variable, 677

BLUE, see Best linear unbiased

estimators

BLUP (best linear unbiased

predictor), 132

Box-Muller transformation, 690

Breusch-Pagan test, 305,

332–333

C
Canonical correlations, 434

Capital asset pricing model

(CAPM), 79–80

Causal effect, 276. See also

Treatment effects

Causation, correlation vs., 275

cdf, see Cumulative distribution

function
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Ceiling function (ceil), 688

Censored data, 614–619

Central limit theorem, 64, 699

Central moments, 701

Chain Rule of Differentiation,

642–645

Change-of-variable technique,

674–677

Chi-square distribution, 681–682,

744

Chi-square test, 254–256

Choice models:

Bernoulli distribution in, 677

binary, 586–599

multinomial, 599–607

ordered, 607–610

Chow test, 268–270

Cluster-robust standard errors,

541–542, 556, 581–583

Coefficient of determination, 136,

237

Coefficient of variation, 162

Cointegration, 475, 488–494

Collinearity, 240

consequences of, 240–241

exact, 173, 261

identifying and mitigating,

242–243

Collinear variables, 240

Common trends, 283

Conditional expectations, 27, 402

continuous random variables,

668, 673

discrete random variables, 662

random regressors, 429, 430

Conditional logit model, 604–607

Conditionally normal error term,

519

Conditional mean, 27, 429

continuous random variables,

668, 671

discrete random variables, 662

for the error, 528

Conditional probability, 22–24,

667

Conditional probability density

function (conditional pdf), 23

continuous random variables,

667–668, 670–671

discrete random variables, 659

in economic regression

model, 41

Conditional variance, 429, 528

continuous random variables,

668, 671

discrete random variables, 662

Confidence intervals, 95, 98, 707,

716. See also Interval

estimates

Constant of integration, 648

Consumption function, 390

Contemporaneous correlation,

566–568

Continuous random variables, 19,

21, 663–677

distributions of, 666–672

distributions of functions of,

674–677

expected value of, 27

iterated expectations, 672–674

probability calculations,

663–665

properties of, 665–667

Control group, 276, 282

Correlation(s), 31–32. See also

Autocorrelation

canonical, 434

causation vs., 275

contemporaneous, 566–568

continuous random variables,

671–672

defined, 131

discrete random variables, 661

joint test of, 353

partial, 416–417

of random variable and error

term, 405–408

serial, 347–350

Correlation analysis, 137–139

Correlograms, 349–350, 355

Cost curves, 190–191

Countable values, 18

Count data models, 611–614

Counterfactual outcomes, 283

Covariance, 30–32

discrete random variables,

660–662

of least squares estimators,

60–62, 65, 178–180

Covariance matrix, 179–180

CPS (Current Population Survey),

6, 15

Cragg-Donald F-test statistic,

435–440

Critical values, 97, 183

Dickey–Fuller, 485–486

of t-distributions, 682

Cross-equation hypotheses,

569–570

Cross-sectional data, 8, 301

Cubic equations, 159

Cubic functions, 143

Cumulative distribution function

(cdf ), 20, 21

continuous random variables,

664

discrete random variables, 657

inverse, 684

standardized normal variables,

33–34

Current Population Survey (CPS),

6, 15

Curve(s):

computing area under, 649–651

cost, 190–191

Phillips, 351–353, 367–369

product, 190–191

slope of, 647

Curvilinear forms, 68

D
Data, 5–6. See also specific types of

data

experimental, 5–6

heteroskedastic, 44

homoskedastic, 44

interpreting, 14

nonexperimental, 6

sampling, 693–694

scale of, 139–140

sources of, 13–15

types of, 6–9

Data Ferrett, 15

Data generation process,

88, 127, 213, 404–405

Decimals, 637

Definite integrals, 649–653

Degrees of freedom (df), 96–97,

681, 683

Delay multiplier, 342

Delta method, 194, 215–220

Dependent variables, 23,

46, 273

Derivatives, 640, 647

first, 640

partial, 645–646

rules for, 641–645

and slope, 640

theory of, 646–648

Determination, coefficient of, 136,

237

Deterministic trend component,

481

Deviation(s):

from individual means, 547–548

from mean form, 57

df, see Degrees of freedom

Diagnostic residual plots, 145–147

Dichotomous variables, 259

Dickey–Fuller critical values,

485–486

Dickey–Fuller Tests, 484–488

Differenced data, 286

Difference estimator, 276–282

with additional controls,

279–282

analysis of, 277–278

Project STAR, 278–280

Differences-in-differences

estimator, 282–286, 297
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Difference stationary variables,

492–493

Discrete random variables, 18,

656–663

conditional expectations, 662

correlation between, 661

covariance, 660–662

distributions of, 659

expectations involving, 660

expected value of, 657–658

iterated expectations, 662–663

variance of, 658–659

Distributed effects, 337, 342

Distributed lag models, 337

assumptions of, 343

autoregressive, 365–372

finite, 342, 370

Okun’s Law, 343–346

Distributed-lag weight, 342

Distribution(s):

of continuous random variables,

666–672

of discrete random variables,

659

of functions of random variables,

674–677

of sample proportion, 725–727

sampling, 696, 698–699

Double summation, 25–26

Dummy variables, 259, 656. See

also Indicator variables

intercept, 260

least squares estimator for,

544–546

slope, 261–262

Dummy variable trap, 261, 267

Durbin–Watson bounds test,

394–395

Durbin–Watson test, 355, 392–395

Dynamic models, 337–338

Dynamic relationships, 499

E
e, 636–637

EconEdLink, 14

Econometrics, 1–4

Econometric model, 4–9

as basis for statistical inference,

695

data generation for, 5–6

data types for, 6–9

defined, 4

equations in, 621–622

error term in, 46–48

multiple regression, 170–173

research process in, 9–15

simple linear regression, 43–48

Economic model:

multiple regression, 168–170

simple linear regression, 40–43

Economic significance, 110

Elasticity, 54–55, 640, 645

Endogeneity, 420, 557–558

Endogenous regressors, 557

Endogenous variables, 402,

405–408

first stage regression, 412

simultaneous equations models,

447

test size, 435

Engle, Robert, 517

Equally likely values, 23

Error(s). See also Standard errors

approximation, 638–639

AR(1), 359–362

forecast, 132–133, 373–374

heteroskedastic, 299

homoskedastic, 172, 299

reduced-form, 449

regression, distribution of,

147–149

serially correlated, 338,

350–365, 392–395

specification, 48

Type I and Type II, 102, 715–716

unconditional and conditional

means for, 528

unconditional and conditional

variance for, 528

weighted, 312–313

Error components, estimation of,

583–584

Error correction, 500. See also

Vector error correction (VEC)

model

Errors-in-variables problem,

405–406

Error term:

conditionally normal, 519

correlation of random variable

and, 405–408

estimating variance of, 64–68

variables correlated/not corre-

lated with, 402

Error variance, 176–177, 507–510

Estimates:

of correlation coefficient, 137

of error variance, 176–177

estimators vs., 53

interpreting, 53–56

interval, 97–98

least squares, 53, 83–84

maximum likelihood, 592

standard error of, 702

Estimating/estimation, 4

ARCH models, 524–525

of error components, 583–584

method of moments, 408–419

nonlinear relationships, 68–74

nonparametric, 737

parameters of multiple

regression model, 174–177

parametric, 736

population variance, 700–703

and predicting, 132

random effects model,

553–554

regression parameters, 49–56

with serially correlated errors,

356–365

variance of error term, 64–68

Estimators, 696

between, 584

asymptotically normal, 213

best linear unbiased, 63, 177,

700, 734–735

biased, 58–59, 65

consistency of, 211–213

difference, 276–282

differences-in-differences,

282–286, 297

error variance, 176–177

estimates vs., 53

fixed effects, 544, 557–560

Hausman–Taylor, 560–562

interval, 97, 127–129

IV, see Instrumental variables

(IV) estimators

k-class of, 467–468

kernel density, 735–739

least squares, see Least squares

estimators

least variance ratio, 469

LIML, 467–472

linear, 57–58, 63, 85, 700, 735

maximum likelihood, 724–725

random effects, 557–560

unbiased, 58–59, 63, 697

variance of, 724–725

EViews, 55, 56

Exact collinearity, 173, 261

Exactly identified parameters, 417

Exogenous variables, 402, 410,

412, 448

Expectations:

conditional, 27, 402, 429, 430,

662, 668, 673

involving several random

variables, 660

iterated, 429–430, 662–663,

672–674

mathematical, 657

Expected values, 26–27, 697

conditional, 27, 402, 429, 430

of continuous random variables,

27

defined, 657

of discrete random variables,

657–658

iterated, 429–430
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Expected values (continued)

linear combination of

parameters, 114

rules for, 27–28

of several random variables, 30

of sums, 658

unconditional, 671

Experimental data, 5–6

Experimental design, 694

Explanatory variables, 172

Exponents, 635

Exponential function, 637

Exponential smoothing, 375–378

Extended delta method, 217–220

Extreme value distribution, 686

F
Fair, Ray C., 82, 294

F-distributions, 683, 745, 746

Feasible generalized least squares,

314–315, 588

Federal Reserve Economic Data

(FRED), 14

Finite distributed lags, 341–346

Finite distributed lag model, 342,

370

Finite sample, 403

First derivative, 640

First difference stationary series,

492–493

First-order autoregressive model

(AR(1) model), 358–359,

477–480

First-order sample autocorrelation,

348

First stage regression, 412

Fixed effects, 281, 544

Fixed effects estimator, 544,

547–551, 558

Fixed effects model, 543–551

Flow data, 7

Forecast errors, 132–133, 373–374,

376

Forecast error variance

decompositions, 507–510

Forecasting:

time-series data, 342, 372–378

volatility, 525

Forecast intervals, 373, 374

Forecast standard error, 133

FRED (Federal Reserve Economic

Data), 14

F-statistic, 224, 254–256, 332–334

F-test, 254–256

joint hypotheses testing, 223–231

relationship between t-test and,

227–228

for significance of a model,

225–227

Fuller’s modified LIML, 469, 472

Functional forms, 73–74, 131,

140–143

Fundamental theorem of calculus,

649

G
GARCH-in-mean model, 528–529

GARCH (generalized ARCH)

model, 526

Gauss–Markov theorem, 62–63,

87–88, 177

Generalized least squares

estimation, 362, 397–399

Generalized least squares

estimator:

feasible, 314–315, 588

known form of variance,

311–315

unknown form of variance,

315–319

General linear hypothesis,

116–117

Goldfeld–Quandt test, 307–309

Goodness-of-fit, 131, 419

Goodness-of-fit measure (R2):

adjusted, 237

general measure, 154–155

multiple regression model,

198–199

simple regression model,

135–139

Grouped data, 313–315

Growth model, 152–153

Grunfeld, Y., 562

Grunfeld data, 562–564

H
HAC (heteroskedasticity and

autocorrelation consistent)

standard errors, 357

Hausman–Taylor estimator,

560–562

Hausman test, 420–422, 432–434,

441–442, 558–560

Heckit, 621–623

Hedonic model, 259

Heterogeneity, 538, 543–544

Heteroskedastic data, 44

Heteroskedastic error, 299

Heteroskedasticity, 298–321

consequences for least squares

estimator, 302

detecting, 303–309

generalized least squares esti-

mator, 311–319

Goldfeld–Quandt test, 307–309

HAC standard errors, 357

Lagrange multiplier tests,

303–305, 332–334

in linear probability model,

319–321

nature of, 299–302

properties of least squares esti-

mator, 331–332

residual plots, 303

standard errors consistent with,

309–310

White test, 306

Heteroskedasticity robust standard

errors, 309

Heteroskedastic residual pattern,

146

Heteroskedastic variables, 299

Homoskedastic data, 44

Homoskedastic errors, 172, 299

Homoskedasticty, 299

Homoskedastic variables, 299

Hypotheses, 100

Hypothesis testing, 4, 95, 100–118,

708–716. See also specific

tests

binary logit model, 597–599

components of, 100, 708

and confidence intervals, 716

derivation of t-distribution,

125–126

with instrumental variables esti-

mates, 419

joint hypotheses, 222–231

left-tail tests, 107–108

for linear combinations of coef-

ficients, 114–118, 188–189

Monte Carlo simulation,

127–129

multiple regression model,

184–189

p-value, 110–114

rejection regions, 102–104

repeated sampling properties of,

128

right-tail tests, 105–107

for single coefficient, 184–188

t-statistic when null hypothesis

is not true, 101, 126–127

t-statistic when null hypothesis

is true, 101

two-tail tests, 108–110, 184

I
Identification problem, 506

multinomial probit model, 600

simultaneous equations models,

450–452

supply and demand, 458

two-stage least squares esti-

mation, 455

vector autoregressive model,

516
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Identified parameters, 417

IGARCH, 526

IIA (independence of irrelevant

alternatives), 602

Impact multiplier, 342

Implicit form, of an equation, 468

Impulse response functions,

505–507

IMR (inverse Mills ratio), 621, 622

Income elasticity, 54–55

Indefinite integrals, 648

Independence of irrelevant

alternatives (IIA), 602

Independent variables, 23–24, 46,

659

Index models, 608, 615

Index of summation, 24

Indicator function, 737

Indicator variables, 19, 258–287

applications, 264–271

controlling for time, 270–271

defined, 74, 656

difference estimator, 276–282

differences-in-differences esti-

mator, 282–286, 297

interactions between qualitative

factors, 265–266

intercept, 260–261

in linear probability model,

273–275

in log-linear models, 271–273,

296–297

panel data, 286–287

qualitative factors with several

categories, 267–268

regression with, 74–75

selection bias, 275–276

slope, 261–264

testing equivalence of two

regressions, 268–270

treatment effects, 275–287

Individual heterogeneity, 543–544

Individual-specific variables, 600,

604

Inequalities, 635

Inequality alternative hypotheses,

101

Inference, 95. See also Statistical

inference

Infinite distributed lag model, 366.

See also Autoregressive

distributed lag (ARDL)

models

Information criteria, 238

Information measure, 730, 731

Innovations, 506

Instrumental variables (IV), 410,

560–561

Instrumental variables estimation:

general model, 417–419

multiple linear regression

model, 411–414

simple linear regression model,

410–411

wage equation, 415–416

Instrumental variables (IV)

estimators, 410–411

alternatives to, 467–473

consistency of, 431–432

repeated sampling properties of,

442–445

Instrument strength:

first stage model assessment of,

414–415

Fuller’s modified LIML for, 472

importance of, 411

LIML testing for, 471–472

Monte Carlo simulation,

441–442

testing for weak instruments,

434–440

Instrument validity, testing,

421–422

Integers, 635

Integrals, 648–653

computing area under curve,

649–651

definite, 649–653

indefinite, 648

Integrated GARCH (IGARCH),

526

Integrated series of order one (I),

488

Integration:

constant of, 648

order of, 487–488

Interaction variables, 195–198, 261

Intercept, 640

Intercept dummy (indicator)

variables, 260–261

Interim multipliers, 342

Interpreting estimates, 53–56

Interval estimates, 95

obtaining, 97–98

prediction intervals vs., 132

Interval estimation, 95–100, 182,

703–708

derivation of t-distribution,

125–126

for linear combination of coeffi-

cients, 183–184

multiple regression model,

182–184

in repeated sampling context,

99–100

for single coefficient,

182–183

t-distribution, 95–97

Interval estimators:

endpoints defining, 97

Monte Carlo simulation,

127–129

repeated sampling properties of,

127–128

Inverse cumulative distribution

function, 684

Inverse function, 676

Inverse Mills ratio (IMR), 621, 622

Inverse transformation approach

(inversion method), 683–687

Invertible functions, 684

Irrational numbers, 635

Irrelevant variables, 235–236

Iterated expectations:

continuous random variables,

672–674

discrete random variables,

662–663

law of, 429, 662, 672

random regressors, 429–430

IV, see Instrumental variables

IV estimators, see Instrumental

variables estimators

J
Jacobian of the transformation, 676

Jarque–Bera test, 148–149, 719

Joint hypotheses testing, 222–231

with computer software,

230–231

F-test, 223–231

one-tail test, 230

relationship between t- and

F-tests, 227–228

Joint hypothesis, 223

Joint null hypothesis, 223, 228

Joint probability density function

( joint pdf), 21–24

continuous random variables,

666–667, 669

discrete random variables, 659

Joint test of correlations, 353

Just identified parameters, 417

K
k-class of estimators, 467–468

Kernels, 737, 738

Kernel density estimator, 735–739

k-th order sample autocorrelation,

349

Kurtosis, 148, 658, 659

L
Lagged dependent variables, 337

Lag length, 344–346

Lag operators, 379

Lagrange multiplier (LM) tests,

730–732

for heteroskedasticity, 303–305,

332–334

INDEX 751



Lagrange multiplier (LM) tests

(continued)

panel data models, 554

for serially correlated errors,

353–355

T � R2 form of, 367–370

Large numbers, law of, 702

Large samples:

analysis of, 211–220

properties of least squares

estimator, 403–404

Latent variables, 608

Latent variable models, 615

Law of iterated expectations, 429,

662, 672

Law of large numbers, 702

(tau) statistic, 485

Least squares:

pooled, 541

restricted, 222

Least squares assumptions, 339

Least squares estimates, 53

derivation of, 83–84

multiple regression model,

174–175

prediction with, 131–135

Least squares estimation:

generalized, 362

multiple regression model,

174–176

nonlinear, 361–362

time-series data, 357–358

Least squares estimators,

52–53, 57

assessing, 56–62

derivation of, 210–211, 732–734

deriving variance of, 86–87

distribution of, 180–181

dummy variable, 544–546

failure of, 404–405, 450,

466–467

feasible generalized, 314–315

Gauss–Markov theorem, 62–63

generalized, 311–319

and heteroskedasticity, 302

inconsistency of, 430–431

in large sample analysis,

211–220

large sample properties of,

403–404

as linear estimator, 85

mean form of, 84–85

multiple regression model,

174–175, 210–211

probability distributions of,

63–64

properties of, 331–332

restricted, 233

sampling properties of, 57,

177–181

small sample properties of,

402–403

theoretical expression for, 85–86

variance and covariance of,

60–62, 65, 178–180

weighted, 312

Least squares predictor, 132

Least squares principle, 51–53

Least squares residuals, 51, 147

Least variance ratio, 469

Left-tail tests, 107–108, 112

Leptokurtic distributions, 521

Level of significance, 102, 710

Likelihood, 720

Likelihood function, 592, 722

Likelihood ratio statistic, 728

Likelihood ratio (LR) tests,

598–599, 727–729

Limited dependent variable

models, 614–623

binary choice, 586–599

for censored data, 614–623

for count data, 611–614

limited, 614–623

multinomial choice, 599–607

ordered choice models, 607–610

Poisson regression, 611–614

Tobit, 617–619

Limited information maximum

likelihood (LIML) estimator,

467–472

Linear combinations of

coefficients:

hypothesis testing, 116–118,

188–189

interval estimation, 114–116,

183–184

Linear congruential generator, 688

Linear estimators, 57–58, 700, 735

b2 as, 85

best linear unbiased estimators,

63, 177, 700, 734–735

Linear functions, 143

Linear hypothesis, general,

116–117

Linear-log models, 143–145

Linear model, 147. See also

Multiple regression model;

Simple linear regression

model

Linear probability model, 587–589

heteroskedasticity in, 319–321

indicator variables in, 273–275

Linear relationships, 137–138,

140–141, 639–640

LM tests, see Lagrange multiplier

tests

Location premium, 260

Logarithms, 636–639

Logistic random variables, 595

Logit models:

binary, 595–599

conditional, 604–607

mixed, 606

multinomial, 599–604

nested, 606

ordered, 609

Log-likelihood function, 722

binary probit model, 592

multinomial probit model, 601

Poisson regression model, 612

Log-linear functional form, 141

Log-linear models, 68–73,

121–143, 151–156

indicator variables, 271–273,

296–297

interaction variables, 197–198

Log-log models, 142–143,

156–157

Log-normal distribution, 165–166

Longitudinal data, 8, 9

Lower limit, of summation, 24

LR (likelihood ratio) tests,

598–599, 727–729

M
McDonald-Moffit decomposition,

619–620

Macro data, 7

Marginal distributions,

22–24, 659

Marginal effect, 141, 193

average, 594

binary probit model, 590

LIML estimator, 467–472

multinomial probit model, 601

Poisson regression model,

612–613

probit model, 631–633

and slope, 639

Marginal probability density

function, 667, 669–670

Mathematical expectation, 657.

See also Expected values

Maximum likelihood estimates,

592

Maximum likelihood estimation,

719–732

asymptotic test procedures,

727–732

censored data, 617–619

distribution of sample pro-

portion, 725–727

inference with, 723–724

multinomial probit model,

600–601

Poisson regression model,

611–612

probit model, 591–592

variance of estimator, 724–725
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Maximum likelihood principle,

721

Mean, 26–27

conditional, 27, 429, 528, 662,

668, 671

defined, 657

deviations from, 547–548

population, 26, 41, 408–409,

695–700, 717–718

sample, 41, 695

standard error of, 702

unconditional, 528

Mean equation, 523

Mean form:

deviation from the, 57

of least squares estimators,

84–85

Mean function, 303–304

Mean reversion, 477

Measurement error, 405–406

Method of moments estimation,

408–419

assessing instrument strength,

414–415

instrumental variables in general

model, 417–419

instrumental variables in

multiple linear regression

model, 411–414

instrumental variables in simple

linear regression model,

410–411

instrumental variables of wage

equation, 415–416

partial correlation, 416–417

population mean and variance,

408–409

random regressors, 408–419

Micro data, 6

Microeconomic panel, 539–540

Mixed logit model, 606

Modeling, 139–157

choice of functional form in,

140–143

diagnostic residual plots,

145–147

distribution of regression errors,

147–149

linear-log model, 143–145

log-linear models, 151–156

log-log models, 156–157

polynomial models, 149–151

and scaling of data, 139–140

Modulus, 687

Monotonic functions, 674

Monte Carlo simulation

(experiment), 68

censored data, 615–619

choosing number of samples,

129

delta method, 217

extended delta method, 219

interval estimators, 127–129,

705–708

large sample analysis,

213–220

objectives of, 92

random error, 89–90

random regressors, 440–445

regression function, 88–89

results of, 92–93

sample of data, 91

simultaneous equations models,

473

theoretically true values, 90–91

Moving average, 375

Multinomial choice models:

conditional logit, 604–607

multinomial logit, 599–604

Multinomial logit model, 599–604

Multinomial probit model, 599,

606

Multiple regression model,

167–199, 221–246. See also

specific topics

adjusted coefficient of determi-

nation, 237

chi-square test, 254–256

collinearity, 240–243

defined, 168

derivation of least squares esti-

mators, 210–211

econometric model, 170–173

economic model, 168–170

estimating parameters of,

174–177

F-test, 254–256

hypothesis testing, 184–189

information criteria, 238

instrumental variables,

411–414

interaction variables, 195–198

interval estimation, 182–184

irrelevant variables, 235–236

large sample analysis, 211–220

measuring goodness-of-fit,

198–199

model specification, 233–239

omitted variables, 234–235,

256–257

polynomial equations, 189–195

and poor data, 240

prediction, 243–246

RESET for, 238–239

sampling properties of least

squares estimator, 177–181

testing joint hypotheses,

222–231

using nonsample information,

231–233

Multiplier analysis, 378–382

N
National Bureau of Economic

Research (NBER), 13–14

Natural experiments, 282

Natural logarithms, 636

NBER (National Bureau of

Economic Research), 13–14

Nested logit model, 606

Netting out process, 417, 434

Newey-West standard errors, 357

Nonexperimental data, 5

Nonlinear combination of

coefficients, 193–195

Nonlinear functions, 194, 215–216

Nonlinear least squares estimation,

361–362

Nonlinear relationships, 641–648

elasticity of, 645

estimating, 68–74

partial derivatives, 645–646

rules for derivatives, 641–645

theory of derivatives, 646–648

Nonparametric estimation, 737

Nonsample information, 222,

231–233

Nonstationarity, 475

Nonstationary time-series data,

474–494

cointegration, 488–492

first-order autoregressive model,

477–480

random walk models,

480–482

regression when there is no

cointegration, 492–494

spurious regressions, 482–483

stationary and nonstationary

variables, 475–482

unit root tests for stationarity,

484–488

Nonstationary variables, 475–482

Normal distributions, 32–34, 680,

681, 742

Normal equations, 84, 211

Normality of a population,

718–719

Normalization, 468–469

Normalized form, of an equation,

468

Notation:

scientific, 635–636

summation, 24–26
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Null hypothesis, 101–105, 709

joint, 223, 228

rejecting, 101–106

single, 223, 228

stating, 714–715

tests of, 101–105. See also Hy-

pothesis testing

O
Odds ratio, 603

Okun’s Law, 343–346, 369–370

Omitted variables:

and endogenous variables, 407

multiple regression model,

234–235, 256–257

Omitted-variable bias, 234,

256–257

Omitted-variable problem, 234

One-step forecast errors, 376

One-tail tests, 102–107, 184,

710–712

joint hypotheses testing, 230

for single coefficient, 187–188

Ordered choice models, 607–610

Ordered logit model, 609

Ordered probit model, 607–610

Order of integration, 487–488

Ordinal values, 607

Overall significance of the

regression model, test of, 226

Overidentified parameters, 417

P
Paired data observations, 285

Panel corrected standard errors,

550–551

Panel data, 8, 9, 286–287

Panel data models, 537–570

cluster-robust standard errors,

581–583

estimation of error components,

583–584

fixed effects, 543–551

fixed vs. random effects estima-

tors, 557–560

Hausman–Taylor estimator,

560–562

pooled, 540–543

random effects, 551–557

sets of regression equations,

561–570

Panel-robust standard errors, 542

Panel Study of Income Dynamics

(PSID), 8, 9

Parameters, 3

identified, 417

of multiple regression model,

174–177

population, 26, 43, 695

reduced-form, 449

regression, 49–56

testing for linear combinations

of, 114–118

Parametric estimation, 736

Partial correlation, 416–417

Partial derivatives, 645–646

Partialling out process, 417, 434

pdf, see Probability density

function

Penn World Tables, 15

Percentages, 637–639

Percentage change, 637, 640

Phillips curve, 351–353, 367–369

Plagiarism, 12

Point estimates, 95, 703

Poisson distribution, 678–679

Poisson random variables, 611

Poisson regressionmodel, 611–614

Policy analysis, 342

Polynomials, 190

Polynomial equations, 189–195

Polynomial models, 149–151

Pooled least squares, 541

Pooled model, 540–543

Population, normality of, 718–719

Population autocorrelation of order

one, 348

Population means, 26, 41

equality of, 717–718

estimating, 695–700

method of moments estimation

of, 408–409

Population parameters, 26, 43, 695.

See also Parameters

Population variances:

estimating, 700–703

ratio of, 718

testing, 716–717

Positively associated random

variables, 661

Post hoc, ergo propter hoc

reasoning, 275

Power rule, 649

Precision, sampling, 60

Predicting/prediction, 4, 131

and estimating, 132

log-linear model, 153

multiple regression model,

243–246

prediction intervals, 163–164

simple linear regression, 55

Prediction intervals, 133

defined, 131

development of, 163–164

interval estimates vs., 132

in log-linear model, 155–156

Probability, 17–34, 655–689

conditional, 22–24

continuous random variables,

663–677

discrete random variables,

656–663

joint probability density

function, 21–24

marginal distributions, 22–24

normal distribution, 32–34

probability distributions, 19–21,

26–32, 677–683

random numbers, 683–689

random variables, 18–19

summation notation, 24–26

Probability density function (pdf),

19–21

discrete random variables, 656

economic regression model, 41

normal, 33

Probability distributions, 19–21,

677–683

Bernoulli, 677

binomial, 677–678

chi-square, 681–682

F-, 683

of least squares estimators,

63–64

marginal, 22–24

normal, 32–34, 680

Poisson, 678–679

properties of, 26–32

t-, 682

uniform, 679–680

Probability ratio, 602

Probability value (p-value),

110–114, 185–188, 713–714.

See also p-value rule

Probit, 617

Probit function, 590

Probit models, 589–594

examples, 592–594

interpretation, 590–591

marginal effects, 631–633

maximum likelihood estimation,

591–592

multinomial, 599, 606

ordered, 607–610

Product curves, 190–191

Product rule, 642

Proposals, research, 11

Proxy variables, 406

Pseudo-random numbers, 683, 687

PSID (Panel Study of Income

Dynamics), 8, 9

p-value, see Probability value

p-value rule, 110–112, 713

Q
Quadratic equations, 68, 159

Quadratic functions, 69–70, 141,

143, 643, 645, 648

Qualitative data, 7

Qualitative factors:
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interactions between, 265–266

with several categories, 267–268

Quantitative data, 7

Quantity theory ofmoney, 512–513

Quasi-experiments, 282

Quotient rule, 642

R
Random draw, 684

Random effects, 551, 553–554

Random effects model, 551–557

error term assumptions,

552–553

estimation of, 553–554

testing for random effects,

553–554

wage equation, 555–557

Random error, 4

heteroskedastic, 299

homoskedastic, 299

in Monte Carlo simulation,

89–90

Random error term:

multiple regression model, 170

simple linear regression

model, 46

Random experiments, 19

Randomized controlled

experiments, 276

Random numbers, 683–689

inversion method, 684–687

pseudo-random, 683, 687

uniform, 687–689

Random number seed, 688

Random processes, 477

Random regressors, 400–423

conditional expectations,

429, 430

consistency of instrumental

variable estimator, 431–432

Hausman test for endogeneity,

420–421, 432–434

inconsistency of least squares,

430–431

iterated expectations, 429–430

linear regression with, 401–405

method of moments estimation,

408–419

Monte Carlo simulation,

440–445

specification tests, 419–423

testing for weak instruments,

434–440

testing instrument validity,

421–422

when x and e are correlated,

405–408

Random samples, 695

Random sampling, 402

Random variables, 18–19

continuous, see Continuous ran-

dom variables

correlation of, 31–32

covariance between, 30–32

defined, 656

discrete, see Discrete random

variables

expected value of, 26–27, 30

heteroskedastic, 299. See also

Heteroskedasticity

homoskedastic, 299

logistic, 595

Poisson, 611

standard normal, 33

variance of, 28–29

Random walks, 480

Random walk models, 480–482

Random walk with drift, 481

Rate of change, 643

Rational numbers, 635

Realization, of stochastic

process, 477

Real numbers, 635

Reduced-form equations, 449

supply and demand, 458–460

two-stage least squares esti-

mation, 455–456

Reduced-form errors, 449

Reduced-form parameters, 449

Reference group, 261, 267

Regime effects, 271

Regional indicator variables,

267–268

Regression(s):

spurious, 482–483

testing equivalence of, 268–270

truncated, 618n.12

Regression coefficients, 172

Regression equations, sets of,

561–570

Regression errors, distribution of,

147–149

Regression function:

Monte Carlo simulation, 88–89

multiple regression model, 173

Regression models, 40. See also

Multiple regression model;

Simple linear regression

model

econometric, 43–48

economic, 40–43

prediction with, 131

Regression parameters, 43

estimating, 49–56

interpreting estimates, 53–56

least squares principle, 51–53

Rejecting null hypothesis, 101–106

Rejection rate, 435

Rejection region, 102–104, 710

Relationships:

linear, 137–138, 140–141,

639–640

nonlinear, 68–74, 641–648

Relative bias, 435

Relative change, 637, 640

Relative frequency, of

outcomes, 19

Repeat data observations, 285

Repeated experimental trials, 88

Repeated samples, 67

Repeated sampling, 59

and hypothesis tests, 128

interval estimation, 99–100

and interval estimators,

127–128

Monte Carlo simulation, 88

Repeated sampling properties,

442–445

Research papers, writing, 11–13

Research process, 9–15

sources of economic data, 13–15

steps in, 10–11

writing a research paper, 11–13

Research proposals, 11

RESET, 238–239

Residuals, 131

diagnostic residual plots,

145–147

least squares, 51

Residual plots, 303

Resources for Economists

(RFE), 13

Restricted least squares, 222

Restricted least squares estimates,

232–233

Restricted model, 224

Restricted sum of squared errors,

224–225

RFE (Resources for Economists),

13

Right-tail tests, 105–107, 111–112

Risk premium, time-varying,

528–529

Robust standard errors, 309,

318–319

Root mse (mean squared error),

177

S
Samples:

finite (small), 403

large, 64, 211–220, 403–404

random, 695

repeated, 67

for statistical inference, 693–694

Sample autocorrelations:

first-order, 348

k-th order, 349

Sample autocorrelation function,

349–350
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Sample mean, 41, 695

Sample moments, 408–409, 413

Sample proportion, 723, 725–727

Sample selection, 620–623

Sample variance, 701

Sampling, repeated, 59, 88,

99–100, 127–128

Sampling distribution, 696,

698–699

Sampling precision, 60

Sampling properties, of least

squares estimators, 57,

177–181

Sampling variability, 67

Sampling variance, 60

Sampling variation, 57, 59, 696

SC (Schwarz criterion), 238, 367

Scaling of data, 139–140

Scatter diagrams, 50

Schwarz criterion (SC), 238, 367

Scientific notation, 635–636

Seasonal indicator variables,

270–271

Second stage regression, 412

Seed, random number, 688

Seemingly unrelated regressions

(SUR), 566–570

Selection bias, 275–276, 621

Selection equation, 621

Selectivity problem, 622

Self-selection, 275

Semi-elasticity, 71

Serial correlation, 347–350

Serially correlated errors, 350–365

defined, 338

Durbin–Watson test for, 355,

392–395

estimation with, 356–365

Lagrange multiplier test for,

353–355

Phillips curve, 351–353

Sets of regression equations,

561–570

different coefficients, different

error variances, 565–566

different coefficients, equal error

variances, 564–565

equal coefficients, equal error

variances, 564

Grunfeld’s investment data,

562–564

seemingly unrelated regressions,

566–570

Significance:

level of, 102, 710

of a model, 225–227

statistical vs. economic, 110

test of, 105, 109–110

Simple linear regression model,

39–75. See also specific topics

applications of, 56

assessing least squares estima-

tors, 56–62

assumptions for random x’s,

401–402

b2 as linear estimator, 85

defined, 46

derivation of least squares esti-

mates, 83–84

derivation of theoretical expres-

sion for b2, 85–86

deriving variance of b2, 86–87

deviation from mean form of b2,

84–85

estimating nonlinear relation-

ships, 68–74

estimating regression

parameters, 49–56

estimating variance of error

term, 64–68

Gauss–Markov theorem, 62–63

instrumental variables esti-

mation, 410–411

method of moments estimation,

409–410

Monte Carlo simulation, 88–93

probability distributions of least

squares estimators, 63–64

proof of Gauss–Markov theo-

rem, 87–88

using indicator variables, 74–75

using surplus instruments,

412–413

Simple (linear) regression

function, 43

Simultaneous equations, 211

Simultaneous equations bias,

406–407

Simultaneous equations models,

446–460

2SLS alternatives, 467–473

defined, 446

and failure of least squares, 450,

466–467

identification problem, 450–452

reduced-form equations, 449

supply and demand, 447–449,

457–460

two-stage least squares esti-

mation, 452–457

Single null hypothesis, 223, 228

Skewness, 148, 658–659

Slope, 639–640

of the curve, 647

and derivatives, 640

of the tangent, 646

Slope dummy variables, 261–262

Slope-indicator variables,

261–264

Small samples, 402–403

Software, for least squares

estimates, 55–56

Specification error, 48

Specification tests, 419–423

s-period delay multiplier, 342

Spurious regressions, 482–483

SSE (sum of squares due to error),

198–200, 224–225

SSR (sum of squares due to

regression), 136, 198–200

SST, see Sum of squares

Standard deviation, 26, 29, 657,

658

Standard errors, 702

of average marginal effect,

632–633

cluster-robust, 541–542, 556,

581–583

of the estimate, 702

of forecast errors, 374

of forecasts, 133

HAC, 357

heteroskedasticity-consistent,

309–310

of the mean, 702

Newey-West, 357

panel corrected, 550–551

panel-robust, 542

of regressions, 177

robust, 309, 318–319

Standard normal distribution, 681,

742

Standard normal random variables,

33

Stationarity, 475, 484–488

Stationary variables, 339,

475–482

difference, 492–493

trend, 492–494

Statistical inference, 95, 692–739

best linear unbiased estimation,

734–735

data samples for, 693–694

defined, 693

derivation of least squares

estimator, 732–734

econometric model as basis for,

4, 695

equality of population means,

717–718

estimating population mean,

695–700

estimating population variance,

700–703

hypothesis testing, 708–716

interval estimation, 703–708

kernel density estimator,

735–739

maximum likelihood estimation,

719–732
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normality of a population,

718–719

population variance testing,

716–717

ratio of population variances,

718

Statistically independent variables,

23–24, 659

Statistical significance, 110

Stochastic processes, 477

Stochastic trend, 481

Stock data, 7

Stock-Yogo test, 470–471

Strictly monotonic functions, 674

Strong instruments, see Instrument

strength

Structural equations, 456–457

Sum, expected value of, 658

Summation notation and

operations, 24–26

Summation sign, 24

Sum of squares (SST), 136,

164–165, 198–200

Sum of squares due to error (SSE),

198–200, 224–225

Sum of squares due to regression

(SSR), 136, 198–200

Sum of squares function, 83–84

Supply and demand model,

447–449, 457–460

SUR (seemingly unrelated

regressions), 566–570

Surplus instruments, 412–413, 415,

442

Surplus moment conditions,

413–414

T
Tangent, 641, 646

T-ARCH, 527

Taylor series approximation,

215–217, 638, 644–645

t-distributions, 682

derivation of, 125–126

interval estimation, 95–97

percentiles of, 743

Testing, 4. See also Hypothesis

testing

for ARCH effects, 523–524

equivalence of two regressions,

268–270

instrument validity, 421–422

linear combinations of

parameters, 116–117

many parameters, 223

for weak instruments, 434–440

Tests of significance, 105, 109–110

one-tail, 102–107

for single coefficient, 185–187

two-tail, 104–105, 109–110,

113–114

Test of surplus moment conditions,

413–414

Test of the overall significance of

the regression model, 226

Test size, 435

Test statistic (t-statistic), 101, 709

when null hypothesis is not true,

101, 126–127

when null hypothesis is true, 101

T-GARCH, 527–528

Time, controlling for, 270–271

Time-invariant variables, 547–548,

557

Time series, random walk, 480

Time-series data, 7–8, 335–382

autoregressive distributed lag

model, 365–372

dynamic nature of relationships,

337–338

finite distributed lags, 341–346

forecasting, 372–378

generalized least squares esti-

mation, 397–399

and least squares assumptions,

339

multiplier analysis, 378–382

nonstationary, seeNonstationary

time-series data

properties of AR(1) error,

396–397

serial correlation, 347–350

serially correlated errors,

350–365, 392–395

Time-varying risk premium,

528–529

Time-varying volatility, 520–523

Tobit model, 617–619

Total multiplier, 342

Total sum of squares (SST), 136,

198–200

Total variation, 136

Transformation, Jacobian of, 676

Transformed variables, 312

Treatment effects:

difference estimator, 276–282

differences-in-differences

estimator, 282–286

panel data, 286–287

selection bias in measurement

of, 275–276

Treatment group, 282

Trend stationary variables,

492–494

Truncated regression, 618n.12

t-test:

multiple regression models, 230,

231

relationship between F-test and,

227–228

Two-stage least squares (2SLS)

estimation:

example of, 454–457

general procedures for, 453–454

simultaneous equations models,

452–457

supply and demand, 460

Two-stage least squares (2SLS)

estimators, 412. See also

Instrumental variables (IV)

estimators

alternatives to, 467–473

properties of, 454

Two-tail tests, 108–110, 711, 712

with alternative ‘‘not equal to,’’

104–105

hypothesis testing, 184

p-value for, 112–114

Type I error, 102, 715–716

Type II error, 102, 715–716

U
Unbalanced panels, 539

Unbiased estimators, 58–59, 697.

See also Best linear unbiased

estimators (BLUE)

Unbiased predictors, 132

Unconditional expected value, 671

Unconditional mean, of the error,

528

Unconditional variance, 528

Uniform distribution, 679–680

Uniform random numbers,

687–689

Unit root, 486

Unit root tests, 484–488

Unrestricted model, 224

Unrestricted sum of squared errors,

224–225

Upper limit, of summation, 24

V
Validity:

of surplus instruments, 442

testing, 421–422

Variability, sampling, 67

Variance, 26, 697–698

of b2, 86–87

conditional, 429, 528, 662, 668,

671

defined, 657

of discrete random variables,

658–659

error, 176–177, 507–510

of error term, estimating, 64–68

of estimator, 724–725
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Variance (continued)

of least squares estimators,

60–62, 65, 178–180

least variance ratio, 469

of maximum likelihood estima-

tor, 724–725

method of moments estimation

of, 408–409

population, 700–703,

716–718

of random variables, 28–29

sample, 701

sampling, 60

unconditional, 528

Variance-covariance matrix

(covariance matrix),

179–180

Variance function, 303

Variation, sampling, 59, 696

Vector autoregressive (VAR)

model, 499–500

estimating, 503–505

identification problem, 516

Vector error correction (VEC)

model, 499–501

estimating, 501–503

Volatility:

forecasting, 525

time-varying, 520–523

W
Wage equation, 153

fixed effects estimators of,

548–551

Hausman–Taylor estimation,

560–562

instrumental variables esti-

mation of, 415–416

least squares estimation of,

407–408

pooled least squares estimates

of, 542–543

random effects model, 555–557

specification tests for, 422–423

Wald principle, 597

Wald tests, 230, 597–598, 729–730

Weak instruments, 434–440. See

also Instrument strength

Cragg-Donald F-test statistic,

435–440

LIML testing for, 471–472

in Monte Carlo simulation,

441–442

Weighted errors, 312–313

Weighted least squares, 312–313

White test, 306

Within-sample forecasts, 376
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Example:

P(t(30) ≤ 1.697) = 0.95
P(t(30) > 1.697) = 0.05

t
–4 –3 –2 –1 0 1 2 3 4

Ta b l e 2 Percentiles of the t-distribution

df tð0:90,dfÞ tð0:95,dfÞ tð0:975,dfÞ tð0:99,dfÞ tð0:995,dfÞ
1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

31 1.309 1.696 2.040 2.453 2.744

32 1.309 1.694 2.037 2.449 2.738

33 1.308 1.692 2.035 2.445 2.733

34 1.307 1.691 2.032 2.441 2.728

35 1.306 1.690 2.030 2.438 2.724

36 1.306 1.688 2.028 2.434 2.719

37 1.305 1.687 2.026 2.431 2.715

38 1.304 1.686 2.024 2.429 2.712

39 1.304 1.685 2.023 2.426 2.708

40 1.303 1.684 2.021 2.423 2.704

50 1.299 1.676 2.009 2.403 2.678

1 1.282 1.645 1.960 2.326 2.576

Source: This table was generated using the SAS1 function TINV



The Rules of Summation

�
n

i¼1
xi ¼ x1 þ x2 þ � � � þ xn

�
n

i¼1
a ¼ na

�
n

i¼1
axi ¼ a �

n

i¼1
xi

�
n

i¼1
ðxi þ yiÞ ¼ �

n

i¼1
xi þ �

n

i¼1
yi

�
n

i¼1
ðaxi þ byiÞ ¼ a �

n

i¼1
xi þ b �

n

i¼1
yi

�
n

i¼1
ðaþ bxiÞ ¼ naþ b �

n

i¼1
xi

x ¼
�
n

i¼1
xi
n

¼ x1 þ x2 þ � � � þ xn

n

�
n

i¼1
ðxi � xÞ ¼ 0

�
2

i¼1
�
3

j¼1
f ðxi; yjÞ ¼ �

2

i¼1
f ðxi; y1Þ þ f ðxi; y2Þ þ f ðxi; y3Þ½ �

¼ f ðx1; y1Þ þ f ðx1; y2Þ þ f ðx1; y3Þ
þ f ðx2; y1Þ þ f ðx2; y2Þ þ f ðx2; y3Þ

Expected Values & Variances

EðXÞ ¼ x1 f ðx1Þ þ x2 f ðx2Þ þ � � � þ xn f ðxnÞ
¼ �

n

i¼1
xi f ðxiÞ ¼ �

x
x f ðxÞ

E gðXÞ½ � ¼ �
x
gðxÞ f ðxÞ

E g1ðXÞ þ g2ðXÞ½ � ¼ �
x
g1ðxÞ þ g2ðxÞ½ � f ðxÞ

¼ �
x
g1ðxÞ f ðxÞ þ �

x
g2ðxÞ f ðxÞ

¼ E g1ðXÞ½ � þ E g2ðXÞ½ �
E(c) ¼ c

E(cX ) ¼ cE(X )

E(a þ cX ) ¼ a þ cE(X )

var(X ) ¼ s2 ¼ E[X � E(X )]2 ¼ E(X2) � [E(X )]2

var(a þ cX ) ¼ E[(a þ cX)�E(a þ cX)]2 ¼ c2var(X )

Marginal and Conditional Distributions

f ðxÞ ¼ �
y
f ðx; yÞ for each value X can take

f ðyÞ ¼ �
x
f ðx; yÞ for each value Y can take

f ðxjyÞ ¼ P X ¼ xjY ¼ y½ � ¼ f ðx; yÞ
f ðyÞ

If X and Y are independent random variables, then

f (x,y) ¼ f (x)f (y) for each and every pair of values

x and y. The converse is also true.

If X and Y are independent random variables, then the

conditional probability density function of X given that

Y ¼ y is f ðxjyÞ ¼ f ðx; yÞ
f ðyÞ ¼ f ðxÞ f ðyÞ

f ðyÞ ¼ f ðxÞ

for each and every pair of values x and y. The converse is

also true.

Expectations, Variances & Covariances

covðX;YÞ ¼ E½ðX�E½X�ÞðY�E½Y�Þ�
¼�

x
�
y
x� EðXÞ½ � y� EðYÞ½ � f ðx; yÞ

r ¼ covðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞvarðYÞp

E(c1X þ c2Y ) ¼ c1E(X ) þ c2E(Y )

E(X þ Y ) ¼ E(X ) þ E(Y )

var(aXþ bYþ cZ )¼ a2var(X)þ b2var(Y )þ c2var(Z )

þ 2abcov(X,Y ) þ 2accov(X,Z ) þ 2bccov(Y,Z )

If X, Y, and Z are independent, or uncorrelated, random

variables, then the covariance terms are zero and:

varðaX þ bY þ cZÞ ¼ a2varðXÞ
þ b2varðYÞ þ c2varðZÞ

Normal Probabilities

If X � N(m, s2), then Z ¼X � m

s
�Nð0; 1Þ

If X � N(m, s2) and a is a constant, then

PðX � aÞ ¼ P Z � a� m

s

� �
If X �Nðm;s2Þ and a and b are constants; then

Pða � X � bÞ ¼ P
a�m

s
� Z � b� m

s

� �

Assumptions of the Simple Linear Regression

Model

SR1 The value of y, for each value of x, is y ¼ b1 þ
b2x þ e

SR2 The average value of the random error e is

E(e) ¼ 0 sincewe assume thatE(y) ¼ b1 þ b2x

SR3 The variance of the random error e is var(e) ¼
s2 ¼ var(y)

SR4 The covariance between any pair of random

errors, ei and ej is cov(ei, ej) ¼ cov(yi, yj) ¼ 0

SR5 The variable x is not random and must take at

least two different values.

SR6 (optional) The values of e are normally dis-

tributed about their mean e � N(0, s2)

Least Squares Estimation

If b1 and b2 are the least squares estimates, then

ŷi ¼ b1 þ b2xi

êi ¼ yi � ŷi ¼ yi � b1 � b2xi

The Normal Equations

Nb1 þ Sxib2 ¼Syi

Sxib1 þ Sx2i b2 ¼ Sxiyi

Least Squares Estimators

b2 ¼ Sðxi � xÞðyi � yÞ
S ðxi � xÞ2

b1 ¼ y� b2x



Elasticity

h ¼ percentage change in y

percentage change in x
¼ Dy=y

Dx=x
¼ Dy

Dx
� x
y

h ¼ DEðyÞ=EðyÞ
Dx=x

¼ DEðyÞ
Dx

� x

EðyÞ ¼ b2 �
x

EðyÞ
Least Squares Expressions Useful for Theory

b2 ¼ b2 þ Swiei

wi ¼ xi � x

Sðxi � xÞ2

Swi ¼ 0; Swixi ¼ 1; Sw2
i ¼ 1=Sðxi � xÞ2

Properties of the Least Squares Estimators

varðb1Þ ¼ s2 Sx2i

NSðxi � xÞ2
" #

varðb2Þ ¼ s2

Sðxi � xÞ2

covðb1; b2Þ ¼ s2 �x

Sðxi � xÞ2
" #

Gauss-Markov Theorem: Under the assumptions

SR1–SR5 of the linear regression model the estimators

b1 and b2 have the smallest variance of all linear and

unbiased estimators of b1 and b2. They are the Best

Linear Unbiased Estimators (BLUE) of b1 and b2.

If we make the normality assumption, assumption

SR6, about the error term, then the least squares esti-

mators are normally distributed.

b1 � N b1;
s2 � x2i

NSðxi � xÞ2
 !

; b2 � N b2;
s2

Sðxi � xÞ2
 !

Estimated Error Variance

ŝ2 ¼ Sê2i
N � 2

Estimator Standard Errors

seðb1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb1Þq

; seðb2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þq

t-distribution

If assumptions SR1–SR6of the simple linear regression

model hold, then

t ¼ bk � bk

seðbkÞ � tðN�2Þ; k ¼ 1; 2

Interval Estimates

P[b2 � tcse(b2) � b2 � b2 þ tcse(b2)] ¼ 1 � a

Hypothesis Testing

Components of Hypothesis Tests

1. A null hypothesis, H0

2. An alternative hypothesis, H1

3. A test statistic

4. A rejection region

5. A conclusion

If the null hypothesis H0 : b2 ¼ c is true, then

t ¼ b2 � c

seðb2Þ � tðN�2Þ

Rejection rule for a two-tail test: If the value of the

test statistic falls in the rejection region, either tail of

the t-distribution, then we reject the null hypothesis

and accept the alternative.

Type I error: The null hypothesis is true and we decide

to reject it.

Type II error: The null hypothesis is false andwe decide

not to reject it.

p-value rejection rule:When the p-value of a hypoth-

esis test is smaller than the chosen value of a, then the

test procedure leads to rejection of the null hypothesis.

Prediction

y0 ¼ b1 þ b2x0 þ e0; ŷ0 ¼ b1 þ b2x0; f ¼ ŷ0 � y0

bvarð f Þ ¼ ŝ2 1þ 1

N
þ ðx0 � xÞ2
Sðxi � xÞ2

" #
; seð f Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffibvarð f Þq

A (1 � a) � 100% confidence interval, or prediction

interval, for y0
ŷ0 	 tcseð f Þ

Goodness of Fit

Sðyi � yÞ2 ¼ Sðŷi � yÞ2 þ Sê2i

SST ¼ SSRþ SSE

R2 ¼ SSR

SST
¼ 1� SSE

SST
¼ ðcorrðy; ŷÞÞ2

Log-Linear Model

lnðyÞ ¼ b1þb2xþ e;blnð yÞ ¼ b1 þ b2x

100� b2 
 % change in y given a one-unit change in x:

ŷn ¼ expðb1 þ b2xÞ
ŷc ¼ expðb1 þ b2xÞexpðŝ2=2Þ
Prediction interval:

exp blnðyÞ � tcseð f Þ
h i

; exp blnð yÞ þ tcseð f Þ
h i

Generalized goodness-of-fit measureR2
g¼ðcorrðy; ŷnÞÞ2

Assumptions of theMultiple RegressionModel

MR1 yi ¼ b1 þ b2xi2 þ � � � þ bKxiK þ ei

MR2 E(yi)¼b1þb2xi2þ � � � þbKxiK , E(ei) ¼ 0.

MR3 var(yi) ¼ var(ei) ¼ s2

MR4 cov(yi, yj) ¼ cov(ei, ej) ¼ 0

MR5 The values of xik are not random and are not

exact linear functions of the other explanatory

variables.

MR6 yi � N½ðb1 þ b2xi2 þ � � � þ bKxiKÞ;s2�
, ei � Nð0;s2Þ

Least Squares Estimates in MR Model

Least squares estimates b1, b2, . . . , bK minimize

Sðb1, b2, . . . , bKÞ ¼ �ðyi � b1 � b2xi2 � � � � � bKxiKÞ2

Estimated Error Variance and Estimator

Standard Errors

ŝ2 ¼ � ê2i
N � K

seðbkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðbkÞq



Hypothesis Tests and Interval Estimates for Single Parameters

Use t-distribution t ¼ bk � bk

seðbkÞ � tðN�KÞ

t-test for More than One Parameter

H0 : b2 þ cb3 ¼ a

When H0 is true t ¼ b2 þ cb3 � a

seðb2 þ cb3Þ � tðN�KÞ

seðb2 þ cb3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvarðb2Þ þ c2bvarðb3Þ þ 2c�bcovðb2; b3Þq

Joint F-tests

To test J joint hypotheses,

F ¼ ðSSER � SSEUÞ=J
SSEU=ðN � KÞ

To test the overall significance of the model the null and alternative

hypotheses and F statistic are

H0 : b2 ¼ 0; b3 ¼ 0; : : : ; bK ¼ 0

H1 : at least one of the bk is nonzero

F ¼ ðSST � SSEÞ=ðK � 1Þ
SSE=ðN � KÞ

RESET: A Specification Test

yi ¼ b1 þb2xi2 þb3xi3 þ ei ŷi ¼ b1 þ b2xi2 þ b3xi3

yi ¼ b1 þb2xi2 þb3xi3 þg1ŷ
2
i þ ei; H0 : g1 ¼ 0

yi ¼ b1 þb2xi2 þb3xi3 þg1ŷ
2
i þg2ŷ

3
i þ ei; H0 : g1 ¼ g2 ¼ 0

Model Selection

AIC ¼ ln(SSE=N) þ 2K=N

SC ¼ ln(SSE=N) þ K ln(N)=N

Collinearity and Omitted Variables

yi ¼ b1 þ b2xi2 þ b3xi3 þ ei

varðb2Þ ¼ s2

ð1� r223Þ� ðxi2 � x2Þ2

When x3 is omitted; biasðb�2Þ ¼ Eðb�2Þ � b2 ¼ b3

bcovðx2; x3Þbvarðx2Þ
Heteroskedasticity

var(yi) ¼ var(ei) ¼ si
2

General variance function

s2
i ¼ expða1 þ a2zi2 þ � � � þ aSziSÞ

Breusch-Pagan and White Tests for H0: a2 ¼ a3 ¼ � � � ¼ aS ¼ 0

When H0 is true x2 ¼ N � R2 � x2
ðS�1Þ

Goldfeld-Quandt test for H0 :s
2
M ¼ s2

R versus H1 : s
2
M 6¼ s2

R

When H0 is true F ¼ ŝ2
M=ŝ

2
R � FðNM�KM ;NR�KRÞ

Transformed model for varðeiÞ¼ s2
i ¼ s2xi

yi=
ffiffiffiffi
xi

p ¼ b1 1=
ffiffiffiffi
xi

pð Þ þ b2 xi=
ffiffiffiffi
xi

pð Þ þ ei=
ffiffiffiffi
xi

p

Estimating the variance function

lnðê2i Þ ¼ lnðs2
i Þ þ vi ¼ a1 þ a2zi2 þ � � � þ aSziS þ vi

Grouped data

varðeiÞ ¼ s2
i ¼

s2
M i ¼ 1; 2; . . . ; NM

s2
R i ¼ 1; 2; . . . ; NR

(

Transformed model for feasible generalized least squares

yi

. ffiffiffiffiffi
ŝi

p
¼ b1 1

. ffiffiffiffiffi
ŝi

p� �
þ b2 xi

. ffiffiffiffiffi
ŝi

p� �
þ ei

. ffiffiffiffiffi
ŝi

p

Regression with Stationary Time Series Variables

Finite distributed lag model

yt ¼aþ b0xt þ b1xt�1 þ b2xt�2 þ � � � þ bqxt�q þ vt

Correlogram

rk ¼ � ðyt � yÞðyt�k � yÞ=� ðyt � yÞ2

For H0 : rk ¼ 0; z ¼
ffiffiffiffi
T

p
rk � Nð0; 1Þ

LM test

yt ¼ b1 þb2xt þ rêt�1 þ v̂t Test H0 :r¼ 0 with t-test

êt ¼ g1þg2xt þ rêt�1þ v̂t Test using LM¼ T �R2

AR(1) error yt ¼ b1þb2xt þ et et ¼ ret�1 þ vt

Nonlinear least squares estimation

yt ¼ b1ð1� rÞ þ b2xt þ ryt�1 � b2rxt�1 þ vt

ARDL(p, q) model

yt ¼ dþ d0xt þ dlxt�1 þ � � � þ dqxt�q þ ulyt�1

þ � � � þ upyt�p þ vt
AR(p) forecasting model

yt ¼ dþ ulyt�1 þ u2yt�2 þ � � � þ upyt�p þ vt

Exponential smoothing ŷt ¼ ayt�1 þ ð1� aÞŷt�1

Multiplier analysis

d0 þ d1Lþ d2L
2 þ � � � þ dqL

q ¼ ð1� u1L� u2L
2 � � � � � upL

pÞ
� ðb0 þ b1Lþ b2L

2 þ � � �Þ
Unit Roots and Cointegration

Unit Root Test for Stationarity: Null hypothesis:

H0 : g ¼ 0

Dickey-Fuller Test 1 (no constant and no trend):

Dyt ¼ gyt�1 þ vt

Dickey-Fuller Test 2 (with constant but no trend):

Dyt ¼ aþ gyt�1 þ vt

Dickey-Fuller Test 3 (with constant and with trend):

Dyt ¼ aþ gyt�1 þ lt þ vt

Augmented Dickey-Fuller Tests:

Dyt ¼ aþ gyt�1 þ �
m

s¼1
asDyt�s þ vt

Test for cointegration

Dêt ¼ gêt�1 þ vt
Random walk: yt ¼ yt�1 þ vt
Random walk with drift: yt ¼ aþ yt�1 þ vt
Random walk model with drift and time trend:

yt ¼ aþ dt þ yt�1 þ vt

Panel Data

Pooled least squares regression

yit ¼ b1 þ b2x2it þ b3x3it þ eit

Cluster robust standard errors cov(eit, eis) ¼ cts

Fixed effects model

yit ¼ b1i þ b2x2it þ b3x3it þ eit b1i not random

yit � yi ¼ b2ðx2it � x2iÞ þ b3ðx3it � x3iÞ þ ðeit � eiÞ
Random effects model

yit ¼b1iþb2x2itþb3x3itþeit bit ¼b1þui random

yit�ayi ¼b1ð1�aÞþb2ðx2it�ax2iÞþb3ðx3it�ax3iÞþv�it

a¼ 1�se

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ts2

uþs2
e

q
Hausman test

t ¼ ðbFE;k � bRE;kÞ
�bvarðbFE;kÞ�bvarðbRE;kÞh i1=2
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