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Preface

Principles of Econometrics, 4th edition, is an introductory book for undergraduate students
in economics and finance, as well as for first-year graduate students in economics, finance,
accounting, agricultural economics, marketing, public policy, sociology, law, and political
science. It is assumed that students have taken courses in the principles of economics, and
elementary statistics. Matrix algebra is not used, and calculus concepts are introduced
and developed in the appendices.

A brief explanation of the title is in order. This work is a revision of Principles of
Econometrics, 3rd edition, by Hill, Griffiths, and Lim (Wiley, 2008), which was a revision of
Undergraduate Econometrics, 2nd edition, by Hill, Griffiths, and Judge (Wiley, 2001). The
earlier title was chosen to clearly differentiate the book from other more advanced books by
the same authors. We made the title change because the book is appropriate not only for
undergraduates, but also for first-year graduate students in many fields, as well as MBA
students. Furthermore, naming it Principles of Econometrics emphasizes our belief that
econometrics should be part of the economics curriculum, in the same way as the principles
of microeconomics and the principles of macroeconomics. Those who have been studying
and teaching econometrics as long as we have will remember that Principles of Econo-
metrics was the title that Henri Theil used for his 1971 classic, which was also published by
John Wiley and Sons. Our choice of the same title is not intended to signal that our book is
similar in level and content. Theil’s work was, and remains, a unique treatise on advanced
graduate level econometrics. Our book is an introductory-level econometrics text.

Book Objectives

Principles of Econometrics is designed to give students an understanding of why econo-
metrics is necessary, and to provide them with a working knowledge of basic econometric
tools so that

e They can apply these tools to modeling, estimation, inference, and forecasting in the
context of real-world economic problems.

e They can evaluate critically the results and conclusions from others who use basic
econometric tools.

e They have a foundation and understanding for further study of econometrics.

e They have an appreciation of the range of more advanced techniques that exist and
that may be covered in later econometric courses.

The book is not an econometrics cookbook, nor is it in a theorem-proof format. It
emphasizes motivation, understanding, and implementation. Motivation is achieved by
introducing very simple economic models and asking economic questions that the student
can answer. Understanding is aided by lucid description of techniques, clear interpretation,
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and appropriate applications. Learning is reinforced by doing, with clear worked examples
in the text and exercises at the end of each chapter.

Overview of Contents

This fourth edition retains the spirit and basic structure of the third edition. Chapter 1
introduces econometrics and gives general guidelines for writing an empirical research paper
and for locating economic data sources. The Probability Primer preceding Chapter 2
summarizes essential properties of random variables and their probability distributions,
and reviews summation notation. The simple linear regression model is covered in Chapters
2-4, while the multiple regression model is treated in Chapters 5-7. Chapters 8 and 9
introduce econometric problems that are unique to cross-sectional data (heteroskedasticity)
and time-series data (dynamic models), respectively. Chapters 10 and 11 deal with random
regressors, the failure of least squares when a regressor is endogenous, and instrumental
variables estimation, first in the general case, and then in the simultaneous equations model.
In Chapter 12 the analysis of time-series data is extended to discussions of nonstationarity and
cointegration. Chapter 13 introduces econometric issues specific to two special time-series
models, the vector error correction and vector autoregressive models, while Chapter 14
considers the analysis of volatility in data and the ARCH model. In Chapters 15 and 16 we
introduce microeconometric models for panel data, and qualitative and limited dependent
variables. In appendices A, B, and C we introduce math, probability, and statistical inference
concepts that are used in the book.

Summary of Changes and New Material

This edition includes a great deal of new material, including new examples and exercises
using real data, and some significant reorganizations. Important new features include:

e Chapter 1 includes a discussion of data types, and sources of economic data on the
Internet. Tips on writing a research paper are given up front so that students can
form ideas for a paper as the course develops.

e The Probability Primer precedes Chapter 2. This primer reviews the concepts of
random variables, and how probabilities are calculated given probability density
functions. Mathematical expectation and rules of expected values are summarized for
discrete random variables. These rules are applied to develop the concept of variance
and covariance. Calculations of probabilities using the normal distribution are
illustrated.

® Chapter 2 is expanded to include brief introductions to nonlinear relationships and
the concept of an indicator (or dummy) variable. A new section has been added on
interpreting a standard error. An appendix has been added on Monte Carlo
simulation and is used to illustrate the sampling properties of the least squares
estimator.

e Estimation and testing of linear combinations of parameters is now included in
Chapter 3. An appendix is added using Monte Carlo simulation to illustrate the
properties of interval estimators and hypothesis tests. Chapter 4 discusses in detail
nonlinear relationships such as the log-log, log-linear, linear-log, and polynomial
models. Model interpretations are discussed and examples given, along with an
introduction to residual analysis.

® The introductory chapter on multiple regression (Chapter 5) now includes material
on standard errors for both linear and nonlinear functions of coefficients, and how
they are used for interval estimation and hypothesis testing. The treatment of
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polynomial and log-linear models given in Chapter 4 is extended to the multiple
regression model; interaction variables are included and marginal effects are
described. An appendix on large sample properties of estimators has been added.
Chapter 6 contains a new section on model selection criteria and a reorganization
of material on the F-test for joint hypotheses.

Chapter 7 now deals exclusively with indicator variables. In addition to the
standard material, we introduce the linear probability model and treatment effect
models, including difference and difference-in-difference estimators.

Chapter 8 has been reorganized so that testing for heteroskedasticity precedes
estimation with heteroskedastic errors. A section on heteroskedasticity in the linear
probability model has been added.

Chapter 9 on regression with stationary time series data has been restructured to
emphasize autoregressive distributed lag models and their special cases: finite
distributed lags, autoregressive models, and the AR(1) error model. Testing for
serial correlation using the correlogram and Lagrange multiplier tests now
precedes estimation. Two new macroeconomic examples, Okun’s law and the
Phillips curve, are used to illustrate the various models. Sections on exponential
smoothing and model selection criteria have been added, and the section on
multiplier analysis has been expanded.

Chapter 10 on endogeneity problems has been streamlined, using real data
examples in the body of the chapter as illustrations. New material on assessing
instrument strength has been added. An appendix on testing for weak instruments
introduces the Stock-Yogo critical values for the Cragg-Donald F-test. A Monte
Carlo experiment is included to demonstrate the properties of instrumental
variables estimators.

Chapter 11 now includes an appendix describing two alternatives to two-stage least
squares: the limited information maximum likelihood and the k-class estimators.
The Stock-Yogo critical values for LIML and k-class estimator are provided.
Monte Carlo results illustrate the properties of LIML and the k-class estimator.
Chapter 12 now contains a section on the derivation of the short-run error
correction model.

Chapter 13 now contains an example and exercise using data which includes the
recent global financial crisis.

Chapter 14 now contains a revised introduction to the ARCH model.

Chapter 15 has been restructured to give more prominence to the fixed effects and
random effects models. New sections on cluster-robust standard errors and the
Hausman-Taylor estimator have been added.

Chapter 16 includes more on post-estimation analysis within choice models. The
average marginal effect is explained and illustrated. The “delta method” is used to
create standard errors of estimated marginal effects and predictions. An appendix
gives algebraic detail on the ‘“‘delta method.”

Appendix A now introduces the concepts of derivatives and integrals. Rules for
derivatives are given, and the Taylor series approximation explained. Both
derivatives and integrals are explained intuitively using graphs and algebra, with
each in separate sections.

Appendix B includes a discussion and illustration of the properties of both discrete
and continuous random variables. Extensive examples are given, including
integration techniques for continuous random variables. The change-of-variable
technique for deriving the probability density function of a function of a
continuous random variable is discussed. The method of inversion for drawing
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random values is discussed and illustrated. Linear congruential generators for
uniform random numbers are described.

Appendix C now includes a section on kernel density estimation.

Brief answers to selected problems, along with all data files, will now be included
on the book website at www.wiley.com/college/hill.

Computer Supplement Books

The following books are offered by John Wiley and Sons as computer supplements to
Principles of Econometrics:

Using EViews for Principles of Econometrics, 4th edition, by Griffiths, Hill and
Lim [ISBN 978-1-11803207-7 or at www.coursesmart.com]. This supple-
mentary book presents the EViews 7.1 [www.eviews.com| software
commands required for the examples in Principles of Econometrics in a clear
and concise way. It includes many illustrations that are student friendly. It is
useful not only for students and instructors who will be using this software as
part of their econometrics course, but also for those who wish to learn how to
use EViews.

Using Stata for Principles of Econometrics, 4th edition, by Adkins and Hill
[ISBN 978-1-11803208-4 or at www.coursesmart.com|. This supplementary
book presents the Stata 11.1 [www.stata.com| software commands required
for the examples in Principles of Econometrics. It is useful not only for students
and instructors who will be using this software as part of their econometrics
course, but also for those who wish to learn how to use Stata. Screen shots
illustrate the use of Stata’s drop-down menus. Stata commands are explained
and the use of “do-files” illustrated.

Using SAS for Econometrics by Hill and Campbell [ISBN 978-1-11803209-1 or
at www.coursesmart.com]. This stand-alone book gives SAS 9.2 [www.sas.
com| software commands for econometric tasks, following the general outline
of Principles of Econometrics. It includes enough background material on
econometrics so that instructors using any textbook can easily use this book
as a supplement. The volume spans several levels of econometrics. It is
suitable for undergraduate students who will use “canned” SAS statistical
procedures, and for graduate students who will use advanced procedures as
well as direct programming in SAS’s matrix language; the latter is discussed in
chapter appendices.

Using Excel for Principles of Econometrics, 4th edition, by Briand and Hill
[ISBN 978-1-11803210-7 or at www.coursesmart.com|. This supplement
explains how to use Excel to reproduce most of the examples in Principles of
Econometrics. Detailed instructions and screen shots are provided explaining
both the computations and clarifying the operations of Excel. Templates are
developed for common tasks.

Using GRETL for Principles of Econometrics, 4th edition, by Adkins. This
free supplement, readable using Adobe Acrobat, explains how to use the
freely available statistical software GRETL (download from http:/gretl
.sourceforge.net). Professor Adkins explains in detail, using screen shots, how
to use GRETL to replicate the examples in Principles of Econometrics. The
manual is freely available at www.learneconometrics.com/gretl.html.
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Resources for Students

Available at both the book website, www.wiley.com/college/hill, and at the author website,
principlesofeconometrics.com, are

e Data files

e Answers to selected exercises

Data Files

Data files for the book are provided in a variety of formats at the book website www.wiley
.com/college/hill. These include
e ASCII format (*.dat). These are text files containing only data.
e Definition files (*.def). These are text files describing the data file contents, with a
listing of variable names, variable definitions, and summary statistics.
EViews (*.wfl) workfiles for each data file
Excel 2007 (*.xlsx) workbooks for each data file, including variable names in the
first row
Stata (*.dta) data files
SAS (*.sas7bdat) data files
GRETL (*.gdt) data files

Resources for Instructors

For instructors, also available at the website www.wiley.com/college/hill are
® An Instructor’s Resources Guide with complete solutions, in both Microsoft Word
and *.pdf formats, to all exercises in the text
PowerPoint Presentation Slides
e Supplementary exercises with solutions

Author Website

The authors’ website—principlesofeconometrics.com—includes

® Individual data files in each format, as well as Zip files containing data in
compressed format
Book errata
Links to other useful websites, including RATS and SHAZAM computer resources
for Principles of Econometrics, and tips on writing research papers
Answers to selected exercises
Hints and resources for writing

Acknowledgments
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Chapter

An Introduction to
Econometrics

1.1 Why Study Econometrics?

Econometrics is fundamental for economic measurement. However, its importance extends
far beyond the discipline of economics. Econometrics is a set of research tools also
employed in the business disciplines of accounting, finance, marketing and management.
It is used by social scientists, specifically researchers in history, political science, and
sociology. Econometrics plays an important role in such diverse fields as forestry
and agricultural economics. This breadth of interest in econometrics arises in part because
economics is the foundation of business analysis and is the core social science. Thus
research methods employed by economists, which includes the field of econometrics, are
useful to a broad spectrum of individuals.

Econometrics plays a special role in the training of economists. As a student of
economics, you are learning to “‘think like an economist.”” You are learning economic
concepts such as opportunity cost, scarcity, and comparative advantage. You are working
with economic models of supply and demand, macroeconomic behavior, and international
trade. Through this training you become a person who better understands the world in which
we live; you become someone who understands how markets work, and the way in which
government policies affect the marketplace.

If economics is your major or minor field of study, a wide range of opportunities is open
to you upon graduation. If you wish to enter the business world, your employer will want to
know the answer to the question, “What can you do for me?” Students taking a traditional
economics curriculum answer, ‘I can think like an economist.” While we may view such a
response to be powerful, it is not very specific, and may not be very satisfying to an employer
who does not understand economics.

The problem is that a gap exists between what you have learned as an economics student
and what economists actually do. Very few economists make their livings by studying
economic theory alone, and those who do are usually employed by universities. Most
economists, whether they work in the business world or for the government, or teach in
universities, engage in economic analysis that is in part “‘empirical.” By this we mean that
they use economic data to estimate economic relationships, test economic hypotheses, and
predict economic outcomes.

Studying econometrics fills the gap between being “‘a student of economics’ and being
‘““a practicing economist.” With the econometric skills you will learn from this book,
including how to work with econometric software, you will be able to elaborate on your
answer to the employer’s question above by saying ““I can predict the sales of your product.”
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“I can estimate the effect on your sales if your competition lowers its price by $1 per
unit.” I can test whether your new ad campaign is actually increasing your sales.” These
answers are music to an employer’s ears, because they reflect your ability to think like an
economist and to analyze economic data. Such pieces of information are keys to good
business decisions. Being able to provide your employer with useful information will make
you a valuable employee and increase your odds of getting a desirable job.

On the other hand, if you plan to continue your education by enrolling in graduate school
or law school, you will find that this introduction to econometrics is invaluable. If your goal
is to earn a master’s or Ph.D. degree in economics, finance, accounting, marketing,
agricultural economics, sociology, political science, or forestry, you will encounter
more econometrics in your future. The graduate courses tend to be quite technical
and mathematical, and the forest often gets lost in studying the trees. By taking this
introduction to econometrics you will gain an overview of what econometrics is about and
develop some “intuition” about how things work before entering a technically oriented
course.

1.2 What Is Econometrics About?

At this point we need to describe the nature of econometrics. It all begins with a theory from
your field of study—whether it is accounting, sociology or economics—about how
important variables are related to one another. In economics we express our ideas about
relationships between economic variables using the mathematical concept of a function. For
example, to express a relationship between income and consumption, we may write

CONSUMPTION = f(INCOME)

which says that the level of consumption is some function, f{(e), of income.
The demand for an individual commodity—say, the Honda Accord—might be expressed as

Q? =f(P, P*, P°, INC)

which says that the quantity of Honda Accords demanded, QY is a function

f(P, P5, P¢, INC) of the price of Honda Accords P, the price of cars that are substitutes

P?, the price of items that are complements P° (like gasoline), and the level of income INC.
The supply of an agricultural commodity such as beef might be written as

Q =f(P, P, P

where Q° is the quantity supplied, P is the price of beef, P is the price of competitive
products in production (e.g., the price of hogs), and P/ is the price of factors or inputs (e.g.,
the price of corn) used in the production process.

Each of the above equations is a general economic model that describes how we visualize
the way in which economic variables are interrelated. Economic models of this type guide
our economic analysis.

For most economic decision or choice problems, it is not enough to know that certain
economic variables are interrelated, or even the direction of the relationship. In addition, we
must understand the magnitudes involved. That is, we must be able to say how much a
change in one variable affects another.
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Econometrics is about how we can use theory and data from economics, business, and the
social sciences, along with tools from statistics, to answer ‘““how much” questions.

1.2.1 SoME EXAMPLES

As a case in point, consider the problem faced by a central bank. In the United States, this is
the Federal Reserve System, with Ben Bernanke as chairman of the Federal Reserve Board
(FRB). When prices are observed to rise, suggesting an increase in the inflation rate, the FRB
must make a decision about whether to dampen the rate of growth of the economy. It can do
so by raising the interest rate it charges its member banks when they borrow money (the
discount rate) or the rate on overnight loans between banks (the federal funds rate).
Increasing these rates sends a ripple effect through the economy, causing increases in other
interest rates, such as those faced by would-be investors, who may be firms seeking funds for
capital expansion or individuals who wish to buy consumer durables like automobiles and
refrigerators. This has the economic effect of increasing costs, and consumers react by
reducing the quantity of the durable goods demanded. Overall, aggregate demand falls,
which slows the rate of inflation. These relationships are suggested by economic theory.

The real question facing Chairman Bernanke is “How much should we increase the
discount rate to slow inflation and yet maintain a stable and growing economy?’’ The answer
will depend on the responsiveness of firms and individuals to increases in the interest
rates and to the effects of reduced investment on gross national product (GNP). The key
elasticities and multipliers are called parameters. The values of economic parameters are
unknown and must be estimated using a sample of economic data when formulating
economic policies.

Econometrics is about how to best estimate economic parameters given the data we have.
“Good” econometrics is important, since errors in the estimates used by policymakers such
as the FRB may lead to interest rate corrections that are too large or too small, which has
consequences for all of us.

Every day, decision-makers face ‘““how much” questions similar to those facing Chair-
man Bernanke:

e A city council ponders the question of how much violent crime will be reduced if an
additional million dollars is spent putting uniformed police on the street.

e The owner of a local Pizza Hut must decide how much advertising space to purchase
in the local newspaper, and thus must estimate the relationship between advertising
and sales.

e Louisiana State University must estimate how much enrollment will fall if tuition is
raised by $300 per semester, and thus whether its revenue from tuition will rise or fall.

e The CEO of Proctor & Gamble must estimate how much demand there will be in ten
years for the detergent Tide, and how much to invest in new plant and equipment.

e A real estate developer must predict by how much population and income
will increase to the south of Baton Rouge, Louisiana, over the next few years,
and whether it will be profitable to begin construction of a gambling casino and golf
course.

*  You must decide how much of your savings will go into a stock fund, and how much
into the money market. This requires you to make predictions of the level of economic
activity, the rate of inflation, and interest rates over your planning horizon.
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e A public transportation council in Melbourne, Australia, must decide how an increase
in fares for public transportation (trams, trains, and buses) will affect the number of
travelers who switch to car or bike, and the effect of this switch on revenue going to
public transportation.

To answer these questions of “how much,” decision-makers rely on information provided
by empirical economic research. In such research, an economist uses economic theory
and reasoning to construct relationships between the variables in question. Data on these
variables are collected and econometric methods are used to estimate the key underlying
parameters and to make predictions. The decision-makers in the above examples obtain
their “estimates” and “‘predictions” in different ways. The Federal Reserve Board has a
large staff of economists to carry out econometric analyses. The CEO of Proctor &
Gamble may hire econometric consultants to provide the firm with projections of sales.
You may get advice about investing from a stock broker, who in turn is provided with
econometric projections made by economists working for the parent company. Whatever
the source of your information about “how much’ questions, it is a good bet that there is
an economist involved who is using econometric methods to analyze data that yield the
answers.

In the next section, we show how to introduce parameters into an economic model, and
how to convert an economic model into an econometric model.

1.3 The Econometric Model

What is an econometric model, and where does it come from? We will give you a general
overview, and we may use terms that are unfamiliar to you. Be assured that before you are
too far into this book, all the terminology will be clearly defined. In an econometric model
we must first realize that economic relations are not exact. Economic theory does not claim
to be able to predict the specific behavior of any individual or firm, but rather describes the
average or systematic behavior of many individuals or firms. When studying car sales we
recognize that the actual number of Hondas sold is the sum of this systematic part and a
random and unpredictable component e that we will call a random error. Thus, an
econometric model representing the sales of Honda Accords is

Q! =f(P, P’, P, INC) + ¢

The random error e accounts for the many factors that affect sales that we have omitted from
this simple model, and it also reflects the intrinsic uncertainty in economic activity.

To complete the specification of the econometric model, we must also say something
about the form of the algebraic relationship among our economic variables. For example, in
your first economics courses quantity demanded was depicted as a linear function of price.
We extend that assumption to the other variables as well, making the systematic part of the
demand relation

(P, P, P°, INC) = B1 + BoP + BsP' + BaP + BsINC
The corresponding econometric model is

07 = B 4 BoP + B3P* + BaP° + BsINC + ¢
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The coefficients B, B2, ...,Bs are unknown parameters of the model that we estimate
using economic data and an econometric technique. The functional form represents a
hypothesis about the relationship between the variables. In any particular problem, one
challenge is to determine a functional form that is compatible with economic theory and the
data.

In every econometric model, whether it is a demand equation, a supply equation, or a
production function, there is a systematic portion and an unobservable random component.
The systematic portion is the part we obtain from economic theory, and includes an
assumption about the functional form. The random component represents a ‘‘noise’
component, which obscures our understanding of the relationship among variables, and
which we represent using the random variable e.

We use the econometric model as a basis for statistical inference. Using the econometric
model and a sample of data, we make inferences concerning the real world, learning
something in the process. The ways in which statistical inference are carried out include

¢ Estimating economic parameters, such as elasticities, using econometric methods

e Predicting economic outcomes, such as the enrollment in two-year colleges in the
United States for the next ten years

e Testing economic hypotheses, such as the question of whether newspaper advertis-
ing is better than store displays for increasing sales

Econometrics includes all of these aspects of statistical inference. As we proceed through
this book, you will learn how to properly estimate, predict, and test, given the characteristics
of the data at hand.

1.4 How Are Data Generated?

In order to carry out statistical inference we must have data. Where do data come from?
What type of real processes generate data? Economists and other social scientists work in
a complex world in which data on variables are “observed” and rarely obtained from a
controlled experiment. This makes the task of learning about economic parameters all the
more difficult. Procedures for using such data to answer questions of economic importance
are the subject matter of this book.

1.4.1 EXPERIMENTAL DATA

One way to acquire information about the unknown parameters of economic relationships
is to conduct or observe the outcome of an experiment. In the physical sciences and
agriculture, it is easy to imagine controlled experiments. Scientists specify the values of
key control variables and then observe the outcome. We might plant similar plots of
land with a particular variety of wheat, then vary the amounts of fertilizer and pesticide
applied to each plot, observing at the end of the growing season the bushels of wheat
produced on each plot. Repeating the experiment on N plots of land creates a sample of N
observations. Such controlled experiments are rare in business and the social sciences.
A key aspect of experimental data is that the values of the explanatory variables can be
fixed at specific values in repeated trials of the experiment.

One business example comes from marketing research. Suppose we are interested in the
weekly sales of a particular item at a supermarket. As an item is sold it is passed over a



6 AN INTRODUCTION TO ECONOMETRICS

scanning unit to record the price and the amount that will appear on your grocery bill. But at
the same time, a data record is created, and at every point in time the price of the item and the
prices of all its competitors are known, as well as current store displays and coupon usage.
The prices and shopping environment are controlled by store management, so this
“experiment”’ can be repeated a number of days or weeks using the same values of the
““control” variables.

There are some examples of planned experiments in the social sciences, but they are rare
because of the difficulties in organizing and funding them. A notable example of a planned
experiment is Tennessee’s Project Star.' This experiment followed a single cohort of
elementary school children from kindergarten through the third grade, beginning in 1985
and ending in 1989. In the experiment children were randomly assigned within schools into
three types of classes: small classes with 13—17 students, regular-sized classes with 22-25
students, and regular-sized classes with a full-time teacher aide to assist the teacher. The
objective was to determine the effect of small classes on student learning, as measured by
student scores on achievement tests. We will analyze the data in Chapter 7, and show that
small classes significantly increase performance. This finding will influence public policy
towards education for years to come.

1.4.2 NONEXPERIMENTAL DATA

An example of nonexperimental data is survey data. The Public Policy Research Lab at
Louisiana State University (www.survey.lsu.edu/) conducts telephone and mail surveys for
clients. In a telephone survey, numbers are selected randomly and called. Responses to
questions are recorded and analyzed. In such an environment, data on all variables are
collected simultaneously, and the values are neither fixed nor repeatable. These are
nonexperimental data.

Such surveys are carried out on a massive scale by national governments. For
example, the Current Population Survey (CPS)® is a monthly survey of about 50,000
households conducted by the U.S. Bureau of the Census. The survey has been conducted
for more than 50 years. The CPS web site says “CPS data are used by government
policymakers and legislators as important indicators of our nation’s economic situation
and for planning and evaluating many government programs. They are also used by the
press, students, academics, and the general public.” In Section 1.8 we describe some
similar data sources.

1.5 Economic Data Types

Economic data comes in a variety of “flavors.” In this section we describe and give an
example of each. In each example, be aware of the different data characteristics, such as the
following:

1. Data may be collected at various levels of aggregation:

o micro—data collected on individual economic decision-making units such as
individuals, households, and firms.

! See www.heros-inc.org/star.htm for program description, public use data, and extensive literature.
2 www.census.gov/cps/
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o macro—data resulting from a pooling or aggregating over individuals, house-
holds, or firms at the local, state, or national levels.

2. Data may also represent a flow or a stock:

o flow—outcome measures over a period of time, such as the consumption of
gasoline during the last quarter of 2010.

o stock—outcome measured at a particular point in time, such as the quantity of
crude oil held by Exxon in its U.S. storage tanks on November 1, 2010, or the
asset value of the Wells Fargo Bank on July 1, 2009.

3. Data may be quantitative or qualitative:

e quantitative—outcomes such as prices or income that may be expressed as
numbers or some transformation of them, such as real prices or per capita income.

o qualitative—outcomes that are of an ‘“‘either-or” situation. For example, a
consumer either did or did not make a purchase of a particular good, or a person
either is or is not married.

1.5.1 TiME-SERIES DATA

A time-series is data collected over discrete intervals of time. Examples include the
annual price of wheat in the United States and the daily price of General Electric stock
shares. Macroeconomic data are usually reported in monthly, quarterly, or annual terms.
Financial data, such as stock prices, can be recorded daily, or at even higher frequencies.
The key feature of time-series data is that the same economic quantity is recorded at a
regular time interval.

For example, the annual real gross domestic product (GDP) is depicted in Figure 1.1.
A few values are given in Table 1.1. For each year, we have the recorded value. The data
are annual, or yearly, and have been ‘“‘deflated” by the Bureau of Economic Analysis to
billions of real 2005 dollars.
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rrGUrRe 1.1 Real U.S. GDP, 1980-2008.°

3 Source: www.bea.gov/national/index.htmé#personal.
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Table 1.1 Annual GDP (Billions
of Real 2005 Dollars)

Year GDP

2001 11347.2
2002 11553.0
2003 11840.7
2004 12263.8
2005 12638.4
2006 12976.2
2007 13254.1
2008 13312.2

1.5.2 Cross-SEcTION DATA

A cross-section of data is collected across sample units in a particular time period. Examples
are income by counties in California during 2009 or high school graduation rates by state in
2008. The ‘““sample units” are individual entities and may be firms, persons, households,
states, or countries. For example, the Current Population Survey reports results of personal
interviews on a monthly basis, covering such items as employment, unemployment,
earnings, educational attainment, and income. In Table 1.2 we report a few observations
from the August, 2009 survey on the variables RACE, EDUCATION, MARITIAL STATUS,
SEX, HOURS (usual number of hours worked), and WAGE (hourly wage 1rate).4 There are
many detailed questions asked of the respondents.

1.5.3 PaNEL OR LoNGITUDINAL DATA

A “‘panel” of data, also known as ‘“‘longitudinal” data, has observations on individual
micro-units who are followed over time. For example, the Panel Study of Income Dynamics

Table 1.2 Cross Section Data: CPS August 2009

Variables
Individual RACE EDUCATION MARITAL_STATUS SEX HOURS WAGE
1 White 10th Grade Never Married Male 2 8.00
2 White Assoc Degree Married Male 40 10.81
3 Other Some College No Degree  Divorced Male 38 10.23
4 White High School Grad or GED Married Female 32 11.50
5 White Some College No Degree  Never Married Male 50 12.50
6 White High School Grad or GED Divorced Female 20 7.00
7 White High School Grad or GED Married Female 10 8.00
8 White 5th or 6th Grade Never Married Female 15 9.30
9 White High School Grad or GED Married Female 40 20.00

# In the actual raw data the outcomes for each individual are given in numerical codes, which then have the
identifiers similar to those that we show.
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(PSID)’ describes itself as “a nationally representative longitudinal study of nearly 9000
U.S. families. Following the same families and individuals since 1969, the PSID collects
data on economic, health, and social behavior.” Other national panels exist and many are
described at “‘Resources for Economists,” at www.rfe.org.

To illustrate, data from two rice farms® are given in Table 1.3. The data are annual
observations on rice farms (or firms) over the period 1990-1997.

The key aspect of panel data is that we observe each micro-unit, here a farm, for anumber
of time periods. Here we have amount of rice produced, area planted, labor input and
fertilizer use. If we have the same number of time period observations for each micro-unit,
which is the case here, we have a balanced panel. Usually the number of time series
observations is small relative to the number of micro-units, but not always. The Penn World
Table’ provides purchasing power parity and national income accounts converted to
international prices for 189 countries for some or all of the years 1950-2007.

1.6 The Research Process

Econometrics is ultimately a research tool. Students of econometrics plan to do research
or they plan to read and evaluate the research of others, or both. This section provides a
frame of reference and guide for future work. In particular, we show you the role of
econometrics in research.

Research is a process, and like many such activities, it flows according to an orderly
pattern. Research is an adventure, and can be fun! Searching for an answer to your question,

Table 1.3 Panel Data from Two Rice Farms

FIRM YEAR PROD AREA LABOR FERT
1 1990 7.87 2.50 160 207.5
1 1991 7.18 2.50 138 295.5
1 1992 8.92 2.50 140 362.5
1 1993 7.31 2.50 127 338.0
1 1994 7.54 2.50 145 337.5
1 1995 4.51 2.50 123 207.2
1 1996 4.37 2.25 123 345.0
1 1997 7.27 2.15 87 222.8
2 1990 10.35 3.80 184 303.5
2 1991 10.21 3.80 151 206.0
2 1992 13.29 3.80 185 374.5
2 1993 18.58 3.80 262 421.0
2 1994 17.07 3.80 174 595.7
2 1995 16.61 4.25 244 234.8
2 1996 12.28 4.25 159 479.0
2 1997 14.20 3.75 133 170.0

3 http://psidonline.isr.umich.edu/

© These data were used by O’Donnell, C.J. and W.E. Griffiths (2006), Estimating State-Contingent Production
Frontiers, American Journal of Agricultural Economics, 88(1), 249-266

7 http://pwt.econ.upenn.edu/
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seeking new knowledge, is very addictive—for the more you seek, the more new questions
you will find.

A research project is an opportunity to investigate a topic that is important to you.
Choosing a good research topic is essential if you are to complete a project successfully. A
starting point is the question, ‘“What are my interests?”” Interest in a particular topic will add
pleasure to the research effort. Also, if you begin working on a topic, other questions will
usually occur to you. These new questions may put another light on the original topic, or may
represent new paths to follow that are even more interesting to you. The idea may come after
lengthy study of all that has been written on a particular topic. You will find that “inspiration
is 99% perspiration.” That means that after you dig at a topic long enough, a new and
interesting question will occur to you. Alternatively, you may be led by your natural
curiosity to an interesting question. Professor Hal Varian® suggests that you look for ideas
outside academic journals—in newspapers, magazines, etc. He relates a story about a
research project that developed from his shopping for a new TV set.

By the time you have completed several semesters of economics classes, you will find
yourself enjoying some areas more than others. For each of us, specialized areas such as
health economics, economic development, industrial organization, public finance, resource
economics, monetary economics, environmental economics, and international trade hold a
different appeal. If you find an area or topic in which you are interested, consult the Journal
of Economic Literature (JEL) for a list of related journal articles. The JEL has a
classification scheme that makes isolating particular areas of study an easy task. Alter-
natively, type a few descriptive words into your favorite search engine and see what pops up.

Once you have focused on a particular idea, begin the research process, which generally
follows steps like these:

1. Economic theory gives us a way of thinking about the problem. Which economic
variables are involved, and what is the possible direction of the relationship(s)?
Every research project, given the initial question, begins by building an economic
model and listing the questions (hypotheses) of interest. More questions will occur
during the research project, but it is good to list those that motivate you at the
project’s beginning.

2. The working economic model leads to an econometric model. We must choose a
functional form and make some assumptions about the nature of the error term.

3. Sample data are obtained and a desirable method of statistical analysis chosen, based
on initial assumptions and an understanding of how the data were collected.

4. Estimates of the unknown parameters are obtained with the help of a statistical
software package, predictions are made, and hypothesis tests are performed.

5. Model diagnostics are performed to check the validity of assumptions. For example,
were all of the right-hand-side explanatory variables relevant? Was an adequate
functional form used?

6. The economic consequences and the implications of the empirical results are
analyzed and evaluated. What economic resource allocation and distribution results
are implied, and what are their policy-choice implications? What remaining ques-
tions might be answered with further study or with new and better data?

8 “How to Build an Economic Model in Your Spare Time,” The American Economist, 41(2), Fall 1997,
pp. 3-10.
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These steps provide some direction for what must be done. However, research always
includes some surprises that may send you back to an earlier point in your research plan or
that may even cause you to revise it completely. Research requires a sense of urgency, which
keeps the project moving forward, the patience not to rush beyond careful analysis, and the
willingness to explore new ideas.

1.7 Writing An Empirical Research Paper

Research provides you the reward of new knowledge, but it is incomplete until a research
paper or report is written. The process of writing forces the distillation of ideas. In no other
way will your depth of understanding be so clearly revealed. When you have difficulty
explaining a concept or thought, it may mean that your understanding is incomplete.
Thus, writing is an integral part of research. We provide this section as a building block for
future writing assignments. Consult it as needed. You will find other tips on writing
economics papers on the book website, http://principlesofeconometrics.com.

1.7.1 WRITING A RESEARCH PROPOSAL

After you have selected a specific topic, it is a good idea to write up a brief project summary,
or proposal. Writing it will help to focus your thoughts about what you really want to do.
Show it to your colleagues or instructor for preliminary comments. The abstract should be
short, usually no longer than 500 words, and should include

1. A concise statement of the problem
2. Comments on the information that is available, with one or two key references

3. A description of the research design that includes
(a) the economic model
(b) the econometric estimation and inference methods
(c) data sources
(d) estimation, hypothesis testing and prediction procedures, including econometric
software version

4. The potential contribution of the research

1.7.2 A FORMAT FOR WRITING A RESEARCH REPORT

Economic research reports have a standard format in which the various steps of the research
project are discussed and the results interpreted. The following outline is typical.

1. Statement of the Problem The place to start your report is with a summary of the
questions you wish to investigate as well as why they are important and who should
be interested in the results. This introductory section should be nontechnical and
should motivate the reader to continue reading the paper. It is also useful to map out
the contents of the following sections of the report. This is the first section to work on,
and also the last. In today’s busy world, the reader’s attention must be garnered very
quickly. A clear, concise, well-written introduction is a must, and is arguably the
most important part of the paper.
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2. Review of the Literature Briefly summarize the relevant literature in the research
area you have chosen, and clarify how your work extends our knowledge. By all
means, cite the works of others who have motivated your research, but keep it brief.
You do not have to survey everything that has been written on the topic.

3. The Economic Model Specify the economic model that you used, and define the
economic variables. State the model’s assumptions, and identify hypotheses that you
wish to test. Economic models can get complicated. Your task is to explain the model
clearly, but as briefly and simply as possible. Don’t use unnecessary technical jargon.
Use simple terms instead of complicated ones when possible. Your objective is to
display the quality of your thinking, not the extent of your vocabulary.

4. The Econometric Model Discuss the econometric model that corresponds to the
economic model. Make sure you include a discussion of the variables in the model,
the functional form, the error assumptions, and any other assumptions that you make.
Use notation that is as simple as possible, and do not clutter the body of the paper with
long proofs or derivations; these can go into a technical appendix.

5. The Data Describe the data you used, as well as the source of the data and any
reservations you have about their appropriateness.

6. The Estimation and Inference Procedures Describe the estimation methods you
used and why they were chosen. Explain hypothesis testing procedures and their
usage. Indicate the software used and the version, such as Stata 11.1 or EViews 7.1

7. The Empirical Results and Conclusions Report the parameter estimates, their
interpretation, and the values of test statistics. Comment on their statistical sig-
nificance, their relation to previous estimates, and their economic implications.

8. Possible Extensions and Limitations of the Study Your research will raise questions
about the economic model, data, and estimation techniques. What future research is
suggested by your findings, and how might you go about performing it?

9. Acknowledgments It is appropriate to recognize those who have commented on
and contributed to your research. This may include your instructor, a librarian
who helped you find data, or a fellow student who read and commented on your
paper.

10. References An alphabetical list of the literature you cite in your study, as well as
references to the data sources you used.

Once you’ve written the first draft, use your computer’s software spelling checker to check
for errors. Have a friend read the paper, make suggestions for clarifying the prose, and check
your logic and conclusions. Before you submit the paper, you should eliminate as many
errors as possible. Your work should look good. Use a word processor, and be consistent with
font sizes, section headings, style of footnotes, references, and so on. Often software
developers provide templates for term papers and theses. A little searching for a good paper
layout before beginning is a good idea. Typos, missing references, and incorrect formulas
can spell doom for an otherwise excellent paper. Some do’s and don’ts are summarized
nicely, and with good humor, by Deidre N. McClosky in Economical Writing, 2nd edition
(Prospect Heights, IL: Waveland Press, Inc., 1999).

While it is not a pleasant topic to discuss, you should be aware of the rules of plagiarism.
You must not use someone else’s words as if they were your own. If you are unclear about
what you can and cannot use, check with the style manuals listed in the next paragraph, or
consult your instructor.
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The paper should have clearly defined sections and subsections. The equations, tables
and figures should be numbered. References and footnotes should be formatted in an
acceptable fashion. A style guide is a good investment. Two classics are:

e The Chicago Manual of Style, 15th edition, is available online and in other formats.

* A Manual for Writers of Research Papers, Theses, and Dissertations: Chicago Style for
Students and Researchers, Tthedition, by Kate L. Turabian; revised by Wayne C. Booth,
Gregory G. Colomb, and Joseph M Williams (2007, University of Chicago Press).

1.8 Sources of Economic Data

Economic data are much easier to obtain since the development of the World Wide Web. In
this section we direct you to some places on the Internet where economic data are accessible.
During your study of econometrics, browse some of the sources listed to gain some
familiarity with data availability.

1.8.1 Links To EcoNomic DATA ON THE INTERNET
There are a number of fantastic sites on the World Wide Web for obtaining economic data.

Resources for Economists (RFE)

www.rfe.org is a primary gateway to resources on the Internet for economists. This excellent
site is the work of Bill Goffe. Here you will find links to sites for economic data and to sites of
general interest to economists. The Data link has these broad data categories:

e U.S. Macro and Regional Data Here you will find links to various data sources such
as the Bureau of Economic Analysis, Bureau of Labor Statistics, Economic Reports of
the President, and the Federal Reserve Banks.

e Other U.S. Data Here you will find links to the U.S. Census Bureau, as well as links to
many panel and survey data sources. The gateway to U.S. government agencies is
FedStats [www.fedstats.gov/]. Once there, click on Agencies to see a complete list of
U.S. government agencies and links to their homepages.

o World and Non-U.S. Data Here there are links to world data, such as at the CIA
Factbook and the Penn World Tables, as well as international organizations such as
the Asian Development Bank, the International Monetary Fund, the World Bank, and
so on. There are also links to sites with data on specific countries and sectors of the
world.

e Finance and Financial Markets Here there are links to sources of U.S. and world
financial data on variables such as exchange rates, interest rates, and share prices.

e Journal Data and Program Archives Some economic journals post data used in
articles. Links to these journals are provided here. (Many of the articles in these
journals will be beyond the scope of undergraduate economics majors.)

National Bureau of Economic Research (NBER)
www.nber.org/data/ provides access to a great amount of data. There are headings for
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*  Macro Data

e Industry Data

e [nternational Trade Data

e Individual Data

* Hospital Data

e Demographic and Vital Statistics
e Patent and Scientific Papers Data
e Other Data

EconEdLink
www.econedlink.org/datalinks/ is provided by the Council for Economic Education. It
provides links to data and their explanation.

Economagic

Some Web sites make extracting data relatively easy. For example, Economagic [www
.economagic.com/] is an excellent and easy-to-use source of macro time series (some
100,000 series available). The data series are easily viewed in a copy and paste format, or
graphed.

1.8.2 INTERPRETING EcoNomic DaAtA

In many cases it is easier to obtain economic data than it is to understand the meaning of the
data. It is essential when using macroeconomic or financial data that you understand the
definitions of the variables. Just what is the index of leading economic indicators? What is
included in personal consumption expenditures? You may find the answers to some
questions like these in your textbooks. Another resource you might find useful is A Guide
to Everyday Economic Statistics, 6th edition, by Gary E. Clayton and Martin Gerhard
Giesbrecht, (Boston: Irwin/McGraw-Hill 2003). This slender volume examines how
economic statistics are constructed, and how they can be used.

1.8.3 OBTAINING THE DATA

Finding a data source is not the same as obtaining the data. Although there are a great many
easy-to-use websites, “easy-to-use’ is a relative term. The data will come packaged in a
variety of formats. It is also true that there are many, many variables at each of these
websites. A primary challenge is identifying the specific variables that you want, and what
exactly they measure. The following examples are illustrative.

The Federal Reserve Bank of St. Louis® has a system called FRED (Federal Reserve
Economic Data). Under “Categories’ there are links to Banking, Business/Fiscal, and so
on. Select Gross Domestic Product (GDP) and its Components. 19 Select “Download Data.”
There are three ZIP (compressed) files available, one containing the data in Excel format,
another as space-delimited text, and a third comma-separated text. If the data are down-
loaded in either of the text formats, they must be read into your statistical software before

° http://research.stlouisfed.org/fred2/
10 http://research.stlouisfed.org/fred2/categories/18
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analysis. For these steps you need specific knowledge for the software available to you.
Accompanying Principles of Econometrics, 4e, are computer manuals for Excel, EViews,
Stata, and SAS to aid this process. See the publisher website www.wiley.com/college/hill,
or the book website at http://principlesofeconometrics.com for a description of these aids.

The Current Population Survey (www.census.gov/cps/) has a tool called Data Ferrett.
This tool will help you find and download data series that are of particular interest to you.
There are tutorials that guide you through the process. Variable descriptions, as well as the
specific survey questions, are provided to aid in your selection. It is somewhat like an
Internet shopping site. Desired series are “‘ticked’” and added to a “Shopping Basket.” Once
you have filled your basket, you download the data to use with specific software. Other Web-
based data sources operate in this same manner. One example is the Panel Study of Income
Dynamics (PSID)."!

The Penn World Tables'? offer data downloads in Excel spreadsheets, as comma-
separated text files, and in SAS (a particular software) format.

You can expect to find massive amounts of readily available data at the various sites we
have mentioned, but there is a learning curve. You should not expect to find, download and
process the data without considerable work effort. Being skilled with Excel and statistical
software is a must if you plan to regularly use these data sources.

" http://psidonline.isr.umich.edu/
12 http://pwt.econ.upenn.edu/
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Probability Primer

Learning Objectives

REMARK: Learning Objectives and Keywords sections will appear at the beginning of
each chapter. We urge you to think about, and possibly write out answers to the questions,
and make sure you recognize and can define the keywords. If you are unsure about the
questions or answers consult your instructor. When examples are requested in Learning
Objectives sections, you should think of examples not in the book.

Based on the material in this primer you should be able to

1.
2.

10.

11.

12.

13.

Explain the difference between arandom variable and its values, and give an example.

Explain the difference between discrete and continuous random variables, and give
examples of each.

State the characteristics of a probability density function (pdf) for a discrete
random variable, and give an example.

Compute probabilities of events, given a discrete probability function.

Explain the meaning of the following statement: ‘“The probability that the discrete
random variable takes the value 2 is 0.3.”

Explain how the pdf of a continuous random variable is different from the pdf of a
discrete random variable.

Show, geometrically, how to compute probabilities given a pdf for a continuous
random variable.

Explain, intuitively, the concept of the mean, or expected value, of arandom variable.

Use the definition of expected value for a discrete random variable to compute
expectations, given a pdf fix) and a function g(X) of X.

Define the variance of a discrete random variable, and explain in what sense the
values of a random variable are more spread out if the variance is larger.

Use a joint pdf (table) for two discrete random variables to compute probabilities of
joint events and to find the (marginal) pdf of each individual random variable.

Find the conditional pdf for one discrete random variable given the value of another
and their joint pdf.
Work with single and double summation notation.

Give an intuitive explanation of statistical independence of two random variables,
and state the conditions that must hold to prove statistical independence. Give

17
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examples of two independent random variables and two dependent random
variables.

15. Define the covariance and correlation between two random variables, and compute
these values given a joint probability function of two discrete random variables.

16. Find the mean and variance of a sum of random variables.

17. Use Table 1, Cumulative Probabilities for the Standard Normal Distribution, and your
computer software to compute probabilities involving normal random variables.

Keywords
cdf expected value probability density
conditional expectation experiment function
conditional pdf indicator variable random variable
conditional probability joint probability density standard deviation
continuous random variable function standard normal
correlation marginal distribution distribution
covariance mean statistical independence
cumulative distribution normal distribution summation operations
function pdf variance
discrete random variable probability

We assume that you have had abasic probability and statistics course. In this primer we review
some essential probability concepts. Section P.1 defines discrete and continuous random
variables. Probability distributions are discussed in Section P.2. Section P.3 introduces joint
probability distributions, defines conditional probability and statistical independence. In
Section P.4 we digress and discuss operations with summations. In Section P.5 we review the
properties of probability distributions, paying particular attention to expected values and
variances. Section P.6 summarizes important facts about the normal probability distribution.
In Appendix B, “‘Probability Concepts,” are enhancements and additions to this material.

P 1 Random Variables

Benjamin Franklin is credited with the saying ‘“The only things certain in life are death and
taxes.” While not the original intent, this bit of wisdom points out that almost everything we
encounter in life is uncertain. We do not know how many games our football team will win
next season. You do not know what score you will make on the next exam. We don’t know
what the stock market index will be tomorrow. These events, or outcomes, are uncertain, or
random. Probability gives us a way to talk about possible outcomes.

Arandom variableisavariable whose valueisunknown until itis observed; in other wordsit
isavariable thatis not perfectly predictable. Each random variable has a set of possible values it
cantake. If Wis the number of games our football team wins next year, then W can take the values
0,1,2,...,13,ifthere are amaximum of 13 games. This is a discrete random variable since it
can take only a limited, or countable, number of values. Other examples of discrete random
variables are the number of computers owned by a randomly selected household, and the
number of times you will visit your physician next year. A special case occurs when a random
variable can only be one of two possible values—forexample, ina phone survey, if you are asked
if you are a college graduate or not, your answer can only be “yes’ or “no.” Outcomes like this
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can be characterized by an indicator variable taking the values one if yes, or zero if no.
Indicator variables are discrete and are used to represent qualitative characteristics such as
gender (male or female), or race (white or nonwhite).

The U.S. GDP is yet another example of a random variable, because its value is unknown
until itis observed. In the fourth quarter of 2010 it is calculated to be $14,453.8 billion dollars.
What the value will be in the second quarter of 2015 is unknown, and it cannot be predicted
perfectly. GDPis measured in dollars and it can be counted in whole dollars, but the value is so
large that counting individual dollars serves no purpose. For practical purposes GDP can take
any value in the interval zero to infinity, and it is treated as a continuous random variable.
Other common macroeconomic variables, like interest rates, investment, and consumption
are also treated as continuous random variables. In finance, stock market indices, like the Dow
Jones Industrial Index, are also treated as continuous. The key attribute of these variables that
makes them continuous is that they can take any value in an interval.

P.2 Probability Distributions

Probability is usually defined in terms of experiments. Let us illustrate this in the context of
a simple experiment. Consider the values in Table P.1 to be a population of interest.

If we were to select one cell from the table at random (imagine cutting the table into 10
equally sized pieces of paper, stirring them up, and drawing one of the slips without
looking), that would constitute a random experiment. Based on this random experiment we
can define several random variables. For example, let the random variable X be the
numerical value showing on a slip that we draw. (We use uppercase letters like X to
represent random variables in this primer). The term random variable is a bit odd, as it is
actually a rule for assigning numerical values to experimental outcomes. In the context of
Table P.1 the rule says, ‘‘Perform the experiment (stir the slips, and draw one) and for the slip
that you obtain assign X to be the number showing.” The values that X can take are denoted
by corresponding lower case letters, x, and in this case the values of X are x = 1, 2, 3, or 4.

For the experiment using the population in Table P.1, we can create a number of random
variables. Let Y be a discrete random variable designating the color of the slip, with ¥ = 1
denoting a shaded slip and Y = 0 denoting a slip with no shading (white). The numerical
values that Y can take are y = 0, 1.

Consider X, the numerical value on the slip. If the slips are equally likely to be chosen
after shuffling, then in a large number of experiments (i.e., shuffling and drawing one of the
ten slips), 10% of the time we would observe X = 1,20% of the time X = 2,30% of the time
X = 3, and 40% of the time X = 4. These are probabilities that the specific values will
occur. We would say, for example, P(X = 3) = 0.3. This interpretation is tied to the relative
frequency of a particular outcome’s occurring in a large number of random experiments.

We summarize the probabilities of possible outcomes using a probability density
function (pdf). The pdf for a discrete random variable indicates the probability of
each possible value occurring. For a discrete random variable X the value of the proba-
bility density function f{x) is the probability that the random variable X takes the value x,

Table P.1 A Population
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fix) = P(X = x).Because f(x) is a probability, it must be true that 0 < f{x) < 1 and, if X takes
n possible values xi, . .., x,, then the sum of their probabilities must be one

o)+ () + - +f(a) =1 (P.1)

For discrete random variables the pdf might be presented as a table, such as in Table P.2.
As shown in Figure P.1, the probability density function may also be represented as a bar
graph, with the height of the bar representing the probability with which the corresponding
value occurs.
The cumulative distribution function (cdf) is an alternative way to represent prob-
abilities. The cdf of the random variable X, denoted F(x), gives the probability that X is less
than or equal to a specific value x. That is,

F(x) = P(X < x) (P.2)

Using the probabilities in Table P2, we find that F(1) =P(X <1)=0.1, F(2) =
P(X<2)=0.3,F(3) =P(X <3)=0.6,and F(4) = P(X < 4) = 1. For example, using
the pdf fix) we compute the probability that X is less than or equal to 2 as

FQ)=P(X<2)=PX=1)+P(X=2)=0.1+02=03

Table P.2 Probability Density
Function of X

X Six)
1 0.1
2 0.2
3 0.3
4 0.4
0.45
0.40
0.35
0.30
2
£ 025
Ne)
£
0.20
0.15
0.10
0.05 - X value
1 2 3 4

FIGURE P.1 Probability density function for X.
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Since the sum of the probabilities P(X = 1)+ P(X =2) +P(X =3)+P(X =4) =1,
we can compute the probability that X is greater than 2 as

PX>2)=1-P(X<2)=1-F2)=1-03=07

An important difference between the pdf and cdf for X is revealed by the question, “Using
the probability distribution in Table P.2, what is the probability that X = 2.5?” This
probability is zero because X cannot take this value. The question “What is the probability
that X is less than or equal to 2.5?” does have an answer.

F(25)=P(X<25)=P(X=1)+P(X=2)=0.1+02=03

The cumulative probability can be calculated for any x between —oo and +o0.
Continuous random variables can take any value in an interval and have an uncountable
number of values. Consequently the probability of any specific value is zero. For continuous
random variables we talk about outcomes being in a certain range. Figure P.2 illustrates the
pdff(x) of a continuous random variable X that takes values of x from O to infinity. The shape
is representative of the distribution for an economic variable like an individual’s income or
wages. Areas under the curve represent probabilities that X falls in an interval. The
cumulative distribution function F(x) is defined as in (P.2). For this distribution,

P(100 < X < 200) = F(200) — F(100) = 0.90291 — 0.72747 = 0.17544  (P.3)

How are these areas obtained? The integral from calculus gives the area under a curve. We
will not compute many integrals in this book.' Instead we will use the computer and
compute cdf values and probabilities using software commands.

P.3 Joint, Marginal and Conditional Probabilities

Working with more than one random variable requires a joint probability density function.
For the population in Table P.1 we defined two random variables, X the numeric value of a

P(100 = X = 200)

FIGURE P.2 Probability density function for a continuous random variable.

! See Appendix A.4 for a brief explanation of integrals, and illustrations using integrals to compute probabilities
in Appendix B.2.1.
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randomly drawn slip, and the indicator variable Y that equals 1 if the selected slip is shaded,
and O if it is not shaded.

Using the joint probability density function for X and Y we can say “The probability of
selecting a shaded 2 is 0.10.” This is a joint probability because we are talking about the
probability of two events occurring simultaneously; the selection takes the value X = 2 and
the slip is shaded so that ¥ = 1. We can write this as

PX=2andY=1)=PX=2,Y=1)=f(x=2,y=1)=0.1

The entries in Table P.3 are probabilities f(x,y) = P(X = x,Y = y) of joint outcomes. Like
the pdf of a single random variable, the sum of the joint probabilities is 1.

P.3.1 MARGINAL DISTRIBUTIONS

Given a joint probability density function, we can obtain the probability distributions of
individual random variables, which are also known as marginal distributions. In Table P.3,
we see that a shaded slip can be obtained with the values 1, 2, 3 and 4. The probability that we
select a shaded slip is the sum of the probabilities that we obtain a shaded 1, a shaded 2, a
shaded 3 and a shaded 4. The probability that ¥ = 1 is

P(Y=1)=f(1)=0.1+0.1+01+0.1=04

This is the sum of the probabilities across the second row of the table. Similarly the
probability of drawing a white slip is the sum of the probabilities across the first row of
the table, and P(Y = 0) = fy(0) = 0+ 0.1 + 0.2 + 0.3 = 0.6. The probabilities P(X = x)
are computed similarly by summing down, across the values of Y. The joint and marginal
distributions are often reported as in Table P.4.

P.3.2 CoNDITIONAL PROBABILITY

What is the probability that a randomly chosen slip will take the value 2 given that it is
shaded? This question is about the conditional probability of the outcome X = 2 given that
the outcome Y = 1 has occurred. The effect of the conditioning is to reduce the set of
possible outcomes. Conditional on ¥ = 1 we only consider the 4 possible slips that are
shaded. One of them is a 2, so the conditional probability of the outcome X = 2 given that
Y = 11s 0.25. There is a one in four chance of selecting a 2 given only the shaded slips.
Conditioning reduces the size of the population under consideration, and conditional
probabilities characterize the reduced population. For discrete random variables the

Table P.3 Joint Probability Density Function for X and Y

X
y 1 2 3 4
0 0 0.1 0.2 0.3
1 0.1 0.1 0.1 0.1

2 Similar calculations for continuous random variables use integration. See Appendix B.2.3 for an illustration.
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Table P.4 Joint and Marginal Probabilities

Vi 1 2 3 4 o)
0 0 0.1 0.2 0.3 0.6
1 0.1 0.1 0.1 0.1 0.4
fx) 0.1 0.2 0.3 0.4

probability that the random variable X takes the value x given that Y =y is written
P(X = x|Y = y). This conditional probability is given by the conditional pdf f(x|y)

Faly) = PX = afy = y) = PE=RT =9)_J&) (P.4)

PY=y)  f(y)

where fy(y) is the marginal pdf of Y.
Using the marginal probability P(Y = 1) = 0.4, the conditional pdf of X given Y = 1 is
obtained by using (P.4) for each value of X. For example,

fx=2ly=1)=PX=2|Y=1)
PX=2Y=1) f(x=2,y=1)

T Pr=1 s
0.1
:ﬂ:O.ZS

A key point to remember is that by conditioning we are considering only the subset of a
population for which the condition holds. Probability calculations are then based on the
“new’”” population. We can repeat this process for each value of X to obtain the complete
conditional probability density function given in Table P.5.

P.3.3 StATISTICAL INDEPENDENCE

When selecting a shaded slip from Table P.1, the probability of selecting each possible
outcome, x = 1, 2, 3 and 4 is 0.25. In the population of shaded slips the numeric values are
equally likely. The probability of randomly selecting X = 2 from the entire population,
from the marginal pdf, is P(X = 2) = fx(2) = 0.2. This is different from the conditional
probability. Knowing that the slip is shaded tells us something about the probability of
obtaining X = 2. Such random variables are dependent in a statistical sense. Two random
variables are statistically independent if the conditional probability that X = x given that
Y =y, is the same as the unconditional probability that X = x. This means, if X and Y are
independent random variables, then

Table P.5 Conditional Probability of X given ¥ = 1

X 1 2 3 4

flxly=1) 0.25 0.25 0.25 0.25
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PX=x|Y=y)=PX=x) (P.5)

Equivalently, if X and Y are independent, then the conditional pdf of X given Y = y is the
same as the unconditional, or marginal, pdf of X alone,

= fx(x) (P.6)

Solving (P.6) for the joint pdf, we can also say that X and Y are statistically independent if
their joint pdf factors into the product of their marginal pdf’s

PX =x,Y=y) =f(x,y) =fx(x)fr(y) = P(X =x) x P(Y = y) (P.7)

If (P.5) or (P.7) is true for each and every pair of values x and y, then X and Y are
statistically independent. This result extends to more than two random variables. The rule
allows us to check the independence of random variables X and Y in Table P4. If (P.7) is
violated for any pair of values, then X and Yare not statistically independent. Consider the
pair of values X = l and ¥ = 1.

PX=1Y=1)=f1,1)=014f1)f(1)=PX=1)xP(Y=1)=0.1 x 04
=0.04

The joint probability is 0.1 and the product of the individual probabilities is 0.04. Since these
are not equal, we can conclude that X and Y are not statistically independent.

P4 A Digression: Summation Notation

Throughout this book we will use a summation sign, denoted by the Greek symbol 2, to
shorten algebraic expressions. Suppose the random variable X takes the values xj, x, . . .,

x15. The sum of these values is x; + x> + - - - + x;5. Rather than write this sum out each time
15 15
we will representitas X x;, sothat 2 x; = x; + X2 + - - - + x;5. If we sum n terms, a general

i=1 i=1
n
number, then the summation will be Y, x; = x| + x» + - - - + x,,. In this notation
i=1
e The symbol 2, is the capital Greek letter sigma, and means ‘‘the sum of.”

e The letter i is called the index of summation. This letter is arbitrary and may also
appear as t, j, or k.
n

e The expression ., x; is read “the sum of the terms x;, from i equal one to n.”

=1
« The numbers 1 and n are the lower limit and upper limit of summation.
The following rules apply to the summation operation.

Sum 1. The sum of » values x, ..., x, is

n
Xp = X1+ X+ Xy
=1

v
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Sum 2. If a is a constant then

M=

n
ax;i=a Y, Xx;
i=1

Sum 3. If a is a constant then

a=a+a—+---+a=na

It=

Sum 4. If X and Y are two variables, then

R

n n
(xi +yi) = '21 Xi + '21 Yi
i= i=

1

Sum 5. If X and Y are two variables, then

(ax; + by;)) = a ;1 xi+b ;1 vi

i=1
Sum 6. The arithmetic mean (average) of n values of X is

n

Elxi_xl +X A Xy

n n

f:

Sum 7. A property of the average is that

M=
£

I
Na’

I
™M
=

|

M=
=l

|

I M=
=

|
5‘

|

I M=
=

|

M=

.X[:O

Sum 8. We often use an abbreviated form of the summation notation. For example, if f{x)
is a function of the values of X,

iglf(xi) :f(xl) +f(x2) 4. +f(xn)
= 2f(x;) (“Sum over all values of the index i)

=Yf(x) (“Sum over all possible values of X"*)

Sum 9. Several summation signs can be used in one expression. Suppose the variable Y
takes n values and X takes m values, and let f(x,y) = x+y. Then the double
summation of this function is

{¥E
T
{¥E
T

fxiy) = (xi + ;)

J
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To evaluate such expressions work from the innermost sum outward. First seti = 1 and sum
over all values of j, and so on. That is,

5 S0 = 2[00 v2) + -+ 1)

P.5 Properties of Probability Distributions

Figures P.1 and P.2 give us a picture of how frequently values of the random variables will
occur. Two key features of a probability distribution are its center (location) and width
(dispersion). A key measure of the center is the mean, or expected value. Measures of
dispersion are variance, and its square root, the standard deviation.

P.5.1 EXPECTED VALUE OF A RANDOM VARIABLE

The mean of arandom variable is given by its mathematical expectation. If X is a discrete
random variable taking the values xi,...,x,, then the mathematical expectation, or
expected value, of X is

E(X) = X1P(X = xl) —‘r)CzP(X = XQ) —+ .- +an(X = x,,) (PS)

The expected value, or mean, of X is a weighted average of its values, the weights being the
probabilities that the values occur. The mean is often symbolized by w or y. Itis the average
value of the random variable in an infinite number of repetitions of the underlying
experiment. The mean of a random variable is the population mean. We use Greek letters
for population parameters because later on we will use data to estimate these real world
unknowns. In particular, keep separate the population mean p and the arithmetic (or
sample) mean X that we introduced in Section P4 as Sum 6. This can be particularly
confusing when a conversation includes the term “mean’” without the qualifying term
“population” or “arithmetic.” Pay attention to the usage context.
For the population in Table P.1, the expected value of X is

EX)=1xPX=1)+2xPX=2)+3xPX=3)+4xPX=4)
=(1x01)+(2x02)+(3x03)+(4x04)=3

For a discrete random variable the probability that X takes the value x is given by its pdf f(x),
P(X = x) = f(x). The expected value in (P.8) can be written equivalently as

E(X) =x1f(x1) +x2f(x2) + - 4+ x0f(x0)
xif (x;) = g,xf(x)

Mx
(P.9)

Il
T4
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Using (P.9), the expected value of X, the numeric value on a randomly drawn slip from
Table P.1 is

wy = E(X) = il f(x) = (1x0.1)+(2%x02) + (3 x0.3) + (4 x0.4) =3

What does this mean? Draw one “‘slip”” at random from Table P.1, and observe its numerical
value X. This constitutes an experiment. If we repeat this experiment many times, the values
x =1, 2, 3, and 4 will appear 10%, 20%, 30%, and 40% of the time, respectively. The
arithmetic average of all the numerical values will approach .y = 3, as the number of draws
becomes large. The key point is that the expected value of the random variable is the
average value that occurs in many repeated trials of an experiment.

For continuous random variables, the interpretation of the expected value of X is
unchanged—it is the average value of X if many values are obtained by repeatedly
performing the underlying random experiment.’

P.5.2 ConNDITIONAL EXPECTATION

Many economic questions are formulated in terms of conditional expectation, or the
conditional mean. One example is, “What is the mean (expected value) wage of a person
who has 16 years of education?” In expected value notation, what is E(WAGE|
EDUCATION = 16)? For a discrete random variable the calculation of conditional expected
value uses (P.9) with the conditional probability density function f (x|y) replacing f(x), so that

iy = (XY =) = S/ (xly)

Using the population in Table P.1, what is the expected numerical value of X given that
Y = 1, the slip is shaded? The conditional probabilities f(x|Y = 1) are given in Table P.5.
The conditional expectation of X is

EX|Y =1)  (x|1) = 1 x f(L[1) +2 x f(2]1) +3 x f(3|]1) + 4 x f(4|1)

4

=2
x=1

= 1(0.25) +2(0.25) + 3(0.25) + 4(0.25) = 2.5

The average value of X in many repeated trials of the experiment of drawing from the

shaded slips is 2.5. This example makes a good point about expected values in general,

namely that the expected value of X does not have to be a value that X can take. The expected
value of X is not the value that you expect to occur in any single experiment.

P.5.3 RuLEs FOR EXPECTED VALUES

Functions of random variables are also random. If g(X) is a function of the random variable
X, then g(X) is also random. If X is a discrete random variable, then the expected value of
g(X) is obtained using calculations similar to those in (P.9)

3 Since there are now an uncountable number of values to sum, mathematically we must replace the
“summation over all possible values” in (P.9) by the “integral over all possible values.” See Appendix B.2.2
for a brief discussion.
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Elg(X)] =X g(x)f(x) (P.10)
For example, if a is a constant, then g(X) = aX is a function of X, and

E(aX) = E[g(X)] = Zg(x)(x)
= Zaxf(x) = aZxf(x)
= aE(X)

Similarly, if a and b are constants, then we can show that
E(aX +b)=aE(X)+b (P.11)
If g1(X) and g»(X) are functions of X, then
E[g1(X) + g2(X)] = E[g1(X)] + E[g2(X)] (P.12)
This rule extends to any number of functions. Remember the phrase “the expected value of

a sum is the sum of the expected values.”

P.5.4 VARIANCE OF A RANDOM VARIABLE

The variance of a discrete or continuous random variable X is the expected value of
2
8(X) = [X — E(X)]

The variance of a random variable is important in characterizing the scale of measurement
and the spread of the probability distribution. We give it the symbol o>, or 0%, read “‘sigma
squared.” The variance o has a Greek symbol because it is a population parameter.
Algebraically, letting E(X) = w, using the rules of expected values and the fact that
E(X) = p is not random, we have

var(X) = 0% = E(X — p)*

X? —2pX +p?) = E(X?) — 2pE(X) + p? (P.13)

The calculation var(X) = E(X?) — p2 is usually simpler than var(X) = E(X — w)?, but the
solution is the same. For the population in Table P.1, we have shown that E(X) = p = 3.
Using (P.10), the expectation of the random variable g(X) = X is

4 4

E(X?) = X g(xf(x) = X £’f(x)

x=1 x=1

= [12 % 0.1] + [2 x 0.2] + [3 x 0.3] + [4* x 0.4] = 10
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Then, the variance of the random variable X is
var(X) = oy =E(X*) —p* =10-3" =1

The square root of the variance is called the standard deviation; it is denoted by ¢ or
sometimes as oy if more than one random variable is being discussed. It also measures the
spread or dispersion of a probability distribution and has the advantage of being in the same
units of measure as the random variable.

A useful property of variances is the following. Let a and b be constants, then

var(aX + b) = a*var(X) (P.14)
An additive constant like b changes the mean (expected value) of a random variable, but it
does not affect its dispersion (variance). A multiplicative constant like a affects the mean,

and it affects the variance by the square of the constant.
To see this, let ¥ = aX + b. Using (P.11)

Then
var(aX + b) = var(Y) = E[(Y - M)z] - E[(ax b — (apx + b))z}
= E[(aX — anx)’| = E[a®(X — uy)’]
= azE{(X - pux)2] = a*var(X)
The variance of a random variable is the average squared difference between the random
variable X and its mean value wy. The larger the variance of a random variable, the more
“spread out” the values of the random variable are. Figure P.3 shows two probability density

functions for a continuous random variable, both with mean p. = 3. The distribution with
the smaller variance (the solid curve) is less spread out about its mean.
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FIGURE P.3 Distributions with different variances.
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P.5.5 EXPECTED VALUES OF SEVERAL RANDOM VARIABLES

Let X and Y be random variables. The rule ““‘the expected value of the sum is the sum of the
expected values™ applies. Then®

E(X+7Y)=EX)+E(Y) (P.15)

Similarly
E(aX +bY +c¢) =aE(X) +bE(Y) + ¢ (P.16)

The product of random variables is not as easy. E(XY) = E(X)E(Y) if X and Y are
independent. These rules can be extended to more random variables.

P.5.6 CovarRiaANCE BETWEEN Two RANDOM VARIABLES

The covariance between X and Y is a measure of linear association between them. Think
about two continuous variables, such as heights and weights of children. We expect that
there is an association between height and weight, with taller than average children tending
to weigh more than the average. The product of X minus its mean times ¥ minus its mean is

(X — px) (Y — py) (P.17)

In Figure P4 we plot values (x and y) of X and Y that have been constructed so that
E(X)=E(Y)=0.

The x and y values of X and Y fall predominately in quadrants I and III, so that the
arithmetic average of the values (x — uy)(y — py) is positive. We define the covariance
between two random variables as the expected (population average) value of the product
in (P.17),

<
I I
SRR Y 1% S R
3% e o J:";" \‘ ** *
...":c‘o s ° :.. °
Po Jo o ™ .
- O . . . o..‘... z :‘-%... .
2 A N o
.: L] °
o e, R
< | III v
g 0 4

FIGURE P.4 Correlated data.

4 These results are proven in Appendix B.1.4.
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The covariance oxyof the random variables underlying Figure P.4 is positive, which tells
us that when the values x are greater than y then the values y also tend to be greater
than wy; and when the values x are below .y then the values y also tend to be less than wy
If the random variables’ values tend primarily to fall in quadrants II and IV, then
(x — px)(y — py) will tend to be negative and oxy will be negative. If the random
variables’ values are spread evenly across the four quadrants, and show neither positive nor
negative association, then the covariance is zero. The sign of oxy tells us whether the two
random variables X and Y are positively associated or negatively associated.

Interpreting the actual value of oxyis difficult because X and ¥ may have different units of
measurement. Scaling the covariance by the standard deviations of the variables eliminates
the units of measurement, and defines the correlation between X and Y

COV(X, Y) N Oxy
var(X)y/var(¥Y) OxOy

(P.19)

As with the covariance, the correlation p between two random variables measures the degree
of linear association between them. However, unlike the covariance, the correlation must lie
between —1 and 1. Thus the correlation between X and Yis 1 or —1 if X is a perfect positive or
negative linear function of Y. If there is no linear association between X and Y, then
cov(X,Y) =0and p = 0. For other values of correlation the magnitude of the absolute
value |p| indicates the ““strength” of the linear association between the values of the random
variables. In Figure P4 the correlation between X and Yis p = 0.5.

To illustrate the calculation, reconsider the population in Table P.1 with joint probability
density function given in Table P.4. The expected value of XY is

E(XY) = i ixyf(x,y):(l><0><O)+(2><O><O.1)+(3><O><O.2)

y=0x=l1 +(4x0x03)+(1x1x0.1)+(2x1x0.1)
+(3x1x0.1)+(4x1x0.1)

=014+02403+04
=1

The random variable X has expected value E(X) = py = 3 and the random variable Y has
expected value E(Y) = wy = 0.4. Then the covariance between X and Y is

cov(X,Y) = oxy = E(XY) — pyppy = 1 =3 x (0.4) = =02
The correlation between X and Yis

cov(X,Y) -0.2

P v/ var(X)/var(Y) - V1 x 1/0.24 B

If X and Yare independent random variables then their covariance and correlation are zero.
The converse of this relationship is not true. Independent random variables X and Y have
zero covariance, indicating that there is no linear association between them. However, just
because the covariance or correlation between two random variables is zero does not mean
that they are necessarily independent. There may be more complicated nonlinear associ-
ations such as X + Y2 = 1.

—0.4082
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In (P.15) we obtain the expected value of a sum of random variables. We obtain similar
rules for variances. If a and b are constants, then

var(aX + bY) = a*var(X) + b*var(Y) 4 2abcov(X, Y) (P.20)

A significant point to note is that the variance of a sum is not just the sum of the variances.
There is a covariance term present. Two special cases of (P.20) are

var(X 4+ Y) = var(X) + var(Y) + 2cov(X,Y) (P.21)
var(X — Y) = var(X) + var(Y) — 2cov(X,Y) (P.22)
To show that (P.22) is true, let Z = X — Y. Using the rules of expected value
E(Z) =pz =EX) —E(Y) = px — py

The variance of Z = X — Y is obtained using the basic definition of variance, with some
substituting,

var(X = ¥) = var(2) = E[(Z = u2)?*| = E[(X = ¥ = (ix — wr))’]
= B{[(X = ) = (¥ = )}
= E{(X = w)® + (¥ = ) = 20X = ) (Y — o) }
= E[(X = px)?| + E[(Y = )] = 2B[X = w) (¥ — pay)]
= var(X) + var(Y) — 2cov(X, Y)

If X and Y are independent, or if cov(X, Y) = 0, then

var(aX + bY) = a*var(X) + b*var(Y) (P.23)

var(X £ Y) = var(X) + var(Y) (P.24)

These rules extend to more random variables.

P.6 The Normal Distribution

In the previous sections we discussed random variables and their probability density
functions in a general way. In real economic contexts some specific probability density
functions have been found to be very useful. The most important is the normal distribution.
If X is a normally distributed random variable with mean . and variance o, it can be
symbolized as X ~ N(p,0?). The pdf of X is given by the impressive formula

2
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FIGURE P.5 Normal probability density functions N(w,o?).

where exp(a) denotes the exponential® function ¢®. The mean . and variance o are
the parameters of this distribution and determine its center and dispersion. The range of the
continuous normal random variable is from minus infinity to plus infinity. Pictures of
the normal probability density functions are given in Figure P.5 for several values of the
mean and variance. Note that the distribution is symmetric and centered at .

Like all continuous random variables, probabilities involving normal random variables
are found as areas under the probability density function. For calculating probabilities both
computer software and statistical tables values make use of the relation between a normal
random variable and its “‘standardized’’ equivalent. A standard normal random variable
is one that has a normal probability density function with mean O and variance 1. If
X ~ N(p,0?), then

X—p
o

7 =

~N(0,1) (P.26)

The cdf for the standardized normal variable Z is so widely used that it is given its own
special symbol, ®(z) = P(Z < z). Computer programs, and Table 1 at the end of this book,
give values of ®(z). To calculate normal probabilities remember that the distribution is
symmetric, so that P(Z > a) = P(Z < —a), and P(Z > a) = P(Z > a), since the prob-
ability of any one point is zero for a continuous random variable. If X ~ N (., o) and a and
b are constants, then

g (o)

p(XSa):p(X__p“<ﬂ> :P(Z<a_”) :q)(a—p,) (P.27)

5 See Appendix A.1.2 for a review of exponents.
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For example, if X ~ N(3,9), then
PA<X<6)=P033<Z<1)=d(1)—d(0.33) = 0.8413 — 0.6293 = 0.2120

An interesting and useful fact about the normal distribution is that a weighted sum of normal
random variables has a normal distribution. That is, if X; ~ N(p,0?) and X ~ N(p, 03)
then

Y = a1Xi + axXo ~ N(py = a1t + azpa, 0y = ajo7 + a505 + 2aiax012)  (P.30)

A number of important probability distributions are related to the normal distribution.
The z-distribution, the chi-square distribution, and the F-distribution are discussed in
Appendix B.

P.7 Exercises
Answers to exercises marked * appear on the web page www.wiley.com/college/hill.

P.1* You are organizing an outdoor concert for next week and believe attendance will
depend on the weather. You consider the following possibilities are appropriate:

Weather Probability = f(x) Attendance = X
Terrible weather 0.2 500
Mediocre weather 0.6 1000
Great weather 0.2 2000

(a) Let X denote the attendance. Why is X a random variable?

(b) What is the expected attendance?

(¢) Suppose that each ticket costs $5 and that the total cost of giving the concert is
a fixed $2,000. Let Y = profit = total sales revenue — total cost = 5X — 2000.
What is the expected profit?

(d) If the variance of attendance is 0)2( = 240,000, find the variance of profit Y.

P2 Asyouwalkinto your econometrics exam, a friend bets you $10 that she will outscore
you on the exam. Let X be a random variable denoting your winnings. X can take
the values 10, O if there is a tie, or —10. You know that the probability distribution for
X, fx), depends on whether she studied for the exam or not. Let Y = 0 if she studied
and Y = 1 if she did not study. Consider the following joint distribution table.

Y
NACA)) 0 1 f)
-10 0.18 2 ?
X 0 0 ? 0.3
10 ? 0.45 ?
VA ? 0.75

(a) Fill in the missing elements in the table.
(b) Compute E(X). Should you take the bet?
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(c) What is the probability distribution of your winnings if you know that she did
not study?
(d) Find your expected winnings given that she did not study.

P3* Afirm’s marketing manager believes that total sales X can be modeled using a normal
distribution with mean p = $2.5 million and standard deviation o = $300,000.
What is the probability that the firm’s sales will exceed $3 million? Draw a sketch to
illustrate your calculation.

P4 1In the U.S. the North and South are quite different. Below is the joint probability
distribution of political affiliation (R = Republican, I = Independent and D =
Democrat) for a Northern city and a Southern city.

Political Affiliation (PA)

R 1 D
Southern 0.24 0.04 0.12
Northern 0.18 0.12 0.30

(a) What is the probability of selecting a Republican given that we sample from the
Northern city? Show your calculation.

(b) Are political affiliation and region of residence statistically independent random
variables? Explain.

(c) AssignthevaluesR = 0,1 = 2 and D = 5 to political affiliation (PA). That s, if
acitizen is selected at random, the variable PA can take the values 0, 2 and 5. Find
the mathematical expectation of the random variable PA.

(d) Find the expected value of X = 2PA + 2PA?, where PA is the random variable
political affiliation.

P.5* Before the 2009 Super Bowl there was a coin flip to determine who kicked off and
who received. The NFC (National Football Conference) had won 11 prior coin flips.
(a) Given that the NFC had won 11 straight flips, what is the probability that they
would win the 12th flip? Explain.
(b) Before the 2010 Super Bowl (won by the New Orleans Saints) the NFC won the
coin toss for the 13th consecutive time. What is the probability that the NFC will
win the next two consecutive tosses?

P.6 At supermarkets in a Midwestern city the sales of canned tuna varies from week to
week. Marketing researchers have determined that there is a relationship between
sales of canned tuna and the price of canned tuna. Specifically, SALES = 40710
— 430PRICE where SALES are cans sold per week and PRICE is measured in cents
per can. Suppose PRICE over the year can be considered (approximately) a normal
random variable with mean . = 75 cents and standard deviation ¢ = 5 cents. That is
PRICE ~ N(75, 25).

(a) What is the numerical expected value of SALES? Show your work.

(b) What is the numerical value of the variance of SALES? Show your work.

(c) Find the probability that more than 6,300 cans are sold in a week. Draw a sketch
illustrating the calculation.

P.7*% *“Charley Chicken” and *“‘Bradley Bee” are brands of canned tuna. During a week
a certain amount of advertising appears for these products. There may be no



36

PROBABILITY PRIMER

advertising, one form of advertising (newspaper coupon), or two forms (coupon and a
special store display). Let C denote the level of advertising for Charley Chicken. It
can take the values ¢ = 0, 1 or 2. Let B denote the level of advertising of Bradley Bee;
B can take the values b = 0, 1 or 2. Suppose the following table represents the
joint probability distribution of the advertising levels for these two brands of
canned tuna.

B
0 1 2
0 0.05 0.05 0.05
C 1 0.05 0.20 0.15
2 0.05 0.25 0.15

(a) Whatis the marginal probability distribution of Charley Chicken advertising, C?

(b) What is the expected value of C? Show your work.

(c) What is the variance of C? Show your work.

(d) Are the two companies’ advertising strategies statistically independent?
Explain.

(e) Bradley Bee pays its advertising firm $5,000 per week plus $1,000 for each
level of advertising B. What is the probability distribution of Bradley Bee’s
advertising outlay, A?

(f) What is the correlation between Bradley Bee’s advertising level (B) and its
advertising expenditure (A)? Explain.

P.8 Let Xbe adiscrete random variable that is the value shown on a single roll of a fair die.

(a) Represent the probability density function f(x) in tabular form.

(b) What is the probability that X = 4? That X =4 or X = 5?

(c) What is the expected value of X? Explain the meaning of E(X) in this case.

(d) Find the expected value of X2

(e) Find the variance of X.

(f) Obtainadie. Rollit20 times and record the values obtained. What is the average
of the first 5 values? The first 10?7 What is the average of the 20 rolls?

P9 Let X be a continuous random variable whose probability density function is
2_2
_ 3 §x 0 S X S 3
f) { 0 otherwise

(a) Sketch the probability density function f(x). Is the area under the curve equal to
one?

(b) Geometrically calculate the probability that X falls between 0 and 2.

(c) Geometrically calculate the probability that X falls between %4 and */4.

P.10  Suppose that X and Y are random variables with expected values py = py = p and

variances 0% = 0% = 0. Let Z = (X + Y)/2.

(a) Find E(Z).

(b) Find var(Z) assuming that X and Y are statistically independent.
(c) Find var(Z) assuming that cov(X, ¥) = 0.5¢°.
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The length of life (in years) of a personal computer is approximately normally
distributed with mean 3.4 years and variance 1.6 years.

(a) What fraction of computers will fail in the first year?

(b) What fraction of computers will last 4 years or more?

(c) What fraction of computers will last at least 2 years?

(d) What fraction of computers will last more than 2.5 years but less than 4 years?
(e) If the manufacturer adopts a warranty policy in which only 5% of the computers

have to be replaced, what will be the length of the warranty period?

Based on many years of experience, an instructor in econometrics has determined
that the probability distribution of X, the number of students absent on Mondays, is as
follows:

0 1 2 3 4 5 6 7

Jx)

0.02 0.03 0.26 0.34 0.22 0.08 0.04 0.01

P.13*

P14

P.15%

(a) Sketch the probability function of X.

(b) Find the probability that on a given Monday either 2, or 3 or 4 students will be
absent.

(c) Find the probability that on a given Monday more than 3 students are absent.

(d) Compute the expected value of the random variable X. Interpret this expected
value.

(e) Compute the variance and standard deviation of the random variable X.

(f) Compute the expected value and variance of ¥ = 7X + 3.

Suppose a certain mutual fund has an annual rate of return that is approximately
normally distributed with mean (expected value) 5% and standard deviation 4%. Use
Table 1, the table of cumulative probabilities for the standard normal distribution, for
parts (a)—(c).

(a) Find the probability that your 1-year return will be negative.

(b) Find the probability that your 1-year return will exceed 15%.

(c) If the mutual fund managers modify the composition of its portfolio, they can
raise its mean annual return to 7%, but will also raise the standard deviation of
returns to 7%. Answer parts (a) and (b) in light of these decisions. Would you
advise the fund managers to make this portfolio change?

(d) Verify your computations in (a)—(c) using your computer software.

Aninvestor holding a portfolio consisting of two stocks invests 25% of assets in Stock

A and 75% into Stock B. The return R4 from Stock A has a mean of 4% and a standard

deviation of 04 = 8%. Stock B has an expected return E(Rg) = 8% with a standard

deviation of o = 12%. The portfolio return is P = 0.25R4 + 0.75Rp.

(a) Compute the expected return on the portfolio.

(b) Compute the standard deviation of the returns on the portfolio assuming that the
two stocks’ returns are perfectly positively correlated.

(c) Compute the standard deviation of the returns on the portfolio assuming that the
two stocks’ returns have a correlation of 0.5.

(d) Compute the standard deviation of the returns on the portfolio assuming that the
two stocks’ returns are uncorrelated.

Letx; =7, x=2,x3=4,x4=—7,y1 =15,y =2, y3 = 3, y4 = 12. Calculate
the following:
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2
(a) ;1 Xi
!
b) x= X x; / 4 [Note: X is called the arithmetic average or arithmetic mean.]
i=1
4
© ;l (xi — %)
: 2
(d) ‘gl (x; — X)
4 4
(e) ;1 (x; = X)(y; —¥) where y = ;1 Vi / 4
4
inyi> -4 xxxy
i=1
()

4
<Z xlz) —4 x ¥
i1

P.16 Express each of the following sums in summation notation:
(@) x1 +x2 4+ x3 + x4
(b) x2 +x3
(©) x1y1 +x2y2 + X3y3 + X4y4
(d) x1y3 + X294 + x3y5 + X4Y6
(€) x3)3 + x4y}
® (1 =y1) + (22 = y2) + (33 — ¥3)

P.17* Write out each of the following sums and compute where possible.

4
(@) ;1 (a+ bx;)
(b) é i
3
(©) go (¥ +2x +2)
4
@ % f(+2)
2
(e) ,Eof (x,¥)
4 2
® X X (x+2y)

x=2y=1
P.18 Let X take 4 values x; =1, x, =3, x3 =5, x4 = 3.
(a) Calculate the arithmetic average X = Zﬁzlxi / 4
(b) Calculate 3}, (x; — X)
(¢) Calculate 2?:1 (xi — i)z
(d) Calculate (2?:1x,2) — 4
(e) Show algebraically that i (x; — %)% = ( nl x?) — ¥

=1

P.19 Show that ¥ (x; —X)(y; — ) = <Z xiyi) —nxy
i=1 i



Chapter 2

The Simple Linear
Regression Model

Learning Objectives

REMARK: Learning Objectives and Keywords sections will appear at the beginning of
each chapter. We urge you to think about, and possibly write out answers to the questions,
and make sure you recognize and can define the keywords. If you are unsure about the
questions or answers consult your instructor. When examples are requested in Learning
Objectives sections, you should think of examples not in the book.

Based on the material in this chapter you should be able to

1.

10.
11.

Explain the difference between an estimator and an estimate, and why the least
squares estimators are random variables, and why least squares estimates are not.
Discuss the interpretation of the slope and intercept parameters of the simple
regression model, and sketch the graph of an estimated equation.

Explain the theoretical decomposition of an observable variable y into its systema-
tic and random components, and show this decomposition graphically.

Discuss and explain each of the assumptions of the simple linear regression model.

Explain how the least squares principle is used to fit a line through a scatter plot of
data. Be able to define the least squares residual and the least squares fitted value of
the dependent variable and show them on a graph.

Define the elasticity of y with respect to x and explain its computation in the simple
linear regression model when y and x are not transformed in any way, and when y
and/or x have been transformed to model a nonlinear relationship.

Explain the meaning of the statement “If regression model assumptions SR1-SR5
hold, then the least squares estimator b, is unbiased.” In particular, what exactly
does “unbiased” mean? Why is b, biased if an important variable has been omitted
from the model?

Explain the meaning of the phrase ‘“‘sampling variability.”

Explain how the factors a2, 2(x; — )_c)z, and N affect the precision with which we can
estimate the unknown parameter 3,.

State and explain the Gauss—Markov theorem.

Use the least squares estimator to estimate nonlinear relationships and interpret the
results.

39
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Keywords

assumptions

asymptotic

BLUE

biased estimator

degrees of freedom

dependent variable

deviation from the mean
form

econometric model

economic model

elasticity

Gauss—Markov theorem

heteroskedastic
homoskedastic
independent variable
indicator variable
least squares estimates
least squares estimators
least squares principle
least squares residuals
linear estimator
log-linear model
nonlinear relationship
prediction

quadratic model
random error term
regression model
regression parameters
repeated sampling
sampling precision
sampling properties
scatter diagram
simple linear regression function
specification error
unbiased estimator

Economic theory suggests many relationships between economic variables. In microeco-
nomics you considered demand and supply models in which the quantities demanded and
supplied of a good depend on its price. You considered ““production functions™ and “‘total
product curves” that explained the amount of a good produced as a function of the amount of
an input, such as labor, that is used. In macroeconomics you specified “investment
functions” to explain that the amount of aggregate investment in the economy depends
on the interest rate and ““consumption functions’ that related aggregate consumption to the
level of disposable income.

Each of these models involves a relationship between economic variables. In this
chapter we consider how to use a sample of economic data to quantify such relation-
ships. As economists, we are interested in questions such as the following: If one
variable (e.g., the price of a good) changes in a certain way, by how much will another
variable (the quantity demanded or supplied) change? Also, given that we know the
value of one variable, can we forecast or predict the corresponding value of another? We
will answer these questions by using a regression model. Like all models the regression
model is based on assumptions. In this chapter we hope to be very clear about these
assumptions, as they are the conditions under which the analysis in subsequent chapters
is appropriate.

2.1 An Economic Model

In order to develop the ideas of regression models we are going to use a simple, but
important, economic example. Suppose that we are interested in studying the relationship
between household income and expenditure on food. Consider the “‘experiment” of
randomly selecting households from a particular population. The population might
consist of households within a particular city, state, province, or country. For the present,
suppose that we are interested only in households with an income of $1,000 per week. In
this experiment we randomly select a number of households from this population and
interview them. We ask the question, “‘How much did you spend per person on food last
week?” Weekly food expenditure, which we denote as y, is a random variable since the
value is unknown to us until a household is selected and the question is asked and
answered.
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REMARK: In the Probability Primer and Appendices B and C we distinguished random
variables from their values by using uppercase (Y) letters for random variables and
lowercase () letters for their values. We will not make this distinction any longer because
it leads to complicated notation. We will use lowercase letters, like ‘y,” to denote random
variables as well as their values, and we will make the interpretation clear in the
surrounding text.

The continuous random variable y has a probability density function (which we will
abbreviate as pdf) that describes the probabilities of obtaining various food expenditure
values. If you are rusty or uncertain about probability concepts see the Probability Primer
and Appendix B at the end of this book for a comprehensive review. The amount spent on
food per person will vary from one household to another for a variety of reasons: some
households will be devoted to gourmet food, some will contain teenagers, some will contain
senior citizens, some will be vegetarian, and some will eat at restaurants more frequently. All
of these factors and many others, including random, impulsive buying, will cause weekly
expenditures on food to vary from one household to another, even if they all have the same
income. The pdf f(y) describes how expenditures are “distributed”” over the population and
might look like Figure 2.1.

The pdf in Figure 2.1a is actually a conditional probability density function since it is
“conditional” upon household income. If x = weekly household income = $1,000, then
the conditional pdf is f(y|x = $1,000). The conditional mean, or expected value, of y is
E(y|x = $1,000) = |, and is our population’s mean weekly food expenditure per person.

REMARK: The expected value of a random variable is called its “mean’ value, which
is really a contraction of population mean, the center of the probability distribution of the
random variable. This is not the same as the sample mean, which is the arithmetic average
of numerical values. Keep the distinction between these two usages of the term ““‘mean” in
mind.

The conditional variance of y is var(y|x = $1,000) = o2, which measures the dispersion of
household expenditures y about their mean .,|,. The parameters |, and o2, if they were
known, would give us some valuable information about the population we are considering.
If we knew these parameters, and if we knew that the conditional distribution f(y|x =
$1,000) was normal, N(Pyixs o?), then we could calculate probabilities that y falls in
specific intervals using properties of the normal distribution. That is, we could compute the

Sl = 1000) fivpe = 1000) folo fope=1000)  fiypr = 2000)

Uyl y Hy[1000 Hy12000 y

(@) (b)

FIGURE 2.1 (a) Probability distribution f(y|x = 1000) of food expenditure y given income
x = $1,000. (b) Probability distributions of food expenditure y given incomes x = $1,000 and
x = $2,000.
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proportion of the household population that spends between $50 and $75 per person on food,
given $1,000 per week income.

As economists we are usually more interested in studying relationships between
variables, in this case the relationship between y = weekly food expenditure per person
and x = weekly household income. Economic theory tells us that expenditure on economic
goods depends on income. Consequently we call y the “dependent variable” and x the
“independent” or ‘“‘explanatory’’ variable. In econometrics, we recognize that real-world
expenditures are random variables, and we want to use data to learn about the relationship.

An econometric analysis of the expenditure relationship can provide answers to some
important questions, such as: If weekly income goes up by $100, how much will average
weekly food expenditures rise? Or, could weekly food expenditures fall as income rises?
How much would we predict the weekly per person expenditure on food to be for a
household with an income of $2,000 per week? The answers to such questions provide
valuable information for decision makers.

Using ... per person food spending information ... one can determine the similarities
and disparities in the spending habits of households of differing sizes, races, incomes,
geographic areas, and other socioeconomic and demographic features. This
information is valuable for assessing existing market conditions, product distribution
patterns, consumer buying habits, and consumer living conditions. Combined with
demographic and income projections, this information may be used to anticipate
consumption trends. The information may also be used to develop typical market
baskets of food for special population groups, such as the elderly. These market baskets
may, in turn, be used to develop price indices tailored to the consumption patterns of
these population groups. [Blisard, Noel, Food Spending in American Households,
1997-1998, Electronic Report from the Economic Research Service, U.S. Department
of Agriculture, Statistical Bulletin Number 972, June 2001

From a business perspective, if we are managers of a supermarket chain (or restaurant, or
health food store, etc.) we must consider long-range plans. If economic forecasters are
predicting that local income will increase over the next few years, then we must decide
whether, and how much, to expand our facilities to serve our customers. Or, if we plan to
open franchises in high-income and low-income neighborhoods, then forecasts of expen-
ditures on food per person, along with neighborhood demographic information, give an
indication of how large the stores in those areas should be.

In order to investigate the relationship between expenditure and income we must build an
economic model and then a corresponding econometric model that forms the basis for a
quantitative or empirical economic analysis. In our food expenditure example, economic
theory suggests that average weekly per person household expenditure on food, represented
mathematically by the conditional mean E(y|x) = ,|,, depends on household income x. If
we consider households with different levels of income, we expect the average expenditure
on food to change. In Figure 2.1b we show the probability density functions of food
expenditure for two different levels of weekly income, $1,000 and $2,000. Each conditional
pdf f(y|x) shows that expenditures will be distributed about a mean value |, but the mean
expenditure by households with higher income is larger than the mean expenditure by lower
income households.

In most economics textbooks ‘“‘consumption” or “expenditure” functions relating
consumption to income are depicted as linear relationships, and we will begin by assuming
the same thing. The mathematical representation of our economic model of household food
expenditure, depicted in Figure 2.2, is

E(ylx) = pype = B1 + Box Q2.1)
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FIGURE 2.2 The economic model: a linear relationship between average per person food
expenditure and income.

The conditional mean E(y|x) in (2.1) is called a simple regression function. It is called
simple regression not because it is easy, but because there is only one explanatory variable on
the right-hand side of the equation. The unknown regression parameters 3; and (3, are the
intercept and slope of the regression function, respectively. If you need a review of
the geometry, interpretation, and algebra of linear functions see Appendix A.2 at the
end of the book. In our food expenditure example the intercept 3, represents the mean per
person weekly household expenditure on food by a household with no weekly income, x =
$0. If income is measured in dollars, then the slope B, represents the change in E(y|x) given a
$1 change in weekly income; it could be called the marginal propensity to spend on food.
Algebraically,

_AEGL) _ dE()

B2 Ax dx

2.2)

where A denotes “change in” and dE(y|x)/dx denotes the “derivative” of E(y|x) with
respect to x. We will not use derivatives to any great extent in this book, and if you are not
familiar with the concept, you can think of “d” as a ““stylized”” version of A and go on. See
Appendix A.3 for a discussion of derivatives.

The economic model (2.1) summarizes what theory tells us about the relationship
between weekly household income (x) and expected household expenditure on food, E(y|x).
The parameters of the model, 3; and [3,, are quantities that help characterize economic
behavior in the population we are considering and are called population parameters.
In order to use data we must now specify an econometric model that describes how the
data on household income and expenditure are obtained, and that guides the econometric
analysis.

2.2 An Econometric Model

The model E(y|x) = B1 + Box describes economic behavior, but it is an abstraction
from reality. If we take a random sample of households with weekly income x =
$1,000, we know the actual expenditure values will be scattered around the mean value
E(y|x = 1000) = pyjx—1000 = B1 + B2(1000), as shown in Figure 2.1. If we were to sample
household expenditures at other levels of income, we would expect the sample values to be
scattered around their mean value E(y|x) = B + Box. In Figure 2.3 we arrange bell-shaped
figures like Figure 2.1, depicting the pdfs of food expenditure f(y|x), along the regression
line for each level of income.
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FIGURE 2.3 The probability density functions for y at two levels of income.

This figure shows that at each level of income the mean, or average, value of household
expenditure is given by the regression function E(y|x) = B; + Box. It also shows that we
assume values of household expenditures on food will be distributed around the mean value
E(y|x) = B1 + Box at each level of income. This regression function is the foundation of an
econometric model for household food expenditure.

In order to make the econometric model complete we have to make some assumptions.

REMARK: You will hear a great deal about assumptions in this chapter and in the
remainder of the book. Assumptions are the “if”” part of an “if-then” type statement. If
the assumptions we make are true, then certain things follow. And, as importantly, if the
assumptions do not hold, then the conclusions we draw may not hold. Part of the challenge
of econometric analysis is making realistic assumptions and then checking that they hold.

In Figure 2.1a we assumed that the dispersion of the values y about their mean is
var(y|x = $1,000) = o>. We must make a similar assumption about the dispersion of
values at each level of income. The basic assumption is that the dispersion of values y
about their mean is the same for all levels of income x. That is, var(y|x) = o2 for all values of
x. In Figure 2.1b the pdfs for two different incomes have different means, but they have
identical variances. This assumption is also illustrated in Figure 2.3, as we have depicted the
“spread” of each of the distributions, like Figure 2.1, to be the same.

The constant variance assumption var(y|x) = o implies that at each level of income x
we are equally uncertain about how far values of y might fall from their mean value,
E(y|x) = B1 + Bax, and the uncertainty does not depend on income or anything else. Data
satisfying this condition are said to be homoskedastic. If this assumption is violated, so that
var(y|x) # o for all values of income x, the data are said to be heteroskedastic.

We have described the sample as random. This description means that when data are
collected they are statistically independent. If y; and y; denote the per person food expen-
ditures of two randomly selected households, then knowing the value of one of these
(random) variables tells us nothing about the probability that the other will take a particular
value or range of values.

Mathematicians spend their lives (we exaggerate slightly) trying to prove the same
theorem with weaker and weaker sets of assumptions. This mindset spills over to
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econometricians to some degree. Consequently, econometric models often make an
assumption that is weaker than statistical independence. If y; and y; are the expenditures
of two randomly selected households, then we will assume that their covariance is zero, or
cov(y;,y;) = 0. This is a weaker assumption than statistical independence (since indepen-
dence implies zero covariance, but zero covariance does not imply independence); it implies
only that there is no systematic linear association between y; and y;. Refer to the Probability
Primer, Sections P.3.3 and P.5.6 for more discussion of this difference.

In order to carry out a regression analysis, we must make two assumptions about the
values of the variable x. The idea of regression analysis is to measure the effect of changes in
one variable, x, on another, y. In order to do this x must take at least two values within the
sample of data. If all the observations on x within the sample take the same value, say
x = $1,000, then regression analysis fails. Secondly, we will assume that the x-values are
given, and not random. All our results will be conditional on the given x-values. More will
be said about this assumption soon.

Finally, it is sometimes assumed that the values of y are normally distributed. The usual
justification for this assumption is that in nature the “bell-shaped” curve describes many
phenomena, ranging from IQs to the length of corn stalks to the birth weights of Australian
male children. It is reasonable, sometimes, to assume that an economic variable is normally
distributed about its mean. We will say more about this assumption later, but for now we will
make it an “optional”” assumption, since we do not need to make it in many cases, and it is a
very strong assumption when it is made.

These ideas, taken together, define our econometric model. They are a collection of
assumptions that describe the data.

ASSUMPTIONS OF THE SIMPLE LINEAR REGRESSION MODEL-I

e The mean value of y, for each value of x, is given by the linear regression function
E(ylx) = B1 + Bax
e For each value of x, the values of y are distributed about their mean value,
following probability distributions that all have the same variance,

var(ylx) = o?

e The sample values of y are all uncorrelated and have zero covariance, implying
that there is no linear association among them,

cov(y;,y;) =0

This assumption can be made stronger by assuming that the values of y are all
statistically independent.

e The variable x is not random and must take at least two different values.

e (optional) The values of y are normally distributed about their mean for each
value of x,

y ~N[(B1 + B2x), 0]
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2.2.1 INTRODUCING THE ERROR TERM

It is convenient to describe the assumptions of the simple linear regression model in terms
of y, which in general is called the dependent variable in the regression model. However,
for statistical purposes it is useful to characterize the assumptions another way.

The essence of regression analysis is that any observation on the dependent variable y can
be decomposed into two parts: a systematic component and a random component. The
systematic component of y is its mean, E(y|x) = B; + Bax, which itself is not random since
itis a mathematical expectation. The random component of y is the difference between y and
its conditional mean value E(y|x). This is called a random error term, and it is defined as

e=y—E(ylx) =y—B1—Box (2.3)
If we rearrange (2.3) we obtain the simple linear regression model
y=p1+PBxx+e 2.4)

The dependent variable y is explained by a component that varies systematically with the
independent variable x and by the random error term e.

Equation (2.3) shows that y and the error term e differ only by the term E(y|x) =
B1 + B2x, which is not random. Since y is random, so is the error term e. Given what we have
already assumed about y, the properties of the random error e can be derived directly from
(2.3). The expected value of the error term, given x, is

E(e|x) = E(y|x) — B1 — Bx =0

The mean value of the error term, given x, is zero.

Since y and e differ only by a constant (i.e., a factor that is not random), their variances
must be identical and equal to o. Thus the probability density functions for y and e are
identical except for their location, as shown in Figure 2.4. Note that the center of the pdf for
the error term, f(e), is zero, which is its expected value, E(e|x) = 0.

We can now discuss a bit more the simplifying assumption that x is not random. The
assumption that x is not random means that its value is known. In statistics such x-values are
said to be ‘““fixed in repeated samples.” If we could perform controlled experiments, as
described in Chapter 1, the same set of x-values could be used over and over, so that only the
outcomes y are random. As an example, suppose that we are interested in how price affects
the number of Big Macs sold weekly at the local McDonald’s. The franchise owner can
set the price (x) and then observe the number of Big Macs sold (y) during the week. The
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FIGURE 2.4 Probability density functions for e and y.
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following week the price could be changed, and again the data on sales collected. In this case
x = the price of a Big Mac is not random, but fixed.

The number of cases in which the x-values are fixed is small in the world of business and
economics. When we survey households we obtain the data on variables like food
expenditure per person and household income at the same time. Thus y and x are both
random in this case; their values are unknown until they are actually observed. However,
making the assumption that x is given, and not random, does not change the results we
will discuss in the following chapters. The additional benefit from the assumption is
notational simplicity. Since x is treated as a constant nonrandom term, we no longer need the
conditioning notation ““|””. So, instead of E(e|x) = 0 you will see E(e) = 0. There are some
important situations in which treating x as fixed is not acceptable, and these will be discussed
in Chapter 10.

It is customary in econometrics to state the assumptions of the regression model in terms
of the random error e. For future reference the assumptions are named SR1-SR6, “SR”
denoting “‘simple regression.” Remember, since we are treating x as fixed, and not random,
henceforth we will not use the “conditioning” notation y|x.

ASSUMPTIONS OF THE SIMPLE LINEAR REGRESSION MODEL-II

SR1. The value of y, for each value of x, is

y=B1+Bx+e
SR2. The expected value of the random error e is
E(e) =0
which is equivalent to assuming that
E(y) =B1 + Box

SR3. The variance of the random error e is
var(e) = o = var(y)

The random variables y and e have the same variance because they differ only by
a constant.

SR4. The covariance between any pair of random errors e; and e; is

cov(ej,e;) = cov(y;,y;) =0

The stronger version of this assumption is that the random errors e are statistically
independent, in which case the values of the dependent variable y are also
statistically independent.

SR5. The variable x is not random and must take at least two different values.

SR6. (optional) The values of e are normally distributed about their mean

e ~ N(0,6?)

if the values of y are normally distributed, and vice versa.
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E(y) =By + Bpx

X

FIGURE 2.5 The relationship among y, e, and the true regression line.

The random error e and the dependent variable y are both random variables, and as we
have shown the properties of one can be determined from the properties of the other. There
is, however, one interesting difference between them: y is “observable” and e is ‘“‘unob-
servable.” If the regression parameters [3; and (3, were known, then for any value of y we
could calculate e = y — (3; + B2x). Thisisillustrated in Figure 2.5. Knowing the regression
function E(y) = B; + Bax, we could separate y into its fixed and random parts. However, 3,
and B, are never known, and it is impossible to calculate e.

What comprises the error term e? The random error e represents all factors affecting y
other than x. These factors cause individual observations y to differ from the mean value
E(y) = B1 + B2x. In the food expenditure example, what factors can result in a difference
between household expenditure per person y and its mean, E(y)?

1. We have included income as the only explanatory variable in this model. Any other
economic factors that affect expenditures on food are ““collected” in the error term.
Naturally, in any economic model, we want to include all the important and relevant
explanatory variables in the model, so the error term e is a “‘storage bin” for
unobservable and/or unimportant factors affecting household expenditures on food.
As such, it adds noise that masks the relationship between x and y.

2. The error term e captures any approximation error that arises because the linear
functional form we have assumed may be only an approximation to reality.

3. The error term captures any elements of random behavior that may be present in each
individual. Knowing all the variables that influence a household’s food expenditure
might not be enough to perfectly predict expenditure. Unpredictable human behavior
is also contained in e.

If we have omitted some important factor, or made any other serious specification
error, then assumption SR2 E(e) =0 will be violated, which will have serious
consequences.
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Table 2.1 Food Expenditure and Income Data

Observation Food Weekly
(household) expenditure ($) income ($100)
i i Xi
1 115.22 3.69
2 135.98 4.39
39 257.95 29.40
40 375.73 33.40

Summary statistics

Sample mean 283.5735 19.6048
Median 264.4800 20.0300
Maximum 587.6600 33.4000
Minimum 109.7100 3.6900
Std. Dev. 112.6752 6.8478

2.3 Estimating the Regression Parameters

The economic and econometric models we developed in the previous section are the basis
for using a sample of data to estimate the intercept and slope parameters, [3; and 3,. For
illustration we examine typical data on household food expenditure and weekly income
from a random sample of 40 households. Representative observations and summary statis-
tics are given in Table 2.1. We control for household size by considering only three-person
households. The values of y are weekly food expenditures for a three-person household, in
dollars. Instead of measuring income in dollars, we measure it in units of $100, because a
$1 increase in income has a numerically small effect on food expenditure. Consequently, for
the first household, the reported income is $369 per week with weekly food expenditure of
$115.22. For the 40th household, weekly income is $3,340 and weekly food expenditure is
$375.73. The complete data set of observations is in the file food.dat.

REMARK: In this book, ASCII, or plain text, data files are referenced as *.dat; e.g.,
food.dat. Files in other formats will have the same name, but a different extension, such as
food.wfl, food.dta, and so on. The corresponding data definition file will be food.def.
These files are located at the book Web sites (www.wiley.com/college/hill) and
http://principlesofeconometrics.com.

We assume that the expenditure data in Table 2.1 satisfy the assumptions SR1-SRS.
That is, we assume that the expected value of household food expenditure is a linear
function of income. This assumption about the expected value of y is equivalent to
assuming that the random error has expected value zero, implying that we have not omitted
any important factors. The variance of y, which is the same as the variance of the random
error e, is assumed to be constant, implying that we are equally uncertain about the
relationship between y and x for all observations. The values of y for different households
are assumed to be uncorrelated with each other, which follows if we obtained the data by


www.wiley.com/college/hill
http://principlesofeconometrics.com
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FIGURE 2.6 Data for the food expenditure example.

random sampling. The values of x were actually obtained by random sampling, but we will
make the analysis conditional on the x values in the sample, which allows us to treat them as
nonrandom values that are fixed in repeated samples. At the end of the day, this
simplification does not change the analysis.

Given this theoretical model for explaining the sample observations on household food
expenditure, the problem now is how to use the sample information in Table 2.1, specific
values of y; and x;, to estimate the unknown regression parameters 3; and 3,. These
parameters represent the unknown intercept and slope coefficients for the food expenditure—
income relationship. If we represent the 40 data points as (y;, x;),i = 1,...,N = 40, and plot
them, we obtain the scatter diagram in Figure 2.6.

REMARK: It will be our notational convention to use i subscripts for cross-sectional
data observations, with the number of sample observations being N. For time-series data
observations we use the subscript ¢ and label the total number of observations 7. In purely
algebraic or generic situations, we may use one or the other.

Our problem is to estimate the location of the mean expenditure line E(y) = B1 + Box.
We would expect this line to be somewhere in the middle of all the data points since
it represents population mean, or average, behavior. To estimate 3; and 3, we could simply
draw a freehand line through the middle of the data and then measure the slope and intercept
with a ruler. The problem with this method is that different people would draw
different lines, and the lack of a formal criterion makes it difficult to assess the accuracy
of the method. Another method is to draw a line from the expenditure at the smallest income
level, observation i = 1, to the expenditure at largest income level, i = 40. This approach
does provide a formal rule. However, it may not be a very good rule because it ignores
information on the exact position of the remaining 38 observations. It would be better if we
could devise a rule that uses all the information from all the data points.
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2.3.1 THE LEAST SQUARES PRINCIPLE

To estimate 3; and 3, we want a rule, or formula, that tells us how to make use of the sample
observations. Many rules are possible, but the one that we will use is based on the least
squares principle. This principle asserts that to fit a line to the data values we should make
the sum of the squares of the vertical distances from each point to the line as small as
possible. The distances are squared to prevent large positive distances from being canceled
by large negative distances. This rule is arbitrary, but very effective, and is simply one way to
describe a line that runs through the middle of the data. The intercept and slope of this line,
the line that best fits the data using the least squares principle, are b| and b,, the least squares
estimates of B; and ;. The fitted line itself is then

Vi = b1 + byx; (2.5)

The vertical distances from each point to the fitted line are the least squares residuals. They
are given by
e =Yyi—Yi =Yyi— b1 — bax; (2.6)

These residuals are depicted in Figure 2.7a.
Now suppose we fit another line, any other line, to the data. Denote the new line as

Vi = bj + b3x;

where b} and b} are any other intercept and slope values. The residuals for this line,
e; = y; — yi, are shown in Figure 2.7b. The least squares estimates b and b, have the
property that the sum of their squared residuals is less than the sum of squared residuals for
any other line. That is, if

N
SSE = Y é?
i=1

is the sum of squared least squares residuals from (2.6) and

N ~Ax2 N ax\2
SSE = X" = X (v —5i)

i=1
is the sum of squared residuals based on any other estimates, then

SSE < SSE*

no matter how the other line might be drawn through the data. The least squares principle
says that the estimates b; and b, of 31 and [3;, are the ones to use, since the line using them as
intercept and slope fits the data best.

The problem is to find b; and b, in a convenient way. Given the sample observations on y
and x, we want to find values for the unknown parameters [3; and 3, that minimize the “sum
of squares” function

(yi — Br — Bax;)’

Tz

S(B1,B2) =

This is a straightforward calculus problem, the details of which are given in Appendix 2A, at
the end of this chapter. The formulas for the least squares estimates of 3; and [3, that give the
minimum of the sum of squared residuals are
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THE LEAST SQUARES ESTIMATORS

by = 25 = X)0i —3) @7)

3 — %)

by =y —bxx (2.8)

where y = Yy;/N and X = X x;/N are the sample means of the observations on y and x.
The formula for b, reveals why we had to assume [SR5] that the values of x; were not the same
value for all observations. If x; = 5, for example, for all observations, then b, is mathematically
undefined and does not exist since the numerator and denominator of (2.7) are zero!
If we plug the sample values y; and x; into (2.7) and (2.8), then we obtain the least squares
estimates of the intercept and slope parameters 31 and [3,. It is interesting, however, and very

y 31=b1+b2)€

Xl )C2 X3 X4 X
(@)
y )A;:bl +b2)€

V¥ =B} +byx

| | | |
x| X X3 X4 X
()
FIGURE 2.7 (a) The relationship among y, &, and the fitted regression line. (b) The residuals
from another fitted line.
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important, that the formulas for b, and b, are perfectly general and can be used no matter
what the sample values turn out to be. This should ring a bell. When the formulas for »; and
b, are taken to be rules that are used whatever the sample data turn out to be, then b; and b,
are random variables. When actual sample values are substituted into the formulas, we
obtain numbers that are the observed values of random variables. To distinguish these two
cases we call the rules or general formulas for b and b, the least squares estimators. We
call the numbers obtained when the formulas are used with a particular sample least squares
estimates.

e Least squares estimators are general formulas and are random variables.

e Least squares estimates are numbers that we obtain by applying the general formulas
to the observed data.

The distinction between estimators and estimates is a fundamental concept that is essential
to understand everything in the rest of this book.

2.3.2 ESTIMATES FOR THE FooD EXPENDITURE FUNCTION

Using the least squares estimators (2.7) and (2.8), we can obtain the least squares estimates
for the intercept and slope parameters 3; and 3, in the food expenditure example using the
data in Table 2.1. From (2.7), we have

Y(x; —X)(yi—y) 18671.2684
by = = = 10.2096
T S -3) 1828.7876

and from (2.8)
by =3 — byx = 283.5735 — (10.2096)(19.6048) = 83.4160

A convenient way to report the values for b; and b, is to write out the estimated or fitted
regression line, with the estimates rounded appropriately:

i = 83.42 + 10.21x;

This line is graphed in Figure 2.8. The line’s slope is 10.21, and its intercept, where it crosses
the vertical axis, is 83.42. The least squares fitted line passes through the middle of the data
in a very precise way, since one of the characteristics of the fitted line based on the least
squares parameter estimates is that it passes through the point defined by the sample means,
(x,¥) = (19.6048,283.5735). This follows directly from rewriting (2.8) as y = by + byx.
Thus the “point of the means” is a useful reference value in regression analysis.

2.3.3 INTERPRETING THE ESTIMATES

Once obtained, the least squares estimates are interpreted in the context of the economic
model under consideration. The value b, = 10.21 is an estimate of 3,. Recall that x, weekly
household income, is measured in $100 units. The regression slope 3, is the amount by
which expected weekly expenditure on food per household increases when household
weekly income increases by $100. Thus, we estimate that if weekly household income goes
up by $100, expected weekly expenditure on food will increase by approximately $10.21.
A supermarket executive with information on likely changes in the income and the number
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FIGURE 2.8 The fitted regression.

of households in an area could estimate that it will sell $10.21 more per typical household
per week for every $100 increase in income. This is a very valuable piece of information for
long-run planning.

Strictly speaking, the intercept estimate b; = 83.42 is an estimate of the weekly food
expenditure for a household with zero income. In most economic models we must be very
careful when interpreting the estimated intercept. The problem is that we usually do not have
any data points near x = 0, something that is true for the food expenditure data shown
in Figure 2.8. If we have no observations in the region where income is zero, then our
estimated relationship may not be a good approximation to reality in that region. So,
although our estimated model suggests that a household with zero income is expected to
spend $83.42 per week on food, it might be risky to take this estimate literally. This is an
issue that you should consider in each economic model that you estimate.

2.3.3a Elasticities

Income elasticity is a useful way to characterize the responsiveness of consumer expen-
diture to changes in income. See Appendix A.2.2 for adiscussion of elasticity calculations in
a linear relationship. The elasticity of a variable y with respect to another variable x is

percentage change iny Ay/y Ay x
& = = = — =
percentage change in x Ax/x Ax y

In the linear economic model given by (2.1) we have shown that

AE(y)

B2 = Ax




2.3 ESTIMATING THE REGRESSION PARAMETERS 55

so the elasticity of mean expenditure with respect to income is

AE(y)/E(y) _AE(y) x By ——
Ax/x Ax  E(y) ’ E(y)

(2.9)

e .9

To estimate this elasticity we replace 3, by b, = 10.21. We must also replace “x” and
“E(y)” by something, since in a linear model the elasticity is different on each point upon
the regression line. Most commonly the elasticity is calculated at the ““point of the means™
(x,y) = (19.60, 283.57) because it is a representative point on the regression line. If we
calculate the income elasticity at the point of the means we obtain

19.60
283.57

e=b, —=10.21 % 0.71

<l =

This estimated income elasticity takes its usual interpretation. We estimate that a 1%
increase in weekly household income will lead, on average, to a 0.71% increase in weekly
household expenditure on food, when x and y take their sample mean values, (X,y) =
(19.60, 283.57). Since the estimated income elasticity is less than one, we would classify
food as a “necessity”’ rather than a “‘luxury,” which is consistent with what we would expect
for an average household.

2.3.3b Prediction

The estimated equation can also be used for prediction or forecasting purposes. Suppose that
we wanted to predict weekly food expenditure for a household with a weekly income of
$2,000. This prediction is carried out by substituting x = 20 into our estimated equation to
obtain

Vi = 83.42 +10.21x; = 83.42 + 10.21(20) = 287.61

We predict that a household with a weekly income of $2,000 will spend $287.61 per week
on food.

2.3.3c¢ Computer Output

Many different software packages can compute least squares estimates. Every software
package’s regression output looks different and uses different terminology to describe the
output. Despite these differences, the various outputs provide the same basic information,
which you should be able to locate and interpret. The matter is complicated somewhat by the
fact that the packages also report various numbers whose meaning you may not know. For
example, using the food expenditure data, the output from the software package EViews is
shown in Figure 2.9.

In the EViews output the parameter estimates are in the “Coefficient” column, with
names “C,” for constant term (the estimate b;), and INCOME (the estimate b,). Software
programs typically name the estimates with the name of the variable as assigned in the
computer program (we named our variable INCOME) and an abbreviation for ““constant.”
The estimates that we report in the text are rounded to two significant digits. The
other numbers that you can recognize at this time are SSE = Y¢7 = 304505.2, which is
called “Sum squared resid,” and the sample mean of y, y = Yy;/N = 283.5735, which
is called “Mean dependent var.”

We leave discussion of the rest of the output until later.
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Dependent Variable: FOOD_EXP
Method: Least Squares

Sample: 1 40

Included observations: 40

Coefficient Std. Error t-Statistic Prob.

C 83.41600 43.41016 1.921578 0.0622
INCOME 10.20964 2.093264 4.877381 0.0000
R-squared 0.385002 Mean dependent var 283.5735
Adjusted R-squared 0.368818 S.D. dependent var 112.6752
S.E. of regression 89.51700 Akaike info criterion 11.87544
Sum squared resid 304505.2 Schwarz criterion 11.95988
Log likelihood —235.5088 Hannan-Quinn criter 11.90597
F-statistic 23.78884 Durbin-Watson stat 1.893880
Prob(F-statistic) 0.000019

FIGURE 2.9 EViews regression output.

2.3.4 OtHER EcoNnoMIC MODELS

We have used the household expenditure on food versus income relationship as an example
to introduce the ideas of simple regression. The simple regression model can be applied to
estimate the parameters of many relationships in economics, business, and the social
sciences. The applications of regression analysis are fascinating and useful. For example,

If the hourly wage rate of electricians rises by 5%, how much will new house prices
increase?

If the cigarette tax increases by $1, how much additional revenue will be generated in
the state of Louisiana?

If the central banking authority raises interest rates by one-half a percentage point,
how much will consumer borrowing fall within six months? How much will it fall
within one year? What will happen to the unemployment rate in the months following
the increase?

If we increase funding on preschool education programs in 2012, what will be the
effect on high school graduation rates in 2024? What will be the effect on the crime
rate by juveniles in 2019 and subsequent years?

The range of applications spans economics and finance, as well as most disciplines in the
social and physical sciences. Any time you ask how much a change in one variable will
affect another variable, regression analysis is a potential tool.

2.4 Assessing the Least Squares Estimators

Using the food expenditure data we have estimated the parameters of the regression model
vi = B1 + Bax; + e, using the least squares formulas in (2.7) and (2.8). We obtained the least
squares estimates b; = 83.42 and b, = 10.21. It is natural, but, as we shall argue,
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misguided, to ask the question “How good are these estimates?”’ This question is not
answerable. We will never know the true values of the population parameters 3; or 35, so we
cannot say how close b; = 83.42 and b, = 10.21 are to the true values. The least squares
estimates are numbers that may or may not be close to the true parameter values, and we will
never know.

Rather than asking about the quality of the estimates we will take a step back and examine
the quality of the least squares estimation procedure. The motivation for this approach
is this: if we were to collect another sample of data, by choosing another set of 40 households
to survey, we would have obtained different estimates b, and b,, even if we had care-
fully selected households with the same incomes as in the initial sample. This sampling
variation is unavoidable. Different samples will yield different estimates because house-
hold food expenditures, y;,i = 1,...,40, are random variables. Their values are not known
until the sample is collected. Consequently, when viewed as an estimation procedure, b; and
b, are also random variables, because their values depend on the random variable y. In this
context we call b; and b, the least squares estimators.

We can investigate the properties of the estimators b; and b,, which are called their
sampling properties, and deal with the following important questions:

1. If the least squares estimators b, and b, are random variables, then what are their
expected values, variances, covariances, and probability distributions?

2. The least squares principle is only one way of using the data to obtain estimates of {3
and (3,. How do the least squares estimators compare with other procedures that might
be used, and how can we compare alternative estimators? For example, is there another
estimator that has a higher probability of producing an estimate that is close to [3,?

The answers to these questions will depend critically on whether the assumptions SR1-SR5
are satisfied. In later chapters we will discuss how to check whether the assumptions we
make hold in a specific application, and what we might do if one or more assumptions are
shown not to hold.

REMARK: We will summarize the properties of the least squares estimators in the next
several sections. “‘Proofs” of important results appear in the appendices to this chapter. In
many ways it is good to see these concepts in the context of a simpler problem before
tackling them in the regression model. Appendix C covers the topics in this chapter, and the
next, in the familiar and algebraically easier problem of estimating the mean of a population.

2.4.1 THE ESTIMATOR b,

Formulas (2.7) and (2.8) are used to compute the least squares estimates b; and b,.
However, they are not well suited for examining theoretical properties of the estimators.
In this section we rewrite the formula for b, to facilitate its analysis. In (2.7), b, is
given by

y 2 =D - )
2= )

Z(xi - X)
This is called the deviation from the mean form of the estimator because the data have
their sample means subtracted. Using assumption SR1 and a bit of algebra (Appendix 2C),
we can write b, as a linear estimator,
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N
bz = EWl'y,' (210)
i=1
where
X — X
w=——- (2.11)
2(x — f)z

The term w; depends only on x; that are not random, so that w; is not random either. Any
estimator that is a weighted average of y;’s, as in (2.10), is called a linear estimator. This is
an important classification that we will speak more of later. Then, with yet more algebra
(Appendix 2D) we can express b; in a theoretically convenient way,

by = B + Zwie; 2.12)

where ¢; is the random error in the linear regression model y; = 31 + B2x; + ¢;. This
formula is not useful for computations, because it depends on (3, which we do not know,
and on the ¢;s, which are unobservable. However, for understanding the sampling properties
of the least squares estimator, (2.12) is very useful.

2.4.2 TuHE EXPECTED VALUES OF by AND b,

The estimator b is a random variable since its value is unknown until a sample is collected.
What we will show is that if our model assumptions hold, then E(b,) = [,; that is, the
expected value of b, is equal to the true parameter [3,. When the expected value of any
estimator of a parameter equals the true parameter value, then that estimator is unbiased.
Since E(by) = B2, the least squares estimator b, is an unbiased estimator of 3. The intuitive
meaning of unbiasedness comes from the repeated sampling interpretation of mathematical
expectation. If many samples of size N are collected, and the formula for b, is used to
estimate 3, in each of those samples, then if our assumptions are valid, the average value of
the estimates b, obtained from all the samples will be [3,.

We will show that this result is true so that we can illustrate the part played by the
assumptions of the linear regression model. In (2.12), what parts are random? The
parameter 3, is not random. It is a population parameter we are trying to estimate.
If assumption SR5 holds, then x; is not random. Then w; is not random either, as it depends
only on the values of x;. The only random factors in (2.12) are the random error terms e;.
We can find the expected value of b, using the fact that the expected value of a sum is the
sum of the expected values:

E(b2)

E(B2 + Xwie;) = E(B2 + wier +waex + -+ + wyey)
E(B2) + E(wier) + E(waez) + -+ - + E(wyew)

E(B2) + XE(w;e;)

B2 + ZwiE(e;) = B2

(2.13)

The rules of expected values are fully discussed in the Probability Primer, Section P.5,
and Appendix B.1.1 at the end of the book. In the last line of (2.13) we use two assumptions.
First, E(w;e;) = w;E(e;), because w; is not random, and constants can be factored out of
expected values. Second, we have relied on the assumption that E(e;) = 0. If E(e;) # 0, then
E(by) # B2, in which case b, is a biased estimator of 3,. Recall that ¢; contains, among



2.4 ASSESSING THE LEAST SQUARES ESTIMATORS 59

other things, factors affecting y; that are omitted from the economic model. If we have
omitted anything that is important, we would expect that E(e;) # 0 and E(b;) # 3,. Thus,
having an economic model that is correctly specified, in the sense that it includes all relevant
explanatory variables, is a must in order for the least squares estimators to be unbiased.

The unbiasedness of the estimator b, is an important sampling property. When sampling
repeatedly from a population the least squares estimator is “‘correct,” on average, and this is
one desirable property of an estimator. This statistical property by itself does not mean that
b, is a good estimator of 3, but it is part of the story. The unbiasedness property depends on
having many samples of data from the same population. The fact that b, is unbiased does
not imply anything about what might happen in just one sample. An individual estimate
(a number) b, may be near to, or far from, 3,. Since 3, is never known we will never
know, given only one sample, whether our estimate is “‘close” to 3, or not. Thus the
estimate b, = 10.21 may be close to 3, or not.

The least squares estimator b; of 3; is also an unbiased estimator, and E(b;) = B if the
model assumptions hold.

2.4.3 REPEATED SAMPLING

To illustrate the concept of unbiased estimation in a slightly different way, we present in
Table 2.2 least squares estimates of the food expenditure model from 10 random samples
(table2_2.dat) of size N = 40 from the same population with the same incomes as the
households given in Table 2.1. In practice we would use all available observations in one big
sample of size 400 to estimate the regression model. Here we have broken up the data into
samples of size 40 to illustrate repeated sampling properties. Note the variability of the
least squares parameter estimates from sample to sample. This sampling variation is due to
the fact that we obtained 40 different households in each sample, and their weekly food
expenditure varies randomly.

The property of unbiasedness is about the average values of b; and b, if many samples of
the same size are drawn from the same population. The average value of b; in these 10
samples is b; = 78.74. The average value of b, is b, = 9.68. If we took the averages of
estimates from many samples, these averages would approach the true parameter values {3
and 3. Unbiasedness does not say that an estimate from any one sample is close to the true
parameter value, and thus we cannot say that an estimate is unbiased. We can say that the
least squares estimation procedure (or the least squares estimator) is unbiased.

Table 2.2 Estimates from 10 Samples

Sample by b,
1 131.69 6.48
2 57.25 10.88
3 103.91 8.14
4 46.50 11.90
5 84.23 9.29
6 26.63 13.55
7 64.21 10.93
8 79.66 9.76
9 97.30 8.05

10 95.96 7.77
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2.4.4 THE VARIANCES AND COVARIANCE OF by AND b,

Table 2.2 shows that the least squares estimates of (3; and 3, vary from sample to sample.
Understanding this variability is a key to assessing the reliability and sampling precision of
an estimator. We now obtain the variances and covariance of the estimators b and b,. Before
presenting the expressions for the variances and covariance, let us consider why they are
important to know. The variance of the random variable b, is the average of the squared
distances between the possible values of the random variable and its mean, which we now
know is E(by) = B,. The variance of b, is defined as

var(by) = E[b, — E(bZ)]z

It measures the spread of the probability distribution of b,. In Figure 2.10 are graphs of two
possible probability distributions of by, f1(b>)and f>(b,), that have the same mean value but
different variances.

The probability density function f>(b,) has a smaller variance than fi(b;). Given a
choice, we are interested in estimator precision and would prefer that b, have the pdf f>(b,)
rather than fi(b,). With the distribution f>(b,), the probability is more concentrated around
the true parameter value 3,, giving, relative to f;(b,), a higher probability of getting an
estimate that is close to 3,. Remember, getting an estimate close to 3, is our objective.

The variance of an estimator measures the precision of the estimator in the sense that it tells
us how much the estimates can vary from sample to sample. Consequently, we often refer to
the sampling variance or sampling precision of an estimator. The smaller the variance of an
estimator is, the greater the sampling precision of that estimator. One estimator is more precise
than another estimator if its sampling variance is less than that of the other estimator.

We will now present and discuss the variances and covariance of b, and b,. Appendix 2E
contains the derivation of the variance of the least squares estimator b,. If the regression model
assumptions SR1-SRS5 are correct (assumption SR6 is not required), then the variances and
covariance of b and b, are

2
Var(bl) = ()'2 [ﬁ] (214)
2
var(by) = z(:_ 5 (2.15)
cov(by,by) = o? [ﬁ] (2.16)
)
fi(by)
|
Bo

FIGURE 2.10 Two possible probability density functions for b,.
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At the beginning of this section we said that for unbiased estimators, smaller variances are
better than larger variances. Let us consider the factors that affect the variances and
covariance in (2.14)—(2.16).

Vi

<l

The variance of the random error term, o, appears in each of the expressions.
It reflects the dispersion of the values y about their expected value E(y). The greater
the variance o, the greater is that dispersion, and the greater is the uncertainty about
where the values of y fall relative to their mean E(y). When o is larger, the
information we have about 3; and 3, is less precise. In Figure 2.3 the variance is
reflected in the spread of the probability distributions f(y|x). The larger the variance
term o2, the greater is the uncertainty in the statistical model, and the larger the
variances and covariance of the least squares estimators.

The sum of squares of the values of x about their sample mean, > (x; — X)z, appears
in each of the variances and in the covariance. This expression measures how
spread out about their mean are the sample values of the independent or explanatory
variable x. The more they are spread out, the larger the sum of squares. The less
they are spread out, the smaller the sum of squares. You may recognize this sum of
squares as the numerator of the sample variance of the x-values. See Appendix C.4.
The larger the sum of squares, X.(x; — 2)2, the smaller the variances of the least
squares estimators and the more precisely we can estimate the unknown parameters.
The intuition behind this is demonstrated in Figure 2.11. In panel (b) is a data
scatter in which the values of x are widely spread out along the x-axis. In panel (a)
the data are “bunched.” Which data scatter would you prefer given the task of fitting
a line by hand? Pretty clearly, the data in panel (b) do a better job of determining
where the least squares line must fall, because they are more spread out along the
X-axis.

The larger the sample size N, the smaller the variances and covariance of the least
squares estimators; it is better to have more sample data than less. The sample size N
appears in each of the variances and covariance because each of the sums consists of
N terms. Also, N appears explicitly in var(b; ). The sum of squares term Y.(x; — X)°

v; Yi=by+byx;

X X; X X

(a) )

FIGURE 2.11 The influence of variation in the explanatory variable x on precision of
estimation: (a) low x variation, low precision: (b) high x variation, high precision.



62

THE SIMPLE LINEAR REGRESSION MODEL

gets larger as N increases because each of the terms in the sum is positive or zero
(being zero if x happens to equal its sample mean value for an observation).
Consequently, as N gets larger, both var(b,) and cov(b;,b,) get smaller, since
the sum of squares appears in their denominator. The sums in the numerator and
denominator of var(b; ) both get larger as N gets larger and offset one another, leaving
the N in the denominator as the dominant term, ensuring that var(b;) also gets
smaller as N gets larger.

The term ¥, x7 appears in var(b; ). The larger this term is, the larger the variance of the
least squares estimator b;. Why is this so? Recall that the intercept parameter 3 is
the expected value of y given that x = 0. The farther our data are from x = 0, the more
difficultitis to interpret 31, as in the food expenditure example, and the more difficult
it is to accurately estimate 3;. The term X, x> measures the squared distance of the
data from the origin, x = 0. If the values of x are near zero then X, x,-2 will be small, and
this will reduce var(b;). Butif the values of x are large in magnitude, either positive or
negative, the term X, x? will be large and var(bh;) will be larger, other things being
equal.

The sample mean of the x-values appears in cov(b;, b»). The absolute magnitude of
the covariance increases with an increase in magnitude of the sample mean X, and the
covariance has a sign opposite to that of X. The reasoning here can be seen from
Figure 2.11. In panel (b) the least squares fitted line must pass through the point of
the means. Given a fitted line through the data, imagine the effect of increasing the
estimated slope b,. Since the line must pass through the point of the means, the effect
must be to lower the point where the line hits the vertical axis, implying a reduced
intercept estimate b;. Thus, when the sample mean is positive, as shown in Figure 2.11,
there is a negative covariance between the least squares estimators of the slope and
intercept.

2.5 The Gauss—Markov Theorem

What can we say about the least squares estimators b; and b; so far?

The estimators are perfectly general. Formulas (2.7) and (2.8) can be used to estimate
the unknown parameters 3; and 3, in the simple linear regression model, no matter
what the data turn out to be. Consequently, viewed in this way, the least squares
estimators b; and b, are random variables.

The least squares estimators are linear estimators, as defined in (2.10). Both b; and b,
can be written as weighted averages of the y; values.

If assumptions SR1-SRS5 hold then the least squares estimators are unbiased. This
means that E(b;) = By and E(by) = Bo.

We have expressions for the variances of b; and b, and their covariance. Further-
more, we have argued that for any unbiased estimator, having a smaller variance is
better, as this implies we have a higher chance of obtaining an estimate close to the
true parameter value.

Now we will state and discuss the famous Gauss—Markov theorem, which is proven in
Appendix 2F.
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GAUSS-MARKOV THEOREM: Under the assumptions SR1I-SRS of the linear
regression model, the estimators b; and b, have the smallest variance of all linear and
unbiased estimators of 3; and 3,. They are the best linear unbiased estimators (BLUE)
of B; and f3,.

Let us clarify what the Gauss—Markov theorem does, and does not, say.

1. The estimators b and b, are “‘best”” when compared to similar estimators, those that
are linear and unbiased. The theorem does not say that b; and b, are the best of all
possible estimators.

2. Theestimators b; and b, are best within their class because they have the minimum
variance. When comparing two linear and unbiased estimators, we always want to
use the one with the smaller variance, since that estimation rule gives us the higher
probability of obtaining an estimate that is close to the true parameter value.

3. Inorder for the Gauss—Markov theorem to hold, assumptions SR1-SRS must be true.
If any of these assumptions are not true, then b and b, are not the best linear unbiased
estimators of 3 and 3,.

4. The Gauss—Markov theorem does not depend on the assumption of normality
(assumption SR6).

5. In the simple linear regression model, if we want to use a linear and unbiased
estimator, then we have to do no more searching. The estimators b; and b, are the
ones to use. This explains why we are studying these estimators (we would not have
you study bad estimation rules, would we?) and why they are so widely used in
research, not only in economics but in all social and physical sciences as well.

6. The Gauss—Markov theorem applies to the least squares estimators. It does not apply
to the least squares estimates from a single sample.

2.6 The Probability Distributions of the Least
Squares Estimators

The properties of the least squares estimators that we have developed so far do not depend in
any way on the normality assumption SR6. If we also make this assumption, that the random
errors e; are normally distributed with mean zero and variance o2, then the probability
distributions of the least squares estimators are also normal. This conclusion is obtained in
two steps. First, based on assumption SR1, if ¢; is normal then so is y;. Second, the least
squares estimators are linear estimators, of the form b, = Yw;y;, and sums of normal
random variables are normally distributed themselves. Consequently, if we make the
normality assumption (assumption SR6 about the error term), then the least squares
estimators are normally distributed.

o2y x?
by~ N[ By, —T =N 2.17
1 <B1 NE —3?)2> (2.17)

0.2
by ~ _— 2.18
) N<Bz,2(xi _)_C)2> (2.18)
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As you will see in Chapter 3, the normality of the least squares estimators is of great
importance in many aspects of statistical inference.

What if the errors are not normally distributed? Can we say anything about the
probability distribution of the least squares estimators? The answer is, sometimes, yes.

A CENTRAL LIMIT THEOREM: If assumptions SR1-SR5 hold, and if the sample
size N is sufficiently large, then the least squares estimators have a distribution that
approximates the normal distributions shown in (2.17) and (2.18).

The million-dollar question is ‘““How large is sufficiently large?”” The answer is that there is
no specific number. The reason for this vague and unsatisfying answer is that “how large”
depends on many factors, such as what the distributions of the random errors look like (are
they smooth? symmetric? skewed?) and what the x; values are like. In the simple regression
model, some would say that N = 30 is sufficiently large. Others would say that N = 50 would
be a more reasonable number. The bottom line is, however, that these are rules of thumb,
and that the meaning of “‘sufficiently large” will change from problem to problem.
Nevertheless, for better or worse, this large sample, or asymptotic, result is frequently
invoked in regression analysis. This important result is an application of a central limit
theorem, like the one discussed in Appendix C.3.4. If you are not familiar with this
important theorem, you may want to review it now.

2.7 Estimating the Variance of the Error Term

The variance of the random error term, o2, is the one unknown parameter of the simple
linear regression model that remains to be estimated. The variance of the random error
e; is

var(e;) = o’ = Ele; — E(ei)]z = E(e?)

if the assumption E(e;) = 01is correct. Since the “‘expectation” is an average value we might
consider estimating o as the average of the squared errors,

o Xel
0_2 _ i

N

This formula is unfortunately of no use since the random errors e; are unobservable!
However, although the random errors themselves are unknown, we do have an analog to
them—namely, the least squares residuals. Recall that the random errors are

e, =y — B1 — Box;

From (2.6) the least squares residuals are obtained by replacing the unknown parameters by
their least squares estimates:

e =y —yi=yi— b —byx;

It seems reasonable to replace the random errors e; by their analogs, the least squares
residuals, so that



2.7 ESTIMATING THE VARIANCE OF THE ERROR TERM 65

N

This estimator, though quite satisfactory in large samples, is a biased estimator of o. But
there is a simple modification that produces an unbiased estimator:

L
N-2

(2.19)

The 2 that is subtracted in the denominator is the number of regression parameters (B, B2)

in the model, and this subtraction makes the estimator G unbiased, so that E(6?) = o2.

2.7.1 ESTIMATING THE VARIANCES AND COVARIANCE OF THE
LeEAST SQUARES ESTIMATORS

Having an unbiased estimator of the error variance means we can estimate the variances of
the least squares estimators b; and b,, as well as the covariance between them. Replace the
unknown error variance o2 in (2.14)—(2.16) with 62 to obtain

> x?
b)) = é6* i 2.20
var(b)) =G NZ(xi—Y)] (2.20)
6_2
Var(bz) = m (221)
cov(br, by) = &2 [ﬁ] (2.22)

The square roots of the estimated variances are the ““standard errors’ of b; and b,. These
quantities are used in hypothesis testing and confidence intervals. They are denoted as se(b;)
and se(by)

se(by) =/ var(by) (2.23)

se(by) = 1/ var(by) (2.24)

2.7.2 CALCULATIONS FOR THE FOooD EXPENDITURE DATA

Let us make some calculations using the food expenditure data. The least squares estimates
of the parameters in the food expenditure model are shown in Figure 2.9. First we will
compute the least squares residuals from (2.6) and use them to calculate the estimate of
the error variance in (2.19). In Table 2.3 are the least squares residuals for the first five
households in Table 2.1.

Recall that we have estimated that for the food expenditure data the fitted least squares
regression line is y = 83.42 4 10.21x. For each observation we compute the least
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Table 2.3 Least Squares Residuals

x y y e=y—y
3.69 115.22 121.09 —5.87
439 135.98 128.24 7.74
475 119.34 131.91 —12.57
6.03 114.96 144.98 —30.02

12.47 187.05 210.73 —23.68

squares residual ¢; = y; — y;. Using the residuals for all N = 40 observations we estimate
the error variance to be

5 Yer 304505.2
g = =
N-2 38
The numerator, 304505.2, is the sum of squared least squares residuals, reported as “Sum

squared resid” in Figure 2.9. The denominator is the number of sample observations, N = 40,
minus the number of estimated regression parameters, 2; the quantity N — 2 = 38 is often

= 8013.29

called the ““degrees of freedom” for reasons that will be explained in Chapter 3. In Figure 2.9,
the value G is not reported. Instead, EViews software reports & = V6> = 1/8013.29 =

89.517, labeled “S.E. of regression,” which stands for ‘““standard error of the regression.”
It is typical for software not to report the estimated variances and covariance unless
requested. However, all software packages automatically report the standard errors. For
example, in the EViews output shown in Figure 2.9 the column labeled “Std. Error”
contains se(b;) = 43.410 and se(b,) = 2.093. The entry called “S.D. dependent var” is the

1/2
sample standard deviation of y, that is [Z(y,- —3)?*/(N — 1)} = 112.6752.

The full set of estimated variances and covariances for a regression is usually obtained
by a simple computer command, or option, depending on the software being used. They are
arrayed in a rectangular array, or matrix, with variances on the diagonal and covariances
in the “off-diagonal” positions.

var(bi)  cov(bi, o)
cov(br.by) var(by)

For the food expenditure data the estimated covariance matrix of the least squares estimators is

‘ C INCOME
C 1884.442 —85.90316
INCOME —85.90316 4381752

where C stands for the “constant term,” which is the estimated intercept parameter in the
regression, or by; similarly, the software reports the variable name INCOME for the column
relating to the estimated slope b,. Thus

var(b;) = 1884.442,  var(b,) = 4.381752,  cov(by, by) = —85.90316
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The standard errors are

se(by) = \/var(b;) = v/1884.442 = 43.410
se(by) = \/var(by) = V/4.381752 = 2.093

These values will be used extensively in Chapter 3.

2.7.3 INTERPRETING THE STANDARD ERRORS

The standard errors of b; and b, are measures of the sampling variability of the least
squares estimates b; and b, in repeated samples. As illustrated in Table 2.2, when we collect
different samples of data the parameter estimates change from sample to sample. The
estimators b and b, are general formulas that are used whatever the sample data turns out to
be. That is, the estimators are random variables. As such, they have probability distributions,
means, and variances. In particular, if assumption SR6 holds, and the random error terms e;
are normally distributed, then b, ~ N (B, var(b,) = o2 /X (x; — )_c)z). This probability
density function f(b,) is shown in Figure 2.12.

The estimator variance, var(b,), or its square root 03, = var(b;), which we might call
the true standard deviation of b,, measure the sampling variation of the estimates b,, and
determine the width of the pdfin Figure 2.12. The bigger o, is the more variation in the least
squares estimates b, we see from sample to sample. If o, is large then the estimates might
change a great deal from sample to sample. The parameter o}, would be a valuable number
to know, because if it were large relative to the parameter 3, we would know that the least
squares estimator is not precise, and the estimate that we obtain may be far from the true
value 3, that we are trying to estimate. On the other hand, if o}, is small relative to the
parameter [3,, we know that the least squares estimate will fall near (3, with high probability.
Recall that for the normal distribution, 99.9% of values fall within the range of three
standard deviations from the mean, so that 99.9% of the least squares estimates will fall in
the range B, — 30y, to B2 + 30%,.

To put this in another context, in Table 2.2 we report estimates from 10 samples of data.
We noted in Section 2.4.3 that the average values of those estimates are b; = 78.74 and
by = 9.68. The question we address with the standard error is “‘How much variation about
their means do the estimates exhibit from sample to sample?”” For those 10 samples the
sample standard deviations are std.dev.(b;) = 30.80 and std.dev.(b,) = 2.16. What we would

fby)

B2 by

FIGURE 2.12 The probability density function of the least squares estimator b,.
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really like is the values of the standard deviations for a very large number of samples. Then
we would know how much variation the least squares estimates exhibit from sample to
sample. Unfortunately, we do not have a large number of samples, and because we do
not know the true value of the variance of the error term o> we cannot know the true
value of oy,.

Then what do we do? We estimate 0'2, and then estimate o, using

6—2

E(Xi — )_6)2

se(by) = y/var(by) =

The standard error of b, is thus an estimate of what the standard deviation of many estimates
b, would be in a very large number of samples, and is an indicator of the width of the pdf of b,
shown in Figure 2.12. Using our one sample of data, food.dat, the standard error of b, is
2.093, as shown in the computer output in Figure 2.9. This value is reasonably close to std.
dev. (by) =2.16 from the 10 samples in Table 2.2. To put this to a further test, in Appendix 2G
we perform a simulation experiment, called a Monte Carlo experiment, in which we create
many artificial samples to demonstrate the properties of the least squares estimator and how
well se(b,) reflects the true sampling variation in the estimates.

2.8 Estimating Nonlinear Relationships

The world is not linear. Economic variables are not always related by straight-line
relationships; in fact, many economic relationships are represented by curved lines, and
are said to display curvilinear forms. Fortunately, the simple linear regression model
y = B1 + Bax + eismuch more flexible than it looks at first glance, because the variables y
and x can be transformations, involving logarithms, squares, cubes or reciprocals, of the
basic economic variables, or they can be indicator variables that take only the values zero
and one. Including these possibilities means the simple linear regression model can be used
to account for nonlinear relationships between variables.'

Nonlinear relationships can sometimes be anticipated. Consider a model from real estate
economics in which the price (PRICE) of a house is related to the house size measured in
square feet (SQFT). As a starting point we might consider the linear relationship

PRICE = B + B2SQFT + ¢ (2.25)

In this model, B, measures the increase in expected price given an additional square foot of
living area. In the linear specification the expected price per square foot is constant.
However it may be reasonable to assume that larger and more expensive homes have a
higher value for an additional square foot of living area than smaller, less expensive, homes.
How can we build this idea into our model? We will illustrate the use of two approaches:
first, a quadratic equation in which the explanatory variable is SOFT?; and second, a log-
linear equation in which the dependent variable is In (PRICE). In each case we will find that
the slope of the relationship between PRICE and SQFT is not constant, but changes from
point to point.

" The term linear in “linear regression” means that the parameters are not transformed in any way. In a
linear regression model the parameters must not be raised to powers or transformed, so expressions like
B1 Baor Bgl are not permitted.
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2.8.1 Quabrartic FUNCTIONS

The quadratic function y = a + bx” is a parabola.? The y-intercept is a. The shape of the
curve is determined by b; if b > 0, then the curve is U-shaped; and if b < 0, then the curve has
an inverted-U shape. The slope of the function is given by the derivative® dy/dx = 2bx,
which changes as x changes. The elasticity, or the percentage change in y given a 1% change
in x, is & = slope x x/y = 2bx*/y. If a and b are greater than zero, the curve resembles
Figure 2.13.

2.8.2 UsiNG A QUADRATIC MODEL

A quadratic model for house prices includes the squared value of SQFT, giving
PRICE = oy + 0uSQFT? + ¢ (2.26)

This is a simple regression model, y = a; + apx + e, with y = PRICE and x = SQRTz.
Here we switch from using {3 to denote the parameters to using o, because the parameters of
(2.26) are not comparable to the parameters of (2.25). In (2.25) 3, is a slope, but «; is not a
slope. Because SQFT > 0, the house price model will resemble the right side of the curve in
Figure 2.13. Using " to denote estimated values, the least squares estimates &; and &», of a;
and «ay, are calculated using the estimators in (2.7) and (2.8), just as before. The fitted
equation is PRICE = &; + &SQFT?. It has slope

d(FRﬁCT)

— =20 FT 2.2
dASOFT 50 (2.27)

FIGURE 2.13 A quadratic function.

2 This is a special case of the more general quadratic function y = a + bx + cx*.
3 See Appendix A.3.1, Derivative Rules 1-5.
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Quadratic Relationship
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FIGURE 2.14 A fitted quadratic relationship.

If &, > 0, then larger houses will have larger slope, and a larger estimated price per
additional square foot.

The file br.dat contains data on 1080 houses sold in Baton Rouge, LA during mid-2005.
Using these data the estimated quadratic equation is PRICE = 55776.56 + 0.0154SQFT>.
The data scatter and fitted quadratic relationship are shown in Figure 2.14.

The estimated slope is s/loﬁ = 2(0.0154)SQFT (estimated price per additional square
foot), which for a 2000-square-foot house is $61.69, for a 4000-square-foot house it is
$123.37, and for a 6000-square-foot house it is $185.05. The elasticity of house price with
respect to house size is the percentage increase in estimated price given a 1% increase in
house size. Like the slope, the elasticity changes at each point. In our example

SQFT
PRICE

SQFT
PRICE

€ = slope x = (20,SQFT) x

To compute an estimate we must select values for SOQFT and PRICE. A common approach
is to choose a point on the fitted relationship. That is, we choose a value for SQFT
and choose for price the corresponding fitted value PRICE. For houses of 2000, 4000 and
6000 S(ﬁa_r_e\feet, the estimated elasticities are 1’.0d5_\[using PRICE = $117,461.77], 1.63
[using PRICE = $302,517.39], and 1.82 [using PRICE = $610,943.42], respectively. For
a 2000-square-foot house, we estimate that a 1% increase in house size will increase price
by 1.05%.

2.8.3 A LocG-LINEAR FuNcTION

The log-linear equation In(y) = a + bx has a logarithmic term on the left-hand side of the
equation and an untransformed (linear) variable on the right-hand side. Both its slope and
elasticity change at each point and are the same sign as b. Using the antilogarithm we see that
exp[Iln(y)] =y =-exp(a + bx), so that the log-linear function is an exponential function. The
function requires y > 0. The slope® at any point is dy/dx = by, which for b > 0 means that

4 See Appendix A.3.1, Derivative Rule 6.
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FIGURE 2.15 A log-linear function.

the marginal effect increases for larger values of y. An economist might say that this function
is increasing at an increasing rate, as shown in Figure 2.15.

The elasticity, the percentage change in y given a 1% increase in x, at a point on this curve
is € = slope X x/y = bx.

Using the slope expression, we can solve for a semi-elasticity, which tells us
the percentage change in y given a 1-unit increase in x. Divide both sides of the slope
dy/dx by y, then multiply by 100 to obtain

- 100(dy/y)

= 100b 2.28
I (2.28)

In this expression the numerator 100(dy/y) is the percentage change in y; dx represents the
change in x. If dx = 1, then a 1-unit change in x leads to a 1005 percentage change in y. This
interpretation can sometimes be quite handy.

2.8.4 UsING A LoGg-LINEAR MODEL

The use of logarithms is very common in economic modeling. The log-linear model uses
the logarithm of a variable as the dependent variable, and an independent, explanatory
variable, that is not transformed, such as®

In(PRICE) = 1 + v2 SQFT + e (2.29)

What effects does this have? First, the logarithmic transformation can regularize data that is
skewed with along tail to the right. In Figure 2.16(a) we show the histogram of PRICE and in
Figure 2.16(b) the histogram of In(PRICE). The median house price in this sample is
$130,000, and 95% of house prices are below $315,000, but there are 24 houses out of the
1080 with prices above $500,000, and an extreme value of $1,580,000. The extremely
skewed distribution of PRICE becomes more symmetric, if not bell-shaped, after taking the
logarithm. Many economic variables, including prices, incomes, and wages, have skewed
distributions, and the use of logarithms in models for such variables is common.

5 Once again we use different symbols for the parameters of this model, -y, and v,, as a reminder that these
parameters are not directly comparable to 3’s in (2.25) or o’s in (2.26).
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FIGURE 2.16 (a) Histogram of PRICE (b) Histogram of In(PRICE).

Second, using a log-linear model allows us to fit regression curves like that shown in
Figure 2.15. Using the Baton Rouge data, the fitted log-linear model is

In(PRICE) = 10.8386 + 0.0004113SQFT

To obtain predicted price take the anti-logarithm,® which is the exponential function

PRICE = exp[In(PRICE)] = exp(10.8386 + 0.0004113SQFT)

6 In Chapter 4 we present an improved predictor for this model.
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Log-Linear Relationship
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FIGURE 2.17 The fitted log-linear model.

The fitted value of PRICE is shown in Figure 2.17.
The slope of the log-linear model is

d(m) - -
— 2 —~, PRICE = 0. 4113PRICE
dSOFT Y2 C 0.000 3 C

For a house with a predicted PRICE of $100,000, the estimated increase in PRICE for an
additional square foot of house area is $41.13, and for a house with a predicted PRICE of
$500,000, the estimated increase in PRICE for an additional square foot of house area is
$205.63. The estimated elasticity is € = ¥, SQFT = 0.0004113SQFT. For a house with
2000-square-feet, the estimated elasticity is 0.823: a 1% increase in house size is estimated
to increase selling price by 0.823%. For a house with 4000 square feet, the estimated
elasticity is 1.645: a 1% increase in house size is estimated to increase selling price by
1.645%. Using the “‘semi-elasticity’” defined in (2.28) we can say that, for a one-square-foot
increase in size, we estimate a price increase of 0.04%. Or, perhaps more usefully, we
estimate that a 100-square-foot increase will increase price by approximately 4%.

2.8.5 CHoosING A FuncTioNAL FOrRM

For the Baton Rouge house price data, should we use the quadratic functional form, or the
log-linear functional form? This is not an easy question. Economic theory tells us that
house price should be related to the size of the house, and perhaps that larger, more
expensive homes have a higher price per square foot of living area. But economic theory
does not tell us what the exact algebraic form of the relationship should be. We should do
our best to choose a functional form that is consistent with economic theory, that fits the
data well, and that is such that the assumptions of the regression model are satisfied. In
real-world problems it is sometimes difficult to achieve all these goals. Furthermore, we
will never truly know the correct functional relationship, no matter how many years we
study econometrics. The truth is out there, but we will never know it. In applications of
econometrics we must simply do the best we can to choose a satisfactory functional form.



74 THE SIMPLE LINEAR REGRESSION MODEL

At this point we mention one dimension of the problem used for evaluating models with
the same dependent variable. By comparing the sum of squared residuals (SSE) of
alternative models, or, equivalently, &2 or &, we can choose the model that is a better
fit to the data. Smaller values of these quantities mean a smaller sum of squared residuals
and a better model fit. This comparison is not valid for comparing models with dependent
variables y and In(y), or when other aspects of the models are different. We study the
choice among functions like these further in Chapter 4.

2.9 Regression with Indicator Variables

An indicator variable is a binary variable that takes the values zero or one; it is used to
represent a nonquantitative characteristic, such as gender, race, or location. For example,
in the data file utown.dat we have a sample of 1000 observations on house prices (PRICE, in
thousands of dollars) in two neighborhoods. One neighborhood is near a major university
and called University Town. Another similar neighborhood, called Golden Oaks, is a few
miles away from the university. The indicator variable of interest is

1 house is in University Town

UTOWN = { 0 house is in Golden Oaks
The histograms of the prices in these two neighborhoods, shown in Figure 2.18, are
revealing. The mean of the distribution of house prices in University Town appears to be
larger than the mean of the distribution of house prices from Golden Oaks. The sample mean
of the 519 house prices in University Town is 277.2416, whereas the sample mean of the 481
Golden Oaks houses is 215.7325.

If weinclude UTOWN in aregression model as an explanatory variable, what do we have?
The simple regression model is

PRICE = B + B,UTOWN + ¢
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FIGURE 2.18 Distributions of house prices.
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If the regression assumptions SR1-SRS hold, then the least squares estimators in (2.7) and
(2.8) can be used to estimate the unknown parameters (3; and [3,.

When an indicator variable is used in a regression, it is important to write out the
regression function for the different values of the indicator variable.

B [ Bi+B2 if UTOWN =1
E(PRICE) = B + B, UTOWN = { B if UTOWN =0

In this case, we find that the “‘regression function’ reduces to a model that implies that the

population mean house prices in the two subdivisions are different. The parameter 3, is not a

slope in this model. Here {3, is the difference between the population means for house prices

in the two neighborhoods. The expected price in University Town is 3| + B2, and the

expected price in Golden Oaks is 31. In our model there are no factors other than location

affecting price, and the indicator variable splits the observations into two populations.
The estimated regression is

PRICE = by + byUTOWN = 215.7325 4 61.5091 UTOWN

| 277.2416 if UTOWN =1
~ 1 215.7325 if UTOWN =0

We see that the estimated price for the houses in University Town is $277,241.60, which is
also the sample mean of the house prices in University Town. The estimated price for houses
outside University Town is $215,732.50, which is the sample mean of house prices in
Golden Oaks.

In the regression model approach we estimate the regression intercept [3;, which is the
expected price for houses in Golden Oaks, where UTOWN =0, and the parameter [3, which is
the difference between the population means for house prices in the two neighborhoods. The
least squares estimators b; and b, in this indicator variable regression can be shown to be

by = PRICEGolgen Oaks
bz = PRICEUniversity Town — PRICEGolden Oaks

where PRICEGolgen 0aks 15 the sample mean (average) price of houses in Golden Oaks and
PRICEupiversity Town 18 the sample mean price of houses from University Town.

In the simple regression model, an indicator variable on the right-hand side gives us a way
to estimate the differences between population means. This is a common problem in
statistics, and the direct approach using samples means is discussed in Appendix C.7.2.
Indicator variables are used in regression analysis very frequently in many creative ways.
See Chapter 7 for a full discussion.

2.10 Exercises

Answers to exercises marked * appear on the web page www.wiley.com/college/hill.

2.10.1 PROBLEMS

2.1 Consider the following five observations. You are to do all the parts of this exercise
using only a calculator.
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x y X —% (x—x)° y—y (x=%)(-Y)
0 6
1 2
2 3
3 1
4 0
X = Xy = (x; —X) = S —%)° = X(yi—y) = 2 —X)(yi—y) =
(a) Complete the entries in the table. Put the sums in the last row. What are the
sample means x and y?
(b) Calculate b, and b, using (2.7) and (2.8) and state their interpretation.
(c) Compute Z?:lxlz, Zlexiy,-. Using these numerical values, show that
S —%)’ =3x —N¥ and X(x—%)(y; — ) = Txyi — N5y
(d) Use the least squares estimates from part (b) to compute the fitted values of y, and
complete the remainder of the table below. Put the sums in the last row.
Xi Vi Vi e o Xiei
0 6
1 2
2 3
3 1
4 0
Xx = Xy = Xy = Ye = Yo = Yxie; =
(e) On graph paper, plot the data points and sketch the fitted regression line
yi = b1 + byx;.
(f) On the sketch in part (e), locate the point of the means (%, y). Does your fitted line
pass through that point? If not, go back to the drawing board, literally.
(g) Show that for these numerical values y = b + byX.
(h) Show that for these numerical values y =y, where y = >.3;/N.
(i) Compute G>.
(j) Compute W)
2.2 A household has weekly income of $2,000. The mean weekly expenditure for

households with this income is E(y|x = $2,000) = pyj.—g2,000 = $200, and expen-

ditures exhibit variance var(y|x = $2,000) = il —$2,000 = 100.

(a) Assuming that weekly food expenditures are normally distributed, find the
probability that a household with this income spends between $180 and $215 on
food in a week. Include a sketch with your solution.

(b) Find the probability that a household with this income spends more than $250 on
food in a week. Include a sketch with your solution.

(c) Find the probability in part (a) if the variance of weekly expenditures is
var(ylx = $2,000) = O'i‘x:$2’000 = 8l.

(d) Find the probability in part (b) if the variance of weekly expenditures is
var(ylx = $2,000) = Ui‘x:$2,000 = 81.
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Graph the following observations of x and y on graph paper.

(a) Using a ruler, draw a line that fits through the data. Measure the slope and
intercept of the line you have drawn.

(b) Use formulas (2.7) and (2.8) to compute, using only a hand calculator, the least
squares estimates of the slope and the intercept. Plot this line on your graph.

(c) Obtain the sample means of y = X y;/N and X = X x;/N. Obtain the predicted
value of y for x = X and plot it on your graph. What do you observe about this
predicted value?

(d) Using the least squares estimates from (b), compute the least squares residuals e;.
Find their sum.

(e) Calculate Y x;e;.

We have defined the simple linear regression model tobe y = [3; + B2x + e. Suppose

however that we knew, for a fact, that B; = 0.

(a) What does the linear regression model look like, algebraically, if 3; = 0?

(b) What does the linear regression model look like, graphically, if 3; = 0?

(c) If By =0 the least squares “sum of squares” function becomes S(f,) =
SN (yi — Baxi)*. Using the data,

x‘l 2 3 4 5 6

y|4 6 7 7 9 11

plot the value of the sum of squares function for enough values of 3, for you to
locate the approximate minimum. What is the significance of the value of 3,
that minimizes S(B,)? (Hint: Your computations will be simplified if you
algebraically expand S(B,) = X (y; — B2x;)* by squaring the term in par-
entheses and carrying the summation operator through.)

(d)® Using calculus, show that the formula for the least squares estimate of 3, in this
model is by = X x;y;/2 x?. Use this result to compute b, and compare this value
to the value you obtained geometrically.

(e) Using the estimate obtained with the formula in (d), plot the fitted (estimated)
regression function. On the graph locate the point (¥, ). What do you observe?

(f) Using the estimates obtained with the formula in (d), obtain the least squares
residuals, ¢; = y; — byx;. Find their sum.

(g) Calculate Y. x;e;.

A small business hires a consultant to predict the value of weekly sales of their product
if their weekly advertising is increased to $750 per week. The consultant takes a
record of how much the firm spent on advertising per week and the corresponding
weekly sales over the past six months. The consultant writes “Over the past six
months the average weekly expenditure on advertising has been $500 and average
weekly sales have been $10,000. Based on the results of a simple linear regression, I
predict sales will be $12,000 if $750 per week is spent on advertising.”

(a) What is the estimated simple regression used by the consultant to make this

prediction?
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(b) Sketch a graph of the estimated regression line. Locate the average weekly values
on the graph.

A soda vendor at Louisiana State University football games observes that more sodas

are sold the warmer the temperature at game time is. Based on 32 home games

covering five years, the vendor estimates the relationship between soda sales and

temperature to be y = —240 + 8x, where y = the number of sodas she sells and x =

temperature in degrees Fahrenheit,

(a) Interpret the estimated slope and intercept. Do the estimates make sense? Why,
or why not?

(b) On a day when the temperature at game time is forecast to be 80°F, predict how
many sodas the vendor will sell.

(c) Below what temperature are the predicted sales zero?

(d) Sketch a graph of the estimated regression line.

You have the results of a simple linear regression based on state-level data and the

District of Columbia, a total of N = 51 observations.

(a) The estimated error variance 6> = 2.04672. What is the sum of the squared least
squares residuals?

(b) The estimated variance of b, is 0.00098. What is the standard error of b,? What
is the value of ¥(x; — x)*?

(c) Suppose the dependent variable y; = the state’s mean income (in thousands of
dollars) of males who are 18 years of age or older and x; the percentage of males
18 years or older who are high school graduates. If b, = 0.18, interpret this
result.

(d) Suppose X = 69.139 and y = 15.187, what is the estimate of the intercept
parameter?

(e) Given the results in (b) and (d), what is Zx,-z?

(f) For the state of Arkansas the value of y; = 12.274 and the value of x; = 58.3.
Compute the least squares residual for Arkansas. (Hint: Use the information in
parts (c) and (d).).

Professor E.Z. Stuff has decided that the least squares estimator is too much trouble.
Noting that two points determine a line, Dr. Stuff chooses two points from a sample of
size N and draws a line between them, calling the slope of this line the EZ estimator
of B, in the simple regression model. Algebraically, if the two points are (xy,y;)
and (x2,y2), the EZ estimation rule is

Assuming that all the assumptions of the simple regression model hold:

(a) Show that bgy is a “linear’ estimator.

(b) Show that bgy is an unbiased estimator.

(c) Find the variance of bgy.

(d) Find the probability distribution of bg.

(e) Convince Professor Stuff that the EZ estimator is not as good as the least squares
estimator. No proof is required here.

2.10.2 ComPUTER EXERCISES

2.9%

The owners of a motel discovered that a defective product was used in its construc-
tion. It took seven months to correct the defects, during which 14 rooms in the
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100-unit motel were taken out of service for 1 month at a time. The motel lost

profits due to these closures, and the question of how to compute the losses was

addressed by Adams (2008).” For this exercise use the data in morel.dat.

(a) The occupancy rate for the damaged motel is MOTEL_PCT, and the competitor

occupancy rate is COMP_PCT. On the same graph, plot these variables against

TIME. Which had the higher occupancy before the repair period? Which had the

higher occupancy during the repair period?

Plot MOTEL_PCT against COMP_PCT. Does there seem to be a relationship

between these two variables? Explain why such a relationship might exist.

(c) Estimate a linear regression with y = MOTEL_PCT and x = COMP_PCT.
Discuss the result.

(d) Compute the least squares residuals from the regression results in (c). Plot these
residuals against time. Does the model overpredict, underpredict, or accurately
predict the motel’s occupancy rate during the repair period?

(e) Consideralinearregression withy =MOTEL_PCTand x = RELPRICE, which is
the ratio of the price per room charged by the motel in question relative to its
competitors. What sign do you predict for the slope coefficient? Why? Does the
sign of the estimated slope agree with your expectation?

(f) Consider the linear regression with y = MOTEL_PCTand x = REPAIR, which is
an indicator variable, taking the value 1 during the repair period and O otherwise.
Discuss the interpretation of the least squares estimates. Does the motel appear to
have suffered a loss of occupancy, and therefore profits, during the repair period?

(g) Compute the average occupancy rate for the motel and competitors when the
repairs were not being made (call these MOTEL, and COMP,), and when they
were being made (MOTEL; and COMP)). During the nonrepair period, what
was the difference between the average occupancies, MOTELy, — COMP,? Does
this comparison seem to support the motel’s claims of lost profits during the
repair period?

(h) Estimate a linear regression model withy = MOTEL_PCT-COMP_PCTand x =
REPAIR. How do the results of this regression relate to the result in part (g)?

(b

~

The capital asset pricing model (CAPM) is an important model in the field of finance.
It explains variations in the rate of return on a security as a function of the rate of
return on a portfolio consisting of all publicly traded stocks, which is called the
market portfolio. Generally the rate of return on any investment is measured relative
to its opportunity cost, which is the return on a risk free asset. The resulting difference
is called the risk premium, since it is the reward or punishment for making a risky
investment. The CAPM says that the risk premium on security j is proportional to the
risk premium on the market portfolio. That is,

ri—1r = Bj(rm — 1),

where r; and ryare the returns to security j and the risk-free rate, respectively, r,, is
the return on the market portfolio, and 3; is the jth security’s “beta’ value. A stock’s
beta is important to investors since it reveals the stock’s volatility. It measures the
sensitivity of security j’s return to variation in the whole stock market. As such,
values of beta less than 1 indicate that the stock is “defensive’ since its variation is

7 A. Frank Adams (2008) “When a ‘Simple’ Analysis Won’t Do: Applying Economic Principles in a Lost
Profits Case,” The Value Examiner, May/June 2008, 22—28. The authors thank Professor Adams for the use of
his data.
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less than the market’s. A bera greater than 1 indicates an “aggressive stock.”
Investors usually want an estimate of a stock’s beta before purchasing it. The CAPM
model shown above is the “economic model” in this case. The “econometric
model” is obtained by including an intercept in the model (even though theory says it
should be zero) and an error term,

rj = 1r =+ Bilrm —rp) +e

(a) Explain why the econometric model above is a simple regression model like
those discussed in this chapter.

(b) Inthe data file capm4.dat are data on the monthly returns of six firms (Microsoft,
GE, GM, IBM, Disney, and Mobil-Exxon), the rate of return on the market
portfolio (MKT), and the rate of return on the risk free asset (RISKFREE). The
132 observations cover January 1998 to December 2008. Estimate the CAPM
model for each firm, and comment on their estimated beta values. Which firm
appears most aggressive? Which firm appears most defensive?

(c) Finance theory says that the intercept parameter o; should be zero. Does this
seem correct given your estimates? For the Microsoft stock, plot the fitted
regression line along with the data scatter.

(d) Estimate the model for each firm under the assumption that o; = 0. Do the
estimates of the beta values change much?

The file br2.dat contains data on 1080 houses sold in Baton Rouge, Louisiana, during

mid-2005. The data include sale price, the house size in square feet, its age, whether it

has a pool or fireplace or is on the waterfront. Also included is an indicator variable

TRADITIONAL indicating whether the house style is traditional or not.® Variable

descriptions are in the file br2.def.

(a) Plot house price against house size for houses with traditional style.

(b) For the traditional-style houses estimate the linear regression model PRICE =
B1 + B2SOFT + e. Interpret the estimates. Draw a sketch of the fitted line.

(c) For the traditional-style houses estimate the quadratic regression model
PRICE = a1 + a,SQFT? + e. Compute the marginal effect of an additional
square foot of living area in a home with 2000 square feet of living space.
Compute the elasticity of PRICE with respect to SQFT for a home with 2000
square feet of living space. Graph the fitted line. On the graph, sketch the line that
is tangent to the curve for a 2000-square-foot house.

(d) For the regressions in (b) and (c) compute the least squares residuals and plot
them against SQFT. Do any of our assumptions appear violated?

(e) One basis for choosing between these two specifications is how well the data are
fit by the model. Compare the sum of squared residuals (SSE) from the models in
(b) and (c). Which model has alower SSE? How does having a lower SSE indicate
a “better-fitting” model?

(f) For the traditional-style houses estimate the log-linear regression model
In(PRICE) = y1 + y2SQFT + e. Interpret the estimates. Graph the fitted line,
and sketch the tangent line to the curve for a house with 2000 square feet of
living area.

8 The data file br.dat offers a wider range of style listings. Try this data set for amore detailed investigation of the
effect of style.
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(g) How would you compute the sum of squared residuals for the model in (f) to
make it comparable to those from the models in (b) and (¢)? Compare this sum of
squared residuals to the SSE from the linear and quadratic specifications. Which
model seems to fit the data best?

The file stocktond.dat contains data on 1500° houses sold in Stockton, CA during

1996-1998. Variable descriptions are in the file stockton4.def.

(a) Plot house selling price against house living area for all houses in the sample.

(b) Estimate the regression model SPRICE = (3; + B2LIVAREA + e for all the
houses in the sample. Interpret the estimates. Draw a sketch of the fitted line.

(c) Estimate the quadratic model SPRICE = o + s LIVAREA? + e for all the
houses in the sample. What is the marginal effect of an additional 100 square
feet of living area for a home with 1500 square feet of living area?

(d) In the same graph, plot the fitted lines from the linear and quadratic models.
Which seems to fit the data better? Compare the sum of squared residuals (SSE)
for the two models. Which is smaller?

(e) Estimate the regression model in (c) using only houses that are on large lots.
Repeat the estimation for houses that are not on large lots. Interpret the estimates.
How do the estimates compare?

(f) Plot house selling price against AGE. Estimate the linear model SPRICE =
81 + 8,AGE + e. Interpret the estimated coefficients. Repeat this exercise using
the log-linear model In(SPRICE) = 8, + 6,AGE + e. Based on the plots and
visual fit of the estimated regression lines, which of these two models would you
prefer? Explain.

(g) Estimate a linear regression SPRICE = m; + m,LGELOT + e with dependent
variable SPRICE and independent variable the indicator LGELOT which ident-
ifies houses on larger lots. Interpret these results.

A longitudinal experiment was conducted in Tennessee beginning in 1985 and

ending in 1989. A single cohort of students was followed from kindergarten through

third grade. In the experiment children were randomly assigned within schools into
three types of classes: small classes with 13—17 students, regular-sized classes with

22-25 students, and regular-sized classes with a full-time teacher aide to assist the

teacher. Student scores on achievement tests were recorded as well as some

information about the students, teachers, and schools. Data for the kindergarten
classes are contained in the data file star.dat.

(a) Using children who are in either a regular-sized class or a small class, estimate
the regression model explaining students’ combined aptitude scores as a function
of class size, TOTALSCORE; = B1 + B2SMALL; + e;. Interpret the estimates.
Based on this regression result, what do you conclude about the effect of class
size on learning?

(b) Repeat part (a) using dependent variables READSCORE and MATHSCORE. Do
you observe any differences?

(c) Usingchildren who are in either a regular-sized class or aregular-sized class with
a teacher aide, estimate the regression model explaining student’s combined
aptitude scores as a function of the presence of a teacher aide,
TOTALSCORE = v; + Y,AIDE + e. Interpret the estimates. Based on this

° The data set stockton3.dat has 2,610 observations on these same variables.
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regression result, what do you conclude about the effect on learning of adding a
teacher aide to the classroom?

(d) Repeat part (c) using dependent variables READSCORE and MATHSCORE.
Do you observe any differences?

Professor Ray C. Fair has for a number of years built and updated models that explain
and predict the U.S. presidential elections. Visit his website at http://fairmodel.econ
.yale.edu/vote2004/index2.htm. See in particular his paper entitled ““A Vote Equation
for the 2004 Election.” The basic premise of the model is that the incumbent party’s
share of the two-party [Democratic and Republican] popular vote [incumbent means
the party in power at the time of the election] is affected by a number of factors
relating to the economy, and variables relating to the politics, such as how long the
incumbent party has been in power, and whether the President is running for

re-election. Fair’s data, 33 observations for the election years from 1880 to 2008,

are in the file fair4.dat. The dependent variable is VOTE = percentage share of the

popular vote won by the incumbent party. Consider the explanatory variable

GROWTH = growth rate in real per capita GDP in the first three quarters of the

election year (annual rate). One would think that if the economy is doing well, and

growth is high, the party in power would have a better chance of winning the election.

(a) Using the data for 1916-2008, plot a scatter diagram of VOTE against GROWTH.
Does there appear to be positive association?

(b) Estimate the regression VOTE = 3| + B,GROWTH + e by least squares using
the data from 1916 to 2008. Report and discuss the estimation result. Sketch,
by hand, the fitted line on the data scatter from (a).

(c) Fitthe regression in (b) using the data from 1916 to 2004. Predict the VOTE share
for the incumbent party based on the actual 2008 value for GROWTH. How does
the predicted vote for 2008 compare to the actual result?

(d) Economywide inflation may spell doom for the incumbent party in an election.
The variable INFLATION is the growth in prices over the first 15 quarters of an
administration. Using the data from 1916 to 2008, plot VOTE against
INFLATION. Using the same sample, report and discuss the estimation results
for the model VOTE = a1 + o, INFLATION + e.

How much does education affect wage rates? The data file cps4_small.dat contains
1000 observations on hourly wage rates, education, and other variables from the 2008
Current Population Survey (CPS).

(a) Obtain the summary statistics and histograms for the variables WAGE and
EDUC. Discuss the data characteristics.

(b) Estimate the linear regression WAGE = B + B2EDUC + e and discuss the
results.

(c) Calculate the least squares residuals and plot them against EDUC. Are any
patterns evident? If assumptions SR1-SRS hold, should any patterns be evident
in the least squares residuals?

(d) Estimate separate regressions for males, females, blacks, and whites. Compare
the results.

(e) Estimate the quadratic regression WAGE = o + o, EDUC? + e and discuss the
results. Estimate the marginal effect of another year of education on wage for a
person with 12 years of education, and for a person with 14 years of education.
Compare these values to the estimated marginal effect of education from the
linear regression in part (b).
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(f) Plot the fitted linear model from part (b) and the fitted values from the quadratic
model from part (e) in the same graph with the data on WAGE and EDUC. Which

model appears to fit the data better?
(g) Construct a histogram of In(WAGE). Compare the shape of this histogram to that
for WAGE from part (a). Which appears more symmetric and bell-shaped?
(h) Estimate the log-linear regression In(WAGE) = vy + v2EDUC + e. Estimate
the marginal effect of another year of education on wage for a person with 12
years of education, and for a person with 14 years of education. Compare these

values to the estimated marginal effects of education from the linear regression in

part (b) and the quadratic equation in part (e).

Appendix 2A Derivation of the

Least Squares Estimates
Given the sample observations on y and x, we want to find values for the unknown
(2A.1)

parameters [3; and 3, that minimize the “sum of squares” function
N 2
S(B1,B2) = Xi=i (vi — B1 — Baxi)

Since the points (y;, x;) have been observed, the sum of squares function S depends only

on the unknown parameters 3; and [3,. This function, which is a quadratic in terms of
the unknown parameters (3; and (35, is a “bowl-shaped surface’ like the one depicted in

Figure 2A.1.
Our task is to find, out of all the possible values 3 and [3,, the point (by, b,) at which the
sum of squares function § is a minimum. This minimization problem is a common one in

calculus, and the minimizing point is at the “bottom of the bowl.”
Those of you familiar with calculus and ‘““partial differentiation” can verify that the

partial derivatives of S with respect to 3; and (3, are
oS
By 2NB1 — 2Xyi + 2(Xxi) B2
a5 (2A.2)
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FIGURE 2A .1 The sum of squares function and the minimizing values b; and b;.
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These derivatives are equations of the slope of the bowl-like surface in the directions of the
axes. Intuitively, the ‘“bottom of the bowl” occurs where the slope of the bowl, in
the direction of each axis, 9S/9B; and 9S/9B,, is zero.

Algebraically, to obtain the point (by, by) we set (2A.2) to zero and replace 31 and 3, by b;
and by, respectively, to obtain

2[Xyi = Nby — (Xxi)b2] =0
2[Xxiyi — (Xx)bi — (Xx7)ba) = 0
Simplifying these gives equations usually known as the normal equations,

Nby + (Zx))by =X y; (2A.3)
(Zx)bi + (Zx7)by = T xiyi (2A.4)

These two equations have two unknowns b; and b,. We can find the least squares estimates
by solving these two linear equations for by and b,. To solve for b, multiply (2A.3) by > x;,
multiply (2A.4) by N, then subtract the first equation from the second, and then isolate b, on
the left-hand side.

_ NYxiyi — Xx 2y

2A.5
NE — (S oA

2

This formula for b, is in terms of data sums, cross-products, and squares. The deviation from
the mean form of the estimator is derived in Appendix 2B.
To solve for by, given b,, divide both sides of (2A.3) by N and rearrange.

Appendix 2B Deviation from the Mean Form of b,

The first step in the conversion of the formula for b, into (2.7) is to use some tricks involving
summation signs. The first useful fact is that

S —x) =3 — %I+ NE = XX — ZX(NIin> +N*%
N (2B.1)

=3x} —2N® +N¥ =Xx} —N%

Should you ever have to calculate ¥, (x; — x)°, using the shortcut formula ¥ (x; — x)* =X x2 —
N ¥ is much easier. Then

2
(%) =X - N¥ =Xx7 — 3Ly = X — % (2B.2)

To obtain this result we have used the fact that ¥ = X x; /N, so X x; = NX.
The second useful fact is similar to the first, and it is

XY
N

(X —X)(yi — V) = Zxyi — NXy = 2 xiyi — (2B.3)

This result is proven in a similar manner.
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If the numerator and denominator of b, in (2A.5) are divided by N, then using (2B.1)—
(2B.3) we can rewrite b, in deviation from the mean form as

2(x —X)(vi =)

by —
’ 2 — f)z

This formula for b, is one that you should remember, as we will use it time and time again in
the next few chapters.

Appendix 2C b, Is a Linear Estimator

In order to derive (2.10) we make a further simplification using another property of sums.
The sum of any variable about its average is zero; that is,

Z(X,' *)_C) =0

Then, the formula for b, becomes

L =D —¥) _ XX —X)yi — Y2 — %)

A T Y (x — %)
2(x; — X)yi (xi — %)
= 5 = z o |Vi= 2wy
(v —%) lZ(x,- _%) 1y Y

where w; is the constant given in (2.11).

Appendix 2D Derivation of Theoretical
Expression for b,

To obtain (2.12) replace y; in (2.10) by y; = B + Bax; + ¢; and simplify:
by = Zwiy; = Zwi(B1 + Baxi + €;)
= BiXw; + BaXwix; + Zwie;
= B2 + Zwie

We used two more summation tricks to simplify this. First, >w; = 0; this eliminates the
term B12w;. Secondly, Xw;x; = 1, so B22wix; = Ba, and (2.10) simplifies to (2.12).
The term Yw; = 0 because

W — (Xi—f) _ 1 o — ) =
S zlz(xi—xf} S S =9 =0

where in the last step we used the fact that > (x; — x) = 0.
To show that Sw;x; = 1 we againuse X(x; — x) = 0. Another expression for ¥,(x; — )% is

S(x — %) = Z(xi — %) (x — %)
= 2(x; — X)x; — X2 (x; — X)
= Z(X,' — f)x,-
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Consequently,

ZW[)C[ = . — = ' — ' = 1

Appendix 2E Deriving the Variance of b,

The starting point is (2.12), b» = B, + 2w;e;. The least squares estimator is a random
variable whose variance is defined to be

var(b,) = Elby — E(by)]”

Substituting in (2.12) and using the unbiasedness of the least squares estimator, E(b,) = B,
we have

Val'(bz) = E(Bz + 2wie; — BZ)2

(Zwier)’

E
E (szez + 222 wiwjeie;) (square of bracketed term)
Swy

E(e?) + 2%2 wiw;E(e;e;) (because w; not random)
it

= o?Yw?

0_2

(6 —%)°

The next to last line is obtained by using two assumptions: First,

o? = var(e;) = Ele; — E(e;)]* = E(e; — 0)* = E(e?)
Second, cov(e;, ej) = E[(e; — E(e;))(e; — E(e;))] = E(ejej) = 0. Then, the very last step
uses the fact that

Sl x-%" | _ Sm-%* 1

Bw-o) ] {Sw-w) 2w

Alternatively, we can employ the rule for finding the variance of a sum. If X and Y are
random variables, and a and b are constants, then

var(aX + bY) = a*var(X) + b*var(Y) + 2ab cov(X,Y)

Appendix B.4 reviews all the basic properties of random variables. In the second line below
we use this rule extended to more than two random variables. Then,

var(by) = var(B + Xwje;) = var(Zwie;) (since B, is a constant)
= Ywivar(e;)+ XY wiw; cov(e;, ¢j) (generalizing the variance rule)
i#J
= Ywivar(e;) (using cov(e;, e;) = 0)
= o2 3w? (using var(e;) = o?)
o2



APPENDIX 2F PROOF OF THE GAUSS-MARKOV THEOREM 87

Carefully note that the derivation of the variance expression for b, depends on assumptions
SR3 and SR4. If cov(e;, ej) =0, then we cannot drop out all those terms in the double
summation. If var(e;) # o for all observations, then o cannot be factored out of the
summation. If either of these assumptions fails to hold then var(b,) is something else and is
not given by (2.15). The same is true for the variance of b; and the covariance.

Appendix 2F Proof of the Gauss—Markov Theorem

We will prove the Gauss—Markov theorem for the least squares estimator b, of 3. Our goal
is to show that in the class of linear and unbiased estimators the estimator b, has the smallest
variance. Let by = Yk;y; (where k; are constants) be any other linear estimator of 3. To
make comparison to the least squares estimator b, easier, suppose thatk; = w; + ¢;, where ¢;
is another constant and w; is given in (2.11). While this is tricky, it is legal, since for any k;
that someone might choose we can find c;. Into this new estimator substitute y; and simplify,
using the properties of w; in Appendix 2D

by = Tkiyi = Z(wi + ¢;)yi = Z(wi + ci)(B1 + Baxi + ;)
=Y (wi +¢i)B1 + Z(wi + ¢i)Baxi + X(wi + ¢;)e;
= B1Xwi + B1Zci + BaZwixi + BaXeix; + Z(wi + ¢i)e;
= B1Xci + Ba + BaZeix; + X(w; + ¢i)e;

(2F.1)

since Yw; = 0 and Yw;x; = 1.
Take the mathematical expectation of the last line in (2F.1), using the properties of
expectation and the assumption that E(e;) = 0:

E(b3) = BiXci + Bo + BaXexi + X(wi + ¢i)E(e;)

(2F.2)
= Bi1Xci + Bo + Podeix;
In order for the linear estimator b3 = Xk;y; to be unbiased, it must be true that
ZC,’ =0 and ZC,'.X,' =0 (2F3)

These conditions must hold in order for b5 = X k;y; to be in the class of linear and unbiased
estimators. So we will assume that conditions (2F.3) hold and use them to simplify
expression (2F.1):

by = Ykiyi = Ba + X(wi + ¢i)e; (2F.4)

We can now find the variance of the linear unbiased estimator b; following the steps in
Appendix 2E and using the additional fact that

ci(x,- — X) 1 Zc~x~ _ X
2 i

2(xi — f)zl - 2 (xi —X)

ZCiW,‘ = 2[
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Use the properties of variance to obtain

var(b}) = var[B, 4+ S(wi + ¢i)ei] = Z(wi 4 ¢;) var(e;)
= X (wi + ;) = o?Iw! + a? e}
= var(hy) + 0?Xc}
> var(b,)

The last line follows since Y.c? > 0 and establishes that for the family of linear and unbiased
estimators b3, each of the alternative estimators has variance that is greater than or equal to
that of the least squares estimator b,. The only time that var(b}) = var(b;) is when all the
¢; = 0, in which case b5 = b,. Thus there is no other linear and unbiased estimator of (B,
that is better than b,, which proves the Gauss—Markov theorem.

Appendix 2G Monte Carlo Simulation

The statistical properties of the least squares estimators are well known if the assumptions in
Section 2.1 hold. In fact, we know that the least squares estimators are the best linear
unbiased estimators of the regression parameters under these assumptions. And if the
random errors are normal, then we know that the estimators themselves have normal
distributions in repeated experimental trials. The meaning of “repeated trials” is difficult
to grasp. Monte Carlo simulation experiments use random number generators to replicate
the random way that data are obtained. In Monte Carlo simulations we specify a data
generation process and create samples of artificial data. Then we “try out” estimation
methods on the data we have created. We create many samples of size N and examine the
repeated sampling properties of the estimators. In this way, we can study how statistical
procedures behave under ideal, as well as not so ideal, conditions. This is important because
economic, business, and social science data are not always (indeed, not usually) as nice as
the assumptions we make.
The data generation process for the simple linear regression model is given by

yi = E(yilx;) +ei =B1 +Boxi+e;, i=1,....N

Each value of the dependent variable y; is obtained, or generated, by adding arandom error e;
to the regression function E(y;|x;). To simulate values of y; we create values for the
systematic portion of the regression relationship E(y;|x;) and add to it the random error
e;. This is analogous to a physical experiment in which variable factors are set at fixed
levels and the experiment run. The outcome is different in each experimental trial because
of random uncontrolled errors.

2G.1 THE REGRESSION FuNcTION

The regression function E(y;|x;) = B1 + Box; is the systematic portion of the regression
relationship. To create these values we must select

1. A sample size N. From the discussion in Section 2.4.4 we know that the larger the
sample size is, the greater is the precision of estimation of the least squares estimators
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by and b,. Following the numerical examples in the book, we choose N = 40. This is
not a large sample, but assuming SR1-SRS5 are true, the least squares estimators’
properties hold for any sample of size N > 2 in the simple regression model. In more
complex situations, varying the sample size to see how estimators perform is an
important ingredient of the simulation.

2. We must choose x; values. We maintain the assumption of values of the explanatory
variable that are fixed in repeated experimental trials. Following the depiction in
Figure 2.1'° we set the values X1, X2, -, X0 = 10 and x21, X2, . . ., x40 = 20, using
the chapter assumption that x is measured in 100s. Does it matter how we choose the
x; values? Yes, it does. The variances and covariances of the least squares estimators
depend on the variation in x;, X.(x; — )_6)2, how far the values are from 0, as measured
by 2x?, and on the sample mean X. Thus, if the values x; change, the precision of
estimation of the least squares estimators will change.

3. We must choose [3; and {3,. Interestingly, for the least squares estimator under
assumptions SR1-SRS, the actual magnitudes of these parameters do not matter a
great deal. The estimator variances and covariances do not depend on them.
The difference between the least squares estimator and the true parameter value,
E(by)—B2 givenin (2.13) does not depend on the magnitude of 3, only on the x; values
and the random errors e;. To roughly parallel the regression results we obtained in
Figure 2.9, we set B; = 100 and 3, = 10.

Given the values above we can create N = 40 values E(ylx;) = B1 + Box;. These values
are

E(yilx; = 10) = 100 + 10x; = 100 + 10 x 10 =200, i=1,...,20
E(yilx; = 20) = 100 + 10x; = 100 + 10 x 20 = 300, i =21,...,40

2G.2 THE Ranpom ERROR

To be consistent with assumptions SR2-SR4 the random errors should have mean
zero, constant variance var(e; |x;) = o? and be uncorrelated with one another, so that
cov(e;e;) = 0. Researchers in the field of numerical analysis have studied how to simulate
random numbers from a variety of probability distributions, such as the normal distribution.
Of course the computer-generated numbers cannot be truly random, because they are
generated by a computer code. The random numbers created by computer software are
“pseudorandom,” in that they behave like random numbers. The numbers created will begin
to recycle after about 10'? values are drawn, which is plenty for our uses. Each software
vender uses its own version of a random number generator. Consequently, you should not
expect to obtain exactly the same numbers that we have, and your replication will produce
slightly different results, even though the major conclusions will be the same. See Appendix
B.4 for a discussion of how random numbers are created.

Following assumption SR6 we assume the random error terms have a normal distribution
with mean 0 and a homoskedastic variance var(e; | x;) = o?. The variance o affects the
precision of estimation through the variances and covariances of the least squares estimators

10 This design is used in Chapter 2.4 of Briand, G. & Hill, R. C. (2010). Using Excel 2007 for Principles of
Econometrics. John Wiley and Sons.
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in (2.14)—(2.16). The bigger the value of o’, the bigger the variances and covariances of
the least squares estimators, and the more spread out the probability distribution of the
estimators, as shown in Figure 2.10. We choose var(e; | x;) = o2 = 2500, which also means
that var(y; | x;) = o2 = 2500.

2G.3 THEORETICALLY TRUE VALUES

Using the values above we plot the theoretically true probability density functions for y;
in Figure 2G.1. The solid curve on the left is N(200, 2500 = 50?). The first 20 simulated
observations will follow this probability density function. The dashed curve on the right
is N(300, 2500 = 50%), which is the probability density function for the second 20
observations.

Given the parameter 0> = 2500 and the x; values we can compute the true variances of
the estimators

X7 10000
b)) =0’ | ———| =2500|—»«+—| =625
var( 1) o [NZ(X,‘ - X)2 40 x 1000

o> 2500
>(x—x)° 1000

var(b,) = =2.50

_% ~15
by by) =2 |— | =2500|—>| = —37.50
covibrb) = [Z(Xi_f)zl Looo]

The true standard deviation of b, is y/var(by) = v/2.50 = 1.5811. The true probability
density function of b, is N(3, = 10, var(b,) = 2.5). Using the cumulative probabilities for
the standard normal distribution in Table 1 at the end of this book, we find that 98 % of values
from a normal distribution fall within 2.33 standard deviations of the mean. Applying this
rule to the estimates b, we have B, 4 2.33 x /var(b,) = 10 £2.33 x 1.5811 =
[6.316,13.684]. We expect almost all values of b, (98% of them) to fall in the range

Ok =10)

T T T T
0 100 200 300 400 500
FIGURE 2G.1 The true probability density functions of the data.
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Jvar (by) =/2.50 = 1.5811

)
4 6 8 10 12 14 16
E(by) =, =10

FIGURE 2(G.2 The true probability density functions of the estimator b,.

6.32-13.68. The plot of the true probability density function of the estimator b, is shown in
Figure 2G.2.

2G.4 CREATING A SAMPLE OF DATA

Most software will automatically create random values, z;, from the standard normal
distribution, N(0, 1). To obtain a random value from a N(0, 02) distribution, we multiply z;
by the standard deviation o. That is e¢; = oxz. Given values z; from the standard
normal distribution, we obtain the N = 40 sample values from the chosen data generation
process as

y,-:E(y,-|x,-:10)—|—ei:200—|—50><z,» 1217,20
y,':E(yl'|)C,':20)+€,‘:300+50XZ[ l:21,,40

One sample of data is in the file mcl.dat. Using these values we obtain the least squares
estimates

§ = 75.7679 + 11.9683x;
(se) (25.7928) (1.6313)

and the estimate ¢ = 51.5857. The estimated variances and covariances of b; and b, are

bl b2
bl 665.2699 —39.9162
b2 —39.9162 2.6611

For this one sample the parameter estimates are reasonably near their true values.
However, what happens in one sample does not prove anything. The repeated sampling
properties of the least squares estimators are about what happens in many samples of data,
from the same data generation process.
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2G.5 MOoNTE CARLO OBJECTIVES

What do we hope to achieve with a Monte Carlo experiment? After the Monte Carlo
experiment we will have many least squares estimates. If we obtain M = 1000 samples'’,

we will have 1000 estimates by i, . . ., by y, 1000 estimates by 1, . . ., by and 1000 estimates
~2 ~2
0-1, e, 0.

*  We would like to verify that under SR1-SRS5 the least squares estimators are unbiased.
The estimator b, is unbiased if E(b;) = ;. Since an expected value is an average
in many repeated experimental trials, we should observe that the average value of
all the slope estimates, by = Zﬁlebz_m/M, is close to By = 10.

e We would like to verify that under SRI-SR5 the least squares estimators have
sampling variances given by (2.14) and (2.16). The estimator variances measure
the sampling variation in the estimates. The sampling variation of the estimates in the
Monte Carlo simulation can be measured by their sample variance. For example, the
sample variance of the estimates b, 1, . . ., by is s%z =30 by — b))/ (M —1).
This value should be close to var(b,) = 2.50, and the standard deviation s,, should be
close to the true standard deviation of the regression estimates 1.5811.

e We would like to verify that the estimator of the error variance (2.19) is an unbiased
estimator of ¢® = 2500, or that 6> = 2%:1(}% /M is close to the true value.

* Because we have assumed the random errors are normal, SR6, we expect the least
squares estimates to have a normal distribution.

2G.6 MonNTE CARLO RESuULTS

The numerical results of the Monte Carlo experiment are shown Table 2G.1. The averages
(or “Sample Means’’) of the 1000 Monte Carlo estimates are close to their true values.
For example, the average of the slope estimates is b, = 2%:1192,” /M =10.0143, com-
pared to the true value (3, = 10. The sample variance of the estimates s,z,2 = 21,‘,,4:1 (bzym —
by)*/(M — 1) = 2.3174 compared to the true value var(h,) = 2.50. The standard deviation
of the estimates is s,, = 1.5223, compared to the true standard deviation y/var(b,) =
v/2.50 = 1.5811. The theoretical 1st and 99th percentiles of b, are [6.316, 13.684], which

is reflected by the estimates [6.3811, 13.5620]. If the number of Monte Carlo samples is

Table 2G.1 Summary of 1,000 Monte Carlo Samples

Mean Variance  Std. Dev. Minimum Maximum 1st Pct. 99th Pct.

by (100) 99.7581 575.3842  23.9872 25.8811 174.6061 42.1583  156.0710
b, (10) 10.0143 23174 1.5223 5.1401 14.9928 6.3811 13.5620
62(2,500)  2489.935 329909.9 574.3778  1024.191 5200.785 1360.764  4031.641

"' M = 1000 is a moderate number of Monte Carlo samples. Depending upon the purpose of the Monte Carlo,
the number of samples may have to be larger. More will be said about this in an appendix to Chapter 3.
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FIGURE 2G.3 The sampling distribution of b, in 1000 Monte Carlo samples.

increased to M = 10,000, then the empirical Monte Carlo average values are even closer
to the true parameters.

As for the normality of the estimates, we see from the histogram in Figure 2G.3, that the
actual values follow the superimposed normal distribution very closely.



Chapter 3

Interval Estimation and
Hypothesis Testing

Learning Objectives

Based on the material in this chapter, you should be able to

1.

Discuss how “repeated sampling theory” relates to interval estimation and
hypothesis testing.

2. Explain why it is important for statistical inference that the least squares estimators
by and b, are normally distributed random variables.
3. Explain the “level of confidence” of an interval estimator, and exactly what it
means in a repeated sampling context, and give an example.
4. Explain the difference between an interval estimator and an interval estimate.
Explain how to interpret an interval estimate.
5. Explain the terms null hypothesis, alternative hypothesis, and rejection region,
giving an example and a sketch of the rejection region.
6. Explain the logic of a statistical test, including why it is important that a test statistic
have a known probability distribution if the null hypothesis is true.
7. Explain the term p-value and how to use a p-value to determine the outcome of a
hypothesis test; provide a sketch showing a p-value.
8. Explain the difference between one-tail and two-tail tests. Explain, intuitively, how
to choose the rejection region for a one-tail test.
9. Explain Type I error and illustrate it in a sketch. Define the level of significance of a test.
10. Explain the difference between economic and statistical significance.
11. Explain how to choose what goes in the null hypothesis, and what goes in the
alternative hypothesis.
Keywords
alternative hypothesis interval estimation p-value
confidence intervals level of significance rejection region
critical value linear hypothesis test of significance
degrees of freedom null hypothesis test statistic
hypotheses one-tail tests two-tail tests
hypothesis testing point estimates Type I error
inference probability value Type II error
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In Chapter 2 we used the least squares estimators to develop point estimates for the
parameters in the simple linear regression model. These estimates represent an inference
about the regression function E(y) = 8| + B,x describing a relationship between economic
variables. Infer means ‘‘to conclude by reasoning from something known or assumed.” This
dictionary definition describes statistical inference as well. We have assumed a relationship
between economic variables and made various assumptions (SR1-SR5) about the regression
model. Based on these assumptions, and given empirical estimates of regression parameters,
we want to make inferences about the population from which the data were obtained.

In this chapter we introduce additional tools of statistical inference: interval estimation
and hypothesis testing. Interval estimation is a procedure for creating ranges of values,
sometimes called confidence intervals, in which the unknown parameters are likely to
be located. Hypothesis tests are procedures for comparing conjectures that we might have
about the regression parameters to the parameter estimates we have obtained from a sample
of data. Hypothesis tests allow us to say that the data are compatible, or are not compatible,
with a particular conjecture or hypothesis.

The procedures for hypothesis testing and interval estimation depend very heavily on
assumption SR6 of the simple linear regression model and the resulting normality of the
least squares estimators. If assumption SR6 does not hold, then the sample size must be
sufficiently large so that the distributions of the least squares estimators are approximately
normal. In this case the procedures we develop in this chapter can be used but are also
approximate. In developing the procedures in this chapter we will be using the ““Student’s”
t-distribution. You may want to refresh your memory about this distribution by reviewing
Appendix B.3.7. Also, it is sometimes helpful to see the concepts we are about to discuss in a
simpler setting. In Appendix C we examine statistical inference, interval estimation, and
hypothesis testing in the context of estimating the mean of a normal population. You may
want to review this material now, or read it along with this chapter as we proceed.

3.1 Interval Estimation

In Chapter 2 we estimated that household food expenditure would rise by $10.21 given a
$100 increase in weekly income. The estimate b, = 10.21 is a point estimate of the unknown
population parameter 3, in the regression model. Interval estimation proposes a range of
values in which the true parameter [3, is likely to fall. Providing a range of values gives a
sense of what the parameter value might be, and the precision with which we have estimated
it. Such intervals are often called confidence intervals. We prefer to call them interval
estimates because the term ‘““confidence’ is widely misunderstood and misused. As we will
see, our confidence is in the procedure we use to obtain the intervals, not in the intervals
themselves. This is consistent with how we assessed the properties of the least squares
estimators in Chapter 2.

3.1.1 THE ~-DISTRIBUTION
Let us assume that assumptions SR1-SR6 hold for the simple linear regression model.

In this case we know that the least squares estimators b; and b, have normal distributions, as
discussed in Section 2.6. For example, the normal distribution of b,, the least squares

estimator of 3, is
2
o
by~N|Bryo——3
< S(x - %)
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A standardized normal random variable is obtained from b, by subtracting its mean and
dividing by its standard deviation:

by — B2

7 == s
o2/3(x; — %)

~N(0, 1) 3.1)

The standardized random variable Z is normally distributed with mean O and variance 1.
Using a table of normal probabilities (Table 1 at the end of the book), we know that

P(—1.96 < Z < 1.96) = 0.95

Substituting (3.1) into this expression, we obtain

P|-1.96 < Il S <1.96 | =0.95

o2 /2 (x; — )_C)2

Rearranging gives us

P(b2 —1.961/02/3(x;i —%)> < By < by + 1.961/ 2/ 3 (x; — x)2> =0.95

This defines an interval that has probability 0.95 of containing the parameter 3,. The two

endpoints <b2 +1.964/02 /2 (x; — x)2> provide an interval estimator. In repeated sam-

pling, 95% of the intervals constructed this way will contain the true value of the parameter
[>. This easy derivation of an interval estimator is based on both assumption SR6 and our
knowing the variance of the error term o”.

Although we do not know the value of 0%, we can estimate it. The least squares residuals are
é; = y; — by — byx;, and our estimator of 0 is 6> = Zé,-z/(N— 2). Replacing o’ byé?in(3.1)
creates a random variable we can work with, but this substitution changes the probability
distribution from standard normal to a ¢-distribution with N — 2 degrees of freedom,

by — b, — by —
. 2 — B _bh=B b B)th(N_2> 32)

Vo s faty

The ratio t = (b, — B2)/se(b,) has a t-distribution with N — 2 degrees of freedom, which
we denote as 7 ~ f(y_y). A similar result holds for by, so in general we can say, if assumptions
SR1-SR6 hold in the simple linear regression model, then

b —Bx
~ se(by)

~tyg for k=12 (3.3)

This equation will be the basis for interval estimation and hypothesis testing in the simple
linear regression model. The statistical argument of how we go from (3.1) to (3.2) is in
Appendix 3A, at the end of this chapter.

When working with the #-distribution, remember that it is a bell-shaped curve centered at
zero. It looks like the standard normal distribution, except that it is more spread out, with a
larger variance and thicker tails. The shape of the z-distribution is controlled by a single
parameter called the degrees of freedom, often abbreviated as df. We use the notation #,,) to
specify a r-distribution with m degrees of freedom. In Table 2 at the end of the book (and inside



3.1 INTERVAL ESTIMATION 97
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FIGURE 3.1 Critical values from a t-distribution.

the front cover) are percentile values of the #-distribution for various degrees of freedom. For
m degrees of freedom the 95th percentile of the z-distribution is denoted 7(o o5, ). This value
has the property that 0.95 of the probability falls to its left, so P [t(m> < t(o‘gs‘rm)] = 0.95. For

example, if the degrees of freedom are m = 20, then, from Table 2, 70 95 20) = 1.725. Should
you encounter a problem requiring percentiles that we do not give, you can interpolate for an
approximate answer, or use your computer software to obtain an exact value.

3.1.2 OBTAINING INTERVAL ESTIMATES

From Table 2 we can find a “critical value” ¢. from a ¢-distribution such that P(z > 1.) =
P(t < — 1) = a/2, where a is a probability often taken to be a = 0.01 or a = 0.05. The
critical value ¢, for degrees of freedom m is the percentile value #(j_q/2, ). The values ¢, and
—t. are depicted in Figure 3.1.

Each shaded “tail”” area contains a /2 of the probability, so that I — « of the probability is
contained in the center portion. Consequently, we can make the probability statement

P(—t.<t<t)=1-a (3.4)

For a 95% confidence interval the critical values define a central region of the #-distribution
containing probability 1 — a = 0.95. This leaves probability o = 0.05 divided equally
between the two tails, so that a/2 = 0.025. Then the critical value 7. = 1(1-0.025,m) =
1(0.975,m)- In the simple regression model the degrees of freedom are m =N —2, so
expression (3.4) becomes

P[—t0975.5-2) <1 < t(975,n-2)] = 0.95

We find the percentile values 7 975, y—2) in Table 2.
Now, let us see how we can put all these bits together to create a procedure for interval
estimation. Substitute ¢ from (3.3) into (3.4) to obtain

b, —
plon <P g
se(by)
Rearrange this expression to obtain
P[bk — tCSC(bk) < B < b+ tcse(bk)] =1—-«a 3.5)

The interval endpoints by — t.se(by) and by + t.se(by) are random because they vary from
sample to sample. These endpoints define an interval estimator of ;. The probability
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statement in (3.5) says that the interval by, =+ 7.8¢(by) has probability 1 — « of containing the
true but unknown parameter 3.

When by and se(by) in (3.5) are estimated values (numbers), based on a given sample of
data, then by + 1.se(by) is called a 100(1— )% interval estimate of 3. Equivalently it is
called a 100(1 — a)% confidence interval. Usually a = 0.01 or a = 0.05, so that we obtain
a 99% confidence interval or a 95% confidence interval.

The interpretation of confidence intervals requires a great deal of care. The properties of
the interval estimation procedure are based on the notion of repeated sampling. If we were
to select many random samples of size N, compute the least squares estimate b and its
standard error se(by) for each sample, and then construct the interval estimate by + #.se(by)
for each sample, then 100(1 — a)% of all the intervals constructed would contain the true
parameter ;. In Appendix 3C we carry out a Monte Carlo simulation to demonstrate this
repeated sampling property.

Any one interval estimate, based on one sample of data, may or may not contain the true
parameter {3, and because 34 is unknown, we will never know whether it does or does
not. When ‘““confidence intervals” are discussed, remember that our confidence is in the
procedure used to construct the interval estimate; it is not in any one interval estimate
calculated from a sample of data.

3.1.3 AN ILLUSTRATION

For the food expenditure data, N = 40 and the degrees of freedom are N — 2 = 38. Fora 95%
confidence interval a = 0.05. The critical value f. = f(;_y/2n-2) = f(0.97538) = 2.024 is the
97.5 percentile from the t-distribution with 38 degrees of freedom. For (3, the probability
statement in (3.5) becomes

Plb, — 2.024se(by) < By < by + 2.024se(by)] = 0.95 (3.6)

To construct an interval estimate for 3, we use the least squares estimate b, = 10.21 and its
standard error

se(by) = \/var(by) = V4.38 = 2.09
Substituting these values into (3.6) we obtain a ““95% confidence interval estimate’ for [3,:
by +t.se(by) = 10.21 £2.024(2.09) = [5.97, 14.45]

That is, we estimate “with 95% confidence’ that from an additional $100 of weekly income
households will spend between $5.97 and $14.45 on food.

Is 3, actually in the interval [5.97, 14.45]? We do not know, and we will never know. What
we do know is that when the procedure we used is applied to many random samples of data
from the same population, then 95% of all the interval estimates constructed using this
procedure will contain the true parameter. The interval estimation procedure “works” 95% of
the time. What we can say about the interval estimate based on our one sample is that, given the
reliability of the procedure, we would be *“‘surprised” if 3, is not in the interval [5.97, 14.45].

What s the usefulness of an interval estimate of 3,? When reporting regression results we
always give a point estimate, such as b, = 10.21. However, the point estimate alone gives no
sense of its reliability. Thus, we might also report an interval estimate. Interval estimates
incorporate both the point estimate and the standard error of the estimate, which is a measure
of the variability of the least squares estimator. The interval estimate includes an allowance
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for the sample size as well, because for lower degrees of freedom the #-distribution critical
value ¢, is larger. If an interval estimate is wide (implying a large standard error), it suggests
that there is not much information in the sample about 3,. If an interval estimate is narrow, it
suggests that we have learned more about 3,.

Whatis “wide” and whatis “‘narrow”” depend on the problem at hand. For example, in our
model b, = 10.21 is an estimate of how much weekly household food expenditure will rise
givena $100increase in weekly household income. A CEO of a supermarket chain can use this
estimate to plan future store capacity requirements, given forecasts of income growth in an
area. However, no decision will be based on this one number alone. The prudent CEO will
carry out a sensitivity analysis by considering values of (3, around 10.21. The question is
“Which values?”” One answer is provided by the interval estimate [5.97, 14.45]. Though 3,
may or may not be in this interval, the CEO knows that the procedure used to obtain the
interval estimate “works” 95% of the time. If varying 3, within the interval has drastic
consequences on company sales and profits, then the CEO may conclude that there is
insufficient evidence upon which to make a decision and order anew and larger sample of data.

3.1.4 THE REPEATED SAMPLING CONTEXT

In Section 2.4.3 we illustrated the sampling properties of the least squares estimators by
showing what would happen if we collected 10 additional samples of size N = 40 from the
same population that gave us the food expenditure data. The data are in the file table2_2.dat.
In Table 3.1 we present the least squares estimates, the estimates of 02, and the coefficient
standard errors from each sample. Note the sampling variation illustrated by these estimates.
This variation is due to the simple fact that we obtained 40 different households in each
sample. The 95% confidence interval estimates for the parameters 3; and 3, are given in
Table 3.2 for the same samples.

Sampling variability causes the center of each of the interval estimates to change with the
values of the least squares estimates, and it causes the widths of the intervals to change with
the standard errors. If we ask the question “How many of these intervals contain the true
parameters, and which ones are they?”” we must answer that we do not know. But since 95%
of all interval estimates constructed this way contain the true parameter values, we would
expect perhaps nine or 10 of these intervals to contain the true but unknown parameters.

Note the difference between point estimation and interval estimation. We have used the
least squares estimators to obtain point estimates of unknown parameters. The estimated

Table 3.1 Least Squares Estimates from 10 Random Samples

Sample by se(by) by se(by) 62
1 131.69 40.58 6.48 1.96 7002.85
2 57.25 33.13 10.88 1.60 4668.63
3 103.91 37.22 8.14 1.79 5891.75
4 46.50 33.33 11.90 1.61 4722.58
5 84.23 41.15 9.29 1.98 7200.16
6 26.63 45.78 13.55 2.21 8911.43
7 64.21 32.03 10.93 1.54 4362.12
8 79.66 29.87 9.76 1.44 3793.83
9 97.30 29.14 8.05 1.41 3610.20

—
(=]

95.96 37.18 7.77 1.79 5878.71
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Table 3.2 Interval Estimates from 10 Random Samples

Sample by — t.se(by) by + t.se(by) by — tcse(by) by + t.se(by)
1 49.54 213.85 2.52 10.44
2 —9.83 124.32 7.65 14.12
3 28.56 179.26 4.51 11.77
4 —20.96 113.97 8.65 15.15
5 0.93 167.53 5.27 13.30
6 —66.04 119.30 9.08 18.02
7 —0.63 129.05 7.81 14.06
8 19.19 140.13 6.85 12.68
9 38.32 156.29 5.21 10.89

10 20.69 171.23 4.14 11.40

variance m), for k = 1 or 2, and its square root \/var(b;) = se(by) provide information
about the sampling variability of the least squares estimator from one sample to another.
Interval estimators are a convenient way to report regression results because they combine
point estimation with a measure of sampling variability to provide a range of values in which
the unknown parameters might fall. When the sampling variability of the least squares
estimator is relatively small, then the interval estimates will be relatively narrow, implying
that the least squares estimates are “‘reliable.”” If the least squares estimators suffer from
large sampling variability, then the interval estimates will be wide, implying that the least
squares estimates are ‘‘unreliable.”

3.2 Hypothesis Tests

Many business and economic decision problems require a judgment as to whether or not a
parameter is a specific value. In the food expenditure example, it may make a good deal of
difference for decision purposes whether (3, is greater than 10, indicating that a $100
increase in income will increase expenditure on food by more than $10. Also, based on
economic theory, we believe that 3, should be positive. One check of our data and model is
whether this theoretical proposition is supported by the data.

Hypothesis testing procedures compare a conjecture we have about a population to the
information contained in a sample of data. Given an economic and statistical model,
hypotheses are formed about economic behavior. These hypotheses are then represented as
statements about model parameters. Hypothesis tests use the information about a parameter
thatis contained in a sample of data, its least squares point estimate, and its standard error, to
draw a conclusion about the hypothesis.

In each and every hypothesis test five ingredients must be present:

COMPONENTS OF HYPOTHESIS TESTS
A null hypothesis Hy

An alternative hypothesis H;

A test statistic

A rejection region

g R =

A conclusion
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3.2.1 Tue NurLL HYPOTHESIS

The null hypothesis, which is denoted by H, (H-naught), specifies a value for a regression
parameter, which for generality we denote as 34, for k = 1 or 2. The null hypothesis is stated
as Hy: By = ¢, where c is a constant, and is an important value in the context of a specific
regression model. A null hypothesis is the belief we will maintain until we are convinced by
the sample evidence that it is not true, in which case we reject the null hypothesis.

3.2.2 THE ALTERNATIVE HYPOTHESIS

Paired with every null hypothesis is a logical alternative hypothesis H; that we will accept
if the null hypothesis is rejected. The alternative hypothesis is flexible and depends to
some extent on economic theory. For the null hypothesis Hy:[3; = ¢ the three possible
alternative hypotheses are

e H;:Bi > c.Rejecting the null hypothesis that 3; = c¢leads us to accept the conclusion
that B; > c. Inequality alternative hypotheses are widely used in economics because
economic theory frequently provides information about the signs of relationships
between variables. For example, in the food expenditure example we might well test
the null hypothesis Hy: 3, = 0 against H; : 3, > 0 because economic theory strongly
suggests that necessities like food are normal goods, and that food expenditure will
rise if income increases.

e H,:Bi < c.Rejecting the null hypothesis that 3; = ¢ in this case leads us to accept the
conclusion that B; < c.

* H;:Bi # c.Rejecting the null hypothesis that B; = ¢ in this case leads us to accept the
conclusion that 3 takes a value either larger or smaller than c.

3.2.3 THE TEST STATISTIC

The sample information about the null hypothesis is embodied in the sample value of a test
statistic. Based on the value of a test statistic we decide either to reject the null hypothesis or
not to reject it. A test statistic has a special characteristic: its probability distribution is
completely known when the null hypothesis is true, and it has some other distribution if the
null hypothesis is not true.

It all starts with the key result in (3.3), t = (by — By)/se(by) ~ t(y—2). If the null
hypothesis Hy:Br = c is true, then we can substitute ¢ for B; and it follows that

If the null hypothesis is not true, then the t-statistic in (3.7) does not have a t-distribution
with N — 2 degrees of freedom. This point is elaborated in Appendix 3B.

3.2.4 TuEe RgECTION REGION

The rejection region depends on the form of the alternative. It is the range of values of the
test statistic that leads to rejection of the null hypothesis. It is possible to construct a rejection
region only if we have
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* A test statistic whose distribution is known when the null hypothesis is true
* An alternative hypothesis

e A level of significance

The rejection region consists of values that are unlikely and that have low probability of
occurring when the null hypothesis is true. The chain of logic is ““If a value of the test statistic
is obtained that falls in a region of low probability, then it is unlikely that the test statistic has
the assumed distribution, and thus it is unlikely that the null hypothesis is true.” If the
alternative hypothesis is true, then values of the test statistic will tend to be unusually large or
unusually small. The terms “‘large” and “small’’ are determined by choosing a probability
a, called the level of significance of the test, which provides a meaning for ““an unlikely
event.” The level of significance of the test a is usually chosen to be 0.01, 0.05 or 0.10.

If we reject the null hypothesis when it is true, then we commit what is called a Type I
error. The level of significance of a test is the probability of committing a Type I error, so
P(Type Lerror) = a. Any time we reject a null hypothesis it is possible that we have made
such an error—there is no avoiding it. The good news is that we can specify the amount of
Type I error we will tolerate by setting the level of significance «. If such an error is costly,
then we make o small. If we do not reject a null hypothesis that is false, then we have
committed a Type II error. In a real-world situation we cannot control or calculate the
probability of this type of error, because it depends on the unknown true parameter [3;. For
more about Type I and Type II errors, see Appendix C.6.9.

3.2.5 A CONCLUSION

When you have completed testing a hypothesis, you should state your conclusion. Do you
reject the null hypothesis, or do you not reject the null hypothesis? As we will argue
below, you should avoid saying that you ““accept’ the null hypothesis, which can be very
misleading. Also, we urge you to make it standard practice to say what the conclusion means
in the economic context of the problem you are working on and the economic significance of
the finding. Statistical procedures are not ends in themselves. They are carried out for a
reason and have meaning, which you should be able to explain.

3.3 Rejection Regions for Specific Alternatives

In this section we hope to be very clear about the nature of the rejection rules for each of the
three possible alternatives to the null hypothesis Hy:[3r = c. As noted in the previous
section, to have a rejection region for a null hypothesis, we need a test statistic, which we
have; it is given in (3.7). Second, we need a specific alternative, 3 > ¢, Bx < ¢, or By #c.
Third, we need to specify the level of significance of the test. The level of significance of a
test, o, is the probability that we reject the null hypothesis when it is actually true, which is
called a Type I error.

3.3.1 ONEe-TAmL TESTS WITH ALTERNATIVE ‘““GREATER THAN" (>)

When testing the null hypothesis Hy:Bx = c, if the alternative hypothesis H; :3; > c is
true, then the value of the #-statistic (3.7) tends to become larger than usual for the
t-distribution. We will reject the null hypothesis if the test statistic is larger than the critical
value for the level of significance a. The critical value that leaves probability o in the right
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Lm)

reject Hyy:
Sk =c
do not E—
reject Hyy: o
Br=c

0 Ie = l1-a,N-2)
FIGURE 3.2 Rejection region for a one-tail test of Hy: By = ¢ against Hy: By > c.

tail is the (1— a)-percentile (1 _q n_2), as shown in Figure 3.2. For example, if o = 0.05

and N —2 =30, then from Table 2 the critical value is the 95th percentile value
1(0.9530) = 1.697.

The rejection rule is

When testing the null hypothesis Hy : 3 = ¢ against the alternative hypothesis H; : B; > c,
reject the null hypothesis and accept the alternative hypothesis if 7 > #(j_ y—2)-

The test is called a “one-tail” test because unlikely values of the #-statistic fall only in one
tail of the probability distribution. If the null hypothesis is true, then the test statistic (3.7) has
a r-distribution, and its value would tend to fall in the center of the distribution, to the left of
the critical value, where most of the probability is contained. The level of significance o is
chosen so that if the null hypothesis is true, then the probability that the 7-statistic value falls
in the extreme right tail of the distribution is small; an event that is unlikely to occur by
chance. If we obtain a test statistic value in the rejection region, we take it as evidence against
the null hypothesis, leading us to conclude that the null hypothesis is unlikely to be true.
Evidence against the null hypothesis is evidence in support of the alternative hypothesis.
Thus if we reject the null hypothesis then we conclude that the alternative is true.

If the null hypothesis Hy : Bx = c is true, then the test statistic (3.7) has a #-distribution and
its values fall in the nonrejection region with probability 1 — c. If # < #(j_q, y—2), then there is
no statistically significant evidence against the null hypothesis, and we do not reject it.

3.3.2 ONEe-TAWL TESTS WITH ALTERNATIVE ‘““LEss THAN’ (<)

If the alternative hypothesis H; : Bx < cis true, then the value of the ¢-statistic (3.7) tends to
become smaller than usual for the #-distribution. We reject the null hypothesis if the test
statistic is smaller than the critical value for the level of significance «. The critical value that
leaves probability « in the left tail is the a-percentile 7, y_2), as shown in Figure 3.3.

When using Table 2 to locate critical values, recall that the ¢-distribution is symmetric
about zero, so that the a-percentile # y—_») is the negative of the (1— a)-percentile
f(1—a,N—2)- For example, if « = 0.05 and N — 2 = 20, then from Table 2 the 95th percentile

of the r-distribution is 7 9520y = 1.725 and the 5th percentile value is #(9.0520) = —1.725.
The rejection rule is:

When testing the null hypothesis Hy : B = c¢ against the alternative hypothesis H; : B; <c,
reject the null hypothesis and accept the alternative hypothesis if 7 < #(, y—_2)-
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Reject Hy:3;, = ¢
Ie = (o, N-2) 0
FIGURE 3.3 The rejection region for a one-tail test of Hy: By = ¢ against Hy : By < c.

Do not reject Hy:
Br=c

The nonrejection region consists of z-statistic values greater than 7o, y_2). When the null

hypothesis is true, the probability of obtaining such a z-value is 1 — a, which is chosen to be
large. Thus if 7> #(,, y—2) then do not reject Hy: B = c.

Remembering where the rejection region is located may be facilitated by the following trick:

MEMORY TRICK: The rejection region for a one-tail test is in the direction of the
arrow in the alternative. If the alternative is >, then reject in the right tail. If the alternative
is <, reject in the left tail.

3.3.3 Two-Tamw TesTs WITH ALTERNATIVE “NoT EQuaL T0” (#)

When testing the null hypothesis Hy : Bx = c, if the alternative hypothesis H; : Bx # ¢ is true,
then the value of the #-statistic (3.7) tends to become either larger or smaller than usual for
the #-distribution. To have a test with level of significance o we define the critical values so
that the probability of the r-statistic falling in either tail is o /2. The left-tail critical value is
the percentile #(q/2, y—2) and the right-tail critical value is the percentile 7|2 y—2)- We

reject the null hypothesis that Hy : B = c¢ in favor of the alternative that H; : B # c if the test
statistic 1 < f(q/2, y—2) OF I > I(1_a/2,N—2)> & shown in Figure 3.4. For example, if « = 0.05
and N — 2 = 30, then a/2 = 0.025 and the left-tail critical value is the 2.5-percentile value
1(0.02530) = —2.042; the right-tail critical value is the 97.5-percentile #( 97530y = 2.042. The
right-tail critical value is found in Table 2, and the left-tail critical value is found using the
symmetry of the 7-distribution.

f
Reject Hy:fy = ¢ . Reject Hy:f) = ¢
Accept H,:f3; # ¢ Do n%t reject Accept H,:3; # ¢
Hy:3,=c
t(m)
/2 /2
te=1ap, N-2) te=11-ap, N-2) !

FIGURE 3.4 Rejection region for a test of Hy: B = ¢ against Hy: By # c.
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Since the rejection region is composed of portions of the #-distribution in the left and right
tails, this test is called a two-tail test. When the null hypothesis is true, the probability of
obtaining a value of the test statistic that falls in either tail area is ‘“small.” The sum of the tail
probabilities is a. Sample values of the test statistic that are in the tail areas are incompatible
with the null hypothesis and are evidence against the null hypothesis being true. On the other
hand, if the null hypothesis Hy : Bx = cis true, then the probability of obtaining a value of the
test statistic ¢ in the central nonrejection region is high. Sample values of the test statistic in
the central nonrejection area are compatible with the null hypothesis and are not taken as
evidence against the null hypothesis being true. Thus the rejection rule is

When testing the null hypothesis Hy : Bx = ¢ against the alternative hypothesis H; : By #c,
reject the null hypothesis and accept the alternative hypothesis if 7 < 7(q2 y—2) OF if

12 H(1-a/2,N-2)-

We do not reject the null hypothesis if 742 y—2) <t <f(1_a/2,n-2)-

3.4 Examples of Hypothesis Tests

We illustrate the mechanics of hypothesis testing using the food expenditure model. We give
examples of right-tail, left-tail, and two-tail tests. In each case we will follow a prescribed set
of steps, closely following the list of required components for all hypothesis tests listed at the
beginning of Section 3.2. A standard procedure for all hypothesis-testing problems and
situations is

STEP-BY-STEP PROCEDURE FOR TESTING HYPOTHESES

Determine the null and alternative hypotheses.

Specify the test statistic and its distribution if the null hypothesis is true.
Select o and determine the rejection region.

Calculate the sample value of the test statistic.

P =

State your conclusion.

3.4.1 RicHT=TAIL TESTS

3.4.1a One-Tail Test of Signficance
Usually our first concern is whether there is a relationship between the variables, as we have
specified in our model. If 3, =0 then there is no linear relationship between food
expenditure and income. Economic theory suggests that food is a normal good, and that
as income increases food expenditure will also increase, and thus that 3, > 0. The least
squares estimate of 3, is b, = 10.21, which is certainly greater than zero. However, simply
observing that the estimate has the right sign does not constitute scientific proof. We want to
determine whether there is convincing, or significant, statistical evidence that would lead us
to conclude that (3, > 0. When testing the null hypothesis that a parameter is zero, we are
asking if the estimate b, is significantly different from zero, and the test is called a test of
significance.

A statistical test procedure cannot prove the truth of a null hypothesis. When we fail to
reject a null hypothesis, all the hypothesis test can establish is that the information in a
sample of data is compatible with the null hypothesis. Conversely, a statistical test can lead
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us to reject the null hypothesis, with only a small probability a of rejecting the null
hypothesis when it is actually true. Thus rejecting a null hypothesis is a stronger conclusion
than failing to reject it. For this reason the null hypothesis is usually stated in such a way that
if our theory is correct, then we will reject the null hypothesis. In our example, economic
theory implies that there should be a positive relationship between income and food
expenditure. We would like to establish that there is statistical evidence to support this
theory using a hypothesis test. With this goal we set up the null hypothesis that there is no
relation between the variables, Hy:[(3, = 0. In the alternative hypothesis we put the
conjecture that we would like to establish, H; : 3, > 0. If we then reject the null hypothesis
we can make a direct statement, concluding that (3, is positive, with only a small («)
probability that we are in error.
The steps of this hypothesis test are as follows:

The null hypothesis is Hy: B, = 0. The alternative hypothesis is H; : 3, > 0.

2. The test statistic is (3.7). In this case ¢ = 0, so t = by/se(by) ~ t(y_ if the null
hypothesis is true.

3. Let us select o = 0.05. The critical value for the right-tail rejection region is the
95th percentile of the ¢-distribution with N —2 =38 degrees of freedom,
f(0.95,38) = 1.686. Thus we will reject the null hypothesis if the calculated value

of t >1.686. If r <1.686, we will not reject the null hypothesis.

4. Using the food expenditure data, we found that b, = 10.21 with standard error
se(by) =2.09. The value of the test statistic is

by _ 10.21 _ 488

t=
se(by)  2.09

5. Since t = 4.88 > 1.686, we reject the null hypothesis that 3, = 0 and accept the
alternative that 3, > 0. That is, we reject the hypothesis that there is no relationship
between income and food expenditure, and conclude that there is a statistically
significant positive relationship between household income and food expenditure.

The last part of the conclusion is important. When you report your results to an audience, you
will want to describe the outcome of the test in the context of the problem you are
investigating, not just in terms of Greek letters and symbols.

Whatif we had not been able to reject the null hypothesis in this example? Would we have
concluded that economic theory is wrong and that there is no relationship between income
and food expenditure? No. Remember that failing to reject a null hypothesis does not mean
that the null hypothesis is true.

3.4.1b One-Tail Test of an Economic Hypothesis

Suppose that the economic profitability of a new supermarket depends on households
spending more than $5.50 out of each additional $100 weekly income on food and that
construction will not proceed unless there is strong evidence to this effect. In this case the
conjecture we want to establish, the one that will go in the alternative hypothesis, is that
B> >5.5.1f B, < 5.5, then the supermarket will be unprofitable and the owners would not
want to build it. The least squares estimate of (3, is b, = 10.21, which is greater than 5.5.
What we want to determine is whether there is convincing statistical evidence that would
lead us to conclude, based on the available data, that 3, > 5.5. This judgment is based not
only on the estimate b,, but also on its precision as measured by se(b,).
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What will the null hypothesis be? We have been stating null hypotheses as equalities,
such as 3, = 5.5. This null hypothesis is too limited, because it is theoretically possible that
B2 < 5.5. It turns out that the hypothesis testing procedure for testing the null hypothesis
that Hy: B, < 5.5 against the alternative hypothesis H: 3, > 5.5 is exactly the same as
testing Hp:[3, = 5.5 against the alternative hypothesis H; : (3, >5.5. The test statistic and
rejection region are exactly the same. For a right-tail test you can form the null hypothesis in
either of these ways depending upon the problem at hand.

The steps of this hypothesis test are as follows:

The null hypothesis is Hy: B, < 5.5. The alternative hypothesis is H; : 3, > 5.5.
2. The test statistic # = (by — 5.5)/se(b2) ~ t(y_y) if the null hypothesis is true.
Let us select a = 0.01. The critical value for the right-tail rejection region is the

99th percentile of the t-distribution with N —2 =38 degrees of freedom,
t0.99,38) = 2.429. We will reject the null hypothesis if the calculated value of

1>2.429.If t < 2.429, we will not reject the null hypothesis.
4. Using the food expenditure data, b, = 10.21 with standard error se(b,) = 2.09.
The value of the test statistic is
_by—55 1021-55

= = =2.25
se(by) 2.09

5. Since t = 2.25 < 2.429 we do not reject the null hypothesis that B, < 5.5. We are
not able to conclude that the new supermarket will be profitable and will not begin
construction.

In this example we have posed a situation where the choice of the level of significance o
becomes of great importance. A construction project worth millions of dollars depends
on having convincing evidence that households will spend more than $5.50 out of each
additional $100 income on food. Although the “usual” choice is a« = 0.05, we have chosen a
conservative value of o« = 0.01 because we seek a test that has a low chance of rejecting the
null hypothesis when it is actually true. Recall that the level of significance of a test defines
what we mean by an unlikely value of the test statistic. In this example, if the null hypothesis is
true, then building the supermarket will be unprofitable. We want the probability of building
an unprofitable market to be very small, and therefore we want the probability of rejecting the
null hypothesis when it is true to be very small. In each real-world situation, the choice of o
must be made on an assessment of risk and the consequences of making an incorrect decision.

A CEO unwilling to make a decision based on the above evidence may well order a new
and larger sample of data to be analyzed. Recall that as the sample size increases, the least
squares estimator becomes more precise (as measured by estimator variance) and conse-
quently hypothesis tests become more powerful tools for statistical inference.

3.4.2 Ler=TAmnL TESTS

For completeness we will illustrate a test with the rejection region in the left tail. Consider
the null hypothesis that 3; > 15 and the alternative hypothesis 3, < 15. Recall our memory
trick for determining the location of the rejection region for a t-test. The rejection region is in
the direction of the arrow < in the alternative hypothesis. That tells us that the rejection
region is in the left tail of the 7-distribution. The steps of this hypothesis test are as follows:

1. The null hypothesis is Hy:[3; > 15. The alternative hypothesis is H; : 8, < 15.
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2. The test statistic t = (by — 15)/se(by) ~ t(y_ if the null hypothesis is true.
Let us select a = 0.05. The critical value for the left-tail rejection region is the Sth
percentile of the t-distribution with N —2 = 38 degrees of freedom, 7(os33) =

—1.686. We will reject the null hypothesis if the calculated value of ¢+ < —1.686.
If 1 > — 1.686 we will not reject the null hypothesis. A left-tail rejection region is
illustrated in Figure 3.3.

4. Using the food expenditure data, b, = 10.21 with standard error se(b;) = 2.09. The
value of the test statistic is
_by—15 1021 —15
~se(by)  2.09

=-229

5. Since t = —2.29 < — 1.686, we reject the null hypothesis that 3, > 15 and accept
the alternative that B, < 15. We conclude that households spend less than $15 from
each additional $100 income on food.

3.4.3 Two-TAL TESTS

3.4.3a Two-Tail Test of an Economic Hypothesis

A consultant voices the opinion that based on other similar neighborhoods the households
near the proposed market will spend an additional $7.50 per additional $100 income. In
terms of our economic model, we can state this conjecture as the null hypothesis 3, = 7.5.If
we want to test whether this is true or not, then the alternative is that 3, # 7.5. This alternative
makes no claim about whether [3, is greater than 7.5 or less than 7.5, simply that itis not 7.5.
In such cases we use a two-tail test, as follows:

The null hypothesis is Hy:[3; = 7.5. The alternative hypothesis is H; : B, #7.5.
2. The test statistic t = (by — 7.5)/se(by) ~ t(y_p) if the null hypothesis is true.

Let us select o« = 0.05. The critical values for this two-tail test are the 2.5-percentile

1(0.025,38) = —2.024 and the 97.5-percentile #(9.97533) = 2.024. Thus we will reject

the null hypothesis if the calculated value of #>2.024 or if + < —2.024. If

—2.024 <t <2.024 we will not reject the null hypothesis.

4. For the food expenditure data b, = 10.21 with standard error se(b,) = 2.09. The
value of the test statistic is

_by—75 1021-75
~ose(hy) 2.09
5. Since —2.204 <t = 1.29 < 2.204 we do not reject the null hypothesis that 3, = 7.5.

The sample data are consistent with the conjecture households will spend an
additional $7.50 per additional $100 income on food.

=1.29

We must avoid reading into this conclusion more than it means. We do not conclude from
this test that 3, = 7.5, only that the data are not incompatible with this parameter value.
The data are also compatible with the null hypotheses Hy: 3, = 8.5 (r = 0.82), Hy: 3, =
6.5(t =1.77),and Hy: 3, = 12.5 (t = —1.09). A hypothesis test cannot be used to prove
that a null hypothesis is true.

There is a trick relating two-tail tests and confidence intervals that is sometimes useful.
Let ¢ be a value within a 100(1 — «)% confidence interval, so that if #. = #(;_q /2, y—2), then

b, — tcse(bk) <c<b+ tcse(bk)
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If we test the null hypothesis Hy : By = ¢ against H| : B4 # ¢, when c¢ is inside the confidence
interval, then we will not reject the null hypothesis at the level of significance «. If ¢ is
outside the confidence interval, then the two-tail test will reject the null hypothesis. We do
not advocate using confidence intervals to test hypotheses, they serve a different purpose,
but if you are given a confidence interval, this trick is handy.

3.4.3b Two-Tail Test of Significance

While we are confident that a relationship exists between food expenditure and income,
models are often proposed that are more speculative, and the purpose of hypothesis testing is
to ascertain whether a relationship between variables exists or not. In this case the null
hypothesis is 3, = 0; that is, no linear relationship exists between x and y. The alternative is
B2 # 0, which would mean that a relationship exists, but that there may be either a positive or
negative association between the variables. This is the most common form of a test of
significance. The test steps are as follows:

1. The null hypothesis is Hy: 3, = 0. The alternative hypothesis is Hy : 3, #0.
2. The test statistic t = by /se(by) ~ t(y_y) if the null hypothesis is true.

3. Letusselect o = 0.05. The critical values for this two-tail test are the 2.5-percentile
t0.02538) = —2.024 and the 97.5-percentile #(.97533) = 2.024. We will reject the

null hypothesis if the calculated value of t>2.024 or if t+ < —2.024. If
—2.024 < t < 2.024, we will not reject the null hypothesis.

4. Using the food expenditure data, b, = 10.21 with standard error se(b,) = 2.09.
The value of the test statistic is 1 = by /se(by) = 10.21/2.09 = 4.88.

5. Since t = 4.88 > 2.024 we reject the null hypothesis that 3, = 0 and conclude that
there is a statistically significant relationship between income and food expenditure.

Two points should be made about this result. First, the value of the t-statistic we
computed in this two-tail test is the same as the value computed in the one-tail test of
significance in Section 3.4.1a. The difference between the two tests is the rejection region
and the critical values. Second, the two-tail test of significance is something that
should be done each time a regression model is estimated, and consequently computer
software automatically calculates the 7-values for null hypotheses that the regression
parameters are zero. Refer back to Figure 2.9. Consider the portion that reports the
estimates:

Variable Coefficient Std. Error t-Statistic Prob.
C 83.41600 43.41016 1.921578 0.0622
INCOME 10.20964 2.093264 4.877381 0.0000

Note that there is a column labeled #-Statistic. This is the z-statistic value for the null
hypothesis that the corresponding parameter is zero. It is calculated as 1 = by /se(by).
Dividing the least squares estimates (Coefficient) by their standard errors (Std. Error)
gives the z-statistic values (z-Statistic) for testing the hypothesis that the parameter is zero.
The #-statistic value for the variable INCOME is 4.877381, which is relevant for testing the
null hypothesis Hy: 3, = 0. We have rounded this value to 4.88 in our discussions.
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The 7-value for testing the hypothesis that the intercept is zero equals 1.92. The a = 0.05
critical values for these two-tail tests are (9,025, 33) = —2.024 and #(9.975 33) = 2.024 whether
we are testing a hypothesis about the slope or intercept, so we fail to reject the null
hypothesis that Hy:; = 0 given the alternative Hy:B; #0.

The final column, labeled “Prob.” is the subject of the next section.

REMARK: “Statistically significant” does not necessarily imply ‘“‘economically sig-
nificant.” For example, suppose the CEO of a supermarket chain plans a certain course of
action if B, # 0. Furthermore, suppose a large sample is collected from which we obtain
the estimate b, = 0.0001 with se(b,) = 0.00001, yielding the #-statistic # = 10.0. We
would reject the null hypothesis that 3, = 0 and accept the alternative that 3, # 0. Here
by, = 0.0001 is statistically different from zero. However, 0.0001 may not be ‘“‘economic-
ally” different from zero, and the CEO may decide not to proceed with the plans. The
message here is that one must think carefully about the importance of a statistical analysis
before reporting or using the results.

3.5 The p-Value

When reporting the outcome of statistical hypothesis tests, it has become standard practice
to report the p-value (an abbreviation for probability value) of the test. If we have the
p-value of a test, p, we can determine the outcome of the test by comparing the p-value to
the chosen level of significance, o, without looking up or calculating the critical values.
The rule is

to, the level of significance a. That is, if p <« then reject Hy. If p >« then do not

Ip-VALUE RULE: Reject the null hypothesis when the p-value is less than, or equal
reject Hy.

If you have chosen the level of significance to be a = 0.01, 0.05, 0.10, or any other value,
you can compare it to the p-value of a test and then reject, or not reject, without checking the
critical value. In written works reporting the p-value of a test allows the reader to apply his or
her own judgment about the appropriate level of significance.

How the p-value is computed depends on the alternative. If ¢ is the calculated value of the
t-statistic, then

e if Hy:Bx > c, p = probability to the right of
e if H,:Bx <c, p = probability to the left of
e if Hy:Bx #c, p = sum of probabilities to the right of |¢| and to the left of —|z|

MEMORY TRICK: The direction of the alternative indicates the tail(s) of the dis-
tribution in which the p-value falls.
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3.5.1 p-VALUE FOR A RiIGHTTAIL TEST

In Section 3.4.1b we tested the null hypothesis Hy:[3, < 5.5 against the one-sided
alternative H;:[3; >5.5. The calculated value of the z-statistic was

b —55 1021-55

= = =225
se(by) 2.09

In this case, since the alternative is “‘greater than” (>), the p-value of this test is the
probability that a #-random variable with N — 2 = 38 degrees of freedom is greater than
2.25, or p = Pli35)>2.25] = 0.0152.

This probability value cannot be found in the usual #-table of critical values, but it is
easily found using the computer. Statistical software packages, and spreadsheets such
as Excel, have simple commands to evaluate the cumulative distribution function
(cdf) (see Appendix B.1) for a variety of probability distributions. If Fy(x) is the cdf
for a random variable X, then for any value x = ¢ the cumulative probability is
P[X < c] = Fx(c). Given such a function for the ¢-distribution, we compute the desired
p-value

p = Pliag) >2.25] = 1 — P[13g) < 2.25] = 1 — 0.9848 = 0.0152

Following the p-value rule we conclude that at o = 0.01 we do not reject the null hypo-
thesis. If we had chosen o = 0.05, we would reject the null hypothesis in favor of the
alternative.

The logic of the p-value rule is shown in Figure 3.5. The probability of obtaining a #-value
greater than 2.25 is 0.0152, p = P[t35) >2.25] = 0.0152. The 99th percentile 7,99 35).

which is the critical value for a right-tail test with level of significance of « = 0.01, must fall
to the right of 2.25. This means that ¢ = 2.25 does not fall in the rejection region if « = 0.01
and we will not reject the null hypothesis at this level of significance. This is consistent with
the p-value rule: When the p-value (0.0152) is greater than the chosen level of significance
(0.01), we do not reject the null hypothesis.

On the other hand, the 95th percentile #( 95 33), which is the critical value for a right-tail

f0.95.38) = 1.686 109938) = 2:429

FIGURE 3.5 The p-value for a right-tail test.
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FIGURE 3.6 The p-value for a left-tail test.

test with a = 0.05, must be to the left of 2.25. This means that # = 2.25 falls in the rejection
region, and we reject the null hypothesis at the level of significance a = 0.05. This is
consistent with the p-value rule: When the p-value (0.0152) is less than or equal to the
chosen level of significance (0.05) we will reject the null hypothesis.

3.5.2 p-VALUE FOR A LEF-TAIL TEST

In Section 3.4.2 we carried out a test with the rejection region in the left tail of the
t-distribution. The null hypothesis was Hy:[3, > 15, and the alternative hypothesis was
H, : 3, < 15. The calculated value of the #-statistic was t = —2.29. To compute the p-value
for this left-tail test, we calculate the probability of obtaining a 7-statistic to the left of —2.29.
Using your computer software you will find this value to be P[t(3g> < —2.29] = 0.01309.
Following the p-value rule we conclude that at « = 0.01 we do not reject the null hypothesis.
If we choose oo = 0.05, we will reject the null hypothesis in favor of the alternative. See
Figure 3.6 to see this graphically. Locate the 1st and 5th percentiles. These will be the critical
values for left-tail tests witha = 0.01 and o« = 0.05 levels of significance. When the p-value
(0.0139) is greater than the level of significance (o = 0.01), then the 7-value —2.29 isnot in
the test rejection region. When the p-value (0.0139) is less than or equal to the level of
significance (a« = 0.05), then the #-value —2.29 is in the test rejection region.

3.5.3 p-VALUE FOR A Two-TAIL TEST

For a two-tail test, the rejection region is in the two tails of the 7-distribution, and the p-value
is similarly calculated in the two tails of the distribution. In Section 3.4.3a we tested the null
hypothesis that 3, = 7.5 against the alternative hypothesis 3, # 7.5. The calculated value of
the r-statistic was t = 1.29. For this two-tail test, the p-value is the combined probability to
the right of 1.29 and to the left of —1.29:

This calculation is depicted in Figure 3.7. Once the p-value is obtained its use is unchanged.
If we choose o = 0.05, o = 0.10, oreven a = 0.20, we will fail to reject the null hypothesis
because p > a.
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3 g2 0 1 2 3 1
L(0.025,38) = —2.024 lo.97538) = 2.024

FIGURE 3.7 The p-value for a two-tail test of significance.

At the beginning of this section we stated the following rule for computing p-values for
two-tail tests: if Hy : Bx # ¢, p = sum of probabilities to the right of |¢| and to the left of —|z].
The reason for the use of absolute values in this rule is that it will apply equally well if the
value of the #-statistic turns out to be positive or negative.

3.5.4 p-VALUE FOR A Two-TAIL TEST OF SIGNIFICANCE

All statistical software computes the p-value for the two-tail test of significance for each
coefficient when a regression analysis is performed. In Section 3.4.3b we discussed testing
the null hypothesis Hy:B, = 0 against the alternative hypothesis Hj:B, #0. For the
calculated value of the #-statistic t = 4.88 the p-value is

p = P|i(35)>4.88] + P[1(35) < —4.88] = 0.0000
Your software will automatically compute and report this p-value for a two-tail test of

significance. Refer back to Figure 2.9 and consider just the portion reporting the
estimates:

Variable Coefficient Std. Error t-Statistic Prob.
C 83.41600 43.41016 1.921578 0.0622
INCOME 10.20964 2.093264 4.877381 0.0000

Next to each z-statistic value is the two-tail p-value, which is labeled “Prob.” by the
EViews software. Other software packages will use similar names. When inspecting com-
puter output we can immediately decide if an estimate is statistically significant (statistically
different from zero using a two-tail test) by comparing the p-value to whatever level of
significance we care to use. The estimated intercept has p-value 0.0622, so it is not
statistically different from zero at the level of significance a = 0.05, but it is statistically
significant if o = 0.10.
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The estimated coefficient for income has a p-value that is zero to four places. Thus
p < a=0.0lor even a = 0.0001, and thus we reject the null hypothesis that income has
no effect on food expenditure at these levels of significance. The p-value for this two-tail test
of significance is not actually zero. If more places are used, then p = 0.00001946.
Regression software usually does not print out more than four places, because in practice
levels of significance less than o = 0.001 are rare.

3.6 Linear Combinations of Parameters

So far we have discussed statistical inference (point estimation, interval estimation, and
hypothesis testing) for a single parameter, (3, or 3,. More generally, we may wish to estimate
and test hypotheses about a linear combination of parameters A = ¢3; + c2f3,, where ¢,
and c; are constants that we specify. One example is if we wish to estimate the expected
value of a dependent variable E(y) when x takes some specific value, such as x = x. In this
case ¢; = 1 and ¢ = xo, so that, A = ¢1B; + 22 = B1 + x0B2 = E(y|x = XQ).

Under assumptions SR1-SRS the least squares estimators b, and b, are the best linear
unbiased estimators of 3; and {3,. It is also true that A= c1b; + c2by is the best linear
unbiased estimator of A = ¢{; + ¢28,. The estimator ) is unbiased because

E(X) = E(c1b1 + c2by) = c1E(b1) + 02E(b2) = c1B1 + c2P2 = A
To find the variance of i, recall from the Probability Primer, Section P.5.6, that if X and Yare
random variables, and if @ and b are constants, then the variance var(aX + DY) is given in
equation (P.20) as
var(aX + bY) = a*var(X) + b*var(Y) + 2abcov(X, Y)

In the estimator (c1b; + ¢2b;), both by and b, are random variables, as we do not know what
their values will be until a sample is drawn and estimates calculated. Applying (P.20) we have

Var(i) = var(ciby + c2by) = c%var(bl) + c%var(bz) + 2cicacov(by, by) 3.8)
The variances and covariances of the least squares estimators are givenin (2.14)—(2.16). We

estimate var(i) = var(c1b; + ¢;b,) by replacing the unknown variances and covariances
with their estimated variances and covariances in (2.20)—(2.22). Then

var(1) = var(ciby 4 c2by) = civar(by) + c3var(by) + 2¢1ccov(by, by) (3.9)

The standard error of A = c1b) + ¢ b, is the square root of the estimated variance,

se(i): se(c1by + c2by) = \/ var(c1by + ¢2b7) (3.10)
If in addition SR6 holds, or if the sample is large, the least squares estimators b, and b, have
normal distributions. Itis also true that linear combinations of normally distributed variables

are normally distributed, so that

h= c1by + by ~ N[)»,var(i)]
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Where var(i) is given in (3.8). You may be thinking of how long such calculations will take
using a calculator, but don’t worry. Most computer software will do the calculations for you.
Now it’s time for an example.

3.6.1 EstiMATING EXPECTED FOOD EXPENDITURE

An executive might ask of the research staff, ““Give me an estimate of average weekly
food expenditure by households with $2,000 weekly income.” Interpreting the execu-

tive’s word ‘“‘average’ to mean “‘expected value,” for the food expenditure model this
means estimating

E(FOOD_EXP|INCOME) = B, + B2INCOME

Recall that we measured income in $100 units in this example, so a weekly income of $2,000
corresponds to INCOME = 20. The executive is requesting an estimate of

E(FOOD_EXP|INCOME = 20) = B + 220

which is a linear combination of the parameters.
Using the 40 observations in food.dat, in Chapter 2.3.2 we obtained the fitted regression,

FOOD_EXP = 83.4160 4 10.2096INCOME

The point estimate of average weekly food expenditure for a household with $2,000
income is

E(FOOD_EXP|INCOME = 20) = b + b,20 = 83.4160 + 10.2096(20) = 287.6089

We estimate that the expected food expenditure by a household with $2,000 income is
$287.61 per week.

3.6.2 AN INTERVAL ESTIMATE OF EXPECTED FOOD EXPENDITURE

If assumption SR6 holds, then the estimator ). has a normal distribution. We can form a
standard normal random variable as

h— A
Z=—"—"_~N(0,1)

\/var(2)

Replacing the true variance in the denominator with the estimated variance we form a
t-statistic

A=) A —2A _ (c1b1 + c2b3) — (c1B1 + 2B2)
var(i) se(k) se(c1b1 + Cgbz)

~Il(N-2) 3.11)
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If 7 is the 1 — a+2 percentile value from the 7y, distribution, then P(—z. <1 <1.) =
1 — «. Substitute (3.11) for ¢ and rearrange to obtain

P[(c1by + c2ba) — tese(c1by + caby) < 1By + 2B <
(Clb] + Cgbz) + tcse(clb] + Czbz)] =1—«a

Thus a (I — a)% interval estimate for ¢;3; + c2[3; is
(C1b1 —+ Czbz) + ICSC(Clbl + Czbz)

In Chapter 2.7.2 we obtained the estimated covariance matrix

— | c INCOME
varlby) - covibu, b) c 1884.442 —85.9032
cov(bi, by)  var(hs) INCOME ‘ ~85.9032  4.3818

To obtain the standard error for E(FOOD_EXP|INCOME = 20) = by + b,20 we first
calculate the estimated variance

var(b; 4 20b,) = var(b;) + 20? x var(by) + 2 x 20 x cov(by, b,)
— 1884.442 + 20% x 4.3818 +2 x 20 x (—85.9032)
= 201.0169

Given var(b; + 20b,) = 201.0169' the corresponding standard error is

se(by 4 20b,) = \/var(b; + 20b,) = v/201.0169 = 14.1780

A 95% interval estimate of E(FOOD_ EXP|INCOME = 20) = By + B220is (b; + »220) £
t(0.975,38)5€(b1 + b220) or

[287.6089 — 2.024(14.1780), 287.6089+2.024(14.1780)] = [258.91,316.31]
We estimate with 95% confidence that the expected food expenditure by a household with

$2,000 income is between $258.91 and $316.31.

3.6.3 TESTING A LINEAR COMBINATION OF PARAMETERS
So far we have tested hypotheses involving only one regression parameter at a time. That is,
our hypotheses have been of the form Hj : By = c. A more general linear hypothesis

involves both parameters and may be stated as

Hy :ci1B1 + B2 =co (3.12a)

" The value 201.0169 was obtained using computer software. If you do the calculation by hand using the
provided numbers you obtain 201.034. Do not be alarmed if you obtain small differences like this occasionally, as it
most likely is the difference between a computer generated solution and a hand-calculation.
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where ¢y, c; and c¢; are specified constants, with ¢y being the hypothesized value. Despite the
fact that the null hypothesis involves both coefficients, it still represents a single hypothesis
to be tested using a #-statistic. Sometimes it is written equivalently in implicit form as

Hy : (c1B1 +2B2) —co=0 (3.12b)

The alternative hypothesis for the null hypothesis in (3.12a) might be

(i) Hy : c1B1 + c2B2 # co leading to a two-tail r-test
(ii) Hy : ¢1B1 + c2B2 > ¢p leading to a right-tail #-test [Null may be “<’’]

(iii) Hy : c1B1 + c2B2 < ¢p leading to a left-tail #-test [Null may be “>"]

If the implicit form is used, the alternative hypothesis is adjusted as well.
The test of the hypothesis (3.12) uses the #-statistic

(C]b] + Czbz) — Cp . ..
t= ~ t(y_o) if the null hypothesis is true 3.13
se(crbr + eab) (N-2) yp (3.13)

The rejection regions for the one- and two-tail alternatives (i)—(iii) are the same as those
described in Section 3.3, and conclusions are interpreted the same way as well.

The form of the #-statistic is very similar to the original specification in (3.7). In the
numerator (c1by + ¢2b,) is the best linear unbiased estimator of (¢1; 4 ¢22), and if the
errors are normally distributed, or if we have a large sample, this estimator is normally
distributed as well.

3.6.4 TEsTING ExPECTED FOoOD EXPENDITURE

The food expenditure model introduced in Chapter 2.1 and used as an illustration throughout
provides an excellent example of how the linear hypothesis in (3.12) might be used in
practice. For most medium and larger cities there are forecasts of income growth for the
coming year. A supermarket or food retail store of any type will consider this before a new
facility is built. Their question is, if income in a locale is projected to grow at a certain rate,
how much of that will be spent on food items? An executive might say, based on years of
experience, “I expect that a household with $2,000 weekly income will spend, on average,
more than $250 a week on food.” How can we use econometrics to test this conjecture?
The regression function for the food expenditure model is

E(FOOD_EXP|INCOME) = B + B,INCOME
The executive’s conjecture is that
E(FOOD_EXP|INCOME = 20) = B + 3,20 > 250
To test the validity of this statement we use it as the alternative hypothesis

Hy @ Bi + B220 > 250, or Hy : Bi + B220 — 250 > 0
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The corresponding null hypothesis is the logical alternative to the executive’s statement
Ho : B1 + B220 <250, or Hy : B1 + B220—-250 <0

Notice that the null and alternative hypothesis are in the same form as the general linear
hypothesis with ¢; = 1, ¢, = 20, and ¢y = 250.

The rejection region for a right-tail test is illustrated in Figure 3.2. For a right-tail test at
the o = 0.05 level of significance the t-critical value is the 95th percentile of the #3g)
distribution, which is #( 95 33) = 1.686. If the calculated #-statistic value is greater than 1.686,
we will reject the null hypothesis and accept the alternative hypothesis, which in this case is
the executive’s conjecture.

Computing the #-statistic value

(b +20by) — 250
se(b1 + 201?2)

(83.4160 + 20 x 10.2096) — 250

14.1780
_ 287.6089 — 250  37.6089 5 65
- 14.1780  14.1780

Since t = 2.65 > . = 1.686, we reject the null hypothesis that a household with weekly
income of $2,000 will spend $250 per week or less on food, and conclude that the executive’s
conjecture that such households spend more than $250 is correct, with the probability of
Type I error 0.05.

In Section 3.6.1 we estimated that a household with $2,000 weekly income will spend
$287.6089, which is greater than the executive’s speculated value of $250. However, simply
observing that the estimated value is greater than $250 is not a statistical test. It might be
numerically greater, but s it significantly greater? The 7-test takes into account the precision
with which we have estimated this expenditure level and also controls the probability of
Type I error.

3.7 Exercises

Answers to exercises marked * appear at www.wiley.com/college/hill.

3.7.1 PROBLEMS

3.1 Using the regression output for the food expenditure model shown in Figure 2.9:

(a) Construct a 95% interval estimate for 3; and interpret.

(b) Test the null hypothesis that 3 is zero against the alternative that it is not at the
5% level of significance without using the reported p-value. What is your
conclusion?

(c) Draw a sketch showing the p-value 0.0622 shown in Figure 2.9, the critical
value from the #-distribution used in (b), and how the p-value could have been
used to answer (b).

(d) Test the null hypothesis that 3| is zero against the alternative that it is positive
atthe 5% level of significance. Draw a sketch of the rejection region and compute
the p-value. What is your conclusion?
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(e) Explain the differences and similarities between the ““level of significance’ and
the ““level of confidence.”

(f) The results in (d) show that we are 95% confident that 3; is positive. True, or
false? If false, explain.

The general manager of an engineering firm wants to know whether a technical artist’s
experience influences the quality of his or her work. A random sample of 24 artists
is selected and their years of work experience and quality rating (as assessed by
their supervisors) recorded. Work experience (EXPER) is measured in years and
quality rating (RATING) takes a value of 1 through 7, with 7 = excellentand 1 =
poor. The simple regression model RATING = 3 + B2EXPER + e is proposed.
The least squares estimates of the model, and the standard errors of the estimates, are

RATING = 3.204 + 0.076 EXPER
(se) (0.709)  (0.044)

(a) Sketch the estimated regression function. Interpret the coefficient of EXPER.

(b) Constructa 95% confidence interval for [3,, the slope of the relationship between
quality rating and experience. In what are you 95% confident?

(c) Test the null hypothesis that 3, is zero against the alternative that it is not using a
two-tail test and the o = 0.05 level of significance. What do you conclude?

(d) Test the null hypothesis that (3, is zero against the one-tail alternative that it is
positive at the o = 0.05 level of significance. What do you conclude?

(e) For the test in part (c), the p-value is 0.0982. If we choose the probability of a
Type Lerror to be a = 0.05, do we reject the null hypothesis, or not, just based on
an inspection of the p-value? Show, in a diagram, how this p-value is computed.

In an estimated simple regression model, based on 24 observations, the estimated

slope parameter is 0.310 and the estimated standard error is 0.082.

(a) Testthe hypothesis that the slope is zero against the alternative that itis not, at the
1% level of significance.

(b) Test the hypothesis that the slope is zero against the alternative that it is positive
at the 1% level of significance.

(c) Test the hypothesis that the slope is zero against the alternative that it is negative
at the 5% level of significance. Draw a sketch showing the rejection region.

(d) Testthe hypothesis that the estimated slope is 0.5, against the alternative that it is
not, at the 5% level of significance.

(e) Obtain a 99% interval estimate of the slope.

Consider a simple regression in which the dependent variable MIM = mean income
of males who are 18 years of age or older, in thousands of dollars. The explanatory
variable PMHS = percent of males 18 or older who are high school graduates. The
data consist of 51 observations on the 50 states plus the District of Columbia. Thus
MIM and PMHS are “‘state averages.”” The estimated regression, along with standard
errors and z-statistics, 1S

MIM = (a) + 0.180PMHS
(se) (2.174)  (b)
(t)  (1.257) (5.754)

(a) What is the estimated equation intercept? Show your calculation. Sketch the
estimated regression function.
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(b) What is the standard error of the estimated slope? Show your calculation.

(c) What is the p-value for the two-tail test of the hypothesis that the equation
intercept is zero? Draw a sketch to illustrate.

(d) State the economic interpretation of the estimated slope. Is the sign of the
coefficient what you would expect from economic theory?

(e) Construct a 99% confidence interval estimate of the slope of this relationship.

(f) Test the hypothesis that the slope of the relationship is 0.2 against the alternative
that it is not. State in words the meaning of the null hypothesis in the context of
this problem.

3.7.2 CoMPUTER EXERCISES

3.5 Alife insurance company wishes to examine the relationship between the amount of

3.6%

life insurance held by a family and family income. From a random sample of 20
households, the company collected the data in the file insur.dat. The data are in units
of thousands of dollars.

(a) Estimate the linear regression with dependent variable INSURANCE and inde-
pendent variable INCOME. Write down the fitted model and draw a sketch of the
fitted function. Identify the estimated slope and intercept on the sketch. Locate
the point of the means on the plot.

(b) Discuss the relationship you estimated in (a). In particular,

(i) What is your estimate of the resulting change in the amount of life
insurance when income increases by $1,000?

(i) What is the standard error of the estimate in (i), and how do you use this
standard error for interval estimation and hypothesis testing?

(¢) One member of the management board claims that for every $1,000 increase in
income, the amount of life insurance held will go up by $5,000. Choose an
alternative hypothesis and explain your choice. Does your estimated relationship
support this claim? Use a 5% significance level.

(d) Test the hypothesis that as income increases the amount of life insurance
increases by the same amount. That is, test the hypothesis that the slope of
the relationship is one.

(e) Write a short report (200—250 words) summarizing your findings about the
relationship between income and the amount of life insurance held.

In Exercise 2.9 we considered a motel that had discovered that a defective product
was used during construction. It took seven months to correct the defects, during
which approximately 14 rooms in the 100-unit motel were taken out of service for
one month at a time. The data are in motel.dat.

(a) In the linear regression model MOTEL_PCT = 3; 4+ B2COMP_PCT + e, test
the null hypothesis Hy : B, < 0 against the alternative hypothesis Hy : B, > 0 at
the a = 0.01 level of significance. Discuss your conclusion. Include in your
answer a sketch of the rejection region and a calculation of the p-value.

(b) Consider alinear regression withy = MOTEL_PCT and x = RELPRICE, which is
the ratio of the price per room charged by the motel in question relative to its
competitors. Test the null hypothesis that there is no relationship between these
variables against the alternative that there is an inverse relationship between them,
at the a = 0.01 level of significance. Discuss your conclusion. Include in your
answer a sketch of the rejection region, and a calculation of the p-value. In this
exercise follow and show all the test procedure steps suggested in Chapter 3.4.
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(c) Consider the linear regression MOTEL_PCT = &, + 8,REPAIR + ¢, where
REPAIR 1is an indicator variable taking the value 1 during the repair period
and O otherwise. Test the null hypothesis Hy : 8, > 0 against the alternative
hypothesis H; : 8, < 0 at the o = 0.05 level of significance. Explain the logic
behind stating the null and alternative hypotheses in this way. Discuss your
conclusions.

(d) Using the model given in part (c), construct a 95% interval estimate for the
parameter 8, and give its interpretation. Have we estimated the effect of the
repairs on motel occupancy relatively precisely, or not? Explain.

(e) Consider the linear regression model with y = MOTEL_PCT—COMP_PCT and
x = REPAIR, that is (MOTEL_PCT — COMP_PCT) = v, + v,REPAIR + e.
Test the null hypothesis that y, = 0 against the alternative that vy, < 0 at the o =
0.01 level of significance. Discuss the meaning of the test outcome.

(f) Using the model in part (e), construct and discuss the 95% interval estimate of y,.

Consider the capital asset pricing model (CAPM) in Exercise 2.10. Use the data in

capm4.dat to answer each of the following:

(a) Testatthe 5% level of significance the hypothesis that each stock’s “beta” value
is 1 against the alternative that it is not equal to 1. What is the economic
interpretation of a beta equal to 1?7

(b) Test at the 5% level of significance the null hypothesis that Mobil-Exxon’s
“beta” value is greater than or equal to 1 against the alternative thatitis less than
1. What is the economic interpretation of a beta less than 1?

(c) Test at the 5% level of significance the null hypothesis that Microsoft’s “beta”
value is less than or equal to 1 against the alternative that itis greater than 1. What
is the economic interpretation of a beta more than 1?

(d) Construct a 95% interval estimate of Microsoft’s “beta.” Assume that you are a
stockbroker. Explain this result to an investor who has come to you for advice.

(e) Test (at a 5% significance level) the hypothesis that the intercept term in the
CAPM model for each stock is zero, against the alternative that it is not. What do
you conclude?

The file br2.dat contains data on 1080 houses sold in Baton Rouge, Louisiana during

mid-2005. The data include sale price and the house size in square feet. Also included

is an indicator variable TRADITIONAL indicating whether the house style is

traditional or not.

(a) For the traditional-style houses estimate the linear regression model
PRICE = B + B2SQFT + e. Test the null hypothesis that the slope is zero
against the alternative that it is positive, using the o = 0.01 level of significance.
Follow and show all the test steps described in Chapter 3.4.

(b) Using the linear model in (a), test the null hypothesis (Hj) that the expected price
of a house of 2000 square feet is equal to, or less than, $120,000. What is the
appropriate alternative hypothesis? Use the a = 0.01 level of significance. Obtain
the p-value of the test and show its value on a sketch. What is your conclusion?

(c) Based on the estimated results from part (a), construct a 95% interval estimate of
the expected price of a house of 2000 square feet.

(d) For the traditional-style houses, estimate the quadratic regression model
PRICE = o) + auSQFT? + e. Test the null hypothesis that the marginal effect
of an additional square foot of living area in a home with 2000 square feet of
living space is $75 against the alternative that the effect is less than $75. Use the
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a = 0.01 level of significance. Repeat the same test for a home of 4000 square
feet of living space. Discuss your conclusions.

(e) For the traditional-style houses, estimate the log-linear regression model
In(PRICE) = v + ¥2SQFT + e. Test the null hypothesis that the marginal
effect of an additional square foot of living area in a home with 2000 square
feet of living space is $75 against the alternative that the effect is less than $75.
Use the a = 0.01 level of significance. Repeat the same test for a home of 4000
square feet of living space. Discuss your conclusions.

Reconsider the presidential voting data (fair4.dat) introduced in Exercise 2.14. Use

the data from 1916 to 2008 for this exercise.

(a) Using the regression model VOTE = 3; + BoGROWTH + e, test (at a 5%
significance level) the null hypothesis that economic growth has no effect on
the percentage vote earned by the incumbent party. Select an alternative
hypothesis and a rejection region. Explain your choice.

(b) Using the regression model in part (a), construct a 95% interval estimate for 35,
and interpret.

(c) Using the regression model VOTE = 3| + B2INFLATION + e, test the null
hypothesis that inflation has no effect on the percentage vote earned by the
incumbent party. Select an alternative hypothesis, a rejection region, and a
significance level. Explain your choice.

(d) Using the regression model in part (c), construct a 95% interval estimate for [3,,
and interpret.

(e) Testthe null hypothesis thatif INFLATION = 0 the expected vote in favor of the
incumbent party is 50%, or more. Select the appropriate alternative. Carry out
the test at the 5% level of significance. Discuss your conclusion.

(f) Construct a 95% interval estimate of the expected vote in favor of the incumbent
party if INFLATION = 2%. Discuss the interpretation of this interval estimate.

Reconsider Exercise 2.13, which was based on the experiment with small classes for
primary school students conducted in Tennessee beginning in 1985. Data for the
kindergarten classes is contained in the data file star.dat.

(a) Using children who are in either a regular-sized class or a small class, estimate
the regression model explaining students’ combined aptitude scores as a function
of class size, TOTALSCORE = 31 + B2SMALL + e. Test the null hypothesis
that (3, is zero, or negative, against the alternative that this coefficient is positive.
Use the 5% level of significance. Compute the p-value of this test, and show its
value in a sketch. Discuss the social importance of this finding.

(b) For the model in part (a), construct a 95% interval estimate of 3, and discuss.

(c) Repeat part (a) using dependent variables READSCORE and MATHSCORE. Do
you observe any differences?

(d) Using children who are in either a regular-sized class or aregular-sized class with
a teacher aide, estimate the regression model explaining students’ combined
aptitude scores as a function of the presence or absence of a teacher aide,
TOTALSCORE = vy + y,AIDE + e. Test the null hypothesis that v, is zero or
negative against the alternative that this coefficient is positive. Use the 5% level
of significance. Discuss the importance of this finding.

(e) For the model in part (d), construct a 95% interval estimate of vy, and discuss.

(f) Repeat part (d) using dependent variables READSCORE and MATHSCORE.
Do you observe any differences?
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How much does experience affect wage rates? The data file cps4_small.dat contains
1000 observations on hourly wage rates, experience and other variables from the
2008 Current Population Survey (CPS).

(a) Estimate the linear regression WAGE = 3| 4+ B2,EXPER + e and discuss the
results. Using your software plot a scatter diagram with WAGE on the vertical
axis and EXPER on the horizontal axis. Sketch in by hand, or using your
software, the fitted regression line.

(b) Test the statistical significance of the estimated slope of the relationship at the
5% level. Use a one-tail test.

(c) Repeat part (a) for the sub-samples consisting of (i) females, (ii) males, (iii)
blacks, and (iv) white males. What differences, if any, do you notice?

(d) For each of the estimated regression models in (a) and (c), calculate the least
squares residuals and plot them against EXPER. Are any patterns evident?

Is the relationship between experience and wages constant over one’s lifetime? To

investigate we will fit a quadratic model using the data file cps4_small.dat, which

contains 1,000 observations on hourly wage rates, experience and other variables
from the 2008 Current Population Survey (CPS).

(a) Create a new variable called EXPER30 = EXPER — 30. Construct a scatter
diagram with WAGE on the vertical axis and EXPER30 on the horizontal axis.
Are any patterns evident?

(b) Estimate by least squares the quadratic model WAGE = y; + v» (EXPERSO)2 +e.
Are the coefficient estimates statistically significant? Test the null hypothesis that
v2 > 0 against the alternative that y, < 0 at the o = 0.05 level of significance. What
conclusion do you draw?

(c) Using the estimation in part (b), compute the estimated marginal effect of

experience upon wage for a person with 10 years’ experience, 30 years’

experience, and 50 years’ experience. Are these slopes significantly different
from zero at the o = 0.05 level of significance?

Construct 95% interval estimates of each of the slopes in part (c). How precisely

are we estimating these values?

(e) Using the estimation result from part (b) create the fitted values
WAGE = 4, + 42(EXPER30)*, where the ~ denotes least squares estimates.
Plot these fitted values and WAGE on the vertical axis of the same graph against
EXPER30 on the horizontal axis. Are the estimates in part (c) consistent with the
graph?

(f) Estimate the linear regression WAGE = 3] + B2EXPER30 + e and the linear
regression WAGE = o1 + 0o EXPER + e. What differences do you observe
between these regressions and why do they occur? What is the estimated
marginal effect of experience on wage from these regressions? Based on your
work in parts (b)—(d), is the assumption of constant slope in this model a good
one? Explain.

(g) Use the larger data cps4.dat (4838 observations) to repeat parts (b), (c), and (d).
How much has the larger sample improved the precision of the interval estimates
in part (d)?

d

=

Is the relationship between experience and In(wages) constant over one’s lifetime?
To investigate we will fit a log-linear model using the data file cps4_small.dat, which
contains 1000 observations on hourly wage rates, experience and other variables
from the 2008 Current Population Survey (CPS).
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(a) Create a new variable called EXPER30 = EXPER — 30. Construct a scatter
diagram with In(WAGE) on the vertical axis and EXPER30 on the horizontal axis.
Are any patterns evident?

(b) Estimate by least squares the quadratic model In(WAGE) =vy,+
'YQ(EXPER30)2 +e. Are the coefficient estimates statistically significant?
Test the null hypothesis that y, > 0 against the alternative that y, < 0 at the
a = 0.05 level of significance. What conclusion do you draw?

(c) Using the estimation in part (b), compute the estimated marginal effect
of experience upon wage for a person with 10 years of experience, 30 years of
experience, and 50 years of experience. [Hint: If In(y) = a+ bx* then
y = exp(a + bx?), and dy/dx = exp(a + bx?) x 2bx = 2bxy]

(d) Using the estimation result from part (b) create the fitted values
WAGE = exp(y1 + ?Z(EXPERSO%‘Z), where the » denotes least squares esti-
mates. Plot these fitted values and WAGE on the vertical axis of the same graph
against EXPER30 on the horizontal axis. Are the estimates in part (c) consistent
with the graph?

Data on the weekly sales of a major brand of canned tuna by a supermarket chainin a

large midwestern U.S. city during a mid-1990s calendar year are contained in the file

tuna.dat. There are 52 observations on the variables. The variable SALI = unit sales
of brand no. 1 canned tuna, APRI = price per can of brand no. 1 canned tuna, APR2,

APR3 = price per can of brands nos. 2 and 3 of canned tuna.

(a) Create the relative price variables RPRICE2 = APRI/APR2 and RPRICE3 =
APRI/APR3. What do you anticipate the relationship between sales (SAL/) and
the relative price variables to be? Explain your reasoning.

(b) Estimate the log-linear model In(SALI) = B; + B2RPRICE2 + e. Interpret the
estimate of 3,. Construct and interpret a 95% interval estimate of the parameter.

(c) Test the null hypothesis that the slope of the relationship in (b) is zero. Create the
alternative hypothesis based on your answer to part (a). Use the 1% level of
significance and draw a sketch of the rejection region. Is your result consistent
with economic theory?

(d) Estimate the log-linear model In(SALI) = y; + y2RPRICE3 + e. Interpret the
estimate of y,. Construct and interpret a 95% interval estimate of the parameter.

(e) Test the null hypothesis that the slope of this relationship is zero. Create the
alternative hypothesis based on your answer to part (a). Use the 1% level of
significance and draw a sketch of the rejection region. Is your result consistent
with economic theory?

What is the relationship between crime and punishment? This important question has

been examined by Cornwell and Trumbull®> using a panel of data from North

Carolina. The cross sections are 90 counties, and the data are annual for the years

1981-1987. The data are in the file crime.dat.

(a) Using the data from 1987, estimate the log-linear regression relating the log of the
crime rate to the probability of an arrest, LCRMRTE = 3| + B2PRBARR + e.
The probability of arrest is measured as the ratio of arrests to offenses. If
we increase the probability of arrest by 10%, what will be the effect on the crime
rate? What is a 95% interval estimate of this quantity?

2 “Estimating the Economic Model of Crime with Panel Data,” Review of Economics and Statistics, 76, 1994,
360-366. The data were kindly provided by the authors.
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(b) Test the null hypothesis that there is no relationship between the crime rate and
the probability of arrest against the alternative that there is an inverse relation-
ship. Use the 1% level of significance.

(c) Repeat parts (a) and (b) using the probability of conviction (PRBCONYV) as the
explanatory variable. The probability of conviction is measured as the ratio of
convictions to arrests.

Appendix 3A Derivation of the 7-Distribution

Interval estimation and hypothesis testing procedures in this chapter involve the ¢-distribution.
Here we develop the key result.

The first result that is needed is the normal distribution of the least squares estimator.
Consider, for example, the normal distribution of b, the least squares estimator of 3,, which

we denote as
o2
by~N|By——
< 2(x — xf)

A standardized normal random variable is obtained from b, by subtracting its mean and
dividing by its standard deviation:

by — B
var(by)

Z= ~N(0,1) (BA.1)

That is, the standardized random variable Z is normally distributed with mean O and
variance 1.

The second piece of the puzzle involves a chi-square random variable. If assumption SR6
holds, then the random error term e; has a normal distribution, e; ~ N (0, 02). Again, we can
standardize the random variable by dividing by its standard deviation so thate; /o ~ N(0, 1).
The square of a standard normal random variable is a chi- square random variable (see
Appendix B.5.2) with one degree of freedom, 50 (¢; /) ~ x )- If all the random errors are

independent, then
en 2 enN2 e 2
(5= (&) +(2 2) o () ey (3A.2)
o o g o

Since the true random errors are unobservable, we replace them by their sample counter-
parts, the least squares residuals é; = y; — by — byx;, to obtain

Ye? (N 2)62

V= 2

5 (3A.3)

o o
The random variable Vin (3A.3) does not have a X%N) distribution, because the least squares
residuals are not independent random variables. All N residuals ¢; = y; — b; — b,x; depend
on the least squares estimators b and b,. It can be shown that only N — 2 of the least squares
residuals are independent in the simple linear regression model. Consequently, the random
variable in (3A.3) has a chi-square distribution with N — 2 degrees of freedom. That is,
when multiplied by the constant (N — 2)/0?, the random variable 6 has a chi-square
distribution with N — 2 degrees of freedom,
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(N —2)5?
T X (3A.4)

V=

We have nort established the fact that the chi-square random variable V is statistically
independent of the least squares estimators b; and b,, but it is. The proof is beyond the scope
of this book. Consequently, V and the standard normal random variable Z in (3A.1) are
independent.

From the two random variables Vand Z we can form a #-random variable. A t-random
variable is formed by dividing a standard normal random variable, Z ~N(0, 1), by the
square root of an independent chi-square random variable, V ~ X%m)’ that has been divided
by its degrees of freedom, m. That is,

Z

WV

The #-distribution’s shape is completely determined by the degrees of freedom parameter,
m, and the distribution is symbolized by 7(,,). See Appendix B.5.3. Using Z and V from
(3A.1) and (3A.4), respectively, we have

Z

VV/IN=2)
(b2 — Bz)/ o?/3(x; — %)°

(N ;v 2)622/ o’ (3A.5)

by—B2  bh—Ba by —Po

\/ 52 \/var(bz) ~ se(by) ~1(N-2)

2(x — 3)2

The last line is the key result that we state in (3.2), with its generalization in (3.3).

Appendix 3B Distribution of the 7-Statistic under H;

To examine the distribution of the #-statistic in (3.7) when the null hypothesis is not true,
suppose that the true 3, = 1. Following the steps in (3A.5) in Appendix 3A we would find that
by —1
 se(by)

! ~IN-2)

If B = 1 and ¢ # 1 then the test statistic in (3.7) does not have a z-distribution since, in its
formation, the numerator of (3A.5) is not standard normal. It is not standard normal because
the incorrect value B, = c is subtracted from b,.

If B, = 1 and we incorrectly hypothesize that 3, = ¢, then the numerator in (3A.5) that is
used in forming (3.7) has the distribution

by — ¢ 1—c¢
~N 1 3B.1
var(b;) <\/Var(b2) 7 ) ( )
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where

0.2

var(by) = 5

(x; —X)

Since its mean is not zero, the distribution of the variable in (3B.1) is not standard normal, as
required in the formation of a f-random variable.

Appendix 3C Monte Carlo Simulation

In Appendix 2G we introduced a Monte Carlo simulation to illustrate the repeated sampling
properties of the least squares estimators. In this appendix we use the same framework to
illustrate the repeated sampling performances of interval estimators and hypothesis tests.

Recall that the data generation process for the simple linear regression model is given by

yi = E(yilxi) + e = B1 + Boxi + e, i=1,...,N

The Monte Carlo parameter values are 3; = 100 and 3, = 10. The value of x; is 10 for the first
20 observations and 20 for the remaining 20 observations, so that the regression functions are

E(yilx; = 10) = 100 + 10x; = 100 + 10 x 10 =200, i=1,...,20
E(yilx; = 20) = 100 + 10x; = 100 4+ 10 x 20 = 300, i=21,...,40

The random errors are independently and normally distributed with mean O and variance
var(e;|x;) = o = 2,500, ore; ~ N(0,2500).

When studying the performance of hypothesis tests and interval estimators it is necessary
to use enough Monte Carlo samples so that the percentages involved are estimated precisely
enough to be useful. For tests with probability of Type I error = 0.05 we should observe
true null hypotheses being rejected 5% of the time. For 95% interval estimators we should
observe that 95% of the interval estimates contain the true parameter values. We use M =
10,000 Monte Carlo samples so that the experimental error is very small. See Appendix 3C.3
for an explanation.

3C.1 REPEATED SAMPLING PROPERTIES OF INTERVAL ESTIMATORS

In Appendix 2G.4 we created one sample of data that is in the file mc/.dat. The least squares
estimates using these data values are

$ = 75.7679 + 11.9683x
(se) (25.7928) (1.6313)

A 95% interval estimate of the slope is by = #( 975 33)5€(b2) = [8.6660, 15.2707 |. We see
that for this sample, the 95% interval estimate contains the true slope parameter value
B, = 10.

We repeat the process of estimation and interval estimation 10,000 times. In these repeated
samples 95.18% of the interval estimates contain the true parameter. Table 3C.1 contains
results for the Monte Carlo samples 101-120 for illustration purposes. The estimates are B2,
the standard error is SE, the lower bound of the 95% interval estimate is LB and the upper
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Table 3C.1 Results of 10000 Monte Carlo Simulations

SAMPLE B2 SE TSTAT REJECT LB UB COVER
101 8.3181 1.5024 —1.1195 0 5.2767 11.3595 1
102 10.9564 1.5488 0.6175 0 7.8210 14.0918 1
103 13.3644 1.7085 1.9692 1 9.9057 16.8230 1
104 9.7406 1.8761 —0.1383 0 5.9425 13.5386 1
105 12.3402 1.6275 1.4379 0 9.0454 15.6350 1
106 11.9019 1.6031 1.1864 0 8.6567 15.1472 1
107 8.7278 1.2252 —1.0383 0 6.2475 11.2081 1
108 9.0732 1.6978 —0.5459 0 5.6361 12.5102 1
109 9.5502 1.4211 —0.3165 0 6.6734 12.4270 1
110 9.2007 1.4895 —0.5366 0 6.1854 12.2161 1
111 11.0090 1.5221 0.6629 0 7.9277 14.0903 1
112 12.7234 1.4783 1.8423 1 9.7308 15.7160 1
113 11.8995 1.7587 1.0801 0 8.3393 15.4597 1
114 12.9712 1.4679 2.0242 1 9.9997 15.9427 1
115 10.6347 1.6320 0.3889 0 7.3309 13.9385 1
116 10.0045 1.4179 0.0031 0 7.1341 12.8748 1
117 11.2658 1.5584 0.8123 0 8.1110 14.4206 1
118 11.4842 1.4449 1.0272 0 8.5592 14.4093 1
119 9.6915 1.7422 —0.1771 0 6.1647 13.2183 1
120 11.6990 1.5132 1.1228 0 8.6358 14.7623 1

bound is UB. The variable COVER = 1 if the interval estimate contains the true parameter
value. All of these intervals contain the true parameter value (3, = 10.

The lesson is, that in many repeated samples from the data generation process, and if
assumptions SR1-SR6 hold, the procedure for constructing 95% interval estimates
“works” 95% of the time.

3C.2 REPEATED SAMPLING PROPERTIES OF HYPOTHESIS TESTS

The null hypothesis Hy : B, = 10 is true. If we use the one-tail alternative Hy : 3, > 0, the
null hypothesis is rejected if the test statistic t = (b, — 10)/se(by) > 1.685954, which
is the 95th percentile of the t-distribution with 38 degrees of freedom.’ For the sample
mcl.dat the calculated value of the #-statistic is 1.21, so we fail to reject the null hypothesis,
which in this case is the correct decision.

We repeat the process of estimation and hypothesis testing 10,000 times. In these
repeated samples, 4.73% of the tests reject the null hypothesis that the parameter value is 10.
In Table 3C.1, the z-statistic value is TSTAT and REJECT = 1 if the null hypothesis is
rejected. We see that samples 103, 112 and 114 incorrectly reject the null hypothesis.

The lesson is that in many repeated samples from the data generation process, and if
assumptions SR1-SR6 hold, the procedure for testing a true null hypothesis at significance
level o = 0.05 rejects the true null hypothesis 5% of the time. Or, stated positively, the test
procedure does not reject the true null hypothesis 95% of the time.

3 We use a t-critical value with more decimals, instead of the tabled value 1.686, to ensure accuracy in the Monte
Carlo experiment.
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3C.3 CuHoosING THE NuMBER OF MONTE CARLO SAMPLES

A 95% confidence interval estimator should contain the true parameter value 95% of the
time in repeated samples. The M repeated samples in a Monte Carlo experiment are
independent experimental trials in which the probability of a “success,” an interval
containing the true parameter value, is P = 0.95. The number of successes follows a
binomial distribution. The proportion of successes P in M trials is a random variable with
expectation P and variance P(1 — P)/M. If the number of Monte Carlo samples M is large,
a 95% interval estimate of the proportion of Monte Carlo successes is
P +1.96,/P(1 — P)/M. If M = 10,000, this interval is [0.9457, 0.9543]. We chose
M = 10,000 so that this interval would be narrow, giving us confidence that if the true
probability of success is 0.95 we will obtain a Monte Carlo average close to 0.95 with a
“high” degree of confidence. Our result, that 95.18% of our interval estimates contain the
true parameter 3, is ““within”’ the margin of error for such Monte Carlo experiments. On
the other hand, if we had used M = 1000 Monte Carlo samples, the interval estimate of the
proportion of Monte Carlo successes would be, [0.9365, 0.9635]. With this wider interval,
the proportion of Monte Carlo successes could be quite different from 0.95, casting a
shadow of doubt on whether our method was working as advertised or not.

Similarly, for a test with probability of rejection a = 0.05, the 95% interval estimate of
the proportion of Monte Carlo samples leading to rejection is « £ 1.96/a(1 — ) /M. If
M = 10,000 this interval is [0.0457, 0.0543]. That our Monte Carlo experiments rejected
the null hypothesis 4.73% of the time is within this margin of error. If we had chose
M = 1000, then the proportion of Monte Carlo rejections is estimated to be in the interval
[0.0365, 0.0635], which again leaves just a little too much wiggle room for comfort.

The point is that if fewer Monte Carlo samples are chosen the “‘noise’” in the Monte Carlo
experiment can lead to a percent of successes or rejections that has too wide a margin of error
for us to tell whether the statistical procedure, interval estimation, or hypothesis testing, is
“working” properly or not.*

# Other details concerning Monte Carlo simulations can be found in Microeconometrics: Methods and
Applications, by A. Colin Cameron and Pravin K. Trivedi, (Cambridge University Press, 2005). The material
is advanced.
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Prediction, Goodness-of-Fit,
and Modeling Issues

Learning Objectives

Based on the material in this chapter, you should be able to
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Explain how to use the simple linear regression model to predict the value of y for a
given value of x.

Explain, intuitively and technically, why predictions for x values further from x are
less reliable.

Explain the meaning of SS7, SSR, and SSE, and how they are related to R>.
Define and explain the meaning of the coefficient of determination.
Explain the relationship between correlation analysis and R”.

Report the results of a fitted regression equation in such a way that confidence
intervals and hypothesis tests for the unknown coefficients can be constructed
quickly and easily.

Describe how estimated coefficients and other quantities from a regression equation
will change when the variables are scaled. Why would you want to scale the
variables?

Appreciate the wide range of nonlinear functions that can be estimated using a
model that is linear in the parameters.

Write down the equations for the log-log, log-linear, and linear-log functional
forms.

Explain the difference between the slope of a functional form and the elasticity
from a functional form.

Explain how you would go about choosing a functional form and deciding that a
functional form is adequate.

Explain how to test whether the equation “‘errors” are normally distributed.

Explain how to compute a prediction, a prediction interval, and a goodness-of-fit
measure in a log-linear model.
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Keywords

coefficient of determination Jarque—Bera test log-normal distribution
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In Chapter 3 we focused on making statistical inferences, constructing confidence
intervals, and testing hypotheses about regression parameters. Another purpose of the
regression model, and the one we focus on first in this chapter, is prediction. A prediction
is a forecast of an unknown value of the dependent variable y given a particular value of x.
A prediction interval, much like a confidence interval, is a range of values in which
the unknown value of y is likely to be located. Examining the correlation between
sample values of y and their predicted values provides a goodness-of-fit measure
called R? that describes how well our model fits the data. For each observation in the sample
the difference between the predicted value of y and the actual value is a residual. Diagnostic
measures constructed from the residuals allow us to check the adequacy of the functional
form used in the regression analysis and give us some indication of the validity of the
regression assumptions. We will examine each of these ideas and concepts in turn.

4.1 Least Squares Prediction

In Section 2.3.3b we briefly introduced the idea that the least squares estimates of
the linear regression model provide a way to predict the value of y for any value of x.
The ability to predict is important to business economists and financial analysts who
attempt to forecast the sales and revenues of specific firms; it is important to govern-
ment policy makers who attempt to predict the rates of growth in national income,
inflation, investment, saving, social insurance program expenditures, and tax revenues;
and it is important to local businesses who need to have predictions of growth in
neighborhood populations and income so that they may expand or contract their
provision of services. Accurate predictions provide a basis for better decision making
in every type of planning context. In this section, we explore the use of linear regression
as a tool for prediction.

Given the simple linear regression model and assumptions SR1-SR6, let x( be a value of
the explanatory variable. We want to predict the corresponding value of y, which we call yy.
In order to use regression analysis as a basis for prediction, we must assume that yy and xj are
related to one another by the same regression model that describes our sample of data, so
that, in particular, SR1 holds for these observations

Yo = B1 + Baxo + eo 4.1)

where ¢( is a random error. We assume that E(yg) = B1 + Baxo and E(ep) = 0. We also
assume that ey has the same variance as the regression errors, var(ep) = o2, and e is
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3i=by + byx;

X0

FIGURE 4.1 A point prediction.

uncorrelated with the random errors that are part of the sample data, so that cov(eg, ¢;) = 0
i=12,...,N.

The task of predicting yy is related to the problem of estimating E(yo) = B + Baxo
which we discussed in Chapter 3.6. The outcome yo = E(yy) + eo = By + Baxo + epis
composed of two parts, the systematic, nonrandom part £ (y/)\: B1 + B2xp and arandom
component e). We estimate the systematic portion using E(yo) = by + baxo i@ add an
“estimate” of e equal to its expected value, which is zero. Therefore/&) =E(y) +0=
by + byx. Despite the fact that we use the same statistic for both yo and E(yy ), we distinguish
between them because, although E(yo) = B + Baxo is not random, the outcome y, is
random. Consequently, as we will see, there is a difference between the interval estimate
of E(yo) = B1 + B2xo and the prediction interval for yj.

Following from the discussion in the previous paragraph, the least squares predictor
of yop comes from the fitted regression line

Yo = b1 + baxp 4.2)

That is, the predicted value y, is given by the point on the least squares fitted line where
X = Xo, as shown in Figure 4.1. How good is this prediction procedure? The least squares
estimators b and b, are random variables—their values vary from one sample to another. It
follows that the least squares predictor yo = b; + byxy must also be random. To evaluate
how well this predictor performs, we define the forecast error, which is analogous to the
least squares residual,

f=y0—30 = (B1 + Baxo + o) — (b1 + baxo) (4.3)

We would like the forecast error to be small, implying that our forecast is close to the value
we are predicting. Taking the expected value of f, we find

E(f) = B1 + Baxo + E(eo) — [E(b1) + E(b2)x0]
= B1 + Baxo + 0 — [B1 + Baxo]
=0

which means, on average, the forecast error is zero, and yy is an unbiased predictor of y,.
However, unbiasedness does not necessarily imply that a particular forecast will be close to
the actual value. The probability of a small forecast error also depends on the variance of the
forecast error. Although we will not prove it, yo is the best linear unbiased predictor
(BLUP) of yj if assumptions SR1-SR5 hold. This result is reasonable given that the least
squares estimators b; and b, are best linear unbiased estimators.
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Using (4.3) and what we know about the variances and covariance of the least squares
estimators, we can show (see Appendix 4A at the end of this chapter) that the variance of
the forecast error is

var(f) = o

1+ (4.4)

l (JC() — 2)2
N+2@—ﬂ4

Notice that some of the elements of this expression appear in the formulas for the variances
of the least squares estimators and affect the precision of prediction in the same way that
they affect the precision of estimation. We would prefer that the variance of the forecast
error be small, which would increase the probability that the prediction y is close to the
value yy we are trying to predict. Note that the variance of the forecast error is smaller when

i. the overall uncertainty in the model is smaller, as measured by the variance of
the random errors o
ii. the sample size N is larger
iii. the variation in the explanatory variable is larger

iv. the value of (xo —x)* is small

The new addition is the term (xo — X)z, which measures how far x is from the center of the
x-values. The more distant x is from the center of the sample data the larger the forecast
variance will become. Intuitively, this means that we are able to do a better job predicting
in the region where we have more sample information, and we will have less accurate
predictions when we try to predict outside the limits of our data.

In practice we replace o in (4.4) by its estimator G to obtain

1 (x—x)?
N+2m—ﬂ4

I+

The square root of this estimated variance is the standard error of the forecast

se(f) =1/ var(f) 4.5)

Defining the critical value 7, to be the 100(1 — a/2)-percentile from the z-distribution, we can
obtain a 100(1— o)% prediction interval as

Yo tt.se(f) (4.6)

See Appendix 4A for some details related to the development of this result.

Following our discussion of var(f) in (4.4), the farther xy is from the sample mean X, the
larger the variance of the prediction error will be, and the less reliable the prediction is likely
to be. In other words, our predictions for values of xj close to the sample mean X are more
reliable than our predictions for values of x( far from the sample mean X. This fact shows up
in the size of our prediction intervals. The relationship between point and interval
predictions for different values of x is illustrated in Figure 4.2. A point prediction is given
by the fitted least squares line yo = b + byxy. The prediction interval takes the form of two
bands around the fitted least squares line. Because the forecast variance increases the farther
Xo is from the sample mean X, the confidence bands are their narrowest when xy = X, and
they increase in width as |xg — X| increases.
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FIGURE 4.2 Point and interval prediction.

4.1.1 PREDICTION IN THE FOOD EXPENDITURE MODEL

In Section 2.3.3b we predicted that a household with xo = $2,000 weekly income would
spend $287.61 on food using the calculation

Yo = b1 + baxg = 83.4160 + 10.2096(20) = 287.6089

Now we are able to attach a “confidence interval”’ to this prediction. The estimated variance
of the forecast error is

var(f) = 6"

1 ()C()—)?)2
14—
N7 >(x; — x)2]
-2 )
—52.% 52
=G +N+(xo X) Z(xi—x)z

2
N o _
=62+ N + (x0 — X)Zvar(bz)

In the last line we have recognized the estimated variance of b, from (2.21). In Section 2.7.2

we obtained the values 62 = 8013.2941 and var(b,) = 4.3818. For the food expenditure
data, N = 40 and the sample mean of the explanatory variable is X = 19.6048. Using these

values we obtain the standard error of the forecast se(f) = 4/ w =v8214.31 =
90.6328. If we select 1 — a = 0.95, then 7. = t(0‘975’38) = 2.0244 and the 95% prediction

interval for y is

S0 =+ tose( f) = 287.6069 & 2.0244(90.6328) = [104.1323, 471.0854]

Our prediction interval suggests that a household with $2,000 weekly income will spend
somewhere between $104.13 and $471.09 on food. Such a wide interval means that our point
prediction $287.61 is not very reliable. We have obtained this wide prediction interval for
the value of xo = 20 that is close to the sample mean X = 19.60. For values of x that are more
extreme, the prediction interval would be even wider. The unreliable predictions may
be slightly improved if we collect a larger sample of data, which will improve the precision
with which we estimate the model parameters. However, in this example the magnitude of
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the estimated error variance 62 is very close to the estimated variance of the forecast
error var(f), indicating that the primary uncertainty in the forecast comes from large
uncertainty in the model. This should not be a surprise, since we are predicting household
behavior, which is a complicated phenomenon, on the basis of a single household charac-
teristic, income. Although income is a key factor in explaining food expenditure, we can
imagine that many other household demographic characteristics may play a role. To more
accurately predict food expenditure we may need to include these additional factors into
the regression model. Extending the simple regression model to include other factors will
begin in Chapter 5.

4.2 Measuring Goodness-of-Fit

Two major reasons for analyzing the model
yi=PB1+Baxi + e 4.7)

are to explain how the dependent variable (y;) changes as the independent variable (x;)
changes, and to predict y given an x,. These two objectives come under the broad headings
of estimation and prediction. Closely allied with the prediction problem discussed in the
previous section is the desire to use x; to explain as much of the variation in the dependent
variable y; as possible. In the regression model (4.7) we call x; the “‘explanatory’ variable
because we hope that its variation will “explain’ the variation in y;.

To develop a measure of the variation in y; that is explained by the model, we begin by
separating y; into its explainable and unexplainable components. We have assumed that

yi=E(yi) +e (4.8)

where E(y;) = B + Box; is the explainable, “‘systematic” component of y;, and ¢; is the
random, unsystematic and unexplainable component of y;. While both of these parts are
unobservable to us, we can estimate the unknown parameters [3; and 3, and, analogous to
(4.8), decompose the value of y; into

yi=Yi+e 4.9)

where }AJI‘ = bl + bzxi and éi =Yy — }A)i.

In Figure 4.3 the “point of the means™ (X, y) is shown, with the least squares fitted line
passing through it. This is a characteristic of the least squares fitted line whenever the
regression model includes an intercept term. Subtract the sample mean y from both sides of
the equation to obtain

Vi—y=0i—Y) +e (4.10)

As shown in Figure 4.3 the difference between y; and its mean value y consists of a part that is
“explained” by the regression model y; — y and a part that is unexplained e;.

The breakdown in (4.10) leads to a decomposition of the total sample variability in y into
explained and unexplained parts. Recall from your statistics courses (see Appendix C.4) that
if we have a sample of observations yy, 2, . . ., Yy, two descriptive measures are the sample
mean y and the sample variance

sz 2()’1 _y)z

7 N-—1

The numerator of this quantity, the sum of squared differences between the sample values y;
and the sample mean y, is a measure of the total variation in the sample values. If we square
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FIGURE 4.3 Explained and unexplained components of y;.

and sum both sides of (4.10), and use the fact that the cross-product term .(3; — y)é; = 0
(see Appendix 4B), we obtain

S(yi—3) =20 —y) + 2 (4.11)

Equation (4.11) gives us a decomposition of the “‘total sample variation” in y into explained
and unexplained components. Specifically, these “sums of squares™ are

1. X(y; — ¥)* = total sum of squares = SST: a measure of fotal variation in y about the
sample mean.

2. 3(5 —y)* = sum of squares due to the regression = SSR: that part of total variation
in y, about the sample mean, that is explained by, or due to, the regression. Also
known as the “‘explained sum of squares.”

3. Y& = sum of squares due to error = SSE: that part of total variation in y about its
mean that is not explained by the regression. Also known as the unexplained sum of
squares, the residual sum of squares, or the sum of squared errors.

Using these abbreviations (4.11) becomes

SST = SSR + SSE

This decomposition of the total variation in y into a part that is explained by the regression
model and a part that is unexplained allows us to define a measure, called the coefficient of
determination, or R, that is the proportion of variation in y explained by x within the
regression model.

_SSR_SSE

RR="""o o222
SST SST

(4.12)
The closer R? is to 1, the closer the sample values y; are to the fitted regression equation
$i = by + byx;. If R* = 1, then all the sample data fall exactly on the fitted least squares
line, so SSE = 0, and the model fits the data ‘““perfectly.”” If the sample data for y and x are
uncorrelated and show no linear association, then the least squares fitted line is ‘“‘hori-
zontal,” and identical to ¥, so that SSR = 0 and R?> = 0. When 0 < R? < 1, it is interpreted



4.2 MEASURING GOODNESS-OF-FIT 137

as “‘the proportion of the variation in y about its mean that is explained by the regression
model.”

4.2.1 CORRELATION ANALYSIS

In Appendix B.1.5 we discuss the covariance and correlation between two random
variables x and y. The correlation coefficient p,, between x and y is defined in (B.21) as

cov(x,y) Oy

Pxy = (4.13)

var(x)/var(y) o0,

In Appendix B we did not discuss estimating the correlation coefficient. We will do so now
to develop a useful relationship between the sample correlation coefficient and R

Given a sample of data pairs (x;,y;),i = 1, ..., N, the sample correlation coefficient is
obtained by replacing the covariance and standard deviations in (4.13) by their sample
analogs:

where

Soy = 2(x —X)(vi =)/ (N = 1)

5= /26 —%/(V - 1)

5= 20— 3/ (N - 1)

The sample correlation coefficient r,, has a value between —1 and 1, and it measures the
strength of the linear association between observed values of x and y.

2
4.2.2 CORRELATION ANALYSIS AND R

There are two interesting relationships between R* and r, in the simple linear regression
model.

1. The first is that r)%y = R?. That is, the square of the sample correlation coefficient
between the sample data values x; and y; is algebraically equal to R* in a simple
regression model. Intuitively this relationship makes sense: r)%y falls between zero
and one and measures the strength of the linear association between x and y. This
interpretation is not far from that of R?: the proportion of variation in y about its mean
explained by x in the linear regression model.

2. The second, and more important, relation is that R? can also be computed as the
square of the sample correlation coefficient between y; and y; = by + byx;. That is,
R? = rfy. As such it measures the linear association, or goodness-of-fit, between the
sample data and their predicted values. Consequently R” is sometimes called a
measure of “goodness-of-fit.”” This result is valid not only in simple regression
models but also in multiple regression models that we introduce in Chapter 5.
Furthermore, as you will see in Section 4.4, the concept of obtaining a goodness-of-
fit measure by predicting y as well as possible and finding the squared correlation
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coefficient between this prediction and the sample values of y can be extended to
situations in which the usual R*> does not strictly apply.

4.2.3 THE Foop EXPENDITURE EXAMPLE

Look at the food expenditure example in Section 2.3.2, and in particular the data scatter and
fitted regression line in Figure 2.8, and the computer output Figure 2.9. Go ahead. I will wait
until you get back. The question we would like to answer is ““How well does our model fit the
data?” To compute the R> we can use the sums of squares

SST = ¥(yi — 3)* = 495132.160
SSE = X(yi — $1)* = Ye? = 304505.176

Th
- ) SSE 304505.176
RR=1-"Co

ssT ! T 495132160 03

We conclude that 38.5% of the variation in food expenditure (about its sample mean) is
explained by our regression model, which uses only income as an explanatory variable. Is this
agood R?? We would argue that such a question is not useful. Although finding and reporting
R? provides information about the relative magnitudes of the different sources of variation,
debates about whether a particular R? is ““large enough” are not particularly constructive.
Microeconomic household behavior is very difficult to explain fully. With cross-sectional
data R? values from 0.10 to 0.40 are very common even with much larger regression models.
Macroeconomic analyses using time-series data, which often trend together smoothly over
time, routinely report R” values of 0.90 and higher. You should not evaluate the quality of the
model based only on how well it predicts the sample data used to construct the estimates. To
evaluate the model itis asimportant to consider factors such as the signs and magnitudes of the
estimates, their statistical and economic significance, the precision of their estimation, and
the ability of the fitted model to predict values of the dependent variable that were not in the
estimation sample. Other model diagnostic issues will be discussed in the next section.

Correlation analysis leads to the same conclusions and numbers, but it is worthwhile to
consider this approach in more detail. The sample correlation between the y and x sample
values is

Sty 47875
=y M g6
" s, (6.848)(112.675)

The correlation is positive, indicating a positive association between food expenditure and
income. The sample correlation measures the strength of the linear association, with a
maximum value of 1. The value r,, = 0.62 indicates a non-negligible but less than perfect
fit. As expected rj, = 0.62* = 0.385 = R”.

4.2.4 REPORTING THE RESULTS

In any paper where you write the results of a simple regression, with only one explanatory
variable, these results can be presented quite simply. The key ingredients are the coefficient
estimates, the standard errors (or #-values), an indication of statistical significance, and R>.
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Also, when communicating regression results, avoid using symbols like x and y. Use
abbreviations for the variables that are readily interpreted, defining the variables precisely
in a separate section of the report. For the food expenditure example, we might have the
variable definitions:

FOOD_EXP = weekly food expenditure by a household of size 3, in dollars
INCOME = weekly household income, in $100 units

Then the estimated equation results are

FOOD_EXP = 83.42 + 10.21 INCOME R* =0.385
(se) (43.41)" (2.09)™"

Report the standard errors below the estimated coefficients. The reason for showing the
standard errors is that an approximate 95% interval estimate (if the degrees of freedom
N — 2 are greater than 30) is by £ 2 x se. The reader may then divide the estimate by the
standard error to obtain the value of the ¢-statistic if desired. Furthermore, testing other
hypotheses is facilitated by having the standard error present. To test the null hypothesis
Hy: B2 = 8.0, we can quickly construct the #-statistic 7 = [(10.21 — 8)/2.09)] and proceed
with the steps of the test procedure.

Asterisks are often used to show the reader the statistically significant (that is,
significantly different from zero using a two-tail test) coefficients, with explanations in
a table footnote:

* indicates significant at the 10% level
** indicates significant at the 5% level

*#% indicates significant at the 1% level

The asterisks are assigned by checking the p-values from the computer output, as in
Figure 2.9.

4.3 Modeling Issues

4.3.1 THE EFrECTS OF SCALING THE DATA

Data we obtain are not always in a convenient form for presentation in a table or use in a
regression analysis. When the scale of the data is not convenient, it can be altered without
changing any of the real underlying relationships between variables. For example, the real
personal consumption in the United States, as of the 4th quarter of 2009, was $9291.7 billion
annually. That is, written out, $9,291,700,000,000. While we could use the long form of the
number in a table or in a regression analysis, there is no advantage to doing so. By choosing the
units of measurement to be “billions of dollars,” we have taken a long number and made it
comprehensible. What are the effects of scaling the variables in a regression model?

Consider the food expenditure model. In Table 2.1 we report weekly expenditures
in dollars but we report income in $100 units, so a weekly income of $2,000 is reported as
x = 20. Why did we scale the data in this way? If we had estimated the regression using
income in dollars, the results would have been

FOOD_EXP = 83.42 + 0.1021 INCOME($) R> =0.385
(se) (43.41)7(0.0209)"
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There are two changes. First, the estimated coefficient of income is now 0.1021. The
interpretation is “If weekly household income increases by $1 then we estimate that weekly
food expenditure will increase by about 10 cents.” There is nothing mathematically wrong
with this, but it leads to a discussion of changes that are so small as to seem irrelevant. An
increase in income of $100 leads to an estimated increase in food expenditure of $10.21, as
before, but these magnitudes are more easily discussed.

The other change that occurs in the regression results when income is in dollars is that the
standard error becomes smaller, by a factor of 100. Since the estimated coefficient is smaller
by a factor of 100 also, this leaves the z-statistic and all other results unchanged.

Such a change in the units of measurement is called scaling the data. The choice of the
scale is made by the researcher to make interpretation meaningful and convenient.
The choice of the scale does not affect the measurement of the underlying relationship,
butit does affect the interpretation of the coefficient estimates and some summary measures.
Let us list the possibilities:

1. Changing the scale of x: In the linear regression model y = 3; + B2x + e, suppose
we change the units of measurement of the explanatory variable x by dividing it by
a constant c. In order to keep intact the equality of the left- and right-hand sides,
the coefficient of x must be multiplied by c¢. That is, y =, + Bx+e = B+
(cB2)(x/c) + e = B1 + B>x" + e, where B3 = ¢f, and x* = x/c. For example, if x
is measured in dollars, and ¢ = 100, then x* is measured in hundreds of dollars. Then
5 measures the expected change in y given a $100 increase in x, and 5 is 100 times
larger than [3,. When the scale of x is altered, the only other change occurs in the
standard error of the regression coefficient, but it changes by the same multiplicative
factor as the coefficient, so that their ratio, the ¢-statistic, is unaffected. All other
regression statistics are unchanged.

2. Changing the scale of y: If we change the units of measurement of y, but not x, then
all the coefficients must change in order for the equation to remain valid. That is,
y/e=(Bi/c) + (B2/c)x + (e/c) or y* = B] + B5x + ¢*. In this rescaled model B3
measures the change we expect in y* given a 1-unit change in x. Because the error
term is scaled in this process the least squares residuals will also be scaled. This
will affect the standard errors of the regression coefficients, but it will not affect
t-statistics or R2.

3. Ifthe scale of y and the scale of x are changed by the same factor, then there will be no
change in the reported regression results for b, but the estimated intercept and
residuals will change; r-statistics and R? are unaffected. The interpretation of the
parameters is made relative to the new units of measurement.

4.3.2 CHoosiNG A FuncTioNAL FOorm

In our ongoing example, we have assumed that the mean household food expenditure is
a linear function of household income. That is, we assumed the underlying economic
relationship to be E(y) = 31 + Box, which implies that there is a linear, straight-line
relationship between E(y) and x. Why did we do that? Although the world is not ““linear,” a
straight line is a good approximation to many nonlinear or curved relationships over narrow
ranges. Also, in your principles of economics classes you may have begun with straight lines
for supply, demand, and consumption functions, and we wanted to ease you into the more
“artistic”” aspects of econometrics.
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The starting point in all econometric analyses is economic theory. What does economics
really say about the relation between food expenditure and income, holding all else
constant? We expect there to be a positive relationship between these variables because
food is a normal good. But nothing says the relationship must be a straight line. In fact,
we do not expect that as household income rises, food expenditures will continue to rise
indefinitely at the same constant rate. Instead, as income rises, we expect food expenditures
to rise, but we expect such expenditures to increase at a decreasing rate. This is a phrase that
is used many times in economics classes. What it means graphically is that there is not a
straight-line relationship between the two variables. For a curvilinear relationship like that
in Figure 4.4, the marginal effect of a change in the explanatory variable is measured by the
slope of the tangent to the curve at a particular point. The marginal effect of a change in x is
greater at the point (x;, y;) than it is at the point (x,, y»). As x increases, the value of y
increases, but the slope is becoming smaller. This is the meaning of ‘““increasing at a
decreasing rate.” In the economic context of the food expenditure model, the marginal
propensity to spend on food is greater at lower incomes, and as income increases the
marginal propensity to spend on food declines.

The simple linear regression model is much more flexible than it appears at first glance.
By transforming the variables y and x we can represent many curved, nonlinear relationships
and still use the linear regression model. In Chapter 2.8 we introduced the idea of using
quadratic and log-linear functional forms. In this and subsequent sections, we introduce
you to an array of other possibilities and give some examples.

Choosing an algebraic form for the relationship means choosing transformations of the
original variables. This is not an easy process, and it requires good analytic geometry skills
and some experience. It may not come to you easily. The variable transformations that we
begin with are

1. Power: If x is a variable, then x” means raising the variable to the power p; examples
are quadratic (xz) and cubic (x3) transformations.

2. The natural logarithm: If x is a variable, then its natural logarithm is In(x).

Using just these three algebraic transformations there are amazing varieties of ““‘shapes’” that
we can represent, as shown in Figure 4.5.

A difficulty introduced when transforming variables is that regression result interpret-
ations change. For each different functional form, shown in Table 4.1, the expressions for
both the slope and elasticity change from the linear relationship case. This is so because

y Slope at
point y,, x,

Slope at
point yy. x,

o —_————
e

1 2 X

FIGURE 4.4 A nonlinear relationship between food expenditure and income.
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FIGURE 4.5 Alternative functional forms.

the variables are related nonlinearly. What this means for the practicing economist is that
great attention must be given to result interpretation whenever variables are transformed.
Because you may be less familiar with logarithmic transformations, let us summarize the
interpretation in three possible configurations.

1. Inthelog-log model both the dependent and independent variables are transformed
by the “natural” logarithm. The model is In(y) = B; + B2 In(x). In order to use this
model both y and x must be greater than zero, because the logarithm is defined only
for positive numbers. The parameter 3, is the elasticity of y with respect to x.
Referring to Figure 4.5, you can see why economists use the constant elasticity, log-
log model specification so frequently. In panel (c), if 32 > 1 the relation could depict
a supply curve, or if 0 < 3, < 1 a production relation. In panel (d), if B, < 0 it could
represent a demand curve. In each case interpretation is convenient because the
elasticity is constant. An example is given in Section 4.6.

2. In the log-linear model In(y) = 3; + Box only the dependent variable is trans-
formed by the logarithm. The dependent variable must be greater than zero to use
this form. In this model a one-unit increase in x leads to (approximately) a 100 x
B2% change in y. The log-linear form is common; it was introduced in Chapter
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Table 4.1 Some Useful Functions, their Derivatives, Elasticities and Other
Interpretation

Name Function Slope = dy/dx Elasticity
. X
Linear y=PB1+ Box B2 Bz;

Quadratic y =B + P 2B (2Bx) "~

y

Cubic y =B + P 3By (332x2)’yf
Log-Log In(y) = B1 + Baln(x) B2 B
Log-Linear In(») = B1 + Box B2y Box

or, a 1 unit change in x leads to (approximately) a 100 3,% change in y

1 1
Linear-Log v =B + Badn(x) Bas B2

or, a 1% change in x leads to (approximately) a 3,/100 unit change in y

2.8.3-2.8.4 and will be further discussed in Section 4.5. Note its possible shapes in
Figure 4.5(e). If B, > 0 the function increases at an increasing rate; its slope is larger
for larger values of y. If B, <0, the function decreases, but at a decreasing rate.

3. In the linear-log model y = 3; + 3, In(x) the variable x is transformed by the
natural logarithm. See Figure 4.5(f). The slope of this functionis Ay /Ax = 3, /x, and
it changes at every point. We can interpret 3, by rewriting the slope expression as

by B
100(Ax/x) 100

The term 100(Ax/x) is the percentage change in x. Thus, in the linear-log model we can say
thata 1% increase in x leads to a B, /100-unit change in y. An example of this functional form
is given in the next section.

4.3.3 A LiNnear-Loc Foop EXPENDITURE MODEL

Suppose that in the food expenditure model, we wish to choose a functional form that is
consistent with Figure 4.4. One option is the linear-log functional form. A linear-log
equation has a linear, untransformed term on the left-hand side and a logarithmic term on the
right-hand side, ory = 3 + B, In(x). Because of the logarithm, this function requires x > 0.
It is an increasing or decreasing function, depending upon the sign of 3. The slope of
the function is B,/x, so that as x increases, the slope decreases in absolute magnitude. If
B2 > 0, then the function increases at a decreasing rate. If 3, < 0, then the function decreases
at a decreasing rate. The function shapes are depicted in Figure 4.5(f). The elasticity of
y with respect to x in this model is ¢ = slope x x/y = Ba/y.

There is a convenient interpretation using approximations to changes in logarithms.
Consider a small increase in x from xo to x;. Then yo=B; + B2In(xy) and
y1 = B1 + B2 In(xy). Subtracting the former from the latter, and using the approximation
developed in Appendix A, (A.3), gives

Ay=y1 — yo = Ba[In(x1) — In(xo)]

_ % % 100[In(x1) — In(xo)]

~ P2
= 700 40
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The change in y, represented in its units of measure, is approximately 8,/100 times the
percentage change in x.

Using a linear-log equation for the food expenditure relation results in the regression
model

FOOD_EXP = B; + B> In(INCOME) + ¢

For 3, >0 this function is increasing, but at a decreasing rate. As INCOME increases
the slope B2/INCOME decreases. In this context the slope is the marginal propensity to
spend on food from additional income. Similarly, the elasticity, 3,/ FOOD_ EXP, becomes
smaller for larger levels of food expenditure. These results are consistent with the idea that at
high incomes, and large food expenditures, the effect of an increase in income on food
expenditure is small.

The estimated linear-log model using the food expenditure data is

FOOD_EXP = —97.19 + 132.17 In(INCOME) ~ R® = 0.357

(4.14)
(se) (84.24) (28.80)""
The fitted model is shown in Figure 4.6.

As anticipated, the fitted function is not a straight line. The fitted linear-log model is
consistent with our theoretical model that anticipates declining marginal propensity to
spend additional income on food. For a household with $1,000 weekly income, we estimate
that the household will spend an additional $13.22 on food from an additional $100 income,
whereas we estimate that a household with $2,000 per week income will spend an additional
$6.61 from an additional $100 income. The marginal effect of income on food expenditure is
smaller at higher levels of income. This is a change from the linear, straight-line relationship
we originally estimated, in which the marginal effect of a change in income of $100 was
$10.21 for all levels of income.

Alternatively, we can say that a 1% increase in income will increase food expenditure by
approximately $1.32 per week, or that a 10% increase in income will increase food
expenditure by approximately $13.22. Although this interpretation is conveniently simple
to state, the diminishing marginal effect of income on food expenditure is somewhat

Linear Log Model
600 °

500
400
300

200

Food Expenditure

100

0 10 20 30 40
Income

FIGURE 4.6 The fitted linear-log model.
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disguised, though still implied. At $1,000 per week income, a 10% increase is $100, while at
$2,000 income a 10% increase is $200. At higher levels of income a larger dollar increase in
income is required to elicit an additional $13.22 expenditure on food.

In terms of how well the model fits the data, we see that R? = 0.357 for the linear-log
model, as compared to R* = 0.385 for the linear, straight-line relationship. Since these two
models have the same dependent variable, FOOD_EXP, and each model has a single
explanatory variable, a comparison of R* values is valid. However there is a very small
difference in the fit of the two models, and in any case a model should not be chosen only on
the basis of model fit with R? as the criterion.

REMARK: Given alternative models, that involve different transformations of the
dependent and independent variables, and some of which have similar shapes, what are
some guidelines for choosing a functional form?

1. Choose a shape that is consistent with what economic theory tells us about the
relationship.
Choose a shape that is sufficiently flexible to “fit” the data.

Choose a shape so that assumptions SR1-SR6 are satisfied, ensuring that the
least squares estimators have the desirable properties described in Chapters 2
and 3.

Although these objectives are easily stated, the reality of model building is much more
difficult. You must recognize that we never know the “‘true’” functional relationship
between economic variables; also, the functional form that we select, no matter how
elegant, is only an approximation. Our job is to choose a functional form that satisfactorily
meets the three objectives stated above.

4.3.4 UsIiNnG DiagNosTIC RESIDUAL PLOTS

When specifying a regression model, we may inadvertently choose an inadequate or
incorrect functional form. Even if the functional form is adequate, one or more of the
regression model assumptions may not hold. There are two primary methods for detecting
such errors. First, examine the regression results. Finding an incorrect sign or a theoretically
important variable that is not statistically significant may indicate a problem. Second,
evidence of specification errors can reveal themselves in an analysis of the least squares
residuals. We should ask whether there is any evidence that assumptions SR3 (homo-
skedasticity), SR4 (no serial correlation), and SR6 (normality) are violated. Usually
heteroskedasticity might be suspected in cross-sectional data analysis, and serial correlation
is a potential time series problem. In both cases diagnostic tools focus on the least squares
residuals. In Chapters 8 and 9 we will provide formal tests for homoskedasticity and serial
correlation. In addition to formal tests, residual plots of all types are useful as diagnostic
tools. In this section residual analysis reveals potential heteroskedasticity and serial
correlation problems, and also flawed choices of functional forms.

What should a scatter plot of least squares residuals look like if all model assumptions
hold? The idea of simulation, or Monte Carlo simulation, is introduced in Appendix 2G and
Appendix 3C. Here we simulate 300 data pairs (x, y), using the model y = 1 + x + e, where
x is simulated, using a random number generator, to be evenly, or uniformly, distributed



146 PREDICTION, GOODNESS-OF-FIT, AND MODELING ISSUES

Simulated Linear Model Residuals
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FIGURE 4.7 Randomly scattered residuals.

between zero and 10. The error term e is simulated to be uncorrelated, homoskedastic, and
from a standard normal distribution, or e ~ N(0, 1). These simulated observations can be
found in ch4siml.dat. We apply the least squares estimator and compute the least squares
residuals. In a graphical residual analysis the least squares residuals are plotted against x, y,
or the predicted y. In a time series framework, the residuals can be plotted against “time.”” If
all the model assumptions hold, as they do here for the simulated data, the residuals plot
should resemble Figure 4.7, where we have plotted the residuals against x values. The
residual pattern is random, with no obvious trends or shapes. This is what we hope to see
when residuals are plotted. The existence of patterns is an indication of an assumption
violation or another problem.

4.3.4a Heteroskedastic Residual Pattern

The least squares residuals from the linear-log food expenditure model in (4.14) are plotted
in Figure 4.8. These exhibit an expanding variation pattern with more variation in the
residuals as INCOME becomes larger, which may suggest heteroskedastic errors. A similar
residual plot is implied by Figure 2.8.

We must conclude that at this point we do not have a satisfactory model for the food
expenditure data. The linear and linear-log models have different shapes, and different
implied marginal effects. The two models fit the data equally well, but both models exhibit
least squares residual patterns consistent with heteroskedastic errors. This example will be
considered further in Chapter 8.

Linear-Log Model Residuals
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FIGURE 4.8 Residuals from linear-log food expenditure model.
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FIGURE 4.9 Least squares residuals from a linear equation fit to quadratic data.

4.3.4b Detecting Model Specification Errors

To give one other example, suppose that the functional relationship between y and x is
quadratic, like the dashed curve shown in Figure 4.5(a), and yet we decide to fit a straight-
line regression model. Again we simulate data, this time using as the true model
y=15— 4x% + e, with e ~ N(0, 4). These data are in the file ch4sim2.dat. The plot of
the least squares residuals from a linear relationship is presented in Figure 4.9.

The well-defined quadratic pattern in the least squares residuals indicates that something
is wrong with the linear model specification. The linear model has “missed’ a curvilinear
aspect of the relationship. An alternative interpretation could be that there is perhaps some
dependence in the regression. Recall Assumption SR4, that the regression errors are
assumed to be uncorrelated. The least squares residuals in Figure 4.9 show a long group
of negative residuals, then a group of positive ones, then negative again. If the regression
errors are uncorrelated, we do not expect such patterns if our model is well specified. This
reveals that analyzing residual patterns is often not a clear-cut process. Model misspecifica-
tions and error assumption violations commingle, leading to multiple potential interpret-
ations from analysis of least squares residuals. Nevertheless, residual diagnostics are a key
aspect of regression analysis.

4.3.5 ARE THE REGRESSION ERRORS NORMALLY DISTRIBUTED?

Recall that hypothesis tests and interval estimates for the coefficients rely on the assumption
that the errors, and hence the dependent variable y, are normally distributed. Though our
tests and confidence intervals are valid in large samples whether the data are normally
distributed or not, it is nevertheless desirable to have a model in which the regression errors
are normally distributed, so that we do not have to rely on large sample approximations. If
the errors are not normally distributed, we might be able to improve our model by
considering an alternative functional form or transforming the dependent variable. As
noted in the last “Remark,” when choosing a functional form, one of the criteria we might
examine is whether a model specification satisfies regression assumptions, and in particular,
whether it leads to errors that are normally distributed (SR6). How do we check out the
assumption of normally distributed errors?

We cannot observe the true random errors, so we must base our analysis of their normality
on the least squares residuals, ¢; = y; — ¥;. Most computer software will create a histogram
of the residuals for this purpose and may also give statistics that can be used to formally test a
null hypothesis that the residuals (and thus the true errors) come from a normal distribution.
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K Series: Residuals
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FIGURE 4.10 EViews output: residuals histogram and summary statistics for food expenditure
example.

The relevant EViews output for the food expenditure example, using the linear relationship
with no transformation of the variables, appears in Figure 4.10. What does this histogram
tell us? First, notice that it is centered at zero. This is not surprising, because the mean of the
least squares residuals is always zero if the model contains an intercept, as shown in
Appendix 4B. Second, it seems symmetrical, but there are some large gaps, and it does
not really appear bell-shaped. However, merely checking the shape of the histogram,
especially when the number of observations is relatively small, is not a statistical “test.”

There are many tests for normality. The Jarque-Bera test for normality is based on two
measures, skewness and kurtosis. In the present context, skewness refers to how symmetric
the residuals are around zero. Perfectly symmetric residuals will have a skewness of zero.
The skewness value for the food expenditure residuals is —0.097. Kurtosis refers
to the “peakedness” of the distribution. For a normal distribution the kurtosis value is
3. For more on skewness and kurtosis see Appendices B.1.2 and C.4.2. From Figure 4.10, we
see that the food expenditure residuals have a kurtosis of 2.99. The skewness and kurtosis
values are close to the values for the normal distribution. So, the question we have to ask is
whether 2.99 is sufficiently different from 3, and —0.097 sufficiently different from zero, to
conclude the residuals are not normally distributed. The Jarque—Bera statistic is given by

N, (K-3)
m_g<s+—7—a

where N is the sample size, S is skewness, and K is kurtosis. Thus, large values of the
skewness, and/or values of kurtosis quite different from 3, will lead to a large value of
the Jarque—Bera statistic. When the residuals are normally distributed, the Jarque—Bera
statistic has a chi-squared distribution with two degrees of freedom. We reject the hypothesis
of normally distributed errors if a calculated value of the statistic exceeds a critical value
selected from the chi-squared distribution with two degrees of freedom. The 5% critical
value from a x>-distribution with two degrees of freedom is 5.99, and the 1% critical value
is 9.21.
Applying these ideas to the food expenditure example, we have

(2.99 — 3)*

= 0.063
4

40
wzg-ﬁmﬂ+

Because 0.063 < 5.99 there is insufficient evidence from the residuals to conclude that the
normal distribution assumption is unreasonable at the 5% level of significance. The same
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conclusion could have been reached by examining the p-value. The p-value appears in
Figure 4.10 described as “‘Probability.” Thus, we also fail to reject the null hypothesis on
the grounds that 0.9688 > 0.05.

For the linear-log model of food expenditure reported in Section 4.3.3, the Jarque-Bera
test statistic value is 0.1999 with a p-value of 0.9049. We cannot reject the null hypothesis
that the regression errors are normally distributed, and this criterion does not help us choose
between the linear and linear-log functional forms for the food expenditure model.

4.4 Polynomial Models

In Chapter 2.8.1-2.8.2 we introduced the use of quadratic polynomials to capture curvi-
linear relationships. Economics students will have seen many average and marginal cost
curves (U-shaped) and average and marginal product curves (inverted-U shaped) in their
studies. Higher order polynomials, such as cubic equations, are used for total cost and total
product curves. A familiar example to economics students is the total cost curve, shaped
much like the solid curve in Figure 4.5(b). In this section, we review quadratic and cubic
equations and give an empirical example.

4.4.1 Quabpratic AND CuBic EQUATIONS

The general form of a quadratic equation y = ag + a;x + a,x? includes a constant term a, a
linear term a,x, and a squared term a,x>. Similarly, the general form of a cubic equation is
y = ag + ayx + axx* + a3x*. In Chapter 5.6 we consider multiple regression models using
the general forms of quadratic and cubic equations. For now, however, because we are
working with “simple’” regression models that include only one explanatory variable, we
consider the quadratic and cubic forms, y = B; + Box? and y = B; + Bx>, respectively.
The properties of the simple quadratic function are discussed in Chapter 2.8.1.

The simple cubic equation y = B; + B,x> has possible shapes shown in Figure 4.5(b).
Using Derivative Rules 4 and 5 from Appendix A, the derivative, or slope, of the cubic
equation is dy/dx = 3B,x*. The slope of the curve is always positive if B, > 0, except when
x = 0, yielding a direct relationship between y and x like the solid curve shown in Figure 4.5
(b). If B2 < 0 then the relationship is an inverse one like the dashed curve in Figure 4.5(b).
The slope equation shows that the slope is zero only when x = 0. The term a is the y-
intercept. The elasticity of y with respect to x is ¢ = slope x x/y = 3B,x* x x/y. Both the
slope and elasticity change along the curve.

4.4.2 AN EmPIRicAL EXAMPLE

Figure 4.11 describes a plot of average wheat yield (in tonnes per hectare—a hectare is about
2.5 acres, and a tonne is a metric ton that is 1000 kg or 2205 Ib—we are speaking Australian
here!) for the Greenough Shire in Western Australia, against time. The observations are for
the period 1950-1997, and time is measured using the values 1, 2, ... ,48. These data can be
found in the file wa_wheat.dat. Notice in Figure 4.11 that wheat yield fluctuates quite a bit,
but overall, it tends to increase over time, and the increase is at an increasing rate,
particularly toward the end of the time period. An increase in yield is expected because
of technological improvements, such as the development of varieties of wheat that are
higher yielding and more resistant to pests and diseases. Suppose that we are interested
in measuring the effect of technological improvement on yield. Direct data on changes in
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FIGURE 4.11 Scatter plot of wheat yield over time.

technology are not available, but we can examine how wheat yield has changed over time as
a consequence of changing technology. The equation of interest relates YIELD to TIME,
where TIME =1, ..., 48. One problem with the linear equation

YIELD, = B, + B,TIME, + e,

is that it implies that yield increases at the same constant rate [3,, when, from Figure 4.11,
we expect this rate to be increasing. The least squares fitted line (standard errors in
parentheses) is

YIELD, = 0.638 + 0.0210 TIME,  R* = 0.649
(se)  (0.064) (0.0022)

The residuals from this regression are plotted against time in Figure 4.12. Notice that there is
a concentration of positive residuals at each end of the sample and a concentration of
negative residuals in the middle. These concentrations are caused by the inability of a
straight line to capture the fact that yield is increasing at an increasing rate. What alternative
can we try? Two possibilities are TIME* and TIME®. It turns out that TIME® provides the
better fit, and so we consider instead the functional form

YIELD, = B, + B.TIME? + ¢,
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FIGURE 4.12 Residuals from a linear yield equation.
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FIGURE 4.13 Residuals from a cubic yield equation.

The slope of the expected yield function is 33, TIME?. Thus, so long as the estimate of 3,
turns out to be positive, the function will be increasing. Furthermore, the slope is increasing
as well. Thus the function itself is “increasing at an increasing rate.” Before estimating the
cubic equation, note that the values of TIME? can get very large. This variable is a good
candidate for scaling. If we define TIMECUBE, = TIME; /1000000 the estimated equation is

YIELD, = 0.874 + 9.68 TIMECUBE, — R* = 0.751
(se)  (0.036) (0.822)

The residuals from this cubic equation are plotted in Figure 4.13. The predominance of
positive residuals at the ends and negative residuals in the middle no longer exists.
Furthermore, the R? value has increased from 0.649 to 0.751, indicating that the equation
with TIMECUBE fits the data better than the one with just 7IME. Both these equations have
the same dependent variable and the same number of explanatory variables (only 1). In these
circumstances the R? can be used legitimately to compare goodness of fit. What lessons
have we learned from this example? First, a plot of the original dependent variable series y
against the explanatory variable xis a useful starting point for deciding on a functional formin
a simple regression model. Secondly, examining a plot of the residuals is a useful device for
uncovering inadequacies in any chosen functional form. Runs of positive and/or negative
residuals can suggest an alternative. In this example, with time-series data, plotting the
residuals against time was informative. With cross-sectional data, using plots of residuals
against both independent and dependent variables is recommended. Ideally we will see no
patterns, and the residual histogram and Jarque—Bera test will not rule out the assumption of
normality. As we travel through the book, you will discover that patterns in the residuals can
also mean many other specification inadequacies, such as omitted variables, heteroskedas-
ticity, and autocorrelation. Thus, as you become more knowledgeable and experienced, you
should be careful to consider other options. For example, wheat yield in Western Australia is
heavily influenced by rainfall. Inclusion of a rainfall variable might be an option worth
considering. Also, it makes sense to include TIME and TIME? in addition to TIME-cubed. A
further possibility is the constant growth rate model that we consider in the next section.

4.5 Log-Linear Models

Econometric models that employ natural logarithms are very common. We first introduced the
log-linear model in Chapter 2.8.3. Logarithmic transformations are often used for variables
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that are monetary values, such as wages, salaries, income, prices, sales, and expenditures,
and in general for variables that measure the “size” of something. These variables have the
characteristic that they are positive and often have distributions that are positively skewed,
with a long tail to the right. Figure P.2 in the Probability Primer is representative of the
income distribution in the United States. In fact, the probability density function f(x)
shown is called the “log-normal,” because In(x) has a normal distribution. Because the
transformation In(x) has the effect of making larger values of x less extreme, In(x) will
often be closer to a normal distribution for variables of this kind. The log-normal distribution
is discussed in Appendix 4C.

The log-linear model, In(y) = B; + Box, has a logarithmic term on the left-hand side
of the equation and an untransformed (linear) variable on the right-hand side. Both its
slope and elasticity change at each point and are the same sign as 3;. Using the
antilogarithm we obtain exp[In(y)] = y = exp(B; + Bx), so that the log-linear function is
an exponential function. The function requires y > 0. The slope at any point is 3y, which
for B, > 0 means that the marginal effect increases for larger values of y. An economist
might say that this function is increasing at an increasing rate. The shapes of the log-
linear model are shown in Figure 4.5(e), and its derivative and elasticity given in Table
4.1. To make discussion relevant in a specific context, the slope can be evaluated at the
sample mean ¥, or the elasticity B,x can be evaluated at the sample mean X, or other
interesting values can be chosen.

An easier interpretation can be obtained by using the properties of logarithms. In the log-
linear model, a one-unit increase in x leads, approximately, to a 100B,% change in y. This
interpretation was given in Chapter 2, (2.28), and used in the discussions and examples in
Chapters 2.8.3-2.8.4.

Using the properties of logarithms, we can see this another way. Consider an increase in x
from xo to x;. The change in the log-linear model is from In(yg) = B; + Baxo to
In(y;) = B1 + Box;. Subtracting the first equation from the second gives
In(y;) — In(yo) = B2(x1 — x0) = B2Ax. Multiply by 100, and use the approximation intro-
duced in Appendix A, (A.3) to obtain

100[In(y;) — In(yo)] = %Ay = 100B2(x; — x0) = (100B2) x Ax

A 1-unit increase in x leads approximately, to, a 100 x B,% change in y.

4.5.1 A GrROWTH MODEL

Earlier in this chapter, in Section 4.4.2, we considered an empirical example in which the
production of wheat was tracked over time, with improvements in technology leading to
wheat production increasing at an increasing rate. Another way to represent such a
relationship is using a log-linear model. To see how, suppose that due to advances in
technology the yield of wheat produced (tonnes per hectare) is growing at approximately
a constant rate per year. Specifically, suppose that the yield in year ¢ is YIELD, =
(1 + g)YIELD, ,, with g being the fixed growth rate in 1 year. By substituting repeatedly
we obtain YIELD, = YIELDy(1 + g)'. Here YIELD is the yield in year “0,” the year before
the sample begins, so it is probably unknown. Taking logarithms, we obtain

In(YIELD,) = In(YIELDy) + [In(1 + g)] x¢
= B1 + Bt
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This is simply a log-linear model with dependent variable In(Y/ELD,) and explanatory
variable ¢, or time. We expect growth to be positive, so that 3, > 0, in which case the plot of
YIELD against time looks like the upward-sloping curve in Figure 4.5(c), which closely
resembles the scatter diagram in Figure 4.11.

Estimating the log-linear model for yield, we obtain

In(YIELD,) = —0.3434 + 0.0178¢
(se) (0.0584)  (0.0021)

The estimated coefficient b, = m = 0.0178. Using the property that In(1 + x) =~ x if
x is small [see Appendix A, (A.4) and the discussion following it], we estimate that the
growth rate in wheat yield is approximately g = 0.0178, or about 1.78% per year, over
the period of the data.

4.5.2 A WaGe EQUATION

The relationship between wages and education is a key relationship in labor economics
(and, no doubt, in your mind). Suppose that the rate of return to an extra year of education
is a constant r. That is, in the first year after an additional year of education, your wage rate
rises from an initial value WAGE, to WAGE, = (1 + r)WAGE,. For an extra two years of
education, this becomes WAGE, = (1 + r)ZWAGEo, and so on. Taking logarithms, we
have a relationship between In(WAGE) and years of education (EDUC)

In(WAGE) = In(WAGE)) + [In(1 + r)|x EDUC
= B + BEDUC

An additional year of education leads to an approximate 10083,% increase in wages.
Data on hourly wages, years of education, and other variables are in the file cps4_small.
dat. These, data consist of 1000 observations from the 2008 Current Population Survey
(CPS). The CPS is a monthly survey of about 50000 households conducted in the United
States by the Bureau of the Census for the Bureau of Labor Statistics. The survey has been
conducted for more than 50 years. Using this data, the estimated log-linear model is

In(WAGE) = 1.6094 + 0.0904 x EDUC
(se)  (0.0864) (0.0061)

We estimate that an additional year of education increases the wage rate by approximately
9%. A 95% interval estimate for the value of an additional year of education is 7.8% to
10.2%.

4.5.3 PREDICTION IN THE LoG-LINEAR MODEL

You may have noticed that when reporting regression results in this section, we did not
include an R? value. In a log-linear regression the R* value automatically reported by
statistical software is the percent of the variation in In(y) explained by the model. However,
our objective is to explain the variations in y, not In(y). Furthermore, the fitted regression
line predicts In(y) = by + byx, whereas we want to predict y. The problems of obtaining
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a useful measure of goodness-of-fit and prediction are connected, as we discussed in
Section 4.2.2.
How shall we obtain the predicted value of y? A first inclination might be to take the

antilog of In(y) = by + byx. For the natural logarithm the antilog is the exponential function,
so that a natural choice for prediction is

5}'1 = exp(ﬁ(y\)) = exp(bl + ng)

In the log-linear model this is not necessarily the best we can do. Using properties of the log-
normal distribution it can be shown (see Appendix 4C) that an alternative predictor is

$e = E(y) = exp(by + brx +62/2) = 9,¢5 /2

If the sample size is large, the “corrected” predictor y, is, on average, closer to the actual value
of y and should be used. In small samples (less than 30) the “natural” predictor may actually be
a better choice. The reason for this incongruous result is that the estimated value of the error
variance > adds a certain amount of “noise” when using ., leading it to have increased
variability relative to y, that can outweigh the benefit of the correction in small samples.

The effect of the correction can be illustrated using the wage equation. What would we
predict the wage to be for a worker with 12 years of education? The predicted value of
In(WAGE) is

n(WAGE) = 1.6094 + 0.0904 x EDUC = 1.6094 + 0.0904 x 12 = 2.6943

Then the value of the natural predictor is y, = exp (@) = exp(2.6943) = 14.7958. The
value of the corrected predictor, using 6> = 0.2773 from the regression output, is

$e = E(y) = jpe® /> = 14.7958 x 1.1487 = 16.9964

We predict that the wage for a worker with 12 years of education will be $14.80 per hour if
we use the natural predictor, and $17.00 if we use the corrected predictor. In this case the
sample is large (N = 1000), so we would use the corrected predictor. Among the 1000
workers there are 328 with 12 years of education. Their average wage is $15.99, so the
corrected predictor is consistent with the sample of data.

How does the correction affect our prediction? Recall that 6> must be greater than zero
and ¢* = 1. Thus, the effect of the correction is always to increase the value of the
prediction, because 12 s always greater than one. The natural predictor tends to
systematically underpredict the value of y in a log-linear model, and the correction offsets
the downward bias in large samples. The “natural” and “corrected’ predictions are shown
in Figure 4.14.

4.5.4 A GENERALIZED R> MEASURE

Itis a general rule that the squared simple correlation between y and its fitted value y, where y
is the ““best” prediction one can obtain, is a valid measure of goodness-of-fit that we can use
as an R? in many contexts. As we have seen, what we may consider the “best”” predictor can
change depending upon the model under consideration. That is, a general goodness-of-fit
measure, or general R2, is
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FIGURE 4.14 The natural and corrected predictors of wage.

R = [eort(y, 9)]* = r3;

In the wage equation R2 = [corr(y, jzc)}z = 0.43122 = 0.1859, as compared to the reported
R? = 0.1782 from the regression of In(WAGE) on EDUC. (In this case since the corrected
and natural predictors differ only by a constant factor, the correlation is the same for both.)
These R2 values are small, but we repeat our earlier message: R> values tend to be small with
microeconomic, cross-sectional data, because the variations in individual behavior are
difficult to fully explain.

4.5.5 PRrEDICTION INTERVALS IN THE LOG-LINEAR MODEL

We have a corrected predictor y, for y in the log-linear model. It is the ““point” predictor, or
point forecast, that is relevant if we seek the single number that is our best prediction of y.
If we prefer a prediction or forecast interval for y, then we must rely on the natural predictor
$." Specifically we follow the procedure outlined in Section 4.1, and then take antilogs.
That is, compute In(y) = b; + box and then In(y) =+ 7.se( f), where the critical value 7. is
the 100(1—a/2)-percentile from the r-distribution and se( f) is given in (4.5). Then a

100(1—a)% prediction interval for y is

[exp(In() — tese(£) ) exp (1n(y) + ese()) ]

For the wage data, a 95% prediction interval for the wage of a worker with 12 years of
education is

[exp(2.6943 — 1.96 x 0.5270),exp(2.6943 + 1.96 x 0.5270)] = [5.2604, 41.6158|

The interval prediction is $5.26-$41.62, which is so wide that it is basically useless. What
does this tell us? Nothing we did not already know. Our model is not an accurate predictor of
individual behavior in this case. In later chapters we will see if we can improve this model by
adding additional explanatory variables, such as experience, that should be relevant. The
prediction interval is shown in Figure 4.15

! See Appendix 4A. The corrected predictor includes the estimated error variance, making the -distribution no
longer relevant in (4A.1).
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FIGURE 4.15 The 95% prediction interval for wage.

4.6 Log-Log Models

The log-log function, In(y) = ; + B2In(x), is widely used to describe demand equations
and production functions. The name ‘“log-log” comes from the fact that the logarithm
appears on both sides of the equation. In order to use this model, all values of y and x must be
positive. The slopes of these curves change at every point, but the elasticity is constant and
equal to 3,. A useful way to think about the log-log function comes from closer inspection of
its slope dy/dx = B, (y/x). Rearrange this so that B, = (dy/y)/(dx/x). Thus, the slope of
the log-log function exhibits constant relative change, whereas the linear function displays
constant absolute change. The log-log function is a transformation of the equation y = AxP2,
with B; = In(A). The various shape possibilities for log-log models are depicted in Figure
4.5(c), for B, > 0 and Figure 4.5(d), for B, < 0.

If B> > 0, then y is an increasing function of x. If 3, > 1, then the function increases at an
increasing rate. That is, as x increases the slope increases as well. If 0 < 3, < 1, then the
function is increasing, but at a decreasing rate; as x increases, the slope decreases.

If B2 < 0, then there is an inverse relationship between y and x. If, for example, 3, = —1,
theny = Ax~! orxy = A. This curve has “unit” elasticity. If we let y = quantity demanded
and x = price, then A = total revenue from sales. For every point on the curve xy = A, the
area under the curve A (total revenue for the demand curve) is constant. By definition, unit
elasticity implies thata 1 % increase in x (price, for example) is associated with a 1% decrease
in y (quantity demanded), so that the product xy (price times quantity) remains constant.

4.6.1 A Log-LoG Pourtry DEMAND EQUATION

The log-log functional form is frequently used for demand equations. Consider, for
example, the demand for edible chicken, which the U.S. Department of Agriculture calls
“broilers.” The data for this exercise is in the file newbroiler.dat, which is adapted from
the data provided by Epple and McCallum (2006).> The scatter plot of Q = per capita
consumption of chicken, in pounds, versus P = real price of chicken is shown in
Figure 4.16 for 52 annual observations, 1950-2001. It shows the characteristic hyperbolic
shape that was displayed in Figure 4.5(d).

2 «Simultaneous Equation Econometrics: The Missing Example,” Economic Inquiry, 44(2), 374-384.
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FIGURE 4.16 Quantity and Price of Chicken.

The estimated log-log model is

In(Q) =3.717— 1.121 x In(P)  R%=0.8817

(4.15)
(se)  (0.022) (0.049)
We estimate that the price elasticity of demand is 1.121: a 1% increase in real price is
estimated to reduce quantity consumed by 1.121%.
The fitted line shown in Figure 4.16 is the “corrected” predictor discussed in Section
4.5.3. The corrected predictor Q, is the natural predictor Q, adjusted by the factor
exp (62 / 2). That is, using the estimated error variance 6% = 0.0139, the predictor is

QC = Qneé'z/z — exp(ln(Q))e(}z/z — exp(3717 —1.121 % ln(P))eOA0139/2

The goodness-of-fit statistic R§ = 0.8817 is the generalized R? discussed in Section 4.5.4. It
is the squared correlation between the predictor Q. and the observations Q

R = [corr(Q,0.)]” = [0.939] = 0.8817

4.7 Exercises

Answer to exercises marked * appear www.wiley.com/college/hill.

4.7.1 PROBLEMS

4.1% (a) Supposing that a simple regression has quantities X.(y; — ¥)* = 631.63 and
Y7 = 182.85, find R%.
(b) Suppose that a simple regression has quantities N = 20, Yy? = 5930.94,
y = 16.035, and SSR = 666.72, find R>.
(c) Suppose that a simple regression has quantities R> = 0.7911, SST = 552.36, and
N =20, find 6°.
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Consider the following estimated regression equation (standard errors in parenth-
eses):
$=5.83+0.869x R>=0.756
(se) (1.23) (0.117)

Rewrite the estimated equation that would result if

(a) All values of x were divided by 20 before estimation

(b) All values of y were divided by 50 before estimation

(c) All values of y and x were divided by 20 before estimation

Using the data in Exercise 2.1 and only a calculator (show your work) compute

(a) The predicted value of y for xyp =4

(b) The se(f) corresponding to part (a)

(c) A 95% prediction interval for y given xo = 4

(d) A95% prediction interval for y given x = X. Compare the width of this interval to
the one computed in part (c)

The general manager of an engineering firm wants to know whether a technical
artist’s experience influences the quality of his or her work. A random sample of 50
artists is selected and their years of work experience and quality rating (as assessed by
their supervisors) recorded. Work experience (EXPER) is measured in years and
quality rating (RATING) takes a value in the interval one to four, with4 = very good
and 1 = very poor. Two models are estimated by least squares. The estimates and
standard errors are

Model 1 :

RATING = 3.4464 — 0.001459(EXPER — 35)> N =50
(se)  (0.0375) (0.0000786)

Model 2 :

RATING = 1.4276 + 0.5343 In(EXPER) N = 49
(se)  (0.1333) (0.0433)

(a) Foreach model, sketch the estimated regression function for EXPER = 10 to 40
years.

(b) Using each model, predict the rating of a worker with 10 years’ experience.

(c) Using each model, find the marginal effect of another year of experience on the
expected worker rating for a worker with 10 years’ experience.

(d) Using each model, construct a 95% interval estimate for the marginal effect
found in (c). Note that Model 2 has one fewer observations due to 1 worker
having EXPER = 0.

Suppose you are estimating a simple linear regression model.

(a) If you multiply all the x values by 20, but not the y values, what happens to the
parameter values 3; and 3,? What happens to the least squares estimates b; and
b,? What happens to the variance of the error term?

(b) Suppose you are estimating a simple linear regression model. If you multiply all
the y values by 50, but not the x values, what happens to the parameter values
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B1 and 3,? What happens to the least squares estimates »; and b,? What happens
to the variance of the error term?

The fitted least squares line is y; = by + box;.

(a) Algebraically, show that the fitted line passes through the point of the means,
(%, 7).

(b) Algebraically show that the average value of y; equals the sample average of y.
That is, show that y =y, where y = X.3;/N.

In a simple linear regression model suppose we know that the intercept parameter is

zero, so the model is y; = B,x; + ¢;. The least squares estimator of 3, is developed in

Exercise 2.4.

(a) What is the least squares predictor of y in this case?

(b) When an intercept is not present in a model, R” is often defined to be
R2 =1 — SSE/Yy?, where SSE is the usual sum of squared residuals. Compute
R? for the data in Exercise 2.4.

(c) Compare the value of R in part (b) to the generalized R> = r‘z,;,, where y is the
predictor based on the restricted model in part (a).

(d) Compute SST = ¥(y; —y)* and SSR = (3, — ¥)*, where ¥ is the predictor
based on the restricted model in part (a). Does the sum of squares decomposition
SST = SSR + SSE hold in this case?

4.7.2 ComMPUTER EXERCISES

4.8

4.9%

4.10

The first three columns in the file wa_wheat.dat contain observations on wheat yield
in the Western Australian shires Northampton, Chapman Valley, and Mullewa,
respectively. There are 48 annual observations for the years 1950-1997. For the
Chapman Valley shire, consider the three equations

ye=B1+Bx+ e
v = o + apln(f) + ¢
Y=+ vt +e

(a) Using data from 1950-1996, estimate each of the three equations.

(b) Taking into consideration (i) plots of the fitted equations, (ii) plots of the
residuals, (iii) error normality tests, and (iv) values for R2, which equation do
you think is preferable? Explain.

For each of the three functions in Exercise 4.8

(a) Find the predicted value and a 95% prediction interval for yield when r = 48. Is
the actual value within the prediction interval?

(b) Find estimates of the slopes dy,/dr at the point 1 = 48.

(c) Find estimates of the elasticities (dy,/dt)(t/y,) at the point t = 48.

(d) Comment on the estimates you obtained in parts (b) and (c). What is their
importance?

The file london.dat is a cross section of 1519 households drawn from the 1980-1982
British Family Expenditure Surveys. Data have been selected to include only
households with one or two children living in Greater London. Self-employed
and retired households have been excluded. Variable definitions are in the file
london.def. The budget share of a commodity, say food, is defined as
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expenditure on food
WFOOD =

total expenditure

A functional form that has been popular for estimating expenditure functions for
commodities is

(a)

(b)

(©)

(d)

(e)

WFOOD = B, + B, In(TOTEXP) + ¢

Estimate this function for households with one child and households with two
children. Report and comment on the results. (You may find it more convenient
to use the files lonl.dat and lon2.dat that contain the data for the one and two
children households, with 594 and 925 observations, respectively.)
It can be shown that the expenditure elasticity for food is given by

_ Bi + B2[In(TOTEXP) + 1]
~ Bi +BaIn(TOTEXP)

Find estimates of this elasticity for one- and two-child households, evaluated at
average total expenditure in each case. Do these estimates suggest food is a
luxury or a necessity? (Hint: Are the elasticities greater than one or less than
one?)

Analyze the residuals from each estimated function. Does the functional form
seem appropriate? Is it reasonable to assume that the errors are normally
distributed?

Using the data on households with two children, lon2.dat, estimate budget share
equations for fuel (WFUEL) and transportation (WTRANS). For each equation
discuss the estimate of 3, and carry out a two-tail test of statistical significance.
Using the regression results from part (d), compute the elasticity € for fuel and
transportation first at the median of total expenditure (90), and then at the 95th
percentile of total income (180). What differences do you observe? Are any
differences you observe consistent with economic reasoning?

Reconsider the presidential voting data (fair4.dat) introduced in Exercises 2.14 and 3.9.

(a)

(b)

(©)

(d)

Using the data from 1916 to 2008, estimate the regression model
VOTE = B; + B2GROWTH + e. Based on these estimates, what is the predicted
value of VOTE in 2008? What is the least squares residual for the 2008 election
observation?

Estimate the regression in (a) using the data from 1916-2004. Predict the value of
VOTE in 2008 using the actual value of GROWTH for 2008, which was 0.22%.
What is the prediction error in this forecast? Is it larger or smaller than the error
computed in part (a)?

Using the regression results from (b), construct a 95% prediction interval for
the 2008 value of VOTE using the actual value of GROWTH = 0.22%. Is the
actual 2008 outcome within the prediction interval?

Using the estimation results in (b), what value of GROWTH would have led to a
prediction that the incumbent party [Republicans] would have won 50.1% of the
vote?

In Chapter 4.6 we considered the demand for edible chicken, which the U.S.
Department of Agriculture calls “‘broilers.” The data for this exercise are in the
file newbroiler.dat.
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(a) Using the 52 annual observations, 1950-2001, estimate the reciprocal model
O = a; + ay(1/P) + e.Plot the fitted value of O = per capita consumption of
chicken, in pounds, versus P = real price of chicken. How well does the
estimated relation fit the data?

(b) Using the estimated relation in part (a), compute the elasticity of per capita
consumption with respect to real price when the real price is its median, $1.31,
and quantity is taken to be the corresponding value on the fitted curve. [Hint: The
derivative (slope) of reciprocal model y = a + b(1/x) is dy/dx = —b(1/x%)].
Compare this estimated elasticity to the estimate found in Chapter 4.6 where the
log-log functional form was used.

(c) Estimate the poultry demand using the linear-log functional form
O = v1 + v2In(P) + e. Plot the fitted values of Q = per capita consumption
of chicken, in pounds, versus P = real price of chicken. How well does the
estimated relation fit the data?

(d) Using the estimated relation in part (c), compute the elasticity of per capita
consumption with respect to real price when the real price is its median, $1.31.
Compare this estimated elasticity to the estimate from the log-log model and
from the reciprocal model in part (b).

(e) Evaluate the suitability of the log-log, linear-log, and reciprocal models for fitting
the poultry consumption data. Which of them would you select as best, and why?

The file stockton2.dat contains data on 880 houses sold in Stockton, CA, during mid-
2005. Variable descriptions are in the file stockton2.def. These data were considered
in Exercises 2.12 and 3.11.

(a) Estimate the log-linear model In(PRICE) = B + B2SQFT + e. Interpret the
estimated model parameters. Calculate the slope and elasticity at the sample
means, if necessary.

(b) Estimate the log-log model In(PRICE) = B1 + B2In(SQFT) + e. Interpret the
estimated parameters. Calculate the slope and elasticity at the sample means, if
necessary.

(c) Compare the R*-value from the linear model PRICE = B, + B,SQFT + e to the
“generalized” R? measure for the models in (b) and (c).

(d) Construct histograms of the least squares residuals from each of the models in
(a), (b), and (c) and obtain the Jarque—Bera statistics. Based on your obser-
vations, do you consider the distributions of the residuals to be compatible with
an assumption of normality?

(e) For each of the models (a)—(c), plot the least squares residuals against SQFT. Do
you observe any patterns?

(f) For each model in (a)—(c), predict the value of a house with 2700 square feet.

(g) For each model in (a)—(c), construct a 95% prediction interval for the value of a
house with 2700 square feet.

(h) Based on your work in this problem, discuss the choice of functional form.
Which functional form would you use? Explain.

How much does education affect wage rates? This question will explore the issue

further. The data file cps4_small.dat contains 1000 observations on hourly wage

rates, education, and other variables from the 2008 Current Population Survey (CPS).

(a) Construct histograms of the WAGE variable and its logarithm, In(WAGE). Which
appears more normally distributed?

(b) Estimate the linear regression WAGE = 3; + B,EDUC + e and log-linear
regression In(WAGE) = By + B,EDUC + e. What is the estimated return to
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education in each model? That is, for an additional year of education, what
percentage increase in wages can the average worker expect?

(c) Construct histograms of the residuals from the linear and log-linear models in
(b), and the Jarque—Bera test for normality. Does one set of residuals appear more
compatible with normality than the other?

(d) Compare the R? of the linear model to the “generalized”” R* for the log-linear
model. Which model fits the data better?

(e) Plot the least squares residuals from each model against EDUC. Do you observe
any patterns?

(f) Using each model, predict the wage of a worker with 16 years of education.
Compare these predictions to the actual average wage of all workers in the sample
with 16 years of education.

(g) Based on the results in parts (a)—(f), which functional form would you use?
Explain.

Does the return to education differ by race and gender? For this exercise, use the file
cpsd.dat. (This is a large file with 4,838 observations. If your software is a student
version, you can use the smaller file cps4_small.dat.) In this exercise you will extract
subsamples of observations consisting of (i) all males, (ii) all females, (iii) all whites,
(iv) all blacks, (v) white males, (vi) white females, (vii) black males, and (viii) black
females.

(a) For each sample partition, obtain the summary statistics of WAGE.

(b) Avariable’s coefficient of variation is 100 times the ratio of its sample standard

deviation to its sample mean. For a variable y, it is

CV = 100x2
y

Itis a measure of variation that takes into account the size of the variable. What is
the coefficient of variation for WAGE within each sample partition?
(c) For each sample partition, estimate the log-linear model

In(WAGE) = B, + B,EDUC + ¢

What is the approximate percentage return to another year of education for each
group?

(d) Does the model fit the data equally well for each sample partition?

(e) For each sample partition, test the null hypothesis that the rate of return to
education is 10% against the alternative that it is not, using a two-tail test at the
5% level of significance.

In Chapter 4.3.5 and 4.4 we examined models for wheat yield in Western Australia
over the period 1950-1997. The yield is ‘‘average wheat yield” in tonnes per hectare.
These data can be found in the file wa_wheat.dat.

(a) How would you interpret the variable RYIELD = 1/YIELD?

(b) For each shire, plot the reciprocal of yield against time. What anomalies, if any,
do you observe? Using your favorite Internet search engine, discover what
conditions may have affected Australian wheat production during any unusual
periods that you may find.

(c) Estimate the reciprocal of yield equation RYIELD = o + oxTIME + e for
each shire. Interpret the estimated coefficient of TIME and test its significance
using a one-tail test and a 5% level of significance.
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(d) Plot the least squares residuals from part (c) against TIME. Locate the unusual
observations using the least squares residuals.

(e) Discarding correct data is hardly ever a good idea, and we recommend that you
not do it. Later in this book you will discover other methods for addressing such
problems—such as adding addition explanatory variables—but for now let us
experiment. For each shire, identify the most unusual observation (with the
largest least squares residual). Re-estimate the reciprocal yield equations for
each shire, omitting the most unusual data point. How sensitive are the regression
results?

Appendix 4A Development of a Prediction Interval

The forecast error is f = yo — Yo = (B1 + Baxo + €o) — (b1 + baxp). To obtain its var-
iance, let us first obtain the variance of yy = b; + byxy. The variances and covariance of the
least squares estimators are given in Section 2.4.4. Using them, we obtain

var(3o) = var(by + baxg) = var(b;) +x%var(b2) + 2xocov(by, by)

o Yx? o’ -x

_ 2 22
YLl e ol

Now we use a trick. Add the term 62Nx2/NY.(x; — x)* after the first term (inside braces below)
and subtract the same term at the end. Then combine the terms in brackets, as shown below:

) 0_2le_2 o2Nx?
var(yo) = [NZ(X,’ — X)Z B {NZ(xi - )_C)z}]

x5 o (—2x0X) o> Nx>
+ =t o )
Y —%)° X —7X) NX(x; — X)
D N

NS0 S %

o B -
NI(x; — %) Z(x— %)

W1 -3
N+zw—a4

Taking into account that xy and the unknown parameters (3; and (3, are not random, you
should be able to show that var(f) = var(3y) + var(ey) = var(§o) + o. A little factoring
gives the result in (4.4). We can construct a standard normal random variable as

LN

/var(f)
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If the forecast error variance in (4.4) is estimated by replacing o2 by its estimator G2,

var(f) = 6% |1 + l 4 M
Var(f) - N Z(Xi _ 2)2
then
¥ .
— y:e( fy)" ~tivo2) (4A.1)

var(f)

where the square root of the estimated variance is the standard error of the forecast given
in (4.5).

Using these results, we can construct an interval prediction procedure for y, just as we
constructed confidence intervals for the parameters 3. If 7. is a critical value from the 7y _»)-
distribution such that P(t >1.) = /2, then

P(-t.<t<t)=1-«a (4A.2)
Substitute the z-random variable from (4A.1) into (4A.2) to obtain

Yo — Yo
se( f)

P _ICS

<tl|l=1—-«

Simplify this expression to obtain

P[yo —tese(f) <yo < Jo+1se(f)]=1—-a

A 100(1—a)% confidence interval, or prediction interval, for yy is given by (4.6).

Appendix 4B The Sum of Squares Decomposition

To obtain the sum of squares decomposition in (4.11), we square both sides of (4.10)

i =9’ =[G =y + &’ = Gi =)’ + & +20: - Ve
Then sum
i =) =20 —9) + 28+ 250 -V
Expanding the last term, we obtain

2 —y)e = 2yie; — y2e; = X(b1 + box;)é; — yXé;
=b12e; + brXxie; — yXe;

Consider first the term Y.¢;

e =2(yi — by — bax;) = Xy; — Nby — b2x; =0
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This last expression is zero because of the first normal equation, (2A.3). The first normal
equation is valid only if the model contains an intercept. The sum of the least squares
residuals is always zero if the model contains an intercept. It follows, then, that the sample
mean of the least squares residuals is also zero (since it is the sum of the residuals divided by
the sample size) if the model contains an intercept. That is, e = Y¢;/N = 0.

The next term Y, x;¢; = 0, because

Yxiei = 2xi(yi — by — bax;) = Xxyi — b1 Xx; — byXxl =0

This result follows from the second normal equation, (2A.4). This result always holds for
the least squares estimator and does not depend on the model having an intercept. See
Appendix 2A for discussion of the normal equations. Substituting >.¢; = 0 and X x;¢; = 0
back into the original equation, we obtain X(y; — ¥)e¢; = 0.

Thus, if the model contains an intercept, it is guaranteed that SST = SSR + SSE. If,
however, the model does not contain an intercept, then >.¢; # 0 and SST # SSR + SSE.

Appendix 4C The Log-Normal Distribution

Suppose that the variable y has a normal distribution, with mean . and variance 0. By now
you are familiar with this bell-shaped distribution. If we consider w = ¢”, then y =
In(w) ~N(w,0?) and w is said to have a log-normal distribution. The question then is,
what are the mean and variance of w? Recall that the “expected value of a sum is the sum of
the expected values.” But unfortunately, the exponential function is nonlinear, and the
expected value of nonlinear function of y is not just the same function of E(y). That is,
if g(y) is some function of y, then in general E[g(y)]# g[E(y)]. So the expectation
E(w) = E(e”) ;éeE(y). Happily, the expected value and variance of w have been worked
out, and are

E(w) = "t/

and
var(w) = 2+ (e"2 - 1)

These results relate to the log-linear regression model in several ways. First, given the log-
linear model In(y) = B + Bax + e, if we assume that e ~N(O, o?), then

E(Yi) — E(eBI+BZXi+ei) — E(e[31+l32xieei) — eBl+l32XiE(eei) — eBl+Bzxie(72/2 — el31+[32)6/+trz/2

Consequently, if we want to predict E(y), we should use

_

E(y;) = e thexitd’/2

where by, by, and 7 are from the log-linear regression.
The second implication comes from the growth and wage equations discussed in
Section 4.4. For example, in the wage equation we estimated B, = In(1 + r). Solving
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for r, we obtain r = eP2 — 1. If assumption SR6 holds, then the least squares estimator is
normally distributed b, ~ N (Bz, var(b,) = 0% /2(x; — X)z). Then

E[ebz] — Prtvar(h2)/2

Therefore, an estimator of the rate of return r is

—

= g var(2)/2 _

where var(by) = 62/3(x; — )%



Chapter

The Multiple Regression
Model

Learning Objectives

Based on the material in this chapter, you should be able to

10.

Recognize a multiple regression model and be able to interpret the coefficients in
that model.

Understand and explain the meanings of the assumptions for the multiple regression
model.

Use your computer to find least squares estimates of the coefficients in a multiple
regression model, and interpret those estimates.

Explain the meaning of the Gauss—Markov theorem.

Use your computer to obtain variance and covariance estimates, and standard
errors, for the estimated coefficients in a multiple regression model.

Explain the circumstances under which coefficient variances (and standard errors)
are likely to be relatively high, and those under which they are likely to be
relatively low.

Find interval estimates for single coefficients and linear combinations of coeffi-
cients, and interpret the interval estimates.

Test hypotheses about single coefficients and about linear combinations of coeffi-
cients in a multiple regression model. In particular,
(a) What is the difference between a one-tail and a two-tail test?
(b) How do you compute the p-value for a one-tail test, and for a two-tail test?
(c) What is meant by ‘“‘testing the significance of a coefficient™?
(d) What is the meaning of the #-values and p-values that appear in your computer
output?
(e) How do you compute the standard error of a linear combination of coefficient
estimates?

Use your computer to compute the standard error of a nonlinear function of
estimators. Use that standard error to find interval estimates and to test hypotheses
about nonlinear functions of coefficients.

Estimate and interpret multiple regression models with polynomial and interaction
variables.

167
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11. Find point and interval estimates and test hypotheses for marginal effects in
polynomial regressions and models with interaction variables.

12. Compute and explain the meaning of R? in a multiple regression model.

Keywords
BLU estimator interval estimate p-value
covariance matrix of least squares estimates polynomial

least squares estimator  least squares estimation regression coefficients
critical value least squares estimators standard errors
delta method linear combinations sum of squared errors
error variance estimate marginal effect sum of squares of regression
error variance estimator multiple regression model  testing significance
goodness-of-fit nonlinear functions total sum of squares
interaction variable one-tail test two-tail test

The model in Chapters 2—4 is called a simple regression model because the dependent
variable y is related to only one explanatory variable x. Although this model is useful for a
range of situations, in most economic models there are two or more explanatory variables
that influence the dependent variable y. For example, in a demand equation the quantity
demanded of a commodity depends on the price of that commodity, the prices of substitute
and complementary goods, and income. Output in a production function will be a function of
more than one input. Aggregate money demand will be a function of aggregate income and
the interest rate. Investment will depend on the interest rate and on changes in income.

When we turn an economic model with more than one explanatory variable into its
corresponding econometric model, we refer to it as a multiple regression model. Most of
the results we developed for the simple regression model in Chapters 2—4 can be extended
naturally to this general case. There are slight changes in the interpretation of the (3
parameters, the degrees of freedom for the 7-distribution will change, and we will need to
modify the assumption concerning the characteristics of the explanatory (x) variables. These
and other consequences of extending the simple regression model to a multiple regression
model are described in this chapter.

As an example for introducing and analyzing the multiple regression model, we begin
with a model used to explain sales revenue for a fast-food hamburger chain with outlets in
small U.S. cities.

5.1 Introduction
5.1.1 Tue Economic MODEL

We will set up an economic model for a hamburger chain that we call Big Andy’s Burger
Barn.' Important decisions made by the management of Big Andy’s include its pricing
policy for different products and how much to spend on advertising. To assess the effect of
different price structures and different levels of advertising expenditure, Big Andy’s Burger
Barn sets different prices, and spends varying amounts on advertising, in different cities.

! The data we use reflect a real fast-food franchise whose identity we disguise under the name Big Andy’s.
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Of particular interest to management is how sales revenue changes as the level of advertising
expenditure changes. Does an increase in advertising expenditure lead to an increase in
sales? If so, is the increase in sales sufficient to justify the increased advertising expenditure?
Management is also interested in pricing strategy. Will reducing prices lead to an increase or
decrease in sales revenue? If areduction in price leads only to a small increase in the quantity
sold, sales revenue will fall (demand is price-inelastic); a price reduction that leads to a large
increase in quantity sold will produce an increase in revenue (demand is price-elastic). This
economic information is essential for effective management.

The first step is to set up an economic model in which sales revenue depends on one or
more explanatory variables. We initially hypothesize that sales revenue is linearly related to
price and advertising expenditure. The economic model is

SALES = By + P»PRICE + B;ADVERT (5.1)

where SALES represents monthly sales revenue in a given city, PRICE represents price in
that city, and ADVERT is monthly advertising expenditure in that city. Both SALES and
ADVERT are measured in terms of thousands of dollars. Because sales in bigger cities will
tend to be greater than sales in smaller cities, we focus on smaller cities with comparable
populations.

Since a hamburger outlet sells a number of products—burgers, fries, and shakes—and
each product has its own price, it is not immediately clear what price should be used in (5.1).
What we need is some kind of average price for all products and information on how this
average price changes from city to city. For this purpose management has constructed a
single price index PRICE, measured in dollars and cents, that describes overall prices in
each city.

The remaining symbols in (5.1) are the unknown parameters 31, B2, and 33 that describe
the dependence of sales (SALES) on price (PRICE) and advertising (ADVERT). Mathe-
matically, the intercept parameter [3; is the value of the dependent variable when each of the
independent, explanatory variables takes the value zero. However, in many cases this
parameter has no clear economic interpretation. In this particular case, it is not realistic to
have a situation in which PRICE = ADVERT = 0. Except in very special circumstances,
we always include an intercept in the model, even if it has no direct economic interpretation.
Omitting it can lead to a model that fits the data poorly and that does not predict well.

The other parameters in the model measure the change in the value of the dependent
variable given a unit change in an explanatory variable, all other variables held constant.
For example, in (5.1),

B> = the change in monthly SALES ($1,000) when the price index PRICE is increased by
one unit ($1) and advertising expenditure ADVERT is held constant
_ ASALES _ OSALES
"~ APRICE(ADVERT held constant)  OPRICE

The symbol “0” stands for “‘partial differentiation.” Those of you familiar with calculus may
have seen this operation. In the context above, the partial derivative of SALES with respect to
PRICE is the rate of change of SALES as PRICE changes, with other factors, in this case
ADVERT, held constant. Further details can be found in Section A.3.3 of Appendix A. We will
occasionally use partial derivatives, but not to an extent that will disadvantage you if you have
not had a course in calculus. Rules for differentiation are provided in Appendix A.3.1.
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The sign of 3, could be positive or negative. If an increase in price leads to an increase in
sales revenue, then 3, > 0, and the demand for the chain’s products is price-inelastic.
Conversely, a price-elastic demand exists if an increase in price leads to a decline in revenue,
in which case B, < 0. Thus, knowledge of the sign of B, provides information on the price-
elasticity of demand. The magnitude of 3, measures the amount of change in revenue for a
given price change.

The parameter B3 describes the response of sales revenue to a change in the level of
advertising expenditure. That is,

B3 = the change in monthly SALES ($1,000) when advertising expenditure ADVERT is
increased by one unit ($1,000) and the price index PRICE is held constant
_ ASALES _ OSALES
~ AADVERT (PRICE held constant) ~ OADVERT

We expect the sign of B3 to be positive. That is, we expect that an increase in advertising
expenditure, unless the advertising is offensive, will lead to an increase in sales revenue.
Whether or not the increase in revenue is sufficient to justify the added advertising
expenditure, as well as the added cost of producing more hamburgers, is another question.
With B3 < 1, an increase of $1,000 in advertising expenditure will yield an increase in
revenue that is less than $1,000. For B3 > 1, it will be greater. Thus, in terms of the chain’s
advertising policy, knowledge of 33 is very important.

The next step along the road to learning about 31, 3,, and 33 is to convert the economic
model into an econometric model.

5.1.2 TuE EcoONOMETRIC MODEL

The economic model (5.1) describes the expected or average behavior of many individual
franchises that make up the complete chain run by Big Andy’s Burger Barn. Thus, we should
write it as E(SALES) = B + B2PRICE + B3ADVERT, where E(SALES) is the “expected
value” of sales revenue. Data for sales revenue, price, and advertising for different cities
will not follow an exact linear relationship. Equation (5.1) describes not a line as in Chapters
2—4,but a plane. As illustrated in Figure 5.1, the plane intersects the vertical axis at 3. The
parameters [3; and 33 measure the slope of the plane in the directions of the “price axis™ and
the ““advertising axis,” respectively. Representative observations for sales revenue, price,
and advertising for some cities are displayed in Table 5.1. The complete set of observations
can be found in the file andy.dat and is represented by the dots in Figure 5.1. These data do
not fall exactly on a plane, but instead resemble a ‘“‘cloud.”

To allow for a difference between observable sales revenue and the expected value of
sales revenue, we add a random error term, ¢ = SALES — E(SALES). This random error
represents all factors, other than price and advertising revenue, which cause sales revenue to
differ from its expected value. These factors might include the weather, the behavior of
competitors, anew Surgeon General’s report on the deadly effects of fat intake, and so on, as
well as differences in burger-buying behavior across cities. Including the error term gives
the model

SALES = E(SALES) + e = B1 + B2PRICE + B3ADVERT + e 5.2)



SALES

3, = slope

PRICE

E(SALES) =8, + 3,PRICE + 33 ADVERT

in PRICE direction

FIGURE 5.1 The multiple regression plane.
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B3 = slope in ADVERT direction

ADVERT

The economic model in (5.1) describes the average, systematic relationship between the
variables SALES, PRICE, and ADVERT. The expected value E(SALES) is the nonrandom,
systematic component, to which we add the random error e to determine SALES. Thus,
SALES is arandom variable. We do not know what the value of sales revenue will be until we

observe it.

Table 5.1 Observations on Monthly Sales, Price, and Advertising in Big

Andy’s Burger Barn

SALES PRICE ADVERT
City $1,000 units $1 units $1,000 units
1 73.2 5.69 1.3
2 71.8 6.49 2.9
3 62.4 5.63 0.8
4 67.4 6.22 0.7
5 89.3 5.02 1.5
73 75.4 5.71 0.7
74 81.3 5.45 2.0
75 75.0 6.05 22
Summary statistics
Sample mean 77.37 5.69 1.84
Median 76.50 5.69 1.80
Maximum 91.20 6.49 3.10
Minimum 62.40 4.83 0.50
Std. Dev. 6.49 0.52 0.83
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The introduction of the error term and assumptions about its probability distribution turn
the economic model into the econometric model in (5.2). The econometric model provides
a more realistic description of the relationship between the variables as well as a framework
for developing and assessing estimators of the unknown parameters.

5.1.2a The General Model

It is useful to digress for a moment and summarize how the concepts developed so far relate
to the general case. In a general multiple regression model, a dependent variable y is related
to a number of explanatory variables x;, x3, . . ., xgx through a linear equation that can be
written as

y =B+ Boxy +PBaxs + -+ Pgxx +e (5.3)

The coefficients 3,, B3, . . . , Bx are unknown coefficients corresponding to the explanatory
variables x, x3, . . ., Xg. A single parameter, call it 3z, measures the effect of a change in the
variable x; upon the expected value of y, all other variables held constant. In terms of partial
derivatives,

AE(y) ~ OE(y)

Axk other xs held constant axk

Br =

The parameter 3 is the intercept term. We can think of it as being attached to a variable x|
that is always equal to 1. That is, x; = 1. We use K to denote the number of unknown
coefficients in (5.3).

The equation for sales revenue can be viewed as a special case of (5.3) where
K =3, y=S8ALES, x; = 1, x, = PRICE and x3 = ADVERT. Thus we rewrite (5.2) as

y=PB1+Boxs+P3xz+e 5.4

In this chapter we introduce point and interval estimation in terms of this model with K = 3.
The results hold generally for models with more explanatory variables (K > 3).

5.1.2b The Assumptions of the Model

To make the econometric model in (5.4) complete, assumptions about the probability
distribution of the random errors e need to be made. The assumptions that we introduce for e
are similar to those introduced for the simple regression model in Chapter 2. They are

1. E(e) = 0. Each random error has a probability distribution with zero mean. Some
errors will be positive, some will be negative; over a large number of observations,
they will average out to zero.

2. var(e) = o Each random error has a probability distribution with variance 2. The
variance o2 is an unknown parameter and it measures the uncertainty in the statistical
model. It is the same for each observation, so that for no observations will the model
uncertainty be more, or less, nor is it directly related to any economic variable. Errors
with this property are said to be homoskedastic.

3. cov(e;.e;) = 0. The covariance between the two random errors corresponding to any
two different observations is zero. The size of an error for one observation has no
bearing on the likely size of an error for another observation. Thus, any pair of errors
is uncorrelated.
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4. We will sometimes further assume that the random errors e have normal probability
distributions. That is, e ~ N(0, 2).

Because each observation on the dependent variable y depends on the random error term e,
each y is also arandom variable. The statistical properties of y follow from those of e. These
properties are

1. E() = B1 + B2x2 + B3x3. The expected (average) value of y depends on the values
of the explanatory variables and the unknown parameters. It is equivalent to
E(e) = 0. This assumption says that the average value of y changes for each
observation and is given by the regression function E(y) = B + Baxz + Baxs.

2. var(y) = var(e) = ¢. The variance of the probability distribution of y does not
change with each observation. Some observations on y are not more likely to be
further from the regression function than others.

3. cov(y;,yj) = cov(e;, e;) = 0. Any two observations on the dependent variable are
uncorrelated. For example, if one observation is above E(y), a subsequent observa-
tion is not more or less likely to be above E(y).

4. We sometimes will assume that the values of y are normally distributed about their
mean. That is, y ~ N[(B1 + B2x2 + B3x3), 2], which is equivalent to assuming that
e ~N(0,c?).

In addition to the above assumptions about the error term (and hence about the dependent
variable), we make two assumptions about the explanatory variables. The first is that
the explanatory variables are not random variables. Thus we are assuming that the values
of the explanatory variables are known to us prior to our observing the values of the
dependent variable. This assumption is realistic for our hamburger chain, where a decision
about prices and advertising is made for each city and values for these variables are set
accordingly. For cases in which this assumption is untenable, our analysis will be
conditional upon the values of the explanatory variables in our sample, or further assump-
tions must be made. This issue is taken up further in Chapters 9 and 10.

The second assumption is that any one of the explanatory variables is not an exact linear
function of the others. This assumption is equivalent to assuming that no variable is redundant.
Aswewill see, if this assumption is violated—a condition called exact collinearity—the least
squares procedure fails.

To summarize, we construct a list of the assumptions for the general multiple regression
model in (5.3)—much as we have done in the earlier chapters—to which we can refer as
needed. We use the subscript i to denote the ith value of variables to be observed in a
sample of size N.

ASSUMPTIONS OF THE MULTIPLE REGRESSION MODEL

MRI1. y; =1 +Bxxpp+---+Pxxix +e,i=1,...,N

MR2. E(y;) = B1 + Baxio + - - + Bgxix < E(e;) =0

MR3. var(y;) = var(e;) = o?

MR4.  cov(y,y;) = cov(eje;) =0 (i #J)

MRS5. The values of each x;; are not random and are not exact linear functions of the other
explanatory variables

MR6. y; ~N[(Bi + Baxia + - - - + Bixix), 0%] & e; ~N(0, 0%)
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5.2 Estimating the Parameters of the Multiple
Regression Model

In this section we consider the problem of using the least squares principle to estimate
the unknown parameters of the multiple regression model. We will discuss estimation in the
context of the model in (5.4), which we repeat here for convenience, with i denoting the ith
observation.

vi = B1 + Baxip + Baxiz +e; 5.4

This model is simpler than the full model, yet all the results we present carry over to the
general case with only minor modifications.

5.2.1 LEAST SQUARES ESTIMATION PROCEDURE

To find an estimator for estimating the unknown parameters we follow the least squares
procedure that was first introduced in Chapter 2 for the simple regression model. With the
least squares principle we find those values of (31, B2, 33) that minimize the sum of squared
differences between the observed values of y; and their expected values
E(y;) = B1 + x2B2 + xi3B3. Mathematically we minimize the sum of squares function
S(B1, B2, B3), which is a function of the unknown parameters, given the data

S(B1, B2, B3) = g (yi _E(yi))2

i=1

(5.5)
N

p> (yi —B1 — Boxi — B3xi3>2

Given the sample observations y;, minimizing the sum of squares function is a straightfor-
ward exercise in calculus. Details of this exercise are given in Appendix SA at the end of this
chapter. The solutions give us formulas for the least squares estimators for the (3 coefficients
in a multiple regression model with two explanatory variables. They are extensions of those
givenin (2.7) and (2.8) for the simple regression model with one explanatory variable. There
are three reasons for relegating these formulas to Appendix 5A instead of inflicting them on
you here. First, they are complicated formulas that we do not expect you to memorize.
Second, we never use these formulas explicitly; computer software uses the formulas to
calculate least squares estimates. Third, we frequently have models with more than two
explanatory variables, in which case the formulas become even more complicated. If you
proceed with more advanced study in econometrics, you will discover that there is one
relatively simple matrix algebra expression for the least squares estimator that can be used
for all models, irrespective of the number of explanatory variables.

Although we always get the computer to do the work for us, it is important to understand
the least squares principle and the difference between least squares estimators and least
squares estimates. Looked at as a general way to use sample data, formulas for
b1, by, and b3, obtained by minimizing (5.5), are estimation procedures, which are called
the least squares estimators of the unknown parameters. In general, since their values are
not known until the data are observed and the estimates calculated, the least squares
estimators are random variables. Computer software applies the formulas to a specific
sample of data producing least squares estimates, which are numeric values. To avoid too
much notation, we use by, by, and b3 to denote both the estimators and the estimates.
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Table 5.2 Least Squares Estimates for Sales Equation for Big Andy’s
Burger Barn

Variable Coefficient Std. Error t-Statistic Prob.
C 118.9136 6.3516 18.7217 0.0000
PRICE —7.9079 1.0960 —7.2152 0.0000
ADVERT 1.8626 0.6832 2.7263 0.0080
R? =0.4483 SSE = 1718.943 G = 4.8861 sy = 6.48854.

5.2.2 LEAST SQUARES EsTIMATES USING HAMBURGER CHAIN DATA

Table 5.2 contains the least squares results for the sales equation for Big Andy’s Burger
Barn. The least squares estimates are

by =11891 by, =-7908 b3 =1.863

Following Chapter 4.2.4, these estimates along with their standard errors and the equation’s
R? are typically reported in equation format as

SALES = 118.91 — 7.908 PRICE + 1.863ADVERT ~ R® = 0.448

(5.6)
(se) (6.35) (1.096) (0.683)
From the information in this equation one can readily construct interval estimates or test
hypotheses for each of the 3; in a manner similar to that described in Chapter 3, but with a
change in the number of degrees of freedom for the #-distribution. Like before, the ¢-values
and p-values in Table 5.2 relate to testing Hy :3x = 0 against the alternative H :3; # 0 for
k=1,2,3.

We proceed by first interpreting the estimates in (5.6). Then, to explain the degrees of
freedom change that arises from having more than one explanatory variable, and to reinforce
earlier material, we go over the sampling properties of the least squares estimator, followed
by interval estimation and hypothesis testing.

What can we say about the coefficient estimates in (5.6)?

1. The negative coefficient on PRICE suggests that demand is price elastic; we estimate
that, with advertising held constant, an increase in price of $1 will lead to a fall in
monthly revenue of $7,908. Or, expressed differently, a reduction in price of $1 will
lead to an increase in revenue of $7,908. If such is the case, a strategy of price
reduction through the offering of specials would be successful in increasing sales
revenue. We do need to consider carefully the magnitude of the price change,
however. A $1 change in price is a relatively large change. The sample mean of price
s 5.69 and its standard deviation is 0.52. A 10-cent change is more realistic, in which
case we estimate the revenue change to be $791.

2. The coefficient on advertising is positive; we estimate that with price held constant,
an increase in advertising expenditure of $1,000 will lead to an increase in sales
revenue of $1,863. We can use this information, along with the costs of producing the
additional hamburgers, to determine whether an increase in advertising expenditures
will increase profit.
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3. The estimated intercept implies that if both price and advertising expenditure
were zero the sales revenue would be $118,914. Clearly, this outcome is not
possible; a zero price implies zero sales revenue. In this model, as in many others,
it is important to recognize that the model is an approximation to reality in the region
for which we have data. Including an intercept improves this approximation even
when it is not directly interpretable.

In addition to providing information about how sales change when price or advertising
change, the estimated equation can be used for prediction. Suppose Big Andy is interested
in predicting sales revenue for a price of $5.50 and an advertising expenditure of $1,200.
Including extra decimal places to get an accurate hand calculation, this prediction is

SALES = 118.91 — 7.908PRICE + 1.863ADVERT
= 118914 —7.9079x5.5 + 1.8626 x 1.2
= 77.656

The predicted value of sales revenue for PRICE = 5.5 and ADVERT = 1.2 is $77,656.

REMARK: A word of caution is in order about interpreting regression results: The
negative sign attached to price implies that reducing the price will increase sales revenue.
If taken literally, why should we not keep reducing the price to zero? Obviously that would
not keep increasing total revenue. This makes the following important point: Estimated
regression models describe the relationship between the economic variables for values
similar to those found in the sample data. Extrapolating the results to extreme values is
generally not a good idea. Predicting the value of the dependent variable for values of the
explanatory variables far from the sample values invites disaster. Refer to Figure 4.2 and
the surrounding discussion.

5.2.3 ESTIMATION OF THE ERROR VARIANCE 0~

There is one remaining parameter to estimate—the variance of the error term. For this
parameter we follow the same steps that were outlined in Section 2.7. We know that

o’ = var(e;) = E(e})

Thus, we can think of o as the expectation or population mean of the squared errors e?.
A natural estimator of this population mean is the sample mean 6> = Y¢? /N. However, the
squared errors e? are unobservable, so we develop an estimator for o that is based on

the squares of the least squares residuals. For the model in (5.4), these residuals are
ei =yi — i =i — (b1 + baxi + b3xi3)
An estimator for o that uses the information from &7 and has good statistical properties is

D XY
o~ =
N—-—K

5.7

where K is the number of [3 parameters being estimated in the multiple regression model.
We can think of G as an average of ¢7 with the denominator in the averaging process being
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N — K instead of N. It can be shown that replacing e7 by ¢? requires the use of N — K instead
of N for G to be unbiased. Note that in Chapter 2, (2.19), where there was one explanatory
variable and two coefficients, we had K = 2.

To appreciate further why é; provide information about o2, recall that > measures
the variation in e; or, equivalently, the variation in y; around the mean function
B1 + Baxip + PBsxj3. Since &; are estimates of e;, big values of ¢; suggest o” is large while
small &; suggest o is small. When we refer to *‘big” values of ¢;, we mean big positive ones
or big negative ones. Using the squares of the residuals &7 means that positive values do not
cancel with negative ones; thus, &7 provide information about the parameter 2.

In the hamburger chain example we have K = 3. The estimate for our sample of data in
Table 5.1 is

o ZDiE _ 1718.943

= = =23.874
N-K 75 -3 38

Go back and have a look at Table 5.2. There are two quantities in this table that relate to the
above calculation. The first is the sum of squared errors

N
SSE = Y &7 = 1718.943
i=1

The second is the square root of 62, given by

6 = V23.874 = 4.8861

Both these quantities typically appear in the output from your computer software. Different
software refer to it in different ways. Sometimes ¢ is referred to as the standard error of the
regression. Sometimes it is called the root mse (short for mean squared error).

A major reason for estimating the error variance is to enable us to get an estimate of the
unknown variances and covariances for the least squares estimators. We now consider those
variances and covariances in the context of the overall properties of the least squares
estimator.

5.3 Sampling Properties of the Least Squares Estimator

In a general context, the least squares estimators (b, by, b3) are random variables; they take
on different values in different samples, and their values are unknown until a sample is
collected and their values computed. The sampling properties of a least squares estimator
tell us how the estimates vary from sample to sample. They provide a basis for assessing the
reliability of the estimates. In Chapter 2 we found that the least squares estimator was
unbiased, and that there is no other linear unbiased estimator that has a smaller variance, if
the model assumptions are correct. This result remains true for the gemeral multiple
regression model that we are considering in this chapter.

THE GAUSS-MARKOV THEOREM: For the multiple regression model, if
assumptions MR1-MRS listed at the beginning of the chapter hold, then the least squares
estimators are the best linear unbiased estimators (BLUE) of the parameters.

If we are able to assume that the errors are normally distributed, then y will also be a
normally distributed random variable. The least squares estimators will also have normal
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probability distributions, since they are linear functions of y. If the errors are not normally
distributed, then the least squares estimators are approximately normally distributed in large
samples. What constitutes “‘large” is tricky. It depends on a number of factors specific to
each application. Frequently, N — K = 50 will be large enough. See Appendices 5B.2 and
5B.3 for further details and a simulation experiment. Having least squares estimators with
normal or approximately normal distributions is important for the construction of interval
estimates and the testing of hypotheses about the parameters of the regression model.

5.3.1 THE VARIANCES AND COVARIANCES OF THE LEAST SQUARES ESTIMATORS

The variances and covariances of the least squares estimators give us information about the
reliability of the estimators by, by, and bs3. Since the least squares estimators are unbiased,
the smaller their variances, the higher the probability that they will produce estimates
“near” the true parameter values. For K = 3 we can express the variances and covariances
in an algebraic form that provides useful insights into the behavior of the least squares
estimator. For example, we can show that

o2

o 5.8
var(b;) (1- r§3)2§v:1()€i2 _ 22)2 (5-8)

where 3 is the sample correlation coefficient between the values of x; and x3; see Section
4.2.1. Its formula is given by

2(xp — %) (x3 — X3)
\/Z(Xiz — %)Y (x5 — X3)°

For the other variances and covariances, there are formulas of a similar nature. Itis important
to understand the factors affecting the variance of by:

(5.9)

3 =

1. Largererror variances o lead to larger variances of the least squares estimators. This
is to be expected, since o measures the overall uncertainty in the model specifica-
tion. If o is large, then data values may be widely spread about the regression
function E(y;) = B1 + Baxi» + B3x;3 and there is less information in the data about
the parameter values. If o is small, then data values are compactly spread about the
regression function E(y;) = B + Baxi2 + B3x;3, and there is more information about
what the parameter values might be.

2. Larger sample sizes N imply smaller variances of the least squares estimators. A
larger value of N means a larger value of the summation X.(xj, — 22)2. Since this term
appears in the denominator of (5.8), when itis large, var(b;) is small. This outcome is
also an intuitive one; more observations yield more precise parameter estimation.

3. More variation in an explanatory variable around its mean, measured in this case by
S (xin — %)%, leads to a smaller variance of the least squares estimator. To estimate [3,
precisely, we prefer a large amount of variation in x;,. The intuition here is that if the
variation or change in x, is small, it is difficult to measure the effect of that change.
This difficulty will be reflected in a large variance for b.

4. A larger correlation between x, and x3 leads to a larger variance of b,. Note that
1 — r3, appears in the denominator of (5.8). A value of |ry3| close to 1 means 1 — 2,
will be small, which in turn means var(b,) will be large. The reason for this fact is that
variation in x;; about its mean adds most to the precision of estimation when it is not
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connected to variation in the other explanatory variables. When the variation in one
explanatory variable is connected to variation in another explanatory variable, it is
difficult to disentangle their separate effects. In Chapter 6 we discuss “‘collinearity,”
which is the situation when the explanatory variables are correlated with one another.
Collinearity leads to increased variances of the least squares estimators.

Although our discussion has been in terms of a model where K = 3, these factors affect the
variances of the least squares estimators in the same way in larger models.

It is customary to arrange the estimated variances and covariances of the least squares
estimators in a square array, which is called a matrix. This matrix has variances on its
diagonal and covariances in the off-diagonal positions. It is called a variance-covariance
matrix or, more simply, a covariance matrix. When K = 3, the arrangement of the
variances and covariances in the covariance matrix is

var(by)  cov(by, by) cov(by, bs)
COV(bl, bz, b3) = COV(b17 bz) Var(bz) COV(bz, b3)
cov(by, b3) cov(ba, b3) var(bs)

Using the estimate 6> = 23.874 and our computer software package, the estimated

variances and covariances for by, b,, and b3 in the Big Andy’s Burger Barn example are

- 40343 —6.795 —0.7484
cov(bi, by, b3) = | —6.795 1201 —0.0197 (5.10)
—0.7484 —0.0197  0.4668

Thus, we have
var(b;) = 40.343  cov(by, by) = —6.795
var(by) = 1201 cov(by, by) = —0.7484
var(bs) = 0.4668 cov(by, b3) = —0.0197

Table 5.3 shows how this information is typically reported in the output from computer
software.

Of particular relevance are the standard errors of by, by, and bs; they are given by the
square roots of the corresponding estimated variances. That is,

se(b) = Var(bl) Vv40.3433 = 6.3516
se(by) = Var(bz) v1.2012 = 1.0960
se(bs) = Var(b3) v0.4668 = 0.6832

Table 5.3 Covariance Matrix for Coefficient Estimates

C PRICE ADVERT
C 40.3433 —6.7951 —0.7484
PRICE —6.7951 1.2012 —0.0197

ADVERT —0.7484 —0.0197 0.4668
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Again, it is time to go back and look at Table 5.2. Notice that these values appear in the
standard error column.

These standard errors can be used to say something about the range of the least squares
estimates if we were to obtain more samples of 75 Burger Barns from different cities. For
example, the standard error of b, is approximately se(b;) = 1.1. We know that the least
squares estimator is unbiased, so its mean value is E(b,) = 3. If b, is normally distributed,
then based on statistical theory we expect 95% of the estimates b, obtained by applying the
least squares estimator to other samples, to be within approximately two standard deviations
of the mean [3,. Given our sample, 2 xse(b,) = 2.2, so we estimate that 95% of the b, values
would lie within the interval 3, £ 2.2. It is in this sense that the estimated variance of b;, or
its corresponding standard error, tells us something about the reliability of the least squares
estimates. If the difference between b, and 3, can be large, b, is not reliable; if the difference
between b, and 3, is likely to be small, then b, is reliable. Whether a particular difference is
“large” or “small” will depend on the context of the problem and the use to which
the estimates are to be put. This issue is considered again in later sections when we use the
estimated variances and covariances to test hypotheses about the parameters and to
construct interval estimates.

5.3.2 THE DISTRIBUTION OF THE LEAST SQUARES ESTIMATORS

We have asserted that, under the multiple regression model assumptions MR1-MRS, listed
atthe end of Section 5.1, the least squares estimator by, is the best linear unbiased estimator of
the parameter [B; in the model

Yi = B1 + Boxiz + Baxiz + - + Brxix + e

If we add assumption MR6, that the random errors e; have normal probability distributions,
then the dependent variable y; is normally distributed,

yiNN((Bl + Boxip + -+ BKxiK)yo'z) & e;~N(0,0%)

Since the least squares estimators are linear functions of dependent variables, it follows that
the least squares estimators are also normally distributed,

be NN(Bk, var(bk))

That is, each by has a normal distribution with mean 3; and variance var(by). By subtracting
its mean and dividing by the square root of its variance, we can transform the normal random
variable by into the standard normal variable Z,

b — B

Z= ~N(0,1), fork=1,2,....K (5.11)
var(by)

that has mean zero and a variance of 1. The variance of b; depends on the unknown
variance of the error term, o2, as illustrated in (5.8) for the K = 3 case. When we replace
o? by its estimator 62, from (5.7), we obtain the estimated var(b;) which we denote as
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-

m. Replacing var(by) by var(by) in (5.11) changes the N(0,1) random variable to a -
random variable. That is,

t= = ~ Nk 5.12
(bk) (N—K) ( )

var(by) 5¢

One difference between this result and that in Chapter 3, (3.2), is the degrees of freedom of
the -random variable. In Chapter 3, where there were two coefficients to be estimated, the
number of degrees of freedom was N — 2. In this chapter there are K unknown coefficients in
the general model, and the number of degrees of freedom for t-statistics is N — K.

The result in (5.12) extends to a linear combination of coefficients that was introduced in
Chapter 3.6. Suppose that we are interested in estimating or testing hypotheses about a linear
combination of coefficients that in the general case is given by

A=ciBr 4By + -+ cxBr = horciBr

Then,

tiifkichbk—ZCkBk -
se (i) Se(zckbk) (V=K)

(5.13)

This expression is a little intimidating, mainly because we have included all coefficients
to make it general, and because hand calculation of se(Xc;by) is onerous if more than 2
coefficients are involved. For example, if K = 3, then

se(c1by + c2by + c3b3) = \/m
where

var(ciby + ¢2by + e3b3) = ¢ var(by) + ¢3 var(bz) + ¢ var(bs) + 2c1¢200v(b1, b)

+ 2cie3c0v (i, b3) + 2¢2¢3¢0v(by, b3)
(5.14)

In many instances some of the ¢; will be zero, which can simplify the expressions and the
calculations considerably. If one ¢ is equal to one, and the rest are zero, (5.13) simplifies to
(5.12).

What happens if the errors are not normally distributed? Then the least squares estimator
will not be normally distributed and (5.11), (5.12), and (5.13) will not hold exactly.
They will, however, be approximately true in large samples. Thus, having errors that
are not normally distributed does not stop us from using (5.12) and (5.13), but it does mean
we have to be cautious if the sample size is not large. A test for normally distributed errors
was given in Chapter 4.3.5. An example of errors that are not normally distributed can be
found in Appendix 5B.3.

‘We now examine how the results in (5.12) and (5.13) can be used for interval estimation
and hypothesis testing. The procedures are identical to those described in Chapter 3, except
that the degrees of freedom change.
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5.4 Interval Estimation
5.4.1 INTERVAL ESTIMATION FOR A SINGLE COEFFICIENT

Suppose we are interested in finding a 95% interval estimate for 3,, the response of sales
revenue to a change in price at Big Andy’s Burger Barn. Following the procedures described
in Section 3.1, and noting that we have N — K = 75 — 3 = 72 degrees of freedom, the first
step is to find a value from the #(7,)-distribution, call it 7., such that

P(—tc <ty <t.) = 0.95 (5.15)

Using the notation introduced in Section 3.1, t. = t(0.975, v—k) s the 97.5-percentile of the
t(v—x)-distribution (the area or probability to the left of 7. is 0.975), and —t. = #9025, y—k) IS
the 2.5-percentile of the 7(y_g)-distribution (the area or probability to the left of —z
15 0.025). Consulting the #-table, we discover there is no entry for 72 degrees of freedom, but,
from the entries for 70 and 80 degrees of freedom, it is clear that, correct to two decimal
places, t, = 1.99.If greater accuracy is required, your computer software can be used to find
t. = 1.993. Using this value, and the result in (5.12) for the second coefficient (k = 2), we
can rewrite (5.15) as

by — B2
2

P(—1.993 < < 1.993) =0.95

Rearranging this expression, we obtain
P(bz —1.993 xse(bz) < B2 < by 4+1.993x se(b2)> =0.95

The interval endpoints

(b2 —1.993xse(hy), by + 1.993 % se(bz)) (5.16)

define a 95% interval estimator of 3,. If this interval estimator is used in many samples from
the population, then 95% of them will contain the true parameter 3,. We can establish this
fact before any data are collected, based on the model assumptions alone. Before the data are
collected we have confidence in the interval estimation procedure (estimator) because of
its performance when used repeatedly.

A 95% interval estimate for 3, based on our particular sample is obtained from (5.16) by
replacing b, and se(b,) by their values b, = —7.908 and se(b,) = 1.096. Thus, our 95%
interval estimate for B, is given by”

(=7.9079 — 1.9335 x 1.096,7.9079 + 1.9335 x 1.096) = (10.093, —5.723)

This interval estimate suggests that decreasing price by $1 will lead to an increase in revenue
somewhere between $5,723 and $10,093. Or, in terms of a price change whose magnitude is
more realistic, a 10-cent price reduction will lead to a revenue increase between $572 and
$1,009. Based on this information, and the cost of making and selling more burgers, Big
Andy can decide whether to proceed with a price reduction.

2 For this and the next calculation we used more digits so that it would match the more accurate computer
output. You may see us do this occasionally.
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Following a similar procedure for 33, the response of sales revenue to advertising, we find
a 95% interval estimate is given by

(1.8626 — 1.9935 % 0.6832, 1.8626 + 1.9935x0.6832) = (0.501, 3.225)

We estimate that an increase in advertising expenditure of $1,000 leads to an increase in sales
revenue of between $501 and $3,225. This interval is a relatively wide one; it implies that extra
advertising expenditure could be unprofitable (the revenue increase is less than $1,000) or
could lead to arevenue increase more than three times the cost of the advertising. Another way
of describing this situation is to say that the point estimate b3 = 1.8626 is not very reliable, as
its standard error (which measures sampling variability) is relatively large.

In general, if an interval estimate is uninformative because it is too wide, there is nothing
immediate that can be done. A wide interval for the parameter [33 arises because the estimated
sampling variability of the least squares estimator b5 is large. In the computation of an interval
estimate, a large sampling variability is reflected by a large standard error. A narrower interval
can only be obtained by reducing the variance of the estimator. Based on the variance
expression in (5.8), one solution is to obtain more and better data exhibiting more independent
variation. Big Andy could collect data from other cities and set a wider range of price and
advertising combinations. It might be expensive to do so, however, and so he would need to
assess whether the extra information is worth the extra cost. This solution is generally not open
to economists, who rarely use controlled experiments to obtain data. Alternatively, we might
introduce some kind of nonsample information on the coefficients. The question of how to use
both sample and nonsample information in the estimation process is taken up in Chapter 6.

We cannot say, in general, what constitutes an interval that is too wide, or too
uninformative. It depends on the context of the problem being investigated, and on how
the information is to be used.

To give a general expression for an interval estimate, we need to recognize that the
critical value 7. will depend on the degree of confidence specified for the interval estimate
and the number of degrees of freedom. We denote the degree of confidence by 1 — «; in
the case of a 95% interval estimate o = 0.05 and 1 — o = 0.95. The number of degrees
of freedom is N — K; in Big Andy’s Burger Barn example this value was 75 — 3 = 72.
The value t. is the percentile value f#(_q/on—k), Which has the property that
Pltv-k) < t(1-ajon-k)] =1 —a/2. In the case of a 95% confidence interval,
1 — a/2 = 0.975; we use this value because we require 0.025 in each tail of the distribution.
Thus, we write the general expression for a 100(1 — a)% confidence interval as

(bk —t1—a2N-k) X 8€(bk),  br +t1_appn-k) ¥ Se(bk))

5.4.2 INTERVAL ESTIMATION FOR A LINEAR COMBINATION OF COEFFICIENTS

Big Andy wants to make next week a big sales week. He plans to increase advertising
expenditure by $800 and drop the price by 40 cents. If the current price is PRICE, and the
current advertising level is ADVERT), then the change in expected sales from Andy’s
planned strategy is

A = E(SALES,) — E(SALES))

[B1 + B2(PRICE) — 0.4) + B3(ADVERT, + 0.8)]
—[B1 + B2PRICE,, + B3ADVERT,)]

—0.4B2 +0.8B3
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Andy would like a point estimate and a 90% interval estimate for A.
A point estimate is given by

= —0.4b, +0.8b3 = —0.4 x (—=7.9079) + 0.8 x 1.8626 = 4.6532

Our estimate of the expected increase in sales from Big Andy’s strategy is $4,653.
From (5.13), we can derive a 90% interval estimate for A = —0.4 3, + 0.8 33 as

(A —t. x se(h), A+t xse(h))
- ((—0.4192 +0.8b3) — 1, x se(—0.4by + 0.8b3),

(—0.4b5 + 0.8b3) + 10 x se(—0.4b; + 0.8b3))

where 7. = f(g.95,72) = 1.666. To calculate the standard error se(—0.4b, + 0.8b3), we use
the result in (5.14) with¢; = 0, ¢; = —0.4 and c¢3 = 0.8, and the covariance matrix of the
coefficient estimates in Table 5.3:

se(—0.4b, +0.8b3) = \/m

= \/(70.4)27&(72) + (0.8)*var(bs) — 2 x 0.4 x 0.8 x cov(by, b>)

= /0.16 x 1.2012 + 0.64 x 0.4668 — 0.64 x (—0.0197)
=0.7096

Thus, a 90% interval estimate is
(4.6532 — 1.666 x 0.7096, 4.6532 + 1.666 x 0.7096) = (3.471, 5.835)

We estimate, with 90% confidence, that the expected increase in sales from Big Andy’s
strategy will lie between $3,471 and $5,835.

5.5 Hypothesis Testing

As well as being useful for interval estimation, the z-distribution result in (5.12) provides the
foundation for testing hypotheses about individual coefficients. As you discovered in
Chapter 3, hypotheses of the form Hy:[3, = ¢ versus H;:[3; # ¢, where c¢ is a specified
constant, are called two-tail tests. Hypotheses with inequalities such as Hy : 3, < ¢ versus
Hj:B > c are called one-tail tests. In this section we consider examples of each type of
hypothesis. For a two-tail test, we consider testing the significance of an individual
coefficient; for one-tail tests some hypotheses of economic interest are considered. Using
the result in (5.13), one- and two-tail tests can also be used to test hypotheses about linear
combinations of coefficients. An example of this type follows those for testing hypotheses
about individual coefficients. We will follow the step-by-step procedure for testing
hypotheses that was introduced in Section 3.4. To refresh your memory, here are the steps
again:



5.5 HYPOTHESIS TESTING 185

STEP-BY-STEP PROCEDURE FOR TESTING HYPOTHESES

Determine the null and alternative hypotheses.

Specify the test statistic and its distribution if the null hypothesis is true.
Select a and determine the rejection region.

Calculate the sample value of the test statistic and, if desired, the p-value.

@nogs o=

State your conclusion.

At the time these steps were introduced, in Chapter 3, you had not discovered p-values.
Knowing about p-values (see Section 3.5) means that steps 3—5 can be framed in terms of the
test statistic and its value and/or the p-value. We will use both.

5.5.1 TESTING THE SIGNIFICANCE OF A SINGLE COEFFICIENT

When we set up a multiple regression model, we do so because we believe the explanatory
variables influence the dependent variable y. If we are to confirm this belief, we need to
examine whether or not it is supported by the data. That is, we need to ask whether the data
provide any evidence to suggest that y is related to each of the explanatory variables. If a
given explanatory variable, say x;, has no bearing on y, then (3; = 0. Testing this null
hypothesis is sometimes called a test of significance for the explanatory variable x;. Thus, to
find whether the data contain any evidence suggesting y is related to x;, we test the null
hypothesis

Hy:Br =0
against the alternative hypothesis
Hy:Bp #0
To carry out the test, we use the test statistic (5.12), which, if the null hypothesis is true, is
t bi ~tN—
se(by) (N—K)

For the alternative hypothesis ““not equal to,” we use a two-tail test, introduced in Section
3.3.3, and reject Hy if the computed #-value is greater than or equal to #, (the critical value
from the right side of the distribution) or less than or equal to —¢, (the critical value from the
left side of the distribution). For a test with level of significance «, 7. = t1_o/2n-k)
and —1. = t/2.n—k)- Alternatively, if we state the acceptance-rejection rule in terms of the
p-value, we reject Hy if p < a and do not reject Hy if p > a.

In the Big Andy’s Burger Barn example, we test, following our standard testing format,
whether sales revenue is related to price:

The null and alternative hypotheses are Hy: 3, = 0 and H, : 3, #O0.

The test statistic, if the null hypothesis is true, is t = by /se(b2) ~ tiv_x.-

Using a 5% significance level (a = 0.05), and noting that there are 72 degrees of
freedom, the critical values that lead to a probability of 0.025 in each tail of the

distribution are #(g.97572) = 1.993 and £(g.025,72) = —1.993. Thus we reject the null
hypothesis if the calculated value of ¢ from step 2 is such that > 1.993 ort < —1.993.



186 THE MULTIPLE REGRESSION MODEL

If —1.993 << 1.993, we do not reject Hy. Stating the acceptance—rejection rule in
terms of the p-value, we reject Hy if p < 0.05 and do not reject Hy if p > 0.05.

4. The computed value of the #-statistic is

—7.908
=

=-7.21
1.096 7215

From your computer software, the p-value in this case can be found as
P(t(72)>7.215) + P(t(2) < — 7.215) =2 x (2.2 x 107'%) = 0.000

Correct to three decimal places the result is p-value = 0.000.

5. Since —7.215 < — 1.993, we reject Hy: 3, = 0 and conclude that there is evidence
from the data to suggest that sales revenue depends on price. Using the p-value to
perform the test, we reject Hy because 0.000 < 0.05.

For testing whether sales revenue is related to advertising expenditure, we have

1 HoZB3:Oal’ldH12837éO.
2. The test statistic, if the null hypothesis is true, is t = b3 /se(b3) ~ ty_k.
3

Using a 5% significance level, we reject the null hypothesis if #>1.993 or
t < —1.993. In terms of the p-value, we reject Hy if p < 0.05. Otherwise, we do
not reject Hy.

4. The value of the test statistic is

1.8626

= =2.72
! 0.6832 726

The p-value is given by

P(t(72)>2.726) + P(1(72) < — 2.726) = 2 x 0.004 = 0.008

5. Because 2.726 > 1.993, we reject Hy; the data support the conjecture that revenue is
related to advertising expenditure. The same test outcome can be obtained using the
p-value. In this case, we reject Hy because 0.008 < 0.05.

Note that the #-values —7.215 and 2.726 and their corresponding p-values 0.000 and 0.008
were reported in Table 5.2 at the same time that we reported the original least squares
estimates and their standard errors. Hypothesis tests of this kind are carried out routinely by
computer software, and their outcomes can be read immediately from the computer output
that will be similar to Table 5.2.

Significance of a coefficient estimate is desirable—it confirms an initial prior belief that a
particular explanatory variable is a relevant variable to include in the model. However, as
mentioned in Section 3.4.3, statistical significance should not be confused with economic
importance. If the estimated response of sales revenue to advertising had been b3 = 0.01
with a standard error of se(b3) = 0.005, then we would have concluded b5 is significantly
different from zero; but, since the estimate implies increasing advertising by $1,000
increases revenue by only $10, we would not conclude advertising is important. We should
also be cautious about concluding that statistical significance implies precise estimation.
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The advertising coefficient b3 = 1.8626 was found to be significantly different from zero,
but we also concluded the corresponding 95% interval estimate (0.501,3.224) was too
wide to be very informative. In other words, we were not able to get a precise estimate of 3.

5.5.2 ONE-TAIL HYPOTHESIS TESTING FOR A SINGLE COEFFICIENT

In Section 5.1 we noted that two important considerations for the management of Big
Andy’s Burger Barn were whether demand was price-elastic or price-inelastic and whether
the additional sales revenue from additional advertising expenditure would cover the costs
of the advertising. We now are in a position to state these questions as testable hypotheses,
and to ask whether the hypotheses are compatible with the data.

5.5.2a Testing for Elastic Demand
With respect to demand elasticity, we wish to know whether

e (3, >0:adecrease in price leads to a change in sales revenue that is zero or negative
(demand is price-inelastic or has an elasticity of unity)

* (2 <0: adecrease in price leads to an increase in sales revenue (demand is price-
elastic)

If we are not prepared to accept that demand is elastic unless there is strong evidence from
the data to support this claim, it is appropriate to take the assumption of an inelastic demand
as our null hypothesis. Following our standard testing format, we first state the null and
alternative hypotheses:

1. Hy:B2>0 (demand is unit-elastic or inelastic).
H,:B> <0 (demand is elastic).

2. To create a test statistic, we act as if the null hypothesis is the equality B, = 0.
Doing so is valid because if we reject Hy for 3, = 0, we also reject it for any 3, > 0.
Then, assuming that Hy:3; =0 is true, from (5.12) the test statistic is
t= bz/Se(bg)N I(N-K)-

3. The rejection region consists of values from the #-distribution that are unlikely to
occur if the null hypothesis is true. If we define ‘“‘unlikely” in terms of a 5%
significance level, then unlikely values of ¢ are those less than the critical value
10.05,72) = —1.666. Thus, we reject Hy if + < —1.666 or if the p-value < 0.05.

4. The value of the test statistic is

by  —7.908

=
se(by) 1.096

= —7.215

The corresponding p-value is P(t72,< — 7.215) = 0.000.

5. Since —7.215< —1.666, we reject Hp:[3, >0 and conclude that H;:[3, <0
(demand is elastic) is more compatible with the data. The sample evidence supports
the proposition that a reduction in price will bring about an increase in sales revenue.
Since 0.000 < 0.05, the same conclusion is reached using the p-value.

Note the similarities and differences between this test and the two-tail test of significance
performed in Section 5.5.1. The calculated #-values are the same, but the critical #-values
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are different. Not only are the values themselves different, but with a two-tail test there are
also two critical values, one from each side of the distribution. With a one-tail test there is
only one critical value, from one side of the distribution. Also, the p-value from the one-tail
test is usually half that of the two-tail test, although this fact is harder to appreciate from this
example because both p-values are essentially zero.

5.5.2b Testing Advertising Effectiveness

The other hypothesis of interest is whether an increase in advertising expenditure will bring
an increase in sales revenue that is sufficient to cover the increased cost of advertising. Since
such an increase will be achieved if 33 > 1, we set up the hypotheses:

Hy:B3 < 1and H;:B3> 1.

2. Treating the null hypothesis as the equality Hy: 83 = 1, the test statistic that has the #-
distribution when Hj is true is, from (5.12),

by 1

t se(by) ~ IN-K)

3. Choosing a = 0.05 as our level of significance, the relevant critical value is
t0.9572) = 1.666. We reject Hy if t > 1.666 or if the p-value < 0.05.

4. The value of the test statistic is

by — B3 1.8626 — 1

_ - =1.263
se(bs) 0.6832

The p-value of the test is P(t(n) > 1.263) = 0.105.

5. Since 1.263 < 1.666, we do not reject Hy. There is insufficient evidence in our
sample to conclude that advertising will be cost effective. Using the p-value to
perform the test, we again conclude that Hj cannot be rejected, because 0.105 > 0.05.
Another way of thinking about the test outcome is as follows: Because the estimate
b, = 1.8626 is greater than one, this estimate by itself suggests advertising will be
effective. However, when we take into account the precision of estimation, measured
by the standard error, we find that b, = 1.8626 is not significantly greater than one. In
the context of our hypothesis-testing framework, we cannot conclude with a
sufficient degree of certainty that B3 > 1.

5.5.3 HyPoTHESIS TESTING FOR A LINEAR COMBINATION OF COEFFICIENTS

Big Andy’s marketing adviser claims that dropping the price by 20 cents will be more
effective for increasing sales revenue than increasing advertising expenditure by $500. In
other words, she claims that —0.23, > 0.5B3. Andy does not wish to accept
this proposition unless it can be verified by past data. He knows that the estimated
change in expected sales from the price fall is —0.2b, = —0.2 x (—7.9079) = 1.5816,
and that the estimated change in expected sales from the extra advertising is
0.5h3 = 0.5 x 1.8626 = 0.9319, so the marketer’s claim appears to be correct. However,
he wants to establish whether the difference 1.5816 — 0.9319 could be attributable
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to sampling error, or whether it constitutes proof, at a 5% significance level, that
—0.2B, > 0.5B3. This constitutes a test about a linear combination of coefficients.
Since —0.2 3, > 0.5 B3 can be written as —0.2 B, — 0.5 B3 > 0, we are testing a hypothesis
about the linear combination —0.2 3, — 0.5 3.

Following our hypothesis testing steps, we have

1. Hy:—0.2B2—0.5B3 < 0 (the marketer’s claim is not correct)
H;:—0.2p3, — 0.5B3 > 0 (the marketer’s claim is correct)

2. Using (5.13) withc, = —0.2, ¢3 = 0.5 and all other ¢;’s equal to zero, and assuming
that the equality in Hy holds (—0.23, — 0.583 = 0), the test statistic and its
distribution when H, is true is

_ 020056
T se(—02b, — 05b3) Y

3. For a one-tail test and a 5% significance level, the critical value is g 95, 72) = 1.666.
We reject Hy if > 1.666 or if the p-value < 0.05.

4. To find the value of the test statistic, we first compute

se(—0.2by — 0.5b3) = \/m

(—0.2)% var(by) + (—0.5) var(bs)

12 x (=0.2) x (=0.5) x cov(by, by)

= 1/0.04 x 1.2012 + 0.25 x 0.4668 + 0.2 x (—0.0197)
= 0.4010

Then, the value of the test statistic is

—02by, —05b; 158158 — 0.9319
= = = 1.622
se(—0.2by — 0.5b3) 0.4010

The corresponding p-value is P(t(n) > 1.622) = 0.055.

5. Since 1.622 < 1.666, we do not reject Hy. At a 5% significance level, there is not
enough evidence to support the marketer’s claim. Alternatively, we reach the same
conclusion using the p-value, because 0.055 > 0.05.

5.6 Polynomial Equations

The multiple regression model that we have studied so far has the form

y=PB1+Pox2+ -+ Pxxx t+e (5.17)

Itis a linear function of variables (the x’s) and of the coefficients (the (3’s). However, (5.17)
is much more flexible than it at first appears. Although the assumptions of the multiple
regression model require us to retain the property of linearity in the (3’s, many different
nonlinear functions of variables can be specified by defining the x’s and/or y as
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transformations of original variables. Several examples of such transformations have
already been encountered for the simple regression model. In Chapter 2 the quadratic model
y = a; + axx? + eand thelog-linearmodel In(y) = y; + y2x + e were estimated. A detailed
analysis of these and other nonlinear simple regression models — a linear-log model, a log-log
model and a cubic model—was given in Chapter 4. The same kind of variable transformations
and interpretations of their coefficients carry over to multiple regression models. In this section
we are particularly interested in polynomial equations such as the quadratic y = B + Box +
B3x2 + e or the cubic y = o) + apx + asx? + aux’ + e. When we studied these models as
examples of the simple regression model, we were constrained by the need to have only one
right-hand-side variable, such as y = B; + B3x?> + e ory = a; + aux> + e. Now that we are
working within the framework of the multiple regression model, we can consider unconstrained
polynomials with all their terms included. Polynomials are a rich class of functions that can
parsimoniously describe relationships that are curved, with one or more peaks and valleys. We
begin with some examples from economics.

5.6.1 Cost AND PrODUCT CURVES

In microeconomics you studied “cost” curves and “product’ curves that describe a firm.
Total cost and total product curves are mirror images of each other, taking the standard
“cubic” shapes shown in Figure 5.2.

Average and marginal cost curves, and their mirror images, average and marginal product
curves, take quadratic shapes, usually represented as shown in Figure 5.3.

The slopes of these relationships are not constant and cannot be represented by regression
models that are “‘linear in the variables.” However, these shapes are easily represented by
polynomials. For example, if we consider the average cost relationship in Figure 5.3(a), a
suitable regression model is

AC =By +B20 + B30Q° +e (5.18)

This quadratic function can take the “U” shape we associate with average cost functions.
For the total cost curve in Figure 5.2(a), a cubic polynomial is in order,

TC = o) + 0+ 30> + a0 + e (5.19)

These functional forms, which represent nonlinear shapes, can still be estimated using the
least squares methods we have studied. The variables Q* and Q° are explanatory variables
that are treated no differently from any others.

Cost Product
TC

TP

Q Input
(a) (b)
FIGURE 5.2 (a) Total cost curve and (b) total product curve.
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Cost Product

MC

AP

MP

Q Input
(@) )
FIGURE 5.3 Average and marginal (a) cost curves and (b) product curves.

A difference in models of nonlinear relationships is in the interpretation of the
parameters, which are not themselves slopes. To investigate the slopes, and how we can
interpret the parameters, we need a little calculus. For the general polynomial function

y = ap + ayx + arx* + azx’ + 4 apx
the slope or derivative of the curve is

d
d—y =a; + 2ayx + 3a3x> + - - - —|—pa,,x’”1 (5.20)
by

This slope changes depending on the value of x. Evaluated at a particular value, x = x, the
slope is

d _
d_)yc = a1 + 2ayx0 + 3a3x5 + -+ + papxy ! (:21)

X=X0

For more on rules of derivatives, see Appendix A.3.1.
Using the general rule in (5.20), the slope of the average cost curve (5.18) is

dE(AC)
do

= B2 +2B30

The slope of the average cost curve changes for every value of Q and depends on the
parameters {3, and Bs. For this U-shaped curve, we expect 3, < 0 and B3 > 0.
The slope of the total cost curve (5.19), which is the marginal cost, is

dE(TC)

40 = oy + 2030 + 304 0°

The slope is a quadratic function of Q, involving the parameters oy, oz, and ay. For a U-
shaped marginal cost curve, we expect the parameter signs to be a; > 0, a3 < 0, and g > 0.

Using polynomial terms is an easy and flexible way to capture nonlinear relationships
between variables. As we have shown, care must be taken when interpreting the parameters
of models that contain polynomial terms. Their inclusion does not complicate least squares
estimation—with one exception. It is sometimes true that having a variable and its square or
cube in the same model causes collinearity problems. (See Chapter 6.4.)
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5.6.2 EXTENDING THE MODEL FOR BURGER BARN SALES

In the Burger Barn model SALES = 3, + B2PRICE + B3ADVERT + e, it is worth ques-
tioning whether the linear relationship between sales revenue, price, and advertising
expenditure is a good approximation of reality. Having a linear model implies that increasing
advertising expenditure will continue to increase sales revenue at the same rate irrespective of
the existing levels of sales revenue and advertising expenditure—that is, that the coefficient
B33, which measures the response of E(SALES) to a change in ADVERT, is constant; it does not
depend on the level of ADVERT. In reality, as the level of advertising expenditure increases, we
would expect diminishing returns to set in. To illustrate what is meant by diminishing returns,
consider the relationship between sales and advertising (assuming a fixed price) graphed in
Figure 5.4. The figure shows the effect on sales of an increase of $200 in advertising
expenditure when the original level of advertising is (a) $600 and (b) $1,600. Note that the
units in the graph are thousands of dollars, so these points appear as 0.6 and 1.6. At the smaller
level of advertising, sales increase from $72,400 to $74,000, whereas at the higher level of
advertising, the increase is a much smaller one, from $78,500 to $79,000. The linear model
with the constant slope 33 does not capture the diminishing returns.

What is required is a model where the slope changes as the level of ADVERT increases.
One such model having this characteristic is obtained by including the squared value of
advertising as another explanatory variable, making the new model

SALES = B, + B2PRICE + B3ADVERT + B4ADVERT? + ¢ (5.22)

Adding the term B4ADVERT? to our original specification yields a model in which the
response of expected revenue to a change in advertising expenditure depends on the level of
advertising. Specifically, by applying the polynomial derivative rule in (5.20), and holding
PRICE constant, the response of E(SALES) to a change in ADVERT is

AE(SALES) _ OE(SALES)

= = B3 + 2B4ADVERT (5.23)
AADVERT (PRICE held constant) OADVERT

The partial derivative sign “0” is used in place of the derivative sign “d” that we used in
(5.20) because SALES depends on two variables, PRICE and ADVERT, and we are holding
PRICE constant. See Appendix A.3.3 for further details about partial derivatives.
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FIGURE 5.4 A model where sales exhibits diminishing returns to advertising expenditure.
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We refer to OE(SALES)/OADVERT in (5.23) as the marginal effect of advertising on
sales. In linear functions, the slope or marginal effect is constant. In nonlinear functions, it
varies with one or more of the variables. To find the expected signs for 33 and 34, note that we
expect the response of sales revenue to a change in advertising to be positive when
ADVERT = 0. That is, we expect 33 > 0. Also, to achieve diminishing returns, the response
must decline as ADVERT increases. That is, we expect 34 < 0.

Using least squares to estimate (5.22) yields

SALES = 109.72 — 7.640 PRICE + 12.151 ADVERT — 2.768 ADVERT?

(5.24)
(se) (6.80) (1.046) (3.556) (0.941)
What can we say about the addition of ADVERT? to the equation? Its coefficient has the
expected negative sign and is significantly different from zero at a 5% significance level.
Moreover, the coefficient of ADVERT has retained its positive sign and continues to be
significant. The estimated response of sales to advertising is

OSALES

————— = 12.151 — 5.536 ADVERT
OADVERT

Substituting into this expression we find that when advertising is at its minimum value in the
sample of $500 (ADVERT = 0.5), the marginal effect of advertising on sales is 9.383. When
advertising is at a level of $2,000 (ADVERT = 2), the marginal effect is 1.079. Thus,
allowing for diminishing returns to advertising expenditure has improved our model both
statistically and in terms of meeting our expectations about how sales will respond to
changes in advertising.

€5.6.3 TuaeE OpTiIMAL LEVEL OF ADVERTISING: INFERENCE FOR A NONLINEAR
COMBINATION OF COEFFICIENTS®

Economic theory tells us to undertake all those actions for which the marginal benefit is
greater than the marginal cost. This optimizing principle applies to Big Andy’s Burger Barn
as it attempts to choose the optimal level of advertising expenditure. Recalling that SALES
denotes sales revenue or total revenue, the marginal benefit in this case is the marginal
revenue from more advertising. From (5.23), the required marginal revenue is given by the
marginal effect of more advertising B3 + 2B84ADVERT. The marginal cost of $1 of
advertising is $1 plus the cost of preparing the additional products sold due to effective
advertising. If we ignore the latter costs, the marginal cost of $1 of advertising expenditure is
$1. Thus, advertising should be increased to the point where

Bs + 2B4ADVERT, = 1

with ADVERT, denoting the optimal level of advertising. Using the least squares estimates
for B3 and B4 in (5.24), a point estimate for ADVERT) is

1 — b3 1—-12.1512

m == =
7 T2by T 2% (—2.76796)

=2.014

implying that the optimal monthly advertising expenditure is $2,014.

3 . . . .
This section contains advanced material.
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To assess the reliability of this estimate, we need a standard error and an interval estimate
for (I — b3)/2by. This is a tricky problem, and one that requires the use of calculus to solve.
What makes it more difficult than what we have done so far is the fact that it involves a
nonlinear function of b5 and b4. Variances of nonlinear functions are hard to derive. Recall
that the variance of a linear function, say, c3b3 + caba, is given by

var(csbs + caby) = c3var(bs) + civar(by) + 2c3cqcov(bs, by) (5.25)

Finding the variance of (1 — b3)/2by is less straightforward. The best we can do is find an
approximate expression that is valid in large samples. Suppose A = (1 — B3)/2B4 and
A = (1 — b3)/2by; then, the approximate variance expression is

2 2
Var(i) = (8%;) var(bs) + (%) var(by) + 2(8%;) <§—$4) cov(bs,bs)  (5.26)

This expression holds for all nonlinear functions of two estimators, not just
A= (1 — b3)/2bs. Also, note that for the linear case, where A = ¢3B3 + c4f4 and
A = ¢3b3 + caby, (5.26) reduces to (5.25). Using (5.26) to find an approximate expression
for a variance is called the delta method. For further details, consult Appendix 5B.5.

We will use (5.26) to estimate the variance of A =ADVERT, = (1 — b3)/2by, get its
standard error, and use that to get an interval estimate for A = ADVERT, = (1 — B3)/2B4. If
the use of calculus in (5.26) frightens you, take comfort in the fact that most software will
automatically compute the standard error for you.

The required derivatives are

o _ 1 o 1-Bs
OBy 2Bs  OBs  2p3

To estimate var ()A\) we evaluate these derivatives at the least squares estimates b3 and by.
Thus, for the estimated variance of the optimal level of advertising, we have

- 1\ —— 1 — b3\ ——— 1 1 —by\——
var(1) :(— 2_b4) var(bs) + <— Zb?) var(bs) + 2(— 2_b4> (— 2—17;‘.:) cov(bs, by)

1 : 1—12.151\?
() 12646+ (") x0.88477
(2 x 2.768) . " (2 x 2.7682> )

1 1—12.151
2 3.2887
* <2 X 2.768) (2 X 2.7682) .

= 0.016567

and
se(i) = v0.016567 = 0.1287

We are now in a position to get a 95% interval estimate for A\ = ADVERT,. When dealing
with a linear combination of coefficients in (5.13), and Section 5.4.2, we used the result
(% — 1) /se(A) ~ ty_x). This result can be used in exactly the same way for nonlinear
functions, but a difference is that the result is only an approximate one for large samples,
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even when the errors are normally distributed. Thus, an approximate 95% interval estimate
for ADVERT, is

(A — 1(0.975, mse(), A+ f(o.975,71)Se(i))
= (2.014 — 1.994 x 0.1287, 2.014 + 1.994 x 0.1287)
— (1757, 2271)

We estimate with 95% confidence that the optimal level of advertising lies between $1,757
and $2,271.

5.7 Interaction Variables

In the last section we saw how the inclusion of ADVERT? in the regression model for SALES
has the effect of making the marginal effect of ADVERT on SALES depend on the level of
ADVERT. What if we wanted the marginal effect of one variable to depend on the level
of another variable? How do we model this effect? To illustrate this idea we will consider a
life-cycle model for pizza consumption. Suppose that we are economists for Gutbusters
Pizza, and that we wish to study the effect of income and age on an individual’s expenditure
on pizza. For that purpose we take a random sample of 40 individuals, age 18 and older, and
record their annual expenditure on pizza (PIZZA), their income in thousands of dollars
(INCOME) and age (AGE). The first five observations are shown in Table 5.4. The full data
set is contained in the file pizza4.dat.
As an initial model, let us consider

PIZZA = B + B2AGE + B3INCOME + e (5.27)
The implications of this specification are as follows:

I. OE(PIZZA)/OAGE = B,: For a given level of income, the expected expenditure on
pizza changes by the amount [3, with an additional year of age. What would you
expect here? Based on our casual observation of college students, who appear to
consume massive quantities of pizza, we expect the sign of (3, to be negative. With
the effects of income removed, we expect that as a person ages his or her pizza
expenditure will fall.

2. OE(PIZZA)/OINCOME = Bs: For individuals of a given age, an increase in income
of $1,000 increases expected expenditures on pizza by Bs. Since pizza is probably a
normal good, we expect the sign of (33 to be positive. The parameter 33 might be
called the marginal propensity to spend on pizza.

Table 5.4 Pizza Expenditure Data

PIZZA INCOME AGE
109 19.5 25
0 39.0 45
0 15.6 20
108 26.0 28

220 19.5 25
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Estimates of (5.27), with #-statistics in parentheses, are

PIZZA = 342.88 — 7.576AGE + 1.832INCOME
) (—3.27) (3.95)

The signs of the estimated parameters are as we anticipated. Both AGE and INCOME have
significant coefficients, based on their z-statistics.

These are the implications of the model in (5.27). However, is it reasonable to expect that,
regardless of the age of the individual, an increase in income by $1,000 should lead to an
increase in pizza expenditure by $1.83? Probably not. It would seem more reasonable to
assume that as a person grows older, his or her marginal propensity to spend on pizza
declines. That is, as a person ages, less of each extra dollar is expected to be spent on pizza.
This is a case in which the effect of income depends on the age of the individual. That is, the
effect of one variable is modified by another. One way of accounting for such interactions is
to include an interaction variable that is the product of the two variables involved. Since
AGE and INCOME are the variables that interact, we will add the variable (AGE x INCOME)
to the regression model. The result is

PIZZA = By + BLAGE + B3INCOME + B4(AGE x INCOME) + e (5.28)

In this revised model, the effects of INCOME and AGE are

l. OE(PIZZA)/OAGE = B, + B4INCOME: The effect of AGE now depends on
income. As a person ages, his or her pizza expenditure is expected to fall, and,
because 34 is expected to be negative, the greater the income, the greater will be the
fall attributable to a change in age.

2. OE(PIZZA)/OINCOME = B3 + B4AGE : The effect of a change in income on
expected pizza expenditure, which is the marginal propensity to spend on pizza,
now depends on AGE. If our logic concerning the effect of aging is correct, then 34
should be negative. Then, as AGE increases, the value of the partial derivative declines.

The estimated model (5.28) that includes the product (AGE x INCOME) is

PIZZA = 161.47 — 2.977AGE + 6.980 INCOME — 0.1232 (AGE x INCOME)
(1) (— 0.89) (2.47) (— 1.85)

The estimated coefficient of the interaction term is negative and significant at the o = .05
level using a one-tail test. The signs of other coefficients remain the same, but AGE, by itself,
no longer appears to be a significant explanatory factor. This suggests that AGE affects pizza
expenditure through its interaction with income—that is, on the marginal propensity to
spend on pizza.

Using these estimates, let us estimate the marginal effect of age upon pizza expenditure
for two individuals—one with $25,000 income and one with $90,000 income.

OE(PIZZA)

— by + byINCOME
OAGE 2+ b4INCO

—2.977 — 0.1232INCOME

—6.06 for INCOME = 25
—14.07 for INCOME = 90
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That is, we expect that an individual with $25,000 income will reduce pizza expenditures by
$6.06 per year, whereas the individual with $90,000 income will reduce pizza expenditures
by $14.07 per year.

5.7.1 LoG-LINEAR MODELS

In Chapter 4.5.1 we studied the simple log-linear model In(y) = 3; + [x and discovered
a useful interpretation of the coefficient of x: for a one-unit change in x the approximate
percentage change in y is 1003,%. This result extends naturally to the multiple regression
model and to models with interaction and squared variables. Consider a wage equation
where In(WAGE) depends on years of education (EDUC) and years of experience
(EXPER)

In(WAGE) = B, + B.EDUC + B:EXPER + e (5.29)

In this model the approximate percentage change in WAGE for an extra year of experience,
with education held constant, is 10083%. Similarly, the approximate percentage change
in WAGE for an extra year of education, with experience held constant, is 1003,%. If we
believe the effect of an extra year of experience on wages will depend on the level of
education, then we can add an interaction variable

In(WAGE) = B, + B.EDUC + B3EXPER + B4(EDUC x EXPER) + ¢ (5.30)

In this case the effect of another year of experience, holding education constant, is
roughly

Aln(WAGE) _ By + B4EDUC

AEXPER  |gpuc fixed
Since 100 times the log difference is approximately the percentage difference (see Chap-
ter 4.5), the approximate percentage change in wage given a one-year increase in experience
is 100(B3 + B4EDUC)%. Using the Current Population Survey data (cps4_small.dat),
we estimate (5.30) to obtain

In(WAGE) = 1.392 + 0.09494 EDUC + 0.00633 EXPER
— 0.0000364 (EDUC x EXPER)

This result suggests that the greater the number of years of education, the less valuable
is an extra year of experience. Similarly, the greater the number of years of experience,
the less valuable is an extra year of education. For a person with 8 years of education, we
estimate that an additional year of experience leads to an increase in wages of approximately
100(0.00633 — 0.0000364 x 8)% = 0.60%, whereas for a person with 16 years of educa-
tion, the approximate increase in wages from an extra year of education is 100
(0.00633 — 0.0000364 x 16)% = 0.57%.
If there is a quadratic term on the right-hand side, as in

In(WAGE) = B, + B2EDUC + B3EXPER + B4(EDUC x EXPER) + BsEXPER® + ¢
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then, using a little calculus, we find that a one-year increase in experience leads to an
approximate percentage wage change of

%AWAGE = 100(B3 + B4EDUC + 2BsEXPER)%

The percentage wage change from an extra year of experience depends on both the level of
education and the level of experience.

5.8 Measuring Goodness-of-Fit

For the simple regression model studied in Chapter 4, we introduced the coefficient of
determination R” as a measure of the proportion of variation in the dependent variable that is
explained by variation in the explanatory variable. In the multiple regression model the same
measure is relevant and the same formulas are valid, but now we talk of the proportion of
variation in the dependent variable explained by all the explanatory variables included in the
linear model. The coefficient of determination is

,_ SSR_ SN\ —5)
SST 3N (y;i — ?)2
SSE PR

SST (v —)°

(5.31)

where SSR is the variationin y “explained” by the model (sum of squares of regression), SST
is the total variation in y about its mean (sum of squares total), and SSE is the sum of squared
least squares residuals (errors) and is the portion of the variation in y that is not explained by
the model.

The notation y; refers to the predicted value of y for each of the sample values of the
explanatory variables. That is,

Vi = by + byxpp + baxiz + - - - + bgxix

The sample mean y is both the mean of y; and the mean of y;, so long as the model includes an
intercept (3; in this case).

The value for SSE will be reported by almost all computer software, but sometimes
SST is not reported. Recall, however, that the sample standard deviation for y, which is
readily computed by most software, is given by

and so

SST = (N — 1)s;
In the original model for Big Andy’s Burger Barn (see Table 5.2), we find that SST = 74 x
6.488537% = 3115.482 and SSE = 1718.943. Using these sums of squares, we have

N 2
¥ e 1718.943
Rzzl—%:l—izo.MS
¥ (i — ) 3115.482
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The interpretation of R is that 44.8% of the variation in sales revenue is explained by
the variation in price and by the variation in the level of advertising expenditure. It means
that, in our sample, 55.2% of the variation in revenue is left unexplained and is due to
variation in the error term or to variation in other variables that implicitly form part of the
error term. Adding the square of advertising to the Burger Barn model (see (5.24)) increased
the R to 0.508. Thus an additional 6% of the variation in sales is explained by including this
variable.

As mentioned in Section 4.2.2, the coefficient of determination is also viewed as a
measure of the predictive ability of the model over the sample period or as a measure of
how well the estimated regression fits the data. The value of R? is equal to the squared
sample correlation coefficient between y; and y;. Since the sample correlation measures
the linear association between two variables, if R? is high, it means that there is a
close association between the values of y; and the values predicted by the model, y;. In
this case the model is said to “fit” the data well. If R? is low, there is not a close association
between the values of y; and the values predicted by the model, y;, and the model does not fit
the data well.

One final note is in order. The intercept parameter [3; is the y-intercept of the regression
“plane,” as shown in Figure 5.1. If, for theoretical reasons, you are certain that the
regression plane passes through the origin, then 3; = 0 and can be omitted from the model.
While this is not a common practice, it does occur, and regression software includes an
option that removes the intercept from the model. If the model does not contain an intercept
parameter, then the measure R? given in (5.31) is no longer appropriate. The reason it is no
longer appropriate is that without an intercept term in the model,

or SST # SSR + SSE. To understand why, go back and check the proof in Appendix 4B of
Chapter 4. In the sum of squares decomposition the cross-product term Zf-vzl( Yi — y)é; no
longer disappears. Under these circumstances it does not make sense to talk of the
proportion of total variation that is explained by the regression. Thus, when your model
does not contain a constant, it is better not to report R?, even if your computer displays one.

5.9 Exercises
Answers to exercises marked * appear at www.wiley.com/college/hill.
5.9.1 PROBLEMS

5.1*  Consider the multiple regression model
yi = xinP1 +xpP2 +x3B3 + e
with the nine observations on y;, x;1, X;» and x;3 given in Table 5.5.

Use a hand calculator to answer the following questions:

(a) Calculate the observations in terms of deviations from their means. That is, find
Xp = Xp —X2,Xj3 = X3 — X3, and y; =y, — .

(b) Caleulate Yy;xj, Xxj5, Lyjxs, Xxjpxfs, and s

(c) Usethe expressionsin Appendix 5A to find least squares estimates by, b,, and bs.
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Table 5.5 Data for Exercise 5.1

Yi Xil Xi2 X3
1 1 0 1
2 1 1 -2
3 1 2 1
—1 1 -2 0
0 1 1 —1
—1 1 -2 —1
2 1 0 1
1 1 —1 1
2 1 1 0
(d) Find the least squares residuals ¢y, e, . . ., €9.

(e) Find the variance estimate 6°.

(f) Use (5.9) to find the sample correlation between x, and x3.
(g) Find the standard error for b,.

(h) Find SSE, SST, SSR, and R>.

5.2% Use your answers to Exercise 5.1 to
(a) Compute a 95% interval estimate for 3,
(b) Test the hypothesis Hy:B, = 1 against the alternative that Hy : 8, # 1

5.3  Consider the following model that relates the proportion of a household’s budget
spent on alcohol WALC to total expenditure TOTEXP, age of the household head
AGE, and the number of children in the household NK.

WALC = By + BoIn(TOTEXP) + B3AGE + B4NK + e

The data in the file london.dat were used to estimate this model. See Exercise 4.10 for
more details about the data. Note that only households with one or two children are
being considered. Thus, NK takes only the values one or two. Output from estimating
this equation appears in Table 5.6.

Table 5.6 Output for Exercise 5.3

Dependent Variable: WALC
Included observations: 1519

Variable Coefficient Std. Error t-Statistic Prob.
C 0.0091 0.0190 0.6347
In(TOTEXP) 0.0276 6.6086 0.0000
AGE 0.0002 —6.9624 0.0000
NK —0.0133 0.0033 —4.0750 0.0000
R-squared Mean dependent var 0.0606
S.E. of regression S.D. dependent var 0.0633

Sum squared resid 5.752896
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(a) Fill in the following blank spaces that appear in this table.
(1) The r-statistic for b
(ii) The standard error for b,
(iii) The estimate b;
(iv) R?
) &
(b) Interpret each of the estimates b,, b3, and by.
(c) Compute a 95% interval estimate for 33. What does this interval tell you?
(d) Test the hypothesis that the budget proportion for alcohol does not depend on the
number of children in the household. Can you suggest a reason for the test outcome?

The data set used in Exercise 5.3 is used again. This time it is used to estimate how the

proportion of the household budget spent on transportation WTRANS depends on

the log of total expenditure In(TOTEXP), AGE, and number of children NK. The

output is reported in Table 5.7.

(a) Write out the estimated equation in the standard reporting format with standard
errors below the coefficient estimates.

(b) Interpret the estimates b,, b3, and by4. Do you think the results make sense from an
economic or logical point of view?

(c) Are there any variables that you might exclude from the equation? Why?

(d) What proportion of variation in the budget proportion allocated to transport is
explained by this equation?

(e) Predict the proportion of a budget that will be spent on transportation, for both
one- and two-children households, when total expenditure and age are set at their
sample means, which are 98.7 and 36, respectively.

This question is concerned with the value of houses in towns surrounding Boston. It
uses the data of Harrison, D., and D. L. Rubinfeld (1978), ‘““Hedonic Prices and the
Demand for Clean Air,” Journal of Environmental Economics and Management, 5,
81-102. The output appears in Table 5.8. The variables are defined as follows:

VALUE = median value of owner-occupied homes in thousands of dollars
CRIME = per capita crime rate

NITOX = nitric oxide concentration (parts per million)

ROOMS = average number of rooms per dwelling

AGE = proportion of owner-occupied units built prior to 1940

Table 5.7 Output for Exercise 5.4

Dependent Variable: WTRANS
Included observations: 1519

Variable Coefficient Std. Error t-Statistic Prob.
C —0.0315 0.0322 —0.9776 0.3284
In(TOTEXP) 0.0414 0.0071 5.8561 0.0000
AGE —0.0001 0.0004 —0.1650 0.8690
NK —0.0130 0.0055 —2.3542 0.0187
R-squared 0.0247 Mean dependent var 0.1323

S.D. dependent var 0.1053
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Table 5.8 Output for Exercise 5.5

Dependent Variable: VALUE
Included observations: 506

Variable Coefficient Std. Error t-Statistic Prob.
C 28.4067 5.3659 5.2939 0.0000
CRIME —0.1834 0.0365 —5.0275 0.0000
NITOX —22.8109 4.1607 —5.4824 0.0000
ROOMS 6.3715 0.3924 16.2378 0.0000
AGE —0.0478 0.0141 —3.3861 0.0008
DIST —1.3353 0.2001 —6.6714 0.0000
ACCESS 0.2723 0.0723 3.7673 0.0002
TAX —0.0126 0.0038 —3.3399 0.0009
PTRATIO —1.1768 0.1394 —8.4409 0.0000

5.6

5.7

5.8%

DIST = weighted distances to five Boston employment centers
ACCESS = index of accessibility to radial highways

TAX = full-value property-tax rate per $10,000

PTRATIO = pupil-teacher ratio by town

(a) Report briefly on how each of the variables influences the value of a home.

(b) Find 95% interval estimates for the coefficients of CRIME and ACCESS.

(c) Test the hypothesis that increasing the number of rooms by one increases the
value of a house by $7,000.

(d) Test as an alternative hypothesis H that reducing the pupil-teacher ratio by 10
will increase the value of a house by more than $10,000.

Suppose that from a sample of 63 observations, the least squares estimates and the
corresponding estimated covariance matrix are given by

by 2 3 -2 1
b| =1 3], cov(h)=1-2 4 0
bs ~1 1 0 3

Test each of the following hypotheses and state the conclusion:
(@ B=0

(®) B1 +2B2=5

© B =B+ PBs=4

What are the standard errors of the least squares estimates b, and b3 in the regres-
sion model y = B; + Boxz + B3x3 + e where N = 202, SSE = 11.12389, ry; =
—0.114255, 3| (xip — %) = 1210.178, and XY (x;3 — X3)* = 30307.57?

An agricultural economist carries out an experiment to study the production
relationship between the dependent variable YIELD = peanut yield (pounds per
acre) and the production inputs

NITRO = amount of nitrogen applied (hundreds of pounds per acre)
PHOS = amount of phosphorus fertilizer (hundreds of pounds per acre)
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A total N = 27 observations were obtained using different test fields. The estimated
quadratic model, with an interaction term, is

YIELD = 1.385 + 8.01 INITRO + 4.800PHOS — 1.944NITRO?
—0.778PHOS? — 0.567NITRO x PHOS

(a) Find equations describing the marginal effect of nitrogen on yield and the
marginal effect of phosporus on yield. What do these equations tell you?

(b) What are the marginal effects of nitrogen and of phosphorus when (i) NITRO and
PHOS =1 and (ii) when NITRO = 2 and PHOS = 2? Comment on your
findings.

(c) Test the hypothesis that the marginal effect of nitrogen is zero, when
(iv) PHOS =1 and NITRO =1
(v) PHOS =1 and NITRO = 2
(vi) PHOS =1 and NITRO = 3
Note: The following information may be useful:

var(by + 2bs + bg) = 0.233
var(by + 4bs + bg) = 0.040
var(b, + 6by + bg) = 0.233

(d) @ [This part requires the use of calculus] For the function estimated, what levels
of nitrogen and phosphorus give maximum yield? Are these levels the optimal
fertilizer applications for the peanut producer?

5.9  When estimating wage equations, we expect that young, inexperienced workers will
have relatively low wages and that with additional experience their wages will rise,
but then begin to decline after middle age, as the worker nears retirement. This life-
cycle pattern of wages can be captured by introducing experience and experience
squared to explain the level of wages. If we also include years of education, we have
the equation

WAGE = B + B2EDUC + B3EXPER + B4EXPER? + ¢

(a) What is the marginal effect of experience on wages?

(b) What signs do you expect for each of the coefficients 3,, B3, and 34? Why?

(c) After how many years of experience do wages start to decline? (Express your
answer in terms of 3’s.)

(d) The results from estimating the equation using 1000 observations in the file
cps4c_small.dat are givenin Table 5.9 on page 204. Find 95% interval estimates for

(1) The marginal effect of education on wages

(i) The marginal effect of experience on wages when EXPER = 4
(iii) The marginal effect of experience on wages when EXPER = 25
(iv) The number of years of experience after which wages decline

5.9.2 CompPUTER EXERCISES

5.10 Use a computer to verify your answers to Exercise 5.1, parts (c), (e), (f), (g), and (h).
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Table 5.9 Wage Equation with Quadratic Experience

Variable Coefficient Std. Error t-Stat Prob.
C —13.4303 2.0285 —6.621 0.000
EDUC 22774 0.1394 16.334 0.000
EXPER 0.6821 0.1048 6.507 0.000
EXPER? —0.0101 0.0019 —5.412 0.000

Covariance Matrix for Least Squares Estimates

C EDUC EXPER EXPER?

C
EDUC

4.114757339 —0.215505842 —0.124023160 0.001822688
—0.215505842 0.019440281 —0.000217577 0.000015472

EXPER —0.124023160 —0.000217577 0.010987185 —0.000189259
EXPER? 0.001822688 0.000015472 —0.000189259 0.000003476

5.11

5.12

(a) The file lond_small.dat contains a subset of 500 observations from the bigger
file london.dat. Use the data in the file lond_small.dat to estimate budget share
equations of the form

W = By + B2In(TOTEXP) + B3AGE + B4NK + e

for all budget shares (food, fuel, clothing, alcohol, transportation, and other) in
the data set. Report and discuss your results. In your discussion, comment on how
total expenditure, age, and number of children influence the various budget
proportions. Also comment on the significance of your coefficient estimates.

(b) Commodities are regarded as luxuries if 3, > 0 and necessities if 3, < 0. For
each commodity group test Hy: 3, < 0 against H; : 3, > 0 and comment on the
outcomes.

The file cocaine.dat contains 56 observations on variables related to sales of cocaine
powder in northeastern California over the period 1984—-1991. The data are a subset
of those used in the study Caulkins, J. P. and R. Padman (1993), “Quantity
Discounts and Quality Premia for Illicit Drugs,” Journal of the American Statistical
Association, 88, 748=757. The variables are

PRICE = price per gram in dollars for a cocaine sale

QUANT = number of grams of cocaine in a given sale

QUAL = quality of the cocaine expressed as percentage purity
TREND = a time variable with 1984 = 1 up to 1991 = 8

Consider the regression model

PRICE = B + B2QUANT + B3QUAL + B4TREND + ¢

(a) What signs would you expect on the coefficients B,, 33, and 34?

(b) Use your computer software to estimate the equation. Report the results and
interpret the coefficient estimates. Have the signs turned out as you expected?

(c) What proportion of variation in cocaine price is explained jointly by variation in
quantity, quality, and time?

(d) It is claimed that the greater the number of sales, the higher the risk of getting
caught. Thus, sellers are willing to accept a lower price if they can make sales in
larger quantities. Set up Hp and H; that would be appropriate to test this
hypothesis. Carry out the hypothesis test.



5.9 EXERCISES 205

(e) Test the hypothesis that the quality of cocaine has no influence on price against
the alternative that a premium is paid for better-quality cocaine.

(f) What is the average annual change in the cocaine price? Can you suggest why
price might be changing in this direction?

5.13 The file br2.dat contains data on 1,080 houses sold in Baton Rouge, Louisiana,
during mid-2005. We will be concerned with the selling price (PRICE), the size of the
house in square feet (SQFT), and the age of the house in years (AGE).

(a) Use all observations to estimate the following regression model and report the
results

PRICE = 1 + B2SOFT + B3AGE + ¢

(i) Interpret the coefficient estimates.

(i) Find a 95% interval estimate for the price increase for an extra square foot
of living space—that is, OPRICE /OSQFT .

(iii) Test the hypothesis that having a house a year older decreases price by
1000 or less (Hy : B3 > —1000) against the alternative that it decreases
price by more than 1000 (H; : B3 < —1000).

(b) Add the variables SQFT? and AGE? to the model in part (a) and re-estimate the
equation. Report the results.

(i) Find estimates of the marginal effect OPRICE/OSQFT for the smallest
house in the sample, the largest house in the sample, and a house with 2300
SQFT. Comment on these values. Are they realistic?

(ii) Find estimates of the marginal effect OPRICE /OAGE for the oldest house
in the sample, the newest house in the sample, and a house that is 20 years
old. Comment on these values. Are they realistic?

(iii) Find a 95% interval estimate for the marginal effect 9PRICE /OSQFT for a
house with 2300 square feet.

(iv) For a house that is 20 years old, test the hypothesis

PRICE PRICE
0 > —1000 against H; : 87
OAGE

“OAGE = < ~1000

0:

(c) Add the interaction variable SQFT x AGE to the model in part (b) and re-
estimate the equation. Report the results. Repeat parts (i), (ii), (iii), and (iv) from
part (b) for this new model. Use SQFT = 2300 and AGE = 20.

(d) From your answers to parts (a), (b), and (c), comment on the sensitivity of the
results to the model specification.

5.14 The file br2.dat contains data on 1,080 houses sold in Baton Rouge, Louisiana,
during mid-2005. We will be concerned with the selling price (PRICE), the size of the
house in square feet (SQFT), and the age of the house in years (AGE). Define a new
variable that measures house size in terms of hundreds of square feet,
SQFTI00 = SQFT/100.

(a) Estimate the following equation and report the results:

In(PRICE) = «; + axSQFTI100 + a3 AGE + 0, ,AGE* + ¢
(b) Interpret the estimate for .

(c) Find and interpret estimates for OIn(PRICE)/OAGE when AGE =5 and
AGE = 20.
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(d) Find expressions for OPRICE/OAGE and OPRICE/OSQFTIO00. (Ignore the
error term.)

(e) Estimate OPRICE /OAGE and OPRICE /OSQFTI100 for a 20-year-old house with
a living area of 2300 square feet.

(f) Find the standard errors of your estimates in (e).

(g) Find a 95% interval estimate for the marginal effect OPRICE /OSQFTI00 for a
20-year-old house with 2300 square feet.

(h) For a 20-year-old house with 2300 square feet, test the hypothesis

OPRICE OPRICE
: > —1 i H :—
0 000 against 1 9AGE

Reconsider the presidential voting data (fair4.dat) introduced in Exercise 2.14.
(a) Estimate the regression model

VOTE = B, + B.GROWTH —+ B;INFLATION + e

Report the results in standard format. Are the estimates for (3, and 33 significantly
different from zero at a 10% significance level? Did you use one-tail tests or two-
tail tests? Why?

(b) Assume the inflation rate is 4%. Predict the percentage vote for the incumbent
party when the growth rate is (i) —3%, (ii) 0%, and (iii) 3%.

(c) Test, as an alternative hypothesis, that the incumbent party will get the majority
of the expected vote when the growth rate is (i) —3%, (ii) 0%, and (iii) 3%. Use a
1% level of significance. If you were the president seeking re-election, why
might you set up each of these hypotheses as an alternative rather than a null
hypothesis?

Data on the weekly sales of a major brand of canned tuna by a supermarket chainin a

large midwestern U.S. city during amid-1990’s calendar year are contained in the file

tuna.dat. There are 52 observations on the variables. SAL/ = unit sales of brand no.

1 canned tuna; APRI = price per can of brand no. 1 canned tuna; APR2, APR3 =

price per can of brands no. 2 and 3 of canned tuna.

(a) The prices APRI, APR2, and APR3 are expressed in dollars. Multiply the
observations on each of these variables by 100 to express them in terms of
cents; call the new variables PRI, PR2, and PR3. Estimate the following
regression model and report the results:

SALI = By + BoPRI + B3PR2 + B4PR3 + ¢

(b) Interpret the estimates b, b3, and by. Do they have the expected signs?

(c) Using suitable one-tail tests and a 5% significance level, test whether each of the
coefficients b,, b3, and b4 are significantly different from zero.

(d) Using a 5% significance level, test the following hypotheses:

(i) A l-cent increase in the price of brand one reduces its sales by 300 cans.
(i) A 1-centincrease in the price of brand two increases the sales of brand one
by 300 cans.
(iii) A I-cent increase in the price of brand three increases the sales of brand
one by 300 cans.
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(iv) The effect of a price increase in brand two on sales of brand one is the
same as the effect of a price increase in brand three on sales of brand
one. Does the outcome of this test contradict your findings from parts (ii)
and (iii)?

(v) If prices of all 3 brands go up by 1 cent, there is no change in sales.

(a) Reconsider the model SALI = 31 + B2PRI + B3PR2 + B4PR3 + e from Exer-
cise 5.16. Estimate this model if you have not already done so, and find a 95%
interval estimate for expected sales when PRI = 90, PR2 = 75,and PR3 =75.
What is wrong with this interval?

(b) Estimate the alternative model In(SALI) = a1 + a, PRI + a3PR2 + a4PR3 + ¢,
and find a 95% interval estimate for expected log of sales when
PRI =90, PR2 =75, and PR3 = 75. Convert this interval into one for sales,
and compare it with what you got in part (a).

(c) How does the interpretation of the coefficients in the model with In(SAL/) as the
dependent variable differ from that for the coefficients in the model with SALI as
the dependent variable?

What is the relationship between crime and punishment? This important question has
been examined by Cornwell and Trumbull* using a panel of data from North
Carolina. The cross sections are 90 counties, and the data are annual for the years
1981-1987. The data are in the file crime.dat.

Using the data from 1987, estimate a regression relating the log of the crime rate
LCRMRTE to the probability of an arrest PRBARR (the ratio of arrests to offenses),
the probability of conviction PRBCONYV (the ratio of convictions to arrests), the
probability of a prison sentence PRBPRIS (the ratio of prison sentences to convic-
tions), the number of police per capita POLPC, and the weekly wage in construction
WCON. Write areport of your findings. In your report, explain what effect you would
expect each of the variables to have on the crime rate and note whether the estimated
coefficients have the expected signs and are significantly different from zero. What
variables appear to be the most important for crime deterrence? Can you explain the
sign for the coefficient of POLPC?

Use the data in cps4_small.dat to estimate the following wage equation
In(WAGE) = B + B2EDUC + B3EXPER + B4sHRSWK + e

(a) Report the results. Interpret the estimates for 3,, B3, and 4. Are these estimates
significantly different from zero?

(b) Test the hypothesis that an extra year of education increases the wage rate by at
least 10% against the alternative that it is less than 10%.

(c) Find a 90% interval estimate for the percentage increase in wage from working
an additional hour per week.

(d) Re-estimate the model with the additional variables EDUC x EXPER, EDUC 2,
and EXPER?. Report the results. Are the estimated coefficients significantly
different from zero?

(e) For the new model, find expressions for the marginal effects 9In(WAGE)/
OEDUC and 01n(WAGE)/OEXPER.

4 “Estimating the Economic Model of Crime with Panel Data,” Review of Economics and Statistics, 76, 1994,
360-366. The data was kindly provided by the authors.
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(f) Estimate the marginal effect O In(WAGE)/JEDUC for two workers Jill and
Wendy; Jill has 16 years of education and 10 years of experience, while Wendy
has 12 years of education and 10 years of experience. What can you say about the
marginal effect of education as education increases?

(g) Test, as an alternative hypothesis, that Jill’s marginal effect of education is
greater than that of Wendy. Use a 5% significance level.

(h) Estimate the marginal effect 9 In(WAGE)/OEXPER for two workers Chris and
Dave; Chris has 16 years of education and 20 years of experience, while Dave has

16 years of education and 30 years of experience. What can you say about the
marginal effect of experience as experience increases?

(i) For someone with 16 years of education, find a 95% interval estimate for the
number of years of experience after which the marginal effect of experience
becomes negative.

In Section 5.6.3 we discovered that the optimal level of advertising for Big Andy’s
Burger Barn, ADVERT), satisfies the equation 33 + 2B4ADVERT, = 1. Using a 5%
significance level, test whether each of the following levels of advertising could be
optimal: (a) ADVERT, = 1.75,(b) ADVERT, = 1.9, and (¢) ADVERT, = 2.3. What
are the p-values for each of the tests?

Each morning between 6:30am and 8:00am Bill leaves the Melbourne suburb of
Carnegie to drive to work at the University of Melbourne. The time it takes Bill to
drive to work (TIME) depends on the departure time (DEPART), the number of red
lights that he encounters (REDS), and the number of trains that he has to wait for at the
Murrumbeena level crossing (TRAINS). Observations on these variables for the 231
working days in 2006 appear in the file commute.dat. TIME is measured in minutes.
DEPART is the number of minutes after 6:30am that Bill departs.

(a) Estimate the equation

TIME = B, + B,DEPART + B3REDS + B4TRAINS + ¢

Report the results and interpret each of the coefficient estimates, including the
intercept 3.

(b) Find 95% interval estimates for each of the coefficients. Have you obtained
precise estimates of each of the coefficients?

(c) Using a 5% significance level, test the hypothesis that each red light delays
Bill by two minutes or more against the alternative that the delay is less than 2
minutes.

(d) Using a 10% significance level, test the hypothesis that each train delays Bill by
3 minutes.

(e) Using a 5% significance level, test the null hypothesis that leaving at 7:30am
instead of 7:00am will make the trip at least 10 minutes longer (other things
equal).

(f) Using a 5% significance level test the hypothesis that the minimum time it takes
Bill is less than or equal to 20 minutes against the alternative that it is more than
20 minutes. What assumptions about the true values of (3,, 33, and B4 did you
have to make to perform this test?

Reconsider the commuting time model estimated in Exercise 5.21 using the data file
commute.dat

TIME = By + B.DEPARTS + B3REDS + B4TRAINS + e
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(a) Using a 5% significance level, test the hypothesis that the delay from a train is
equal to 3 times the delay from a red light.

(b) Using a 5% significance level, test the null hypothesis that the delay from a train
is at least 3 times greater than the delay from a red light against the alternative
that it is less than 3 times greater.

(c) Worried that he may miss an important meeting if there are 3 trains, Bill leaves
for work at 7:10am instead of 7:15aM. Using a 5% significance level, test the null
hypothesis that leaving 5 minutes earlier is enough time to allow for 3 trains
against the alternative that it is not enough time.

(d) Suppose that Bill encounters no red lights and no trains. Using a 5% significance
level, test the hypothesis that leaving Carnegie at 7:15aMm is early enough to get
him to the university before 8:00am against the alternative it is not. (Carry out the
test in terms of the expected time E(TIME).)

Lion Forest has been a very successful golf professional. However, at age 45 his game
is not quite what it used to be. He started the pro-tour when he was only 20 and he has
been looking back examining how his scores have changed as he got older. In the file
golf.dat, the first column contains his final score (relative to par) for 150 tournaments.
The second column contains his age (in units of 10 years). There are scores for 6
major tournaments in each year for the last 25 years. Denoting his score by SCORE
and his age by AGE, estimate the following model and obtain the within-sample
predictions:

SCORE = B + B,AGE + B3AGE® + B4AGE’ + ¢

(a) Test the null hypothesis that a quadratic function is adequate against the cubic
function as an alternative. What are the characteristics of the cubic equation that
might make it appropriate?

(b) Use the within-sample predictions to answer the following questions:

(i) At what age was Lion at the peak of his career?
(i1)) When was Lion’s game improving at an increasing rate?
(iii) When was Lion’s game improving at a decreasing rate?
(iv) Atwhat age did Lion start to play worse than he had played when he was 20
years old?
(v) When could he no longer score less than par (on average)?
(c) When he is aged 70, will he be able to break 100? Assume par is 72.

The file rice.dat contains 352 observations on 44 rice farmers in the Tarlac region of
the Philippines for the 8 years 1990 to 1997. Variables in the data set are tonnes of
freshly threshed rice (PROD), hectares planted (AREA), person-days of hired and
family labor (LABOR), and kilograms of fertilizer (FERT). Treating the data set as
one sample with N = 352, proceed with the following questions:

(a) Estimate the production function

In(PROD) = B, + BoIn(AREA) + B3In(LABOR) + Byln(FERT) + ¢

Report the results, interpret the estimates, and comment on the statistical
significance of the estimates.

(b) Using a 1% level of significance, test the hypothesis that the elasticity of
production with respect to land is equal to 0.5.
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(c) Find a 95% interval estimate for the elasticity of production with respect to
fertilizer. Has this elasticity been precisely measured?

(d) Using a 5% level of significance, test the hypothesis that the elasticity of
production with respect to labor is less than or equal to 0.3 against the alter-
native that it is greater than 0.3. What happens if you reverse the null and
alternative hypotheses?

5.25 Consider the following aggregate production function for the U.S. manufacturing
sector:

Y = ak® LB EP MPsexp{e}

where Y is gross output, K is capital, L is labor, E is energy, and M denotes other

intermediate materials. The data underlying these variables are given in index form in

the file manuf.dat.

(a) Show that taking logarithms of the production function puts it in a form suitable
for least squares estimation.

(b) Estimate the unknown parameters of the production function and find the
corresponding standard errors.

(c) Discuss the economic and statistical implications of these results.

Appendix 5A Derivation of Least Squares Estimators

In Appendix 2A we derived expressions for the least squares estimators b; and b; in the
simple regression model. In this appendix we proceed with a similar exercise for the multiple
regression model; we describe how to obtain expressions for by, b, and b3 in a model with
two explanatory variables. Given sample observations on y, x,, and x3, the problem is to find
values for By, B2, and B3 that minimize

S(B1,B2,B3) = X (vi — B1 — Paxio — Bsxin)’

L

Tz

The first step is to partially differentiate S with respect to 31, B2, and 33 and to set the first-
order partial derivatives to zero. This yields

oS
$ = 2NB] + ZBZinZ + 2832xi3 - 22}’1
1
oS )
3B~ 2B1 X2 + 2Ba 2y + 2B3Exinxis — 22Xy
oS 2
a_B3 = 2B 2x3 + 2Bo2xipxiz + 2B3 a3 — 22Xy

Setting these partial derivatives equal to zero, dividing by 2, and rearranging yields

Nby + Yxinby + Xx3by = Xy;
Sxpbi + Yxhby + Yxpxinby = Yxny; (5A.1)
Sxinbi + Xxnxiby + Xxzby = Yxiy;
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The least squares estimators for by, by, and b3 are given by the solution of this set of three
simultaneous equations, known as the normal equations. To write expressions for this
solution it is convenient to express the variables as deviations from their means. That is, let
Vi =Yi—Y, Xp=Xp—X2, X3=X3—X3
Then the least squares estimates by, b,, and b3 are
by =y — byXy — b3X;
_ (yixn) (Ex) — (Zyixg) (Expxs)

(Z’Ciz ) (Zx*%z ) (szzxn)
_ Cyixi) (2x3) — (Xyixg) (Xxixh)

( ?22)( 2) - (Sexs)”

For models with more than three parameters the solutions become quite messy without using
matrix algebra; we will not show them. Computer software used for multiple regression
computations solves normal equations like those in (5A.1) to obtain the least squares
estimates.

Appendix 5B Large Sample Analysis

In the multiple regression model, if assumptions MR1-MRS5 hold (or SR1-SR5 in the
simple regression model) we are able to show that the least squares estimators are Best,
Linear, Unbiased Estimators (BLUE). These properties are called ‘““finite sample’” proper-
ties because they do not depend on the sample size N, and will hold if the sample is any size
N > K.Inthis section we discuss additional properties of the least squares estimator that can
be established if samples are imagined becoming infinitely large. In econometrics and
statistics these are called asymptotic properties, with the term asymptotic implying
the analysis of limiting behavior, here as N — oco. First we describe and discuss the
properties, and then extend the Monte Carlo simulations from Appendices 2G and 3C to
illustrate them.

5B.1 CONSISTENCY

When choosing econometric estimators, we do so with the objective in mind of obtaining an
estimate that is close to the true but unknown parameter with high probability. Consider
the simple linear regression model y; = B + Box; +e;, i = 1,...,N. Suppose that for

decision-making purposes we consider that obtaining an estimate of 3, within ““epsilon” of
the true value is satisfactory. The probability of obtaining an estimate ““close’ to 3, is

P(Br—e<by<PBr+e) (5B.1)

An estimator is said to be consistent if this probability converges to 1 as the sample size
N — oc. Or, using the concept of a limit, the estimator b, is consistent if

A}lm P(Bz —e<by <P+ 8) =1 (5B.2)
—00
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B, —¢ By B, te
FIGURE 5B.1 An illustration of consistency.

What does this mean? In Figure 5B.1 we depict the probability density functions f (bN,«)
for the least squares estimator b, based on samples sizes Ny>N3>N,>Nj. As the sample size
increases, the probability density function becomes narrower. Why is that so? First of all, the
least squares estimator is unbiased if MR1-MRS5 hold, so that E(b,) = ;. This property is
true in samples of all sizes. As the sample size changes, the center of the pdfs remains at 3.
The variance of the least squares estimator b, in the simple regression model is given in
(2.15), and for the multiple regression model in (5.8). In each case, we established that as the
sample size N gets larger, the variance of the estimator b, becomes smaller. As N increases,
the center of the pdf remains fixed at E(b,) = B, and the variance decreases, resulting in
probability density functions such as f (le.). The probability that b, falls in the interval
Bo —e < by < By + ¢ is the area under the pdf between these limits. As the sample size
increases, the probability of b, falling within the limits increases toward 1. In large samples
we can say that the least squares estimator will provide an estimate close to the true
parameter with high probability.

The property of consistency applies to many estimators, even ones that are biased in finite
samples. For example, the estimator Ba=bhy+1 /N is abiased estimator. The amount of the
bias is

bias(B2) = E(B2) — B2 = —

For the estimator B, the bias converges to zero as N — oo. That is

A}glgo bias(B,) = A}glgo [E(B2) —B2] =0 (5B.3)
In this case the estimator is said to be asymptotically unbiased. Consistency for an
estimator can be established by showing that the estimator is either unbiased or asympto-
tically unbiased, and that its variance converges to zero as N — oo,

lim var(B,) =0 (5B.4)

N—oo

Conditions (5B.3) and (5B.4) are intuitive, and sufficient to establish an estimator to be
consistent.



APPENDIX 5B LARGE SAMPLE ANALYSIS 213

Because the probability density function of a consistent estimator collapses around the
true parameter, and the probability that an estimator b, will be close to the true parameter (3,
approaches one, the estimator b, is said to ““‘converge in probability’ to 3,, with the “in
probability”” part reminding us that it is the probability of being ““close’ in (5B.2) that is the
key factor. Several notations are used for this type of convergence. One is b, 2 32, withthe p
over the arrow indicating “‘probability.” A second is plim(by) = By, with “plim” being
short for “probability limit.” N=oo

5B.2 AsymPTOTIC NORMALITY

In most cases econometric estimators in models satisfying MR1-MR5 (SR1-SRS) can be
shown to have an approximate normal distribution in large samples. As N — oo the
probability density function of the standardized estimator has a distribution that approaches
the standard normal

L)
var(by)

We say in this case that the estimator is asymptotically normal and generally write
bk LN(B]“ var(bk))

This result is similar to the Central Limit Theorem given in Appendix C.3.4.

The consequence of this powerful result is that we can apply #-tests, F-tests and the usual
interval estimation and prediction interval procedures even if MR6 (SR6) does not hold, as
long as the sample is sufficiently large. “How large?” is a tricky question, because we
cannot provide a single number. In each application the answer depends on the nature of the
data and the error term. The more complicated the model, the larger the sample likely to
be required for the approximate normality to hold. In section 5B.3, we carry out some
Monte Carlo simulations so that you can see for yourself how many observations are
required before the normal approximation becomes satisfactory.

5B.3 MoNTE CARLO SIMULATION

In Appendices 2G and 3C, we introduced a Monte Carlo simulation to illustrate the repeated
sampling properties of the least squares estimators. In this appendix we use the same
framework to illustrate the repeated sampling performances of interval estimators and
hypothesis tests when the errors are not normally distributed.

Recall that the data generation process for the simple linear regression model is given
by

yi = E(yilxi) +e; = B1 + Boxi +e;, i=1,...,N
The Monte Carlo parameter values are 3; = 100 and 3, = 10. The value of x; is 10 for the

first N/2 observations and 20 for the remaining N/2 observations, so that the regression
functions are

E(yilx; = 10) = 100 4 10x; = 100 + 10 x 10 =200, i=1,...,N/2
E(yilx; = 20) = 100 + 10x; = 100 + 10 x 20 =300, i=(N/2)+1,...,.N
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Table 5B.1 The least squares estimators, tests, and interval estimators

N b, b, G REJECT COVER CLOSE
20 99.4368 10.03317 2496.942 0.0512 0.9538 0.3505
40 100.0529 9.99295 2498.030 0.0524 0.9494 0.4824
100 99.7237 10.01928 2500.563 0.0518 0.9507 0.6890
200 99.8427 10.00905 2497.473 0.0521 0.9496 0.8442
500 100.0445 9.99649 2499.559 0.0464 0.9484 0.9746
1,000 100.0237 9.99730 2498.028 0.0517 0.9465 0.9980

In this appendix we modify the simulation in an important way. The random errors are
independently distributed but with normalized chi-square distributions. In Figure B.7 the
pdfs of several chi-square distributions are shown. We will use the X<24) in this simulation,
which is skewed with a long tail to the right. Let v; ~ X24 . The expected value and
variance of this random variable are E(v;) = 4 and var(v;) = 8, respectively, so that z; =
(vi—4) / /8 has mean zero and variance one. The random errors we employ are ¢; = 50z;
so that var(e;|x;) = o> = 2500, as in earlier appendices.

As before we use M = 10000 Monte Carlo simulations, using the sample sizes N = 20,
40 (as before), 100, 200, 500, and 1000. Our objectives are to illustrate that the least squares
estimators of B, B, and the estimator &2 are unbiased, and to investigate whether
hypothesis tests and interval estimates perform as they should, even though the errors
are not normally distributed. As in Appendix 3C we

e Test the null hypothesis Hy : 3, = 10 using the one-tail alternative H : 3, >0.
The critical value for the test is the 95th percentile of the -distribution with
N — 2 degrees of freedom, 7(9s5y-2)- We report the percentage of rejections from
this test (REJECT).

e Construct a 95% interval estimate for 3, and report the percentage of the estimates
(COVER) that contain the true parameter, 3, = 10.

* Compute the percentage of the time (CLOSE) that the estimates b, are in the interval
B2 £ 1, or between 9 and 11. Based on our theory, this percentage should increase
toward 1 as N increases.

The Monte Carlo simulation results are summarized in Table 5B.1.

The unbiasedness of the least squares estimators is verified by the average values of
the estimates’ being very close to the true parameter values for all sample sizes. The
percentage of estimates that are ““close’ to the true parameter value rises as the sample
size N increases, verifying the consistency of the estimator. Because the rejection rates
from the 7-test are close to 0.05 and the coverage of the interval estimates is close to 95%,
the approximate normality of the estimators is very good. To illustrate, in Figure 5B.2
we present the histogram of the estimates b, for N = 40. It is very bell-shaped, with
the superimposed normal density function fitting it very well. The non-normality of the
errors does not invalidate inferences in this model, even with only N = 40 sample
observations.
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FIGURE 5B.2 Histogram of the estimates b, for N = 40.

€5B.4 TuE DELTA METHOD®

In Chapters 3.6, 5.3, 5.4, and 5.5 we discussed estimating and testing linear combinations of
parameters. If the regression errors are normal, the results discussed there hold in finite
samples. If the regression errors are not normal, then those results hold in large samples, as
we discussed in the previous section. You will be surprised in the subsequent chapters how
many times we become interested in nonlinear functions of regression parameters. For
example, we may find ourselves interested in functions such as g;(B2) = exp(B2/10) or
22(B1,B2) = B1/B2- The first function g;(B2) is a function of the single parameter (.
Intuitively, we would estimate this function of B, using g;(b2). The second function
22(B1, B2) is a function of two parameters, and, similarly, g,(b;, b, ) seems like a reasonable
estimator. Working with nonlinear functions of the estimated parameters requires additional
tools, because even if the regression errors are normal, nonlinear functions of them are not
normally distributed in finite samples, and usual variance formulas do not apply.

5B.4.1 Nonlinear Functions of a Single Parameter
The key to working with nonlinear functions of a single parameter is the Taylor series
approximation discussed in Appendix A, Derivative Rule 9. It is stated there as

df (x)
f@) =@+ 2 (k- a) =f(@) +f(@)(x - a)
The value of a function at x is approximately equal to the value of the function at x = a, plus
the derivative of the function evaluated at x = a, times the difference x—a. This approx-
imation works well when the function is smooth and the difference x—a is not too large. We
will apply this rule to g;(b,) replacing x with b, and a with B,

g1(b2) = g1(B2) + &1(B2) (b2 — B2) (5B.5)

5 This section contains advanced material.
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This Taylor series expansion of g;(b,) shows the following:

1. If E(b2) = B2 then E[gi(b2)] = g1(B2).

2. If b, is a biased but consistent estimator, so that b, 2 B, then g1(by) LA 21(B2)-
3. The variance of g, (b,) is given by var|g, (b,)] 2 [¢} (B,)]*var(b,), which is known
as the delta method. The delta method follows from working with the Taylor series
approximation

var(gy (by)] = var[gi (B2) + &1(B2) (b2 — B2)]

)
)

= var(g} (B2) (b2 — B2)] because g1(B2) is not random
= [g)(B2)*var(by — B;)  because g} (B,) is not random
= [} (B2)]*var(b,) because 3, is not random

4. The estimator g;(b,) has an approximate normal distribution in large samples,

81(b2) “N [g1(Ba). [6l (B2 var(by)| (5B.6)

The asymptotic normality of g;(b,) means that we can test nonlinear hypotheses
about B,, such as Hy : g1(B2) = ¢, and we can construct interval estimates of g1 (32)
in the usual way. To implement the delta method we replace B3, by its estimate
b, and the true variance var(b,) by its estimate var(b,) which, for the simple
regression model, is given in (2.21).

5B.4.2 The Delta Method Illustrated
To illustrate the delta method calculations, we use one sample from the N = 20 simulation,
stored as mc2.dat. For these data values the fitted regression is

$ = 87.44311 + 10.68456x
(se) (33.8764) (2.1425)

The nonlinear function we consider is g; (B2) = exp(B2/10). In the simulation we know the

value of B, = 10, so the value of the function is g;(B2) = exp(B2/10) = ¢! = 2.71828. To

apply the delta method we need the derivative, g}(B2) = exp(B2/10) x (1/10) (see

Appendix A, Derivative Rule 7), and the estimated covariance matrix in Table 5B.2.
The estimated value of the nonlinear function is

81(b2) = exp(b2/10) = exp(10.68456/10) = 2.91088

Table 5B.2 Estimated covariance matrix

by by

by 1147.61330 —68.85680
by —68.85680 4.59045
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Table 5B.3 Estimates and tests of g1(B2) = exp(B,/10)

N exp(b2/10) REJECT
20 2.79647 0.0556
40 2.75107 0.0541

100 2.73708 0.0485
200 2.72753 0.0503
500 2.72001 0.0522

1000 2.71894 0.0555

The estimated variance is
varlgi (b2)] = [¢) (b2)"Var(b2)) = [exp(b2/10) x (1/10) *var(by))
= [exp(10.68456/10) x (1/10)]24.59045 = 0.38896

and se[g;(b2)] = 0.62367. The 95% interval estimate is

g1(b2) = 110075 20_2y5€[g1 (b2)] = 2.91088 £ 2.10092 x 0.62367 = [1.60061, 4.22116]

5B.4.3 Monte Carlo Simulation of the Delta Method

In this Monte Carlo simulation, again using 10,000 samples, we compute the value of the
nonlinear function estimator g, (b,) = exp(b,/10) for each sample, and we test the true null
hypothesis Hy : g1(B2) = exp(B2/10) = e! = 2.71828 using a two-tail test at the 5% level
of significance. We are interested in how well the estimator does in finite samples (recall that
the random errors are not normally distributed and that the function is nonlinear), and how
well the test performs. In Table 5B.3 we report the average of the parameter estimates for
each sample size. Note that the mean estimate converges towards the true value as N
becomes larger. The test at the 5% level of significance rejects the true null hypothesis about
5% of the time. The test statistic is

_alb) 271828
 se[gi(bo)] =2

The fact that the #-test rejects the correct percentage of the time implies not only that the
estimates are well behaved, but that the standard error in the denominator is correct, and that
the distribution of the statistic is ““close” to its limiting standard normal distribution.

The histogram of the estimates for sample size N = 40 in Figure 5B.3 shows only the
very slightest deviation from normality, which is why the #-test performs so well.

& ¢5B.5 TuE DELTA METHOD EXTENDED®

When working with functions of two (or more) parameters, the approach is much the same,
but the Taylor series approximation changes to a more general form. For a function of two
parameters the Taylor series approximation is

S This section contains advanced material. For an advanced discussion (requires matrix algebra) of the general case
see William Greene, Econometric Analysis 6e, (Upper Saddle River, NJ: Pearson Prentice-Hall, 2008), 1055—1056.
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FIGURE 5B.3 Histogram of gi(by) = exp(by/10).

2(b1,b2) =2 g2(B1,B2) +

0g2(B1,B2)
OB

0g>(B1,B2)

(b1 —B1) + 9B,

(b2 — B2) (5B.7)
If E(bl) = Bl and E(bz) = Bz then E[gz(bl,bz)] = gQ(Bl, Bz)

If b, and pb2 are consistent estimators, so that b 2, B, and b, LN B2, then
g2(b1,b2) — 82(B1,B2)-

The variance of g, (b, b,) is given by the delta method as

2 2
var(ga (b1, by)] & [w} var(b;) + [w} var(b,)

0B B2
(5B.8)
agz(BlaBZ) 8g2(Bl7 BZ)
—1—2[ OB ] [ 0B, :|COV(b1,b2)

The estimator g,(b;,b;) has an approximate normal distribution in large samples,

g2(b1,b2) ~N(g2(B1,B2), var[gx(by,b2)]) (5B.9)

The asymptotic normality of g, (b;, by ) means that we can test nonlinear hypotheses
such as Hy : g2(B1, B2) = ¢, and we can construct interval estimates of g»(B1, B2)
in the usual way. In practice we evaluate the derivatives at the estimates b, and by,
and the variances and covariances by their usual estimates from equations like those
for the simple regression model in (2.20)—(2.22).

5B.5.1 The Delta Method Illustrated: Continued
The nonlinear function of two parameters that we consider is g2(B1, 82) = B1/B2- To employ
the delta method we require the derivatives (see Appendix A, Derivative Rules 3 and 6)
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Table 5B.4 Estimates g;(by,by) = by /b,

N by /by

20 11.50533
40 10.71856
100 10.20997
200 10.10097
500 10.05755
1000 10.03070

Og2(B1,B2) _ 1

0B B2

and

0g2(B1,B2) _ B1

B2 B3

The estimate ga(by,b2) = by /by = 87.44311/10.68456 = 8.18406 and its estimated
variance is

— 1

= 22.61857

The resulting 95% interval estimate for b, /b, is [—1.807712, 18.17583]. While all this
seems incredibly complicated, most software packages will compute at least the estimates
and standard errors automatically. And now that you understand the calculations, you can be
confident when you use the ‘“‘canned’ routines.

5B.5.2 Monte Carlo Simulation of the Extended Delta Method

The mean estimates in Table 5B.4 show that there is some bias in the estimates for small
samples sizes. However, the bias diminishes as the sample size increases and is close to the
true value, 10, when N = 100.

The Monte Carlo simulated values of g»(by, b2) = by /b, are shown in Figure 5B.4a and
5B.4b from the experiments with N = 40, and N = 200. With sample size N = 40 there is
pronounced skewness. With N = 200 the distribution of the estimates is much more
symmetric and b