AWS AppSync
AWS AppSync Developer Guide

. _____________________________ __ ____________________________________|
AWS AppSync: AWS AppSync Developer Guide
Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



AWS AppSync AWS AppSync Developer Guide

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.




AWS AppSync AWS AppSync Developer Guide

Table of Contents

1 elo] 1 4T I PSPPSR PSPPSR 1
(0] 01 Ta <] =] o 2
Launch @ SamPle SCREMIA ... vn i et e et e e e e e e e e e e et e e et e e et eaaanan 2
Launch @ SamPle SCREMIA ... un i et e et e et e e e e e e e e e e e 2
Taking @ Tour Of the CONSOLE .....uiuniii it e e e e e e e s eaaeeans 3
SCREMA DESIGNET «.uiiiiiiiiiiei ettt ettt et et et et et et et et e e e e e e e e s e ean s e eaneaneaneenees 3
RESOLVEr CONFIGUIATION L.uiiiiiiiiii ittt ettt et et e et s et s et e ea e e e aaeeanearneaenaannas 3
=] o [ [ PPN 3
(01 UT=] o 1< TS 3

RUN QUENES @NA MULATIONS .ottt ettt et ettt ettt a e et en e e e enenesenenesenenennenens 3
Add Data with @ GraphQL MUtation .........ouiiiniiiii e e e e 4
Retrieve Data with @ GraphQL QUEIY ...cuuiuniiiiii ettt et e e e e e ees 4
RUNNING @N APPLICAtION .uiiniiiii ettt ettt et et et et et et et ea e e eaneaneanenns 5
N Y =T o L PP PPN 5

System Overview and ArcChiteCTUIE ........ouinii et ettt et e et e e e e e eenae 6
AFCRITECEUNE «oeee ettt et et et et et et et e e e e e e st e e e e e e e e e e e e e e eens 6
(@] aTelT o) &3 PP PP PR PPNt 6
(CTr= o] 0[O ]I o o )Y APPSR PP PRPPRRE 6
[0]01=] =1 4 o] s I PP PP PPN 6
Vot [0 o E PRSPPI 6
DAta SOUICE ettt et e st e e et et et ea s e e e et s e e et en e e eaans 6
RESOLVET <. ettt et ettt et ettt et ettt e e e aas 7
Lo [T 0 1 41 PPN 7
AWS APPSYNC CLIENT «.eeeiieieiie et ettt et et et e et et e et e e e e e e e e e e e e s e e e eneens 7

GIrAPNQL OVEIVIBW . euitiiii ittt et e et et et e et et et e et et et et en et ansaanaetneseansnetasnssnsnssennesesnsnees 8
Designing @ GraphQL APl ... une ettt ettt ettt et et et et et et et et et et etaeanenaenaesaeanennees 10
Designing YOUr SCREMIA ....euiniiii ittt et e et et et et et e e e e ea e e eaneaneanas 11
Creating an EMPtY SChema .. ..ottt e et e e e e e eaaees 11

Adding @ ROOt QUENY TYPE c.ueniniiiieti ettt ettt et e et s e et et et et et e e et e e e e s e eeneeneens 11

DEfiNING @ TOAO TYPE .oeuniiniiineiieie ettt et et et e et e et e et e et s et e e etaseansetnsatneaaneaneeansennsennees 11
AddiNg @ MULAtION TYPE ..eiiiiiiiiiei ittt ettt et et et et et ea et eaenenenenenennas 12
Modifying the TOdo With @ STAtUS .....ceuviiuiiiiiiiii ettt e e e e e e e eans 12

S U] 1Y al g1 o] 4 o] 1PN 13

FUMhEr REAAING . .ueniiiiiiiiii ittt ettt ettt et et et e e e e e e e e e e e eenae 13

Advanced - Relations and Pagination ...........cvouiiiiiiiii e 13

Interfaces and Unions in GraphQL ....c..euniiiiiiii e e et e et et et et et et eaeanaas 14

ALtaching @ Data SOUICE ...euiinii ittt ettt et ettt et et et et et et et et et et et eaneaaeaneenennenns 22
(Optional) AUtOMATIC PrOVISION .......iuieiitiiiii e e e ee et e e e e e e e e ee e e ee e e eeaneeneennan 22

AddiNG @ DAt SOUICE ..ueuniiiiiiii ittt ettt et et et tn e e en e e ta s e ta e tnseneansenennaenns 22
CONFIGUIING RESOLVEIS ....uiiiiiiiiiii ittt ettt et et e et s et e et e et e e ate et s e s s et e et s aaneaaeanseensaanns 22
Create YOUr First RESOLVEN .....vniiiii ittt e e et e e et eaeenenennens 22

Adding a ResoLVer fOr MULAtIONS .......ccuiiuriiiiiiiii e et e e et e et e et e et e e eeaeenneeans 23

AdVANCEA RESOLVELS ...ueuiiiiiit ettt ettt ettt et e et e ee e s e et s e ta s e ea s e easeneaa e enseneees 23

USING YOUE APl oottt ettt et et e et e e et e et e et et e e e eaeneaenenaaens 24
(Optional) Provision from SCREMA ........iiiiiiie et e e et e e e e e e e e e ans 25

el 1111 o T P T P PR PP PP PP PPPPPTPRPRt 25

Provision from SCREMA .......iiiiiii ettt e e e e e e et s et e ea e et e e eannas 25

(Optional) Import from AmMazon DYNAmMODB .........ccuviiuiiiniiiiiireiee et e e e e ea e eaneeans 26
IMport @ DYNamODB Table ......ouiiniiiiiiii ettt ettt e e e e 27

Example Schema from IMPOrt ... et e e e e e e e e aaaas 27

BUILAING @ CLIENME AP -teniiiii ittt et et et et et et et et e e et s e et s e e e e e et e e eaneeneens 31
BUilding @ REACTIS CLIENT AP - .eniniiiiiiiiiiei et et et ettt et et et e e e e e e e e eaeaneanes 31
[27] (o] I o TU I 7= o 1 o E PSPPSR 31

Get the GraphQL APl ENAPOINt ....ueuiiiiiiiii et e et et e e e e e e e e e aanan 32




AWS AppSync AWS AppSync Developer Guide

Download a Client APPLICAtION ....cuininiiiii et aeaas 32
Understanding the React SAamMPLe APD ...ceu ittt ettt ea e eeans 32
Import the AWS AppSync SDK iNtO YOUF APP ..ceuiiniiieiieiieei ettt ettt e e e e eeneeens 33

TSt YOUr APPLICATION «.u.ininiiiiii ettt e et e e e e e e et e e e e s e e e eanas 37
OFfliNg SEEEINGS «.neenii ittt et e e e et et e e et et e e e e eanae 37
Make Your Application REaL TiME .....iuuiiiiiiiiiiie et e e et e et et et eae et aaanns 38
COMPLEX OBJEELS ..ttt ettt et et e et e et et e et e e et eaa e et e eaaeeaeenneenns 40
CoNFlict RESOIULION ...eeeniiei et ettt e e et e e e e e e eans 43
BUilding @ React Native CLIENT AP «uiunieiiiiiiiieie ettt et e e et e e et s e e e s ae e e aneens 44
BEfOrE YOU BOGIN ..euiiiiiiiiiiiii ettt et e ea et e e et e et aaeanaan 31

Get the GraphQL API ENAPOINt ...uiuniiiiiiiiii ittt e e e e e e e e e e e e eanaanas 32
Download a Client APPLICAtION ....cuininiiiii et aeaas 32
Understanding the React Native Sample AP ..o e e 45
Import the AWS AppSync SDK iNtO YOUF APP ..ceuiiniiieiieiieei ettt ettt e e e e eeneeens 33

BCE A o 0T aY o] o] Lo | 4 o] o NPT 37
OFfliNg SEEEINGS .neeniie ittt et e e e et et e e et et e e e e eanae 37
Make Your Application REaL TiME .....iuuiiiiiiiiiiie et e e et e et et et eae et aaanns 38
CoNFlict RESOLULION ...eeeeiiei ettt e e et e et e e e e eaneeans 43
Building @ JavaScript CLENt AP ...ceueeeiieii ettt et et et e e e et e e e e e eenns 54
BEfOrE YOU BOGIN ..ouiiniiiiiiii ettt ettt ettt e et e et et a et a e aan 31

Get the GraphQL AP ENAPOINt ...uiiniiiiiiiiii et e e e e e e e e e e e e e eanaanas 32
Create @ Client APPLICAtioN ... e e e e e et ea et et e e eae et aaaans 55
BUILAING @N 10S CLIENT AP «uueiueiiiie ittt ettt et et ettt et e et e et e et e et etn e een e eenseaneeaneeneanneens 58
L == (== o Y N 58
Download a Client APPLICAtION ... c..iuiiniiiii e aeaas 32

Set up the Code Generation for GraphQLOPErations ........cccveuviiiiiiiiiiiiiiiei e e 59

Set up Dependency on the AWS APPSYNC SDK ......cuuiiiiiiiiieie e e e 61
Convert the App to Use AWS AppSync for the Backend ..........ccooouiiiiiiiiiiiiiiiii e 62
Make YOUr APP REAL TIMIE «ouuiuiiiiitit ittt et e et et e et e e et e e et et et e e e e eanaaneanenns 66
Integrating iNto the BUild PrOCESS ......cuuiieiiiiiiiiie ettt a e e e e e aaas 67
COMPLEX OBJECLS ..ttt ettt et e et e et et e et et et et ean e eaa e eaaeeaeenneenns 40
CoNFlict RESOIULION ...eeeniiei e et et et e e et e e e e e e e eans 43
BUilding an Android CLENT AP ..eeiuiiiiiiii et e e s e e e e e e e s ee e e eeea s aaaneas 70
Create @n APl .. et 58
Download a Client APPLICAtION ....cuiuiniiiii et aeaas 32

(€] - Te | LY 1 o PP TP PT PR PPRPPI 71
Code Generation for GraphQL Operations ..........ccueiuiiiiiiinieiiii et e e 72

Call the SEIVICE «.eeeieie ettt et et e e e e e e e eaeeans 73
OPLIMISEIC UPAAteS ...ttt ettt et et et et e e e e e e eaeeneeneens 78
OFfliNg MULALIONS ..cenieiie e ettt et e e e et et et e e e e e eaneenns 78

Data SOUrCES aNd RESOLVELS ......iuniii ettt ettt ettt et et e e et e et e et e et e et et et et e et e et e et eeneaneeanenns 80
Tutorial: DYNamODB RESOLVELS .....cuuiuiiiiiiiiiiie et ee e ee et et e ete e e eteeie et e et et et et aaeetaaneeneenennees 80
Setting up Your DYNamODB Tables ....c.uiuniiiiiiiiiieee e e e eieeteeieeaeete et et aaeeneeaeennens 80
Creating Your GraphQL AP ...ttt et e et e e e e e e e e e ae e e ee e e anens 81
DefiniNg @ BasiC "POSE" APl ...ttt ee et e e e et e eie et e et et e ete et e ete et ete et et eaeaaaes 81
Configuring the Data Source for the DynamoDB Tables .........ccoviiuiiiiiiiiiiiiiiieiieieeieeeeeeeeanee 82
Setting up the "addPost" resolver (DynamoDB Putltem) .........ccoevviniiiiiiiiiiiiiiiiiec e 82
Setting up the "getPost" Resolver (DynamoDB GEtIteM) .....c.vvuiiniiniiniiiiiiiieiieiie e e 85
Create an updatePost mutation (DynamoDB Updateltem) .........ccccoveiiiiiiiiiiiiiiiiiiieieeeeeeen, 87
Modifying the "updatePost" resolver (DynamoDB Updateltem) ..........ccoveeuviiniiiiiiiiiiiiiiiiiieennes 89
Create upvotePost and downvotePost mutations (DynamoDB Updateltem) ...........cccceveenneennenn. 93
Setting up the "deletePost" resolver (DynamoDB DeletePost) ........cccviviiiiiiiiiiiiiiiiiiiiiiiieieanns 96
Setting up the "allPost" resolver (DyNamoDB SCaN) ......ccuviuiiuiiniieiriieiriie et e eeeeeeeneenaens 100
Setting up the "allPostsByAuthor" resolver (DynamoDB QUEIY) ......oeuveviiuiiniiniiniieeieeeneeneennes 104
USING SOES .ottt ettt et et ettt et e e e e enas 107
USING LiSES @NA MaPS ..eniiiiieiie ettt ettt et e et et et e et e eb et e et eeneeaneeeneenns 113

(@e] 3 el (T o] o EO T OO PP PPTPPI 115




AWS AppSync AWS AppSync Developer Guide

Tutorial: Lambda RESOLVELS ........eiieie et ettt e e e e e eaeeans 115
Create @ Lambda FUNCHION ......iuniiiii ettt et et e e et eeeeanae 115
Configure data source for AWS Lambda ......couiiiiiiiiiiiie e 117
Creating @ GraphQL SChEMA . ..ot a e aas 117
CONFIGUIING FESOLVETS . euiniiiiiit ettt e et e e e et et et e e et et et eaneaaaneenaaneens 22
Testing your GraphQL APl ... e ettt e e et e e et e e et s ae e e ae e e ae e anes 119
RELUINMING EITOIS L.eiinitiii ittt e et e et e et e et e e ea et e et e et e eaeaneneanens 120
Advanced Use Case: BatChing .....c.ocuuiiuiiiiiiiiii ettt e e e 122

Tutorial: Amazon Elasticsearch Service RESOLVENS ........cuuiiiiiiniiiii et 127
Create @ New Amazon ES DOMAIN c..cuiuiiniiniiiiiiiie ettt ettt et eneens 128
Configure Data Source for Amazon ES ... 128
CONNECEING @ RESOIVEL «..uiiiiiiiii ittt et e e e e e e e e e ee e e ae e e anaaneaans 128
Modifying YOUr SEAIrCRES ......cuniiiiii ettt e e e e e e e e eens 130
Adding Data to AMAzon ES ...t e e 130
Retrieving @ Single DOCUMENT .....cuniii ettt e e et e e e ea e eaeenns 131
Perform Queries and MULATIONS .....o.iuiiiiiiiii e n e ae e 132
BEST PractiCes . .ueniiiiiiiiii ettt e e eas 132

TULOrial: LOCAL RESOLVELS ...ttt ettt et e e e et e et e et et et e e e e b e enaeeaaees 132
Create the Paging ApPLICAtion .........iiiiniiiiiii e e e e e e e 133
Send and SUDSCHDE t0 PAGES . .uiuiiii i a e 133

Tutorial: Combining GraphQL RESOLVEIS ....cuuiuiiiiiiieiiiieie ettt ee e e e e ee et e ee e e ee e eaneeneanasanan 134
EXAMPLE SCREMIA . oeiiiie ettt et ettt et et e e e e e eans 134
Alter data through rESOLVEIS ......eeeieiiie et e e e e e e s e e e e aneeaes 135
DynamoDB and AmaAzon ES ...t et e e e e e 136

REAL-TIME DAt ..eeiiiieiieii ettt ettt et et et et et et e et e et e et e ea e etn s et e et e eb et et et ean e eaeeaeenns 138
GraphQL Schema Subscription DIr€CHiVES .......c..euniiiiiiiie ettt ea e e 138
Using Subscription ArQUMENTS .....c.uiuniiiiii et ettt ettt et e et e et e et et eeneeaneeaneenns 139

SY=Tel1 ] 1) A TP PR 141

F N o I A X014 o [ = 4 o] PP 74

TNV VS VoY \Y I NT  d g Lo g =Y i o] o IR 142

AMAZON_COGNITO_USER_POOLS AUthOFiZation ........c.eeuuiiiiiiiieie et 143

Fine-Grained ACCESS CONTIOL ...cuuniei ittt et et e ettt et e e e e e eaaeeaeeaaees 144

Filtering INformation .....o. oot et e et a e 146

AULNOTMIZATION USE CASES ...euneineiiiii ettt et ettt et ettt e e et e et e et e et e et et ean e een et eenaeeneaneennees 147
OVEIVIBW ettt ettt ettt et ettt e ettt ea et ea s ebeea e eneea e ebeeaeneaenenenenneneennenns 147
[ = Te [ Te [« =] - H PRIt 148
oL s I - L PRSPPI 150
Public and Private reCords ........c..eunieiiiiei ettt et e e e 152

Resolver Mapping Template REFEIENCE .......vuiinii i et e e aaes 153

Resolver Mapping TEMPLate OVEIVIEW .......cuuiiuiiiiiieii ettt e et e e e et e e e e eeneen 153
EXAMIPLE TOMIPLAtE ..euiiniieiiii it et e et e e e e et e e e e e e e e e e e e e 154

Resolver Mapping Template Programming GUIAE .........c.veuiiniiniiiiiiiiiiniie e e eeeeeie e eneeneennas 155
Y= {1 o R PP PP PPN 156
VAFTADLES ...ttt et et ettt et et et et eaeeaaae 157
CAlliNg MEthOdS ...cuniiii et e et a e e 158
Y45 [ Le P P PR P PP 159
[ To] o LS PP PP PP PPNt 159
FAN o | PP PPN 160
CoNditioNal CRECKS .. c.neiei ettt e e e et et e e e e 161
(0] 0] =) o] &I PP PP PPRPPPRPROt 161
L6800 =3 N 163
1T o T« PSPPSRt 163

Resolver Mapping Template Reference for DynamoDB ...........couiiiiiiiiiiiiiiiniiii e 166
L= 1 =T o 167
T = 0 168
UPAteIEEIM «.eeeieit et ettt et e et et e et et et et e ean e ea e eaeen e e eans 170
DLELEITEIM ..ttt et et ettt et e e et et e et et et et et e ea e e e e e e aaaaas 173




AWS AppSync AWS AppSync Developer Guide

(O ]1 =] PP P PPN 175
£ o | N 178
Type System (Request MapPing) .....c.ueeuueiuiiueiieie ettt ettt e et e et et e e et eeneeaneeenne 180
Type System (ReSPONSE MaPPiNg) «.uceuneuneuniiieiieie ettt e et ettt et et et et eraeenaaennae 184
[ 11T T PP P PP PR PRSP 187
CONAItION EXPIESSIONS ..vuiiuiinitntiiieiti ettt ettt et et et et et ettt et eansanetnstsastnrensensensenrensens 188
Resolver Mapping Template Reference for Elasticsearch ..........cooeviiiiiiiiiiiiiiiiii e 196
Request Mapping TeMIPLAte .....cueuiiiiieie e ee e e eeeteete et e et et et et eteeneereaaaennennns 196
ReSpPONSe Mapping TemMPLate ..ouuiiniiii it e e et e e e e e e et e e e e e e eenaanas 197
operation FiEld ... e 197

o X et s Bl 1 [=] U« IS 197

o T Bar=V =T 1<) o USRIt 197
Passing Variables .......ouiiniiiiii e aaas 198
Resolver Mapping Template Reference for Lambda ........ccoeuiiiiiiiiiiiiiiiii e, 199
Request Mapping TeMIPLAte .....cuiu i eeee et et e et e e et eaeete et et eaeereanaeneennns 196
1L=L ][] o PP PT PP 200
(o]0 1=1 - 1 4 o] U TP PR P PP PP 6
1= 1Y/ (o T I PPN 202
ReSpPONSe Mapping TemMPLate ..uuii ittt et e e e e e e e e e e e e e e aaaaanas 197
Resolver Mapping Template Reference for None Data SOUICE .......ccuvvvviniiniiiiniiiiiiiieiieeieeeeeeieenns 203
Request @ Mapping TeMIPLate .....cuniuiiiiiiie et e e e e e e eaeeteeaeeteeaeanaanas 203
1YL=L ] (o] o PP PP PP 200
311V (o T I PPN 202
ReSpPONSe Mapping TemMPLate ..ouuiiniiii it e e et e e e e e e et e e e e e e eenaanas 197
Resolver Mapping Template Context REfErenCe ......cuuiuiiiiiiiiiiii e 205
ACCESSING ThE $COMTERT 1evniiiiiiiiie ettt et et et e e e e e e e e e eeneeens 205
Utility HelPers in SULIL ..oeeeriiiiiiiee et e e et e e e e e e e e et e e e e e e eeeeasenanns 208
Time Helpers in SULILEIME .....iiiiii et e e 210

List Helpers in $ULILLIST ....oouniiiiii e e eeeaaaaes 211
Map Helpers in SULILIMAD ...oieiii e et e et e e et e e et e e e rateaaees 212
DynamoDB helpers in $util.dynamodb ............cooiiiiiiiiiiiiiii e 212
Troubleshooting and CoOMMON MISEAKES .....cuuiuiiiiiiiirieie et ee e ee et e ete et e ete et eteeaeetaanearaaanas 217
Incorrect DYNamOoDB KEY MaPPiNg ..c.ueuuiuiuiiiiieieiieeieeie et eteeteeteeteeteeteeteereeneeteraeenesssesernseseenesneees 217
MISSING RESOLVET .vuiieiitiiiitie ettt et e et et e et et et et et et aanetntanesnasnesnasesnssnssnsenssnssessnseneens 217
[\ FT o] oY [aTe B K=l aa] o] 1 d=I =14 o ] PP PP 217
INCOITECE FEEUIN BYP@S ...t ettt ettt ettt et et e e e e et e e eenenens 218
Integrating with Amazon CLoUdWaAtCh ... et a e 219
Getting CloudWatch Merics (CLI) cuueuniniuiiiiie ittt e e e et e e et e e et e ee e e eeaneanens 219
AWS APPSYNC MELIICS eneniitiiiiiei ettt ettt ettt ettt e et e eneea e eneea s eneneneraenernenns 219
AWS APPSYNC DIMENSIONS ...evniiiiiiiieiii ettt ettt et ee et ettt ene et et ea e eneeasenernenerneneraenes 220
Logging AWS AppSync API Calls with AWS CloudTrail ......ceeueeuniiniiiiiiee e 221
AWS AppSync Information in CloUudTrail ... ....eeuiiniiiiie et eaa e 221
Understanding AWS AppSync Log File ENTres .......oeuniiiiiieiiiie e e 222

Vi



AWS AppSync AWS AppSync Developer Guide

Welcome

This is prerelease documentation for a service in preview release. It is subject to change.

« Are you a first-time AWS AppSync user? (p. 2)
« Are you developing a mobile application? (p. 10)
« Are you adding a GraphQL API to existing AWS resources? (p. 80)

This is the AWS AppSync Developer Guide.

AWS AppSync is an enterprise-level, fully managed GraphQL service with real-time data synchronization
and offline programming features.

This guide focuses on using AWS AppSync to create and interact with data sources by using GraphQL
from your application. Developers who want to build applications using GraphQL with robust database,
search, and compute capabilities, will find the information they need to build an application or integrate
existing data sources with AWS AppSync.




AWS AppSync AWS AppSync Developer Guide
Launch a Sample Schema

Quickstart

This is prerelease documentation for a service in preview release. It is subject to change.

This section describes how to use the AWS AppSync console to launch a sample schema, create and
configure a GraphQL API with queries and mutations, and use the APl in a sample app.

Alternatively, you can get started with AWS AppSync by writing a GraphQL schema from scratch. For
more information, see Designing Your Schema (p. 11).

AWS AppSync also provides a sample application that automatically deploys an APl with a GraphQL
schema, connects resolvers, and provisions an Amazon DynamoDB data source for you with a single
button click. For more information, see Data Sources and Resolvers (p. 80) and Building a Client
App (p. 31).
Topics

o Launch a Sample Schema (p. 2)

e Run Queries and Mutations (p. 3)

Launch a Sample Schema

This is prerelease documentation for a service in preview release. It is subject to change.

This section describes how to use the AWS AppSync console to launch a sample schema and create and
configure a GraphQL API.

Launch a Sample Schema

The sample schema enables users to create an application where events ("Going to the movies" or
"Dinner at Mom & Dad's") can be entered. Application users can also comment on the events ("See you at
7!"). This app demonstrates using GraphQL operations where state is persisted in Amazon DynamoDB.

To start, you'll create a sample schema and provision it.
To create the API

1. Open the AWS AppSync console at https://console.aws.amazon.com/appsync/.
<step>

Choose Create API from the Dashboard.
</step>

2. Type a friendly application name.
<step>

At the bottom of the console window, select the Sample schema.
</step>

3. Choose Create and wait for the provisioning process to complete.



https://console.aws.amazon.com/appsync/

AWS AppSync AWS AppSync Developer Guide
Taking a Tour of the Console

Taking a Tour of the Console

After your schema is deployed and your resources are provisioned, you can use the GraphQL APl in the
AWS AppSync console. The first page you see is Getting Started, which has information such as your
endpoint URL and authorization mode.

Note: The default authorization mode, API_KEY, uses an API key to test the application. However,

for production GraphQL APIs, you should use one of the stronger authorization modes, such as AWS
Identity and Access Management with Amazon Cognito identity or user pools. For more information, see
Authorization Use Cases (p. 141).

This page has a listing of sample client applications (JavaScript, iOS, etc.) for testing an end-to-end
experience. You can clone and download these, as well as the configuration file that has the necessary
information (such as your endpoint URL) to get started. Then, follow the instructions on the page to run
your app.

Schema Designer

On the left side of the console, choose Schema to view the designer. The designer has your sample
Events schema loaded. Take a look at the schema more closely, and notice that the code editor has
linting and error checking capabilities that you can use when you write your own apps.

On the right side of the console are the GraphQL types that have been created, as well as resolvers

on different top-level types, such as queries. When adding new types to a schema (for example, type
TODO {...}), you can have AWS AppSync provision DynamoDB resources for you. These include the
proper primary key, sort key, and index design to best match your GraphQL data access pattern. If you
click the Create Resources button at the top and select one of these user-defined types from the drop-
down menu, you can see how selecting different field options populates a schema design. Don't select
anything now, but try this in the future when you design a schema (p. 11).

Resolver Configuration

From the schema designer, choose one of the resolvers on the right, next to a field. A new page opens.
This page shows the configured data source (with a full listing on the Data Sources tab of the console)
for a resolver, as well as the associated Request and Response Mapping Template designers. Sample
mapping templates are provided for common use cases. This is also where you can configure custom
logic for things such as parsing arguments from a GraphQL request, pagination token responses to
clients, and custom query messages to Amazon Elasticsearch Service.

Settings

The Settings tab is where you configure things like the authorization method for your API. For more
information on these options, see the security overview (p. 141).

Queries

A built-in designer for writing and running GraphQL queries and mutations, including introspection and
documentation, is included in the console. We'll cover that next.

Run Queries and Mutations

This is prerelease documentation for a service in preview release. It is subject to change.




AWS AppSync AWS AppSync Developer Guide
Add Data with a GraphQL Mutation

In the AWS AppSync console, choose the Queries tab on the left to open the GraphQL operations
interface. First, note the pane on the right side that enables you to click through the operations,
including queries, mutations, and subscriptions that your schema has exposed. Choose the Mutation
node, and you see a mutation and can add a new event to it: createEvent(....):Event. Use this to
add something to your database with GraphQL.

Add Data with a GraphQL Mutation

Because there isn't any data yet, the first step is to add some with a GraphQL mutation. You do this with
the mutation keyword, passing in the appropriate arguments. This works similarly to a function. You
can also select which data you want to be returned in the response by putting the fields inside curly
braces. Paste the following into the query editor and choose Run:

mutation {
createEvent(
name: "My first GraphQL event"
where:"Day 1"
when:"Friday night"
description:"Catching up with friends"

)
id
name
where
when
description
}

The record is parsed by the GraphQL engine and inserted into your DynamoDB table by a resolver that is
connected to a data source. (You can check this in the DynamoDB console.) Notice that you didn't need
to pass in an id; however, one was generated and returned in the results specified between the curly
braces. This is because the sample demonstrates an autoId() function in a GraphQL resolver as a best
practice for the partition key set on your Amazon DynamoDB resources. For now, just make a note of the
returned id value for use in the next section.

Retrieve Data with a GraphQL Query

Now that there is a record in your database, running a query returns some results. One of the main
advantages of GraphQL is the ability to specify the exact data requirements that your application

has in a query. This time, only add a few of the fields inside the curly braces, pass the id argument to
getEvent (), and press the Run button at the top:

query {
getEvent (id: "XXXXXX-XXXX-XXXXXXX-XXXX-XXXXXXXXX"){
name
where
description
}
}

This time, only the fields you specified are returned. You can also try listing all events:

query getAllEvents {
listEvents{
items{
id
name
when




AWS AppSync AWS AppSync Developer Guide
Running an Application

This time the query shows nested types as well as giving the query a friendly name (getAllEvents),
which is optional. Experiment by adding or removing and then rerunning the query. When you're done,
it's time to connect a client application.

Running an Application

Now that your API is working, you can use a client application to interact with it. AWS AppSync provides
samples in several programming languages to get you started. In the AWS AppSync console, at the root
of the navigation, select the name of your API, and you will see a list of platforms. Clone the appropriate
sample to your local workstation, download the configuration file and, if necessary, the GraphQL schema
(used on some platforms for code generation). The configuration file contains details, such as the
endpoint URL of your GraphQL API and the API key, to include when getting started. You can change this
information later when leveraging IAM or Amazon Cognito user pools in production. See Authorization
Use Cases (p. 141) for more information.

Next Steps

Now that you've run through the preconfigured schema, you can choose to build an API from scratch,
incorporate an existing data source, or build a client application. For more information, see the following
sections:

« Designing a GraphQL API (p. 10)
» Connecting Data Sources and Resolvers (p. 80)
« Building Client Applications (p. 31)




AWS AppSync AWS AppSync Developer Guide
Architecture

System Overview and Architecture

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync allows developers to interact with their data via a managed GraphQL service. GraphQL
offers many benefits over traditional gateways, encourages declarative coding style, and works
seamlessly with modern tools and frameworks, including React, React Native, iOS, and Android.

Architecture

IEg T N i o T [
\, = ol

Operatior

Concepts
GraphQL Proxy

A component that runs the GraphQL engine for processing requests and mapping them to logical
functions for data operations or triggers. The data resolution process performs a batching process (called
the Data Loader) to your data sources. This component also manages conflict detection and resolution
strategies.

Operation

AWS AppSync supports the three GraphQL operations: query (read-only fetch), mutation (write followed
by a fetch), and subscription (long-lived requests that receive data in response to events).

Action

There is one action that AWS AppSync defines. This action is a notification to connected subscribers,
which is the result of a mutation. Clients become subscribers through a handshake process following a
GraphQL subscription.

Data Source

A persistent storage system or a trigger, along with credentials for accessing that system or trigger. Your
application state is managed by the system or trigger defined in a data source.




AWS AppSync AWS AppSync Developer Guide
Resolver

Resolver

A function that converts the GraphQL payload to the underlying storage system protocol and executes if
the caller is authorized to invoke it. Resolvers are comprised of request and response mapping templates,
which contain transformation and execution logic.

|dentity

A representation of the caller based on a set of credentials, which must be sent along with every request
to the GraphQL proxy. It includes permissions to invoke resolvers. Identity information is also passed as
context to a resolver and the conflict handler to perform additional checks.

AWS AppSync Client

The location where GraphQL operations are defined. The client performs appropriate authorization
wrapping of request statements before submitting to the GraphQL proxy. Responses are persisted in an
offline store and mutations are made in a write-through pattern.




AWS AppSync AWS AppSync Developer Guide

GraphQL Overview

This is prerelease documentation for a service in preview release. It is subject to change.

GraphQL is a data language that was developed to enable apps to fetch data from servers. It has a
declarative, self-documenting style. In a GraphQL operation, the client specifies how to structure the
data when it is returned by the server. This makes it possible for the client to query only for the data it
needs, in the format that it needs it in.

GraphQL has three top-level operations:

« Query: read-only fetch
« Mutation: write, followed by a fetch
« Subscription: long-lived connection for receiving data

GraphQL exposes these operations via a schema that defines the capabilities of an API. A schema is
comprised of types, which can be root types (query, mutation, or subscription) or user-defined types.
Developers start with a schema to define the capabilities of their GraphQL API, which a client application
will communicate with. Learn more about this process here (p. 11).

After a schema is defined, the fields on a type need to return some data. The way this happensin a
GraphQL API is through a GraphQL resolver. This is a function that either calls out to a data source or
invokes a trigger to return some value (such as an individual record or a list of records). Resolvers can
have many types of data sources, such as NoSQL databases, relational databases, or search engines. You
can aggregate data from multiple data sources and return identical types, mixing and matching to meet
your needs.

After a schema is connected to a resolver function, a client app can issue a GraphQL query or, optionally,
a mutation or subscription. A query will have the query keyword followed by curly braces, and then the

field name, such as allPosts. After the field name is a second set of curly braces with the data that you
want to return. For example:

query {
allPosts {
id
author
title
content

¥
¥

This query invokes a resolver function against the al1lPosts field and returns just the id, author,
title, and content values. If there were many posts in the system (assuming that allPosts return
blog posts, for example), this would happen in a single network call. Though designs can vary, in
traditional systems, this is usually modeled in separate network calls for each post. This reduction in
network calls reduces bandwidth requirements and therefore saves battery life and CPU cycles consumed
by client applications.

These capabilities make prototyping new applications, and modifying existing applications, very fast.
A benefit of this is that the application's data requirements are "co-located" in the application with
the Ul code for your programming language of choice. This enables client and backend teams to work
independently, instead of encoding data modeling on backend implementations.



http://graphql.org

AWS AppSync AWS AppSync Developer Guide

Finally, the type system provides powerful mechanisms for pagination, relations, inheritance, and
interfaces. You can relate different types between separate NoSQL tables when using the GraphQL type
system.

For further reading, see the following resources:

» GraphQL
« Designing a GraphQL API (p. 10)
« Data Sources and Resolvers Tutorial (p. 80)



http://graphql.org

AWS AppSync AWS AppSync Developer Guide

Designing a GraphQL API

This is prerelease documentation for a service in preview release. It is subject to change.

If you are building a GraphQL API, there are some concepts you need to know, such as schema design
and how to connect to data sources.

In this section, we describe building a schema from scratch, provisioning resources automatically,
manually defining a data source, and connecting to it with a GraphQL resolver. AWS AppSync can also
build out a schema and resolvers from scratch, if you have an existing Amazon DynamoDB table.

GraphQL Schema

Each GraphQL API is defined by a single GraphQL schema. The GraphQL Type system describes the
capabilities of a GraphQL server and is used to determine if a query is valid. A server's type system is
referred to as that server's schema. It is made up of a set of object types, scalars, input types, interfaces,
enums, and unions. It defines the shape of the data that flows through your API and also the operations
that can be performed. GraphQL is a strongly typed protocol and all data operations are validated
against this schema.

Data Source

Data sources are resources in your AWS account that GraphQL APIs can interact with. AWS AppSync
supports AWS Lambda, Amazon DynamoDB, and Amazon Elasticsearch Service as data sources.

An AWS AppSync API can be configured to interact with multiple data sources, enabling you to aggregate
data in a single location.

Resolvers

GraphQL resolvers connect the fields in a type's schema to a data source. Resolvers and mapping
templates are the mechanism by which requests are fulfilled.

Resolvers in AWS AppSync use mapping templates written in Apache Velocity Template Language (VTL)
to convert a GraphQL expression into a format the data source can use.

AWS Resources

AWS AppSync can use AWS resources from your account that already exist or can provision DynamoDB
tables on your behalf from a schema definition.
Topics

« Designing Your Schema (p. 11)

« Attaching a Data Source (p. 22)

« Configuring Resolvers (p. 22)

» Using Your API (p. 24)

« (Optional) Provision from Schema (p. 25)

 (Optional) Import from Amazon DynamoDB (p. 26)

10


http://velocity.apache.org/engine/2.0/vtl-reference.html

AWS AppSync AWS AppSync Developer Guide
Designing Your Schema

Designing Your Schema

This is prerelease documentation for a service in preview release. It is subject to change.

Creating an Empty Schema

Schema files are text files, usually named "schema.graphql”. You can create this file and submit it to AWS
AppSync by using the CLI or navigating to the console and adding the following under the Schema page:

schema {

}

Every schema has this root for processing. This fails to process until you add a root query type.

Adding a Root Query Type

For this example, we create a Todo application. A GraphQL schema must have a root query type, so we
add a root type named Query with a single getTodos field that returns a list containing Todo objects.
Add the following to your schema.graphgl file:

schema {
query:Query
}

type Query {
getTodos: [Todo]

}

Notice that we haven't yet defined the Todo object type. Let's do that now.

Defining a Todo Type

Now, create a type that contains the data for a Todo object:

schema {
query:Query
}

type Query {
getTodos: [Todo]

}

type Todo {
id: ID!
name: String
description: String
priority: Int

Notice that the Todo object type has fields that are scalar types, such as strings and integers. Any field
that ends in an exclamation point is a required field. The ID scalar type is a unique identifier that can

11


http://graphql.org/learn/schema/#object-types-and-fields
http://graphql.org/learn/schema/#scalar-types

AWS AppSync AWS AppSync Developer Guide
Adding a Mutation Type

be either String or Int. You can control these in your resolver mapping templates for automatic
assignment. You'll see this later.

There are similarities between the Query and Todo types. In GraphQL, the root types (Query,
Mutation, and Subscription) are just types like the ones you define. They're special, though, in that
you expose them from your schema as the entry point for your API. For more information, see The Query
and Mutation types.

Adding a Mutation Type

Now that you have an object type and can query the data, if you want to add, update, or delete data
via the API you need to add a mutation type to your schema. For the Todo example, add this as a field
named "addTodo" on a mutation type:

schema {
query:Query
mutation: Mutation

}

type Query {
getTodos: [Todo]

}

type Mutation {
addTodo(id: ID!, name: String, description: String, priority: Int): Todo
¥

type Todo {
id: ID!
name: String
description: String
priority: Int

Notice that mutation is also added to this schema type because it is a root type.

Modifying the Todo with a Status

At this point, your GraphQL API is structurally functioning for reading and writing Todo objects (it just
doesn't have a data source, which is described in the next section). You can modify this APl with more
advanced functionality, such as adding a status to your Todo, which comes from a set of values defined
as an ENUM:

schema {
query:Query
mutation: Mutation

}

type Query {
getTodos: [Todo]

}

type Mutation {
addTodo(id: ID!, name: String, description: String, priority: Int, status: TodoStatus):
Todo

}

type Todo {
id: ID!
name: String

12



http://graphql.org/learn/schema/#the-query-and-mutation-types
http://graphql.org/learn/schema/#the-query-and-mutation-types

AWS AppSync AWS AppSync Developer Guide
Subscriptions

description: String
priority: Int
status: TodoStatus

}

enum TodoStatus {
done
pending

An ENUM is like a string, but it can take one of a set of values. In the previous example, you added this
type, modified the Todo type, and added the Todo field to contain this functionality.

Subscriptions

Real-Time Data (p. 138)

Further Reading

For more information, see the GraphQL type system.

Advanced - Relations and Pagination

Suppose you had a million todos. You wouldn't want to fetch all of these every time. Make the following
changes to your schema:

« Add a new TodoConnection type, which has todos and nextToken fields.
o Add two input arguments, first and after, to the getTodos field.
« Change getTodos so that it returns TodoConnection.

schema {
query:Query
mutation: Mutation

}

type Query {
getTodos(first: Int = 20, after: String): TodoConnection

}

type Mutation {
addTodo(id: ID!, name: String, description: String, priority: Int, status: TodoStatus):
Todo

}
type Todo {
id: ID!
name: String
description: String
priority: Int
status: TodoStatus
}

type TodoConnection {
todos: [Todo]
nextToken: String

}

enum TodoStatus {

13



http://graphql.org/learn/schema/#type-system

AWS AppSync AWS AppSync Developer Guide
Interfaces and Unions in GraphQL

done
pending

The TodoConnection type allows you to return a list of todos and a nextToken for getting the next
batch of todos. In AWS AppSync, this is connected to Amazon DynamoDB with a mapping template.
This converts the value of the first argument to the maxResults parameter and the after argument to
the exclusiveStartKey parameter. See Resolver Mapping Template Reference (p. 153) for examples.

Next, suppose your todos have comments, and you want to run a query that returns all the comments for
a todo. Modify your schema to have a Comment type, add a comments field to the todo type, and add
an addComment field on the Mutation type as follows:

schema {
query:Query
mutation: Mutation

}

type Query {
getTodos(first: Int = 20, after: String): TodoConnection

}

type Mutation {

addTodo(id: ID!, name: String, description: String, priority: Int, status: TodoStatus):
Todo

addComment(todoid: ID!, content: String): Comment

}

type Todo {
id: ID!
name: String
description: String
priority: Int
status: TodoStatus
comments: [Comment ]

}

type Comment {
id: ID!
content: String

}

type TodoConnection {
todos: [Todo]
nextToken: String

}

enum TodoStatus {
done
pending

The application graph on top of your existing data sources in AWS AppSync allows you to return
data from two separate data sources in a single GraphQL query. In the example, the assumption is
that there is both a Todos table and a Comments table. We'll show how this is done in Configuring
Resolvers (p. 22).

Interfaces and Unions in GraphQL

This is prerelease documentation for a service in preview release. It is subject to change.

14




AWS AppSync AWS AppSync Developer Guide
Interfaces and Unions in GraphQL

Interfaces

GraphQL's type system features Interfaces. An interface exposes a certain set of fields that a type must
include to implement the interface.

For example, we could represent an Event interface that represents any kind of activity or gathering

of people. Possible kinds of events are Concert, Conference, and Festival. These types all share
common characteristics, they all have a name, a venue where the event is taking place, and a start and
end date. These types also have differences, a Conference offers a list of speakers and workshops while
a Concert features a performing band.

In SDL, our Event interface would be:

interface Event {
id: ID!
name : String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int

And each of the types implements the Event interface:

type Concert implements Event {
id: ID!
title: String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int
performingBand: String

}

type Festival implements Event {
id: ID!
title: String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int
performers: [String]

}

type Conference implements Event {
id: ID!
title: String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int
speakers: [String]
workshops: [String]

Interfaces are useful to represent elements that might be of several types. For example, we could search
for all events happening at a specific venue. Let's add a findEventsByVenue field on the schema:

schema {
query: Query

}

15



http://graphql.org/learn/schema/#interfaces

AWS AppSync AWS AppSync Developer Guide
Interfaces and Unions in GraphQL

type Query {

# Retrieve Events at a specific Venue

findEventsAtVenue(venueId: ID!):

}

type Venue {
id: ID!
name: String
address: String
maxOccupancy: Int

}

type Concert implements Event {
id: ID!
name: String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int
performingBand: String

}

interface Event {
id: ID!
name: String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int

}

type Festival implements Event {
id: ID!
name: String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int
performers: [String]

}

type Conference implements Event {
id: ID!
name: String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int
speakers: [String]
workshops: [String]

[Event]

findEventsByVenue returns a list of Event. Because GraphQL interface fields are common to all the
implementing types, you probably guessed it is possible to select any fields on the Event interface (id,
title, startsAt, endsAt, venue, and minAgeRestriction). Additionally, we can access the fields on
any implementing type, as long as we specify the type, using GraphQL fragments.

Let's look at an example of a GraphQL query that uses our interface.

query {

findEventsAtVenue(venueId: "Madison Square Garden") {

id
name
minAgeRestriction

16



http://graphql.org/learn/queries/#fragments

AWS AppSync AWS AppSync Developer Guide
Interfaces and Unions in GraphQL

startsAt

on Festival {
performers

}

on Concert {
performingBand

}

on Conference {
speakers
workshops
}
}
}

The previous query would yield a single list of results, and the server could, by default, sort the events by
start date.

{
"data": {

"findEventsAtVenue": [
{
"id": "Festival-2",
"name": "Festival 2",
"minAgeRestriction": 21,
"startsAt": "2018-10-05T14:48:00.000Z",
"performers": [
"The Singers",
"The Screamers"

"id": "Concert-3",

"name": "Concert 3",
"minAgeRestriction": 18,

"startsAt": "2018-10-07T14:48:00.000Z2",
"performingBand": "The Jumpers"

"id": "Conference-4",
"name": "Conference 4",
"minAgeRestriction": null,
"startsAt": "2018-10-09T14:48:00.000Z",
"speakers": [
"The Storytellers"
1,
"workshops": [
"Writing",
"Reading"

As you can see, results are returned as a single collection of events. Using interfaces to represent
common characteristics will be very handy for sorting results.

17




AWS AppSync AWS AppSync Developer Guide
Interfaces and Unions in GraphQL

Unions

GraphQL's type system also features Unions. Unions are identical to Interfaces, except they do not define
a common set of fields. Unions are generally preferred over Interfaces when the possible types do not
share a logical hierarchy.

For example, a search result might represent many different types. Using our Event schema, we can
define a searchResult union:

type Query {
# Retrieve Events at a specific Venue
findEventsAtVenue(venueId: ID!): [Event]
# Search across all content
search(query: String!): [SearchResult]

}

union SearchResult = Conference | Festival | Concert | Venue

In this case, to query any field on our SearchResult union, we must use fragments. Let's look at an
example:

query {
search(query: "Madison") {

. on Venue {
id

name
address

. on Festival {
id

name
performers

. on Concert {
id

name
performingBand

. on Conference {
speakers
workshops

Type Resolution in AWS AppSync

Type resolution is the mechanism by which the GraphQL engine identifies a resolved value as a specific
object type.

Coming back to the Union search example, provided our query yielded results, each item in the results
list must present itself as one of the possible types our SearchResult union defined. (i.e.,, Conference,
Festival, Concert, or Venue).

Because the logic to identify a Festival from a Venue or a Conference is dependent on the
application requirements, the GraphQL engine must be given a "hint" to identify our possible types from
the raw results.

18



http://graphql.org/learn/schema/#union-types

AWS AppSync AWS AppSync Developer Guide
Interfaces and Unions in GraphQL

With AWS AppSync, this "hint" is represented by a meta field named __typename, whose value
corresponds to the identified object type name. __typename is required for return types that are
interfaces or unions.

Type Resolution Example

Let's reuse our previous schema. You can follow along by navigating to the console and adding the
following under the Schema page:

schema {
query: Query

}

type Query {
# Retrieve Events at a specific Venue
findEventsAtVenue(venueId: ID!): [Event]
# Search across all content
search(query: String!): [SearchResult]

}

union SearchResult = Conference | Festival | Concert | Venue

type Venue {
id: ID!
name: String!
address: String
maxOccupancy: Int

}

interface Event {
id: ID!
name: String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int

}

type Festival implements Event {
id: ID!
name: String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int
performers: [String]

}

type Conference implements Event {
id: ID!
name: String!
startsAt: String
endsAt: String
venue: Venue
minAgeRestriction: Int
speakers: [String]
workshops: [String]

}

type Concert implements Event {
id: ID!
name: String!
startsAt: String
endsAt: String

19




AWS AppSync AWS AppSync Developer Guide
Interfaces and Unions in GraphQL

venue: Venue
minAgeRestriction: Int
performingBand: String

Let's attach a resolver to the Query.search field. In the console, select Attach Resolver, create a new
Data Source of type NONE, and then name it StubDataSource. For the sake of this example, we will
pretend we fetched results from an external source, and hardcode the fetched results in our request
mapping template.

In the request mapping template pane, enter:

{
"version" : "2017-02-28",
"payload":
## We are effectively mocking our search results for this example
[
{
"id": "Venue-1",
"name": "Venue 1",
"address": "2121 7th Ave, Seattle, WA 98121",
"maxOccupancy": 1000
Y
{
"id": "Festival-2",
"name": "Festival 2",
"performers": ["The Singers", "The Screamers"]
Y
{
"id": "Concert-3",
"name": "Concert 3",
"performingBand": "The Jumpers"
Y
{
"id": "Conference-4",
"name": "Conference 4",
"speakers": ["The Storytellers"],
"workshops": ["Writing", "Reading"]
}
]
}

In our application, we chose to return the type name as part of the id field. Our type resolution logic
only consists of parsing the id field to extract the type name and adding the __typename field to each
of the results. We can easily perform that logic in the response mapping template (you can also perform
this task as part of your Lambda function, if you are using the Lambda Data source):

#foreach ($result in $context.result)

## Extract type name from the id field.

#set( $typeName = s$result.id.split("-")[0] )

#set( $ignore = $result.put("__typename", $typeName))
#end
$util.toJson($context.result)

Running our query,

query {
search(query: "Madison") {
on Venue {
id
name

20



AWS AppSync AWS AppSync Developer Guide
Interfaces and Unions in GraphQL

address

. on Festival {
id

name

performers

. on Concert {
id

name
performingBand

. on Conference {
speakers
workshops

will yield the results we specified:

{
"data": {
"search": [
{

"id": "Venue-1",

"name": "Venue 1",

"address": "2121 7th Ave, Seattle, WA 98121"

Iy
{

"id": "Festival-2",

"name": "Festival 2",

"performers": [

"The Singers",
"The Screamers"
]
Iy
{

"id": "Concert-3",

"name": "Concert 3",

"performingBand": "The Jumpers"

Iy
{

"speakers": [

"The Storytellers"

1,

"workshops": [
"Writing",
"Reading"

]

}
]
}
}

Naturally, the type resolution logic will vary depending on the application. For example, we could have
a different identifying logic that checks for the existence of certain fields or even a combination of
fields. That is, we could detect the presence of the performers field to identify a Festival or the
combination of the speakers and the workshops fields to identify a Conference. Ultimately, it is up
to you to define what the logic will be.

21




AWS AppSync AWS AppSync Developer Guide
Attaching a Data Source

Attaching a Data Source

This is prerelease documentation for a service in preview release. It is subject to change.

(Optional) Automatic Provision

Continuing on from Designing Your Schema (p. 11), you can have AWS AppSync automatically
create tables based on your schema definition. You can see that process in (Optional) Provision from
Schema (p. 25). You can also skip this and continue on to build from scratch.

Adding a Data Source

Now that you created a schema in the AWS AppSync console and saved it, you can add a data source.
The schema in the previous section assumes that you have a Amazon DynamoDB table called "Todos"
with a hash key called "id" (and if you're doing the advanced section with Relations, you also need a table
named "Comments" with a hash key of "todoid" and a sort key of "content").

To add your data source

1. Choose the Data Sources tab in the console, and choose New.
<step>

Give your data source a friendly name, such as "Todos table".
</step>

2. Choose Amazon DynamoDB Table as the type.
<step>

Choose the appropriate region.
</step>

3. Choose your Todos table. Then either choose an existing role that has IAM permissions for PutItem
and scan for your table, or create a new role.

If you're doing the advanced section, repeat the process. Note that you need IAM permissions of Putitem
and Query on the "Comments" table.

Now that you've connected a data source to an AWS service, you can connect it to your schema with a
resolver. See Configuring Resolvers (p. 22).

Configuring Resolvers

This is prerelease documentation for a service in preview release. It is subject to change.

Create Your First Resolver

Navigate back to the Schema page in the AWS AppSync console and find the query type on the right
side. Choose the Attach resolver button next to the getTodos field, which opens the Add Resolver
page. Select the data source you just created and either use a default template or paste in your own. For
common use cases, the AWS AppSync console has built-in templates that you can use for getting items

22



AWS AppSync AWS AppSync Developer Guide
Adding a Resolver for Mutations

from data sources (all item queries, individual lookups, etc.). For example, on the simple version of the
schema from Designing Your Schema (p. 11) where getTodos didn't have pagination, the mapping
template is as follows:

"version" : "2017-02-28",
"operation" : "Scan"

A response mapping template is always needed. The console provides a default with the following
passthrough value:

$utils.toJson($context.result)

Adding a Resolver for Mutations

Repeat the preceding process, starting at the Schema page and choosing Attach resolver for the
addTodo mutation. Because this is a mutation where you're adding a new item to DynamoDB, use the
following request mapping template:

{
"version" : "2017-02-28",
"operation" : "PutItem",
"key": {
"id" : { "S" : "${context.arguments.id}" }
}l
"attributevValues" : {
"name" : { "S" : "${context.arguments.name}" },
"description" : { "S" : "${context.arguments.description}" },
"priority" : { "N" : ${context.arguments.priority} },
"status" : { "S" : "${context.arguments.status}" }
}l
}

Notice how the arguments defined in the addTodo field from your GraphQL schema are converted into
DynamoDB operations.

Use the same passthrough template from earlier.

Advanced Resolvers

If you are following the Advanced section of building a sample schema in Designing Your
Schema (p. 11), to do a paginated scan, you should use the following template:

{
"version" : "2017-02-28",
"operation" : "Scan",
"nextToken" : "${context.arguments.after}",
"limit" : ${context.arguments.first}
}

For this pagination use case, the response mapping is more than just a passthrough because it must
contain both the "cursor" (so that the client knows what page to start at next) and the result set. The
mapping template would be:

{

23




AWS AppSync AWS AppSync Developer Guide
Using Your API

"nextToken" : "${context.nextToken}",
"todos": $utils.toJson($context.result)

The fields in the preceding response mapping template should match the fields defined in your
TodoConnection type.

For the case of Relations where you have a Comments table and you're resolving the comments field on
the Todo type (which returns a type of [Comment]), you can use a mapping template that runs a query
against the second table.

Note: The fact that this uses a query operation against a second table is only for illustrative purposes. It
could also be another operation against DynamoDB. Further, the data could be pulled from another data
source, such as AWS Lambda or Amazon Elasticsearch Service because the relation is controlled by your
GraphQL schema.

From the Schema page in the console, click the comments field on the Todo type, and then choose
Attach resolver. Use the following request mapping template:

{
"version" : "2017-02-28",
"operation" : "Scan",
"key": {
"todoid" : { "S" : "${context.source.id}" }
}l
}

Pay attention to "context.source". This references the parent object of the current field being resolved. In
this example, "source" is referring to the Todo object, which contains the comments you are fetching.

You can use the passthrough response mapping template.

Finally, create an addComment resolver from the schema page in the console, just like you did for the
preceding fields. The request mapping template in this case is a simple Put/tem:

{
"version" : "2017-02-28",
"operation" : "PutItem",
"key": {
"todoid" : { "S" : "${context.arguments.todoit}" },
"content" : { "S" : "${context.arguments.content}" }
}
}

In the preceding example, the key corresponds to the arguments from the addComment mutation. Use a
passthrough response.

Using Your API

This is prerelease documentation for a service in preview release. It is subject to change.

Now that you have a GraphQL API with a schema uploaded, data sources configured, and resolvers
connected to your types, you can test your API. Navigate to the Queries tab in the console and enter the
following text in the editor:

24



AWS AppSync AWS AppSync Developer Guide
(Optional) Provision from Schema

mutation add {
addTodo(id:"123" name:"My TODO" description:"Testing AWS AppSync" priority:2){
id
name
description
priority

Press the button at the top to run your mutation. After it completes, the result from your selection set
(id, name, description, and priority) are displayed on the right. The data is also in the Amazon
DynamoDB table for your data source, which you can verify using the console.

Now run a query :

query {
allTodo {
id
name
}
}

This should return your data, but just the two fields (id and name) from your selection set.

(Optional) Provision from Schema

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync can automatically provision Amazon DynamoDB tables from a schema definition, create
data sources, and connect the resolvers on your behalf. This can be useful if you want to let AWS
AppSync define the appropriate table layout and indexing strategy based on your schema definition and
data access patterns.

Schema

These instructions start with the schema outlined in Designing Your Schema (p. 11), as shown next:

schema {
query:Query
mutation: Mutation

}

type Query {
allTodo: [Todo]
}

type Mutation {
addTodo(id: ID!, name: String, description: String, priority: Int, status: TodoStatus):
Todo
}

type Todo {
id: ID!
name: String
description: String

25




AWS AppSync AWS AppSync Developer Guide
Provision from Schema

priority: Int
status: TodoStatus

}

enum TodoStatus {
done
pending

From the AWS AppSync console, navigate to the Schema page, enter the preceding schema into the
editor, and choose Save.

Provision from Schema

After you save a schema, a Create resources button appears in the upper right of the page. Click this

to go to the Create resources page. You can select any user-defined GraphQL types from the screen,
and your Todo type should be available. Select this type and you'll see a form you can use to configure
the table details. You can change your DynamoDB primary or sort keys here, as well as add additional
indexes. At the bottom of the page is a corresponding section for the GraphQL queries and mutations
that are then available to you, based on different key selections. AWS AppSync will provision DynamoDB
tables that best match your data access pattern for efficient use of your database throughput. An index
selection is also available. You can use it for different query options, which set up a DynamoDB Local
Secondary Index or Global Secondary Indexes, as appropriate.

For the preceding example schema, you can simply have id selected as the primary key and press the
Create button. After a moment, your DynamoDB tables are created, data sources are created, and
resolvers are connected. You can run mutations and queries as described in the Using Your API (p. 24)
section. Note that there will be a GraphQL input type for the arguments of the created schema. For
example if you provision from schema with a GraphQL type Books {...} then there might be an
input type like so:

input CreateBooksInput {
ISBN: String!
Author: String
Title: String
Price: String

To use this in a GraphQL query or mutation you would do the following:

mutation add {
createBooks(input:{
ISBN:2349238
Author:"Nadia Bailey"
Title:"Running in the park"

Price:"10"
A
ISBN
Author
}

(Optional) Import from Amazon DynamoDB

This is prerelease documentation for a service in preview release. It is subject to change.

26



AWS AppSync AWS AppSync Developer Guide
Import a DynamoDB Table

AWS AppSync can automatically create a GraphQL schema and connect resolvers to existing Amazon
DynamoDB tables. This can be useful if you have DynamoDB tables for which you want to expose data
through a GraphQL endpoint, or if you're more comfortable starting first with your database design
instead of a GraphQL schema.

Import a DynamoDB Table

From the AWS AppSync console, navigate to the Data Sources page and select the New button. Give
your data source a friendly name, and select Amazon DynamoDB as the data source type. Select the
appropraite table, then toggle the switch under Automatically generate GraphQL.

You'll see two code editors with GraphQL schema:

« The top editor can be manipulated to give your type a custom name (such as type MYNAME {...}),
which will contain the data from your DynamoDB table when you run queries or muations. You can
also add fields to the type, such as DynamoDB non-key attributes (which cannot be detected on
import).

« The bottom editor is read-only and contains generated GraphQL schema snippets, showing what
types, queries, and mutations will be merged into your schema. If you edit the type in the top editor,
this will change as appropriate.

Press Create at the bottom and your schema is merged and resolvers are created. After this is complete,
you can run mutations and queries as described in the Using Your API (p. 24) section. Note that there
will be a GraphQL input type for the arguments of the created schema. For example if you import a
table called "Books" then there might be an input type like so:

input CreateBooksInput {
ISBN: String!
Author: String
Title: String
Price: String

To use this in a GraphQL query or mutation you would do the following:

mutation add {

createBooks(input:{
ISBN:2349238
Author:"Nadia Bailey"
Title:"Running in the park"
Price:"10"

A
ISBN
Author

Example Schema from Import

Suppose that you have a DynamoDB table with the following format:

Table: {
AttributeDefinitions: [

{
AttributeName: 'authorId',

27




AWS AppSync AWS AppSync Developer Guide
Example Schema from Import

AttributeType: 'S’

Iy

{
AttributeName: 'bookId',
AttributeType: 'S’

Iy

{
AttributeName: 'title',
AttributeType: 'S’

}

1,
TableName: 'BookTable',

KeySchema: [

{
AttributeName: 'authorId',
KeyType: 'HASH'

I

{
AttributeName: 'title',
KeyType: 'RANGE'

}

1,
TableArn: 'arn:aws:dynamodb:us-west-2:012345678910:table/BookTable’',

LocalSecondaryIndexes: [

{

IndexName: 'authorId-bookId-index',
KeySchema: [

{
AttributeName: 'authorId',
KeyType: 'HASH'

}

{
AttributeName: 'bookId',
KeyType: 'RANGE'

}

1,
Projection: {
ProjectionType: 'ALL'
Iy
IndexSizeBytes: O,
ItemCount: O,
IndexArn: 'arn:aws:dynamodb:us-west-2:012345678910:table/BookTable/index/
authorId-bookId-index'
}
1,
GlobalSecondaryIndexes: [
{
IndexName: 'title-authorId-index',
KeySchema: [

{
AttributeName: 'title',
KeyType: 'HASH'

}

{
AttributeName: 'authorId',
KeyType: 'RANGE'

}

1,
Projection: {
ProjectionType: 'ALL'
I
IndexArn: 'arn:aws:dynamodb:us-west-2:012345678910:table/BookTable/index/
title-authorId-index'

}

28




AWS AppSync AWS AppSync Developer Guide
Example Schema from Import

}

The type editor at the top will show the following:

type Book {
# Key attributes. Changing these may result in unexpected behavior.
authorId: ID!
title: String!

# Index attributes. Changing these may result in unexpected behavior.
bookId: ID!

# Add additional non-key attributes below.
isPublished: Boolean

This top editor is writable, and the non-key attributes at the bottom like isPublished need to be
added manually as they cannot be inferred from DynamoDB automatically. For instance if you had
another attribute on an item in your DynamoDB table called rating you would need to add it under
isPublished to have it populated in the GraphQL schema. The bottom editor would have the following
proposed schema merges:

type Query {
getBook(authorId: ID!, title: String!): Book
listBooks(first: Int, after: String): BookConnection
getBookByAuthorIdBookIdIndex(authorId: ID!, bookId: ID!): Book
queryBooksByAuthorIdBookIdIndex(authorId: ID!, first: Int, after: String):
BookConnection
getBookByTitleAuthorIdIndex(title: String!, authorId: ID!): Book
queryBooksByTitleAuthorIdIndex(title: String!, first: Int, after: String):
BookConnection
}
type Mutation {
createBook(input: CreateBookInput!): Book
updateBook(input: UpdateBookInput!): Book
deleteBook(input: DeleteBookInput!): Book
}
type Subscription {
onCreateBook(authorId: ID, title: String, bookId: ID, isPublished: Boolean): Book
@aws_subscribe(mutations: ["createBook"])
onUpdateBook(authorId: ID, title: String, bookId: ID, isPublished: Boolean): Book
@aws_subscribe(mutations: ["updateBook"])
onDeleteBook(authorId: ID, title: String, bookId: ID, isPublished: Boolean): Book
@aws_subscribe(mutations: ["deleteBook"])
}
input CreateBookInput {
authorId: ID!
title: String!
bookId: ID!
isPublished: Boolean
}
input UpdateBookInput {
authorId: ID!
title: String!
bookId: ID
isPublished: Boolean
}
input DeleteBookInput {
authorId: ID!
title: String!
}
type BookConnection {
items: [Book]

29



AWS AppSync AWS AppSync Developer Guide
Example Schema from Import

nextToken: String

30



AWS AppSync AWS AppSync Developer Guide
Building a ReactJS Client App

Building a Client App

This is prerelease documentation for a service in preview release. It is subject to change.

The following sections are tutorials for building a client application with GraphQL on different platforms.
Each tutorial starts with an application running with local data, and then adds in the AWS AppSync SDK
to communicate with your GraphQL API. The tutorials assume you have a basic schema created using

the schema from the DynamoDB resolvers tutorial (p. 80) as a reference starting point, which you can
optionally complete first.

Topics
« Building a ReactJS Client App (p. 31)
« Building a React Native Client App (p. 44)
« Building a JavaScript Client App (p. 54)
« Building an iOS Client App (p. 58)
« Building an Android Client App (p. 70)

Building a ReactJS Client App

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync integrates with the Apollo GraphQL client for building client applications. AWS provides
Apollo plugins for offline support, authorization, and subscription handshaking. You can use the Apollo
client directly, or you can use it with some of the client helpers provided in the AWS AppSync SDK. This
tutorial shows you how to use AWS AppSync with React Apollo, which uses ReactJS constructs and
patterns with GraphQL.

Before You Begin

This tutorial is set up for a sample API using the schema from the DynamoDB resolvers tutorial (p. 80).
To follow along with the complete flow, you can optionally walk through that tutorial first. If you want
to do more customization of GraphQL resolvers, such as those that use DynamoDB, see the Resolver
Mapping Template Reference (p. 153). The application will use the following starting schema:

schema {
query: Query
mutation: Mutation

}

type Mutation {
addPost(id: ID! author: String! title: String content: String! url: String!): Post!
updatePost(id: ID! author: String! title: String content: String url: expectedVersion:
Int!): Post!

31



https://github.com/apollographql/apollo-client

AWS AppSync AWS AppSync Developer Guide
Get the GraphQL API Endpoint

}

deletePost(id: ID

type Post {

}

id: ID!
author:
title: String
content: String
url: String
ups: Int

downs: Int
version: Int!

String!

type PaginatedPosts {

}

posts: [Post!]!
nextToken: String

type Query {

allPost(count:
getPost(id: ID!):

!, expectedVersion: Int): Post

Int, nextToken: String): PaginatedPosts!

Post

This schema defines a Post type and operations to add, get, update, and delete Post objects.

Get the GraphQL API Endpoint

After you create your GraphQL API, you'll need to get the APl endpoint (URL) so you can use it in your

client application. You can get the API endpoint in two ways.

In the AWS AppSync console, choose Home and then choose GraphQL URL to see the API endpoint.

Alternatively, you can get it by running the following CLI command:

aws appsync get-graphgl-api --api-id $GRAPHQL_API_ID

The following instructions show how you can use AwWS_IAM for client authorization. In the AWS
AppSync console, choose Settings on the left, and then choose AWS_IAM. For more information about

authorization modes, see Authorization Use Cases (p. 141).

Download a Client Application

To show you how to use AWS AppSync, we first review a React application with just a local array of data.
Then we add AWS AppSync capabilities to it. To begin, download a sample application where we can add,

update, and delete posts.

Understanding the React Sample App

The React sample app has three major files:

e ./src/App.js: The main entry point of the application. It renders the main application shell with
two components named AddPost and A11Posts, and has a local array of data named posts which is
passed as a prop to the other components.

e ./src/Components/AddPost: A React component that contains a form that enables a user to enter
new information about a post, such as the author and title.

32



https://s3-us-west-2.amazonaws.com/awsappsync/appsync-react-posts-starter.zip

AWS AppSync AWS AppSync Developer Guide
Import the AWS AppSync SDK into Your App

e ./src/Components/AllPosts: A React component that lists all existing posts from the posts array
that App. js created. It enables you to edit or delete existing posts.

Run your app as follows, and test it to be sure it works:

yarn && yarn start

Import the AWS AppSync SDK into Your App

In this section, you'll add AWS AppSync to your existing app.

Add the following dependencies to your application:

yarn add react-apollo graphgl-tag aws-sdk

Next, add in the AWS AppSync SDK, including the React extensions:

yarn add aws-appsync
yarn add aws-appsync-react

From the AWS AppSync console, navigate to your GraphQL API landing page where the APl URL is listed.
At the bottom of the page, choose Web. Next, click the Download button and save the AppSync.js
configuration file into . /src.

To interact with AWS AppSync, your client needs to define GraphQL queries and mutations. This is
commonly done in separate files, as follows:

mkdir ./src/Queries

touch ./src/Queries/AllPostsQuery.js
touch ./src/Queries/DeletePostMutation.js
touch ./src/Queries/NewPostMutation.js
touch ./src/Queries/UpdatePostMutation.js

Edit and save A11PostsQuery. js:

import ggl from 'graphql-tag';

export default gql”
query AllPosts {

allPost {
posts {
__typename
id
title
author
version
}
}

s

Edit and save DeletePostMutation. js:

import ggl from 'graphql-tag';

33




AWS AppSync AWS AppSync Developer Guide
Import the AWS AppSync SDK into Your App

export default gql”

mutation DeletePostMutation($id: ID!, $expectedVersion: Int!) {
deletePost(id: $id, expectedVersion: $expectedVersion) {
___typename
id
author
title
version
}
P
Edit and save NewPostMutation. js:
import ggl from 'graphgl-tag';
export default ggl~
mutation AddPostMutation($id: ID!, $author: String!, $title: String!) {
addPost(
id: s$id
author: s$author
title: s$title
content: " "
url: " "
) A
__typename
id
author
title
version
}
i
Edit and save UpdatePostMutation. js:
import ggql from 'graphgl-tag';
export default gql~
mutation UpdatePostMutation($id: ID!, $author: String, $title: String, $expectedVersion:
Int!) {
updatePost(
id: $id
author: $author
title: s$title
expectedVersion: $expectedVersion
) o
__typename
id
author
title
version
}
i

Edit your App. js file, as follows:

AWSAppSyncClient from "aws-appsync";
{ Rehydrated } from 'aws-appsync-react';

import
import
import
import
import
import
import

{ graphqgl, ApolloProvider,
* as AWS from 'aws-sdk';
AppSync from './AppSync.js';

AllPostsQuery from './Queries/AllPostsQuery’;

{ AUTH_TYPE } from "aws-appsync/lib/link/auth-1link";
compose } from 'react-apollo';

34




AWS AppSync AWS AppSync Developer Guide
Import the AWS AppSync SDK into Your App

import NewPostMutation from './Queries/NewPostMutation';
import DeletePostMutation from './Queries/DeletePostMutation’';
import UpdatePostMutation from './Queries/UpdatePostMutation';

After all the import statements, add the following code:

const client = new AWSAppSyncClient({
url: AppSync.graphglEndpoint,
region: AppSync.region,
auth: {
type: AUTH_TYPE.API_KEY,
apiKey: AppSync.apiKey,

// type: AUTH_TYPE.AWS_IAM,

// Note - Testing purposes only

/*credentials: new AWS.Credentials({
accessKeyId: AWS_ACCESS_KEY ID,
secretAccessKey: AWS_SECRET_ACCESS_KEY

P/

// Amazon Cognito Federated Identities using AWS Amplify
//credentials: () => Auth.currentCredentials(),

// Amazon Cognito user pools using AWS Amplify
// type: AUTH_TYPE.AMAZON_COGNITO_ USER_POOLS,
// jwtToken: async () => (await Auth.currentSession()).getIdToken().getJwtToken(),
} 4
)i

You can switch the AUTH_TYPE value use API keys, IAM (including short-term credentials from Amazon
Cognito Federated Identities), or Amazon Cognito user pools. We recommend you use either IAM or
Amazon Cognito user pools after onboarding with an API key. The previous code shows how to use

the default configuration of AWS AppSync with an API key, referencing the AppSync. js file you
downloaded. When you're ready to add other authorization methods to your application, you can use
the AWS Amplify library to quickly add these capabilities to your application. The corresponding AWS
Amplify methods for the AWS AppSync client constructor are included above. An import of the library
with configuration would look similar to the following:

import Amplify, { Auth } from 'aws-amplify';

import { withAuthenticator } from 'aws-amplify-react';
Amplify.configure(awsmobile);

//...code

const AppWithAuth = withAuthenticator(App, true);

For more information on using AWS Amplify, see the library documentation.

Replace the App component entirely, so it looks like this:

class App extends Component {
render() {
return (
<div className="App">
<header className="App-header">
<img src={logo} className="App-logo" alt="logo" />
<hl className="App-title">Welcome to React</hl>
</header>
<p className="App-intro">
To get started, edit <code>src/App.js</code> and save to reload.
</p>

35



https://aws.github.io/aws-amplify/

AWS AppSync AWS AppSync Developer Guide
Import the AWS AppSync SDK into Your App

<NewPostWithData />
<AllPostsWithData />
</div>

)i

You can also delete the posts variable in your code, because the app state will be coming from AWS
AppSync.

At the bottom of your App. js file, define the following higher-order component (HOC):

const AllPostsWithData = compose(
graphgl(AllPostsQuery, {
options: {
fetchPolicy: 'cache-and-network'
Iy
props: (props) => ({
posts: props.data.allPost && props.data.allPost.posts,
D)
)
graphgl(DeletePostMutation, {
props: (props) => ({
onDelete: (post) => props.mutate({
variables: { id: post.id, expectedVersion: post.version },

optimisticResponse: () => ({ deletePost: { ...post, _ typename:
'Post' } }),

D)
oK
options: {
refetchQueries: [{ query: AllPostsQuery }],
update: (proxy, { data: { deletePost: { id } } }) => {
const query = AllPostsQuery;
const data = proxy.readQuery({ query });

data.allPost.posts = data.allPost.posts.filter(post => post.id !== id);
proxy.writeQuery({ query, data });

}

)
graphgl(UpdatePostMutation, {
props: (props) => ({
onEdit: (post) => {

props.mutate({

variables: { ...post, expectedVersion: post.version },

optimisticResponse: () => ({ updatePost: { ...post, _ typename: 'Post',
version: post.version + 1 } }),

D)

}
oK
options: {
refetchQueries: [{ query: AllPostsQuery }],
update: (dataProxy, { data: { updatePost } }) => {
const query = AllPostsQuery;
const data = dataProxy.readQuery({ query });

data.allPost.posts = data.allPost.posts.map(post => post.id !==
updatePost.id ? post : { ...updatePost });

dataProxy.writeQuery({ query, data });

»

36




AWS AppSync AWS AppSync Developer Guide
Test Your Application

Y(AllPosts);

const NewPostWithData = graphgl(NewPostMutation, {
props: (props) => ({
onAdd: post => props.mutate({
variables: post,
optimisticResponse: () => ({ addPost: { ...post, _ typename: 'Post', version:
13} 1)
D)
)
options: {
refetchQueries: [{ query: AllPostsQuery }],
update: (dataProxy, { data: { addPost } }) => {
const query = AllPostsQuery;
const data = dataProxy.readQuery({ query });

data.allPost.posts.push(addPost);

dataProxy.writeQuery({ query, data });

}

}
})(AddPost);

Finally, replace export default App with the ApolloProvider:

const WithProvider = () => (
<ApolloProvider client={client}>
<Rehydrated>
<App />
</Rehydrated>
</ApolloProvider>

)i

export default WithProvider;

Test Your Application

yarn start

Open a webpage and add, remove, edit, and delete data. If you're using Chrome developer tools, you can
use the network conditioning tool for offline testing.

Offline Settings

There are important considerations that you'll need to account for if you want an optimistic Ul for an
application, where data can be manipulated when the device is in an offline state. Many of these settings
are documented in the official Apollo documentation, however, we call out several of them here that you
should configure.

First, know that the AWS AppSync client allows you to disable offline capabilities if you simply want to
use GraphQL in an always-online scenario. To do this, you pass an additional option when instantiating
your client, named disableOffline, as follows:

const client = new AWSAppSyncClient({
url: AppSync.graphglEndpoint,
region: AppSync.region,
auth: {
type: AUTH_TYPE.API_KEY,

37



https://developers.google.com/web/tools/chrome-devtools/network-performance/network-conditions#emulate_network_connectivity

AWS AppSync AWS AppSync Developer Guide
Make Your Application Real Time

apiKey: AppSync.apiKey,
Iy
disableOffline: true
)i

« fetchPolicy: This option allows you to specify how a query interacts with the network versus local in-
memory caching. AWS AppSync persists this cache to a platform-specific storage medium. If you are
using the AWS AppSync client in offline scenarios (disableOffline: false), you MUST set this value
to cache-and-network:

options: {
fetchPolicy: 'cache-and-network'

}

« optimisticResponse: This option allows you to pass a function or an object to a mutation for updating
your Ul before the server responds with the result. This is needed in offline scenarios (and for slower
networks) to ensure that the Ul is updated when the device has no connectivity. Optionally, you can
also use this if you have set disableOffline:true. For example, if you were adding a new object to
a list, you might use the following:

onAdd: post => props.mutate({
variables: post,
optimisticResponse: () => ({ addPost: { __ typename: 'Post', ups: 1, downs: 1, content:
'', url: '', version: 1, ...post } }),

B

Normally, you use optimisticResponse in conjunction with the update option for React Apollo's
component, which can trigger during an offline mutation. If you want the Ul to update offline for a
specific query, you need to specify that query as part of the readQuery and writeQuery options on
the cache, as shown below:

options: {
refetchQueries: [{ query: AllPostsQuery }],
update: (dataProxy, { data: { addPost } }) => {
const query = AllPostsQuery;
const data = dataProxy.readQuery({ query });
data.allPost.posts.push(addPost);
dataProxy.writeQuery({ query, data });

When this happens, the AWS AppSync persistent store update automatically in response to the Apollo

cache update. Upon network reconnection, it will synchronize with your GraphQL endpoint. You could

also modify more than one query when offline, in which case you could run the above process multiple
times in the same update block.

Make Your Application Real Time

Edit your schema with the subscription type, as follows:

schema {
query: Query
mutation: Mutation
subscription: Subscription

}

type Mutation {

38




AWS AppSync AWS AppSync Developer Guide
Make Your Application Real Time

addPost(id: ID! author: String! title: String content: String! url: String!): Post!

updatePost(id: ID! author: String! title: String content: String url: expectedVersion:
Int!): Post!

deletePost(id: ID!, expectedVersion: Int): Post

}

type Post {
id: ID!
author: String!
title: String
content: String
url: String
ups: Int
downs: Int
version: Int!

}

type PaginatedPosts {
posts: [Post!]!
nextToken: String

}

type Query {
allPost(count: Int, nextToken: String): PaginatedPosts!
getPost(id: ID!): Post

}

type Subscription {
newPost: Post
@aws_subscribe(mutations:["addPost"])

Notice that the @aws_subscribe specifies which mutations trigger a subscription. You can add more
mutations in this array to meet your application needs.

The subscription type newPost needs to be passed into an option (named updateQuery) of the React
Apollo client to update your Ul dynamically when a subcription is received. Ensure that this field name
matches the subscription type in the following example code.

In your App. js file, edit the Al1PostswithData HOC to include subscribeToNewPost in the props
field, as follows:

const AllPostsWithData = compose(
graphgl(AllPostsQuery, {
options: {
fetchPolicy: 'cache-and-network'
Iy
props: (props) => ({
posts: props.data.allPost && props.data.allPost.posts,
// START - NEW PROP
subscribeToNewPosts: params => {
props.data.subscribeToMore ({
document: NewPostsSubscription,
updateQuery: (prev, { subscriptionData: { data : { newPost } } }) => ({

...prev,
allPost: { posts: [newPost, ...prev.allPost.posts.filter(post =>
post.id !== newPost.id)], __ typename: 'PaginatedPosts' }

)
1)
3
// END - NEW PROP

»
3.

39




AWS AppSync AWS AppSync Developer Guide
Complex Objects

...//more code

touch src/Queries/NewPostsSubscription.js

import ggl from 'graphql-tag';

export default gql”
subscription NewPostSub {
newPost {
___typename
id
title
author
version
}
I

Add the following import statement at the top of your App. js file:

import NewPostsSubscription from './Queries/NewPostsSubscription';

Add the following lifecycle method to your A11Posts componentin A11Posts. jsx:

componentWillMount(){
this.props.subscribeToNewPosts();

¥

Now try running your app again by typing yarn start. Add a new post via the console, with a mutation
on addPost. You should see real-time data appear in your client application.

Complex Objects

Many times you might want to create logical objects that have more complex data, such as images or
videos, as part of their structure. For instance you might create a "Person" type with a profile picture or a
"Post" type that has an associated image. With AWS AppSync, you can model these as GraphQL types. If
any of your mutations have a variable with bucket, key, region, mimeType and localUri fields, the
SDK will upload the file to Amazon S3 for you.

Edit your schema to add the S30bject and S30bjectInput types, as follows:

schema {
query: Query
mutation: Mutation
subscription: Subscription

}

type Mutation {

addPost(id: ID! author: String! title: String content: String! url: String! file:
S30bjectInput): Post!

updatePost(id: ID! author: String! title: String content: String url: expectedVersion:
Int!): Post!

deletePost(id: ID!, expectedVersion: Int): Post
}

type Post {
id: ID!
author: String!
title: String

40




AWS AppSync AWS AppSync Developer Guide
Complex Objects

content: String
url: String
ups: Int

downs: Int
file: S30bject
version: Int!

}

type PaginatedPosts {
posts: [Post!]!
nextToken: String

}

type S30bject {
bucket: String!
key: String!
region: String!

}

input S30bjectInput {
bucket: String!
key: String!
region: String!
localUri: String
mimeType: String

}

type Query {
allPost(count: Int, nextToken: String): PaginatedPosts!
getPost(id: ID!): Post

}

type Subscription {
newPost: Post
@aws_subscribe(mutations:["addPost"])

Edit your . /src/Components/AddPost. jsx file, as follows:

import React, { Component } from "react";
import { v4 as uuid } from 'uuid';

export default class AddPost extends Component {

constructor(props) {

super (props);

this.state = this.getInitialState();
}

static defaultProps = {
onAdd: () => null

}
getInitialState = () => ({
id: ',
title: '',
author: '',
file: null,

)i

handleChange = (field, event) => {
const { target: { value } } = event;

this.setState({
[field]: value

41




AWS AppSync AWS AppSync Developer Guide
Complex Objects

1)
}

handleAdd = () => {
const { title, author, file: selectedFile } = this.state;

let file;

if (selectedFile) {
const { name, type: mimeType } = selectedFile;
const [, , , extension] = /([*.]+)(\.(\w+))?$/.exec(name);

const bucket = '[YOUR BUCKET]';
const key = [uuid(), extension].filter(x => !!x).join('."');
const region = '[YOUR REGION]';

file = {
bucket,
key,
region,
mimeType,
localUri: selectedFile,
}i
}

this.setState(this.getInitialState(), () => {
this.props.onAdd({ title, author, content: 'hardcoded',K file });
i
}

handleCancel = () => {
this.setState(this.getInitialState());

}

render() {
return (
<fieldset >
<legend>Add new Post</legend>
<div>
<label>ID<input type="text" placeholder="ID" value={this.state.id}
onChange={this.handleChange.bind(this, 'id')} /></label>
</div>
<div>
<label>Title<input type="text" placeholder="Title"
value={this.state.title} onChange={this.handleChange.bind(this, 'title')} /></label>
</div>
<div>
<label>Author<input type="text" placeholder="Author"
value={this.state.author} onChange={this.handleChange.bind(this, 'author')} /></label>
</div>
<div>
<label>File<input type="file" onChange={this.handleChange.bind(this,
'file')} /></label>
</div>
<div>
<button onClick={this.handleAdd}>Add new post</button>
<button onClick={this.handleCancel}>Cancel</button>
</div>
</fieldset>
)i

Now try running your app again by typing yarn start. Add a new post via the console, with a mutation
on addPost. Your file should be uploaded to Amazon S3 before doing your mutation.

42




AWS AppSync AWS AppSync Developer Guide
Conflict Resolution

Conflict Resolution

When clients make a mutation, either online or offline, they can send a version number with the payload
(named expectedversion) for AWS AppSync to check before writing to Amazon DynamoDB. A
DynamoDB resolver mapping template can be configured to perform conflict resolution in the cloud,
which you can learn about in Resolver Mapping Template Reference for DynamoDB (p. 166). If the
service determines it needs to reject the mutation, data is sent to the client and you can optionally run
an additional callback to perform client-side conflict resolution.

For example, suppose you had a mutation with DynamoDB set for checking the version, and the client
sent expectedVersion:O0, as in this example:

graphgl(UpdatePostMutation, {

props: (props) => ({
onEdit: (post) => {
props.mutate({

variables: { ...post, expectedVersion: 0 },
optimisticResponse: () => ({ updatePost: { ...post, _ typename: 'Post',
version: post.version + 1 } }),
9]
}
}),...more code

This would fail the version check because 0 would be lower than any of the current values. You can then
define a custom callback conflict resolver. A custom conflict resolver will receive the following variables:

« mutation: GraphQL statement of a mutation

« mutationName: Optional if a name of a mutation is set on a GraphQL statement
« variables: Input parameters of the mutation

« data: Response from AWS AppSync of actual data in DynamoDB

« retries: Number of times a mutation has been retried

For example, you could have the following custom callback conflict resolver:

const conflictResolver = ({ mutation, mutationName, variables, data, retries }) => {
switch (mutationName) {
case 'UpdatePostMutation':
return {
...variables,
expectedVersion: data.version,
i
default:
return false;

In the example above, you can do a logical check on the mutationName and then rerun the mutation
with the correct version that AWS AppSync returned.

Note: We recommend doing this only in rare cases. Usually, you should let the AWS AppSync service
define conflict resolution, or race conditions can occur. If you don't want to retry, simply return DISCARD.

Now, to use this callback, pass it into the AWS AppSync client instantiation:

const client = new AWSAppSyncClient({
url: awsconfig.ENDPOINT,

43




AWS AppSync AWS AppSync Developer Guide
Building a React Native Client App

region: awsconfig.REGION,
auth: authlInfo,
conflictResolver,

)i

Building a React Native Client App

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync integrates with the Apollo GraphQL client for building client applications. AWS provides
Apollo plugins for offline support, authorization, and subscription handshaking. You can use the Apollo
client directly, or you can use it with some of the client helpers provided in the AWS AppSync SDK. This
tutorial shows you how to use AWS AppSync with React Apollo, which uses ReactJS constructs and
patterns with GraphQL.

Before You Begin

This tutorial is set up for a sample API using the schema from the DynamoDB resolvers tutorial (p. 80).
To follow along with the complete flow, you can optionally walk through that tutorial first. If you want
to do more customization of GraphQL resolvers, such as those that use DynamoDB, see the Resolver
Mapping Template Reference (p. 153). The application will use the followibng starting schema:

schema {
query: Query
mutation: Mutation

}

type Mutation {
addPost(id: ID! author: String! title: String content: String! url: String!): Post!
updatePost(id: ID! author: String! title: String content: String url: expectedVersion:
Int!): Post!
deletePost(id: ID!, expectedVersion: Int): Post
}

type Post {
id: ID!
author: String!
title: String
content: String
url: String
ups: Int
downs: Int
version: Int!

}

type PaginatedPosts {
posts: [Post!]!
nextToken: String

}

type Query {
allPost(count: Int, nextToken: String): PaginatedPosts!
getPost(id: ID!): Post

This schema defines a Post type and operations to add, get, update, and delete Post objects.

44


https://github.com/apollographql/apollo-client

AWS AppSync AWS AppSync Developer Guide
Get the GraphQL API Endpoint

Get the GraphQL API Endpoint

After you create your GraphQL API, you'll need to get the APl endpoint (URL) so you can use it in your
client application. There are two ways to get the APl endpoint.

In the AWS AppSync console, choose Home, and then choose GraphQL URL to see the APl endpoint.

Alternatively, you can get it by running the following CLI command:

aws appsync get-graphql-api --api-id $GRAPHQL_API_ID

Download a Client Application

To show you how to use AWS AppSync, we first review a React Native application (bootstrapped with
create-react-native-app) with just a local array of data. Then we add AWS AppSync capabilities to it. To
begin, download a sample application where we can add, update, and delete posts.

Understanding the React Native Sample App

The React Native sample app has three major files:

e ./src/App.js: The main entry point of the application. Renders the main application shell with
two components named AddPost and A11Posts, and has a local array of data named posts that is
passed as a prop to the other components.

e ./src/Components/AddPost: A React Native component that contains a form that enables a user to
enter new information about a post, such as the author and title.

e ./src/Components/AllPosts: A React Native component that lists all existing posts from the
posts array that App. js created. It enables you to edit or delete existing posts.

Run your app as follows, and test it to be sure it works:

yarn && yarn start

Import the AWS AppSync SDK into Your App

In this section, you'll add AWS AppSync to your existing React Native app.

For Android, you need to eject and add a permission to access network state. First, run the following:

yarn eject

After ejecting, edit android/app/src/main/AndroidManifest.xml with the following:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.samplereactnative"
android:versionCode="1"
android:versionName="1.0">

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Add the following dependencies to your application:

45



https://github.com/react-community/create-react-native-app
https://s3-us-west-2.amazonaws.com/awsappsync/appsync-react-native-posts-starter.zip

AWS AppSync AWS AppSync Developer Guide
Import the AWS AppSync SDK into Your App

yarn add react-apollo graphgl-tag aws-sdk

Next, add in the AWS AppSync SDK, including the React extensions:

yarn add aws-appsync
yarn add aws-appsync-react

From the AWS AppSync console, navigate to your GraphQL API landing page where the APl URL is listed.
At the bottom of the page, choose Web. Next, click the Download button and save the AppSync.js
configuration file into . /.

To interact with AWS AppSync, your client needs to define GraphQL queries and mutations. This is
commonly done in separate files, as follows:

mkdir ./Queries

touch ./Queries/AllPostsQuery.js
touch ./Queries/DeletePostMutation.js
touch ./Queries/NewPostMutation.js
touch ./Queries/UpdatePostMutation.js

Edit and save Al11PostsQuery. js:

import ggl from 'graphql-tag';

export default gql”
query AllPosts {

allPost {
posts {
___typename
id
title
author
version
}
}

I

Edit and save DeletePostMutation. js:

import ggl from 'graphql-tag';

export default gql”
mutation DeletePostMutation($id: ID!, $expectedVersion: Int!) {
deletePost(id: $id, expectedVersion: $expectedVersion) {
___typename
id
author
title
version
}
P

Edit and save NewPostMutation. js:

import ggl from 'graphql-tag';

export default gql”
mutation AddPostMutation($id: ID!, s$author: String!, $title: String!) {

46




AWS AppSync AWS AppSync Developer Guide
Import the AWS AppSync SDK into Your App

addPost(
id: $id
author: $author
title: s$title
content: " "
url: " "

) {
__ typename
id
author
title
version

s

Edit and save UpdatePostMutation. js:

import ggl from 'graphgl-tag';

export default ggl~
mutation UpdatePostMutation($id: ID!, s$author: String, $title: String,
Int!) {
updatePost(

id: $id
author: s$author
title: $title
expectedVersion: s$expectedVersion

) {
__typename
id
author
title
version

}

Y

$expectedVersion:

Edit your App. js file, as follows:

import AWSAppSyncClient from "aws-appsync";

import { Rehydrated } from 'aws-appsync-react';

import { AUTH_TYPE } from "aws-appsync/lib/link/auth-1link";
import { graphql, ApolloProvider, compose } from 'react-apollo';
import * as AWS from 'aws-sdk';

import AppSync from './AppSync.js';

import AllPostsQuery from './Queries/AllPostsQuery';

import NewPostMutation from './Queries/NewPostMutation';

import DeletePostMutation from './Queries/DeletePostMutation’';
import UpdatePostMutation from './Queries/UpdatePostMutation';

After all the import statements, add the following code:

const client = new AWSAppSyncClient({
url: AppSync.graphglEndpoint,
region: AppSync.region,
auth: {
type: AUTH_TYPE.API_KEY,
apiKey: AppSync.apiKey,

//type: AUTH_TYPE.AWS_IAM,

//Note - Testing purposes only

/*credentials: new AWS.Credentials({
accessKeyId: AWS_ACCESS_KEY ID,

47




AWS AppSync AWS AppSync Developer Guide
Import the AWS AppSync SDK into Your App

secretAccessKey: AWS_SECRET_ACCESS_KEY
*/

//IAM Cognito Identity using AWS Amplify
//credentials: () => Auth.currentCredentials(),

//Cognito User Pools using AWS Amplify
// type: AUTH_TYPE.AMAZON_ COGNITO_USER_POOLS,
// jwtToken: async () => (await Auth.currentSession()).getIdToken().getJwtToken(),
Iy
)i

Note that you can switch the AUTH_TYPE value to use API keys, IAM (including short-term credentials
from Amazon Cognito Federated Identities), or Amazon Cognito user pools. We recommend you use
either IAM or Amazon Cognito user pools after onboarding with an API key. The previous code shows
how to use the default configuration of AWS AppSync with an API key, referencing the AppSync. js file
you downloaded. When you're ready to add other authorization methods to your application, you can
use the AWS Amplify library to quickly add these capabilities to your application. The corresponding
AWS Amplify methods for the AWS AppSync client constructor are included above, and an import of the
library with configuration would look similar to the following:

import Amplify, { Auth } from 'aws-amplify';

import { withAuthenticator } from 'aws-amplify-react';
Amplify.configure(awsmobile);

//...code

const AppWithAuth = withAuthenticator(App, true);

For more information on using AWS Amplify, see the library documentation.

Replace the App component entirely, so it looks like this:

class App extends Component {
state = { posts: [] };

render() {
return (
<View style={styles.container}>
<AddPostWithData />
<AllPostsWithData />
</View>

)i

Delete the posts variable in your code, because the app state will be coming from AWS AppSync. Also,
change the initial state of the App component to this:

state = { posts: [] };

At the bottom of your App. js file, define the following higher-order component (HOC):

const AllPostsWithData = compose(
graphgl(AllPostsQuery, {
options: {
fetchPolicy: 'cache-and-network'
T
props: (props) => ({

48



https://aws.github.io/aws-amplify/

AWS AppSync AWS AppSync Developer Guide
Import the AWS AppSync SDK into Your App

posts: props.data.allPost && props.data.allPost.posts,
D)
oK
graphgl(DeletePostMutation, {
props: (props) => ({
onDelete: (post) => props.mutate({
variables: { id: post.id, expectedVersion: post.version },
optimisticResponse: () => ({ deletePost: { ...post, _ typename:
'Post' } }),
D)
oK
options: {
refetchQueries: [{ query: AllPostsQuery }],
update: (proxy, { data: { deletePost: { id } } }) => {
const query = AllPostsQuery;
const data = proxy.readQuery({ query });

data.allPost.posts = data.allPost.posts.filter(post => post.id !== id);
proxy.writeQuery({ query, data });

}

)
graphqgl(UpdatePostMutation, {
props: (props) => ({
onEdit: (post) => {

props.mutate({

variables: { ...post, expectedVersion: post.version },
optimisticResponse: () => ({ updatePost: { ...post, _ typename: 'Post',
version: post.version + 1 } }),
D)
}
oK

options: {
refetchQueries: [{ query: AllPostsQuery }],
update: (dataProxy, { data: { updatePost } }) => {
const query = AllPostsQuery;
const data = dataProxy.readQuery({ query });

data.allPost.posts = data.allPost.posts.map(post => post.id !==
updatePost.id ? post : { ...updatePost });

dataProxy.writeQuery({ query, data });

}
D)
Y(AllPosts);

const AddPostWithData = graphgl(NewPostMutation, {
props: (props) => ({
onAdd: post => props.mutate({
variables: post,
optimisticResponse: () => ({ addPost: { ...post, _ typename: 'Post', version:
1} 1)
D)
)
options: {
refetchQueries: [{ query: AllPostsQuery }],
update: (dataProxy, { data: { addPost } }) => {
const query = AllPostsQuery;
const data = dataProxy.readQuery({ query });

data.allPost.posts.push(addPost);

dataProxy.writeQuery({ query, data });
}

49




AWS AppSync AWS AppSync Developer Guide
Test Your Application

}
})(AddPost);

Finally, replace export default App with the ApolloProvider:

const WithProvider = () => (
<ApolloProvider client={client}>
<Rehydrated>
<App />
</Rehydrated>
</ApolloProvider>

H

export default WithProvider;

Test Your Application

yarn start

Offline Settings

There are important considerations that you'll need to account for if you want an optimistic Ul for an
application, where data can be manipulated when the device is in an offline state. Many of these settings
are documented in the official Apollo documentation, however, we call out several of them here that you
should configure.

First, note that the AWS AppSync client allows you to disable offline capabilities if you simply want to
use GraphQL in an always-online scenario. To do this, you pass an additional option when instantiating
your client, named disableOffline, as follows:

const client = new AWSAppSyncClient({
url: AppSync.graphglEndpoint,
region: AppSync.region,
auth: {
type: AUTH_TYPE.API_KEY,
apiKey: AppSync.apiKey,
T
disableOffline: true
)i

« fetchPolicy: This option allows you to specify how a query interacts with the network versus local in-
memory caching. AWS AppSync persists this cache to a platform-specific storage medium. If you are
using the AWS AppSync client in offline scenarios (disableOffline: false), you MUST set this value
to cache-and-network:

options: {
fetchPolicy: 'cache-and-network'

}

« optimisticResponse: This option allows you to pass a function or an object to a mutation for updating
your Ul before the server responds with the result. This is needed in offline scenarios (and for slower
networks) to ensure that the Ul is updated when the device has no connectivity. Optionally, you can
use this if you have set disableOffline:true. For example, if you were adding a new object to a
list, you might use the following:

onAdd: post => props.mutate({

50



AWS AppSync AWS AppSync Developer Guide
Make Your Application Real Time

variables: post,
optimisticResponse: () => ({ addPost: { _ typename: 'Post', ups: 1, downs: 1, content:
'', url: '', version: 1, ...post } }),

B

Normally, you use optimisticResponse in conjunction with the update option for React Apollo's
component, which can trigger during an offline mutation. If you want the Ul to update offline for a
specific query, you need to specify that query as part of the readQuery and writeQuery options on
the cache, as shown below:

options: {
refetchQueries: [{ query: AllPostsQuery }],
update: (dataProxy, { data: { addPost } }) => {
const query = AllPostsQuery;
const data = dataProxy.readQuery({ query });
data.allPost.posts.push(addPost);
dataProxy.writeQuery({ query, data });

When this happens, the AWS AppSync persistent store is automatically updated in response to the
Apollo cache update. Upon network reconnection, it will synchronize with your GraphQL endpoint. You
could also modify more than one query when offline, in which case you could run the above process
multiple times in the same update block.

Make Your Application Real Time

Edit your schema with the subscription type, as follows:

schema {
query: Query
mutation: Mutation
subscription: Subscription

¥

type Mutation {
addPost(id: ID! author: String! title: String content: String! url: String!): Post!
updatePost(id: ID! author: String! title: String content: String url: expectedVersion:
Int!): Post!
deletePost(id: ID!, expectedVersion: Int): Post
}

type Post {
id: ID!
author: String!
title: String
content: String
url: String
ups: Int
downs: Int
version: Int!

¥

type PaginatedPosts {
posts: [Post!]!
nextToken: String

¥

type Query {
allPost(count: Int, nextToken: String): PaginatedPosts!

51




AWS AppSync AWS AppSync Developer Guide
Make Your Application Real Time

getPost(id: ID!): Post
}

type Subscription {
newPost: Post
@aws_subscribe(mutations:["addPost"])

Notice that the @aws_subscribe specifies which mutations trigger a subscription. You can add more
mutations in this array to meet your application needs.

The subscription type newPost needs to be passed into an option named updateQuery of the React
Apollo client to update your Ul dynamically when a subcription is received. Ensure that this field name
matches the subscription type in the following example code.

In your App. js file, edit the Al1PostsWithData HOC to include subscribeToNewPost in the props
field, as follows:

const AllPostsWithData = compose(
graphgl(AllPostsQuery, {
options: {
fetchPolicy: 'cache-and-network'
Iy
props: (props) => ({
posts: props.data.allPost && props.data.allPost.posts,
// START - NEW PROP
subscribeToNewPosts: params => {
props.data.subscribeToMore ({
document: NewPostsSubscription,
updateQuery: (prev, { subscriptionData: { data : { newPost } } }) => ({

...prev,
allPost: { posts: [newPost, ...prev.allPost.posts.filter(post =>
post.id !== newPost.id)], typename: 'PaginatedPosts' }
1))
i
Iy

// END - NEW PROP

»
3.

...//more code

touch ./Queries/NewPostsSubscription.js

import ggql from 'graphgl-tag';

export default gql~
subscription NewPostSub {
newPost {
__typename
id
title
author
version
¥
i

Add the following import statement at the top of your App. js file:

import NewPostsSubscription from './Queries/NewPostsSubscription';

52



AWS AppSync AWS AppSync Developer Guide
Conflict Resolution

Modify the defaultProps in the Al1lPosts. js component, as follows:

static defaultProps = {
posts: [],
onDelete: () => null,
onEdit: () => null,
subscribeToNewPosts: () => null,

Add the following lifecycle method to your A11Posts component in A11Posts. js:

componentWillMount(){
this.props.subscribeToNewPosts();

}

Now try running your app again by typing yarn start. Add a new post via the console, with a mutation
on addPost. You should see real-time data appear in your client application.

Conflict Resolution

When clients make a mutation, either online or offline, they can send a version number with the payload
(named expectedVersion) for AWS AppSync to check before writing to Amazon DynamoDB. A
DynamoDB resolver mapping template can be configured to perform conflict resolution in the cloud,
which you can learn about in Resolver Mapping Template Reference for DynamoDB (p. 166). If the
service determines it needs to reject the mutation, data is sent to the client and you can optionally run
an additional callback to perform client-side conflict resolution.

For example, suppose you had a mutation with DynamoDB set for checking the version, and the client
sent expectedVersion:0, as in this example:

graphgl(UpdatePostMutation, {

props: (props) => ({
onEdit: (post) => {
props.mutate({

variables: { ...post, expectedVersion: 0 },
optimisticResponse: () => ({ updatePost: { ...post, _ typename: 'Post',
version: post.version + 1 } }),
»
}
}),...more code

This would fail the version check because 0 would be lower than any of the current values. You can then
define a custom callback conflict resolver. A custom conflict resolver will receive the following variables:

« mutation: GraphQL statement of a mutation

« mutationName: Optional if a name of a mutation is set on a GraphQL statement
« variables: Input parameters of the mutation

« data: Response from AWS AppSync of actual data in DynamoDB

« retries: Number of times a mutation has been retried

For example, you could have the following custom callback conflict resolver:

const conflictResolver = ({ mutation, mutationName, variables, data, retries }) => {
switch (mutationName) {
case 'UpdatePostMutation':
return {

53




AWS AppSync AWS AppSync Developer Guide
Building a JavaScript Client App

...variables,
expectedVersion: data.version,
I
default:
return false;

In the previous example, you can do a logical check on the mutationName and then rerun the mutation
with the correct version that AWS AppSync returned.

Note: We recommend doing this only in rare cases. Usually, you should let the AWS AppSync service
define conflict resolution, or race conditions can occur. If you don't want to retry, simply return DISCARD.

Now, to use this callback, pass it into the AWS AppSync client instantiation:

const client = new AWSAppSyncClient({
url: awsconfig.ENDPOINT,
region: awsconfig.REGION,
auth: authInfo,
conflictResolver,

)i

Building a JavaScript Client App

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync integrates with the Apollo GraphQL client for building client applications. AWS provides
Apollo plugins for offline support, authorization, and subscription handshaking. This tutorial shows how
you can use the AWS AppSync SDK with the Apollo client directly in a Node.js application. You can follow
a similar process with popular JavaScript frameworks.

Before You Begin

This tutorial expects a GraphQL schema with the following structure:

schema {
query: Query
mutation: Mutation
subscription: Subscription

}

type Mutation {
addPost(id: ID! author: String! title: String content: String url: String): Post!
updatePost(id: ID! author: String! title: String content: String url: String ups: Int!
downs: Int! expectedVersion: Int!): Post!
deletePost(id: ID!): Post!
}

type Post {
id: ID!
author: String!
title: String
content: String
url: String
ups: Int

54



https://github.com/apollographql/apollo-client

AWS AppSync AWS AppSync Developer Guide
Get the GraphQL API Endpoint

downs: Int
version: Int!

}

type Query {
allPost: [Post]
getPost(id: ID!): Post
}

type Subscription {
newPost: Post
@aws_subscribe(mutations:["addPost"])

This schema is from the DynamoDB resolvers tutorial (p. 80), with a subscription added. To follow
the complete flow, you can optionally walk through that tutorial first. If you would like to do more
customization of GraphQL resolvers, such as those that use DynamoDB, see the Resolver Mapping
Template Reference (p. 153).

Get the GraphQL API Endpoint

After you create your GraphQL API, you'll need to get the API endpoint (URL) so you can use it in your
client application. There are two ways to get the APl endpoint.

In the AWS AppSync console, choose Home, and then choose GraphQL URL to see the APl endpoint.

Alternatively, you can get it by running the following CLI command:

aws appsync get-graphgl-api --api-id $GRAPHQL_API_ID

The following instructions show how you can use AWS_IAM for client authorization. In the console, select
Settings on the left, and then click AWS_IAM.

Create a Client Application

Create a new project and initialize it with npm, accepting the defaults:

mkdir appsync && cd appsync
touch index.js aws-exports.js
npm init

AWS AppSync supports several authorization types, which you can learn more about in Authorization Use
Cases (p. 141). We recommend using short-term credentials from Amazon Cognito Federated Identities
or Amazon Cognito user pools. For example purposes, we show how you can use IAM keys. Your aws-
exports file should look like the following:

"use strict";

Object.defineProperty(exports, "_ esModule", { value: true });
var config = {
AWS_ACCESS_KEY_ID: '',

AWS_SECRET_ACCESS_KEY: '',

HOST: 'URL.YOURREGION.amazonaws.com',

REGION: 'YOURREGION',

PATH: '/graphqgl',

ENDPOINT: '',
i
config.ENDPOINT
exports.default

"https://" + config.HOST + config.PATH;
config;

55




AWS AppSync AWS AppSync Developer Guide
Create a Client Application

Edit your package . json dependencies file and be sure it includes the following:

"dependencies": {
"apollo-cache-inmemory": "A1.1.0",
"apollo-client": "#2.0.3",
"apollo-link": "A1.0.3",
"apollo-link-http": "A1.2.0",
"aws-sdk": "A2.141.0",
"aws-appsync": "A1.0.0",
"es6-promise": "A4.1.1",
"graphgl": "20.11.7",
"graphgl-tag": "~2.5.0",
"isomorphic-fetch": "+2.2.1",
"ws": "A3.3.1"

¥

From a command line, run the following:

npm install

Now add the following to your index. js file:

"use strict";
/**
* This shows how to use standard Apollo client on Node.js

*/

global.WebSocket = require('ws');
global.window = global.window || {
setTimeout: setTimeout,
clearTimeout: clearTimeout,
WebSocket: global.WebSocket,
ArrayBuffer: global.ArrayBuffer,
addEventListener: function () { },
navigator: { onLine: true }
Y
global.localStorage = {
store: {},
getItem: function (key) {
return this.store[key]
Iy
setItem: function (key, value) {
this.store[key] = value
Iy
removeItem: function (key) {
delete this.store[key]
}
Y
require('es6-promise').polyfill();
require('isomorphic-fetch');

// Require exports file with endpoint and auth info
const aws_exports = require('./aws-exports').default;

// Require AppSync module
const AUTH_TYPE = require('aws-appsync/lib/link/auth-1ink').AUTH_TYPE;
const AWSAppSyncClient = require('aws-appsync').default;

const url = aws_exports.ENDPOINT;
const region = aws_exports.REGION;

const type = AUTH_TYPE.AWS_IAM;

// 1If you want to use API key-based auth

56




AWS AppSync AWS AppSync Developer Guide
Create a Client Application

const apiKey = 'XXXXXXXXX';
// If you want to use a jwtToken from Amazon Cognito identity:
const jwtToken = 'XXXXXXXX';

// 1If you want to use AWS...
const AWS = require('aws-sdk');
AWS.config.update({
region: aws_exports.REGION,
credentials: new AWS.Credentials({
accessKeyId: aws_exports.AWS_ACCESS_KEY_ID,
secretAccessKey: aws_exports.AWS_SECRET ACCESS_KEY
D)
)i

const credentials = AWS.config.credentials;

// Import ggql helper and craft a GraphQL query
const ggl = require('graphql-tag');

const query = gql(~

query AllPosts {

allPost {
__typename
id
title
content
author
version

}

)

// Set up a subscription query
const subquery = gql(~
subscription NewPostSub {
newPost {

__typename
id
title
author
version

}

)

// Set up Apollo client
const client = new AWSAppSyncClient({

url: url,
region: region,
auth: {

type: type,

credentials: credentials,

)i

client.hydrated().then(function (client) {
//Now run a query
client.query({ query: query })
.then(function logData(data) {
console.log('results of query: ', data);

)

.catch(console.error);

//Now subscribe to results
const observable = client.subscribe({ query: subquery });

const realtimeResults = function realtimeResults(data) {
console.log('realtime data: ', data);

}i

57




AWS AppSync AWS AppSync Developer Guide
Building an iOS Client App

observable.subscribe({
next: realtimeResults,
complete: console.log,
error: console.log,
)i
)i

Notice that in the previous example, if you want to use an API key or Amazon Cognito user pools, you
could update the AUTH_TYPE:

const type
const type

AUTH_TYPE.API_KEY
AUTH_TYPE.AMAZON_COGNITO_USER_POOLS

You would need to provide the key or JWT token, as appropriate.

Building an iOS Client App

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync integrates with the Apollo GraphQL client when building client applications. AWS provides
plugins for offline support, authorization, and subscription handshaking to make this process easier. You
can choose to use the Apollo client directly, or with some client helpers provided in the AWS AppSync
SDK when you get started.

Create an API

Before getting started, you will need an API. See Designing a GraphQL API (p. 10) for details, and use the
following schema to work with the examples below:

schema {
query: Query
mutation: Mutation
subscription: Subscription

type Mutation {

addPost(id: ID! author: String! title: String content: String url: String): Post!

updatePost(id: ID! author: String! title: String content: String url: String ups: Int!
downs: Int! expectedVersion: Int!): Post!

deletePost(id: ID!): Post!

type Post {

id: ID!

author: String!
title: String
content: String
url: String
ups: Int

downs: Int
version: Int!

}

type Query {
posts: [Post]
post(id: ID!): Post

58



https://github.com/apollographql/apollo-client

AWS AppSync AWS AppSync Developer Guide
Download a Client Application

searchPosts: [Post]

}

type Subscription {
newPost: Post

}

If you would like to do more customization of GraphQL resolvers, see the Resolver Mapping Template
Reference (p. 153).

You will need the endpoint for your client, which you can get from the AWS AppSync console. Under
Home, look for GraphQL URL. Or you can run the following CLI command:

aws appsync get-graphgl-api --api-id $GRAPHQL_API_ID

Download a Client Application

To show usage of AWS AppSync, we first review an iOS application with just a local array of data, and
then we add AWS AppSync capabilities to it. Go to the following URL to download a sample application,
where we can add, update, and delete posts.

Understanding the iOS Sample App

The iOS sample app has three major files:

1. PostListViewController The PostListViewController shows the list of posts available in the
app. It uses a simple TableView to list all the posts. You can Add, Update, or Delete posts from this
ViewController.

2. AddPostViewController The AddPostViewController adds a new post into the list of existing posts.
It gives a call to the delegate in PostListViewController to update the list of posts.

3. UpdatePostViewController The UpdatePostViewController updates an existing post from the list
of posts. It gives a call to the delegate in PostListViewController to update the values of existing posts.

Running the iOS Sample App

1. Open the PostsApp.xcodeproj file from the download bundle, which you downloaded in the
previous step.

2. Build the project (COMMAND+B) and ensure that it completes without error.

3. Run the project (COMMAND+R) and try the Add, Update, and Delete (swipe left) operations on the
post list.

Set up the Code Generation for GraphQLOperations

To interact with AWS AppSync, your client needs to define GraphQL queries and mutations. This is
commonly done in separate files, as follows:

mkdir ./GraphQLOperations

touch ./GraphQLOperations/queries.graphqgl

touch ./GraphQLOperations/mutations.graphqgl
touch ./GraphQLOperations/subscriptions.graphqgl

Edit and save queries.graphql:

59



https://s3-us-west-2.amazonaws.com/awsappsync/appsync-ios-posts-starter.zip

AWS AppSync AWS AppSync Developer Guide
Set up the Code Generation for GraphQLOperations

query post($id:ID!) {
getPost(id:$id) {
id
title
author
content
url
version
}
}

query AllPosts {
allPosts {
id
title
author
content
url
version

Edit and save mutations.graphgl:

mutation AddPost($id: ID!, $author: String!, $title: String, $url: String,
$content: String){
addPost(id:$id, title:$title, author:s$author, url:$url, content:$content){
id
title
author
url
content
}
}

mutation UpdatePost($id: ID!, s$author: String!, $title: String, $content: String, $url:
String, $expectedVersion: Int!) {
updatePost(id: $id, author: $author, title: $title, content: $content, url: $url,
expectedVersion: $expectedVersion) {
id
author
title
content
url
version
}
}

mutation DeletePost($id: ID!) {
deletePost(id:$id){
id
title
author
url
content

Edit and save subscriptions.graphqgl:

subscription newPost($author: String) {
newPost(author: s$author) {
id

60




AWS AppSync AWS AppSync Developer Guide
Set up Dependency on the AWS AppSync SDK

title
author
url
content
version
}
}

subscription updatePost {

updatePost {
id
title
author
url
content
version

}
}

subscription deletedPost {
deletePost {

id

title

author

url

content

version

Run the following commands to install aws-appsync-codegen and use the code generator to generate
an API for accessing the AWS AppSync backend:

npm install -g aws-appsync-codegen

aws-appsync-codegen generate GraphQLOperations/*.graphgl --schema GraphQLOperations/
schema.json --output API.swift

Add the generated API.swift file into your Xcode project. You can make this part of your Xcode build
process (p. 67).

Set up Dependency on the AWS AppSync SDK

1. Open a terminal and navigate to the location of the project that you downloaded, and then run the
following:

pod init

This should create a Podfile in the root directory of the project. We will use this Podfile to declare
dependency on the AWS AppSync SDK and other required components.

Open the Podfile and add the following lines in the application target:

target 'PostsApp' do
use_frameworks!
pod 'AWSAppSync' ~> '2.6.7'
end

From the terminal, run the following command:

61




AWS AppSync AWS AppSync Developer Guide
Convert the App to Use AWS AppSync for the Backend

pod install --repo-update

This should create a file named PostsApp . xcworkspace. DO NOT open the *.xcodeproj going
forward. You can close the PostsApp.xcodeproj if it is open.

Open the PostsApp . xcworkspace with Xcode. Build the project (COMMAND+B) and ensure that it
completes without error.

In the app, edit the Constants.swift file, and update the GraphQL endpoint and your authentication
mechanism.

let CognitoIdentityPoolId = "COGNITO_POOL_ID"

let CognitoIdentityRegion: AWSRegionType = .REGION

let AppSyncRegion: AWSRegionType = .REGION

let AppSyncEndpointURL: URL = URL(string: "https://APPSYNCURL/graphql")!
let database_name = "appsync-local-db"

Convert the App to Use AWS AppSync for the
Backend

Add the AppSyncClient as a instance member of the AppDelegate class. This enables us to
access the same client easily across the app, and update the didFinishLaunching method in
AppDelegate.swift with following code:

import AWSAppSync
class AppDelegate {

var window: UIWindow?
var appSyncClient: AWSAppSyncClient?

func application(_ application: UIApplication, didFinishLaunchingWithOptions

launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

// Set up Amazon Cognito credentials

let credentialsProvider = AWSCognitoCredentialsProvider(regionType:
CognitoIdentityRegion,

identityPoolId:

CognitoIdentityPoolId)

// You can choose your database location, accessible by SDK

let databaseURL =
URL(fileURLWithPath:NSTemporaryDirectory()).appendingPathComponent(database_name)

do {
// Initialize the AWS AppSync configuration
let appSyncConfig = try AWSAppSyncClientConfiguration(url: AppSyncEndpointURL,
serviceRegion:
AppSyncRegion,
credentialsProvider:
credentialsProvider,
databaseURL:databaseURL)
// Initialize the AppSync client
appSyncClient = try AWSAppSyncClient(appSyncConfig: appSyncConfig)
// Set id as the cache key for objects
appSyncClient?.apolloClient?.cacheKeyForObject = { $0["id"] }
} catch {
print("Error initializing appsync client. \(error)")
}

return true

// ... other intercept methods

62




AWS AppSync AWS AppSync Developer Guide
Convert the App to Use AWS AppSync for the Backend

Update the AddPostViewController.swift file with the following code:

import Foundation
import UIKit
import AWSAppSync

class AddPostViewController: UIViewController {

@IBOutlet weak var authorInput: UITextField!
@IBOutlet weak var titleInput: UITextField!
@IBOutlet weak var contentInput: UITextField!
@IBOutlet weak var urlInput: UITextField!

var appSyncClient: AWSAppSyncClient?

override func viewDidLoad() {
super.viewDidLoad()
let appDelegate = UIApplication.shared.delegate as! AppDelegate
appSyncClient = appDelegate.appSyncClient!

override func didReceiveMemoryWarning() {
super .didReceiveMemoryWarning()
// Dispose of any resources that can be recreated

¥

@IBAction func addNewPost(_ sender: Any) {

// Create a GraphQL mutation

let uniqueId = UUID().uuidString

let mutation = AddPostMutation(id: uniqueId,
author: authorInput.text!,
title: titlelInput.text,
url: urlInput.text,
content: contentInput.text)

appSyncClient?.perform(mutation: mutation, optimisticUpdate: { (transaction) in
do {
// Update our normalized local store immediately for a responsive UI
try transaction?.update(query: PostsQuery()) { (data: inout
PostsQuery.Data) in
data.allPosts?.append(PostsQuery.Data.AllPost.init(id: uniqueId, title:
mutation.title, author: mutation.author, content: mutation.content, version: 0))
¥
} catch {
print("Error updating the cache with optimistic response.")
¥
}) { (result, error) in
if let error = error as? AWSAppSyncClientError {
print("Error occurred: \(error.localizedDescription )")
return
¥
self.dismiss(animated: true, completion: nil)
}
self.dismiss(animated: true, completion: nil)

¥

@IBAction func onCancel(_ sender: Any) {
self.dismiss(animated: true, completion: nil)

¥

Update the UpdatePostViewController.swift file with the following code:

63




AWS AppSync AWS AppSync Developer Guide
Convert the App to Use AWS AppSync for the Backend

import Foundation
import UIKit
import AWSAppSync

class UpdatePostViewController: UIViewController {

var updatePostMutation: UpdatePostMutation?
@IBOutlet weak var authorInput: UITextField!
@IBOutlet weak var titleInput: UITextField!
@IBOutlet weak var contentInput: UITextField!
@IBOutlet weak var urlInput: UITextField!

var appSyncClient: AWSAppSyncClient?

override func viewDidLoad() {
super.viewDidLoad()
authorInput.text = updatePostMutation?.author
titleInput.text = updatePostMutation?.title
contentInput.text = updatePostMutation?.content
urlInput.text = updatePostMutation?.url
let appDelegate = UIApplication.shared.delegate as! AppDelegate
appSyncClient = appDelegate.appSyncClient!

}

@IBAction func updatePost(_ sender: Any) {
updatePostMutation?.author = authorInput.text!
updatePostMutation?.title = titleInput.text
updatePostMutation?.content = contentInput.text
updatePostMutation?.url = urlInput.text

appSyncClient?.perform(mutation: updatePostMutation!) { (result, error) in
if let error = error as? AWSAppSyncClientError {
print("Error occurred while making request:
\(error.localizedDescription )")
return
}
if let resultError = result?.errors {
print("Error saving the item on server: \(resultError)")
return

}

self.dismiss(animated: true, completion: nil)

}

@IBAction func onCancel(_ sender: Any) {
self.dismiss(animated: true, completion: nil)

}

Update the PostListViewController.swift file with the following code:

import UIKit
import AWSAppSync

class PostCell: UITableViewCell {
@IBOutlet weak var authorLabel: UILabel!
@IBOutlet weak var titleLabel: UILabel!
@IBOutlet weak var contentLabel: UILabel!

func updatevValues(author: String, title:String?, content: String?) {
authorLabel.text = author
titleLabel.text = title
contentLabel.text = content

64




AWS AppSync AWS AppSync Developer Guide
Convert the App to Use AWS AppSync for the Backend

class PostListViewController: UIViewController, UITableViewDelegate, UITableViewDataSource

{
var appSyncClient: AWSAppSyncClient?

@IBOutlet weak var tableView: UITableView!
var postList: [PostsQuery.Data.AllPost?]? = [] {
didset {
tablevView.reloadData()
}
}

func loadAllPosts() {

appSyncClient?.fetch(query: PostsQuery(), cachePolicy: .returnCacheDataAndFetch)

{ (result, error) in

if error != nil {
print(error?.localizedDescription ?? "")
return

}

self.postList = result?.data?.allPosts

}

func loadAllPostsFromCache() {

appSyncClient?.fetch(query: PostsQuery(), cachePolicy: .returnCacheDataDontFetch)

{ (result, error) in

if error != nil {
print(error?.localizedDescription ?? "")
return

}

self.postList = result?.data?.allPosts

}

override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear(animated)
loadAllPostsFromCache()

}

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib
self.automaticallyAdjustsScrollViewInsets = false

let appDelegate = UIApplication.shared.delegate as! AppDelegate
appSyncClient = appDelegate.appSyncClient

loadAllPosts()

self.tableview.dataSource = self
self.tableview.delegate = self

navigationItem.rightBarButtonItem = UIBarButtonItem(title: "Add", style:

target: self, action: #selector(addTapped))
}

@objc func addTapped() {
let storyboard = UIStoryboard(name: "Main", bundle: nil)
let controller = storyboard.instantiateViewController(withIdentifier:
"NewPostViewController") as! AddPostViewController
self.present(controller, animated: true, completion: nil)

.plain,

65




AWS AppSync AWS AppSync Developer Guide
Make Your App Real Time

func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return postList?.count ?? 0

}

func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITablevViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: "PostCell", for:
indexPath) as! PostCell

let post = postList![indexPath.row]!

cell.updateValues(author: post.author, title: post.title, content: post.content)

return cell

}

func tableView(_ tableView: UITableView, canEditRowAt indexPath: IndexPath) -> Bool {
return true

}

func tableView(_ tableView: UITableView, commit editingStyle:
UITableViewCellEditingStyle, forRowAt indexPath: IndexPath) {
if (editingStyle == UITableViewCellEditingStyle.delete) {
let id = postList![indexPath.row]?.id
let deletePostMutation = DeletePostMutation(id: id!)
appSyncClient?.perform(mutation: deletePostMutation) { result, err in
self.postList?.remove(at: indexPath.row)

}
self.tableview.reloadData()

}

func tableView(_ tableView: UITableView, didSelectRowAt indexPath: IndexPath) {

let post = postList![indexPath.row]!

let storyboard = UIStoryboard(name: "Main", bundle: nil)

let controller = storyboard.instantiateViewController(withIdentifier:
"UpdatePostViewController") as! UpdatePostViewController

controller.updatePostMutation = UpdatePostMutation(id: post.id, author:
post.author, title: post.title, content: post.content, url: post.url, expectedVersion:
post.version)

self.present(controller, animated: true, completion: nil)

}

Make Your App Real Time

AWS AppSync and GraphQL use the concept of subscriptions to deliver real-time updates of data to the
application. We have defined subscriptions on the events of NewPost, UpdatePost, and DeletePost.
This means we would get a real-time notification if app data is changed from another device, and we can
update our application Ul based on the updates.

Add a real-time subscription to receive events on a new post that is added by anyone. In the
PostListViewController.swift file, add the following function:

func startNewPostSubscription() {
let subscription = NewPostsSubscription()
do {
_ = try appSyncClient?.subscribe(subscription: subscription, resultHandler: { (result,
transaction, error) in
if let result = result {
// Store a reference to the new object
let newPost = result.data!.newPost!
// Create a new object for the desired query where the new object content should
reside
let postToAdd = PostsQuery.Data.Post(id: newPost.id,

66




AWS AppSync AWS AppSync Developer Guide
Integrating into the Build Process

title: newPost.title,
author: newPost.author,
content: newPost.content,
version: newPost.version)
do {
// Update the local store with the newly received data
try transaction?.update(query: PostsQuery()) { (data: inout PostsQuery.Data)

in
data.allPosts?.append(postToAdd)
b
self.loadAllPostsFromCache()
} catch {
print("Error updating store")
}
} else if let error = error {
print(error.localizedDescription)
}
b
} catch {
print("Error starting subscription.")
}
}

Next, call the method which we created from the viewDidLoad method of
PostListViewController. This should update the list of posts every time a new post is added from
any client.

Integrating into the Build Process

Copy the the schema. json file from the download bundle into the application root folder.

The .graphql files we created earlier will be used by the AWS AppSync Codegen to generate strongly
typed API code to perform queries, mutations, and subscriptions. To set up the code generation, we need
to add a build step in our Xcode project.

To invoke AWS AppSync Codegen as part of the Xcode build process, create a build step that runs
before "Compile Sources".

On your application target's Build Phases settings tab, click the + icon and choose New Run Script
Phase. Create a run script, change its name to "Generate AWS Apollo GraphQL API",? and drag it just
above "Compile Sources".

Then add the following contents to the script area below the shell:

AWS_APOLLO_FRAMEWORK_PATH="$(eval find $FRAMEWORK_ SEARCH_PATHS -name "Apollo.framework" -
maxdepth 1)"

if [ -z "$AWS_APOLLO_FRAMEWORK_PATH" ]; then

echo "error: Couldn't find AWSApollo.framework in FRAMEWORK_SEARCH_PATHS; make sure to
add the framework to your project."

exit 1
fi

cd "${SRCROOT}/${TARGET_NAME}"
$AWS_APOLLO_FRAMEWORK_PATH/check-and-run-aws-appsync-codegen.sh generate $(find . -name
'* ,graphgl') --schema schema.json --output API.swift

The previous script invokes aws-appsync-codegen through the check-and-run-aws-appsync-codegen.sh
wrapper script, which is actually contained in the AWSApollo.framework bundle. The main reason for this
is to check whether the version of aws-appsync-codegen installed on your system is compatible with the

67




AWS AppSync AWS AppSync Developer Guide
Complex Objects

framework version installed in your project, and to warn you if it isn't. Without this check, you could end
up generating code that is incompatible with the runtime code contained in the framework.

Now build the project using COMMAND+B and make sure the API. swift file in the project contains
generated API code. We will use API code to make GraphQL requests to AWS AppSync.

Complex Objects

Many times you might want to create logical objects that have more complex data, such as images or
videos, as part of their structure. For example, you might create a "Person" type with a profile picture or
a "Post" type that has an associated image. You can use AWS AppSync to model these as GraphQL types.
If any of your mutations have a variable with bucket, key, region, mimeType, and localUri fields,
the SDK will upload the file to Amazon S3 for you.

Edit your schema as follows to add the S30bject and S30bjectInput types:

schema {
query: Query
mutation: Mutation
subscription: Subscription

}

type Mutation {

addPost(id: ID! author: String! title: String content: String url: String file:
S30bjectInput): Post!

updatePost(id: ID! author: String! title: String content: String url: String ups: Int!
downs: Int! expectedVersion: Int!): Post!

deletePost(id: ID!): Post!
}

type Post {
id: ID!
author: String!
title: String
content: String
url: String
ups: Int
downs: Int
file: S30bject
version: Int!

}

type S30bject {
bucket: String!
key: String!
region: String!

}

input S30bjectInput {
bucket: String!
key: String!
region: String!
localUri: String
mimeType: String

}

type Query {
allPost: [Post]
getPost(id: ID!): Post
}

type Subscription {
newPost: Post

68




AWS AppSync AWS AppSync Developer Guide
Conflict Resolution

@aws_subscribe(mutations:["addPost"])

The AWS AppSync SDK does not take a direct dependency to the AWS SDK for iOS for S3,

but takes in AWSS3TransferUtility and AWSS3PresignedURLClient clients as part of
AWSAppSyncClientConfiguration. The code generator used above for generating the API will
generate the S3 wrappers required to use the previous clients in the client code. To generate the
wrappers, pass the --add-s3-wrapper flag while running the code generator tool. You will also need
to take a dependency on AwSS3 SDK. You can do that by updating your Podfile to the following:

target 'PostsApp' do
use_frameworks!
pod 'AWSAppSync' ~> '2.6.7'
pod 'AWSS3' ~> '2.6.7'

end

Then run pod install to fetch the new dependency.

Update the AWSAppSyncClientConfiguration object to provide the AWSS3TransferUtility client
for managing the uploads and downloads.

let appSyncConfig = try AWSAppSyncClientConfiguration(url: AppSyncEndpointURL,
serviceRegion: AppSyncRegion,
credentialsProvider:
credentialsProvider,
databaseURL:databaseURL,
s30bjectManager:
AWSS3TransferUtility.default())

The mutation operation does not require any specific changes in method signature, but requires only an
S30bjectInput with bucket, key, region, localUri, and mimeType. Now when you do a mutation,
it automatically uploads the specified file to S3 using the AWSS3TransferUtility client internally.

Conflict Resolution

When clients make a mutation, either online or offline, they can send a version number with the payload
(named expectedversion) for AWS AppSync to check before writing to Amazon DynamoDB. A
DynamoDB resolver mapping template can be configured to perform conflict resolution in the cloud.
See Resolver Mapping Template Reference for DynamoDB (p. 166). If the service determines it needs

to reject the mutation, data is sent to the client and you can optionally run an additional callback to
perform client-side conflict resolution.

For example, suppose you had a mutation with DynamoDB set for checking the version, and the client
sent expectedVersion:0, as in this example:

@IBAction func updatePost(_ sender: Any) {
let updatePostMutation = UpdatePostMutation(id: "1",
author: "Mr. Abc",
content: "UpdatedContent",
expectedVersion: 0)

appSyncClient?.perform(mutation: updatePostMutation) { (result, error) in
if let error = error as? AWSAppSyncClientError {
print("Error occurred while making request: \(error.localizedDescription )")
return

}

if let resultError = result?.errors {

69




AWS AppSync AWS AppSync Developer Guide
Building an Android Client App

print("Error saving the item on server: \(resultError)")
return

}

self.dismiss(animated: true, completion: nil)

This would fail the version check because 0 would be lower than any of the current values. You can then
define a custom callback conflict resolver. A custom conflict resolver can be passed inline to resolve

conflicts:

appSyncClient?.perform(mutation: updatePostMutation, conflictResolutionBlock:
{ (serverState, taskCompletionSource, result) in
// conflict resolution block gets a callback here
let snapshot = UpdatePostMutation.Data.UpdatePost(snapshot: serverState!)
print("Server version is: \(snapshot.version)")
let updateMutation = UpdatePostMutation(id: "1", author: "Mr. Abc", content:
"UpdatedContent", expectedVersion: snapshot.version)
// this would retry the specified “updateMutation™ before processing any other
queued mutations.
taskCompletionSource?.set(result: updateMutation)
}, resultHandler: { (result, error) in
if let error = error as? AWSAppSyncClientError {
print("Error occurred while making request: \(error.localizedDescription )")
return
}
if let resultError = result?.errors {
print("Error saving the item on server: \(resultError)")
return
}

self.dismiss(animated: true, completion: nil)

»

Building an Android Client App

This is prerelease documentation for a service in preview release. It is subject to change.

Create an API

Before getting started, you will need an API. See Designing a GraphQL API for details, and use the
following schema to work with the examples below:

type Mutation {
deletePost(id: ID!): Post!
putPost(
id: ID!,
author: String!,
title: String,
content: String,
url: String,
ups: Int,
downs: Int,
version: Int!
): Post

70


http://docs.aws.amazon.com/appsync/latest/devguide/designing-a-graphql-api.html#aws-appsync-designing-a-graphql-api

AWS AppSync AWS AppSync Developer Guide
Download a Client Application

type Post {
id: ID!
author: String!
title: String
content: String
url: String
ups: Int
downs: Int
version: Int!

}

type Query {
getPost(id: ID!): Post
allPost(count: Int, nextToken: String): [Post]

}
schema {
query: Query
mutation: Mutation
}

If you want to do more customization of GraphQL resolvers, see the Resolver Mapping Template
Reference (p. 153).

Download a Client Application

This tutorial will use the AWS AppSyncPosts schema starter kit

If you wish to see the entire app without following the steps, here is the whole sample

Gradle Setup
Project's build.gradle

In the project's build.gradle file, add the following dependency in the build script:

classpath 'com.amazonaws:aws-android-sdk-appsync-gradle-plugin:2.6.15"'

Sample Project's build.gradle

// Top-level build file where you can add configuration options common to all sub-projects/
modules.
buildscript {
// ..other code..
dependencies {
classpath 'com.android.tools.build:gradle:3.0.1"
classpath 'com.amazonaws:aws-android-sdk-appsync-gradle-plugin:2.6.15"'
// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files

App's build.gradle

In the app's build.gradle file, add the following plugin:

apply plugin: 'com.amazonaws.appsync'

71



https://s3-us-west-2.amazonaws.com/awsappsync/appsync-android-posts-starter.zip
https://s3-us-west-2.amazonaws.com/awsappsync/appsync-android-posts-starter-complete.zip

AWS AppSync AWS AppSync Developer Guide
Code Generation for GraphQL Operations

Add the following dependency:

compile 'com.amazonaws:aws-android-sdk-appsync:2.6.15"

Sample App's build.gradle

apply plugin: 'com.android.application'
apply plugin: 'com.amazonaws.appsync'
android {
// Typical items
}
dependencies {
// Typical dependencies
compile 'com.amazonaws:aws-android-sdk-appsync:2.6.15"

App's AndroidManifest.xml

Add the permissions to access the network state to determine if the device is offline.

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Code Generation for GraphQL Operations

To interact with AWS AppSync, your client needs to define GraphQL queries and mutations.

Create a file named . /app/src/main/graphql/com/amazonaws/demo/posts/posts.graphql:

query GetPost($id:ID!) {

getPost(id:$id) {
id
title
author
content
url
version

}
}

query AllPosts {

allPost {
id
title
author
content
url
version
ups
downs

}

mutation AddPost($id: ID!, $author: String!, $title: String, $content: String, s$url:

String, $ups: Int!, $downs: Int!, $expectedVersion: Int!) {
putPost(id: $id, author: $author, title: $title, content: $content, url: $url, ups: $ups,
downs: $downs, version: $expectedVersion) {

id

title

author

url

72




AWS AppSync AWS AppSync Developer Guide
Call the Service

content

¥
¥

mutation UpdatePost($id: ID!, s$author: String!, $title: String, $content: String, $url:
String, $ups: Int!, $downs: Int!, $expectedVersion: Int!) {
putPost(id: $id, author: $author, title: $title, content: $content, url: $url, ups: $ups,
downs: $downs, version: $expectedVersion) {
id
author
title
content
url
version
}
}

mutation DeletePost($id: ID!) {
deletePost(id:$id){
id
title
author
url
content

Next, fetch the schema. json file from the AWS AppSync console and place it alongside the
posts.graphql file. . /app/src/main/graphql/com/amazonaws /demo/posts/schema. json

Now build the project. The generated source files will be available to use within the app. They will not
show up in your source directory, but are added in the build path.

Call the Service

In this section, we create a client and call the service.

Set up Constants.java

You will need the endpoint for your client, which you can get from the AWS AppSync console. Under
Home, look for APl URL. Or you can run the following CLI command:

aws appsync get-graphgl-api --api-id $GRAPHQL_API_ID

Edit Constants. java with your information. Not all of the constants will be used, depending on the
authorization path chosen in the next steps. For example, if you're using API key-based authorization, the
identity pool ID and region can be ignored.

public static final String APPSYNC_API_URL = "https://API-URL/graphqgl"; // TODO: Update the
endpoint URL as specified on AppSync console

// API Key Authorization
public static final String APPSYNC_API_KEY = "API-KEY"; // TODO: Copy the API Key specified
on the AppSync Console

// IAM based Authorization (Cognito Identity)

public static final String COGNITO_IDENTITY = "POOL-ID"; // TODO: Update the Cognito
Identity Pool ID

public static final Regions COGNITO_REGION = Regions.US_WEST_ 2; // TODO: Update the region
to match the Cognito Identity Pool region

73




AWS AppSync AWS AppSync Developer Guide
Call the Service

// Cognito User Pools Authorization

public static final String USER_POOLS_POOL_ID = "";

public static final String USER_POOLS_CLIENT_ ID = "";

public static final String USER_POOLS_CLIENT_ SECRET = "";

public static final Regions USER_POOLS_REGION = Regions.US_WEST_2; // TODO: Update the
region to match the Cognito User Pools region

Create the client

When making calls to AWS AppSync, there are 3 ways to authenticate those calls. The APl Key
Authorization is the most simple to on-board with, but it is recommended to use either IAM or Amazon
Cognito User Pools after on-boarding with an API key.

API Key Authorization

For authorization using the API key, update the cClientFactory.getInstance(Context) method
with the following code.

public class ClientFactory {

// ...other code...
private static volatile AWSAppSyncClient client;

public static AWSAppSyncClient getInstance(Context context) {
if (client == null) {
client = AWSAppSyncClient.builder()
.context(context)
.apiKey(new BasicAPIKeyAuthProvider(Constants.APPSYNC_API_KEY)) // API Key
based authorization

.region(Constants.APPSYNC_REGION)
.serverUrl(Constants.APPSYNC_API_URL)
.build();

}

return client;

}

IAM-Based Authorization (Amazon Cognito Identity)

For IAM-based authorization, update the ClientFactory.getInstance(Context) method with the
following code.

public class ClientFactory {

// ...other code...
private static volatile AWSAppSyncClient client;

public static AWSAppSyncClient getInstance(Context context) {
if (client == null) {
client = AWSAppSyncClient.builder()
.context(context)
.credentialsProvider(getCredentialsProvider(context)) // For use with IAM/
Cognito authorization

.region(Constants.APPSYNC_REGION)
.serverUrl(Constants.APPSYNC_API_URL)
.build();

}

return client;

}

74




AWS AppSync AWS AppSync Developer Guide
Call the Service

private static final AWSCredentialsProvider getCredentialsProvider(final Context
context) {
final CognitoCachingCredentialsProvider credentialsProvider = new
CognitoCachingCredentialsProvider(
context,
Constants.COGNITO_IDENTITY,
Constants.COGNITO_REGION
)i

return credentialsProvider;

Cognito User Pools Authorization

For Cognito User Pools Authorization, update the ClientFactory.getInstance(Context) method
with the following code.

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserPool;
public class ClientFactory {

// ...other code...
private static volatile AWSAppSyncClient client;

public static AWSAppSyncClient getInstance(Context context) {
if (client == null) {
client = AWSAppSyncClient.builder()
.context(context)
.cognitoUserPoolsAuthProvider(getUserPools(context)) // For use with User
Pools authorization

.region(Constants.APPSYNC_REGION)
.serverUrl(Constants.APPSYNC_API_URL)
.build();

}

return client;

}

private static CognitoUserPoolsAuthProvider getUserPools(final Context context) {
final CognitoUserPoolsAuthProvider provider = new
BasicCognitoUserPoolsAuthProvider(new CognitoUserPool(
context,
Constants.USER_POOLS_POOL_1ID,
Constants.USER_POOLS_CLIENT_ID,
Constants.USER_POOLS_CLIENT_SECRET,
Constants.USER_POOLS_REGION));
return provider;

Query the Posts

Add the PostsActivity.queryData() method and create a callback to receive the data, when
available.

public class PostsActivity extends AppCompatActivity {
// ...other code...

public void queryData() {
if (mAWSAppSyncClient == null) {
MAWSAppSyncClient = ClientFactory.getInstance(this);
}

75




AWS AppSync AWS AppSync Developer Guide
Call the Service

mMAWSAppSyncClient.query(AllPostsQuery.builder().build())
.responseFetcher (AppSyncResponseFetchers.CACHE_AND_ NETWORK)
.enqueue(postsCallback);

}

private GraphQLCall.Callback<AllPostsQuery.Data> postsCallback = new
GraphQLCall.Callback <AllPostsQuery.Data>() {
@Override
public void onResponse(@Nonnull final Response<AllPostsQuery.Data> response) {
runOnUiThread(new Runnable() {
@Override
public void run() {
PostsActivity.this.mAdapter.setPosts(response.data().allPost());
PostsActivity.this.mSwipeRefreshLayout.setRefreshing(false);
PostsActivity.this.mAdapter.notifyDataSetChanged();

IDF
}

@Override

public void onFailure(@Nonnull ApolloException e) {
Log.e(TAG, "Failed to perform AllPostsQuery", e);
PostsActivity.this.mSwipeRefreshLayout.setRefreshing(false);

Mutate the Posts (Add a Post)

Add the AddPostActivity.save() method and create a callback to receive confirmation.

public class AddPostActivity extends AppCompatActivity {
// ...other code...

private void save() {

final String title = ((EditText)
findviewById(R.id.updateTitle)).getText().toString();

final String author = ((EditText)
findviewById(R.id.updateAuthor)).getText().toString();

final String url = ((EditText) findviewById(R.id.updateUrl)).getText().toString();

final String content = ((EditText)
findviewById(R.id.updateContent)).getText().toString();

AddPostMutation addPostMutation = AddPostMutation.builder()

.1d(UUID.randomUUID().toString())

.title(title)

.author(author)

.url(url)

.content(content)

.ups(0)

.downs(0)

.expectedVersion(1l)

.build();
ClientFactory.getInstance(this).mutate(addPostMutation).enqueue(postsCallback);

}

private GraphQLCall.Callback<AddPostMutation.Data> postsCallback = new
GraphQLCall.Callback<AddPostMutation.Data>() {
@Override
public void onResponse(@Nonnull final Response<AddPostMutation.Data> response) {
runOnUiThread(new Runnable() {
@Override
public void run() {

76




AWS AppSync AWS AppSync Developer Guide
Call the Service

Toast.makeText(AddPostActivity.this, "Added post",
Toast.LENGTH_SHORT) .show();
AddPostActivity.this.finish();
}
i
}

@Override
public void onFailure(@Nonnull final ApolloException e) {
runOnUiThread(new Runnable() {

@Override
public void run() {
Log.e("", "Failed to perform AddPostMutation", e);

Toast.makeText(AddPostActivity.this, "Failed to add post",
Toast.LENGTH_SHORT).show();
AddPostActivity.this.finish();
}
i

Mutate the Posts (Update a Post)

Add the UpdatePostActivity.save() method and create a callback to receive confirmation.

public class UpdatePostActivity extends AppCompatActivity {
// ...other code...

private void save() {

final String title = ((EditText)
findviewById(R.id.updateTitle)).getText().toString();

final String author = ((EditText)
findviewById(R.id.updateAuthor)).getText().toString();

final String url = ((EditText) findviewById(R.id.updateUrl)).getText().toString();

final String content = ((EditText)
findviewById(R.id.updateContent)).getText().toString();

UpdatePostMutation updatePostMutation = UpdatePostMutation.builder()
.1d(sPost.id())
.title(title)
.author(author)
.url(url)
.content(content)
.ups(sPost.ups())
.downs(sPost.downs())
.expectedVersion(sPost.version() + 1)
.build();

// Make mutation call
ClientFactory.getInstance(this).mutate(updatePostMutation).enqueue(postsCallback);

}

private GraphQLCall.Callback<UpdatePostMutation.Data> postsCallback = new
GraphQLCall.Callback<UpdatePostMutation.Data>() {
@Override
public void onResponse(@Nonnull Response<UpdatePostMutation.Data> response) {
runOnUiThread(new Runnable() {
@Override
public void run() {
Toast.makeText(UpdatePostActivity.this, "Updated post",
Toast.LENGTH_SHORT).show();
UpdatePostActivity.this.finish();

77




AWS AppSync AWS AppSync Developer Guide
Optimistic Updates

IDF
}

@Override
public void onFailure(@Nonnull final ApolloException e) {
runOnUiThread(new Runnable() {

@Override
public void run() {
Log.e("", "Failed to perform UpdatePostMutation", e);

Toast.makeText(UpdatePostActivity.this, "Failed to update post",
Toast.LENGTH_SHORT).show();
UpdatePostActivity.this.finish();
}
i

Optimistic Updates

This section makes changes to the UpdatePostActivity.save() method that was created in the
previous step.

For optimistic updates, create the data expected to be returned after the mutation. The optimistic
updates are written to the persistent SQL store.

UpdatePostMutation.Data expected = new UpdatePostMutation.Data(new
UpdatePostMutation.PutPost("Post", sPost.id(),author,title,content,url,sPost.version() +

1));

Replace the mutation call with the following, which takes in the expected data:

// Make mutation call
ClientFactory.createInstance(this).mutate(updatePostMutation,
expected).enqueue(postsCallback);

// AAAAAAANA

Offline Mutations

Offline mutations currently work out of the box and are available in memory, as well as through app
restarts.

The callback for onResponse is received when the network is available, and the request goes through if
the app was not killed.

For mutations which are performed after an app restart, the PersistentMutationsCallback object
will be called. The

<problematic>" " </problematic>

PersistentMutationsCallback will have information about the mutation type and identifier. It can be
specified while initializing the client.

AWSAppSyncClient client = AWSAppSyncClient.builder()
.context(context)
.apiKey(new BasicAPIKeyAuthProvider(Constants.APPSYNC_API_KEY)) // API Key based auth
.region(Constants.APPSYNC_REGION)
.serverUrl(Constants.APPSYNC_API_URL)
.persistentMutationsCallback(new PersistentMutationsCallback() {

78




AWS AppSync AWS AppSync Developer Guide
Offline Mutations

.build();

»

@Override
public void onResponse(PersistentMutationsResponse response) {
if (response.getMutationClassName().equals("AddPostMutation")) {
// perform action here add post mutation
}
}

@Override
public void onFailure(PersistentMutationsError error) {
// handle error feedback here

}

79




AWS AppSync AWS AppSync Developer Guide
Tutorial: DynamoDB Resolvers

Data Sources and Resolvers

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync supports the automatic provisioning of DynamoDB tables from a GraphQL schema as
described in (Optional) Provision from Schema (p. 25) and Launch a Sample Schema (p. 2). You can use a
GraphQL API with your existing AWS resources or build data sources and resolvers. This section takes you
through this process in a series of tutorials.

Topics
« Tutorial: DynamoDB Resolvers (p. 80)
« Tutorial: Lambda Resolvers (p. 115)
« Tutorial: Amazon Elasticsearch Service Resolvers (p. 127)
« Tutorial: Local Resolvers (p. 132)
« Tutorial: Combining GraphQL Resolvers (p. 134)

Tutorial: DynamoDB Resolvers

This tutorial shows how you can bring your own Amazon DynamoDB tables to AWS AppSync and connect
them to a GraphQL API.

You can let AWS AppSync provision DynamoDB resources on your behalf. Or, if you prefer, you can
connect your existing tables to a GraphQL schema by creating a data source and a resolver. In either
case, you'll be able to read and write to your DynamoDB database through GraphQL statements - and
subscribe to real-time data.

There are specific configuration steps that need to be completed in order for GraphQL statements to be
translated to DynamoDB operations, and for responses to be translated back into GraphQL. This tutorial
outlines the configuration process through several real-world scenarios and data access patterns.

Setting up Your DynamoDB Tables

To begin this tutorial, first provision AWS resources using the following AWS CloudFormation template:

aws cloudformation create-stack \

--stack-name AWSAppSyncTutorialForAmazonDynamoDB \

-—-template-url https://s3-us-west-2.amazonaws.com/awsappsync/resources/dynamodb/
AmazonDynamoDBCFTemplate.yaml \

--capabilities CAPABILITY_ NAMED_IAM

You can launch this AWS CloudFormation stack in the US West 2 (Oregon) region in your AWS account by
clicking this button:

[ Launch Stack o_>

This will create:

« A DynamoDB table called AppSyncTutorial-Post that will hold Post data.

« An IAM role and associated IAM managed policy to allow AWS AppSync to interact with the Post
table.

80



AWS AppSync AWS AppSync Developer Guide
Creating Your GraphQL API

To see more details about the stack and the created resources, run the following CLI command:

aws cloudformation describe-stacks \
--stack-name AWSAppSyncTutorialForAmazonDynamoDB

To delete the resources later, you can run:

aws cloudformation delete-stack \
--stack-name AWSAppSyncTutorialForAmazonDynamoDB

Creating Your GraphQL API

To create the GraphQL API in AWS AppSync:

« Open the AWS AppSync console and choose the Create API button.
« Set the name of the API to AWSAppSyncTutorial.

« Select Custom schema.

« Choose Create.

The AWS AppSync console creates a new GraphQL API for you using the API key authentication mode.
You can use the console to set up the rest of the GraphQL API and run queries against it for the rest of
this tutorial.

Defining a Basic "Post" API

Now that you set up an AWS AppSync GraphQL API, you can set up a basic schema that allows the basic
creation, retrieval, and deletion of post data.

In the AWS AppSync console, choose the Schema tab, replace the contents of the Schema pane with the
following code, and then choose the Save.

schema {
query: Query
mutation: Mutation

}

type Query {
getPost(id: ID): Post

}
type Mutation {
addPost(
id: ID!

author: String!
title: String!
content: String!
url: String!
): Post!
}

type Post {
id: ID!
author: String
title: String
content: String
url: String
ups: Int!

81




AWS AppSync AWS AppSync Developer Guide
Configuring the Data Source for the DynamoDB Tables

downs: Int!
version: Int!

This schema defines a Post type and operations to add and get Post objects.

Configuring the Data Source for the DynamoDB
Tables

Next, link the queries and mutations defined in the schema to the AppSyncTutorial-PostDynamoDB
table.

First, AWS AppSync needs to be aware of your tables. You do this by setting up a data source in AWS
AppSync:

« Go to the Data source tab.

« Choose New to create a new data source.

« Enter PostDynamoDBTable as the name of the data source.

« Choose Amazon DynamoDB table as the data source type.

« Choose US-WEST-2 for the region.

« Choose the AppSyncTutorial-PostDynamoDB table from the list of tables.
« Choose Existing role in the Create or use an existing role section.

o Selectthe arn:aws:iam::123456789012:role/AppSyncTutorialAmazonDynamoDBRole role
from the list of available roles.

e Choose Create.

Setting up the "addPost" resolver (DynamoDB
Putltem)

After AWS AppSync is aware of the DynamoDB table, you can link it to individual queries and mutations
by defining Resolvers. The first resolver you create is the addPost resolver, which enables you to create
a post in the AppSyncTutorial-PostDynamoDB table.

A resolver has the following components:

« The location in the GraphQL schema to attach the resolver. In this case, you are setting up a resolver
on the addPost field on the Mutation type. This resolver will be invoked when the caller calls
mutation { addPost(...){...} }.

« The data source to use for this resolver. In this case, you want to use the PostDynamoDBTable data
source you defined earlier, so you can add entries into the AppSyncTutorial-Post DynamoDB table.

« The request mapping template. The purpose of the request mapping template is to take the incoming
request from the caller and translate it into instructions for AWS AppSync to perform against
DynamoDB.

« The response mapping template. The job of the response mapping template is to take the response
from DynamoDB and translate it back into something that GraphQL expects. This is useful if the shape
of the data in DynamoDB is different to the Post type in GraphQL, but in this case they have the same
shape, so you just pass the data through.

To set up the resolver:

» Go to the Schema tab.

82



AWS AppSync AWS AppSync Developer Guide
Setting up the "addPost" resolver (DynamoDB Putltem)

Find the addPost field on the Mutation type in the Data types pane on the right.
Click on its Attach button.

Select PostDynamoDBTable in the Data source name drop-down menu.

Paste the following into the Configure the request mapping template section:

{
"version" : "2017-02-28",
"operation" : "PutItem",
"key" : {
"id" : { "S" : "${context.arguments.id}" }
}I
"attributevValues" : {
"author": { "S" : "${context.arguments.author}" },
"title": { "S" : "${context.arguments.title}" },
"content": { "S" : "${context.arguments.content}" },
"url": { "S" : "${context.arguments.url}" },
"ups" : { "N" : 1 },
"downs" : { "N" : 0 },
"version" : { "N" : 1 }
}
}

Note: A type is specified on all the keys and attribute values. For example, you set the author field
to{ "s" : "${context.arguments.author}" }.The s partindicatesto AWS AppSync and
DynamoDB that the value will be a string value. The actual value gets populated from the author
argument. Similarly, the version field is a number field because it uses N for the type. Finally, you're
also initializing the ups, downs and version field.

For this tutorial we've specified that the GraphQL ID! type, which indexes the new item that is
inserted to DynamoDB, comes as part of the client arguments. AWS AppSync comes with a utility for
automatic ID generation called $utils.autoId() which you could have also used in the form of
"id" : { "sS" : "${context.arguments.id}" }. Then you could simply leave the id: ID!
out of the schema definition of addPost () and it would be inserted automatically. We won't use this
technique for this tutorial, but you should consider it as a good practice when writing to DynamoDB
tables.

See the Resolver Mapping Template Overview (p. 153) reference documentation for more
information about mapping templates, see the Getltem (p. 167) reference documentation for more
information about Getltem request mapping, and see the Type System (Request Mapping) (p. 180)
reference documentation for more info about types.

Paste the following into the Configure the response mapping template section:

$utils.toJson($context.result)

Note: Because the shape of the data in the AppSyncTutorial-Post table exactly matches the shape
of the Post type in GraphQL, the response mapping template just passes the results straight through.
Also note that all of the examples in this tutorial use the same response mapping template, so you
only create one file.

Choose Save.

Call the API to add a Post

Now that the resolver is set up, AWS AppSync can translate an incoming addPost mutation to a
DynamoDB Putltem operation. You can now run a mutation to put something in the table.

Go to the Queries tab

83




AWS AppSync AWS AppSync Developer Guide
Setting up the "addPost" resolver (DynamoDB Putltem)

« Paste the following mutation into the Queries pane

mutation addPost {
addPost(
id: 123
author: "AUTHORNAME"
title: "Our first post!"
content: "This is our first post."
url: "https://aws.amazon.com/appsync/"
{
id
author
title
content
url
ups
downs
version
}
}

« Then choose the Execute query button (the orange play button).

o The results of the newly created post should appear in the results pane to the right of the query pane.
It should look something like this:

{
"data": {
"addPost":
|lidll H

{
n123w,

"author":
"title":
"content":

"AUTHORNAME",

"Our first post!",

"This is our first post.",

"url": "https://aws.amazon.com/appsync/",
nupsn: 1,
"downs": O,

"version": 1

Here's what happened:

o AWS AppSync received an addPost mutation request.

« AWS AppSync took the request, and the request mapping template, and generated a request mapping
document. This would have looked like:

{

"version" "2017-02-28",

"operation" "PutItem",

"key" : {
mid" ¢ { "s" "123" }

T

"attributevalues" : {
"author": { "S" "AUTHORNAME" },
"title": { "S" "Our first post!" },
"content": { "S" "This is our first post." },
"url": { "S" "https://aws.amazon.com/appsync/" },
"ups" : { "N" : 1 },
"downs" : { "N" : 0 },
"version" : { "N" : 1 }

}

84




AWS AppSync AWS AppSync Developer Guide
Setting up the "getPost" Resolver (DynamoDB Getltem)

}

o AWS AppSync used the request mapping document to generate and execute a DynamoDB Putltem
request.

« AWS AppSync took the results of the Putltem request and converted them back to GraphQL types.

{
"id" : "123",
"author": "AUTHORNAME",
"title": "Our first post!",
"content": "This is our first post.",
"url": "https://aws.amazon.com/appsync/",
"ups" : 1,
"downs" : O,
"version" : 1
}

« Passed it through the response mapping document, which just passed it through unchanged.
« Returned the newly created object in the GraphQL response.

Setting up the "getPost" Resolver (DynamoDB
Getltem)

Now that we're able to add data to the AppSyncTutorial-PostDynamoDB table, we need to set up
the getPost query so it can retrieve that data from the AppSyncTutorial-Post table. To do this, we
set up another resolver.

« Go to the "Schema" tab.

« Find the getPost field on the Query type in the "Data types" pane on the right.
« Click onits Attach button.

« Select PostDynamoDBTable in the "Data source name" dropdown.

« Paste the following into the "Configure the request mapping template" section:

{
"version" : "2017-02-28",
"operation" : "GetItem",
"key" : {
"id" : { "S" : "${context.arguments.id}" }
¥
}

« Paste the following into the "Configure the response mapping template" section:

$utils.toJson($context.result)

 Click the save button.

Call the API to get a Post

Now the resolver has been set up, AWS AppSync knows how to translate an incoming getPost query to
a DynamoDB Getltem operation. We can now run a query to retrieve the post we created earlier.

« Go to the "Queries" tab
« Paste the following mutation into the "Queries" pane.

85



AWS AppSync AWS AppSync Developer Guide
Setting up the "getPost" Resolver (DynamoDB Getltem)

query getPost {
getPost(id:123) {
id
author
title
content
url
ups
downs
version
}
}

« Then hit the "Execute query" button (the orange play button).

o The post retrieved from DynamoDB should appear in the results pane to the right of the query pane. It
should look something like this:

{
"data": {

"getPost":

{

llidll .

"123",

"author":
"title":

"AUTHORNAME",

"url":
"ups":

"content":

"Our first post!",

"This is our first post.",
"https://aws.amazon.com/appsync/",
1,

"downs": O,
"version": 1

Here's what happened:

« AWS AppSync received an getPost query request.

« AWS AppSync took the request, and the request mapping template, and generated a request mapping
document. This would have looked like:

{
"version" : "2017-02-28",
"operation" : "GetItem",
n key n H {
llidll H { llsll H "123" }
}
}

o AWS AppSync used the request mapping document to generate and execute a DynamoDB Getltem

request.

o AWS AppSync took the results of the Getltem request and converted it back to GraphQL types.

{
"id" : "123",
"author": "AUTHORNAME",
"title": "Our first post!",
"content": "This is our first post.",
"url": "https://aws.amazon.com/appsync/",
"yps" : 1,
"downs" : O,
"version" : 1

86




AWS AppSync AWS AppSync Developer Guide
Create an updatePost mutation (DynamoDB Updateltem)

}

« Passed it through the response mapping document, which just passed it through unchanged.
« Returned the retrieved object in the response.

Create an updatePost mutation (DynamoDB
Updateltem)

So far we can create and retrieve Post objects in DynamoDB. Next, we'll set up a new mutation to allow
us to update object. We'll do this using the Updateltem DynamoDB operation.

« Go to the "Schema" tab
« Modify the Mutation type in the "Schema" pane to add a new updatePost mutation:

type Mutation {
updatePost(
id: 1ID!,
author: String!,
title: String!,
content: String!,
url: String!
): Post
addPost(
author: String!
title: String!
content: String!
url: String!
): Post!
}

« Click the save button

 Find the newly created updatePost field on the Mutation type in the "Data types" pane on the right.
 Click on its Attach button.

» Select PostDynamoDBTable in the "Data source name" dropdown.

« Paste the following into the "Configure the request mapping template" section:

{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key" : {
"id" : { "S" : "${context.arguments.id}" }
+
"update" : {
"expression" : "SET author = :author, title = :title, content = :content, #url
= :url ADD version :one",
"expressionNames": {
"#url" : "url"
o
"expressionvValues": {
":author" : { "S": "${context.arguments.author}" },
":title" : { "S": "${context.arguments.title}" },
":content" : { "S": "${context.arguments.content}" },
"surl" : { "S": "${context.arguments.url}" },
":one" : { "N": 1 }
}
}
}

87



AWS AppSync AWS AppSync Developer Guide
Create an updatePost mutation (DynamoDB Updateltem)

Note: This resolver is using the DynamoDB Updateltem, which is significantly different from the
Putltem operation. Instead of writing the entire item, we're just asking DynamoDB to update certain
attributes. This is done using DynamoDB Update Expressions. The expression itself is specified in

the expression field in the update section. It says to set the author, title, content and url
attributes, and then increment the version field. The values to use do not appear in the expression
itself; the expression has placeholders that have names starting with a colon, which are then defined
in the expressionvalues field. Finally, DynamoDB has reserved words that cannot appear in the
expression. For example, url is a reserved word, so to update the url field we can use name
placeholders and define them in the expressionNames field.

See the Updateltem (p. 170) reference documentation for more info about Updateltem request
mapping, and the DynamoDB UpdateExpressions documentation for more information on how to
write update expressions.

« Paste the following into the "Configure the response mapping template" section:

$utils.toJson($context.result)

Call the API to update a Post

Now the resolver has been set up, AWS AppSync knows how to translate an incoming update mutation
to a DynamoDB Update operation. We can now run a mutation to update the item we wrote earlier.

« Go to the "Queries" tab

« Paste the following mutation into the "Queries" pane. You'll also need to update the id argument to
have the value we noted down earlier.

mutation updatePost {
updatePost(
id:"123"
author: "A new author"
title: "An updated author!"
content: "Now with updated content!"
url: "https://aws.amazon.com/appsync/"
) A
id
author
title
content
url
ups
downs
version
}
}

« Then hit the "Execute query" button (the orange play button).

« The updated post in DynamoDB should appear in the results pane to the right of the query pane. It
should look something like this:

{
"data": {
"updatePost": {
"id": "123",
"author": "A new author",
"title": "An updated author!",
"content": "Now with updated content!",
"url": "https://aws.amazon.com/appsync/",

88



http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

AWS AppSync AWS AppSync Developer Guide
Modifying the "updatePost"
resolver (DynamoDB Updateltem)

"yps": 1,
"downs": O,
"version": 2
}
}
}

Note that the ups and downs fields were not modified. This is because our request mapping template
did not ask AWS AppSync and DynamoDB to do anything with those fields. Also note that the version
field was incremented by 1. This is because we asked AWS AppSync and DynamoDB to add 1 to the
version field.

Modifying the "updatePost" resolver (DynamoDB
Updateltem)

This is a good start to our updatePost mutation, but it has two main problems:

« If | want to update just a single field, then | have to update all the fields.
« If two people are modifying the object, then we potentially lose information.

To address these issues, we're going to modify the updatePost mutation to only modify arguments that
were specified in the request, and then add a condition to the Updateltem operation.

« Go to the "Schema" tab.

« Modify the updatePost field in the Mutation type in the "Schema" pane to remove the exclamation
marks from the author, title, content, and url arguments, making sure to leave the id field as is.
This will make them optional argument. Also, add a new, required expectedVersion argument.

type Mutation {
updatePost(
id: ID!,
author: String,
title: String,
content: String,
url: String,
expectedVersion: Int!
): Post
addPost(
author: String!
title: String!
content: String!
url: String!
): Post!
}

 Click the save button

 Find the updatePost field on the Mutation type in the "Data types" pane on the right.

« Click on the PostDynamoDBTable link to open the existing resolver.

« Modify the request mapping template in the "Configure the request mapping template" section:

{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key" : {
"id" : { "S" : "${context.arguments.id}" }
}I

89



AWS AppSync AWS AppSync Developer Guide
Modifying the "updatePost"
resolver (DynamoDB Updateltem)

## Set up some space to keep track of things we're updating **
#set( $expNames = {} )

#set( $expValues = {} )

#set( s$expsSet = {} )

#set( $expAdd {})

#set( $expRemove = [] )

## Increment "version" by 1 **
$!{expAdd.put("version", ":one")}
$!{expValues.put(":one", { "N" : 1 })}

## Iterate through each argument, skipping "id" and "expectedVersion" **
#foreach( $entry in $context.arguments.entrySet() )
#if( $entry.key != "id" && $entry.key != "expectedVersion" )
#if( (!$entry.value) && ("$!{entry.value}" == "") )
## I1f the argument is set to "null", then remove that attribute from the
item in DynamoDB **

#set( $discard = ${expRemove.add("#${entry.key}")} )
$! {expNames.put("#${entry.key}", "sentry.key")}
#else
## Otherwise set (or update) the attribute on the item in DynamoDB **

$!{expSet.put("#${entry.key}", ":${entry.key}")}

$! {expNames.put("#${entry.key}", "sentry.key")}

$!{expValues.put(":${entry.key}", { "S" : "${entry.value}" })}
#end

#end
#end

## Start building the update expression, starting with attributes we're going to SET
* %
#set( $expression = "" )
#if( !${expSet.isEmpty()} )
#set( $expression = "SET" )
#foreach( $entry in $expSet.entrySet() )
#set( $expression = "${expression} ${entry.key} = ${entry.value}" )
#if ( $foreach.hasNext )
#set( $expression = "${expression}," )
#end
#end
#end

## Continue building the update expression, adding attributes we're going to ADD **
#if( !${expAdd.isEmpty()} )

#set( $expression = "${expression} ADD" )

#foreach( $entry in $expAdd.entrySet() )
#set( $expression = "${expression} ${entry.key} ${entry.value}" )
#if ( $foreach.hasNext )

#set( $expression = "${expression}," )

#end

#end

#end

## Continue building the update expression, adding attributes we're going to REMOVE
* %

#if( !${expRemove.isEmpty()} )
#set( $expression = "${expression} REMOVE" )

#foreach( $entry in $expRemove )

#set( $expression = "${expression} ${entry}" )
#if ( $foreach.hasNext )
#set( $expression = "${expression}," )
#end
#end

90




AWS AppSync AWS AppSync Developer Guide
Modifying the "updatePost"
resolver (DynamoDB Updateltem)

#end
## Finally, write the update expression into the document, along with any
expressionNames and expressionValues **
"update" : {
"expression" : "${expression}"
#if( !${expNames.isEmpty()} )
,"expressionNames" : $utils.toJdson($expNames)
#end
#if( !${expValues.isEmpty()} )
,"expressionValues" : $utils.toJson($expValues)
#end
e
"condition" : {
"expression" : "version = :expectedVersion",
"expressionValues" : {
":expectedVersion" : { "N" : ${context.arguments.expectedVersion} }
}
}
}

e Click the save button.

This template is one of the more complex examples, but demonstrates the power and flexibility of
mapping templates. What it is doing is looping through all the arguments, skipping over id and
expectedVersion. If the argument is set to something, then it will ask AWS AppSync and DynamoDB
to update that attribute on the object in DynamoDB. If the attribute is set to null, then it will ask AWS
AppSync and DynamoDB to remove that attribute from the post object. If an argument wasn't specified,
then it will leave it alone. It also increments the version field.

There is also a new condition section. A condition expression let you tell AWS AppSync and DynamoDB
whether the request should succeed or not based on the state of the object already in DynamoDB before
the operation is performed. In this case, we only want the Updateltem request to succeed if the version
field of the item currently in DynamoDB exactly matches the expectedvVersion argument.

See the Condition Expressions (p. 188) reference documentation for more information about condition
expressions.

Call the API to update a Post

Lets try updating our Post object with the new resolver:

« Go to the "Queries" tab

« Paste the following mutation into the "Queries" pane. You'll also need to update the id argument to
have the value we noted down earlier.

mutation updatePost {

updatePost(

id:123

title: "An empty story"

content: null

expectedVersion: 2
) A{

id

author

title

content

url

ups

downs

91




AWS AppSync AWS AppSync Developer Guide
Modifying the "updatePost"
resolver (DynamoDB Updateltem)

version

}
}

« Then hit the "Execute query" button (the orange play button).

« The updated post in DynamoDB should appear in the results pane to the right of the query pane. It
should look something like this:

{
"data": {
"updatePost": {
"id": "123",
"author": "A new author",
"title": "An empty story",
"content": null,
"url": "https://aws.amazon.com/appsync/",
"ups": 1,
"downs": O,
"version": 3
}
}
}

Note that in this request, we only asked AWS AppSync and DynamoDB to update the title and
content field. It left all the other fields alone (other than incrementing the version field). We set the
title attribute to a new value, and removed the content attribute from the post. The author, url,
ups, and downs fields were left untouched.

Try executing the mutation request again, leaving the request exactly as is. You will see a response
similar to the following:

{
"data": {
"updatePost": null
}l
"errors": [
{
"path": [
"updatePost"
]l
"data": {
"id": "123"'
"author": "A new author",
"title": "An empty story",
"content": null,
"url": "https://aws.amazon.com/appsync/",
"UPS" : 1,

"downs": O,
"version": 3

}l
"errorType": "DynamoDB:ConditionalCheckFailedException",
"locations": [
{
"line": 2,
"column": 3
}
]l
"message": "The conditional request failed (Service: AmazonDynamoDBv2;

Status Code: 400; Error Code: ConditionalCheckFailedException; Request ID:
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ )"
¥
]

92




AWS AppSync AWS AppSync Developer Guide
Create upvotePost and downvotePost
mutations (DynamoDB Updateltem)

}

The request fails because the condition expression evaluates to false:

« The first time we ran the request, the value of the version field of the post in DynamoDB was 2,
which matched the expectedvVersion argument. The request succeeded, which meant the version
field was incremented in DynamoDB to 3.

« The second time we ran the request, the value of the version field of the post in DynamoDB was 3,
which did not match the expectedversion argument.

This pattern is typically called "Optimistic Locking".

A feature of AWS AppSync's DynamoDB resolver is that it returns the current value of the post object
in DynamoDB. You can find this in the data field in the errors section of the GraphQL response.
Your application can use this information to decide how it should proceed. In our case, we can see the
version field of the object in DynamoDB is set to 3, so we could just update the expectedversion
argument to 3 and the request would succeed again.

See the Condition Expressions (p. 188) mapping template reference documentation for more
information about handling condition check failures.

Create upvotePost and downvotePost mutations
(DynamoDB Updateltem)

Our Post type has ups and downs fields to let us record upvotes and downvotes, but so far our API
doesn't let us do anything with them. Lets add some mutations to let us upvote and downvote our posts.
« Go to the "Schema" tab

« Modify the Mutation type in the "Schema" pane to add new upvotePost and downvotePost
mutations:

type Mutation {
upvotePost(id: ID!): Post
downvotePost(id: ID!): Post
updatePost(
id: 1ID!,
author: String,
title: String,
content: String,
url: String,
expectedVersion: Int!
): Post
addPost(
author: String!,
title: String!,
content: String!,
url: String!
): Post!
}

« Click the save button

« Find the newly created upvotePost field on the Mutation type in the "Data types" pane on the right.
« Click on its Attach button.

» Select PostDynamoDBTable in the "Data source name" dropdown.

« Paste the following into the "Configure the request mapping template" section:

93



AWS AppSync AWS AppSync Developer Guide
Create upvotePost and downvotePost
mutations (DynamoDB Updateltem)

{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key" : {
"id" : { "S" : "${context.arguments.id}" }
+
"update" : {
"expression" : "ADD ups :plusOne, version :plusOne",
"expressionValues" : {
":plusOne" : { "N" : 1 }
}
}
}
« Paste the following into the "Configure the response mapping template" section:
$utils.toJson($context.result)

e Click the save button.

« Find the newly created downvotePost field on the Mutation type in the "Data types" pane on the
right.

 Click on its Attach button.
« Select PostDynamoDBTable in the "Data source name" dropdown.
« Paste the following into the "Configure the request mapping template" section:

{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key" : {
"id" : { "S" : "${context.arguments.id}" }
}
"update" : {
"expression" : "ADD downs :plusOne, version :plusOne",
"expressionValues" : {
":plusOne" : { "N" : 1 }
}
}
}
« Paste the following into the "Configure the response mapping template" section:
$utils.toJson($context.result)

e Click the save button.

Call the API to upvote and downvote a Post

Now the new resolvers have been set up, AWS AppSync knows how to translate an incoming
upvotePost or downvote mutation to DynamoDB Updateltem operation. We can now run mutations to
upvote or downvote the post we created earlier.

« Go to the "Queries" tab

« Paste the following mutation into the "Queries" pane. You'll also need to update the id argument to
have the value we noted down earlier.

mutation votePost {

94



AWS AppSync AWS AppSync Developer Guide
Create upvotePost and downvotePost
mutations (DynamoDB Updateltem)

upvotePost(id:123) {
id
author
title
content
url
ups
downs
version

}

}

Then hit the "Execute query" button (the orange play button).

The post is updated in DynamoDB and should appear in the results pane to the right of the query
pane. It should look something like this:

{
"data": {
"upvotePost": {
"id": "123",
"author": "A new author",
"title": "An empty story",
"content": null,
"url": "https://aws.amazon.com/appsync/",
"ups": 6,
"downs": O,
"version": 4
}
}
}

Click the "Execute query" button a few more times. You should see the ups and version field
incrementing by 1 each time you execute the query.

Change the query to call the downvotePost mutation:

mutation votePost {
downvotePost(id:123) {
id
author
title
content
url
ups
downs
version
}
}

Then hit the "Execute query" button (the orange play button). This time, you should see the downs and
version field incrementing by 1 each time you execute the query.

{
"data": {

"downvotePost": {
"id": "123",
"author": "A new author",
"title": "An empty story",
"content": null,
"url": "https://aws.amazon.com/appsync/",
"ups": 6,
"downs": 4,
"version": 12

95




AWS AppSync AWS AppSync Developer Guide
Setting up the "deletePost"
resolver (DynamoDB DeletePost)

Setting up the "deletePost" resolver (DynamoDB
DeletePost)

The next mutation we want to set up is to delete a post. We'll do this using the Deleteltem DynamoDB
operation.

« Go to the "Schema" tab
« Modify the Mutation type in the "Schema" pane to add a new deletePost mutation:

type Mutation {
deletePost(id: ID!, expectedVersion: Int): Post
upvotePost(id: ID!): Post
downvotePost(id: ID!): Post
updatePost(
id: 1ID!,
author: String,
title: String,
content: String,
url: String,
expectedVersion: Int!
): Post
addPost(
author: String!,
title: String!,
content: String!,
url: String!
): Post!

Note that this time we made the expectedversion field optional. The reason for this will be
explained when we add the request mapping template.

« Click the save button

 Find the newly created delete field on the Mutation type in the "Data types" pane on the right.
« Click on its Attach button.

« Select PostDynamoDBTable in the "Data source name" dropdown.

« Paste the following into the "Configure the request mapping template" section:

{
"version" : "2017-02-28",
"operation" : "DeleteItem",
"key": {
"id": { "S" : "${context.arguments.id}"}
}
#1f( $context.arguments.containsKey("expectedVersion") )
,"condition" : {
"expression" : "attribute_not_exists(id) OR version
= :expectedVersion",
"expressionValues" : {
":expectedVersion" : { "N" : ${context.arguments.expectedVersion} }
}
}
#end

96




AWS AppSync AWS AppSync Developer Guide
Setting up the "deletePost"
resolver (DynamoDB DeletePost)

}

Note: The expectedVersion argument is an optional argument. If the caller set an
expectedVersion argument in the request, then the template will add in a condition that will only
allow the Deleteltem request to succeed if the item is already deleted, or the version attribute of
the post in DynamoDB exactly matches the expectedversion. If left out, no condition expression is
specified on the Deleteltem request, and it will succeed regardless of the value of version or if the
item exists in DynamoDB or not.

« Paste the following into the "Configure the response mapping template" section:

$utils.toJson($context.result)

Note: Even though we're deleting an item, we can return the item that was deleted, if it was not
already deleted.

o Click the save button.

See the Deleteltem (p. 173) reference documentation for more info about Deleteltem request mapping.

Call the API to delete a Post

Now the resolver has been set up, AWS AppSync knows how to translate an incoming delete mutation
to a DynamoDB Deleteltem operation. We can now run a mutation to delete something in the table.

« Go to the "Queries" tab

« Paste the following mutation into the "Queries" pane. You'll also need to update the id argument to
have the value we noted down earlier.

mutation deletePost {
deletePost(id:123) {
id
author
title
content
url
ups
downs
version
}
}

« Then hit the "Execute query" button (the orange play button).

« The post is deleted from DynamoDB. Note that AWS AppSync returns the value of the item that was
deleted from DynamoDB, which should appear in the results pane to the right of the query pane. It
should look something like this:

{
"data": {

"deletePost": {
"id": "123",
"author": "A new author",
"title": "An empty story",
"content": null,
"url": "https://aws.amazon.com/appsync/",
"ups": 6,
"downs": 4,
"version": 12

}

97




AWS AppSync AWS AppSync Developer Guide
Setting up the "deletePost"
resolver (DynamoDB DeletePost)

The value is only returned if this call to deletePost was the one that actually deleted it from
DynamoDB.

« Try hitting the "Execute query" button again.
e The call still succeeds, but no value is returned.

{
"data": {
"deletePost": null
}
}

Now lets try deleting a post, but this time specifying an expectedvalue. First though, we'll need to
create a new post because we've just deleted the one we've been working with so far.

« Paste the following mutation into the "Queries" pane

mutation addPost {
addPost(
id:123
author: "AUTHORNAME"
title: "Our second post!"
content: "A new post."
url: "https://aws.amazon.com/appsync/"
) A{
id
author
title
content
url
ups
downs
version
}
}

« Then hit the "Execute query" button (the orange play button).

o The results of the newly created post should appear in the results pane to the right of the query
pane. Note down the id of the newly created object, as we'll need it in just a moment. It should look
something like this:

{
"data": {

"addPost": {
"id": "123",
"author": "AUTHORNAME",
"title": "Our second post!",
"content": "A new post.",
"url": "https://aws.amazon.com/appsync/",
"ups": 1,
"downs": O,
"version": 1

98




AWS AppSync AWS AppSync Developer Guide
Setting up the "deletePost"
resolver (DynamoDB DeletePost)

Now lets try and delete that post, but we'll put in the wrong value for expectedversion

« Paste the following mutation into the "Queries" pane. You'll also need to update the id argument to
have the value we noted down earlier.

mutation deletePost {

deletePost(

id:123

expectedVersion: 9999
) A

id

author

title

content

url

ups

downs

version

« Then hit the "Execute query" button (the orange play button).

{
"data": {
"deletePost": null
}
"errors": [
{
"path" : [
"deletePost"
]l
"data": {
Vlid": "123",
"author": "AUTHORNAME",
"title": "Our second post!",
"content": "A new post.",
"url": "https://aws.amazon.com/appsync/",
"ups" 1,
"downs": O,
"version": 1
}l
"errorType": "DynamoDB:ConditionalCheckFailedException",
"locations": [
{
"line": 2,
"column": 3
}
]l
"message": "The conditional request failed (Service: AmazonDynamoDBv2;

Status Code: 400; Error Code: ConditionalCheckFailedException; Request ID:
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ )"

}
]
}

The request failed because the condition expression evaluates to false: the value for version of the
post in DynamoDB does not match the expectedvalue specified in the arguments. The current value
of the object is returned in the data field in the errors section of the GraphQL response.

« Retry the request, but correct the expectedversion:

mutation deletePost {

99



AWS AppSync AWS AppSync Developer Guide
Setting up the "allPost" resolver (DynamoDB Scan)

deletePost(
id:123
expectedVersion: 1

) A
id
author
title
content
url
ups
downs
version

}

}

« Then hit the "Execute query" button (the orange play button).
« This time the request succeeds, and the value that was deleted from DynamoDB is returned:

{
"data": {
"deletePost": {
"id": "123",
"author": "AUTHORNAME",
"title": "Our second post!",
"content": "A new post.",
"url": "https://aws.amazon.com/appsync/",
"ups": 1,
"downs": O,
"version": 1
}
}
}

« Try hitting the "Execute query" button again.

« The call still succeeds, but this time no value is returned because the post was already deleted in
DynamoDB.

{
"data": {
"deletePost": null
}
}

Setting up the "allPost" resolver (DynamoDB Scan)

So far our APl is only useful if we know the id's of each post we want to look at. Lets add a new resolver
that will return all the posts in the table.

« Go to the "Schema" tab
« Modify the Query type in the "Schema" pane to add a new allPost query:

type Query {
allPost(count: Int, nextToken: String): PaginatedPosts!
getPost(id: ID): Post

}

« Add a new PaginationPosts type in the "Schema pane:

type PaginatedPosts {

100



AWS AppSync AWS AppSync Developer Guide
Setting up the "allPost" resolver (DynamoDB Scan)

posts: [Post!]!
nextToken: String

}

« Click the save button

« Find the newly created allPost field on the Query type in the "Data types" pane on the right.
« Click on its Attach button.

» Select PostDynamoDBTable in the "Data source name" dropdown.

« Paste the following into the "Configure the request mapping template" section:

"version" : "2017-02-28",

"operation" : "Scan"

#if( ${context.arguments.count} )
,"limit": ${context.arguments.count}

#end

#if( ${context.arguments.nextToken} )
,"nextToken": "${context.arguments.nextToken}"

#end

Note that this resolver has two optional arguments: count, which specifies the maximum number of
items to return in a single call, and nextToken, which can be used to retrieve the next set of results
(we'll show where the value for nextToken comes from later).

« Paste the following into the "Configure the response mapping template" section:

{
"posts": $utils.todson($context.result.items)
#if( ${context.result.nextToken} )
, "nextToken": "${context.result.nextToken}"
#end
}

Note: This response mapping template is different from all the others so far. The result of the
allPost query is a PaginatedPosts, which contains a list of posts and a pagination token. The
shape of this object is different to what is returned from the AWS AppSync DynamoDB Resolver: the
list of posts is called items in the AWS AppSync DynamoDB Resolver results, but is called posts in
PaginatedPosts.

e Click the save button.

See the Scan (p. 178) reference documentation for more info about Scan request mapping.

Call the API to scan all Posts

Now the resolver has been set up, AWS AppSync knows how to translate an incoming al1Post mutation
to a DynamoDB Scan operation. We can now scan the table to retrieve all the posts.

Before we can try it out though, we need to populate the table with some data, because we've deleted
everything we've worked with so far.

« Go to the "Queries" tab
« Paste the following mutation into the "Queries" pane

mutation addPost {
postl: addPost(id:1 author: "AUTHORNAME" title: "A series of posts, Volume 1" content:
"Some content" url: "https://aws.amazon.com/appsync/" ) { title }

101



AWS AppSync AWS AppSync Developer Guide
Setting up the "allPost" resolver (DynamoDB Scan)

post2: addPost(id:2 author: "AUTHORNAME" title: "A series of posts, Volume 2" content:
"Some content" url: "https://aws.amazon.com/appsync/" ) { title }

post3: addPost(id:3 author: "AUTHORNAME" title: "A series of posts, Volume 3" content:
"Some content" url: "https://aws.amazon.com/appsync/" ) { title }

post4: addPost(id:4 author: "AUTHORNAME" title: "A series of posts, Volume 4" content:
"Some content" url: "https://aws.amazon.com/appsync/" ) { title }

post5: addPost(id:5 author: "AUTHORNAME" title: "A series of posts, Volume 5" content:
"Some content" url: "https://aws.amazon.com/appsync/" ) { title }

post6: addPost(id:6 author: "AUTHORNAME" title: "A series of posts, Volume 6" content:
"Some content" url: "https://aws.amazon.com/appsync/" ) { title }

post7: addPost(id:7 author: "AUTHORNAME" title: "A series of posts, Volume 7" content:
"Some content" url: "https://aws.amazon.com/appsync/" ) { title }

post8: addPost(id:8 author: "AUTHORNAME" title: "A series of posts, Volume 8" content:
"Some content" url: "https://aws.amazon.com/appsync/" ) { title }

post9: addPost(id:9 author: "AUTHORNAME" title: "A series of posts, Volume 9" content:
"Some content" url: "https://aws.amazon.com/appsync/" ) { title }
}

« Then hit the "Execute query" button (the orange play button).

Now, lets scan the table, returning 5 results at a time.

« Paste the following query in the "Queries" pane

query allPost {
allPost(count:
posts {
id
title
}

nextToken

5) {

« Then hit the "Execute query" button (the orange play button).

« The first 5 posts should appear in the results pane to the right of the query pane. It should look
something like this:

{
"data": {
"allPost": {
"posts": [
{
"id": "5",
"title": "A series of posts, Volume 5"
}l
{
"id": "1",
"title": "A series of posts, Volume 1"
}l
{
"id": "6",
"title": "A series of posts, Volume 6"
}l
{
"id": "9",
"title": "A series of posts, Volume 9"
}l
{
"id": "7",
"title": "A series of posts, Volume 7"
}

102




AWS AppSync AWS AppSync Developer Guide
Setting up the "allPost" resolver (DynamoDB Scan)

1,
"nextToken":
"eyJ2ZXJzaW9uIljoxLCJ0b2t1lbiI6IKFRSUNBSG04eHRORGOXWXhUalFOCEhXMEPp1R3BOM1B3eThOSmMRvcG9ad2RHY jI3Z01nRk]J
}
}
}

We can see that we got 5 results and also a nextToken that we can use to get the next set of results.

« Update the allPost query to include the nextToken from the previous set of results:

query allPost {
allPost(
count: 5
nextToken:
"eyJ2ZXJzaW9uIljoxLCJ0b2t1lbiI6IKFRSUNBSG04eHRORGOXxWXhUalFOCEhXMEPp1R3BOM1B3eThOSmMRvcG9ad2RHYJI3Z01nR1]

author
}
nextToken
}
}

« Then hit the "Execute query" button (the orange play button).

« The remaining 4 posts should appear in the results pane to the right of the query pane. There is no
nextToken in this set of results as we have paged through all 9 posts, with none remaining. It should
look something like this:

{
"data": {
"allPost": {
"posts": [
{
rigv: "2v,
"title": "A series of posts, Volume 2"
}l
{
"id": "3",
"title": "A series of posts, Volume 3"
}l
{
nid": "4v,
"title": "A series of posts, Volume 4"
}l
{
"id": "8",
"title": "A series of posts, Volume 8"
}
]l
"nextToken": null
}
}
}

103



AWS AppSync AWS AppSync Developer Guide
Setting up the "allPostsByAuthor"
resolver (DynamoDB Query)

Setting up the "allPostsByAuthor" resolver
(DynamoDB Query)

In addition to scanning DynamoDB for all posts, we can also query DynamoDB to retrieve posts created
by a specific author. The DynamoDB table we created earlier already has a GlobalSecondarylndex called
author-index we can use with a DynamoDB Query operation to retrieve all posts created by a specific
author.

« Go to the "Schema" tab
« Modify the Query type in the "Schema" pane to add a new allPostsByAuthor query:

type Query {
allPostsByAuthor(author: String!, count: Int, nextToken: String): PaginatedPosts!
allPost(count: Int, nextToken: String): PaginatedPosts!
getPost(id: ID): Post

Note this uses the same PaginatedPosts type we used with the allPost query.
o Click the save button

 Find the newly created allPostsByAuthor field on the Query type in the "Data types" pane on the
right.

o Click on its Attach button.
» Select PostDynamoDBTable in the "Data source name" dropdown.
« Paste the following into the "Configure the request mapping template" section:

{
"version" : "2017-02-28",
"operation" : "Query",
"index" : "author-index",
"query" : {
"expression": "author = :author",
"expressionValues" : {
":sauthor" : { "S" : "${context.arguments.author}" }
}
¥
#1f( ${context.arguments.count} )
,"limit": ${context.arguments.count}
#end
#1f( ${context.arguments.nextToken} )
,"nextToken": "${context.arguments.nextToken}"
#end
}

Note that like the al1lPost resolver, this resolver has two optional arguments: count, which specifies
the maximum number of items to return in a single call, and nextToken, which can be used to retrieve
the next set of results (the value for nextToken can be obtained from a previous call).

« Paste the following into the "Configure the response mapping template" section:

{
"posts": $utils.todson($context.result.items)
#if( ${context.result.nextToken} )
, "nextToken": "${context.result.nextToken}"
#end
}

104



AWS AppSync AWS AppSync Developer Guide
Setting up the "allPostsByAuthor"
resolver (DynamoDB Query)

Note: This is the same response mapping template we used in the allPost resolver.
« Click the save button.

See the Query (p. 175) reference documentation for more info about Query request mapping.

Call the API to query all Posts by an author

Now the resolver has been set up, AWS AppSync knows how to translate an incoming
allPostsByAuthor mutation to a DynamoDB Query operation against the author-index index. We
can now query the table to retrieve all the posts by a specific author.

Before we do that, however, lets populate the table with some more posts, because every post so far has
the same author.

« Go to the "Queries" tab
« Paste the following mutation into the "Queries" pane

mutation addPost {
postl: addPost(id:10 author: "Nadia" title: "The cutest dog in the world" content: "So
cute. So very, very cute." url: "https://aws.amazon.com/appsync/" ) { author, title }
post2: addPost(id:11 author: "Nadia" title: "Did you know...?" content: "AppSync works
offline?" url: "https://aws.amazon.com/appsync/" ) { author, title }
post3: addPost(id:12 author: "Steve" title: "I like GraphQL" content: "It's great" url:
"https://aws.amazon.com/appsync/" ) { author, title }

}

« Then hit the "Execute query" button (the orange play button).

Now, lets query the table, returning all posts authored by Nadia.

« Paste the following query in the "Queries" pane

query allPostsByAuthor {
allPostsByAuthor(author: "Nadia") {
posts {
id
title
}
nextToken
}
}

« Then hit the "Execute query" button (the orange play button).

« All the posts authored by Nadia should appear in the results pane to the right of the query pane. It
should look something like this:

{
"data": {
"allPostsByAuthor": {
"posts": [

{
"id": "1io",
"title": "The cutest dog in the world"

}I

{
"id": "11",
"title": "Did you know...?"

105




AWS AppSync AWS AppSync Developer Guide
Setting up the "allPostsByAuthor"
resolver (DynamoDB Query)

}
1,
"nextToken":
}
}

null

}

Pagination works for Query just the same as it does for Scan. For example, lets look for all posts by
AUTHORNAME, getting 5 at a time.

« Paste the following query in the "Queries" pane

query allPostsByAuthor {
allPostsByAuthor(
author: "AUTHORNAME"
count: 5
) A
posts {
id
title
}
nextToken
}
}

« Then hit the "Execute query" button (the orange play button).

« All the posts authored by AUTHORNAME should appear in the results pane to the right of the query
pane. It should look something like this:

{
"data": {
"allPostsByAuthor": {
"posts": [
{
"id": "e",
"title": "A series of posts, Volume 6"
}l
{
nid": "4v,
"title": "A series of posts, Volume 4"
}l
{
rigv: "2v,
"title": "A series of posts, Volume 2"
}l
{
rig": "7",
"title": "A series of posts, Volume 7"
}l
{
mig": "1v,
"title": "A series of posts, Volume 1"
}
]l
"nextToken":
"eyJ2ZXJzaW9uIjoxLCJ0b2t1lbiI6IkFRSUNBSG04eHRORGOXWXhUalFOcEhXMEp1R3BOM1B3eThOSmRvcG9ad2RH
}
}
}

YjI3Z01lnSEX

« Update the nextToken argument with the value returned from the previous query:

106



AWS AppSync AWS AppSync Developer Guide
Using Sets

query allPostsByAuthor {
allPostsByAuthor(
author: "AUTHORNAME"
count: 5
nextToken:
"eyJ2ZXJzaW9uIljoxLCJ0b2t1lbiI6IKFRSUNBSG04eHRORGOXWXhUalFOcEhXMEp1R3BOM1B3eThOSmRvcG9ad2RH

nextToken

}
}

YjI3Z01lnSEX

« Then hit the "Execute query" button (the orange play button).

« The remaining posts authored by AUTHORNAME should appear in the results pane to the right of the
query pane. It should look something like this:

{
"data": {
"allPostsByAuthor": {
"posts": [
{
"id": "8",
"title": "A series of posts, Volume 8"
}
{
"id": "s",
"title": "A series of posts, Volume 5"
}
{
rid": "3",
"title": "A series of posts, Volume 3"
}
{
rid": "9",
"title": "A series of posts, Volume 9"
}
1,
"nextToken": null
}
}
}

Using Sets

So far our Post type has been a flat key/value object. It's also possible to model complex objects with
the AWS AppSyncDynamoDB resolver, such as sets, lists, and maps.

Lets update our Post type to include tags. A post can have 0 or more tags, which are stored in
DynamoDB as a String Set. We'll also set up some mutations to add and remove tags, and a new query to
scan for posts with a specific tag.

« Go to the "Schema" tab

 Modify the Post type in the "Schema" pane to add a new tags field:

type Post {

107



AWS AppSync AWS AppSync Developer Guide
Using Sets

id: ID!
author: String
title: String
content: String
url: String
ups: Int!
downs: Int!
version: Int!
tags: [String!]
}

Modify the Query type in the "Schema" pane to add a new allPostsByTag query:

type Query {
allPostsByTag(tag: String!, count: Int, nextToken: String): PaginatedPosts!
allPostsByAuthor(author: String!, count: Int, nextToken: String): PaginatedPosts!
allPost(count: Int, nextToken: String): PaginatedPosts!
getPost(id: ID): Post

}

Modify the Mutation type in the "Schema" pane to add new addTag and removeTag mutations:

type Mutation {

addTag(id: ID!, tag: String!): Post
removeTag(id: ID!, tag: String!): Post
deletePost(id: ID!, expectedVersion: Int): Post
upvotePost(id: ID!): Post
downvotePost(id: ID!): Post
updatePost(

id: 1D!,

author: String,

title: String,

content: String,

url: String,

expectedVersion: Int!
): Post
addPost(

author: String!,

title: String!,

content: String!,

url: String!
): Post!

}

Click the save button

Find the newly created allPostsByTag field on the Query type in the "Data types" pane on the right.
Click on its Attach button.

Select PostDynamoDBTable in the "Data source name" dropdown.

Paste the following into the "Configure the request mapping template" section:

{

"version" : "2017-02-28",

"operation" : "Scan",

"filter": {

"expression": "contains (tags, :tag)",
"expressionValues": {
":tag": { "S": "${context.arguments.tag}" }

¥

¥

#i1f( ${context.arguments.count} )
,"limit": ${context.arguments.count}

#end

108




AWS AppSync AWS AppSync Developer Guide
Using Sets

#if( ${context.arguments.nextToken} )
,"nextToken": "${context.arguments.nextToken}"
#end

}

Paste the following into the "Configure the response mapping template" section:

{
"posts": $utils.todson($context.result.items)
#if( ${context.result.nextToken} )
, "nextToken": "${context.result.nextToken}"
#end
}

Click the save button.

Find the newly created addTag field on the Mutation type in the "Data types" pane on the right.
Click on its Attach button.

Select PostDynamoDBTable in the "Data source name" dropdown.

Paste the following into the "Configure the request mapping template" section:

{
"version" "2017-02-28",
"operation" "UpdateItem",
"key" : {
"id" : { "sS" : "${context.arguments.id}" }
}l
"update" : {
"expression" "ADD tags :tags, version :plusOne",
"expressionValues" : {
":tags" : { "SS": [ "${context.arguments.tag}" ] },
":plusOne" : { "N" : 1 }
}
}
}

Paste the following into the "Configure the response mapping template" section:

$utils.toJson($context.result)

Click the save button.

Find the newly created removeTag field on the Mutation type in the "Data types" pane on the right.
Click on its Attach button.

Select PostDynamoDBTable in the "Data source name" dropdown.

Paste the following into the "Configure the request mapping template" section:

{
"version" "2017-02-28",
"operation" "UpdateItem",
"key" : {
mid" ¢ { "s" "${context.arguments.id}" }
e
"update" : {
"expression" "DELETE tags :tags ADD version :plusOne",
"expressionValues" : {
":tags" : { "SS": [ "${context.arguments.tag}" ] },
":plusOne" : { "N" : 1 }
}
}

109




AWS AppSync AWS AppSync Developer Guide
Using Sets

‘ }

« Paste the following into the "Configure the response mapping template" section:

‘$utils.tonon($context.result)

o Click the save button.

Call the API to work with tags

Now the resolvers have been set up, AWS AppSync knows how to translate incoming addTag,
removeTag, and allPostsByTag requests into DynamoDB Updateltem and Scan operations.

To try it out, lets select one of the posts we created earlier. For example, lets use one of Nadia's posts.

« Go to the "Queries" tab
« Paste the following query into the "Queries" pane.

query allPostsByAuthor {
allPostsByAuthor(
author: "Nadia"
) A
posts {
id
title
}
nextToken
}
}

« Then hit the "Execute query" button (the orange play button).

« All of Nadia's posts should appear in the results pane to the right of the query pane. It should look
something like this:

{
"data": {
"allPostsByAuthor": {
"posts": [
{
"id": "1io",
"title": "The cutest dog in the world"
}I
{
"id": "i1i",
"title": "Did you known...?"
}
]I
"nextToken": null
}
}
}

 Lets use the one with the title "The cutest dog in the world". Note down its id because we'll use it
later.

Now let's try adding a "dog" tag.

« Paste the following mutation into the "Queries" pane. You'll also need to update the id argument to
have the value we noted down earlier.

110




AWS AppSync AWS AppSync Developer Guide
Using Sets

mutation addTag {
addTag(id:10 tag: "dog") {
id
title
tags
}
}

« Then hit the "Execute query" button (the orange play button).
» The post is updated with the new tag.

{
"data": {
"addTag": {
llidll: "10",
"title": "The cutest dog in the world",
"tags": [
lldogll
]
}
}
}

We can add more tags as well.

« Update the mutation to change the tag argument to "puppy".

mutation addTag {
addTag(id:10 tag: "puppy") {
id
title
tags
}
}

« Then hit the "Execute query" button (the orange play button).
« The post is updated with the new tag.

{
"data": {
"addTag": {
"id": "io",
"title": "The cutest dog in the world",
"tags": [
"dog",
"puppy"
]
}
}
}

We can also delete tags:

« Paste the following mutation into the "Queries" pane. You'll also need to update the id argument to
have the value we noted down earlier.

mutation removeTag {




AWS AppSync AWS AppSync Developer Guide
Using Sets

removeTag(id:10 tag: "puppy") {
id
title
tags
}
}

« Then hit the "Execute query" button (the orange play button).
« The post is updated and the "puppy" tag is deleted.

{
"data": {
"addTag": {
"idv: "1o0",
"title": "The cutest dog in the world",
"tags": [
n dogll
1
}
}
}

We can also search for all posts that have a tag:

« Paste the following query into the "Queries" pane.

query allPostsByTag {
allPostsByTag(tag: "dog") {
posts {
id
title
tags
¥
nextToken
}
}

« Then hit the "Execute query" button (the orange play button).
« All posts that have the "dog" tag are returned:

{
"data": {
"allPostsByTag": {
"posts": [
{
"id": “"io",
"title": "The cutest dog in the world",
"tags": [
"dog",
"puppy"
]
}
1,
"nextToken": null
}
}
}

112



AWS AppSync AWS AppSync Developer Guide
Using Lists and Maps

Using Lists and Maps

In addition to using DynamoDB Sets, we can also use DynamoDB Lists and Maps to model complex data
in a single object.

Lets add the ability to add comments to posts. This will be modeled as a List of Map objects on our Post
object in DynamoDB.

Note: in a real application, we would model comments in their own table, however for the purpose of
this tutorial we will just add them in the Post table.

« Go to the "Schema" tab
« Add a new Comment type in the "Schema" pane:

type Comment {
author: String!
comment: String!

}

Modify the Post type in the "Schema" pane to add a new comments field:

type Post {
id: ID!
author: String
title: String
content: String
url: String
ups: Int!
downs: Int!
version: Int!
tags: [String!]
comments: [Comment! ]

}

Modify the Mutation type in the "Schema" pane to add a new addComment mutation:

type Mutation {

addComment(id: ID!, author: String!, comment: String!): Post
addTag(id: ID!, tag: String!): Post
removeTag(id: ID!, tag: String!): Post
deletePost(id: ID!, expectedVersion: Int): Post
upvotePost(id: ID!): Post
downvotePost(id: ID!): Post
updatePost(

id: 1ID!,

author: String,

title: String,

content: String,

url: String,

expectedVersion: Int!
): Post
addPost(

author: String!,

title: String!,

content: String!,

url: String!
): Post!

}

« Click the save button
« Find the newly created addComment field on the Mutation type in the "Data types" pane on the right.

113



AWS AppSync AWS AppSync Developer Guide
Using Lists and Maps

« Click onits Attach button.
» Select PostDynamoDBTable in the "Data source name" dropdown.
« Paste the following into the "Configure the request mapping template" section:

{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key" : {
"id" ¢ { "S" : "${context.arguments.id}" }
}I
"update" : {
"expression" : "SET comments =
list_append(if_not_exists(comments, :emptyList), :newComment) ADD version :plusOne",
"expressionValues" : {
":emptyList": { "L" : [] },
":newComment" : { "L" : [
{ "™": {
"author": { "S" : "${context.arguments.author}" },
"comment": { "S" : "${context.arguments.comment}" }
1}
13}
":plusOne" : { "N" : 1 }
}
}
}

This update expression will append a list containing our new comment to the existing comments list. If
the list doesn't already exist, it will be created.

« Paste the following into the "Configure the response mapping template" section:

$utils.toJson($context.result)

 Click the save button.

Call the API to add a comment

Now the resolvers have been set up, AWS AppSync knows how to translate incoming addComment
requests into DynamoDB Updateltem operations.

Lets try it out by adding a comment to the same post we added the tags to.

« Go to the "Queries" tab
« Paste the following query into the "Queries" pane.

mutation addComment {
addComment (
id:10
author: "Steve"
comment: "Such a cute dog."
) A
id
comments {
author
comment
}
}
}

« Then hit the "Execute query" button (the orange play button).

114



AWS AppSync AWS AppSync Developer Guide
Conclusion

« All of Nadia's posts should appear in the results pane to the right of the query pane. It should look
something like this:

{
"data": {
"addComment": {
"id": "io",
"comments": [
{
"author": "Steve",
"comment": "Such a cute dog."
}
]
}
}
}

If you execute the request multiple times, multiple comments will be appended to the list.

Conclusion

In this tutorial we've built an API that lets us manipualte Post objects in DynamoDB using AWS AppSync
and GraphQL. For further information check out the Resolver Mapping Template Reference (p. 153).

To clean up, you can delete the AppSync GraphQL API from the console.
To delete the DynamoDB table and IAM role we created, you can run the following to delete the

AWSAppSyncTutorialForAmazonDynamoDB stack, or visit the AWS CloudFormation console and delete
the stack.

aws cloudformation delete-stack \
--stack-name AWSAppSyncTutorialForAmazonDynamoDB

Tutorial: Lambda Resolvers

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync allows you to use AWS Lambda to resolve any GraphQL field. For example, a GraphQL
query might call out to an Amazon RDS instance, and a GraphQL mutation might write to a Amazon
Kinesis stream. This section outlines how you can write a Lambda function that performs business logic
based on the invocation of a GraphQL field operation.

Create a Lambda Function

The following example shows a Lambda function written in Node . js that performs different operations
on blog posts as part of a blog post application example.

exports.handler = (event, context, callback) => {
console.log("Received event {}", JSON.stringify(event, 3));
var posts = {

115



AWS AppSync AWS AppSync Developer Guide
Create a Lambda Function

"1v: {"id": "1", "title": "First book", "author": "Authorl", "url": "https://
amazon.com/", "content": "SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1
SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1", "ups": "100", "downs":
"10"},
"2m: {"id": "2", "title": "Second book", "author": "Author2", "url": "https://
amazon.com", "content": "SAMPLE TEXT AUTHOR 2 SAMPLE TEXT AUTHOR 2 SAMPLE TEXT", "ups":
"100", "downs": "10"},
"3m: {"id": "3", "title": "Third book", "author": "Author3", "url": null,
"content": null, "ups": null, "downs": null },
"gr: {"id": "4", "title": "Fourth book", "author": "Author4", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR
4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4
SAMPLE TEXT AUTHOR 4", "ups": "1000", "downs": "O"},
"5m: {"id": "5", "title": "Fifth book", "author": "Author5", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR
5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT", "ups": "50", "downs": "O"} };

var relatedPosts = {
"1": [posts['4']],
"2": [posts['3'], posts['5']],
"3": [posts['2'], posts['1']],
"4": [posts['2'], posts['1l']],
"5": [1]

Y

console.log("Got an Invoke Request.");
switch(event.field) {

case "getPost":
var id = event.arguments.id;
callback(null, posts[id]);
break;

case "allPosts":
var values = [];
for(var d in posts){

values.push(posts[d]);

}
callback(null, values);
break;

case "addPost":
// return the arguments back
callback(null, event.arguments);
break;

case "addPostErrorWithData":
var id = event.arguments.id;
var result = posts[id];
// attached additional error information to the post

result.errorMessage = 'Error with the mutation, data has changed';
result.errorType = 'MUTATION_ERROR';

callback(null, result);

break;

case "relatedPosts":
var id = event.source.id;
callback(null, relatedPosts[id]);
break;
default:
callback("Unknown field, unable to resolve" + event.field, null);
break;

}i

This Lambda function handles retrieving a post by ID, adding a post, retrieving a list of posts, and
fetching related posts for a given post.

Note: The switch statement on event.field allows the Lambda function to determine which field is
being currently resolved.

116




AWS AppSync AWS AppSync Developer Guide
Configure data source for AWS Lambda

Now let's create this Lambda function using the AWS console or with AWS CloudFormation by clicking
here:

aws cloudformation create-stack --stack-name AppSyncLambdaExample \
--template-url https://s3-us-west-2.amazonaws.com/awsappsync/resources/lambda/
LambdaCFTemplate.yaml \

--capabilities CAPABILITY NAMED IAM

You can launch this AWS CloudFormation stack in the US West 2 (Oregon) region in your AWS account:

[ Launch Stack @

Configure data source for AWS Lambda

After the AWS Lambda function has been created, navigate to your AWS AppSync GraphQL APl in the
console and choose the Data Sources tab.

Select New and enter a friendly name for the data source, such as "Lambda", and then select AWS
Lambda for Data source type. Then choose the appropriate region. You should see your Lambda
functions listed.

After selecting your Lambda function, you can either create a new role (for which AWS AppSync assigns
the appropriate permissions) or choose an existing role that has the following inline policy:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"lambda: Invoke"
]!
"Resource": "arn:aws:lambda:REGION:ACCOUNTNUMBER: function/LAMBDA_FUNCTION"
}
]
¥

Creating a GraphQL Schema

Now that the data source is connected to your Lambda function, let's create a GraphQL schema.

From the schema editor in the AWS AppSync console, make sure you schema matches the schema below.

schema {
query: Query
mutation: Mutation

}

type Query {
getPost(id:ID!): Post
allPosts: [Post]

}

type Mutation {
addPost(id: ID!, author: String!, title: String, content: String, url: String): Post!

}

117




AWS AppSync AWS AppSync Developer Guide
Configuring resolvers

type Post {
id: ID!
author: String!
title: String
content: String
url: String
ups: Int
downs: Int
relatedPosts: [Post]

Configuring resolvers

Now that we have registered a AWS Lambda data source and a valid GraphQL schema, we can connect
our GraphQL fields to our Lambda data source using resolvers.

To create a resolver, we'll need mapping templates. To learn more about mapping templates, read
AppSync mapping templates overview Resolver Mapping Template Overview (p. 153).

For more information about Lambda mapping templates, see Resolver Mapping Template Reference for
Lambda (p. 199).

We are going to attach a resolver to our Lambda function for the following fields, getPost(id:ID!):
Post, allPosts: [Post], addPost(id: ID!, author: String!, title: String, content:
String, url: String): Post! and Post.relatedPosts: [Post].

From the schema editor in the AWS AppSync console, on the right-hand side for getPost(id:ID!):
Post click Attach Resolver.

Select your AWS Lambda data source and under the request mapping template section select the
dropdown menu for Invoke And Forward Arguments.

Modify the payload object to add the field name. Your template should look like the following:

{
"version": "2017-02-28",
"operation": "Invoke",
"payload": {
"field": "getPost",
"arguments": $utils.toJdson($context.arguments)
}
}

Now under the response mapping template section, select the drop-down menu for Return Lambda
Result.

We will use the base template as-is. It should look like the following:

$utils.toJson($context.result)

Click Save. You have now attached your first resolver! Repeat this operation for the remaining fields as
follows:

addPost(id: ID!, author: String!, title: String, content: String, url: String):
Post! request mapping template

"version": "2017-02-28",
"operation": "Invoke",

118




AWS AppSync AWS AppSync Developer Guide

Testing your GraphQL API
"payload": {
"field": "addPost",
"arguments": $utils.toJdson($context.arguments)
}
}
addPost(id: ID!, author: String!, title: String, content: String, url: String):

Post! response mapping template

$utils.toJson($context.result)

allPosts: [Post] request mapping template
{

"version": "2017-02-28",

"operation": "Invoke",

"payload": {

"field": "allPosts"

}
}
allPosts: [Post] response mapping template

$utils.toJson($context.result)

Post.relatedPosts: [Post] request mapping template

{
"version": "2017-02-28",
"operation": "Invoke",
"payload": {
"field": "relatedPosts",
"source": s$utils.toJson($context.source)
¥
}

Post.relatedPosts: [Post] response mapping template

$utils.toJson($context.result)

Testing your GraphQL API

Now that your Lambda function is connected to GraphQL resolvers, you can run some mutations and

queries using the console or a client application.

In the AppSync console, on the left-hand side, choose the Queries tab. Populate it with the following

code:

addPost mutation

mutation addPost {

addPost(
id: 6
author: "Authore"
title: "Sixth book"
url: "https://www.amazon.com/"

119




AWS AppSync AWS AppSync Developer Guide
Returning Errors

content: "This is the book is a tutorial for using GraphQL with AWS AppSync."
) {

id

author

title

content

url

ups

downs

getPost query

query {
getPost(id: "2") {

id

author

title

content

url

ups

downs

allPosts query

query {
allPosts {

id

author

title

content

url

ups

downs

relatedPosts {
id
title

Returning Errors

Any given field resolution can result in an error. AppSync lets you raise errors:

« From the request or response mapping template
« From the Lambda function

From the mapping template

The $utils.error helper method can be used from the VTL template to raise intentional errors. It
takes as argument an errorMessage, an errorType, and an optional data value. The data comes
handy for returning extra data back to the client, when an error has been raised. The data object will be
added to the errors in the GraphQL final response.

120




AWS AppSync AWS AppSync Developer Guide
Returning Errors

For example using it in the Post.relatedPosts: [Post] response mapping template .. code-block::
sh

$utils.error("Failed to fetch relatedPosts", "LambdaFailure", $context.result)

would yield a GraphQL response similar to the following:

{
"data": {
"allPosts": [
{
"id": 2",
"title": "Second book",
"relatedPosts": null
Iy
1
Iy
"errors": [
{
"path": [
"allPosts",
0,
"relatedPosts"
1,
"errorType": "LambdaFailure",
"locations": [
{
"line": 5,
"column": 5
}
1,
"message": "Failed to fetch relatedPosts",
"data": [
{
"id": 2",
"title": "Second book"
Iy
{
"id": "1iv,
"title": "First book"
}
]
}
]
}

where allPosts[0].relatedPosts is null because of the error and the errorMessage, errorType,
and data are present in the data.errors[ 0] object.

From the Lambda function

AppSync also understands errors thrown from the Lambda function. The Lambda programming model
lets you raise Handled errors. If an error is thrown from the Lambda function, AppSync will fail the
resolution of the current field. Only the error message returned from Lambda will be set in the response.
Also, it is currently impossible to pass any extraneous data back to the client by raising an error from the
Lambda function.

Note: If your Lambda function raises an UnHandled error, AppSync will use the error message set by AWS
Lambda.

The following Lambda function raises an error:

121



AWS AppSync AWS AppSync Developer Guide
Advanced Use Case: Batching

exports.handler = (event, context, callback) => {
console.log("Received event {}", JSON.stringify(event, 3));
callback("I fail. Always.");

Y

Which would return a GraphQL response similar to below:

{
"data": {
"allPosts": [
{
"id": ll2"’
"title": "Second book",
"relatedPosts": null
}I
]
}l
"errors": [
{
"path": [
"allPosts",
or
"relatedPosts"
]I
"errorType": "Lambda:Handled",
"locations": [
{
"line": 5,
"column": 5
¥
]I
"message": "I fail. Always."
}
]
¥

Advanced Use Case: Batching

You may have noticed that the Lambda function in our example had a relatedPosts field which
returned a list of related posts for a given post. In our example queries, the allPosts field invocation
from our Lambda function returns 5 posts. Because we have specified that we also want to resolve
relatedPosts for each returned post, the relatedPosts field operation will, in turn, be invoked 5
times.

query {
allPosts { // 1 Lambda invocation - yields 5 Posts

id

author

title

content

url

ups

downs

relatedPosts { // 5 Lambda invocations - each yields 5 posts
id
title

122




AWS AppSync AWS AppSync Developer Guide
Advanced Use Case: Batching

While this doesn't sound substantial for this specific use case, our application can get quickly
undermined by this compounded over-fetching.

If, say, we were to fetch relatedPosts again on the returned related Posts in the same query, the
number of invocations would increase dramatically.

query {
allPosts { // 1 Lambda invocation - yields 5 Posts
id
author
title
content
url
ups
downs
relatedPosts { // 5 Lambda invocations - each yield 5 posts = 5 x 5 Posts
id
title
relatedPosts { // 5 x 5 Lambda invocations - each yield 5 posts = 25 x 5 Posts
id
title
author
¥
}
}
¥

In this relatively simple query, AWS AppSync would invoke our Lambda function 1 + 5 + 25 = 31 times.

This is a fairly common challenge and is often called the N+1 problem, (in our case, N = 5) and it can
incur increased latency and cost to our application.

One approach to solving this issue is to batch similar field resolver requests together. So in our example,
instead of our Lambda function resolving a list of related posts for a single given post, it would instead
resolve a list of related posts for a given batch of posts.

To see it in action, let's switch our Post.relatedPosts: [Post] resolver to a batch-enabled resolver.

In the AWS AppSync console, on the right-hand side, choose the existing Post.relatedPosts:
[Post] resolver. Change the request mapping template to the following:

{
"version": "2017-02-28",
"operation": "BatchInvoke",
"payload": {
"field": "relatedPosts",
"source": s$utils.toJson($context.source)
}
}

Note that only the operation field has changed from Invoke to BatchInvoke. The payload field
now becomes an array of whatever has been specified in the template, so in our example, our Lambda
function will receive as input:

{
"field": "relatedPosts",
"source": {
"id": 1
}

123




AWS AppSync AWS AppSync Developer Guide
Advanced Use Case: Batching

Iy
{
"field": "relatedPosts",
"source": {
"id": 2
}
Iy

When BatchInvoke is specified in the request mapping template, the Lambda function is now given a
list of requests and is also expected to return a list of results.

Specifically, the list of results must match in size and in order of the request payload entries, so AWS
AppSync can match the results accordingly.

So in our example, because of batching, our Lambda function needs to return a batch of results:

[{"id":"2","title":"Second book"}, {"id":"3","title":"Third book"}], // relatedPosts
for id=1
[{"id":"3","title":"Third book"}]
// relatedPosts for id=2

The following AWS Lambda function in Node.js demonstrates this batching functionality for the
Post.relatedPosts field:

exports.handler = (event, context, callback) => {
console.log("Received event {}", JSON.stringify(event, 3));
var posts = {

"1m: {"id": "1", "title": "First book", "author": "Authorl", "url": "https://
amazon.com/", "content": "SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1
SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1", "ups": "100", "downs":
"10"},
"2m: {"id": "2", "title": "Second book", "author": "Author2", "url": "https://
amazon.com", "content": "SAMPLE TEXT AUTHOR 2 SAMPLE TEXT AUTHOR 2 SAMPLE TEXT", "ups":
"100", "downs": "10"},
"3m: {"id": "3", "title": "Third book", "author": "Author3", "url": null,
"content": null, "ups": null, "downs": null },
"gr: {"id": "4", "title": "Fourth book", "author": "Author4", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR
4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4
SAMPLE TEXT AUTHOR 4", "ups": "1000", "downs": "O"},
"5": {"id": "5", "title": "Fifth book", "author": "Author5", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR
5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT", "ups": "50", "downs": "O"} };

var relatedPosts = {
"1": [posts['4']],
"2": [posts['3'], posts['5']],
"3": [posts['2'], posts['1']],
"4": [posts['2'], posts['1l']],
"5": [1]

Y

console.log("Got a BatchInvoke Request. The payload has %d items to resolve.",
event.length);
// event is now an array
var field = event[0].field;
switch(field) {
case "relatedPosts":
var results = [];

124




AWS AppSync AWS AppSync Developer Guide
Advanced Use Case: Batching

// the response MUST contain the same number

// of entries as the payload array

for (var i=0; i< event.length; i++) {
console.log("post {}", JSON.stringify(event[i].source));
results.push(relatedPosts[event[i].source.id]);

}

console.log("results {}", JSON.stringify(results));

callback(null, results);

break;

default:
callback("Unknown field, unable to resolve" + field, null);
break;

}i

Returning Individual Errors

We saw previously that it is possible to return a single error from the Lambda function, or raise an error
from the mapping templates. For batched invocations, raising an error from the Lambda function will
flag an entire batch as failed. This might be fine for specific scenarios where an irrecoverable error
happened, such as, the connection to a data store going down. However, in cases where some items in
the batch succeed, and some others fail, let see how it is possible to return both errors and valid data.
AppSync only imposes the batch response to be a list of elements matching the original size of the
batch, it is up to you to define a data structure that can differentiate valid data from an error.

For instance, if our Lambda function is expected to return a batch of related posts, we could instead
return a list of Response object where each object has optional data, errorMessage and errorType fields.
If the errorMessage field is present, it means there was an error.

See below the updated Lambda function.

exports.handler = (event, context, callback) => {
console.log("Received event {}", JSON.stringify(event, 3));
var posts = {
"1v: {"id": "1", "title": "First book", "author": "Authorl", "url": "https://
amazon.com/", "content": "SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1
SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1 SAMPLE TEXT AUTHOR 1", "ups": "100", "downs":
"10"},
"2m: {"id": "2", "title": "Second book", "author": "Author2", "url": "https://
amazon.com", "content": "SAMPLE TEXT AUTHOR 2 SAMPLE TEXT AUTHOR 2 SAMPLE TEXT", "ups":
"100", "downs": "10"},
"3m: {"id": "3", "title": "Third book", "author": "Author3", "url": null,
"content": null, "ups": null, "downs": null },
"gr: {"id": "4", "title": "Fourth book", "author": "Author4", "url": "https://

www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR
4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4 SAMPLE TEXT AUTHOR 4
SAMPLE TEXT AUTHOR 4", "ups": "1000", "downs": "O0"},
"5": {"id": "5", "title": "Fifth book", "author": "Author5", "url": "https://
www.amazon.com/", "content": "SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT AUTHOR
5 SAMPLE TEXT AUTHOR 5 SAMPLE TEXT", "ups": "50", "downs": "O"} };

var relatedPosts = {
"1": [posts['4']],
"2": [posts['3'], posts['5']],
"3": [posts['2'], posts['1']],
"4": [posts['2'], posts['1l']],
"5": [1]

Y

console.log("Got a BatchInvoke Request. The payload has %d items to resolve.",
event.length);
// event is now an array

125




AWS AppSync AWS AppSync Developer Guide
Advanced Use Case: Batching

var field = event[0].field;
switch(field) {
case "relatedPosts":
var results = [];
results.push({ 'data': relatedPosts['1l'] });
results.push({ 'data': relatedPosts['2'] });

results.push({ 'data': null, 'errorMessage': 'Error Happened',K 'errorType':
"ERROR' });

results.push(null);

results.push({ 'data': relatedPosts['3'], 'errorMessage': 'Error Happened with
last result', 'errorType': 'ERROR' });

callback(null, results);

break;

default:
callback("Unknown field, unable to resolve" + field, null);
break;
}

}i

And we could write a response mapping template to parse each item of our Lambda function, and raise
an error if needed:

#if( $context.result && $context.result.errorMessage )
$utils.error($context.result.errorMessage, $context.result.errorType,
$context.result.data)
#else
$utils.toJson($context.result.data)
#end

This example would return a GraphQL response similar to below:

{
"data": {
"allPosts": [
{
"id": "1iv,
"relatedPostsPartialErrors": [
{
"id": "4,
"title": "Fourth book"
}
]
Iy
{
"idqv: "av,
"relatedPostsPartialErrors": [
{
"id": "3",
"title": "Third book"
Iy
{
"id": "s",
"title": "Fifth book"
}
]
Iy
{
"idq": "3",
"relatedPostsPartialErrors": null
Iy
{

llid": "4"’
"relatedPostsPartialErrors": null

126




AWS AppSync AWS AppSync Developer Guide
Tutorial: Amazon Elasticsearch Service Resolvers

Iy
{
llid": "5"’
"relatedPostsPartialErrors": null
}
1
Iy
"errors": [
{
"path": [
"allPosts",
2,
"relatedPostsPartialErrors"
1,
"errorType": "ERROR",
"locations": [
{
"line": 4,
"column": 9
}
1,
"message": "Error Happened"
Iy
{
"path": [
"allPosts",
4,
"relatedPostsPartialErrors"
1,
"data": [
{
"id": "2"’
"title": "Second book"
Iy
{
"id": "1"’
"title": "First book"
}
1,
"errorType": "ERROR",
"locations": [
{
"line": 4,
"column": 9
}
1,
"message": "Error Happened with last result"
}
1
}

Tutorial: Amazon Elasticsearch Service Resolvers

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync supports using Amazon Elasticsearch Service from domains that you have provisioned
in your own AWS account. After your domains are provisioned, you can connect to them using a data
source, at which point you can configure a resolver in the schema to perform GraphQL operations such
as queries, mutations, and subscriptions. This tutorial will take you through some common examples.

127



AWS AppSync AWS AppSync Developer Guide
Create a New Amazon ES Domain

For more information, see the Resolver Mapping Template Reference for Elasticsearch (p. 196).

Create a New Amazon ES Domain

To get started with this tutorial, you need an existing Amazon ES domain. If you don't have one, you can
use the following sample. Note that it can take up to 15 minutes for an Amazon ES domain to be created
before you can move on to integrating it with an AWS AppSync data source.

aws cloudformation create-stack --stack-name DDElasticsearch \

--template-url https://s3-us-west-2.amazonaws.com/awsappsync/resources/elasticsearch/
ESResolverCFTemplate.yaml \

--parameters ParameterKey=ESDomainName,ParameterValue=ddtestdomain
ParameterKey=Tier,ParameterValue=development \

--capabilities CAPABILITY NAMED_ IAM

You can launch this AWS CloudFormation stack in the US West 2 (Oregon) region in your AWS account:

[ Launch Stack o_)

Configure Data Source for Amazon ES

After the Amazon ES domain is created, navigate to your AWS AppSync GraphQL APl and choose the
Data Sources tab. Choose New and enter a friendly name for the data source, such as "Elasticsearch".
Then choose Amazon Elasticsearch cluster for Data source type, choose the appropriate region, and
you should see your Amazon ES domain listed. After selecting it you can either create a new role and
AWS AppSync will assign the role-appropriate permissions, or you can choose an existing role, which has
the following inline policy:

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "Stmtl1234234",
"Effect": "Allow",
"Action": [
"es:ESHttpDelete",
"es:ESHttpHead",
"es:ESHttpGet",
"es:ESHttpPost",
"es:ESHttpPut"
]!
"Resource": [
"arn:aws:es:REGION:ACCOUNTNUMBER:domain/democluster/*"
]
}
]
}

Connecting a Resolver

Now that the data source is connected to your Amazon ES domain, you can connect it to your GraphQL
schema with a resolver, as shown in the following example:

schema {
query: Query
mutation: Mutation

128




AWS AppSync AWS AppSync Developer Guide
Connecting a Resolver

}

type Query {
getPost(id: ID!): Post
allPosts: [Post]

}

type Mutation {
addPost(id: ID!, author: String, title: String, url: String, ups: Int, downs: Int,
content: String): Post

}

type Post {
id: ID!
author: String
title: String
url: String
ups: Int
downs: Int
content: String

Note that there is a user-defined Post type with a field of id. In the following examples, we assume
there is a process (which can be automated) for putting this type into your Amazon ES domain, which
would map to a path root of /id/post, where id is the index and post is the type. From this root path,
you can perform individual document searches, wildcard searches with /id/post* or multi-document
searches with a path of /id/post/_search. If you have another type User, for example, one that

is indexed under the same index id, you can perform multi-document searches with a path of /id/
_search. This searches for fields on both Post and User.

From the schema editor in the AWS AppSync console, modify the preceding Posts schema to include a
searchPosts query:

type Query {
getPost(id: ID!): Post
allPosts: [Post]
searchPosts: [Post]

¥

Save the schema. On the right side, for searchPosts, choose Attach resolver. Choose your Amazon ES
data source. Under the request mapping template section, select the drop-down for Query posts to get
a base template. Modify the path to be /id/post/_search. It should look like the following:

"version":"2017-02-28",
"operation":"GET",
"path":"/id/post/_search",
"params" :{
"headers":{},
"queryString":{},
"body": {
"from":0,
"size":50

This assumes that the preceding schema has documents with an id field, and that the documents have
been indexed in Amazon ES by this field. If you structure your data differently, then you'll need to update
accordingly.

129




AWS AppSync AWS AppSync Developer Guide
Modifying Your Searches

Under the response mapping template section, you need to specify the appropriate _source filter
if you want to get back the data results from an Amazon ES query and translate to GraphQL. Use the
following template:

#foreach($entry in $context.result.hits.hits)
#if( $velocityCount > 1 ) , #end
$utils.todson($entry.get("_source"))

#end

Modifying Your Searches

The preceding request mapping template performs a simple query for all records. Suppose you want to
search by a specific author. Further, suppose you want that author to be an argument defined in your
GraphQL query. In the schema editor of the AWS AppSync console, add an allPostsByAuthor query:

type Query {
getPost(id: ID!): Post
allPosts: [Post]
allPostsByAuthor(author: String!): [Post]
searchPosts: [Post]

Now choose Attach resolver and select the Amazon ES data source, but use the following example in the
response mapping template:

"version":"2017-02-28",
"operation":"GET",
"path":"/id/post/_search",
"params" :{
"headers":{},
"queryString":{},
"body":{
"from":0,
"size":50,
"query":{
"term" :{
"author":"$context.arguments.author"

}

Note that the body is populated with a term query for the author field, which is passed through from
the client as an argument. You could optionally have prepopulated information, such as standard text, or
even use other utilities.

If you're using this resolver, fill in the response mapping template with the same information as the
previous example.

Adding Data to Amazon ES

You may want to add data to your Amazon ES domain as the result of a GraphQL mutation. This is a
powerful mechanism for searching and other purposes. Because you can use GraphQL subscriptions

130



AWS AppSync AWS AppSync Developer Guide
Retrieving a Single Document

to make your data real-time, it serves as a mechanism for notifying clients of updates to data in your
Amazon ES domain.

Return to the Schema page in the AWS AppSync console and select Attach resolver for the addpost()
mutation. Select the Amazon ES data source again and use the following response mapping template
for the Posts schema:

{
"version":"2017-02-28",
"operation":"PUT",
"path":"/id/post/$context.arguments.id",
"params":{
"headers":{},
"queryString":{},
"body": {
"id":"$context.arguments.id",
"author":"$context.arguments.author",
"ups":"$context.arguments.ups",
"downs":"$context.arguments.downs",
"url":"$context.arguments.url",
"content":"$context.arguments.content”,
"title":"$context.arguments.title"
}
}
}

As before, this is an example of how your data might be structured. If you have different field names or
indexes, you need to update the path and body as appropriate. This example also shows how to use
$context.arguments to populate the template from your GraphQL mutation arguments.

Before moving on, use the following response mapping template, which will be explained more in the
next section:

$utils.todson($context.result.get("_source"))

Retrieving a Single Document

Finally, if you want to use the getPost(id:ID) query in your schema to return an individual document,
find this query in the schema editor of the AWS AppSync console and choose Attach resolver. Select the
Amazon ES data source again and use the following mapping template:

"version":"2017-02-28",
"operation":"GET",
"path":"/id/post/$context.arguments.id",
"params" :{

"headers":{},

"queryString":{},

"body":{}

Because the path above uses the id argument with an empty body, this returns the single document.
However, you need to use the following response mapping template, because now you're returning a
single item and not a list:

$utils.toJson($context.result.get("_source"))

131




AWS AppSync AWS AppSync Developer Guide
Perform Queries and Mutations

Perform Queries and Mutations

You should now be able to perform GraphQL operations against your Amazon ES domain. Navigate to
the Queries tab of the AWS AppSync console and add a new record:

mutation {
addPost(
id:"12345"
author: "Fred"
title: "My first book"
content: "This will be fun to write!"

DR
id
author
title
}

If the record is inserted successfully, you'll see the fields on the right. Similarly, you can now run a
searchPosts query against your Amazon ES domain:

query {
searchPosts {
id
title
author
content
}
}

Best Practices

« Amazon ES should be for querying data, not as your primary database. You may want to use Amazon
ES in conjunction with Amazon DynamoDB as outlined in Combining GraphQL Resolvers.

« Only give access to your domain by allowing the AWS AppSync service role to access the cluster.

« You can start small in development, with the lowest-cost cluster, and then move to a larger cluster
with high availability (HA) as you move into production.

Tutorial: Local Resolvers

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync allows you to use supported data sources (AWS Lambda, Amazon DynamoDB, or Amazon
Elasticsearch Service) to perform various operations. However, in certain scenarios, a call to a supported
data source might not be necessary.

This is where the local resolver comes in handy. Instead of calling a remote data source, the local resolver
will just forward the result of the request mapping template to the response mapping template. The
field resolution will not leave AWS AppSync.

Local resolvers are useful for several use cases. The most popular use case is to publish notifications
without triggering a data source call. To demonstrate this use case, let's build a paging application;

132



AWS AppSync AWS AppSync Developer Guide
Create the Paging Application

where users can page each other. This example leverages Subscriptions, so if you aren't familiar with
Subscriptions, you can follow the Real-Time Data (p. 138) tutorial.

Create the Paging Application

In our paging application, clients can subscribe to an inbox, and send pages to other clients. Each page
includes a message. Here is the schema:

schema {
query: Query
mutation: Mutation
subscription: Subscription

}

type Subscription {
inbox(to: String!): Page!
@aws_subscribe(mutations: ["page"])

}

type Mutation {
page(body: String!, to: String!): Page!

}

type Page {
from: String!
to: String!
body: String!
sentAt: String!

}

type Query {
me: String

}

Let's attach a resolver on the Mutation.page field. In the Schema pane, click on Attach Resolver
next to the field definition on the right panel. Create a new data source of type None and name it
PageDataSource.

For the request mapping template, enter:

{
"version": "2017-02-28",
"payload": {
"body": "${context.arguments.body}",
"from": "${context.identity.username}",
"to": "${context.arguments.to}",
"sentAt": "s$util.time.nowISO08601()"
}
}

And for the response mapping template, select the default Forward the result. Save your resolver. You
application is now ready, let's page!

Send and subscribe to pages

For clients to receive pages, they must first be subscribed to an inbox.

In the Queries pane let's execute the inbox subscription:

subscription Inbox {

133




AWS AppSync AWS AppSync Developer Guide
Tutorial: Combining GraphQL Resolvers

inbox(to: "Nadia") {
body
to
from
sentAt

Nadia will receive pages whenever the Mutation.page mutation is invoked. Let's invoke the mutation
by executing the mutation:

mutation Page {
page(to: "Nadia", body: "Hello, World!") {
body
to
from
sentAt

We just demonstrated the use of local resolvers, by sending a Page and receiving it without leaving AWS
AppSync.

Tutorial: Combining GraphQL Resolvers

This is prerelease documentation for a service in preview release. It is subject to change.

Resolvers and fields in a GraphQL schema have 1:1 relationships with a large degree of flexibility.
Because a data source is configured on a resolver independently of a schema, you have the ability for
GraphQL types to be resolved or manipulated through different data sources, mixing and matching on a
schema to best meet your needs.

The following example scenarios show how you might mix and match data sources in your schema, but
before doing so you should have familiarity with setting up data sources and resolvers for AWS Lambda,
Amazon DynamoDB and Amazon Elasticsearch Service as outlined in the previous sections.

Example Schema

The below schema has a type of Post with 3 Query operations and 3 Mutation operations defined:

type Post {
id: ID!
author: String!
title: String
content: String
url: String
ups: Int
downs: Int
version: Int!

}

type Query {
allPost: [Post]
getPost(id: ID!): Post

134



AWS AppSync AWS AppSync Developer Guide
Alter data through resolvers

searchPosts: [Post]

}
type Mutation {
addPost(
id: 1ID!,

author: String!,
title: String,
content: String,
url: String

): Post
updatePost(
id: 1ID!,

author: String!,
title: String,
content: String,
url: String,
ups: Int!,
downs: Int!,
expectedVersion: Int!
): Post
deletePost(id: ID!): Post

In this example you would have a total of 6 resolvers to attach. One possible way would to have

all of these come from an Amazon DynamoDB table, called Posts, where Al1Posts runs a

scan and searchPosts runs a query, as outlined in the DynamoDB Resolver Mapping Template
Reference (p. 166). However, there are alternatives to meet your business needs, such as having these
GraphQL queries resolve from AWS Lambda or Amazon ES.

Alter data through resolvers

You might have the need to return results from a database such as DynamoDB (or Amazon Aurora) to
clients with some of the attributes changed. This might be due to formatting of the data types, such as
timestamp differences on clients, or to handle backwards compatability issues. For illustrative purposes
in the below example, we show an AWS Lambda function that manipulates the up-votes and down-votes
for blog posts by assigning them random numbers each time the GraphQL resolver is invoked:

'use strict';
const doc = require('dynamodb-doc');
const dynamo = new doc.DynamoDB();

exports.handler = (event, context, callback) => {
const payload = {
TableName: 'Posts',
Limit: 50,
Select: 'ALL_ATTRIBUTES',
Yi

dynamo.scan(payload, (err, data) => {
const result = { data: data.Items.map(item =>{
item.ups = parseInt(Math.random() * (50 - 10) + 10, 10);
item.downs = parseInt(Math.random() * (20 - 0) + 0, 10);
return item;
IR
callback(err, result.data);
)i
}i

This is a perfectly valid Lambda function and could be attached to the Al1Posts field in the GraphQL
schema so that any query returning all the results gets random numbers for the ups/downs.

135




AWS AppSync AWS AppSync Developer Guide
DynamoDB and Amazon ES

DynamoDB and Amazon ES

For some applications, you might perform mutations or simple lookup queries against DynamoDB,

and have a background process transfer documents to Amazon ES. You can then simply attach the
searchPosts Resolver to the Amazon ES data source and return search results (from data that
originated in DynamoDB) using a GraphQL query. This can be extremely powerful when adding advanced
search operations to your applications such keyword, fuzzy word matches or even geospatial lookups.
Transfering data from DynamoDB could be done through an ETL process or alternatively you can stream
from DynamoDB using Lambda with the following example code:

Note: This code is for example only.

var AWS = require('aws-sdk');
var path = require('path');
var stream = require('stream');

var esDomain = {
endpoint: 'https://elasticsearch-domain-name.REGION.es.amazonaws.com',
region: 'REGION',
index: 'id’',
doctype: 'post'
}i

var endpoint = new AWS.Endpoint(esDomain.endpoint)
var creds = new AWS.EnvironmentCredentials('AWS');

function postDocumentToES(doc, context) {
var req = new AWS.HttpRequest(endpoint);

reqg.method = 'POST';

reqg.path = '/_bulk';

req.region = esDomain.region;

reqg.body = doc;

req.headers[ 'presigned-expires'] = false;
req.headers[ 'Host'] = endpoint.host;

// Sign the request (Sigv4)
var signer = new AWS.Signers.V4(req, 'es');
signer.addAuthorization(creds, new Date());

// Post document to ES
var send = new AWS.NodeHttpClient();
send.handleRequest(req, null, function (httpResp) {
var body = '';
httpResp.on('data', function (chunk) {
body += chunk;
i
httpResp.on('end', function (chunk) {
console.log('Successful', body);
context.succeed();

i
}, function (err) {
console.log('Error: ' + err);

context.fail();
i
}

exports.handler = (event, context, callback) => {
console.log("event => " + JSON.stringify(event));
var posts = '';

for (var i = 0; i < event.Records.length; i++) {
var eventName = event.Records[i].eventName;

136




AWS AppSync AWS AppSync Developer Guide
DynamoDB and Amazon ES

var actionType = ;

var image;

var noDoc = false;

switch (eventName) {
case 'INSERT':

actionType = 'create';
image = event.Records[i].dynamodb.NewImage;
break;

case 'MODIFY':
actionType = 'update';
image = event.Records[i].dynamodb.NewImage;
break;

case 'REMOVE':

actionType = 'delete';

image = event.Records[i].dynamodb.OldImage;
noDoc = true;

break;
}
if (typeof image !== "undefined") {
var postData = {};
for (var key in image) {
if (image.hasOwnProperty(key)) {
if (key === 'postId') {
postData['id'] = image[key].S;
} else {
var val = image[key];
if (val.hasOwnProperty('sS')) {
postDatal[key] = val.S;
} else if (val.hasOwnProperty('N')) {
postData[key] = val.N;
}
}
}
}
var action = {};
action[actionType] = {};
action[actionType]._index = 'id';
action[actionType]._type = 'post';
action[actionType]._id = postData['id'];
posts += [
JSON.stringify(action),
].concat(noDoc?[]:[JSON.stringify(postData)]).join('\n"') + '\n';
}

}

console.log('posts:',posts);
postDocumentToES(posts, context);

}i

You can then use DynamoDB streams to attach this to a DynamoDB table with a primary key of id,
and any changes to the source of DynamoDB would stream into your Amazon ES domain. For more
information on configuring this, see the DynamoDB Streams documentation.

137


http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html

AWS AppSync AWS AppSync Developer Guide
GraphQL Schema Subscription Directives

Real-Time Data

GraphQL Schema Subscription Directives

Subscriptions in AWS AppSync are invoked as a response to a mutation. This means that you can make
any data source in AWS AppSync real time by specifying a GraphQL schema directive on a mutation.
Subscription connection management is handled automatically by the AWS AppSync client SDK using
MQTT over Websockets as the network protocol between the client and service.

Note: Adding resolvers to subscriptions is unsupported at this time.
Subscriptions are triggered from mutations and the mutation selection set is sent to subscribers.

The following example shows how to work with GraphQL subscriptions. Notice that it doesn't specify
a data source, because the data source could be AWS Lambda, Amazon DynamoDB, or Amazon
Elasticsearch Service.

To get started to with subscriptions, you must add a subscription entry point to your schema:

schema {
query: Query
mutation: Mutation
subscription: Subscription

Suppose you have a blog post site, and you want to subscribe to new blogs and changes to existing
blogs. You would add the following Subscription definition to your schema:

type Subscription {
addedPost: Post
updatedPost: Post
deletedPost: Post

Suppose further that you have the following mutations:

type Mutation {
addPost(id: ID! author: String! title: String content: String url: String): Post!
updatePost(id: ID! author: String! title: String content: String url: String ups: Int!
downs: Int! expectedVersion: Int!): Post!
deletePost(id: ID!): Post!

You can make these fields real time by adding an @aws_subscribe(mutations:
["mutation field_ 1", "mutation_field_2"]) directive for each of the subscriptions you want to
receive notifications for, as follows:

type Subscription {
addedPost: Post
@aws_subscribe(mutations: ["addPost"])
updatedPost: Post
@aws_subscribe(mutations: ["updatePost"])
deletedPost: Post

138



AWS AppSync AWS AppSync Developer Guide
Using Subscription Arguments

@aws_subscribe(mutations: ["deletePost"])

Because the @aws_subscribe(mutations: ["",..,""]) takes an array of mutation inputs, you
can specify multiple mutations, which trigger a subscription. If you're subscribing from a client, your
GraphQL query might look like the following:

subscription NewPostSub {

addedPost {
___typename
version
title
content
author
url

Although the subscription query above is needed for client connections and tooling, the selection set
that is received by subscribers is specified by the client triggering the mutation. To demonstrate this, if
a mutation was made from another mobile client or a server, for example, mutation addPost(...)
{id author title }), then content, version and url wouldn't be published to subscribers. Instead id,
author and title would be published.

In the example above, we showed subscriptions without arguments. If your schema looked like this:

type Subscription {
updatedPost(id:ID! author:String): Post
@aws_subscribe(mutations: ["updatePost"])

then your client would define a subscription:

subscription UpdatedPostSub {
updatedPost(id:"XYZ", author:"ABC") {
title
content

One final thing to note: The return type of a subscription field in your schema must match the return
type of the corresponding mutation field. In the previous example, this was shown as both addPost and
addedPost returned as a type of Post.

To set up subscriptions on the client, see Building a Client App (p. 31).

Using Subscription Arguments

An important part of using GraphQL subscriptions is understanding when and how to use arguments,
as subtle changes will allow you to modify how and when clients are notified of mutations that have
occured. To do this, refer to the sample schema from the Quickstart section, which creates "Events" and
"Comments". For the sample schema, you will see the following mutation:

type Mutation {
createEvent(
name: String!,

139



AWS AppSync AWS AppSync Developer Guide
Using Subscription Arguments

when: String!,
where: String!,
description: String!
): Event
deleteEvent(id: ID!): Event
commentOnEvent(eventId: ID!, content: String!, createdAt: String!): Comment

In the default sample, clients can subscribe to Comments when a specific eventld argument is passed
through:

type Subscription {
subscribeToEventComments(eventId: String!): Comment
@aws_subscribe(mutations: ["commentOnEvent"])

However, if you want to allow clients to subscribe to a single event OR all events, you can make this
argument optional by removing the exclamation point (!) from the subscription prototype:

subscribeToEventComments(eventId: String): Comment

With this change, clients that omitted this argument would get comments for all events. Additionally
if you wanted clients to explicitly subscribe to all comments for all events, you would remove the
argument:

subscribeToEventComments(): Comment

These are for comments on one or more events. If you just wanted to know about all events that get
created, you might do something like this:

type Subscription {
subscribeToNewEvents(): Event
@aws_subscribe(mutations: ["createEvent"])

Multiple arguments can also be passed. For example, if you want to get notified of new events at a
specific place and time:

type Subscription {
subscribePlaceDate(where: String! when: String!): Event
@aws_subscribe(mutations: ["createEvent"])

The client application could now do this:

subscription myplaces {
subscribePlaceDate(where: "Seattle" when: "Saturday"){
id
name
description

140




AWS AppSync AWS AppSync Developer Guide
API_KEY Authorization

Security

This is prerelease documentation for a service in preview release. It is subject to change.

Topics
o API_KEY Authorization (p. 74)
o AWS_IAM Authorization (p. 142)
« AMAZON_COGNITO_USER_POOLS Authorization (p. 143)
 Fine-Grained Access Control (p. 144)
« Filtering Information (p. 146)
 Authorization Use Cases (p. 147)

This section describes options for configuring security and data protection for your applications.

There are three ways you can authorize applications to interact with your AWS AppSync GraphQL API.
You specify which authorization type you use by specifying one of the following authorization type
values in your AWS AppSync API or CLI call:

« API_KEY

For using API keys.
o AWS_IAM

For using AWS Identity and Access Management (IAM) permissions.
« AMAZON_COGNITO_USER_POOLS

For using an Amazon Cognito user pool.

AP|_KEY Authorization

Unauthenticated APIs require more strict throttling than authenticated APIs. One way to control
throttling for unauthenticated GraphQL endpoints is through the use of API keys. An API key is a hard-
coded value in your application that is generated by the AWS AppSync service when you create an
unauthenticated GraphQL endpoint. You can rotate APl keys from the console, from the CLI, or from the
AWS AppSync API Reference.

API keys are configurable for upto 365 days, and you can extend an existing expiration date for upto
another 365 days from that day. API Keys are recommended for development purposes or use cases
where it's safe to expose a public API.

On the client, the API key is specified by the header x-api-key.

For example, if your API_KEY is 'ABC123"', you can send a GraphQL query via curl as follows:

141


https://aws.amazon.com/iam/
http://docs.aws.amazon.com/appsync/latest/APIReference/

AWS AppSync AWS AppSync Developer Guide
AWS_IAM Authorization

$ curl -XPOST -H "Content-Type:application/graphql" -H "x-api-key:ABC123" -d '{ "query":
"query { movies { id } }" }' http://YOURAPPSYNCENDPOINT/graphgl

AWS_IAM Authorization

This authorization type enforces the AWS Signature Version 4 Signing Process on the GraphQL API. You
can associate Identity and Access Management (IAM) access policies with this authorization type. Your
application can leverage this association by using an access key (which consists of an access key ID and
secret access key) or by using short-lived, temporary credentials provided by Amazon Cognito Federated
Identities.

If you want a role that has access to perform all data operations:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"appsync:GraphQL"
]I
"Resource": [
"arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/*"
]
]
}
¥

You can find YourGraphQLApiId from the main API listing page in the AppSync console, directly under
the name of your API. Alternatively you can retrieve it with the CLI: aws appsync list-graphqgl-
apis

If you want to restrict access to just certain GraphQL operations, you can do this for the root Query,
Mutation, and Subscription fields.

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",
"Action": [
"appsync:GraphQL"
1,
"Resource": [
"arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/types/Query/
fields/<Field-1>",
"arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/types/Query/
fields/<Field-2>",
"arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/types/Mutation/
fields/<Field-1>",
"arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/types/
Subscription/fields/<Field-1>",
]
]
}

For example, suppose you have the following schema and you want to restrict access to getting all posts:

142


http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://aws.amazon.com/iam/

AWS AppSync AWS AppSync Developer Guide
AMAZON_COGNITO_USER_POOLS Authorization

schema {
query: Query
mutation: Mutation

}

type Query {
posts:[Post! ]!
}

type Mutation {
addPost(id:ID!, title:String!):Post!
}

The corresponding IAM policy for a role (that you could attach to an Amazon Cognito identity pool, for
example) would look like the following:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"appsync:GraphQL"
]!
"Resource": [
"arn:aws:appsync:us-west-2:123456789012:apis/YourGraphQLApiId/types/Query/
fields/posts"
]
}
]
}
]
}

AMAZON_COGNITO_USER_POOLS Authorization

This authorization type enforces OIDC tokens provided by Amazon Cognito User Pools. Your application
can leverage the users and groups in your user pools and associate these with GraphQL fields for
controlling access.

When using Amazon Cognito User Pools, you can create groups that users belong to. This information is
encoded in a JWT token that your application sends to AWS AppSync in an authorization header when
sending GraphQL operations. You can use GraphQL directives on the schema to control which groups can
invoke which resolvers on a field, thereby giving more controlled access to your customers.

For example, suppose you have the following GraphQL schema:

schema {
query: Query
mutation: Mutation

}

type Query {
posts:[Post! ]!
}

type Mutation {
addPost(id:ID!, title:String!):Post!

143




AWS AppSync AWS AppSync Developer Guide
Fine-Grained Access Control

If you have two groups in Amazon Cognito User Pools - bloggers and readers - and you want to restrict
the readers so that they cannot add new entries, then your schema should look like this:

schema {
query: Query
mutation: Mutation

type Query {
posts:[Post! ]!
@aws_auth(cognito_groups: ["Bloggers", "Readers"])

}

type Mutation {
addPost(id:ID!, title:String!):Post!
@aws_auth(cognito_groups: ["Bloggers"])
}

Note that you can omit the @aws_auth directive if you want to default to a specific grant-or-deny
strategy on access. You can specify the grant-or-deny strategy in the user pool configuration when you
create your GraphQL API via the console or via the following CLI command:

$ aws appsync --region us-west-2 create-graphgl-api --authentication-type
AMAZON_COGNITO_USER_POOLS --name userpoolstest --user-pool-config '{ "userPoolId":"test",
"defaultEffect":"ALLOW", "awsRegion":"us-west-2"}"'

Fine-Grained Access Control

The preceding information demonstrates how to restrict or grant access to certain GraphQL fields. If you
want to set access controls on the data itself based on certain conditions - such as who the user is that is
making a call and whether they own the data - you can do use mapping templates in your resolvers. You
can also perform more complex business logic, which we describe in Filtering Information (p. 146).

This section shows how to set access controls on your data using a DynamoDB resolver mapping
template.

Before proceeding any further, if you're not familiar with mapping templates in AWS AppSync, you may
want to review the Resolver Mapping Template Reference (p. 153) and the Resolver Mapping Template
Reference for DynamoDB (p. 166).

In the following example using DynamoDB, suppose you're using the preceding blog post schema, and
only users that created a post are allowed to edit it. The evaluation process would be for the user to
gain credentials in their application, using Amazon Cognito User Pools for example, and then pass these
credentials as part of a GraphQL operation. The mapping template will then substitute a value from the
credentials (like the username)in a conditional statement which will then be compared to a value in your
database.

144



AWS AppSync AWS AppSync Developer Guide
Fine-Grained Access Control

ix id | author | data

es

|

Get token Send request Conditional check Run operation

User logs into their ap ration is invoked he request mapping template adds f the conditional check matches the

ified field in the c
oker identity. (username authe

conditional check with the use

To add this functionality, add a GraphQL field of editPost as follows:

schema {
query: Query
mutation: Mutation

}

type Query {
posts:[Post!]!

}

type Mutation {
editPost(id:ID!, title:String, content:String):Post
addPost(id:ID!, title:String!):Post!

The resolver mapping template for editPost (shown in an example at the end of this section) needs to
perform a logical check against your data store to allow only the user that created a post to edit it. Since
this is an edit operation, it corresponds to an UpdateItemin DynamoDB. You can perform a conditional
check before performing this action, using context passed through for user identity validation. This is
stored in an Identity object that has the following values:

{
"accountId" : "12321434323",
"cognitoIdentityPoolId" : "",
"cognitoIdentityId" : "",
"sourceIP" : "",
"caller" : "ThisistheprincipalARN",
"username" : "username",
"userArn" : "Sameasabove"

¥

To use this object in a DynamoDBUpdateItem call, you need to store the user identity information in the
table for comparison. First, your addPost mutation needs to store the creator. Second, your editPost
mutation needs to perform the conditional check before updating.

Here is an example of the request mapping template for addPost that stores the user identity as an
Author column:

{

145




AWS AppSync AWS AppSync Developer Guide
Filtering Information

"version" : "2017-02-28",
"operation" : "PutItem",
"key" : {
"postId" : { "S" : "${context.arguments.id}" }
Iy
"attributevalues" : {
"Author" : {"S" : "${context.identity.user}"}
#foreach( $entry in $context.arguments.entrySet() )
#if( $entry.key != "id" )
,"${entry.key}" : { "S" : "${entry.value}" }
#end
#end
Iy
"condition" : {
"expression" : "attribute_not_exists(postId)"
}
}

Note that the Author attribute is populated from the Identity object, which came from the
application.

Finally, here is an example of the request mapping template for editPost, which only updates the
content of the blog post if the request comes from the user that created the post:

{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key" : {
"postId" : { "S" : "${context.arguments.id}" }
T
"attributevalues" : {
"Author" : {"S" : "${context.identity.user}"}
#foreach( $entry in $context.arguments.entrySet() )
,"${entry.key}" : { "S" : "${entry.value}" }
#end
T
"condition" : {
"expression" : "Author = :authorName",
"expressionValues" : {
":authorName" : { "s" : "${context.identity.user}" }
}
}
}

Filtering Information

There may be cases where you cannot control the response from your data source, but you don't want to
send unnecessary information to clients on a successful write or read to the data source. In these cases,
you can filter information by using a response mapping template.

For example, suppose you don't have an appropriate index on your blog post DynamoDB table (such as
an index on Author). You could run a GetItem query with the following mapping template:

{
"version" : "2017-02-28",
"operation" : "GetItem",
"key" : {
"postId" : { "S" : "${context.arguments.id}" }
}

146



AWS AppSync AWS AppSync Developer Guide
Authorization Use Cases

}

This returns all the values responses, even if the caller isn't the author who created the post. To prevent
this from happening, you can perform the access check on the response mapping template in this case as
follows:

{
#if($context.result["Author"] == "$context.identity.user")
$utils.toJson($context.result);
#end
}

If the caller doesn't match this check, only a null response is returned.

This is prerelease documentation for a service in preview release. It is subject to change.

In the Security section you learned about the different Authorization modes for protecting your API
and an introduction was given on Fine Grained Authorization mechanisms to understand the concepts
and flow. Since AWS AppSync allows you to perform logic full operations on data through the use of
GraphQL Resolver Mapping Templates, you can protect data on read or write in a very flexible manner
using a combination of user identity, conditionals, and data injection.

If you're not familiar with editing AppSync Resolvers, please review the programming guide.

Overview

Granting access to data in a system is traditionally done through an Access Control Matrix where the
intersection of a row (resource) and column (user/role) is the permissions granted.

AWS AppSync uses resources in your own account and threads identity (user/role) information into the
GraphQL request and response as a context object which you can use in the resolver. This means that
permissions can be granted appropriately either on write or read operations based on the resolver logic.
If this logic is at the resource level, for example only certain named users or groups can read/write to a
specific database row, then that "authorization metadata" must be stored. AWS AppSync does not store
any data so therefore you must store this authorization metadata with the resources so that permissions
can be calculated. Authorization metadata is usually an attribute (column) in a DynamoDB table, such as
an owner or list of users/groups. For example there could be Readers and Writers attributes.

From a high level, what this means is that if you are reading an individual item from a data source,

you perform a conditional #if () ... #end statement in the response template after the

resolver has read from the data source. The check will normally be using user or group values in
$context.identity for membership checks against the authorization metadata returned from a
read operation. For multiple records, such as lists returned from a table Scan or Query, you'll send the
condition check as part of the operation to the data source using similar user or group values.

Similarly when writing data you'll apply a conditional statement to the action (like a PutItem or
UpdateItem to see if the user or group making a mutation has permission. The conditional again will
many times be using a value in $context.identity to compare against authorization metadata on
that resource. For both request and response templates you can also use custom headers from clients to
perform validation checks.

147




AWS AppSync AWS AppSync Developer Guide
Reading data

Reading data

As outlined above the authorization metadata to perform a check must be stored with a resource or
passed in to the GraphQL request (identity, header, etc.). To demonstrate this suppose you have the
DynamoDB table below:

mm PeopleCanAccess | GroupsCanAccess m

123 {my: data,...} [Mary, Joe] [Admins, Editors] Nadia

The primary key is id and the data to be accessed is Data. The other columns are examples of
checks you can perform for authorization. owner would be a String while PeopleCanAccess and
GroupsCanAccess would be String Sets as outlined in the DynamoDB resolver reference.

In the resolver mapping template overview the diagram shows how the response template contains

not only the context object but also the results from the data source. For GraphQL queries of individual
items, you can use the response template to check if the user is allowed to see these results or return

an authorization error message. This is sometimes referred to as an "Authorization filter". For GraphQL
queries returning lists, using a Scan or Query, it is more performant to perform the check on the request
template and return data only if an authorization condition is satisfied. The implementation is then:

1. Getltem - authorization check for individual records. Done using #i£f() ... #end statements.

2. Scan/Query operations - authorization checkisa "filter":{"expression":...} statement.
Common checks are equality (attribute = :input) or checking if a a valueisin a list
(contains(attribute, :input)).

In #2 the attribute in both statements represents the column name of the record in a table, such as
Owner in our above example. You can alias this with a # sign and use "expressionNames"{...} but it's not
mandatory. The : input is a reference to the value you're comparing to the database attribute, which
you will define in "expressionvalues":{...}. You'll see these examples below.

Use Case: Owner can read

Using the table above, if you only wanted to return data if Owner == Nadia for an individual read
operation (GetItem) your template would look like:

#if($context.result["Owner"] == $context.identity.username)
$utils.toJson($context.result);

#else
$utils.unauthorized()

#end

A couple things to mention here which will be re-used in the remaining sections. First, the check uses
$context.identity.username which will be the friendly user sign-up name if Cognito User Pools
is used and will be the user identity if AWS IAM is used (including Cognito Federated Identities). There
are other values to store for an owner such as the unique "Cognito identity" value, which is useful when
federating logins from multiple locations, and you should review the options available in <resolver-
context-reference>.

Second, the conditional else check responding with $util.unauthorized() is completely optional but
recommended as a best practice when designing your GraphQL API.

148




AWS AppSync AWS AppSync Developer Guide
Reading data

Use Case: Hardcode specific access

//this checks if the user is part of Admin group and makes the call
#foreach($group in $context.identity.claims.get("cognito:groups"))

#if($group == "Admin")
#set($inCognitoGroup = true)
#end
#end
#if($inCognitoGroup)
{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key" : {
"id" : { "s" : "${context.argument.id}" }
T
"attributevalues" : {
"owner" : {"S" : "${context.identity.username}"}
#foreach( $entry in $context.arguments.entrySet() )
,"${entry.key}" : { "S" : "${entry.value}" }
#end
}
}
#else
$utils.unauthorized()
#end

Use Case: Filtering a list of results

In the above example you were able to perform a check against $context.result directly

as it returned a single item, however some operations like a scan will return multiple items in
$context.result.items where you need to perform the authorization filter and only return results
that the user is allowed to see. Suppose the owner field had the Cognito IdentityID this time set on the
record, you could then use the following response mapping template to filter to only show those records
that the user owned:

#set($myResults = [])

#foreach($item in $context.result.items)
##For userpools use $context.identity.username instead
#if($item.Owner == $context.identity.cognitoIdentityId)

#set(sadded = $myResults.add($item))

#end

#end

$utils.toJson($myResults)

Use Case: Multiple people can read

Another popular authorization option is to allow a group of people to be able to read data. In the
example below the "filter":{"expression":...} only returns values from a table scan if the user
running the GraphQL query is listed in the set for PeopleCanAccess.

"version" : "2017-02-28",
"operation" : "Scan",
"limit": #if(${context.arguments.count}) "${context.arguments.count}" #else 20 #end,
"nextToken": #if(${context.arguments.nextToken}) "${context.arguments.nextToken}" #else
null #end,
"filter":{
"expression": "contains(#peopleCanAccess, :value)",
"expressionNames": {

149




AWS AppSync AWS AppSync Developer Guide

Writing data
"#peopleCanAccess": "peopleCanAccess"
Iy
"expressionValues": {
":value": { "S" : "${context.identity.username}" }
}

Use Case: Group can read

Similar to the last use case, it may be that only people in one or more groups have rights to read certain
items in a database. Use of the "expression": "contains()" operation is similar however it's a
logical-OR of all the groups that a user might be a part of which needs to be accounted for in the set
membership. In this case we build up a $expression statement below for each group the user is in and
then pass this to the filter:

#set($expression = "")
#set($expressionvalues = {})
#foreach($group in $context.identity.claims.get("cognito:groups"))
#set( $expression = "${expression} contains(groupsCanAccess, :var$foreach.count )" )
#set( $val = {})
#set( $test = $val.put("S", s$group))
#set( $values = s$expressionvValues.put(":var$foreach.count", s$val))
#if ( $foreach.hasNext )

#set( $expression = "${expression} OR" )
#end
#end
{
"version" : "2017-02-28",
"operation" : "Scan",

"limit": #if(${context.arguments.count}) "${context.arguments.count}" #else 20 #end,
"nextToken": #if(${context.arguments.nextToken}) "${context.arguments.nextToken}" #else
null #end,
"filter":{
"expression": "$expression",
"expressionValues": $utils.toJson($expressionvValues)

Writing data

Writing data on mutations is always controlled on the request mapping template. In the case of
DynamoDB data sources, the key is to use an appropriate "condition":{"expression"...}" which
performs validation against the authorization metadata in that table. In the Security section an example
was given to check the Author field in a table. The use cases in this section explore more use cases.

Use Case: Multiple owners

Using the example table diagram from earlier, suppose the PeopleCanAccess list

{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key" : {
"id" : { "s" : "${context.arguments.id}" }
Iy
"update" : {
"expression" : "SET meta = :meta",

"expressionvValues": {

150




AWS AppSync AWS AppSync Developer Guide

Writing data
":meta" : { "S": "${context.arguments.meta}" }
}
Iy
"condition" : {
"expression" : "contains(Owner, :expectedOwner)",
"expressionValues" : {
":expectedOwner" : { "S" : "${context.identity.username}" }
}
}

Use Case: Group can create new record

#set($expression = "")
#set($expressionvValues = {})
#foreach($group in $context.identity.claims.get("cognito:groups"))
#set( $expression = "${expression} contains(groupsCanAccess, :var$foreach.count )" )
#set( $val = {})
#set( $test = $val.put("s", s$group))
#set( $values = s$expressionValues.put(":var$foreach.count", s$val))
#if ( $foreach.hasNext )

#set( $expression = "${expression} OR" )
#end
#end
{
"version" : "2017-02-28",
"operation" : "PutItem",
"key" : {
## 1f your table's hash key is not named 'id', update it here. **
"id" : { "S" : "$context.arguments.id" }
## 1f your table has a sort key, add it as an item here. **
Iy
"attributevalues" : {
## Add an item for each field you would like to store to Amazon DynamoDB. *%*
"title" : { "S" : "${context.arguments.title}" },
"content": { "S" : "${context.arguments.content}" },
"owner": {"S": "${context.identity.username}" }
Iy
"condition" : {
"expression": "attribute_not_exists(id) OR $expression",
"expressionValues": $utils.toJdson($expressionvalues)
}
}

Use Case: Group can update existing record

#set($expression = "")
#set($expressionvValues = {})
#foreach($group in $context.identity.claims.get("cognito:groups"))
#set( $expression = "${expression} contains(groupsCanAccess, :var$foreach.count )" )
#set( $val = {})
#set( $test = $val.put("s", s$group))
#set( $values = s$expressionValues.put(":var$foreach.count", s$val))
#if ( $foreach.hasNext )

#set( $expression = "${expression} OR" )
#end
#end
{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key" : {
"id" : { "s" : "${context.arguments.id}" }

151




AWS AppSync AWS AppSync Developer Guide
Public and Private records

Iy
"update" :{
"expression" : "SET title = :title, content = :content",
"expressionValues": {
":title" : { "S": "${context.arguments.title}" },
":content" : { "S": "${context.arguments.content}" }
}
Iy
"condition" : {
"expression": "$expression",
"expressionValues": $utils.toJson($expressionvValues)
}

Public and Private records

With the conditional filters you can also choose to mark data as private, public or some other boolean
check. This can then be combined as part of an authorization filter inside the response template. Using
this check is a nice way to temporarily hide data or remove it from view without trying to control group
membership.

For example suppose you added an attribute on each item in your DynamoDB table called public whith
either a value of yes or no. The following response template could be used on a Getltem call to only
display data if the user is in a group that has access AND if that data is marked as public:

#set($permissions = $context.result.GroupsCanAccess)
#set($claimPermissions = $context.identity.claims.get("cognito:groups"))

#foreach($per in $permissions)
#foreach($cgroups in $claimPermissions)
#if($cgroups == $per)
#set(shasPermission = true)
#end
#end
#end

#if($hasPermission && $context.result.public == 'yes')
$utils.toJson($context.result)

#else
$utils.unauthorized()

#end

The above code could also use a logical OR (| |) to allow people to read if they have permission to a
record or if it's public:

#if($hasPermission || $context.result.public == 'yes')
$utils.toJson($context.result)

#else
$utils.unauthorized()

#end

In general you will find the standard operators ==, ! =, &&, and | | helpful when performing authorization
checks.

152




AWS AppSync AWS AppSync Developer Guide
Resolver Mapping Template Overview

Resolver Mapping Template
Reference

This is prerelease documentation for a service in preview release. It is subject to change.

Topics
» Resolver Mapping Template Overview (p. 153)
» Resolver Mapping Template Programming Guide (p. 155)
» Resolver Mapping Template Reference for DynamoDB (p. 166)
» Resolver Mapping Template Reference for Elasticsearch (p. 196)
« Resolver Mapping Template Reference for Lambda (p. 199)
« Resolver Mapping Template Reference for None Data Source (p. 203)
« Resolver Mapping Template Context Reference (p. 205)

Resolver Mapping Template Overview

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync lets you respond to GraphQL operations by enabling you to perform operations on your
AWS resources. For each data source, a GraphQL resolver must run and be able to communicate with that
data source appropriately.

Usually, the communication is through parameters or operations that are unique to the data source.

For an AWS Lambda resolver, you need to specify the payload. For an Amazon DynamoDB resolver, you
need to specify a key. For an Amazon Elasticsearch Service resolver, you need to specify an index and the
query operation.

Mapping templates are a way of indicating to AWS AppSync how to translate an incoming GraphQL
request into instructions for your backend data source, and how to translate the response from that data
source back into a GraphQL response. They are written in Apache Velocity Template Language (VTL),
which takes your request as input and outputs a JSON document containing the instructions for the
resolver. You can use mapping templates for simple instructions, such as passing in arguments from
GraphQL fields, or for more complex instructions, such as looping through arguments to build an item
before inserting the item into DynamoDB.

There are two main types of mapping templates:

« Request templates: Take the incoming request after a GraphQL operation is parsed and convert it into
instructions for the resolver so that the resolver can call your data source.

« Response templates: Interpret responses from your data source and translate into a GraphQL response,
optionally performing some logic or formatting first.

153


http://velocity.apache.org/engine/2.0/vtl-reference.html

AWS AppSync AWS AppSync Developer Guide
Example Template

-

{;

| N
G} , §
(B (B

Example Template

For example, suppose you have a DynamoDB data source and a resolver on a field named
getPost(1id:ID!) that returns a Post type with the following GraphQL query:

getPost(id:1){
id
title
content

Your resolver template might look like the following:

{
"version" : "2017-02-28",
"operation" : "GetItem",
" key " : {
"id" : { "S" : "${context.arguments.id}" }
¥

This would substitute the id input parameter value of 1 for ${context.arguments.id} and generate
the following JSON:

{
"version" : "2017-02-28",
"operation" : "GetItem",
n key " : {
" id" : { IIS" H lll" }
}

AWS AppSync uses this template to generate instructions for communicating with DynamoDB and
getting data (or performing other operations as appropriate). After the data returns, AWS AppSync runs
it through an optional response mapping template, which you can use to perform data shaping or logic.
For example, when we get the results back from DynamoDB, they might look like this:

{
vig" : 1,
"theTitle" : "AWS AppSync works offline!",
"theContent-partl" : "It also has realtime functionality",
"theContent-part2" : "using GraphQL"

}

154




AWS AppSync AWS AppSync Developer Guide
Resolver Mapping Template Programming Guide

You could choose to join two of the fields into a single field with the following response mapping

template:
{

"id" : ${context.data.id},

"title" : "${context.data.theTitle}",

"content" : "${context.data.theContent-partl} ${context.data.theContent-part2}"
}

Here's how the data is shaped after the template is applied to the data:

{

rid" : 1,

"title" : "AWS AppSync works offline!",

"content" : "It also has realtime functionality using GraphQL"
}

This data is given back as the response to a client as follows:

{
"data": {
"getPost": {
"id" : 1,
"title" : "AWS AppSync works offline!",
"content" : "It also has realtime functionality using GraphQL"
¥
}
}

Note that under most circumstances, response mapping templates are a simple passthrough of data:

$utils.toJson($context.result)

Resolver Mapping Template Programming Guide

This is prerelease documentation for a service in preview release. It is subject to change.

This is a cookbook-style tutorial of programming with the Apache Velocity Template Language (VTL) in
AWS AppSync. If you are familiar with other programming languages such as JavaScript, C, or Java, it
should be fairly straightforward.

AWS AppSync uses VTL to translate GraphQL requests from clients into a request to your data source.
Then it reverses the process to translate the data source response back into a GraphQL response. VTL is a
logicful template language that gives you the power to manipulate both the request and the response in
the standard request/response flow of a web application, using techniques such as:

« Default values for new items

« Input validation and formatting

« Transforming and shaping data

« lterating over lists, maps, and arrays to pluck out or alter values

« Filter/change responses based on user identity

155



AWS AppSync AWS AppSync Developer Guide
Setup

o Complex authorization checks

For example, you might want to perform a phone number validation in the service on a GraphQL
argument, or convert an input parameter to upper case before storing it in DynamoDB. Or maybe you
want client systems to provide a code, as part of a GraphQL argument, JWT token claim, or HTTP header,
and only respond with data if the code matches a specific string in a list. All of these things are logical
checks you can perform with VTL in AWS AppSync.

VTL allows you to apply logic using programming techniques that might be familiar. However, it is
bounded to run within the standard request/response flow to ensure that your GraphQL APl is scalable
as your user base grows. Because AWS AppSync also supports AWS Lambda as a resolver, you can always
write Lambda functions in your language of choice (Node.js, Python, Go, Java, etc.) if you need more
flexibility.

Setup

A common technique when learning a language is to print out results (for example,
console.log(variable) in JavaScript) to see what happens. In this tutorial, we demonstrate this
by creating a simple GraphQL schema and passing a map of values to a Lambda function. The Lambda
function prints out the values and then responds with them. This will enable you to understand the
request/response flow and see different programming techniques.

Start by creating the following GraphQL schema:

type Query {
get(id: ID, meta: String): Thing

}

type Thing {
id: ID!
title: String!
meta: String

}
schema {

query: Query
}

Now create the following AWS Lambda function, using Node.js as the language:

exports.handler = (event, context, callback) => {
console.log('VTL details: ', event);
callback(null, event);

}i

In the Data Sources pane of the AWS AppSync console, add this Lambda function as a new data source.
Navigate back to the Schema page of the console and click the ATTACH button on the right, next to the
get(...):Thing query. For the request template, choose the existing template from the Invoke and
forward arguments menu. For the response template, choose Return Lambda result.

Open Amazon CloudWatch Logs for your Lambda function in one location, and from the Queries tab of
the AWS AppSync console, run the following GraphQL query:

query test {
get(id:123 meta:"testing"){
id
meta

156




AWS AppSync AWS AppSync Developer Guide
Variables

The GraphQL response should contain id: 123 and meta: testing, because the Lambda function is
echoing them back. After a few seconds, you should see a record in CloudWatch Logs with these details
as well.

Variables

VTL uses references, which you can use to store or manipulate data. There are three types of references
in VTL: variables, properties, and methods. Variables have a $ sign in front of them and are created with
the #set directive:

#set($var = "a string")

Variables store similar types that you're familiar with from other languages, such as numbers, strings,
arrays, lists, and maps. You might have noticed a JSON payload being sent in the default request
template for Lambda resolvers:

"payload": $util.toJson($context.arguments)

A couple of things to notice here - first, AWS AppSync provides several convenience functions for
common operations. In this example, $util.toJson converts a variable to JSON. Second, the variable
$context.arguments is automatically populated from a GraphQL request as a map object. You can
create a new map as follows:

#set( $myMap = {
"id": $context.arguments.id,
"meta": "stuff",
"upperMeta" : $context.arguments.meta.toUpperCase()

¥

You have now created a variable named $myMap, which has keys of id, meta, and upperMeta. This also
demonstrates a few things:

« idis populated with a key from the GraphQL arguments. This is common in VTL to grab arguments
from clients.

« meta is hardcoded with a value, showcasing default values.
« upperMeta is transforming the meta argument using a method . toUpperCase().

Put the previous code at the top of your request template and change the payload to use the new
$myMap variable:

"payload": $util.toJson($myMap)

Run your Lambda function, and you can see the response change as well as this data in CloudWatch logs.
As you walk through the rest of this tutorial, we will keep populating $myMap so you can run similar
tests.

You can also set properties_ on your variables. These could be simple strings, arrays, or JSSON:

#set($myMap.myProperty = "ABC")
#set($myMap.arrProperty = ["Write", "Some", "GraphQL"])
#set($myMap.jsonProperty = {

157



http://velocity.apache.org/engine/1.7/user-guide.html#references

AWS AppSync AWS AppSync Developer Guide
Calling Methods

"AppSync" : "Offline and Realtime",
"Cognito" : "AuthN and Authz"

»

Quiet References

Because VTL is a templating language, by default, every reference you give it will do a . tostring(). If
the reference is undefined, it prints the actual reference representation, as a string. For example:

#set($myValue = 5)
##Prints '5'
$myValue

##Prints '$somethingelse’
$somethingelse

To address this, VTL has a "quiet reference"? or "silent reference" syntax, which tells the template engine
to supress this behavior. The syntax for thisis $ ! { }. For example, if we changed the previous code
slightly to use $! {somethingelse}, the printing would be supressed:

#set($myValue = 5)
##Prints '5'
$myValue

##Nothing prints out
$!{somethingelse}

Calling Methods

You saw one example earlier of creating a variable and simultaneously setting values. You could also do
this in two steps by adding data to your map:

#set ($myMap = {})
#set ($myList = [])

##Nothing prints out
$!{myMap.put("id", "first value")}
##Prints "first value"
$!{myMap.put("id", "another value")}
##Prints true
$!{myList.add("something")}

HOWEVER there is something to know about this behavior. Although the quiet reference notation $!{}
allows you to call methods, as above, it WILL NOT supress the returned value of the executed method.
This is why we noted ##Prints "first value" and ##Prints true above. This can cause errors
when you're iterating over maps or lists, such as inserting a value where a key already exists, because the
output will add unexpected strings to the template upon evaluation.

The workaround to this is sometimes to call the methods using a #set directive and ignore the variable.
For example:

#set ($myMap = {})
#set($discard = $myMap.put("id", "first value"))

You might use this technique in your templates, as it prevents the unexpected strings from being
printed in the template. AWS AppSync provides an alternative convenience function that offers the same

158




AWS AppSync AWS AppSync Developer Guide
Strings

behavior in a more succinct notation. This enables you to not have to think about these implementation
specifics. You can access this function under $util.quiet() orits alias $util.qr (). For example:

#set ($myMap = {})
#set ($myList = [])

##Nothing prints out
$util.quiet($myMap.put("id", "first value"))
##Nothing prints out
$util.qgr($myList.add("something"))

Strings

As with many programming languages, strings can be difficult to deal with, especially when you want to
build them from variables. There are some common things that come up with VTL.

Suppose you are inserting data as a string to a data source like DynamoDB, but it is populated from

a variable, like a GraphQL argument. A string will have double quotation marks, and to reference the
variable in a string you just need "${}" (so no ! as in quiet reference notation). This is similar to a
template literal in JavaScript: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Template_literals

#set($firstname = "Jeff")
$!{myMap.put("Firstname", "${firstname}")}

You can see this in DynamoDB request templates, like "author": { "s"
"${context.arguments.author}"} when using arguments from GraphQL clients, or for automatic
ID generation like "id™ : { "S" : "$utils.autoId()"}. This means that you can reference a
variable or the result of a method inside a string to populate data.

You can also use public methods of the Java String class, such as pulling out a substring:

#set($bigstring = "This is a long string, I want to pull out everything after the comma")
#set ($comma = $bigstring.indexOf(','))

#set ($comma = $comma +2)

#set ($substring = $bigstring.substring($comma))

$util.qr($myMap.put("substring", "${substring}"))

String concatenation is also a very common task. You can do this with variable references alone or with
static values:

#set($sl
#set($s2

= "Hello")

= " World")
$util.qgr($myMap.put("concat","$s1$s2"))
$util.qgr($myMap.put("concat2","Second $sl1 World"))

Loops

Now that you have created variables and called methods, you can add some logic to your code. Unlike
other languages, VTL allows only loops, where the number of iterations is predetermined. There is no
do. .while in Velocity. This design ensures that the evaluation process always terminates, and provides
bounds for scalability when your GraphQL operations execute.

Loops are created with a #£oreach and require you to supply a loop variable and an iterable object
such as an array, list, map, or collection. A classic programming example with a #foreach loop is to loop

159



http://velocity.apache.org/engine/1.7/user-guide.html#quiet-reference-notation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://docs.oracle.com/javase/6/docs/api/java/lang/String.html

AWS AppSync AWS AppSync Developer Guide
Arrays

over the items in a collection and print them out, so in our case we pluck them out and add them to the
map:

#set($start = 0)
#set($end = 5)
#set($range = [$start..send])

#foreach($i in $range)
##$sutil.qr($myMap.put($i, "abc"))
##$util.qr($myMap.put($i, $i.toString()+"foo")) ##Concat variable with string
$util.gr($myMap.put($i, "${i}foo")) ##Reference a variable in a string with
"${varname}"
#end

This example shows a few things. The first is using variables with the range [ . . ] operator to create an
iterable object. Then each item is referenced by a variable $i that you can operate with. In the previous
example, you also see Comments that are denoted with a double pound ##. This also showcases using
the loop variable in both the keys or the values, as well as different methods of concatenation using
strings.

Notice that $1i is an integer, so you can call a . toString() method. For GraphQL types of INT, this can
be handy.

You can also use a range operator directly, for example:

#foreach($item in [1...5])

#end

Arrays

You have been manipulating a map up to this point, but arrays are also common in VTL. With arrays you
also have access to some underlying methods such as . isEmpty(), .size(), .set(), .get(), and
.add( ), as shown below:

#set($array = [])
#set($idx = 0)

##adding elements
$util.qgr($array.add("element in array"))
$util.qgr($myMap.put("array", $array[$idx]))

##initialize array vals on create
#set($arr2 = [42, "a string", 21, "test"])

$util.qgr($myMap.put("arr2", sarr2[$idx]))
$util.qgr($myMap.put("isEmpty", $array.isEmpty())) ##isEmpty == false
$util.qgr($myMap.put("size", s$array.size()))

##Get and set items in an array
$util.qgr($myMap.put("set", s$array.set(0, 'changing array value')))
$util.qgr($myMap.put("get", s$array.get(0)))

The previous example used array index notation to retrieve an element with
<math>arr2[</math>
idx]. You can look up by name from a Map/dictionary in a similar way:

#set($result = {

160




AWS AppSync AWS AppSync Developer Guide
Conditional Checks

"Author" : "Nadia",
"Topic" : "GraphQL"
D)

$util.qr($myMap.put("Author", $result["Author"]))

This is very common when filtering results coming back from data sources in Response Templates when
using conditionals.

Conditional Checks

The earlier section with #foreach showcased some examples of using logic to transform data with VTL.
You an also apply conditional checks to evaluate data at runtime:

#if(!$array.isEmpty())

$util.qgr($myMap.put("ifCheck", "Array not empty"))
#else

$util.gr($myMap.put("ifCheck", "Your array is empty"))
#end

The above #1if () check of a Boolean expression is nice, but you can also use operators and #elseif()
for branching:

#if ($arr2.size() == 0)
$util.qgr($myMap.put("elseIfCheck", "You forgot to put anything into this array!"))
#elseif ($arr2.size() == 1)

$util.qgr($myMap.put("elseIfCheck", "Good start but please add more stuff"))
#else

$util.qgr($myMap.put("elseIfCheck", "Good job!"))
#end

These two examples showed negation(!) and equality (==). We can also use ||, &&, >, <, >=, <=, and !=.

#set($T
#set ($F

true)
false)

#if ($T || $F)
$util.qgr($myMap.put("OR", "TRUE"))
#end

#if ($T && $F)
$util.qr($myMap.put("AND", "TRUE"))
#end

Note: Only Boolean.FALSE and null are considered false in conditionals. Zero (0) and empty strings
("") are not equivalent to false.

Operators

No programming language would be complete without some operators to perform some mathematical
actions. Here are a few examples to get you started:

#set($x = 5)

#set($y = 7)

#set($z = $x + $y)
#set($x-y = $x - $y)
#set($xy = $x * $y)

161




AWS AppSync AWS AppSync Developer Guide
Operators

#set($xDIVy
#set ($xMODy

= $x / $y)

= $x % $y)
$util.qgr($myMap.put("z", $z))
$util.qr($myMap.put("x-y", $x-y))
$util.qgr($myMap.put("x*y", $xy))
$util.qr($myMap.put("x/y", $xDIVy))
$util.qr($myMap.put("x|y", $xMODy))

Loops and Conditionals Together

It is very common when transforming data in VTL, such as before writing or reading from a data source,
to loop over objects and then perform checks before performing an action. Combining some of the tools
from the previous sections gives you a lot of functionality. One handy tool is knowing that #foreach
automatically provides you with a . count on each item:

#foreach ($item in s$arr2)

#set($idx = "item" + $foreach.count)
$util.qgr($myMap.put($idx, $item))
#end

For example, maybe you want to just pluck out values from a map if it is under a certain size. Using the
count along with conditionals and the #break statement allows you to do this:

#set($hashmap = {

"DynamoDB" : "https://aws.amazon.com/dynamodb/",

"Amplify" : "https://github.com/aws/aws-amplify",
"DynamoDB2" : "https://aws.amazon.com/dynamodb/",
"Amplify2" : "https://github.com/aws/aws-amplify"

)

#foreach ($key in $hashmap.keySet())
#if($foreach.count > 2)
#break
#end
$util.qgr($myMap.put(s$key, s$hashmap.get(skey)))
#end

The previous #foreach is iterated over with .keySet (), which you can use on maps. This gives you
access to get the $key and reference the value with a . get ($key). GraphQL arguments from clients
in AWS AppSync are stored as a map. They can also be iterated through with . entryset (), which you
can then access both keys and values as a Set, and either populate other variables or perform complex
conditional checks, such as validation or transformation of input:

#foreach( $entry in $context.arguments.entrySet() )
#if ($entry.key == "XYZ" && $entry.value == "BAD")
#set($myvar = "...")
#else
#break
#end
#end

Other common examples are autopopulating default information, like the initial object versions
when synchronizing data (very important in conflict resolution) or the default owner of an object for
authorization checks - Mary created this blog post, so:

#set($myMap.owner ="Mary") and default ownership

162




AWS AppSync AWS AppSync Developer Guide
Context

‘#set($myMap.defaultOwners = ["Admins", "Editors"] "

Context

Now that you are more familiar with performing logical checks in AWS AWS AppSync resolvers with VTL,
take a look at the context object:

$util.qgr($myMap.put("context", $context))

This contains all of the information that you can access in your GraphQL request. For a detailed
explanation, see the context reference.

Filtering

So far in this tutorial all information from your Lambda function has been returned to the GraphQL
query with a very simple JSON transformation:

$util.todson($context.result)

The VTL logic is just as powerful when you get responses from a data source, especially when doing
authorization checks on resources. Let's walk through some examples. First try changing your response
template like so:

#set($data = {
llidll H ll456ll'
"meta" : "Valid Response"

»

$util.toJson($data)

No matter what happens with your GraphQL operation, hardcoded values are returned back to the client.
Change this slightly so that the meta field is populated from the Lambda response, set earlier in the
tutorial in the elseIfcheck value when learning about conditionals:

#set($data = {
llidll . ll456|l
D)

#foreach($item in $context.result.entrySet())
#if($item.key == "elseIfCheck")
$util.qr($data.put("meta", "$item.value"))
#end
#end

$util.toJson($data)

$context.result isa map, so you can use entrySet () to perform logic on either the keys or the
values returned. Because $context.identity contains information on the user that performed the
GraphQL operation, if you return authorization information from the data source, then you can decide to
return all, partial, or no data to a user based on your logic. Change your response template to look like
the following:

#if($context.result["id"] == 123)
$utils.toJson($context.result);
#else

$util.unauthorized()

163



AWS AppSync AWS AppSync Developer Guide
Filtering

#end

If you run your GraphQL query, the data will be returned as normal. However, if you change the id
argument to something other than 123 (query test { get(id:456 meta:"badrequest"){} }),
you will get an authorization failure message.

You can find more examples of authorization scenarios in the authorization use cases section.

Appendix - Template Sample

If you followed along with the tutorial, you may have built out this template step by step. However, but
we also include it below to copy/paste for your testing.

Request Template

#set( $myMap = {
"id": $context.arguments.id,
"meta": "stuff",
"upperMeta" : "$context.arguments.meta.toUpperCase()"

¥

##This is how you would do it in two steps with a "quiet reference" and you can use it for
invoking methods, such as .put() to add items to a Map

#set ($myMap2 = {})

$util.qgr($myMap2.put("id", "first value"))

## Properties are created with a dot notation
#set($myMap.myProperty = "ABC")
#set($myMap.arrProperty = ["Write", "Some", "GraphQL"])
#set($myMap.jsonProperty = {

"AppSync" : "Offline and Realtime",

"Cognito" : "AuthN and Authz"

»

##When you are inside a string and just have ${} without ! it means stuff inside curly
braces are a reference

#set($firstname = "Jeff")
$util.qgr($myMap.put("Firstname", "${firstname}"))
#set($bigstring = "This is a long string, I want to pull out everything after the comma")

#set ($comma = s$bigstring.indexOf(','))

#set ($comma = $comma +2)

#set ($substring = $bigstring.substring($comma))
$util.qgr($myMap.put("substring", "${substring}"))

##Classic for-each loop over N items:
#set($start = 0)
#set($end = 5)
#set($range = [$start..send])
#foreach($i in s$range) ##Can also use range operator directly like #foreach($item
in [1...5])
##$util.gr($myMap.put($i, "abc"))
##$util.gr($myMap.put($i, $i.toString()+"foo")) ##Concat variable with string
$util.qr($myMap.put($i, "${i}foo")) ##Reference a variable in a string with
"${varname)"
#end

##0peratorsdoesn't work
#set($x = 5)

#set($y 7)

#set($z = $x + $y)
#set($x-y = $x - $y)
#set($xy = $x * $y)

164




AWS AppSync AWS AppSync Developer Guide
Filtering

#set($xDIVy = $x / $y)

#set($xMODy = $x % $y)
$util.qgr($myMap.put("z", $z))
$util.qr($myMap.put("x-y", $x-y))
$util.qgr($myMap.put("x*y", $xy))
$util.qr($myMap.put("x/y", $xDIVy))
$util.qr($myMap.put("x|y", $xMODy))

##arrays

#set($array = ["first"])

#set($idx = 0)

$util.qgr($myMap.put("array", $array[$idx]))

##initialize array vals on create

#set($arr2 = [42, "a string", 21, "test"])
$util.qgr($myMap.put("arr2", sarr2[$idx]))
$util.qr($myMap.put("isEmpty", $array.isEmpty())) ##Returns false
$util.qgr($myMap.put("size", s$array.size()))

##Get and set items in an array

$util.qgr($myMap.put("set", s$array.set(0, 'changing array value')))
$util.qgr($myMap.put("get", s$array.get(0)))

##Lookup by name from a Map/dictionary in a similar way:
#set($result = {
"Author" : "Nadia",
"Topic" : "GraphQL"
19)
$util.qr($myMap.put("Author", $result["Author"]))

##Conditional examples

#if(!$array.isEmpty())

$util.qr($myMap.put("ifCheck", "Array not empty"))
#else

$util.qgr($myMap.put("ifCheck", "Your array is empty"))
#end

r <=

#if ($arr2.size() == 0)

$util.qgr($myMap.put("elseIfCheck", "You forgot to put anything into this array!"))
#elseif ($arr2.size() == 1)

$util.qgr($myMap.put("elseIfCheck", "Good start but please add more stuff"))

#else

$util.qgr($myMap.put("elseIfCheck", "Good job!"))

#end

##Above showed negation(!) and equality (==), we can also use OR, AND,

#set($T = true)

#set($F = false)

#if ($T || $F)
$util.qr($myMap.put("OR", "TRUE"))

#end

#if ($T && $F)
$util.qr($myMap.put("AND", "TRUE"))
#end

##Using the foreach loop counter - $foreach.count
#foreach ($item in s$arr2)

#set($idx = "item" + $foreach.count)
$util.qr($myMap.put($idx, $item))
#end

##Using a Map and plucking out keys/vals
#set($hashmap = {

"DynamoDB" : "https://aws.amazon.com/dynamodb/",
"Amplify" : "https://github.com/aws/aws-amplify",
"DynamoDB2" : "https://aws.amazon.com/dynamodb/",

’

and

1=

165




AWS AppSync AWS AppSync Developer Guide
Resolver Mapping Template Reference for DynamoDB

"Amplify2" : "https://github.com/aws/aws—-amplify"
19)

#foreach ($key in s$hashmap.keySet())
#if($foreach.count > 2)
#break
#end
$util.qgr($myMap.put(s$key, s$hashmap.get(skey)))
#end

##concatenate strings

#set($sl = "Hello")

#set($s2 = " World")
$util.qgr($myMap.put("concat","$sl$s2"))
$util.qgr($myMap.put("concat2","Second $sl1 World"))

$util.qr($myMap.put("context", $context))

{
"version" : "2017-02-28",
"operation": "Invoke",
"payload": $util.toJdson($myMap)
}

Response Template

#set($data = {
"id" : "456"
D)
#foreach(s$item in $context.result.entrySet()) ##$context.result is a MAP so we use
entrySet()

#if($item.key == "ifCheck")

$util.qgr($data.put("meta", "$item.value"))

#end

#end

##Uncomment this out if you want to test and remove the below #if check
##$util.toJson($data)

#if($context.result["id"] == 123)
$utils.toJson($context.result);
#else
$util.unauthorized()
#end

Resolver Mapping Template Reference for
DynamoDB

This is prerelease documentation for a service in preview release. It is subject to change.

The AWS AppSyncDynamoDB resolver enables you to use GraphQL to store and retrieve data in existing
Amazon DynamoDB tables in your account. This resolver works by enabling you to map an incoming
GraphQL request into a DynamoDB call, and then map the DynamoDB response back to GraphQL. This
section describes the mapping templates for supported DynamoDB operations.

Topics

166


http://graphql.org

AWS AppSync AWS AppSync Developer Guide
Getltem

o Getltem (p. 167)

o Putltem (p. 168)

« Updateltem (p. 170)

« Deleteltem (p. 173)

o Query (p. 175)

e Scan (p. 178)

« Type System (Request Mapping) (p. 180)
« Type System (Response Mapping) (p. 184)
« Filters (p. 187)

« Condition Expressions (p. 188)

Getltem

The GetItem request mapping document lets you tell the AWS AppSyncDynamoDB resolver to make a
GetItem request to DynamoDB, and allows you to specify:

« The key of the item in DynamoDB
« Whether to use a consistent read or not

The GetItem mapping document has the following structure:

{
"version" : "2017-02-28",
"operation" : "GetItem",
"key" : {
"foo" : ... typed value,
"bar" : ... typed value
Iy
"consistentRead" : true
}

The fields are defined as follows:
version

The template definition version. Only 2017-02-28 is supported. This value is required.

operation

The DynamoDB operation to perform. To perform the GetItemDynamoDB operation, this must be
set to GetItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key and
sort key, depending on the table structure. For more information on how to specify a "typed value",
see Type System (Request Mapping) (p. 180). This value is required.

consistentRead
Whether or not to perform a strongly consistent read with DynamoDB. This is optional, and defaults

to false.

The item returned from DynamoDB is automatically converted into GraphQL and JSON primitive types,
and is available in the mapping context ($context.result).

167




AWS AppSync AWS AppSync Developer Guide
Putltem

For more information about DynamoDB type conversion, see Type System (Response Mapping) (p. 184).

For more information about response mapping templates, see Resolver Mapping Template
Overview (p. 153).

Example

Following is a mapping template for a GraphQL query getThing(foo: String!, bar: String!):

{
"version" : "2017-02-28",
"operation" : "GetItem",
"key" : {
"foo" : { "S" : "${context.arguments.foo}" },
"bar" : { "S" : "${context.arguments.bar}" }
}l
"consistentRead" : true
¥

See the DynamoDB APl documentation for more information about the DynamoDBGetItem API.

Putltem

The PutItem request mapping document lets you tell the AWS AppSyncDynamoDB resolver to make a
PutItem request to DynamoDB, and allows you to specify the following:

« The key of the item in DynamoDB
« The full contents of the item (composed of key and attributeValues)

« Conditions for the operation to succeed

The PutItem mapping document has the following structure:

{
"version" : "2017-02-28",
"operation" : "PutItem",
"key": {
"foo" : ... typed value,
"bar" : ... typed value
T
"attributevalues" : {
"baz" : ... typed value
T
"condition" : {
}
}

The fields are defined as follows:
version

The template definition version. Only 2017-02-28 is supported. This value is required.

operation

The DynamoDB operation to perform. To perform the PutItemDynamoDB operation, this must be
set to PutItem. This value is required.

168



http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html

AWS AppSync AWS AppSync Developer Guide
Putltem

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key and
sort key, depending on the table structure. For more information on how to specify a "typed value",
see Type System (Request Mapping) (p. 180). This value is required.

attributevalues

The rest of the attributes of the item to be put into DynamoDB. For more information on how to
specify a "typed value", see Type System (Request Mapping) (p. 180). This field is optional.

condition
A condition to determine if the request should succeed or not, based on the state of the object
already in DynamoDB. If no condition is specified, the PutItem request will overwrite any existing

entry for that item. For more information on conditions, see Condition Expressions (p. 188). This
value is optional.

The item written to DynamoDB is automatically converted into GraphQL and JSON primitive types and is
available in the mapping context ($context.result).
For more information about DynamoDB type conversion, see Type System (Response Mapping) (p. 184).

For more information about response mapping templates, see Resolver Mapping Template
Overview (p. 153).

Example 1

Following is a mapping template for a GraphQL mutation updateThing(foo: String!, bar:
String!, name: String!, version: Int!).

If no item with the specified key exists, it will be created. If an item already exists with the specified key,
it will be overwritten.

{
"version" : "2017-02-28",
"operation" : "PutItem",
"key": {
"foo" : { "S" : "${context.arguments.foo}" },
"bar" : { "S" : "${context.arguments.bar}" }
}!
"attributevValues" : {
"name" ¢ { "S" : "${context.arguments.name}" },
"version" : { "N" : ${context.arguments.version} }
}
}
Example 2

Following is a mapping template for a GraphQL mutation updateThing(foo: String!, bar:
String!, name: String!, expectedVersion: Int!).

This example checks to be sure the item currently in DynamoDB has the version field set to
expectedVersion.

{
"version" : "2017-02-28",
"operation" : "PutItem",
n key " H {

169




AWS AppSync AWS AppSync Developer Guide

Updateltem
"foo" : { "S" : "${context.arguments.foo}" },
"bar" : { "S" : "${context.arguments.bar}" }
Iy
"attributevalues" : {
"name" ¢ { "s" : "${context.arguments.name}" },
#set( $newVersion = $context.arguments.expectedVersion + 1 )
"version" : { "N" : ${newVersion} }
Iy
"condition" : {
"expression" : "version = :expectedVersion",
"expressionValues" : {
":expectedVersion" : { "N" : ${context.arguments.expectedVersion} }
}
}

See the DynamoDB API documentation for more information about the DynamoDBPutItem API.

Updateltem

The UpdateItem request mapping document lets you tell the AWS AppSyncDynamoDB resolver to make
an UpdateItem request to DynamoDB, and allows you to specify the following:

« The key of the item in DynamoDB
« An update expression describing how to update the item in DynamoDB
« Conditions for the operation to succeed

The UpdateItem mapping document has the following structure:

{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key": {
"foo" : ... typed value,
"bar" : ... typed value
I
"update" : {
"expression" : "someExpression"
"expressionNames" : {
"#foo" : "foo"
I
"expressionValues" : {
":bar" : ... typed value
}
I
"condition" : {
}
}

The fields are defined as follows:
version

The template definition version. Only 2017-02-28 is supported. This value is required.

operation

The DynamoDB operation to perform. To perform the UpdateItemDynamoDB operation, this must
be set to UpdateItem. This value is required.

170



http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS AppSync AWS AppSync Developer Guide
Updateltem

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key and
sort key, depending on the table structure. For more information on how to specify a "typed value",
see Type System (Request Mapping) (p. 180). This value is required.

update

The update section lets you specify an update expression that describes how to update the item in
DynamoDB. See the DynamoDB UpdateExpressions documentation for more information on how to
write update expressions. This section is required.

The update section has three components:

expression

The update expression. This value is required.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs. The
key corresponds to a name placeholder used in the expression, and the value must be a string
corresponding to the attribute name of the item in DynamoDB. This field is optional, and should
only be populated with substitutions for expression attribute name placeholders used in the
expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must be a
typed value. For more information on how to specify a "typed value", see Type System (Request
Mapping) (p. 180). This must be specified. This field is optional, and should only be populated
with substitutions for expression attribute value placeholders used in the expression.

condition

A condition to determine if the request should succeed or not, based on the state of the object
already in DynamoDB. If no condition is specified, the UpdateItem request will update any
existing entry regardless of its current state. For more information on conditions, see Condition
Expressions (p. 188). This value is optional.

The item updated in DynamoDB is automatically converted into GraphQL and JSON primitive types and
is available in the mapping context ($context.result).
For more information about DynamoDB type conversion, see Type System (Response Mapping) (p. 184).

For more information about response mapping templates, see Resolver Mapping Template
Overview (p. 153).

Example 1

Following is a mapping template for the GraphQL mutation upvote(id: ID!).

In this example, an item in DynamoDB has its upvotes and version fields incremented by 1.

{
"version" : "2017-02-28",
"operation" : "UpdateItem",
"key" : {
"id" : { "s" : "${context.arguments.id}" }
Iy
"update" : {
"expression" : "ADD #votefield :plusOne, version :plusOne",

171



http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

AWS AppSync AWS AppSync Developer Guide

Updateltem
"expressionNames" : {
"#votefield" : "upvotes"
T
"expressionValues" : {
":plusOne" : { "N" : 1 }
}

Example 2

Following is a mapping template for a GraphQL mutation updateItem(id: ID!, title: String,
author: String, expectedVersion: Int!).

This is a complex example that inspects the arguments and dynamically generates the update expression
that only includes the arguments that have been provided by the client. For example, if title and
author are omitted, they are not updated. If an argument is specified but its value is null, then that
field is deleted from the object in DynamoDB. Finally, the operation has a condition, which checks to be
sure the item currently in DynamoDB has the version field set to expectedversion:

{
"version" : "2017-02-28",
"operation" : "UpdateItem",
llkeyll H {
"id" : { "s" : "${context.arguments.id}" }
Iy

## Set up some space to keep track of things we're updating **
#set( $expNames = {} )

#set( $expValues = {} )
#set( $expSet = {} )
#set( $expAdd = {} )
#set( $expRemove = [] )

## Increment "version" by 1 **
$!{expAdd.put("version", ":newVersion")}
$!{expValues.put(":newVersion", { "N" : 1 })}

## Iterate through each argument, skipping "id" and "expectedVersion" **
#foreach( $entry in $context.arguments.entrySet() )
#if( $entry.key != "id" && $entry.key != "expectedVersion" )
#if( (!$entry.value) && ("$!{entry.value}" == "") )
## If the argument is set to "null", then remove that attribute from the
item in DynamoDB **

#set( $discard = ${expRemove.add("#${entry.key}")} )
$! {expNames.put("#${entry.key}", "s$entry.key")}
#else
## Otherwise set (or update) the attribute on the item in DynamoDB **

$!{expSet.put("#${entry.key}", ":${entry.key}")}
$! {expNames.put("#${entry.key}", "s$entry.key")}

#i1f( $entry.key == "ups" || $entry.key == "downs" )
$!{expValues.put(":${entry.key}", { "N" : s$entry.value })}

#else
$!{expValues.put(":${entry.key}", { "S" : "${entry.value}" })}

#end

#end
#end
#end

172




AWS AppSync AWS AppSync Developer Guide
Deleteltem

## Start building the update expression, starting with attributes we're going to SET *%*
#set( $expression = "" )
#if( !${expSet.isEmpty()} )
#set( $expression = "SET" )
#foreach( $entry in $expSet.entrySet() )
#set( $expression = "${expression} ${entry.key} = ${entry.value}" )
#if ( $foreach.hasNext )
#set( $expression = "${expression}," )
#end
#end
#end

## Continue building the update expression, adding attributes we're going to ADD *¥*
#if( !${expAdd.isEmpty()} )

#set( $expression = "${expression} ADD" )

#foreach( $entry in $expAdd.entrySet() )
#set( $expression = "${expression} ${entry.key} ${entry.value}" )
#if ( $foreach.hasNext )

#set( $expression = "${expression}," )

#end

#end

#end

## Continue building the update expression, adding attributes we're going to REMOVE **
#if( !${expRemove.isEmpty()} )
#set( $expression = "${expression} REMOVE" )

#foreach( $entry in $expRemove )

#set( $expression = "${expression} ${entry}" )
#if ( $foreach.hasNext )
#set( $expression = "${expression}," )
#end
#end

#end

## Finally, write the update expression into the document, along with any
expressionNames and expressionValues **

"update" : {
"expression" : "${expression}"
#if( !${expNames.isEmpty()} )
,"expressionNames" : $utils.toJdson($expNames)
#end
#if( !${expValues.isEmpty()} )
,"expressionValues" : $utils.toJson($expValues)
#end
Iy
"condition" : {
"expression" : "version = :expectedVersion",
"expressionValues" : {
":expectedVersion" : { "N" : ${context.arguments.expectedVersion} }
}
}

See the DynamoDB API documentation for more information about the DynamoDBUpdateItem API.

Deleteltem

The DeleteItem request mapping document lets you tell the AWS AppSyncDynamoDB resolver to make
a DeleteItem request to DynamoDB, and allows you to specify the following:

o The key of the item in DynamoDB

173



http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html

AWS AppSync AWS AppSync Developer Guide
Deleteltem

« Conditions for the operation to succeed

The DeleteItem mapping document has the following structure:

{
"version" : "2017-02-28",
"operation" : "DeleteItem",
"key": {
"foo" : ... typed value,
"bar" : ... typed value
}l
"condition" : {
}
¥

The fields are defined as follows:
version

The template definition version. Only 2017-02-28 is supported. This value is required.
operation

The DynamoDB operation to perform. To perform the DeleteItemDynamoDB operation, this must
be set to DeleteItem. This value is required.

key

The key of the item in DynamoDB. DynamoDB items may have a single hash key, or a hash key and
sort key, depending on the table structure. For more information on how to specify a "typed value",
see Type System (Request Mapping) (p. 180). This value is required.

condition

A condition to determine if the request should succeed or not, based on the state of the
object already in DynamoDB. If no condition is specified, the DeleteItem request will delete
an item regardless of its current state. For more information on conditions, see Condition
Expressions (p. 188). This value is optional.

The item deleted from DynamoDB is automatically converted into GraphQL and JSON primitive types
and is available in the mapping context ($context.result).
For more information about DynamoDB type conversion, see Type System (Response Mapping) (p. 184).

For more information about response mapping templates, see Resolver Mapping Template
Overview (p. 153).

Example 1

Following is a mapping template for a GraphQL mutation deleteItem(id: ID!). If an item exists with
this ID, it will be deleted.

{
"version" : "2017-02-28",
"operation" : "DeleteItem",
"key" : {
"id" : { "S" : "${context.arguments.id}" }
}
}

174




AWS AppSync AWS AppSync Developer Guide
Query

Example 2

Following is a mapping template for a GraphQL mutation deleteItem(id: ID!,
expectedVersion: Int!).If anitem exists with this ID, it will be deleted, but only if its version field
set to expectedvVersion:

{
"version" : "2017-02-28",
"operation" : "DeleteItem",
"key" : {
"id" : { "sS" : "${context.arguments.id}" }
Iy
"condition" : {
"expression" : "attribute_not_exists(id) OR version = :expectedVersion",
"expressionValues" : {
":expectedVersion" : { "N" : ${context.arguments.expectedVersion} }
}
}
}

See the DynamoDB API documentation for more information about the DynamoDBDeleteItem API.

Query

The Query request mapping document lets you tell the AWS AppSyncDynamoDB resolver to make a
Query request to DynamoDB, and allows you to specify the following:

» Key expression

« Which index to use

« Any additional filter

« How many items to return

« Whether to use consistent reads

« query direction (forward or backward)
« Pagination token

The Query mapping document has the following structure:

"version" : "2017-02-28",
"operation" : "Query",
"query" {
"expression" : "some expression",
"expressionNames" : {
"#foo" : "foo"
Iy
"expressionValues" : {
":bar" : ... typed value
}
}

"index" : "fooIndex",

"nextToken" : "a pagination token",
"limit" : 10,

"scanIndexForward" : true,
"consistentRead" : false,

"select" : "ALL_ATTRIBUTES",
"filter" : {

}

175



http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html

AWS AppSync AWS AppSync Developer Guide
Query

}

The fields are defined as follows:
version

The template definition version. Only 2017-02-28 is supported. This value is required.
operation

The DynamoDB operation to perform. To perform the gueryDynamoDB operation, this must be set
to Query. This value is required.

query
The query section lets you specify a key condition expression that describes which items to retrieve

from DynamoDB. See the DynamoDB KeyConditions documentation for more information on how to
write key condition expressions. This section must be specified.

expression

The query expression. This field must be specified.
expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs. The
key corresponds to a name placeholder used in the expression, and the value must be a string
corresponding to the attribute name of the item in DynamoDB. This field is optional, and should
only be populated with substitutions for expression attribute name placeholders used in the
expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.
The key corresponds to a value placeholder used in the expression, and the value must be a
typed value. For more information on how to specify a "typed value", see Type System (Request
Mapping) (p. 180). This value is required. This field is optional, and should only be populated
with substitutions for expression attribute value placeholders used in the expression.

filter

An additional filter that can be used to filter the results from DynamoDB before they are returned.
For more information on filters, see Filters (p. 187). This field is optional.

index

The name of the index to query. The DynamoDB query operation allows you to scan on Local
Secondary Indexes and Global Secondary Indexes in addition to the primary key index for a hash key.
If specified, this will tell DynamoDB to query the specified index. If omitted, the primary key index
will be queried.

nextToken

The pagination token to continue a previous query. This would have been obtained from a previous
query. This field is optional.

limit
The maximum number of results to fetch at a single time. This field is optional.
scanIndexForward
A boolean indicating whether to query forwards or backwards. This field is optional, and defaults to
true.
consistentRead

A boolean indicating whether to use consistent reads when querying DynamoDB. This field is
optional, and defaults to false.

176


http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.KeyConditions.html

AWS AppSync AWS AppSync Developer Guide
Query

select

By default, the AWS AppSyncDynamoDB resolver will only return whatever attributes are projected
into the index. If more attributes are required, then this field can be set. This field is optional. The
supported values are:

ALL_ATTRIBUTES

Returns all of the item attributes from the specified table or index. If you query a local
secondary index, then for each matching item in the index DynamoDB will fetch the entire item
from the parent table. If the index is configured to project all item attributes, all of the data can
be obtained from the local secondary index, and no fetching is required.

PROJECTED_ATTRIBUTES
Allowed only when querying an index. Retrieves all attributes that have been projected into

the index. If the index is configured to project all attributes, this return value is equivalent to
specifying ALL,_ATTRIBUTES.

The results from DynamoDB are automatically converted into GraphQL and JSON primitive types and are
available in the mapping context ($context.result).

For more information about DynamoDB type conversion, see Type System (Response Mapping) (p. 184).

For more information about response mapping templates, see Resolver Mapping Template
Overview (p. 153).

The results have the following structure:

{
items = [ ... ],
nextToken = "a pagination token",
scannedCount = 10

¥

The fields are defined as follows:
items

A list containing the items returned by the DynamoDB query.

nextToken
If there might be more results, nextToken will contain a pagination token that can be used in
another request. Note that AWS AppSync will encrypt and obfuscate the pagination token returned

from DynamoDB. This is so data from your tables are not inadvertently leaked to the caller. Also
note that these pagination tokens cannot be used across different resolvers.

scannedCount

The number of items that matched the query condition expression, before a filter expression (if
present) was applied.

Example

Following is a mapping template for a GraphQL query getPosts(owner: ID!).

In this example, a global secondary index on a table is queried to return all posts owned by the specified
ID.

177



AWS AppSync AWS AppSync Developer Guide

Scan
{
"version" : "2017-02-28",
"operation" : "Query",
"query" {
"expression" : "ownerId = :ownerId",
"expressionValues" : {
":ownerId" : { "S" : "${context.arguments.owner}" }
}
}
"index" : "owner-index"
}

See the DynamoDB API documentation for more information about the DynamoDB Query API.

Scan

The Scan request mapping document lets you tell the AWS AppSyncDynamoDB resolver to make a Scan
request to DynamoDB, and allows you to specify the following:

« A filter to exclude results

« Which index to use

« How many items to return

o Whether to use consistent reads

« Pagination token

« Parallel scans

The Scan mapping document has the following structure:

{
"version" : "2017-02-28",
"operation" : "Scan",
"index" : "fooIndex",
"limit" : 10,
"consistentRead" : false,
"nextToken" : "aPaginationToken",
"totalSegments" : 10,
"segment" : 1,
"filter" : {
}

}

The fields are defined as follows:
version

The template definition version. Only 2017-02-28 is supported. This value is required.
operation
The DynamoDB operation to perform. To perform the ScanDynamoDB operation, this must be set
to Scan. This value is required.
filter

An filter that can be used to filter the results from DynamoDB before they are returned. For more
information on filters, see Filters (p. 187). This field is optional.

178



http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

AWS AppSync AWS AppSync Developer Guide
Scan

index

The name of the index to query. The DynamoDB query operation allows you to scan on Local
Secondary Indexes and Global Secondary Indexes in addition to the primary key index for a hash key.
If specified, this tells DynamoDB to query the specified index. If omitted, then the primary key index
will be queried.

limit
The maximum number of results to fetch at a single time. This field is optional.

consistentRead

A boolean indicating whether to use consistent reads when querying DynamoDB. This field is
optional, and defaults to false.

nextToken

The pagination token to continue a previous query. This would have been obtained from a previous
query. This field is optional.

select

By default, the AWS AppSyncDynamoDB resolver will only return whatever attributes are projected
into the index. If more attributes are required, then this field can be set. This field is optional. The
supported values are:

ALL_ATTRIBUTES

Returns all of the item attributes from the specified table or index. If you query a local
secondary index, then for each matching item in the index DynamoDB will fetch the entire item
from the parent table. If the index is configured to project all item attributes, then all of the
data can be obtained from the local secondary index, and no fetching is required.

PROJECTED_ATTRIBUTES
Allowed only when querying an index. Retrieves all attributes that have been projected into

the index. If the index is configured to project all attributes, this return value is equivalent to
specifying ALL,_ATTRIBUTES.

totalSegments

The number of segments to partition the table by when performing a parallel scan. This field is
optional, but must be specified if segment is specified.

segment
The table segment in this operation when performing a parallel scan. This field is optional, but must

be specified if totalSegments is specified.

The results returned by the DynamoDB scan are automatically converted into GraphQL and JSON
primitive types and is available in the mapping context ($context.result).

For more information about DynamoDB type conversion, see Type System (Response Mapping) (p. 184).

For more information about response mapping templates, see Resolver Mapping Template
Overview (p. 153).

The results have the following structure:

items = [ ... 1],
nextToken = "a pagination token",
scannedCount = 10

179



AWS AppSync AWS AppSync Developer Guide
Type System (Request Mapping)

}

The fields are defined as follows:
items

A list containing the items returned by the DynamoDB scan.

nextToken

If there might be more results, nextToken will contain a pagination token that can be used in
another request. Note that AWS AppSync will encrypt and obfuscate the pagination token returned
from DynamoDB. This is so data from your tables are not inadvertently leaked to the caller. Also
note that these pagination tokens cannot be used across different resolvers.

scannedCount
The number of items that were retrieved by DynamoDB before a filter expression (if present) was
applied.

Example 1

Following is a mapping template for the GraphQL query: allPosts.

In this example, all entries in the table are returned.

{
"version" : "2017-02-28",
"operation" : "Scan"

}

Example 2

Following is a mapping template for the GraphQL query: postsMatching(title: String!).

In this example, all entries in the table are returned where the title starts with the title argument.

{
"version" : "2017-02-28",
"operation" : "Scan",
"filter" : {
"expression" : "begins_with(title, :title)",
"expressionValues" : {
":title" : { "S" : "${context.arguments.title}" }
}!
}
}

See the DynamoDB API documentation for more information about the DynamoDB Scan API.

Type System (Request Mapping)

When using the AWS AppSyncDynamoDB resolver to call your DynamoDB tables, AWS AppSync needs to
know the type of each value to use in that call. This is because DynamoDB supports more type primitives
than GraphQL or JSON (such as sets and binary data). AWS AppSync needs some hints when translating
between GraphQL and DynamoDB, otherwise it would have to make some assumptions on how data is
structured in your table.

180



http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html

AWS AppSync AWS AppSync Developer Guide
Type System (Request Mapping)

For more information about DynamoDB data types, see the DynamoDBData Type Descriptors and Data
Types documentation.

A DynamoDB value is represented by a JSON object containing a single key-value pair. The key specifies
the DynamoDB type, and the value specifies the value itself. In the following example, the key s denotes
that the value is a string, and the value identifier is the string value itself.

{ "s" : "identifier" }

Note that the JSON object cannot have more than one key-value pair. If more than one key-value pair is
specified, the request mapping document will not be parsed.

A DynamoDB value is used anywhere in a request mapping document where you need to specify a
value. Some places where you will need to do this include: key and attributeValue sections, and the
expressionValues section of expression sections. In the following example, the DynamoDB String
value identifier is being assigned to the id field in a key section (perhaps in a GetItem request
mapping document).

n key n : {
"id" : { "S" : "identifier" }

}

Supported Types
AWS AppSync supports the following DynamoDB scalar, document and set types:
String type s

A single string value. A DynamoDB String value is denoted by:

{ "s" : "some string" }

An example usage is:

" key " : {
"id" : { "s" : "some string" }

}

String set type ss

A set of string values. A DynamoDB String Set value is denoted by:

{ "ss" : [ "first value", "second value", ... ] }

An example usage is:

"attributevValues" : {
"phoneNumbers" : { "SS" : [ "+1 555 123 4567", "+1 555 234 5678" ] }
¥
Number type N

A single numeric value. A DynamoDB Number value is denoted by:

{ "N" : 1234 }

181


http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes

AWS AppSync AWS AppSync Developer Guide
Type System (Request Mapping)

An example usage is:

"expressionValues" : {
":expectedvVersion" : { "N" : 1 }

}

Number set type NS

A set of number values. A DynamoDB Number Set value is denoted by:

{ "NS" : [ 1, 2.3, 4 ... 1}

An example usage is:

"attributevalues" : {
"sensorReadings" : { "NS" : [ 67.8, 12.2, 70 ] }

}

Binary type B

A binary value. A DynamoDB Binary value is denoted by:

{ "B" : "SGVsbG8sIFdvcmxkIQo=" }

Note that the value is actually a string, where the string is the Base64 encoded representation of
the binary data. AWS AppSync will decode this string back into its binary value before sending it to
DynamoDB. AWS AppSync uses the Base64 decoding scheme as defined by RFC 2045: any character
that is not in the Base64 alphabet is ignored.

An example usage is:

"attributevalues" : {
"binaryMessage" : { "B" : "SGVsbG8sIFdvcmxkIQo=" }

}

Binary set type BS

A set of binary values. A DynamoDB Binary Set value is denoted by:

{ "BS" : [ "SGVsbG8sIFdvcemxkIQo=", "SG93IGFyZSB5b3U/Cg==" ... ] }

Note that the value is actually a string, where the string is the Base64 encoded representation of
the binary data. AWS AppSync will decode this string back into its binary value before sending it to
DynamoDB. AWS AppSync uses the Base64 decoding scheme as defined by RFC 2045: any character
that is not in the Base64 alphabet is ignored.

An example usage is:

"attributeValues" : {
"binaryMessages" : { "BS" : [ "SGVsbG8sIFdvcmxkIQo=", "SG93IGFyZSB5b3U/Cg==" ] }

}

Boolean type BOOL

A boolean value. A DynamoDB Boolean value is denoted by:

182



AWS AppSync AWS AppSync Developer Guide
Type System (Request Mapping)

{ "BOOL" : true }

Note that only true and false are valid values.

An example usage is:

"attributevalues" : {
"orderComplete" : { "BOOL" : false }
}

List type L

A list of any other supported DynamoDB value. A DynamoDB List value is denoted by:

{2 [ ... 1%}

Note that the value is a compound value, where the list can contain zero or more of any supported
DynamoDB value (including other lists). The list can also contain a mix of different types.

An example usage is:

s [
{ "s" : "A string value" },
{ "N 1),
{ "ss" : [ "Another string value", "Even more string values!" ] }
]
}
Map type M

Representing an unordered collection of key-value pairs of other supported DynamoDB values. A
DynamoDB Map value is denoted by:

{ ™" : { ... }}

Note that a map can contain zero or more key-value pairs. The key must be a string, and the value
can be any supported DynamoDB value (including other maps). The map can also contain a mix of
different types.

An example usage is:

£ os g
"someString" : { "S" : "A string value" },
"someNumber" : { "N" : 1 },
"stringSet" : { "SS" : [ "Another string value", "Even more string values!" ] }
}
}
Null type NULL

A null value. A DynamoDB Null value is denoted by:

{ "NULL" : null }

An example usage is:

183



AWS AppSync AWS AppSync Developer Guide
Type System (Response Mapping)

"attributevalues" : {
"phoneNumbers" : { "NULL" : null }
}

See the DynamoDB documentation for more information on each type.

Type System (Response Mapping)

When receiving a response from DynamoDB, AWS AppSync automatically converts it into GraphQL and
JSON primitive types. Each attribute in DynamoDB is decoded and returned in the response mapping
context.

For example, if DynamoDB returns the following:

{
vlid" : { "sll : "1234" },
"name" : { "S" : "Nadia" },
vlage" H { IIN" : 25 }

}

Then the AWS AppSyncDynamoDB resolver converts it into GraphQL and JSON types as:

{
"id" : "1234",
"name" : "Nadia",
"age" : 25

}

This section explains how AWS AppSync will convert the following DynamoDB scalar, document and set
types:

String type s
A single string value. A DynamoDB String value will be returned simply as a string.

For example, if DynamoDB returned the following DynamoDB String value:

{ "s" : "some string" }

AWS AppSync will convert it to a string:

"some string"

String set type ss
A set of string values. A DynamoDB String Set value will be returned as a list of strings.

For example, if DynamoDB returned the following DynamoDB String Set value:

{ "ss" : [ "first value", "second value", ... ] }

AWS AppSync will convert it to a list of strings:

[ "+1 555 123 4567", "+1 555 234 5678" ]

184


http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS AppSync AWS AppSync Developer Guide
Type System (Response Mapping)

Number type N
A single numeric value. A DynamoDB Number value will be returned as a number.

For example, if DynamoDB returned the following DynamoDB Number value:

{ "N" : 1234 }

AWS AppSync will convert it to a number:

1234

Number set type NS
A set of number values. A DynamoDB Number Set value will be returned as a list of numbers.

For example, if DynamoDB returned the following DynamoDB Number Set value:

{ "NS" : [ 67.8, 12.2, 70 ] }

AWS AppSync will convert it to a list of numbers:

[ 67.8, 12.2, 70 ]

Binary type B

A binary value. A DynamoDB Binary value will be returned as a string containing the Base64
representation of that value.

For example, if DynamoDB returned the following DynamoDB Binary value:

{ "B" : "SGVsbG8sIFdvcmxkIQo=" }

AWS AppSync will convert it to a string containing the Base64 representation of the value:

"SGVsbG8sIFdvemxkIQo="

Note that the binary data is encoded in the Base64 encoding scheme as specified in RFC 4648 and
RFC 2045.

Binary set type BS

A set of binary values. A DynamoDB Binary Set value will be returned as a list of strings containing
the Base64 representation of the values.

For example, if DynamoDB returned the following DynamoDB Binary Set value:

{ "BS" : [ "SGVsbG8sIFdvcmxkIQo=", "SG93IGFyzSB5b3U/Cg==" ... ] }

AWS AppSync will convert it to a list of strings containing the Base64 representation of the values:

[ "SGVsbG8sIFdvemxkIQo=", "SG93IGFyZSB5b3U/Cg==" ... ]

Note that the binary data is encoded in the Base64 encoding scheme as specified in RFC 4648 and
RFC 2045.

185


https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc2045

AWS AppSync AWS AppSync Developer Guide
Type System (Response Mapping)

Boolean type BOOL
A boolean value. A DynamoDB Boolean value will be returned as a boolean.

For example, if DynamoDB returned the following DynamoDB Boolean value:

{ "BOOL" : true }

AWS AppSync will convert it to a boolean:

true

List type L

A list of any other supported DynamoDB value. A DynamoDB List value will be returned as a list of
values, where each inner value is also converted.

For example, if DynamoDB returned the following DynamoDB List value:

(Lo [
{ "s" : "A string value" },
0 O
{ "ss" : [ "Another string value", "Even more string values!" ] }
]
}

AWS AppSync will convert it to a list of converted values:

[ "A string value", 1, [ "Another string value", "Even more string values!" ] ]

Map type M

A key/value collection of any other supported DynamoDB value. A DynamoDB Map value will be
returned as a JSON object, where each key/value is also converted.

For example, if DynamoDB returned the following DynamoDB Map value:

o
"someString" : { "S" : "A string value" },
"someNumber" : { "N" : 1 },
"stringSet" : { "SS" : [ "Another string value", "Even more string values!" ] }
}
}

AWS AppSync will convert it to a JSON object:

{

"someString" : "A string value",

"someNumber" : 1,

"stringSet" : [ "Another string value", "Even more string values!" ]
}

Null type NULL

A null value.

186



AWS AppSync AWS AppSync Developer Guide
Filters

For example, if DynamoDB returned the following DynamoDB Null value:

{ "NULL" : null }

AWS AppSync will convert it to a null:

null

Filters

When querying objects in DynamoDB using the Query and Scan operations, you can optionally specify a
filter that evaluates the results and returns only the desired values.

The filter mapping section of a Query or Scan mapping document has the following structure:

"filter" : {
"expression" : "filter expression"
"expressionNames" : {
"#name" : "name",
Iy
"expressionValues" : {
":value" : ... typed value
Iy
}

The fields are defined as follows:
expression

The query expression. See the DynamoDB QueryFilter and DynamoDB ScanFilter documentation for
more information on how to write filter expressions. This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs. The
key corresponds to a name placeholder used in the expression, and the value must be a string
corresponding to the attribute name of the item in DynamoDB. This field is optional, and should
only be populated with substitutions for expression attribute name placeholders used in the
expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs.

The key corresponds to a value placeholder used in the expression, and the value must be a
typed value. For more information on how to specify a "typed value", see Type System (Request
Mapping) (p. 180). This must be specified. This field is optional, and should only be populated with
substitutions for expression attribute value placeholders used in the expression.

Example

Following is a filter section for a mapping template, where entries retrieved from DynamoDB are only
returned if the title starts with the title argument.

"filter" : {
"expression" : "begins_with(#title, :title)",

187



http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.QueryFilter.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.ScanFilter.html

AWS AppSync AWS AppSync Developer Guide
Condition Expressions

"expressionNames" : {
"#title" : "title"
}
"expressionValues" : {
":title" : { "S" : "${context.arguments.title}" }

}

Condition Expressions

When you mutate objects in DynamoDB by using the PutItem, UpdateItem, and
DeleteItemDynamoDB operations, you can optionally specify a condition expression that controls
whether the request should succeed or not, based on the state of the object already in DynamoDB before
the operation is performed.

The AWS AppSyncDynamoDB resolver allows a condition expression to be specified in PutItem,
UpdateItem, and DeleteItem request mapping documents, and also a strategy to follow if the
condition fails and the object was not updated.

Example 1

The following PutItem mapping document does not have a condition expression, so it will put an item
in DynamoDB even if an item with the same key already exists, overwriting the existing item.

{
"version" : "2017-02-28",
"operation" : "PutItem",
n key n B {
n idll B { llsll . ll1ll }
}
}

Example 2

The following PutItem mapping document does have a condition expression that will only let the
operation succeed if an item with the same key does not exist in DynamoDB.

{
"version" : "2017-02-28",
"operation" : "PutItem",
"key" : {
"id" : { "sS"™ : "1i" }
}!
"condition" : {
"expression" : "attribute_not_exists(id)"
}
}

By default, if the condition check fails, then the AWS AppSyncDynamoDB resolver will return an error for
the mutation and the current value of the object in DynamoDB in a data field in the error section of
the GraphQL response. However, the AWS AppSyncDynamoDB resolver offers some additional features
to help developers handle some common edge cases:

« If AWS AppSyncDynamoDB resolver can determine that the current value in DynamoDB matches the
desired result, then it will treat the operation as if it succeeded anyway.

« Instead of returning an error, you can configure the resolver to invoke a custom Lambda function to
decide how the AWS AppSyncDynamoDB resolver should handle the failure.

188




AWS AppSync AWS AppSync Developer Guide
Condition Expressions

These will be described in greater detail in the Handling a Condition Check Failure (p. 190) section.

See the DynamoDB ConditionExpressions documentation for more information about DynamoDB
conditions expressions.

Specifying a Condition
The PutItem, UpdateItem, and DeleteItem request mapping documents all allow an optional
condition section to be specified. If omitted, no condition check is made. If specified, the condition

must be true for the operation to succeed.

A condition section has the following structure:

"condition" : {
"expression" : "someExpression"
"expressionNames" : {
"#foo" : "foo"
}l
"expressionValues" : {
":bar" : ... typed value
}l
"equalsIgnore" : [ "version" ],
"consistentRead" : true,
"conditionalCheckFailedHandler" : {
"strategy" : "Custom",
"lambdaArn" : "arn:..."
}
}

The following fields specify the condition:
expression

The update expression itself. See the DynamoDB ConditionExpressions documentation for more
information about how to write condition expressions. This field must be specified.

expressionNames

The substitutions for expression attribute name placeholders, in the form of key-value pairs. The
key corresponds to a name placeholder used in the expression, and the value must be a string
corresponding to the attribute name of the item in DynamoDB. This field is optional, and should
only be populated with substitutions for expression attribute name placeholders used in the
expression.

expressionValues

The substitutions for expression attribute value placeholders, in the form of key-value pairs. The key
corresponds to a value placeholder used in the expression, and the value must be a typed value. For
more information on how to specify a "typed value", see Type System (request mapping). This must
be specified. This field is optional, and should only be populated with substitutions for expression
attribute value placeholders used in the expression.

The remaining fields tell the AWS AppSyncDynamoDB resolver how to handle a condition check failure:

equalsIgnore

When a condition check fails when using the PutItem operation, the AWS AppSyncDynamoDB
resolver will compare the item currently in DynamoDB against the item it tried to write. If they are
the same, then it will treat the operation as it if succeeded anyway. You can use the equalsIgnore
field to specify a list of attributes that AWS AppSync should ignore when performing that

189


http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ConditionExpressions.html

AWS AppSync AWS AppSync Developer Guide
Condition Expressions

comparison. For example, if the only difference was a version attribute, then treat the operation as
it if succeeded. This field is optional.

consistentRead

When a condition check fails, AWS AppSync will get the current value of the item from DynamoDB
using a strongly consistent read. You can use this field to tell the AWS AppSyncDynamoDB resolver
to use an eventually consistent read instead. This field is optional, and defaults to true.

conditionalCheckFailedHandler

This section allows you to specify how the AWS AppSyncDynamoDB resolver will treat a condition
check failure after it has compared the current value in DynamoDB against the expected result. This
section is optional. If omitted, it defaults to a strategy of Reject.

strategy

The strategy the AWS AppSyncDynamoDB resolver will take after it has compared the current
value in DynamoDB against the expected result. This field is required, and has two possible
values:

Reject

The mutation will fail, and an error for the mutation and the current value of the object in
DynamoDB in a data field in the error section of the GraphQL response.

Custom

The AWS AppSyncDynamoDB resolver will invoke a custom Lambda function to decide
how to handle the condition check failure. When the strategy is set to Custom, the
lambdaArn field must contain the ARN of the Lambda function to invoke.

lambdaArn

The ARN of the Lambda function to invoke to decide how the AWS AppSyncDynamoDB resolver
should handle the condition check failure. This field must only be specified when strategy is
set to Custom. See Handling a Condition Check Failure (p. 190) for more information about
how to use this feature.

Handling a Condition Check Failure

By default, when a condition check fails, the AWS AppSyncDynamoDB resolver will return an error for the
mutation and the current value of the object in DynamoDB in a data field in the error section of the
GraphQL response. However, the AWS AppSyncDynamoDB resolver offers some additional features to
help developers handle some common edge cases:

« If AWS AppSyncDynamoDB resolver can determine that the current value in DynamoDB matches the
desired result, then it will treat the operation as if it succeeded anyway.

« Instead of returning an error, you can configure the resolver to invoke a custom Lambda function to
decide how the AWS AppSyncDynamoDB resolver should handle the failure.

The flowchart for this process is:

Checking for the Desired Result

When the condition check fails, the AWS AppSyncDynamoDB resolver will perform a GetItemDynamoDB
request to get the current value of the item from DynamoDB. By default, it will use a strongly consistent
read, however this can be configured using the consistentRead field in the condition block and
compare it against the expected result:

190



AWS AppSync AWS AppSync Developer Guide
Condition Expressions

« For the PutItem operation, the AWS AppSyncDynamoDB resolver will compare the current value
against the one it attempted to write, excluding any attributes listed in equalsIgnore from the
comparison. If the items are the same, then it will treat the operation as successful and return the item
that was retrieved from DynamoDB. Otherwise, it will then follow the configured strategy.

For example, if the PutItem request mapping document looked like this:

"version" : "2017-02-28",

"operation" : "PutItem",

"key" : {
"id" ¢ { "s" : "1" }

}I

"attributevalues" : {
"name" : { "S" : "Steve" },
"version" : { "N" : 2 }

}I

"condition" : {
"expression" : "version = :expectedVersion",
"expressionValues" : {

":expectedvVersion" : { "N" : 1 }

}l

"equalsIgnore": [ "version" ]

And the item currently in DynamoDB looked like this:

llidll H { llsll . lllll }’
"name" : { "S" : "Steve" },
"version" : { "N" : 8 }

Then the AWS AppSyncDynamoDB resolver would compare the item it tried to write against the
current value, see that the only difference was the version field, but because it's configured to ignore
the version field, it treats the operation as successful and returns the item that was retrieved from
DynamoDB.

« For the DeleteItem operation, the AWS AppSyncDynamoDB resolver will see if an item was returned
from DynamoDB. If no item was returned, it will treat the operation as successful. Otherwise, it will
follow the configured strategy.

« For the UpdateItem operation, the AWS AppSyncDynamoDB resolver does not have enough
information to determine if the item currently in DynamoDB matches the expected result, and
therefore follows the configured strategy.

If the current state of the object in DynamoDB is different from the expected result, then the AWS
AppSyncDynamoDB resolver will follow the configured strategy, to either reject the mutation or invoke a
Lambda function to decide what to do next.

Following the "Reject" Strategy

When following the Reject strategy, the AWS AppSyncDynamoDB resolver will return an error for the
mutation, and the current value of the object in DynamoDB will also be returned in a data field in the
error section of the GraphQL response. The item returned from DynamoDB will be put through the
response mapping template to translate it into a format the client expects, and will also be filtered by
the selection set.

For example, given the following mutation request:

191



AWS AppSync AWS AppSync Developer Guide
Condition Expressions

mutation {
updatePerson(id: 1, name: "Steve", expectedVersion: 1) {
Name
theVersion

If the item returned from DynamoDB looks like:

{
vig" : { "s" : "i" },
"name" : { "S" : "Steve" },
"version" : { "N" : 8 }

}

and the response mapping template looks like:

{
"id" : "${context.result.id}",
"Name" : "${context.result.name}",
"theVersion" : ${context.result.version}
¥

then the GraphQL response will look like:

{
"data": null,
"errors": [
{
"message": "The conditional request failed (Service: AmazonDynamoDBv2;
Status Code: 400; Error Code: ConditionalCheckFailedException; Request ID:
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ )"

"errorType": "DynamoDB:ConditionalCheckFailedException",
"data": {
"Name": "Steve",

"theVersion": 8

b

Also note that if any fields in the returned object would have been filled by other resolvers if the
mutation had succeeded, they will not be resolved when the object is returned in the error section.

Following the "Custom" Strategy

When following the Custom strategy, the AWS AppSyncDynamoDB resolver will invoke a Lambda
function to decide what to do next. The Lambda function has three options to choose from:

o reject the mutation. This will tell the AWS AppSyncDynamoDB resolver to behave as if the
configured strategy was Reject, returning an error for the mutation and the current value of the
object in DynamoDB as described in the section above.

o discard the mutation. This will tell the AWS AppSyncDynamoDB resolver to silently ignore the
condition check failure, and just return the value in DynamoDB.

« retry the mutation. This will tell the AWS AppSyncDynamoDB resolver to retry the mutation with a
new request mapping document.

192




AWS AppSync AWS AppSync Developer Guide
Condition Expressions

The Lambda invocation request

The AWS AppSyncDynamoDB resolver will invoke the Lambda function specified in the lambdaArn. It
will use the same service-role-arn configured on the data source. The payload of the invocation has
the following structure:

{
"arguments": { ... },
"requestMapping": {... },
"currentValue": { ... },
"resolver": { ... },
"identity": { ... }

¥

The fields are defined as follows:
arguments

The arguments from the GraphQL mutation. This is the same as the arguments available to the
request mapping document in $context.arguments.

requestMapping

The request mapping document for this operation.

currentValue

The current value of the object in DynamoDB.

resolver

Information about the AWS AppSync resolver.
identity

Information about the caller. This is the same as the identity information available to the request
mapping document in $context.identity

A full example of the payload:

{
"arguments": {
"idv: "1iv,
"name": "Steve",
"expectedVersion": 1
Iy
"requestMapping": {
"version" : "2017-02-28",
"operation" : "PutItem",
"key" : {
"id" ¢ { "s" : "1 }
Iy
"attributevalues" : {
"name" : { "S" : "Steve" },
"version" : { "N" : 2 }
Iy
"condition" : {
"expression" : "version = :expectedVersion",
"expressionvValues" : {
":expectedVersion" : { "N" : 1 }
T
"equalsIgnore": [ "version" ]
}
Iy

193




AWS AppSync AWS AppSync Developer Guide
Condition Expressions

"currentValue": {

mid" o+ { "s" : "1i" },
"name" : { "S" : "Steve" },
"version" : { "N" : 8 }

Iy

"resolver": {
"tableName": "People",
"awsRegion": "us-west-2",
"parentType": "Mutation",
"field": "updatePerson",
"outputType": "Person"

Iy

"identity": {
"accountId": "123456789012",
"sourceIp": "x.X.x.X",
"user": "AIDAAAAAAAAAAAAAAAAAA",
"userArn": "arn:aws:iam::123456789012:user/appsync"

}

The Lambda Invocation Response

The Lambda function can inspect the invocation payload and apply any business logic to decide how the
AWS AppSyncDynamoDB resolver should handle the failure. There are three options for handling the
condition check failure:

« reject the mutation. The response payload for this option must have this structure:

"action": "reject"

This will tell the AWS AppSyncDynamoDB resolver to behave as if the configured strategy was Reject,
returning an error for the mutation and the current value of the object in DynamoDB, as described in
the section above.

« discard the mutation. The response payload for this option must have this structure:

"action": "discard"

This will tell the AWS AppSyncDynamoDB resolver to silently ignore the condition check failure, and
just return the value in DynamoDB.

« retry the mutation. The response payload for this option must have this structure:

"action": "retry",
"retryMapping": { ... }

This will tell the AWS AppSyncDynamoDB resolver to retry the mutation with a new request mapping
document. The structure of the retryMapping section depends on the DynamoDB operation, and is a
subset of the full request mapping document for that operation.

For PutItem, the retryMapping section has the following structure. See Putitem (p. 168) for a
description of the attributevalues field.

{

194



AWS AppSync AWS AppSync Developer Guide
Condition Expressions

"attributevalues": { ... },
"condition": {
"equalsIgnore" = [ ... ],
"consistentRead" = true
}

For UpdateItem, the retryMapping section has the following structure. See Updateltem (p. 170)
for a description of the update section.

{
"update" : {
"expression" : "someExpression"
"expressionNames" : {
"#foo" : "foo"
}I
"expressionValues" : {
":bar" : ... typed value
}
}l
"condition": {
"consistentRead" = true
}
}

For DeleteItem, the retryMapping section has the following structure.

"condition": {
"consistentRead" = true

}

Note that there is no way to specify a different operation or key to work on: the AWS
AppSyncDynamoDB resolver will only allow retries of the same operation on the same object. Also
note the condition section doesn't allow a conditionalCheckFailedHandler to be specified. If
the retry fails, then the AWS AppSyncDynamoDB resolver will follow the Reject strategy.

Here is an example Lambda function to deal with a failed PutItem request. The business logic looks
at who made the call: if it was made by jeffTheAdmin then it will retry the request, updating the
version and expectedVersion from the item currently in DynamoDB; otherwise it will reject the
mutation.

exports.handler = (event, context, callback) => {
console.log("Event: "+ JSON.stringify(event));

// Business logic goes here.

var response;

if ( event.identity.user == "jeffTheAdmin" ) {
response = {
"action" : "retry",
"retryMapping" : {
"attributevValues" : event.requestMapping.attributeValues,
"condition" : {
"expression" : event.requestMapping.condition.expression,
"expressionValues" : event.requestMapping.condition.expressionValues
}
}
}

195




AWS AppSync AWS AppSync Developer Guide
Resolver Mapping Template Reference for Elasticsearch

response.retryMapping.attributevalues.version = { "N" :
event.currentValue.version.N + 1 }

response.retryMapping.condition.expressionValues[':expectedVersion'] =
event.currentValue.version

} else {
response = { "action" : "reject" }

}

console.log("Response: "+ JSON.stringify(response))
callback(null, response)

}i

Resolver Mapping Template Reference for
Elasticsearch

This is prerelease documentation for a service in preview release. It is subject to change.

The AWS AppSync resolver for Amazon Elasticsearch Service enables you to use GraphQL to store and
retrieve data in existing Amazon ES domains in your account. This resolver works by allowing you to map
an incoming GraphQL request into an Amazon ES request, and then map the Amazon ES response back
to GraphQL. This section describes the mapping templates for the supported Amazon ES operations.

Request Mapping Template

Most Amazon ES request mapping templates have a common structure where just a few pieces change.
The following example runs a search against an Amazon ES domain, where documents are of type
post and are indexed under id. The search parameters are defined in the body section, with many of
the common query clauses being defined in the query field. This example will search for documents
containing "Nadia", or "Bailey", or both, in the author field of a document:

"version":"2017-02-28",
"operation":"GET",
"path":"/id/post/_search",
"params" :{
"headers":{},
"queryString":{},
"body": {
"from":0,
"size":50,
"query" : {
"bool" : {
"should" : [
{"match" : { "author" : "Nadia" }},
{"match" : { "author" : "Bailey" }}

For more information on query options, see the Elasticsearch Query DSL Reference.

196


https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

AWS AppSync AWS AppSync Developer Guide
Response Mapping Template

Response Mapping Template

As with other data sources, Amazon ES sends a response to AWS AppSync that needs to be converted
to GraphQL. The shape of an Amazon ES response can be seen in the Elasticsearch Request Body Search
DSL Reference.

Most GraphQL queries are looking for the _source field from an Amazon ES response. Because you
can do searches to return either an individual document or a list of documents, there are two common
response mapping templates used in Amazon ES:

List of Results

#foreach($entry in $context.result.hits.hits)
#if( $velocityCount > 1 ) , #end
$utils.toJson($entry.get("_source"))

#end

Individual Item

$utils.toJson($context.result.get("_source"))

operation field

(REQUEST Mapping Template only)

HTTP method or verb (GET, POST, PUT, HEAD or DELETE) that AWS AppSync sends to the Amazon ES
domain. Both the key and the value must be a string.

"operation" : "PUT"

path field

(REQUEST Mapping Template only)

The search path for an Amazon ES request from AWS AppSync. This forms a URL for the operation's
HTTP verb. Both the key and the value must be strings.

"path" : "/indexname/type"

"path" : "/indexname/type/_search"

When the mapping template is evaluated, this path is sent as part of the HTTP request, including the
Amazon ES domain. For example, the previous example might translate to:

GET https://elasticsearch-domain-name.REGION.es.amazonaws.com/indexname/type/_search

params field

(REQUEST Mapping Template only)

Used to specify what action your search performs, most commonly by setting the query value inside of
the body. However, there are several other capabilities that can be configured, such as the formatting of
responses.

197



https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-body.html

AWS AppSync AWS AppSync Developer Guide
Passing Variables

« headers

The header information, as key-value pairs. Both the key and the value must be strings. For example:

"headers" : {
"Content-Type" : "JSON"
}

Note: AWS AppSync currently supports only JSON as a Content-Type.
« queryString
Key-value pairs that specify common options, such as code formatting for JSON responses. Both the

key and the value must be a string. For example, if you want to get pretty-formatted JSON, you would
use:

"queryString" : {
"pretty" : "true"
}

« body
This is the main part of your request, allowing AWS AppSync to craft a well-formed search request to
your Amazon ES domain. The key must be a string comprised of an object. A couple of demonstrations
are shown below.

Example 1

Return all documents with a city matching "seattle":

"body":{
"from":0,
"size":50,
"query" : {
"match" : {
"city" : "seattle"

}

Example 2

Return all documents matching "washington" as the city or the state:

"body": {
"from":0,
"size":50,
"query" : {
"multi_match" : {
"query" : "washington",
"fields" : ["city", "state"]
}
}
¥

Passing Variables

(REQUEST Mapping Template only)

198




AWS AppSync AWS AppSync Developer Guide
Resolver Mapping Template Reference for Lambda

You can also pass variables as part of evaluation in the VTL statement. For example, suppose you had a
GraphQL query such as the following:

query {
searchForState(state: "washington"){

}

The mapping template could take the state as an argument:

"body": {
"from":0,
"size":50,
"query" : {
"multi_match" : {
"query" : "$context.arguments.state",
"fields" : ["city", "state"]
}
}
}

For a list of utilities you can include in the VTL, see Access Request Headers (p. 207).

Resolver Mapping Template Reference for Lambda

This is prerelease documentation for a service in preview release. It is subject to change.

The AWS AppSync Lambda resolver mapping templates enable you to shape requests from AWS
AppSync to AWS Lambda functions located in your account, and responses from your Lambda functions
back to AWS AppSync. Mapping templates also enable you to give hints to AWS AppSync about the
nature of the operation to be invoked. This section describes the different mapping templates for the
supported AWS Lambda operations.

Request Mapping Template

The Lambda request mapping template is fairly simple and allows as much context information as
possible to pass to your Lambda function.

{
"version": string,
"operation": Invoke|BatchInvoke,
"payload": any type

}

Here is the JSON schema representation of the Lambda request mapping template, once resolved.

"definitions": {},
"$schema": "http://json-schema.org/draft-06/schema#",
"$id": "http://aws.amazon.com/appsync/request-mapping-template.json",
"type": "object",
"properties": {
"version": {

199




AWS AppSync AWS AppSync Developer Guide

version
"$id": "/properties/version",
"type": "string",
"enum": [
"2017-02-28"
1,
"title": "The Mapping template version.",
"default": "2017-02-28"
Iy
"operation": {
"$id": "/properties/operation",
"type": "string",
"enum": [
"Invoke",
"BatchInvoke"
1,
"title": "The Mapping template operation.",
"description": "What operation to execute.",
"default": "Invoke"
Iy

"payload": {}
Iy
"required": [
"version",
"operation"
1,

"additionalProperties": false

Here is an example where we chose to pass the £ield value, and the GraphQL field arguments from the
context.

{
"version": "2017-02-28",
"operation": "Invoke",
"payload": {
"field": "getPost",
"arguments": $utils.toJson($context.arguments)
}
}

The entire mapping document will be passed as input to your Lambda function, so that the previous
example would now look like the following:

{
"version": "2017-02-28",
"operation": "Invoke",
"payload": {
"field": "getPost",
"arguments": {
"id": "postIdl"
}
}
}
version

Common to all request mapping templates, version defines the version that the template uses.
version is required.

"version": "2017-02-28"

200




AWS AppSync AWS AppSync Developer Guide
operation

operation

The Lambda data source allows you to define two operations, Invoke and BatchInvoke. The
Invoke lets AWS AppSync know to call your Lambda function for every GraphQL field resolver, while
BatchInvoke instructs AWS AppSync to batch requests for the current GraphQL field.

For Invoke, the resolved request mapping template exactly matches the input payload of the Lambda
function. So the following sample template:

{
"version": "2017-02-28",
"operation": "Invoke",
"payload": {
"arguments": $utils.toJson($context.arguments)
}
}

is resolved and passed to the Lambda function, as follows:

{
"version": "2017-02-28",
"operation": "Invoke",
"payload": {
"arguments": {
"id": "postIdl"
}
¥
}

For Batchinvoke, the mapping template is applied for every field resolver in the batch. For conciseness,
AWS AppSync merges all of the resolved mapping template payload values into a list under a single
object matching the mapping template.

The following example template shows the merge:

{
"version": "2017-02-28",
"operation": "BatchInvoke",
"payload": $utils.toJson($context)
¥

This template is resolved into the following mapping document:

{
"version": "2017-02-28",
"operation": "BatchInvoke",
"payload": [
{...}, // context for batch item 1
{...}, // context for batch item 2
{...} // context for batch item 3
1
}

where each element of the payload list corresponds to a single batch item. The Lambda function is
also expected to return a list-shaped response, matching the order of the items sent in the request, as
follows:

[

201




AWS AppSync AWS AppSync Developer Guide

payload
{ "data": {...}, "errorMessage": null, "errorType": null }, // result for batch item 1
{ "data": {...}, "errorMessage": null, "errorType": null }, // result for batch item 2
{ "data": {...}, "errorMessage": null, "errorType": null } // result for batch item 3

operation is required.

payload
The payload field is a container that you can use to pass any well-formed JSON to the Lambda function.

If the operation field is set to BatchInvoke, AWS AppSync will wrap the existing payload values into
a list.

payload is optional.

Response Mapping Template

As with other data sources, your Lambda function sends a response to AWS AppSync that needs to be
converted to a GraphQL type.

The result of the Lambda function will be set on the context object that is available via the VTL
$context.result property.

If the shape of your Lambda function response exactly matches the shape of the GraphQL type, you can
forward the response using the following response mapping template:

$utils.toJson($context.result)

There are no required fields or shape restrictions that apply to the response mapping template. However,
because GraphQL is strongly typed, the resolved mapping template must match the expected GraphQL
type.

Lambda Function Batched Response

If the operation field is set to BatchInvoke, the Lambda function response must follow this structure:

[{
"data": string,
"errorMessage": string,
"errorType": string

]

If data is null and there is no error for the current item, the entire object can be replaced with null, for
no data.

Also, if errorMessage is provided, errorType must also be provided, and vice versa.

Here is an example response that encompasses all of the cases we mentioned previously:

{ "data": "Author ABC data", "errorMessage": null, "errorType": null },

{ "data": "Author DEF data", "errorMessage": "Incomplete result", "errorType":
"INCOMPLETE" },

{ "data": null, "errorMessage": "Failed to retrieve author", "errorType": "FAILED" },

{ "data": null, "errorMessage": null, "errorType": null }, // no data
null // no data

202




AWS AppSync AWS AppSync Developer Guide
Resolver Mapping Template
Reference for None Data Source

]

Here is the JSON schema representation of the Lambda function response:

"definitions":
"$schema":
"$id":

{}
"http://json-schema.org/draft-06/schema#",
"http://aws.amazon.com/appsync/lambda-response. json",
"type": "array",
"items": {
"type": "object",
"properties": {
"data": {},
"errorMessage":
"type":
"title":

{
"string",

"Error message to be propagated to the response."
Iy
"errorType":

"type":
"title":

{
"string",
"Error type to be propagated to the response."
}
I
"dependencies": {
"errorMessage": {
"required": [
"errorType"
]
I
"errorType": {
"required": [
"errorMessage"

]

Resolver Mapping Template Reference for None
Data Source

This is prerelease documentation for a service in preview release. It is subject to change.

The AWS AppSync resolver mapping template used with the Data Source of type None, enables you to
shape requests for AWS AppSync local operations.

Request a Mapping Template

The mapping template is simple and enables you to pass as much context information as possible via the

payload field.
{
"version": string,
"payload": any type
}

203




AWS AppSync AWS AppSync Developer Guide
version

Here is the JSON schema representation of the request mapping template, once resolved:

{
"definitions": {},
"$schema": "http://json-schema.org/draft-06/schema#",
"$id": "http://aws.amazon.com/appsync/request-mapping-template.json",
"type": "object",
"properties": {
"version": {
"$id": "/properties/version",
"type": "string",
"enum": [
"2017-02-28"
]I
"title": "The Mapping template version.",
"default": "2017-02-28"
}I
"payload": {}
}l
"required": [
"version"
]l
"additionalProperties": false
}

Here is an example where we chose to pass the field arguments via the VTL context property
$context.arguments:

"version":
"payload":

"2017-02-28",
$utils.todson($context.arguments)

The value of the payload field will be forwarded to the response mapping template and available on
the VTL context property ($context.result).

This is an example representing the interpolated value of the payload field:

{

"id": "postIdi"
}
version

Common to all request mapping templates, version defines the version used by the template.
version is required.

Example:

"version": "2017-02-28"

payload

The payload field is a container that can be used to pass any well-formed JSON to the response
mapping template.

payload is optional.

204




AWS AppSync AWS AppSync Developer Guide
Response Mapping Template

Response Mapping Template

Because there is no data source, the value of the payload field will be forwarded to the response
mapping template and set on the context object that is available via the VTL $context.result
property.

If the shape of the payload field value exactly matches the shape of the GraphQL type, you can forward
the response using the following response mapping template:

$utils.toJdson($context.result)

There are no required fields or shape restrictions that apply to the response mapping template. However,
because GraphQL is strongly typed, the resolved mapping template must match the expected GraphQL

type.

Resolver Mapping Template Context Reference

AWS AppSync defines a set of variables and functions for working with resolver mapping templates to
make logicfull operations on data easier with GraphQL. This document describes those functions and
provides examples for working with templates.

Accessing the $context

The $context variable holds all of the contextual information for your resolver invocation. It has the
following structure:

{
"arguments" : { ... },
"source" : { ... },
"result" : { ... },
"identity" : { ... }

}

Each field is defined as follows:
arguments

A map containing all GraphQL arguments for this field.
identity

An object containing information about the caller. See Identity (p. 206) for more information on
the structure of this field.

source

A map containing the resolution of the parent field.
result

A map containing the results of this resolver. This map is only available to response mapping
templates.

For example, if you are resolving the author field of the following query:

query {
getPost(id: 1234) {

205



AWS AppSync AWS AppSync Developer Guide
Accessing the $context

postId
title
content
author {
id
name

Then the full $context variable that is available when processing a response mapping template might
be:

{
"arguments" : {},
"source" : {
"createdAt" : "2017-02-28T18:12:37Z",
"title" : "A new post",
"content" : "A long time ago, in a thread far far away",
"postId" : "1234",
"authorId" : "34521"
Iy
"result" : {
"name" : "Steve",
"joinDate" : "2017-02-28T18:12:37Z",
"id" : "34521"
Iy
"identity" : {
"sourceIp" : "X.xX.X.x",
"userArn" : "arn:aws:iam::123456789012:user/appsync",
"accountId" : "123456789012",
"user" : "AIDAAAAAAAAAAAAAAAAAA"
}
}
Identity

The identity section contains information about the caller. The shape of this section depends on the
authorization type of your AWS AppSync API.

See Authorization Use Cases (p. 141) for more information about this section and how it can be used.
API_KEY authorization

The identity field is not populated.
AWS_IAM authorization

The identity has the following shape:

{
"accountId" = "string",
"cognitoIdentityPoolId" = "string",
"cognitoIdentityId" = "string",
"sourceIp" = "string",
"username" = "string", // IAM user principal
"userArn" = "string"

}

AMAZON_COGNITO_USER_POOLS authorization

The identity has the following shape:

206



AWS AppSync AWS AppSync Developer Guide
Accessing the $context

{

"sub" : "uuid",

"issuer" : "string",

"username" : "string"

"claims" : { ... },

"sourceIp" : "X.X.X.xX",

"defaultAuthStrategy" : "string"
}

Each field is defined as follows:
accountId

The AWS account ID of the caller.

claims

The claims the user has.
cognitoIdentityId

The Amazon Cognito identity ID of the caller.
cognitoIdentityPoolId

The Amazon Cognito identity pool ID associated with the caller.
defaultAuthStrategy

The default auth strategy for this caller (ALLOW or DENY).

issuer

The token issuer.

sourcelP

The source IP address of the caller.

sub

The UUID of the authenticated user.

user

The IAM user.

userArn

The IAM user ARN.

username

The username of the authenticated user. In case of AMAZON_COGNITO_USER_POOLS authorization,
the value of username is the value of attribute cognito:username. In case of AWS_IAM authorization,
the value of the username is the value of the AWS User Principal. We recommend that you use
cognitoIdentityId if you are using AWS IAM authorization with credentials vended from Amazon

Cognito Federeated Identities.

Access Request Headers

AWS AppSync supports passing custom headers from clients and accessing them in your GraphQL
resolvers using $context.request.headers. You can then use the header values for actions like
inserting data to a data source or even authorization checks. Single or multiple request headers can use
used as shown in the following examples using $curl with an API key from the command line:

207



AWS AppSync AWS AppSync Developer Guide
Utility Helpers in $util

Single Header Example

Suppose you set a header of custom with a value of nadia like so:

curl -XPOST -H "Content-Type:application/graphgl"” -H "custom:nadia" -H "x-api-key:<API-KEY-
VALUE>" -d '{"query":"mutation { createEvent(name: \"demo\", when: \"Next Friday!\", where:
\"Here!\") {id name when where description}}"}' https://<ENDPOINT>/graphqgl

This could then be accessed with $context.request.headers.custom. For example, it might be in
the following VTL for DynamoDB:

"custom": { "S": "$context.request.headers.custom" }

Multiple Header Example

You can also pass multiple headers in a single request and access these in the resolver mapping
template. For example, if the custom header was set with two values:

curl -XPOST -H "Content-Type:application/graphgl” -H "custom:bailey" -H "custom:nadia"
-H "x-api-key:<API-KEY-VALUE>" -d '{"query":"mutation { createEvent(name: \"demo\",
when: \"Next Friday!\", where: \"Here!\") {id name when where description}}"}' https://
<ENDPOINT>/graphgl

You could then access these as an array, such as $context.request.headers.random[1]".

Utility Helpers in $util

The $util variable contains general utility methods that make it easier to work with data.
Unless otherwise specified, all utilities use the UTF-8 character set.
$util.escapeJdJavaScript(String) : String

Returns the input string as a JavasScript escaped string.
$util.urlEncode(String) : String

Returns the input string as an application/x-www-form-urlencoded encoded string.
$util.urlDecode(String) : String

Decodes an application/x-www-form-urlencoded encoded string back to its non-encoded
form.

$util.base64Encode( byte[] ) : String

Encodes the input into a base64-encoded string.
$util.base64Decode(String) : byte[]

Decodes the data from a base64-encoded string.
$util.parsedJson(String) : Object

Takes "stringified" JSON and returns an object representation of the result.
$util.toJson(Object) : String

Takes an object and returns a "stringified" JSON representation of that object.
$util.autoId() : String

Returns a 128-bit randomly generated UUID.

208




AWS AppSync AWS AppSync Developer Guide
Utility Helpers in $util

$util.unauthorized()

Throws Unauthorized for the field being resolved. This can be used in request or response
mapping templates to decide if the caller should be allowed to resolve the field.

$util.error(String)

Throws a custom error. This can be used in request or response mapping templates if the template
detects an error with the request.

$util.error(String, String)

Throws a custom error. This can be used in request or response mapping templates if the template
detects an error with the request. Additionally, an errorType can be specified.

$util.error(String, String, Object)

Throws a custom error. This can be used in request or response mapping templates if the template
detects an error with the request. Additionally, an errorType and a data field can be specified. The
data value will be added to the corresponding error block inside errors in the GraphQL response.
Note: data will be filtered based on the query selection set.

$util.validate(boolean, String) : void

If the condition is false, throw a CustomTemplateException with the specified message.
$util.validate(boolean, String, String) : void

If the condition is false, throw a CustomTemplateException with the specified message and error
type.
$util.validate(boolean, String, String, Object) : void

If the condition is false, throw a CustomTemplateException with the specified message and error

type, as well as data to return in the response.
$util.isNull(Object) : boolean

Returns true if the supplied object is null.
$util.isNullOrEmpty(String) : boolean

Returns true if the supplied data is null or an empty string. Otherwise, returns false.
$util.isNullOorBlank(String) : boolean

Returns true if the supplied data is null or a blank string. Otherwise, returns false.
$util.defaultIfNull(Object, Object) : Object

Returns the first Object if it is not null. Otherwise, returns second object as a "default Object".
$util.defaultIfNullOrEmpty(String, String) : String
Returns the first String if it is not null or empty. Otherwise, returns second String as a "default
String".
$util.defaultIfNullOorBlank(String, String) : String

Returns the first String if it is not null or blank. Otherwise, returns second String as a "default
String".

$util.isString(Object) : boolean

Returns true if Object is a String.
$util.isNumber(Object) : boolean

Returns true if Object is a Number.

209



AWS AppSync AWS AppSync Developer Guide
Time Helpers in $util.time

$util.isBoolean(Object) : boolean

Returns true if Object is a Boolean.
$util.isList(Object) : boolean

Returns true if Object is a List.
$util.isMap(Object) : boolean

Returns true if Object is a Map.
$util.typeOf(Object) : String

Returns a String describing the type of the Object. Supported type identifications are: "Null",
"Number", "String", "Map", "List", "Boolean". If a type cannot be identified, the return type is "Object".

$util.matches(String, String) : Boolean

Returns true if the specified pattern in the first argument matches the supplied data in the second
argument. The pattern must be a regular expression such as $util.matches("a*b", "aaaaab").
The functionality is based on Pattern, which you can reference for further documentation.

Time Helpers in $util.time

The $util.time variable contains datetime methods to help generate timestamps, convert
between datetime formats, and parse datetime strings. The syntax for datetime formats is based
on DateTimeFormatter which you can reference for further documentation. Below we provide some
examples, as well as a list of available methods and descriptions.

Standalone Function Examples

$util.time.nowIS08601()
2018-02-06T19:01:35.749Z

$util.time.nowEpochSeconds() : 1517943695

$util.time.nowEpochMilliSeconds() : 1517943695750

$util.time.nowFormatted("yyyy-MM-dd HH:mm:ssZzZ") : 2018-02-06
19:01:35+0000

$util.time.nowFormatted("yyyy-MM-dd HH:mm:ssZ", "+08:00") : 2018-02-07
03:01:35+0800

$util.time.nowFormatted("yyyy-MM-dd HH:mm:ssz", "Australia/Perth") : 2018-02-07

03:01:35+0800

Conversion Examples

$nowEpochMillis : 1517943695758
$util.time.epochMilliSecondsToSeconds ($nowEpochMillis)
¢ 1517943695
$util.time.epochMilliSecondsToIS08601($nowEpochMillis)
: 2018-02-06T19:01:35.7582
$util.time.epochMilliSecondsToFormatted($nowEpochMillis, "yyyy-MM-dd HH:mm:ssZ")
: 2018-02-06 19:01:35+0000
$util.time.epochMilliSecondsToFormatted($nowEpochMillis, "yyyy-MM-dd HH:mm:sszZ",
"+08:00") : 2018-02-07 03:01:35+0800

Parsing Examples

$util.time.parseIS08601ToEpochMilliSeconds("2018-02-01T17:21:05.180+08:00")
: 1517476865180

210



https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

AWS AppSync AWS AppSync Developer Guide
List Helpers in $util.list

$util.time.parseFormattedToEpochMilliSeconds("2018-02-02 01:19:22+0800", "yyyy-MM-dd
HH:mm:ssZ") ¢+ 1517505562000
$util.time.parseFormattedToEpochMilliSeconds("2018-02-02 01:19:22", "yyyy-MM-dd HH:mm:ss",

"+08:00") : 1517505562000

$util.time.nowIS08601() : String

Returns a String represetation of UTC in ISO8601 format.

$util.time.nowEpochSeconds() : long

Returns the number of seconds from the epoch of 1970-01-01T00:00:00Z to now.
$util.time.nowEpochMilliSeconds() : long

Returns the number of milliseconds from the epoch of 1970-01-01T00:00:00Z to now.
$util.time.nowFormatted(String) : String

Returns a string of the current timestamp in UTC using the specified format from a String input type.
$util.time.nowFormatted(String, String) : String
Returns a string of the current timestamp for a timezone using the specified format and timezone
from String input types.
$util.time.parseFormattedToEpochMilliSeconds(String, String) : Long

Parses a timestamp passed as a String, along with a format, and return the timestamp as
milliseconds since epoch.

$util.time.parseFormattedToEpochMilliSeconds(String, String, String) : Long

Parses a timestamp passed as a String, along with a format and time zone, and return the timestamp
as milliseconds since epoch.

$util.time.parseIS08601ToEpochMilliSeconds(String) : Long

Parses an 1ISO8601 timestamp, passed as a String, and return the timestamp as milliseconds since
epoch.

$util.time.epochMilliSecondsToSeconds(long) : long

Converts an epoch milliseconds timestamp to an epoch seconds timestamp.
$util.time.epochMilliSecondsToIS08601(long) : String

Converts a epoch milliseconds timestamp to an ISO8601 timestamp.
$util.time.epochMilliSecondsToFormatted(long, String) : String

Converts a epoch milliseconds timestamp, passed as long, to a timestamp formatted according to
the supplied format in UTC.

$util.time.epochMilliSecondsToFormatted(long, String, String) : String

Converts a epoch milliseconds timestamp, passed as a long, to a timestamp formatted according to
the supplied format in the supplied timezone.

List Helpers in $util.list

$util.list contains methods to help with common List operations, such as removing or retaining
items from a list for filtering use cases.

$util.list.copyAndRetainAll(List, List) : List

Makes a shallow copy of the supplied list in the first argument, retaining only the items specified in
the second argument, if they are present. All other items will be removed from the copy.

211


https://en.wikipedia.org/wiki/ISO_8601

AWS AppSync AWS AppSync Developer Guide
Map Helpers in $util.map

$util.list.copyAndRemoveAll(List, List) : List

Makes a shallow copy of the supplied list in the first argument, removing any items where the item is
specified in the second arguement, if they are present. All other items will be retained in the copy.

Map Helpers in $util.map

$util.map contains methods to help with common List operations, such as removing or retaining items
from a list for filtering use cases.

$util.map.copyAndRetainAllKeys(Map, Map) : Map

Makes a shallow copy of the first map, retaining only the keys specified in the second map, if they
are present. All other keys will be removed from the copy.

$util.map.copyAndRemoveAllKeys(Map, Map) : Map

Makes a shallow copy of the first map, removing any entries where the key is specified in the second
map, if they are present. All other keys will be retained in the copy.

DynamoDB helpers in $util.dynamodb

$util.dynamodb contains helper methods that make it easier to write and read data to Amazon
DynamoDB, such as automatic type mapping and formatting. These methods are designed to make
mapping primitive types and Lists to the proper DynamoDB input format automatically, which is a Map of
the format { "TYPE" : VALUE }.

For example, previously, a request mapping template to create a new item in DynamoDB might have
looked like this:

{
"version" : "2017-02-28",
"operation" : "PutItem",
"key": {
"id" : { "S" : "$util.autoId()} }
T
"attributevalues" : {
"title" : { "S" : "${ctx.args.title}" },
"author" : { "S" : "${ctx.args.author}" },
"version" : { "N", $ctx.args.version }
}
}

If we wanted to add fields to the object we would have to update the GraphQL query in the schema, as
well as the request mapping template. However, we can now restructure our request mapping template
so it automatically picks up new fields added in our schema and adds them to DynamoDB with the
correct types:

{

"version" : "2017-02-28",

"operation" : "PutItem",

Vlkeyll H {

"id" : $util.dynamodb.toDynamoDBJson($util.autoId())

T

"attributevalues" : $util.dynamodb.toMapValuesJdson($ctx.args)
}

212




AWS AppSync AWS AppSync Developer Guide
DynamoDB helpers in $util.dynamodb

In the previous example, we are using the $util.dynamodb.toDynamoDBJson( . .. ) helper to
automatically take the generated id and convert it to the DynamoDB representation of a string attribute.
We then take all the arguments and convert them to their DynamoDB representations and output them
to the attributevalues field in the template.

Each helper has two version: a version that returns an object (eg., $util.dynamodb.toString(...)),
and a version that returns the object as a JSON string (e.g., $util.dynamodb.toStringJson(...)).
In the previous example, we used the version that returns the data as a JSON string. If you wanted to
manipulate the object before being used in the template, you can choose to return an object instead:

"version" : "2017-02-28",
"operation" : "PutItem",
"key": {
"id" : $util.dynamodb.toDynamoDBJIson($util.autoId())
}l

#set( $myfoo = $util.dynamodb.toMapValues($ctx.args) )
#set( $myFoo.version = $util.dynamodb.toNumber(1l) )
#set( $myFoo.timestamp = $util.time.nowIS08601() )

"attributeValues" : $util.toJson($myFoo)

In the previous example, we are returning the converted arguments as a map instead of a JSON
string, and are then adding the version and timestamp fields before finally outputting them to the
attributevalues field in the template using $util.toJson(...).

The JSON version of each of the helpers is equivalent to wrapping the non-JSON version in
$util.toJson(...).For example, the following statements are exactly the same:

$util.toStringJdson("Hello, World!")
$util.toJson($util.toString("Hello, World!"))

$util.dynamodb.toDynamoDB(Object) : Map $util.dynamodb.toDynamoDBJson(Object)
String

General object conversion tool for DynamoDB. Converts input Objects to the appropriate DynamoDB
format. Opinionated about type inference: e.g., use lists ("L") rather than sets ("SS", "NS", "BS").

String example:

Input: $util.dynamodb.toDynamoDB("foo")
Output: { "s" : "foo" }

Number example:

Input: $util.dynamodb.toDynamoDB(12345)
Output: { "N" : 12345 }

Note: This is actually a number, not a string representing a number.

Boolean example:

Input: $util.dynamodb.toDynamoDB(true)
Output: { "BOOL" : true }

List example:

213




AWS AppSync AWS AppSync Developer Guide
DynamoDB helpers in $util.dynamodb

Input: $util.dynamodb.toDynamoDB([ "foo", 123, { "bar" : "baz" } ])
Output: {
"L" o [
{ "s" : "foo" },
{ "N" : 123 },
{
"M {
"bar" : { "S" : "baz" }
}
}
]
}

Map example:

Input: $util.dynamodb.toDynamoDB({ "foo": "bar", "baz" : 1234, "beep": [ "boop"] })
Output: {
"M"o: {
"foo" : { "S" : "bar" },
"baz" : { "N" : 1234 },
"beep" : {
"L" o [
{ "s" : "boop" }
1
}
}
}

$util.dynamodb.toString(String) : Map $util.dynamodb.toStringJson(String)
String

Converts input Strings to the appropriate DynamoDB String format.

Input: $util.dynamodb.toString("foo")
Output: { "s" : "foo" }

$util.dynamodb.toStringSet(List<String>) : Map
$util.dynamodb.toStringSetJson(List<String>) : String Converts Lists with Strings to the
appropriate DynamoDB List format.

Input: $util.dynamodb.toStringSet([ "foo", "bar", "baz" ])
Output: { "ss" : [ "foo", "bar", "baz" ] }

$util.dynamodb.toNumber(Number) : Map $util.dynamodb.toNumberJson(Number)
String Converts numbers to the appropriate DynamoDB Number format.

Input: $util.dynamodb.toNumber(12345)
Output: { "N" : 12345 }

Note: This is actually a number, not a string representing a number.

$util.dynamodb.toNumberSet(List<Number>) : Map
$util.dynamodb.toNumberSetJson(List<Number>) : String Converts List of numbers to the
appropriate DynamoDB List format.

Input: $util.dynamodb.toNumberSet([ 1, 23, 4.56 ])
Output: { "NS" : [ 1, 23, 4.56 ] }

214




AWS AppSync AWS AppSync Developer Guide
DynamoDB helpers in $util.dynamodb

Note: This is actually a number, not a string representing a number.

$util.dynamodb.toBinary(String) : Map $util.dynamodb.toBinaryJson(String)
String Converts Strings to the appropriate DynamoDB format.

Input: $util.dynamodb.toBinary("foo")
Output: { "B" : "foo" }

Note: Binary data should be represented as a base64-encoded string.

$util.dynamodb.toBinarySet(List<String>) : Map
$util.dynamodb.toBinarySetJson(List<String>) : String

Input: $util.dynamodb.toBinarySet([ "foo", "bar", "baz" ])
Output: { "BS" : [ "foo", "bar", "baz" ] }

Note: Binary data should be represented as a base64-encoded string.

$util.dynamodb.toBoolean(boolean) : Map $util.dynamodb.toBooleandson(boolean)
String

Input: $util.dynamodb.toBoolean(true)
Output: { "BOOL" : true }

$util.dynamodb.toNull() : Map $util.dynamodb.toNulldson() : String

Input: $util.dynamodb.toNull()
Output: { "NULL" : null }

$util.dynamodb.toList(List) : Map $util.dynamodb.toListJdson(List) : String

Input: $util.dynamodb.toList([ "foo", 123, { "bar" : "baz" } ])
Output: {
"L" o [
{ "s" : "foo" },
{ "N" : 123 },
{
"M" o {
"bar" : { "S" : "baz" }
}
}
]
}

$util.dynamodb.toMap(Map) : Map $util.dynamodb.toMapJson(Map) : String

Input: $util.dynamodb.toMap({ "foo": "bar", "baz" : 1234, "beep": [ "boop"] })
Output: {
"M" o {
"foo" : { "S" : "bar" },
"baz" : { "N" : 1234 },
"beep" : {
"L" ¢ [
{ "s" : "boop" }
]
}
}
}

215




AWS AppSync AWS AppSync Developer Guide
DynamoDB helpers in $util.dynamodb

$util.dynamodb.toMapValues(Map) : Map $util.dynamodb.toMapValuesJdson(Map)
String

Input: $util.dynamodb.toMapValues({ "foo": "bar", "baz" : 1234, "beep": [ "boop"] })
Output: {
"foo" : { "S" : "bar" },
"baz" : { "N" : 1234 },
"beep" : {
"Lt o [
{ "sS" : "boop" }
1
}
}

$util.dynamodb.toS30bject(String key, String bucket, String region) : Map
$util.dynamodb.toS30bjectdIson(String key, String bucket, String region)
String

Input: $util.dynamodb.toS30bject("foo", "bar", region = "baz")
Output: { "s"™ : "{ \"s3\" : { \"key\" : \"foo", \"bucket\" : \"bar", \"region\"
\llbazll } }ll }

$util.dynamodb.toS30bject(String key, String bucket, String region, String
version) : Map $util.dynamodb.toS30bjectJdson(String key, String bucket, String
region, String version : String

Input: $util.dynamodb.toS30bject("foo", "bar", "baz", "beep")
Output: { "s"™ ¢ "{ \"s3\" : { \"key\" : \"foo\", \"bucket\" : \"bar\", \"region\"
\llbaz\ll' \"VerSiOn\" = \llbeep\ll } }ll }

$util.dynamodb.fromS30bjectdson(String) : Map

Input: $util.dynamodb.fromS30bjectdson({ "S" : "{ \"s3\" : { \"key\" : \"foo\",
\"bucket\" : \"bar\", \"region\" : \"baz\", \"version\" = \"beep\" } }" })
Output: { "key" : "foo", "bucket" : "bar", "region" : "baz", "version" : "beep" }

216




AWS AppSync AWS AppSync Developer Guide
Incorrect DynamoDB key mapping

Troubleshooting and Common
Mistakes

This is prerelease documentation for a service in preview release. It is subject to change.

This section discusses some common errors and how to troubleshoot them.

Incorrect DynamoDB key mapping

If your GraphQL operation returns the following error message, it may be because your request mapping
template structure doesn't match the Amazon DynamoDB key structure:

The provided key element does not match the schema (Service: AmazonDynamoDBv2; Status Code:
400; Error Code

For example, if your DynamoDB table has a hash key called "id" and your template says "PostID", as
in the following example, this results in the preceding error, because "id" doesn't match "PostID".

{
"version" : "2017-02-28",
"operation" : "GetItem",
"key" : {
"PostID" : { "S" : "${context.arguments.id}" }
}
}

Missing Resolver

If you execute a GraphQL operation, such as a query, and get a null response, this may be because you
don't have a resolver configured.

For example, if you import a schema that defines a getCustomer (userId: ID!): field,
and you haven't configured a resolver for this field, then when you execute a query such as
getCustomer(userId:"ID123"){...}, you'll get a response such as the following:

{
"data": {
"getCustomer": null

¥

Mapping Template Errors

If your mapping template isn't properly configured, you'll receive a GraphQL response whose errorType
is MappingTemplate. The message field should indicate where the problem is in your mapping
template.

217




AWS AppSync AWS AppSync Developer Guide
Incorrect return types

For example, if you don't have an operation field in your request mapping template, or if the
operation field name is incorrect, you'll get a response like the following:

{
"data": {
"searchPosts": null
}l
"errors": [
{
"path": [
"searchPosts"
]!
"errorType": "MappingTemplate",
"locations": [
{
"line": 2,
"column": 3
}
]!
"message": "Value for field '$[operation]' not found."
}
]
}

Incorrect return types

The return type from your data source must match the defined type of an object in your schema,
otherwise you may see a GraphQL error like:

"errors": [

{

"path": [

"pOStS"

]l

"locations": null,

"message": "Can't resolve value (/posts) : type mismatch error, expected type LIST, got
OBJECT"

}

For example this could occur with the following query definition:

type Query {
posts: [Post]

}

Which expects a LIST of [ Posts ] objects. For example if you had a Lambda function in Node.JS with
something like the following:

const result = { data: data.Items.map(item => { return item ; }) };
callback(err, result);

This would throw an error as result is an object. You would need to either change the callback to
result.data or alter your schema to not return a LIST.

218



AWS AppSync AWS AppSync Developer Guide
Getting CloudWatch Metrics (CLI)

Integrating with Amazon
CloudWatch

This is prerelease documentation for a service in preview release. It is subject to change.

When you interact with AWS AppSync, it sends the following metrics and dimensions to Amazon
CloudWatch every minute. You can use the following procedures to view the metrics for AWS AppSync.

You can monitor AWS AppSync using CloudWatch, which collects and processes raw data from AWS
AppSync into readable, near real-time metrics. These statistics are recorded for a period of two weeks,
so that you can access historical information and gain a better perspective on how your web application
or service is performing. By default, AWS AppSync metric data is sent to CloudWatch in one-minute
intervals. For more information, see What Is Amazon CloudWatch in the Amazon CloudWatch User Guide.

You must have the appropriate CloudWatch permissions to monitor AWS AppSync with CloudWatch.
For more information, see Authentication and Access Control for Amazon CloudWatch in the Amazon
CloudWatch User Guide.

Getting CloudWatch Metrics (CLI)

The following code displays available metrics for AWS AppSync.

aws cloudwatch list-metrics --namespace "AWS/AppSync"

AWS AppSync Metrics

AWS AppSync produces the following metrics for each request. These metrics are aggregated and sent to
CloudWatch.

Metric Description
4xxError The number of requests that result in client-side
error.
Unit: Count
Throttles The number of requests that are throttled.
Unit: Count
Count The number of calls to the API.
Unit: Count

219



http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html

AWS AppSync AWS AppSync Developer Guide
AWS AppSync Dimensions

Metric Description

Latency The time between when AWS AppSync receives
a request from a client and when it returns a
response to the client.

Unit: Millisecond

AWS AppSync Dimensions

AWS AppSync produces the following dimensions for each request.

Dimension Description

GraphQLAPIId Filters AWS AppSync metrics for an API with the
specific ID.

Operation Filters AWS AppSync metrics for an APl with

the specific operation (query, mutation, or
subscription).

GraphQLAPIId, Operation Filters AWS AppSync metrics for an API with the
specific ID and operation.

220



AWS AppSync AWS AppSync Developer Guide
AWS AppSync Information in CloudTrail

Logging AWS AppSync API Calls with
AWS CloudTrail

This is prerelease documentation for a service in preview release. It is subject to change.

AWS AppSync is integrated with AWS CloudTrail, a service that captures API calls made by or on behalf of
your AWS account and delivers the log files to an Amazon S3 bucket that you specify. CloudTrail captures
API calls from the AWS AppSync console or from the AWS AppSync API. Using the information collected
by CloudTrail, you can determine what request was made to AWS AppSync, the source IP address from
which the request was made, who made the request, when it was made, and so on. To learn more about
CloudTrail, including how to configure and enable it, see What Is Amazon CloudTrail in the Amazon
CloudTrail User Guide.

AWS AppSync Information in CloudTrail

When CloudTrail logging is enabled in your AWS account, API calls made to AWS AppSync actions are
tracked in CloudTrail log files. AWS AppSync records are written together with other AWS service records
in a log file. CloudTrail determines when to create and write to a new file based on a time period and file
size.

All AWS AppSync actions are logged by CloudTrail and are documented in the AWS AppSync API
Reference. For example, calls to the CreateGraphqlApi, CreateDataSource, and ListResolvers
actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

« Whether the request was made with root or IAM user credentials

o Whether the request was made with temporary security credentials for a role or federated user
o Whether the request was made by another AWS service

For more information, see the CloudTrail userldentity Element.
You can also create a trail and store your log files in your Amazon S3 bucket for as long as you want, and
define Amazon S3 lifecycle rules to archive or delete log files automatically. By default, your log files are

encrypted with Amazon S3 server-side encryption (SSE).

To be notified of log file delivery, configure CloudTrail to publish Amazon SNS notifications when new
log files are delivered. For more information, see Configuring Amazon SNS Notifications for CloudTrail.

You can also aggregate AWS AppSync log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket.

For more information, see Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail
Log Files from Multiple Accounts.

221


http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/appsync/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/appsync/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS AppSync AWS AppSync Developer Guide
Understanding AWS AppSync Log File Entries

Understanding AWS AppSync Log File Entries

CloudTrail log files can contain one or more log entries. Each entry lists multiple JSON-formatted events.
A log entry represents a single request from any source and includes information about the requested
action, the date and time of the action, request parameters, and so on. Log entries are not an ordered
stack trace of the public API calls, so they do not appear in any specific order.

Because of potential confidentiality issues, log entries do not contain the synthesized text. Instead, this
text is redacted in the log entry.

The following example shows a CloudTrail log entry that demonstrates the CreateApiKey action.

{
"Records": [{
"eventVersion": "1.05",
"userIdentity": {
"type": "IAMUser",
"principalId": "A1B2C3D4E5F6G7EXAMPLE",
"arn": "arn:aws:iam::123456789012:user/Alice",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"userName": "Alice"
}l
"eventTime": "2018-01-31T21:49:09z2",
"eventSource": "appsync.amazonaws.com",
"eventName": "CreateApiKey",
"awsRegion": "us-west-2",
"sourceIPAddress": "192.2.0.1",
"userAgent": "aws-cli/1.11.72 Python/2.7.11 Darwin/16.7.0 botocore/1.5.35",
"requestParameters": {
"apiId": "alb2c3d4e5f6g7h8i9jexample"
}l
"responseElements": {
"apiKey": {
midrs Mkkxv,
"expires": 1518037200000
}
}l
"requestID": "99999999-9999-9999-9999-999999999999",
"eventID": "99999999-9999-9999-9999-999999999999",
"readOnly": false,
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"
}

The following example shows a CloudTrail log entry that demonstrates the ListApiKeys action.

{
"Records": [{

"eventVersion": "1.05",

"userIdentity": {
"type": "IAMUser",
"principalId": "A1B2C3D4E5F6G7EXAMPLE",
"arn": "arn:aws:iam::123456789012:user/Alice",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"userName": "Alice"

T

"eventTime": "2018-01-31T21:49:09Z",

"eventSource": "appsync.amazonaws.com",

222



AWS AppSync AWS AppSync Developer Guide
Understanding AWS AppSync Log File Entries

"eventName": "ListApiKeys",

"awsRegion": "us-west-2",

"sourceIPAddress": "192.2.0.1",

"userAgent": "aws-cli/1.11.72 Python/2.7.11 Darwin/16.7.0 botocore/1.5.35",

"requestParameters": {

"apiId": "alb2c3d4e5f6g7h8i9jexample"
Iy
"responseElements": {

"apiKeys": [

{
midnr: txkkn
"expires": 1517954400000
Iy
{
midnrs txkkn,
"expires": 1518037200000
Iy
]
Iy
"requestID": "99999999-9999-9999-9999-999999999999",
"eventID": "99999999-9999-9999-9999-999999999999",
"readOnly": false,
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"
}

The following example shows a CloudTrail log entry that demonstrates the DeleteApiKey action.

"Records": [{
"eventVersion": "1.05",
"userIdentity": {
"type": "IAMUser",
"principalId": "A1B2C3D4E5F6G7EXAMPLE",
"arn": "arn:aws:iam::123456789012:user/Alice",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"userName": "Alice"
}l
"eventTime": "2018-01-31T21:49:09z2",
"eventSource": "appsync.amazonaws.com",
"eventName": "DeleteApiKey",
"awsRegion": "us-west-2",
"sourceIPAddress": "192.2.0.1",
"userAgent": "aws-cli/1.11.72 Python/2.7.11 Darwin/16.7.0 botocore/1.5.35",
"requestParameters": {
nidrs MkkxM,
"apiId": "alb2c3d4e5f6g7h8i9jexample"
}l
"responseElements": null,
"requestID": "99999999-9999-9999-9999-999999999999",
"eventID": "99999999-9999-9999-9999-999999999999",
"readOnly": false,
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

}

223




	AWS AppSync
	Table of Contents
	Welcome
	Quickstart
	Launch a Sample Schema
	Launch a Sample Schema
	Taking a Tour of the Console
	Schema Designer
	Resolver Configuration
	Settings
	Queries

	Run Queries and Mutations
	Add Data with a GraphQL Mutation
	Retrieve Data with a GraphQL Query
	Running an Application
	Next Steps


	System Overview and Architecture
	Architecture
	Concepts
	GraphQL Proxy
	Operation
	Action
	Data Source
	Resolver
	Identity
	AWS AppSync Client


	GraphQL Overview
	Designing a GraphQL API
	Designing Your Schema
	Creating an Empty Schema
	Adding a Root Query Type
	Defining a Todo Type
	Adding a Mutation Type
	Modifying the Todo with a Status
	Subscriptions
	Further Reading
	Advanced - Relations and Pagination
	Interfaces and Unions in GraphQL
	Interfaces
	Unions
	Type Resolution in AWS AppSync
	Type Resolution Example


	Attaching a Data Source
	(Optional) Automatic Provision
	Adding a Data Source

	Configuring Resolvers
	Create Your First Resolver
	Adding a Resolver for Mutations
	Advanced Resolvers

	Using Your API
	(Optional) Provision from Schema
	Schema
	Provision from Schema

	(Optional) Import from Amazon DynamoDB
	Import a DynamoDB Table
	Example Schema from Import


	Building a Client App
	Building a ReactJS Client App
	Before You Begin
	Get the GraphQL API Endpoint
	Download a Client Application
	Understanding the React Sample App
	Import the AWS AppSync SDK into Your App
	Test Your Application
	Offline Settings
	Make Your Application Real Time
	Complex Objects
	Conflict Resolution

	Building a React Native Client App
	Before You Begin
	Get the GraphQL API Endpoint
	Download a Client Application
	Understanding the React Native Sample App
	Import the AWS AppSync SDK into Your App
	Test Your Application
	Offline Settings
	Make Your Application Real Time
	Conflict Resolution

	Building a JavaScript Client App
	Before You Begin
	Get the GraphQL API Endpoint
	Create a Client Application

	Building an iOS Client App
	Create an API
	Download a Client Application
	Understanding the iOS Sample App
	Running the iOS Sample App

	Set up the Code Generation for GraphQLOperations
	Set up Dependency on the AWS AppSync SDK
	Convert the App to Use AWS AppSync for the Backend
	Make Your App Real Time
	Integrating into the Build Process
	Complex Objects
	Conflict Resolution

	Building an Android Client App
	Create an API
	Download a Client Application
	Gradle Setup
	Project's build.gradle
	App's build.gradle
	App's AndroidManifest.xml

	Code Generation for GraphQL Operations
	Call the Service
	Set up Constants.java
	Create the client
	API Key Authorization
	IAM-Based Authorization (Amazon Cognito Identity)
	Cognito User Pools Authorization

	Query the Posts
	Mutate the Posts (Add a Post)
	Mutate the Posts (Update a Post)

	Optimistic Updates
	Offline Mutations


	Data Sources and Resolvers
	Tutorial: DynamoDB Resolvers
	Setting up Your DynamoDB Tables
	Creating Your GraphQL API
	Defining a Basic "Post" API
	Configuring the Data Source for the DynamoDB Tables
	Setting up the "addPost" resolver (DynamoDB PutItem)
	Call the API to add a Post

	Setting up the "getPost" Resolver (DynamoDB GetItem)
	Call the API to get a Post

	Create an updatePost mutation (DynamoDB UpdateItem)
	Call the API to update a Post

	Modifying the "updatePost" resolver (DynamoDB UpdateItem)
	Call the API to update a Post

	Create upvotePost and downvotePost mutations (DynamoDB UpdateItem)
	Call the API to upvote and downvote a Post

	Setting up the "deletePost" resolver (DynamoDB DeletePost)
	Call the API to delete a Post

	Setting up the "allPost" resolver (DynamoDB Scan)
	Call the API to scan all Posts

	Setting up the "allPostsByAuthor" resolver (DynamoDB Query)
	Call the API to query all Posts by an author

	Using Sets
	Call the API to work with tags

	Using Lists and Maps
	Call the API to add a comment

	Conclusion

	Tutorial: Lambda Resolvers
	Create a Lambda Function
	Configure data source for AWS Lambda
	Creating a GraphQL Schema
	Configuring resolvers
	Testing your GraphQL API
	addPost mutation
	getPost query
	allPosts query

	Returning Errors
	From the mapping template
	From the Lambda function

	Advanced Use Case: Batching
	Returning Individual Errors


	Tutorial: Amazon Elasticsearch Service Resolvers
	Create a New Amazon ES Domain
	Configure Data Source for Amazon ES
	Connecting a Resolver
	Modifying Your Searches
	Adding Data to Amazon ES
	Retrieving a Single Document
	Perform Queries and Mutations
	Best Practices

	Tutorial: Local Resolvers
	Create the Paging Application
	Send and subscribe to pages

	Tutorial: Combining GraphQL Resolvers
	Example Schema
	Alter data through resolvers
	DynamoDB and Amazon ES


	Real-Time Data
	GraphQL Schema Subscription Directives
	Using Subscription Arguments

	Security
	API_KEY Authorization
	AWS_IAM Authorization
	AMAZON_COGNITO_USER_POOLS Authorization
	Fine-Grained Access Control
	Filtering Information
	Authorization Use Cases
	Overview
	Reading data
	Use Case: Owner can read
	Use Case: Hardcode specific access
	Use Case: Filtering a list of results
	Use Case: Multiple people can read
	Use Case: Group can read

	Writing data
	Use Case: Multiple owners
	Use Case: Group can create new record
	Use Case: Group can update existing record

	Public and Private records


	Resolver Mapping Template Reference
	Resolver Mapping Template Overview
	Example Template

	Resolver Mapping Template Programming Guide
	Setup
	Variables
	Quiet References

	Calling Methods
	Strings
	Loops
	Arrays
	Conditional Checks
	Operators
	Loops and Conditionals Together

	Context
	Filtering
	Appendix - Template Sample


	Resolver Mapping Template Reference for DynamoDB
	GetItem
	Example

	PutItem
	Example 1
	Example 2

	UpdateItem
	Example 1
	Example 2

	DeleteItem
	Example 1
	Example 2

	Query
	Example

	Scan
	Example 1
	Example 2

	Type System (Request Mapping)
	Type System (Response Mapping)
	Filters
	Example

	Condition Expressions
	Example 1
	Example 2
	Specifying a Condition
	Handling a Condition Check Failure
	Checking for the Desired Result
	Following the "Reject" Strategy
	Following the "Custom" Strategy



	Resolver Mapping Template Reference for Elasticsearch
	Request Mapping Template
	Response Mapping Template
	operation field
	path field
	params field
	Passing Variables

	Resolver Mapping Template Reference for Lambda
	Request Mapping Template
	version
	operation
	payload
	Response Mapping Template
	Lambda Function Batched Response


	Resolver Mapping Template Reference for None Data Source
	Request a Mapping Template
	version
	payload
	Response Mapping Template

	Resolver Mapping Template Context Reference
	Accessing the $context
	Identity
	Access Request Headers

	Utility Helpers in $util
	Time Helpers in $util.time
	Standalone Function Examples
	Conversion Examples
	Parsing Examples

	List Helpers in $util.list
	Map Helpers in $util.map
	DynamoDB helpers in $util.dynamodb


	Troubleshooting and Common Mistakes
	Incorrect DynamoDB key mapping
	Missing Resolver
	Mapping Template Errors
	Incorrect return types

	Integrating with Amazon CloudWatch
	Getting CloudWatch Metrics (CLI)
	AWS AppSync Metrics
	AWS AppSync Dimensions

	Logging AWS AppSync API Calls with AWS CloudTrail
	AWS AppSync Information in CloudTrail
	Understanding AWS AppSync Log File Entries


