

## **COMPUTER AND ROBOT VISION**

Robert M. Haralick University of Washington

**Linda G. Shapiro**University of Washington



## ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn
Sydney • Singapore • Tokyo • Madrid • San Juan • Milan • Paris

## CONTENTS

| 1   | C           | omputer Vision: Overview                                                 | 1                |
|-----|-------------|--------------------------------------------------------------------------|------------------|
| 1.1 | Introdu     | ction                                                                    | 1                |
| 1.2 | Recogn      | nition Methodology                                                       | 5                |
|     | 1.2.1       | Conditioning                                                             | 6                |
|     | 1.2.2       | Labeling                                                                 | 6                |
|     |             | Grouping                                                                 | 6                |
|     |             | Extracting                                                               | $\overline{I}$   |
|     |             | Matching                                                                 | 6<br>7<br>7<br>8 |
| 1.3 |             | e of Book                                                                |                  |
|     | Bibliog     | graphy                                                                   | 11               |
| 2   | Bi          | nary Machine Vision: Thresholding and Segmentation                       | 13               |
| 2.1 | <br>Introdi | action                                                                   | 13               |
| 2.2 | Thresh      | olding                                                                   | 14               |
|     | 2.2.1       | Minimizing Within-Group Variance                                         | 20               |
|     | 2.2.2       | Minimizing Kullback Information Distance                                 | 23               |
| 2.3 |             | cted Components Labeling                                                 | 28               |
|     | 2.3.1       | Connected Components Operators                                           | 29               |
|     | 2.3.2       | Connected Components Algorithms                                          | 31               |
|     |             | An Iterative Algorithm                                                   | 32               |
|     | 221         | The Classical Algorithm                                                  | 33               |
|     | 2.3.4       |                                                                          |                  |
|     | 2.3.4       | A Space-Efficient Two-Pass Algorithm That Uses                           |                  |
|     |             | A Space-Efficient Two-Pass Algorithm That Uses a Local Equivalence Table | 37               |
|     |             | A Space-Efficient Two-Pass Algorithm That Uses                           | 37<br>40         |

## X Contents

| 2.4<br>2.5   | Signature Segmentation and Analysis Summary Exercises Bibliography | 55<br>55<br>56 |
|--------------|--------------------------------------------------------------------|----------------|
| 3            | Binary Machine Vision: Region Analysis                             | 59             |
| 3.1          | Introduction                                                       | 59             |
| 3.2          | Region Properties                                                  | 59             |
|              | 3.2.1 Extremal Points                                              | 62             |
|              | 3.2.2 Spatial Moments                                              | 73             |
|              | 3.2.3 Mixed Spatial Gray Level Moments                             | 75             |
| 3.3          | Signature Properties                                               | 80             |
|              | 3.3.1 Using Signature Analysis to Determine the Center             |                |
|              | and Orientation of a Rectangle                                     | 83             |
|              | 3.3.2 Using Signature Analysis to Determine the Center             |                |
| 3.4          | of a Circle                                                        | 88             |
| 3,4          | Summary Exercises                                                  | 90             |
|              | Bibliography                                                       | 91             |
|              |                                                                    | 93             |
| 4            | Statistical Pattern Recognition                                    | 95             |
| 4.1          | Introduction                                                       | 95             |
| 4.2          | Bayes Decision Rules: Maximum Utility Model for                    | 93             |
|              | Pattern Discrimination                                             | 95             |
|              | 4.2.1 Economic Gain Matrix                                         | 96             |
|              | 4.2.2 Decision Rule Construction                                   | 102            |
| 4.3          | Prior Probability                                                  | 102            |
| 4.4          | Economic Gain Matrix and the Decision Rule                         | 110            |
| 4.5          | Maximin Decision Rule                                              | 112            |
| 4.6          | Decision Rule Error: Misidentification/False Identification        | 126            |
| 4.7          | Reserving Judgement                                                | 129            |
| 4.8          | Nearest Neighbor Rule                                              | 130            |
| 4.9          | A Binary Decision Tree Classifier                                  | 131            |
|              | 4.9.1 Decision Tree Construction                                   | 132            |
| 1 10         | 4.9.2 Decision Rules                                               | 136            |
| 4.10<br>4.11 | Decision Rule Error Estimation Neural Networks                     | 142            |
| +.11<br>4.12 |                                                                    | 143            |
| T. 12        | Summary<br>Exercises                                               | 143            |
|              | Bibliography                                                       | 146            |
|              | Dionography                                                        | 148            |

|            | :                                                                          | Contents | ΧI         |
|------------|----------------------------------------------------------------------------|----------|------------|
| 5          | Mathematical Morphology                                                    |          | 157        |
| 5.1        | Introduction                                                               |          | 157        |
| 5.2        | Binary Morphology                                                          |          | 158        |
|            | 5.2.1 Binary Dilation                                                      |          | 158        |
|            | 5.2.2 Binary Erosion                                                       |          | 161        |
|            | 5.2.3 Hit-and-Miss Transform                                               |          | 168        |
|            | 5.2.4 Dilation and Erosion Summary                                         |          | 173        |
|            | 5.2.5 Opening and Closing                                                  |          | 174        |
|            | 5.2.6 Morphological Shape Feature Extraction                               |          | 189        |
|            | 5.2.7 Fast Dilations and Erosions                                          |          | 189        |
| 5.3        | Connectivity                                                               |          | 191        |
|            | 5.3.1 Separation Relation                                                  |          | 191        |
|            | 5.3.2 Morphological Noise Cleaning and Connectivity                        | y        | 195        |
|            | 5.3.3 Openings, Holes, and Connectivity                                    |          | 195        |
|            | 5.3.4 Conditional Dilation                                                 |          | 196        |
| 5.4        | Generalized Openings and Closings                                          |          | 198        |
| 5.5        | Gray Scale Morphology                                                      |          | 200        |
|            | 5.5.1 Gray Scale Dilation and Erosion                                      |          | 200        |
|            | 5.5.2 Umbra Homomorphism Theorems                                          |          | 205        |
| <b>5</b>   | 5.5.3 Gray Scale Opening and Closing                                       |          | 210        |
| 5.6<br>5.7 | Openings, Closings, and Medians<br>Bounding Second Derivatives             |          | 215        |
| 5.8        |                                                                            |          | 218<br>221 |
| 5.9        | Distance Transform and Recursive Morphology Generalized Distance Transform |          | 226        |
| 5.10       | Medial Axis                                                                |          | 230        |
| 3.10       | 5.10.1 Medial Axis and Morphological Skeleton                              |          | 233        |
| 5.11       | Morphological Sampling Theorem                                             |          | 237        |
| 5.11       | 5.11.1 Set-Bounding Relationships                                          |          | 241        |
|            | 5.11.2 Examples                                                            |          | 244        |
|            | 5.11.3 Distance Relationships                                              |          | 247        |
| 5.12       | Summary                                                                    |          | 253        |
| J.12       | Exercises                                                                  |          | 253        |
|            | Bibliography                                                               |          | 255        |
| 6          | Neighborhood Operators                                                     |          | 262        |
| 6          | Neighborhood Operators                                                     |          | 263        |
| 6.1        | Introduction                                                               |          | 263        |
| 6.2        | Symbolic Neighborhood Operators                                            |          | 268        |
|            | 6.2.1 Region-Growing Operator                                              |          | 269        |
|            | 6.2.2 Nearest Neighbor Sets and Influence Zones                            |          | 270        |
|            | 6.2.3 Region-Shrinking Operator                                            |          | 270        |
|            | 6.2.4 Mark-Interior/Border-Pixel Operator                                  |          | 272        |
|            | 6.2.5 Connectivity Number Operator                                         |          | 272        |
|            | 6.2.6 Connected Shrink Operator                                            |          | 276        |

| X 1 | 1 | Cont | tents |
|-----|---|------|-------|

|            | 6.2.7 Pair Relationship Operator                       | 278 |
|------------|--------------------------------------------------------|-----|
|            | 6.2.8 Thinning Operator                                | 278 |
|            | 6.2.9 Distance Transformation Operator                 | 279 |
|            | 6.2.10 Radius of Fusion                                | 282 |
|            | 6.2.11 Number of Shortest Paths                        | 282 |
| 6.3        | Extremum-Related Neighborhood Operators                | 283 |
|            | 6.3.1 Non-Minima-Maxima Operator                       | 284 |
|            | 6.3.2 Relative Extrema Operator                        | 285 |
|            | 6.3.3 Reachability Operator                            | 290 |
| 6.4        | Linear Shift-Invariant Neighborhood Operators          | 291 |
|            | 6.4.1 Convolution and Correlation                      | 291 |
|            | 6.4.2 Separability                                     | 297 |
|            | Exercises                                              | 299 |
|            | Bibliography                                           | 300 |
|            |                                                        | 300 |
| 7          | Conditioning and Labeling                              | 303 |
| 7.1        | Introduction                                           | 303 |
| 7.2        | Noise Cleaning                                         | 303 |
|            | 7.2.1 A Statistical Framework for Noise Removal        | 305 |
|            | 7.2.2 Determining Optimal Weight from Isotropic        |     |
|            | Covariance Matrices                                    | 310 |
|            | 7.2.3 Outlier or Peak Noise                            | 316 |
|            | 7.2.4 K-Nearest Neighbor                               | 317 |
|            | 7.2.5 Gradient Inverse Weighted                        | 317 |
|            | 7.2.6 Order Statistic Neighborhood Operators           | 318 |
|            | 7.2.7 A Decision Theoretic Approach to Estimating Mean | 321 |
|            | 7.2.8 Hysteresis Smoothing                             | 324 |
|            | 7.2.9 Sigma Filter                                     | 325 |
|            | 7.2.10 Selecting-Neighborhood Averaging                | 325 |
|            | 7.2.11 Minimum Mean Square Noise Smoothing             | 327 |
| <i>-</i>   | 7.2.12 Noise-Removal Techniques—Experiments            | 329 |
| 7.3        | Sharpening                                             | 334 |
| <b>7</b> 4 | 7.3.1 Extremum Sharpening                              | 336 |
| 7.4        | Edge Detection                                         | 337 |
|            | 7.4.1 Gradient Edge Detectors                          | 337 |
|            | 7.4.2 Zero-Crossing Edge Detectors                     | 346 |
|            | 7.4.3 Edge Operator Performance                        | 351 |
| 7.5        | Line Detection                                         | 352 |
|            | Exercises                                              | 354 |
|            | Bibliography                                           | 357 |
| 8          | The Facet Model                                        | 371 |
| 8.1        | Introduction                                           | 371 |

|            | Contents                                                                                                                    | xiii       |
|------------|-----------------------------------------------------------------------------------------------------------------------------|------------|
| 8.2        | Relative Maxima                                                                                                             | 372        |
| 8.3        | Sloped Facet Parameter and Error Estimation                                                                                 | 375        |
| 8.4        | Facet-Based Peak Noise Removal                                                                                              | 378        |
| 8.5        | Iterated Facet Model                                                                                                        | 380        |
| 8.6        | Gradient-Based Facet Edge Detection                                                                                         | 382        |
| 8.7        | Bayesian Approach to Gradient Edge Detection                                                                                | 391        |
| 8.8        | Zero-Crossing Edge Detector                                                                                                 | 392        |
|            | 8.8.1 Discrete Orthogonal Polynomials                                                                                       | 393        |
|            | 8.8.2 Two-Dimensional Discrete Orthogonal Polynomials                                                                       | 394        |
|            | 8.8.3 Equal-Weighted Least-Squares Fitting Problem                                                                          | 394        |
|            | 8.8.4 Directional Derivative Edge Finder                                                                                    | 396        |
| 8.9        | Integrated Directional Derivative Gradient Operator                                                                         | 403        |
|            | 8.9.1 Integrated Directional Derivative                                                                                     | 404        |
| 0 10       | 8.9.2 Experimental Results                                                                                                  | 405        |
| 8.10       | Corner Detection                                                                                                            | 410<br>412 |
|            | <ul><li>8.10.1 Incremental Change along the Tangent Line</li><li>8.10.2 Incremental Change along the Contour Line</li></ul> | 413        |
|            | 8.10.3 Instantaneous Rate of Change                                                                                         | 413        |
|            | 8.10.4 Experimental Results                                                                                                 | 415        |
| 8.11       | Isotropic Derivative Magnitudes                                                                                             | 419        |
| 8.12       | Ridges and Ravines on Digital Images                                                                                        | 424        |
| 0.12       | 8.12.1 Directional Derivatives                                                                                              | 425        |
|            | 8.12.2 Ridge-Ravine Labeling                                                                                                | 426        |
| 8.13       | Topographic Primal Sketch                                                                                                   | 430        |
|            | 8.13.1 Introduction                                                                                                         | 430        |
|            | 8.13.2 Mathematical Classification of                                                                                       |            |
|            | Topographic Structures                                                                                                      | 431        |
|            | 8.13.3 Topographic Classification Algorithm                                                                                 | 440        |
|            | 8.13.4 Summary of Topographic Classification Scheme                                                                         | 443        |
|            | Exercises                                                                                                                   | 445        |
|            | Bibliography                                                                                                                | 449        |
| 9          | Texture                                                                                                                     | 453        |
| 0.1        | Tutus du sti su                                                                                                             | 453        |
| 9.1        | Introduction Gray Level Co-Occurrence                                                                                       | 457        |
| 9.2        | 9.2.1 Generalized Gray Level Spatial Dependence Models                                                                      |            |
|            | for Texture                                                                                                                 | 462        |
| 9.3        | Strong Texture Measures and Generalized Co-Occurrence                                                                       | 462        |
| 0.4        | 9.3.1 Spatial Relationships                                                                                                 | 463        |
| 9.4        | Autocorrelation Function and Texture                                                                                        | 464        |
| 9.5        | Digital Transform Methods and Texture                                                                                       | 465<br>467 |
| 9.6        | Textural Energy Textural Edgeness                                                                                           | 469        |
| 9.7<br>9.8 | Textural Edgeness Vector Dispersion                                                                                         | 470        |
| 7.0        | A COURT DISPOSSION                                                                                                          | T/\        |

|     | _        |
|-----|----------|
| XIV | Contents |

| 9.9  | Relative Extrema Density                             | 471 |
|------|------------------------------------------------------|-----|
| 9.10 | Mathematical Morphology                              | 473 |
| 9.11 | Autoregression Models                                | 475 |
| 9.12 | Discrete Markov Random Fields                        | 477 |
| 9.13 | Random Mosaic Models                                 | 480 |
| 9.14 | Structural Approaches to Texture Models              | 481 |
| 9.15 | Texture Segmentation                                 | 481 |
| 9.16 | Synthetic Texture Image Generation                   | 482 |
| 9.17 | Shape from Texture                                   | 483 |
| 9.18 | Summary                                              | 493 |
|      | Exercises                                            | 493 |
|      | Bibliography                                         | 494 |
|      |                                                      |     |
| 1(   | Image Segmentation                                   | 509 |
| 10.1 | Introduction                                         | 509 |
| 10.2 | -First Children Spatial Clustering                   | 511 |
|      | 10.2.1 Thresholding                                  | 518 |
| 10.0 | 10.2.2 Multidimensional Measurement-Space Clustering | 524 |
| 10.3 | Region Growing                                       | 525 |
|      | 10.3.1 Single-Linkage Region Growing                 | 525 |
|      | 10.3.2 Hybrid-Linkage Region Growing                 | 526 |
| 10.4 | 10.3.3 Centroid-Linkage Region Growing               | 532 |
| 10.4 | Hybrid-Linkage Combinations                          | 536 |
| 10.5 | Spatial Clustering                                   | 537 |
| 10.6 | Split and Merge                                      | 540 |
| 10.7 | Rule-Based Segmentation                              | 542 |
| 10.8 | Motion-Based Segmentation                            | 545 |
| 10.9 | Summary                                              | 548 |
|      | Exercises                                            | 549 |
|      | Bibliography                                         | 550 |
| 11   | Are Followskiew and Co                               |     |
|      | Arc Extraction and Segmentation                      | 555 |
| 11.1 | Introduction                                         | 555 |
| 11.2 | Extracting Boundary Pixels from a Segmented Image    | 556 |
|      | 11.2.1 Concepts and Data Structures                  | 556 |
| 11.0 | 11.2.2 Border-Tracking Algorithm                     | 556 |
| 11.3 | Linking One-Pixel-Wide Edges or Lines                | 558 |
| 11.4 | Edge and Line Linking Using Directional Information  | 561 |
| 11.5 | Segmentation of Arcs into Simple Segments            |     |
|      | 11.5.1 Iterative Endpoint Fit and Split              | 563 |
|      | 11.5.2 Tangential Angle Deflection                   | 565 |
|      | 11.5.3 Uniform Bounded-Error Approximation           | 569 |

|            | Contents                                                                  | XV         |
|------------|---------------------------------------------------------------------------|------------|
|            | 11.5.4 Breakpoint Optimization                                            | 571        |
|            | 11.5.5 Split and Merge                                                    | 573        |
|            | 11.5.6 Isodata Segmentation                                               | 574        |
|            | 11.5.7 Curvature                                                          | 575        |
| 11.6       | Hough Transform                                                           | 578        |
|            | 11.6.1 Hough Transform Technique                                          | 578        |
|            | 11.6.2 A Bayesian Approach to the Hough Transform                         | 585        |
| 11.7       | Line Fitting                                                              | 588        |
|            | 11.7.1 Variance of the Fitted Parameters                                  | 591        |
| 44.0       | 11.7.2 Principal-Axis Curve Fit                                           | 595        |
| 11.8       | Region-of-Support Determination                                           | 597<br>599 |
| 11.9       | Robust Line Fitting                                                       | 602        |
| 11.10      | Least-Square Curve Fitting                                                | 605        |
|            | 11.10.1 Gradient Descent<br>11.10.2 Newton Method                         | 607        |
|            | 11.10.2 Newton Method 11.10.3 Second-Order Approximation to Curve Fitting | 607        |
|            | 11.10.4 Fitting to a Circle                                               | 608        |
|            | 11.10.5 Variance of the Fitted Parameters                                 | 617        |
|            | 11.10.6 Fitting to a Conic                                                | 621        |
|            | 11.10.7 Fitting to an Ellipse                                             | 622        |
|            | 11.10.8 Bayesian Fitting                                                  | 624        |
|            | 11.10.9 Uniform Error Estimation                                          | 625        |
|            | Exercises                                                                 | 627        |
|            | Bibliography                                                              | 631        |
| Α          | Appendix                                                                  | 639        |
|            |                                                                           | (20        |
| A.1        | Properties of an Ellipse                                                  | 639        |
| A.2        | Analytic Geometry of the Ellipse                                          | 639        |
| A.3        | Orientation and Axis Length                                               | 642<br>647 |
| A.4        | Tangent Lines and Extremal Points                                         | 648        |
| A.5        | Extremal Points From Extremal Points to Characterization of the Ellipse   | 650        |
| A.6<br>A.7 | Moments of an Ellipse                                                     | 654        |
| A. /       | A.7.1 Area                                                                | 654        |
|            | A.7.2 Second Moments                                                      | 655        |
|            | A.7.3 Second Moments and the Properties of the Ellipse                    | 656        |
|            |                                                                           |            |
| В          | Appendix                                                                  | 659        |
| B.1        | Linear Algebra Background                                                 | 659        |
| B.2        | Discrete Least Squares Understood in Terms of                             |            |
|            | Orthogonal Projection                                                     | 663        |
| -          | Bibliography                                                              | 665        |
|            |                                                                           |            |

| xvi | Contents |  |
|-----|----------|--|
|     |          |  |
|     |          |  |

| (     | Appendix                              | 666        |
|-------|---------------------------------------|------------|
| C.1   | Experimental Protocol<br>Bibliography | 666<br>667 |
| Index | X.                                    | 668        |

Robot Vision is an impressive book....an excellent introduction to the field and the first book to thoroughly cover the mathematics of computer vision. Charles Thorpe. American Scientist. A very good book indeed, probably the best currently available on robot vision and related topics....a valuable reference workfor researchers in this field. T.M. Husband. Robot Vision presents a coherent development, from image formation, through image analysis to scene analysis. The remarkable achievement of this book is that it serves both as a personal statement of the Horn school of vision and as a textbook. Every scientist and engineer involved with computational vision should read it, carefully! Alan K. Mackworth. Professor, University of British Columbia.