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0016 Neural computation: Models of brain function

• Course organisers - contact details

Dr Caswell Barry: e-mail: caswell.barry@ucl.ac.uk

Prof Neil Burgess: e-mail: n.burgess@ucl.ac.uk

https://www.ucl.ac.uk/icn/neur0016-neural-computation-models-brain-function

https://timetable.ucl.ac.uk/tt/moduleTimet.do?firstReq=Y&moduleId=NEUR0016

NEUR0016 – 15 credit course. Aims

• To introduce the consideration of neurons and synapses in terms of their 
computational properties, and interpretation of their action in terms of 
information processing.

• To introduce the analysis of an animal’s ability to learn, remember or act in 
terms of the action of neurons and synapses within the animal’s nervous 
system.

• To understand several examples of how the action of individual neurons and 
synapses in various parts of the central nervous system contribute to the 
learning, memory or behaviour of an organism.
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Artificial neural networks vs models of brain function 

1)

2)

mailto:n.burgess@ucl.ac.uk
https://www.ucl.ac.uk/icn/neur0016-neural-computation-models-brain-function
https://timetable.ucl.ac.uk/tt/moduleTimet.do?firstReq=Y&moduleId=NEUR0016%20
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Schedule 2018

General: Fundamentals of Computational Neuroscience by Thomas Trappenberg (OUP, 2002) 

Artificial Neural Networks: 
1. An Introduction to Neural Networks, James A. Anderson (MIT Press, 1995);  
2. An Introduction to Neural Networks, Kevin Gurney (UCL Press, 1997); 
3. Parallel Distributed Processing I: Foundations, Rumelhart & McClelland (MIT Press, 1986). 
4. Parallel Distributed Processing II: Psychological and Biological Models (MIT Press, 1986). 
5. Neural Networks for Control Miller W, Sutton R, Werbos P, (MIT Press, 1995) 
6. Perceptrons Minsky M & Papert S (MIT Press 1969).  
7. Genetic programming… Koza JR (MIT press, 1992). 
8. Self-Organisation and Associative Memory. Kohonen T (Springer Verlag, 1989). 

Biological neural networks: 
9. The synaptic organisation of the brain. Shepard GM (Oxford University Press, 1979).  
10. The computational brain. Churchland PS and Sejnowski TJ (MIT press, 1994) 
11. The computing neuron. Durbin R, Miall C and Mitchison G (Addison Wesley, 1989). 

Models of brain systems/ systems neuroscience: 
12. The handbook of brain theory and neural networks. Arbib MA (ed) (MIT Press 1995) 
13. The cognitive neurosciences. Gazzaniga MS (ed) (MIT Press 1995) 
14. The hippocampal and parietal foundations of spatial cognition. Burgess N, Jeffery KJ and 
       O’Keefe J (eds) (OUP 1999). 
 
Computational Neuroscience (v. mathematical) 
15. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems 

 Peter Dayan Larry F Abbott (MIT, 2001). 
16. Intro to the Theory of Neural Computation. Hertz, Krogh & Palmer (Addison Wesley, 91). 
 

General reading list
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Introduction to artificial neural networks & unsupervised learning 

AIMS 

1. Understand simple mathematical models of how a neuron’s firing rate depends 
on the firing rates of the neurons with synaptic connections to it.  

2. Describe how Hebbian learning rules relate change in synaptic weights to the 
firing rates of the pre- and post-synaptic neurons.  

3. Describe how application of these rules can lead to self-organisation in artificial 
neural networks.  

4. Relate self-organisation in artificial neural networks to organisation of the brain, 
such as in topographic maps. 

1. Books 1,2,8.  
2. Rumelhart DE & Zipser D (1986) `Feature discovery by competitive learning', in: 

Rumelhart D E and McClelland J L (Eds.) Parallel Distributed Processing 1 151-
193 MIT Press.  

3. Sharp P E (1991) `Computer simulation of hippocampal place cells', 
Psychobiology 19 103-115.  

4. Kohonen T (1982) `Self-organised formation of topologically correct feature 
maps' Biological Cybernetics 43 59-69.  

5. Udin S B, Fawcett J W (1988) `Formation of topographic maps' Annual Review of 
Neuroscience 11 289-327  

READING

Modelling the function of a neuron: 

levels of description

• full compartmental models 

• leaky integrate-and-fire models

• integrate-and-fire models

• standard artificial neuron

• threshold logic unit

Keep it simple: there’s going to be lots of them..

Very detailed

no detail
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Compartmental models. Each compartment is simple: 

Vm: membrane potential inside the compartment (relative to "ground" outside cell).

Cm: membrane capacitance - charged or discharged as ions flow in or out of the compartment 

(changing Vm) from adjacent compartments (Vm' and Vm'', axial resistances Ra and Ra' ) or 

through the membrane.

Rm: leakage resistance & equilibrium potential Em represent passive channels (rate and 

direction of current flow depends on size Vm versus Em).

Gk: variable conductances (1/resistance) specific to particular ions.  Each has its own 

equilibrium potential Ek and may vary with Vm (active channels).

inside cell

outside cell

next 

compartment

next 

compartment

Computer simulation of a 

Purkinje cell, color represents 

membrane potential.

Model cell with small no. of compartmentsCompartmental 

models, cont.

t

Vm

in soma

firing

threshold

resting

potential

action potential (‘spike’)

or large no. of compartments..
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Integrate-and-fire models

t

firing threshold (T)

resting potential (Vr)

membrane potential (V)

t

V

Input current (I)

t

No physical structure:

inputs current pulses: output: spikes

∫

‘Leaky’ integrate-&-fire

t

time constant (t), due to passive

current

leakage 

(t = CR)

temporal integration

Leakage => takes longer to reach

firing threshold & inputs must arrive

closer together in time to summate.

C= q/V,  CV=q,  CdV/dt = I; CdV/dt = (Vr - V)/ R + I, 

V=IR,  I = V/R; with spike if V = T 

Standard artificial neuron

No physical structure, no simulation of 

spikes, connections can be +ve or -ve

Inputs (xi): firing rates
output (o): firing rate

f(∑)

x1 x2 x3

Connection weights (wi): net synaptic ‘efficacy’ w1 w2 w3 o = f(∑i wi xi)

The ‘net input’ to the neuron is:

h = ∑i wi xi = w1x1 + w2x2 + w3x3,
aka. the ‘weighted sum’ of input activation.

The ‘transfer function’ f(h) relates the output (o)

to the net input: o = f(h) = f(∑i wi xi) 
and includes the firing threshold T.

Common types of transfer function

summation, transfer fn.

linear, e.g.

f(h) = h-T

threshold-

linear, e.g.

f(h)={

h

f(h)

T

h

f(h)

T

threshold

logic function

f(h)={

sigmoidal

f(h)= -----------------

h

f(h)

T

1

h

f(h)

T

1

h-T if h>T

0    if h<T

1 if h>T

0 if h<T

1

1+exp(-(h-T))
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Implications of using the ‘weighted sum’ of input 

activations as the ‘net input’ to the artificial neuron

If the total amounts of input activation & connection weight are limited*, 

the maximum net input h (& thus output firing rate) occurs when the 

patterns of input activations and of connection weights match.

w1 w2

x1 x2

o

T

Input 

‘activations’

(firing rates)

Connection 

weights:

Threshold:

Output:

o = f(h), h = w1x1 + w2x2 The input activations and the connection weights can

be thought of as vectors x and w.

The weighted sum w1x1 + w2x2 is also known as the 

‘dot product’ (w.x) of x and w and depends on the 

angle θ between them: w.x = |w| |x| cos(θ)

x1

x2

w1

w2

(w1,w2)

(x1,x2)

θ

What this means is that..

* e.g. |w|= 1, |x|=1.

The vector ‘dot product’

Definition:    A.B = |A| |B| cos(θ)

Ax

Ay

Bx

By

(Bx, By)

(Ax, Ay)

θA

θB

Ax = |A|cos(θA),   Ay = |A|sin(θA)

Bx = |B|cos(θB),   By = |B|sin(θB)

So:    A.B = |A| |B| cos(θA-θB)

= |A| |B| (cos(θA)cos(θB) +  

sin(θA)sin(θB))

= |A|cos(θA) |B|cos(θB) +  

|A|sin(θA) |B|sin(θB)

= Ax Bx + Ay By

θ

More generally:    A.B = ∑i Ai Bi

A

B
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Types of artificial neural networks

feed-backfeed-forward recurrent

single-layer

multi-layer

Learning

The problem: find connection weights such that the 

network does something useful.

Solution:

Experience-dependent learning rules to modify 

connection weights, i.e. learn from examples.

1. ‘Unsupervised’ (no ‘teacher’ or feedback about right 

and wrong outputs)

2. ‘Supervised’: 

A. Evolution/genetic algorithms 

B. Occasional reward or punishment (‘reinforcement learning’)

C. Fully-supervised: each example includes correct output.
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Unsupervised learning

• The ‘Hebb rule’, often interpreted as: strengthen 

connections between neurons that tend to be active at 

the same time. (cf Hebb, 1949)

xj xiwij

e.g. wij → wij + ε xj xi

wij → wij + Δwij 

Δwij

xi

xj

0

0

1

1 +

? -

-

Cf. Long-term potentiation, 

long-term depression.

N.B. ANNs just model firing rate, so cannot implement more complex

‘spike-time dependent’ synaptic plasticity (Bi &Poo, J Neurosci., 1998)

Unsupervised learning, example 1:

Competitive learning

‘Lateral inhibition’ => one ‘winner’ if strongly activated enough

Rumelhart and Zipser (1986). ‘Winner-takes-all’ architecture.

Fixed -ve connection weights

Modifiable connections
wij

• Random initial connection weights

• Present nth input pattern  xn

• winner: output ok (i.e. hk>hi for all ik) 

set ok=1, oi=0 for all ik

• Hebbian learning: wij  wij +  oi xj
n  

i.e. wkj  wkj + xj
n, other weights don’t change.

• Normalisation: reduce total size of connection weights 

to each output (so |wi| =1) by dividing each by |wi|

or using alternative combined learning rule: 

wkj  wkj + (xj
n - wkj)

• Present next input pattern..

x1 x2 x3 x4 x5

o1 o2 o3

w11

The output whose weights are most similar to xn wins and its weights then 

become more similar. Different outputs find their own clusters in input data.

Threshold linear units.
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The output whose weights w are most similar to xn wins, and its weights then 

become more similar. Different outputs find their own clusters in input data.

Sharp’s (1991) model of place cell firing

A

B

C

D

E

F

G
H

Inputs:

Cue distances, directions

Competitive

learning

A B C D E F G H A B C D E F G H
near

far

right

left



10

Competitive learning cont.
Competitive learning is built upon 3 ideas: 

– Hebbian learning principle: when pre-synaptic and post-synaptic units are 

co-active, the connection between them should increase. 

– Competition between different units for activation, through lateral 

inhibition / winner-take-all activation rule 

– Competition between incoming weights of a unit, to prevent all weights 

from saturating, by normalizing the weights to have fixed net size:  if some 

incoming weights to a unit grow, the others will shrink.

• Competitive learning performs clustering on the input patterns: 

– Each time a unit wins, it moves its weights closer to the current input pattern 

– A given unit will therefore be more likely to win the competition for similar inputs 

– Each unit's weights thereby move toward the centre of a cluster of input patterns 

• See Chapter 5: "Feature Discovery by Competitive Learning", in Parallel 

distributed processing: explorations in the microstructure of cognition, edited by 

Rumelhart et al, 1986. Textbook pages 88-93.

• Example of competitive learning: Sharp’s model of place cell firing.

Topographic organisation of 

orientation selectivity in V1
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Unsupervised learning, example 2:

Feature maps & self-organisation

x1 x2 x3 x4 x5

o1 o2 o3

w11

Arrange output units 

in a sheet:

xj

ok

outputs

inputs

Willshaw and Von der Marlsburg’s (1976) ‘retinotopic map’
Lateral connections (between outputs)

vary with neurons’ separation -

excitatory nearby, inhibitory far apart

(‘mexican hat’ function):

wij

+
-

separation

• Works like competitive learning, but not only 1 winner active: nearby units 

also active and so also learn to respond to similar input patterns.

• Produces a 2D map of the similarities present in a large set of input patterns.

Kohonen’s feature map (1982)

1 winner-takes-all as in competitive learning, but learning rule modified so 

that weights to outputs neighbouring the winner (ok) are also modified using 

a ‘neighbourhood function’ F.

xj

outputs

inputs

wij  wij + F(i,k)(xj
n - wij)

ok

Cf. Learning in a volume, e.g. caused by the physical spread of chemical 

neurotransmitters or messengers, does not need (implausible?) lateral 

connections used by Willshaw & Von der Marlsburg.

Causes nearby outputs to learn to represent (be active for) similar

stimuli: producing a 2D map of complex (many D) data.  

Present many input patterns, for each 

change weights according to:

F(i,k)
1

|i-k|
0
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Kohonen’s feature map (1982), cont.

The structure of a map of 2-D data, and how it changes with learning, 

can be seen by showing each output unit in the part of input space that 

it ‘represents’ (i.e. to which its connection weights best match)

Kohonen’s feature map (1982), cont.

The structure of a map of 

high-dimensional data can 

be seen by labelling what 

each output unit represents: 

The input for each animal

is a long binary vector of 

its attributes (e.g. 2-feet, 4-

feet, can swim, can fly, has 

feathers, eats meat etc 

etc).  
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SUMMARY: Introduction to Artificial Neural 

Networks, Unsupervised learning

1. An artificial neuron (v. simple model of a real neuron, McCulloch and Pitts, 

Rosenblatt..). 

Input values: xi, connection weights: wi, ‘weighted sum’ of inputs ∑i wixi,

threshold T, output o; ‘transfer function’ f(input).

2. Learning: How to find a useful set of connections wij: 

The Hebb rule and LTP: connection weight wij between neurons with 

activation xi and xj changes as wij → wij + ε xi xj.

3. Unsupervised learning/ self-organisation in ‘feed-forward’ neural networks 

(NNs). Training set of input activations xk; each causes output activations ok, 

and connection weights between active units are strengthened.

(a) Competitive Learning (Rumelhart and Zipser, 1986). Lateral inhibition/ 

winner-take-all dynamics. Weight normalisation. Feature extraction: data 

clustering; Sharp’s (1991) model of place field formation.

(b) Feature Maps. ‘Mexican hat’ lateral connections, Willshaw and Von 

der Marlsburg’s retinotopic map. Kohnonen’s ‘feature map’: learning in a 

local volume (cf chemical diffusion?).

Unsupervised learning, example 3:

Hopfield’s (1982) associative memory network

• Fully connected recurrent network (no input

• Symmetric connection weights (wij = wji)

• Units are active (Si =1) or inactive (Si =-1)

Si

Si Sj

Sjwij

wji

wij
wij=wjisi = sign(∑jwijsj)

T=0

h

f(h)
1

-1

si=f(hi), where 

hi=∑jwijsj

Δwij

si

sj

-1

-1

1

1 







Activation: Learning:

Learning: impose pattern of activation, use 

‘Hebbian’ rule to change weights 

wij  wij + sisj

Recall: start from similar pattern of activation, change

activation according to sign of input to recover

original pattern 
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Hopfield networks, cont.

Patterns of activation are learned as ‘stable states’ under the rule for

updating activations, e.g.

+1 -1
+ -

Δwij

si

sj

-1

-1

+1

+1 







Several different patterns can be learned in the same network, but the

memory capacity is limited to about 0.14N.

Memory is ‘content addressable’: performing ‘pattern completion’ of partial

cue. Spurious memories (combinations of real ones) are also formed.

More plausible learning rules show similar behaviour

Hopfield networks: attractors & stable states
To support a pattern of activity, connections should be positive between 

units in the same state (i.e. 1,1 or -1,-1) and negative between units in 

different states (1,-1 or -1,1), i.e. sisj wij > 0

The ‘frustration’ or ‘energy’ of the system is how much this is not true, i.e. 

E = -∑ij sisj wij

The update rule changes each unit’s activity to reduce the overall 

frustration, until the network ends up in a stable state from which it cannot 

be reduced further. 

The learning rule sets the weights so that to-be-remembered patterns of 

activity are stable states (aka ‘attractor states’).
+1 -1

+ -si

sj
wij

{si }

E
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Examples of Hopfield networks

A 5x9 network storing 8 patterns Retrieval in a 130x180 network

Hopfield networks, cont.

• Activation rule: 
– If net input is greater than zero, unit gets an activation of 1; otherwise activation 

is -1. 

– random, asynchronous update of activations 

• Architecure: 
Symmetrically connected recurrent network.

• Hebbian learning: 
For each training pattern, 
– Set states of units to corresponding elements of pattern.

– Increment each weight in proportion to product of pre- and post-synaptic states. 

• Desirable features:
– Attractor dynamics: guaranteed convergence to an attractor state.

– Pattern completion  

• Undesirable features:
– Spurious attractors

– Limited storage capacity


