
Silverback: A Global-ScaleAr chival System

HakimWeatherspoon,ChrisWells,Patrick R.Eaton,
BenY. Zhao,andJohnD. Kubiatowicz

ComputerScienceDivision
Universityof California, Berkeley�

hweather, cwells, eaton, ravenben, kubitron � @cs.berkeley.edu

Report No. UCB/CSD-01-1139

March2001

ComputerScienceDivision (EECS)
Universityof California
Berkeley, California94720

Silverback:A Global-ScaleArchival System

HakimWeatherspoon,ChrisWells,PatrickR. Eaton,
BenY. Zhao,andJohnD. Kubiatowicz

ComputerScienceDivision
Universityof California,Berkeley�

hweather, cwells, eaton, ravenben, kubitron � @cs.berkeley.edu

March2001

Abstract

The rise of ubiquitouscomputinghas createda need
for wide-areadurablestorage. We proposea modeland
interfacefor such an archival system,that stores data
in a durable, verifiable, available, andself-maintainable
manner. We arguethat such a systemcanbecreatedby
usingnovel techniquesof erasurecodes,securehashing,
and decentralizedwide-area location infrastructuresto
distributefragmentsacrossthewide-areaonanarbitrary
setof servers. Thismodelallowsfilesto remainavailable
evenasservers fail. Finally, weimplementSilverback, a
prototypearchival systemusingthemodelthatwedevel-
oped,andmeasure its performance.

1 Intr oduction

Theworld is undergoingaseconddigital revolution. The
first beganwith the adventof the computer, which rad-
ically changedmanufacturing, information processing,
andscientificendeavor. The secondhasbeenfar more
subtleand at the sametime more pervasive – the rise
of ubiquitouscomputing. With the break-neckpaceof
miniaturizationandconcomitantdecreasein powercon-
sumption,computationaldevicesarerapidlyfindingtheir
way into the very fabric of lives: in cars,walls, cloth-
ing, andmaterials.Evenmoreastonishingis thefactthat
gigabytesof informationcannow be deployed in small
disposabledevices. We can only guessat the ultimate
ramificationsof this technology.

Oneconsequenceof inexpensive storageandcompu-
tationis thatonlinedigital datais rapidly replacingother
formsof archival storage.This transformationis at once
a greatopportunityanda greatliability – while digital
informationis far moreflexible to manipulatethan(say)
paper, it is also easily destroyed. This problemof in-
formationfragility is reachingcritical proportions,since

ordinary peopleare beginning to commit precious,ir-
replaceablememories(suchas photos)to digital form.
Consequently, we assertthat themostpressingquestion
in the ubiquitouscomputingrevolution is: where does
persistentinformationreside?

This paperis aboutpersistentinformation. The con-
structionof a highly-availablepersistentstorageinfras-
tructurepresentsmany complex issues,suchassecurity,
consistency, performance,availability, andarchivaldura-
bility. SystemssuchasFarsite[1] andOceanStore[7]
attemptto addressall of theseissuessimultaneously. In
this paper, however, we will focuson onesingleaspect:
version-basedarchival storage.Wewill presentourmus-
ingsin thecontext of Silverback,a global-scalearchival
systemunderconstructionhereat Berkeley. The pur-
poseof an archival systemis to durably storeinforma-
tion from many users;durablein this context maymean
centuriesor millennia.An ancillarydesireis thatof time
travel[15], namelythe ability to reconstructtheview of
an archiveddocumentasit appearedat any time during
its lifetime. In today’s world of ubiquitouscomputing,
we caneasilyconsiderthe possibility that every person
in theworld maywish to archive information. Thuswe
wish to considersystemsthat scaleto 10��� usersand
store(perhaps)onemole1 of bytes(6 � 10���).

The ubiquitouscomputingvision suggestsan on-line
archival system,ratherthansomethingmoretraditional,
suchas tape. Thereare at leastthreereasonsfor this.
First, a ubiquitousarchival systemmustbeableto com-
mit information at high ratesfrom numerousdevices.
This implies the collaborative effort of many servers
writing to spinningstorage(for bandwidth)anduseof
massive redundancy with continuousrepair(for durabil-
ity). Second,ubiquitousdevicesmight be unreliableor
possesslimited storage;this suggeststhat devices will
makefrequentuseof onlineretrievalof archival informa-

1A moleof bytesis not aslargeasit might seem;seeSection3.5.

1

tion. Finally, tapestoragedensityis not keepingup with
the 18-monthdoublingperiodof disk capacity. Hence,
archiving informationto spinningstorageis rapidly be-
comingtheonly optionfor archival storage.

Steppingbackfor amoment,we canlist severalprop-
ertiesthatwedesirefrom aglobal-scalearchival system:	 durability: Datais storedfor long periodsof time–

decades,centuries,or evenmillennia.	 verifiability: Informationshouldnot subjectto sub-
stitutionattacks.	 availability: Data is accessiblemost of the time,
where“most” is definedin many
���
 of availability.	 maintainability: The systemrecovers from server
andnetwork failures,efficiently incorporatenew re-
sources,andadjustto changingusagepatterns,all
without manualintervention.	 atomicity: Eachupdateis appliedatomically, with-
out interferencefrom otherpendingupdates.	 performance: Responsetime is boundedanddeter-
ministic– consistentwith onlinestorage.

This paperwill describehow to constructa systemthat
meetsall of theserequirementswhile maintainingscala-
bility to billions of usersandmolesof bytes.

The restof this paperis organizedas follows: First,
Section 2 presentsessentialelementsof our archival
model, completewith a minimal setof archival opera-
tions. Next, Section3 exploresrequirementsandcoding
techniquesto achieve deeparchival storage, i.e. infor-
mationthat remainsunchangedfor millennia. Section4
discussesthe designand implementationof the Silver-
backarchival system,while Section5 exploresthe per-
formanceof this system.Section6 setssomefuture di-
rectionsandSection7 discussesrelatedwork. Finally,
we concludewith Section8.

2 Ar chival Model

In thispaper, anarchiveis a linearlyorderedsequenceof
versions, whereeachversionis a read-onlysequenceof
bytes.New versionsmaybeaddedto theendof thever-
sionsequencethroughupdateoperations,eachof which
generatesa new version. Datamaybe readfrom a spe-
cific versionthroughreadoperations.Eachversionis a
stand-aloneentity andis abstractlyunrelatedto any pre-
viousversions.For concreteness,anarchive might bea
file, adirectory, or adatabaserecord. Archivesmayalso
containthenamesof otherarchives.

We will assumethe ability to generateglobally-
uniqueidentifiers(GUIDs); wewill discussthespecifics
of GUID generationin Section 3.2 and Section 4.3.
Archivesare uniquely specifiedby archive GUIDs (A-
GUIDs). Every versionof every archive will alsohave
a uniqueversion GUID (V-GUID). While V-GUIDs are
globally uniqueacrossall archives,version-IDsareonly
uniquewith respectto a specificarchive.

Whenmultiple updatesaresimultaneouslysubmitted
to anarchive,anentity in thenetwork,calledaserializer,
must provide atomicity. This serializertakes eachup-
date,atomicallyappliesit to the archive (including any
operationsrequiredto make this updatedurable),then
generatesa new V-GUID. Consequently, whena client
seeksthemostrecentversionof anarchive, a requestis
sentto theserializerto obtaintheV-GUID of this latest
version.More generally, thesystemprovidesa mapping
suchthat,givenanA-GUID andsomeversioninforma-
tion (for instance,atimestamp),theGUID of aparticular
versioncanberetrieved.

A global-scalearchival systemmustincludea routing
infrastructurecapableof forwardingrequeststo appro-
priateservers.Requestsfor differenttypesof GUIDsare
handleddifferently, so all requestswill be taggedwith
their type.While thenatureof theroutinglayeris anim-
plementationdetail, a good implementationcansignif-
icantly improve theperformanceof thearchival system.
Additionally, acaching layermaskedby theroutinglayer
cangreatlyimprove the latency to data;notethat cache
consistency is greatlysimplifiedsinceall requestsfor in-
formationareagainstspecificversionsof anarchive.

2.1 Ar chival Interface

In this section,we will list the operationsthat mustbe
presentin an archival system. First, to generatea new
archive,a usermustspecifya human-readablenamefor
thearchive,theuser’s identityasapublickey, andapub-
lic/privatekey pair for thesigningof commits:

create(name, identity, keys) � A-GUID

An emptyfirst versionis producedaswell. We assume
that userskeepthe A-GUID of one “root” archive with
themat all times. This canbe usedto constructan ar-
bitrary, hierarchicalnamingstructurein which to store
mappingsbetweenuser-relative namesandtheir associ-
atedA-GUIDs.

To readdata,we assumethat a client providesa V-
GUID andaspecificationaboutwhich datato read:

read(V-GUID, offset, length) � data

Thisoperationreturnsdatafrom thespecifiedversion.

2

New versionscanbeeitheruniqueorderivedfrompre-
viousversions.We highlight threedistinctupdateopera-
tionsin thefollowing: write() , append (), andmod-
ify() . Eachof theseoperationsgeneratesa new ver-
sion of an archive, returninga V-GUID in the process.
First, to generatea completelynew versiona write()
operationis used:

write(A-GUID, data) � V-GUID

This operationcommitsa new versionof thearchive. A
secondtype of updatetreatsthe archive asa permanent
log:

append(A-GUID, data) � V-GUID

Thisoperationappendsnew informationto theendof the
mostrecentversion. Note thata persistentlog is a fun-
damentalcomponentof many distributedalgorithms.Fi-
nally, weprovidetheability to deriveanew versionfrom
a previousversionthroughthemodify() operation:

modify(V-GUID, offset, data, allowbr)� V-GUID or nil

Theallowbr flagdenoteswhetheror notweallow this
operationto generateaversionbranch.Branchingwould
occurif theV-GUID is not thelatestfor thearchiveat the
time this operationis serialized;if this happensandthe
allowbr flagis setto false , thenthemodify() op-
erationwill returnnil2. It is upto userto placeadditional
semanticson top of branchesif they occur.

Finally, we provide query operationsto acquirespe-
cific versioninformationfrom a givenarchive. Thefirst
form returnsthelatestV-GUID from a givenarchive:

query(A-GUID) � V-GUID

This returnsthe latestV-GUID at the time that the re-
questreachestheserializer. Thesecondform of query
is moregeneral:

query(A-GUID, Spec) � V-GUID

This takes a specifier for a version (which may be a
timestamp,version-ID,or othermeansof identifying a
version)andreturnsanappropriateV-GUID.

2.2 Example

Figure1 providesa pseudo-codedescriptionof how to
usetheinterfaceof Section2.1 to back-upa file system.
Althoughsimplistic,thisexampleillustratesanumberof

2Note that settingallowbr to false allows read-modify-write
operationson low-conflict archives. Higher ratesof conflict can be
handledwith anappend-onlyloggingmethodology.

ARCHIVEFS(dir, A-GUID)
V-GUID � query(A-GUID);
foreach(file in dir)

name= “dir/file”;
record � SEARCH(V-GUID,name);
if (isnull(record))

FILEGUID � create(name,identity,key);
record ��� name,FILEGUID, 0 � ;
append(A-GUID, record);

else
FILEGUID � record.aguid;

endif
if (record.timestamp�� stattime(file))

record.timestamp� stattime(file);
append(A-GUID, record);
if (isdirectory(file))

ARCHIVEFS(name,FILEGUID);
else

write (FILEGUID, contents(file));
endif

endif
endfor

Figure 1: Archival File Backup: Inputs area top-level
directoryandA-GUID for thatdirectory. We maintaina
simplename� (A-GUID, timestamp)mappingasa lin-
earstructurethatis traversedby theSEARCH() function.
Changesto this mappingareperformedby appendinga
new mappingfor thegivenname;this is simplebut inef-
ficient. Mappingsareinsertedasrecordsthataretriplets
with threefields: name, aguid, andtimestamp.

importantpoints. First, we generatea separatearchive
for every directory and every file. Second,directories
areapplication-levelassociativemappingsbetweenuser-
relative namesand the A-GUIDs for that name. This
exampleprovidesa very primitive lineararrayfor name
resolution;useof the modify() operationwould per-
mit more efficient hash-tablesto be constructed.Note
alsothatthisexampleprovidesnofile deletionoperation.
Third, recognitionof changesis doneby theapplication
(in this casethroughtimestamps),not by thesystem.Fi-
nally, by reusingtheA-GUID for afile with eachchange,
we associateall versionsof a file with oneanother.

3 DeepAr chival Storage

Given the model in Section 2, we now describethe
mechanismswhich make a wide-areaarchival system
possible.Thesemechanismsmustprovidehigh levelsof
durability andavailability, while ensuringusers’datain-

3

tegrity 3. In particular, we mustuseexplicit redundancy
andgeographicdistributionof datato protectdataagainst
inevitable hardware failuresand maliciousthreats,and
usecryptographicallysecuremechanismsto guarantee
theimmutability of read-onlydata.

3.1 A Casefor Erasure Codes

The mostcommonmethodsusedto achieve high dura-
bility of dataarecompletereplicationandparityschemes
suchasRAID [16]. Theformerimposesextremelyhigh
storageoverhead(sizein storageis severalfactorslarger
thanoriginal data),while the latterdoesnot provide the
robustnessnecessaryto survive high rateof failuresex-
pectedin thewide area.Erasurecodesareanalternative
to theseclassicmechanismswhich providesextremely
high durability andavailability without imposinganun-
reasonableoverheadin storagespace.

Usingerasurecodes,ausercanbreakupanobjectinto� fragmentsandrecodetheminto � � fragments,where����� . Suchencodingincreasesthesizeof thedataby a
factorof � . We referto ����� astherateof encoding.The
key strengthof erasurecodesis that the original object
canbereconstructedfrom any � fragments.

There are a number of erasurecodeswith differ-
ent performancecharacteristics. Some, such as Tor-
nadoCodes[8], scalelinearly with the numberof frag-
ments. Tornadocodesin particularcan reconstructan
objectvery quickly, but do so only with high probabil-
ity and only in the presenceof slightly more than one
half (for rateone-half)of the fragments.Theseproper-
ties make TornadoCodesappropriateonly when large
numbers(hundredsto thousands)of fragmentsare be-
ing produced.The “ReedSolomon”[11] family of era-
surecodesarepopular, but have encodingtime scaling
quadratically, makingthempracticalonly for relatively
small objects. Becausewe encodesmall blocks in Sil-
verback,wechoseaneffiecientversionof ReedSolomon
calledCauchyReedSolomoncodes.

3.1.1 Availability

Erasurecodingexploits thestatisticalstability of a large
numberof independentcomponents.Theavailability of
an object increaseswith the numberof fragmentsand
rateof encoding.As thefractionof thefragmentsneeded
to reconstructan objectdecreases,probability of reach-
ing enoughfragmentsfor reconstructionincreases.Sim-
ilarly, as the numberof fragmentsfor an objectgrows,
the probability that not enoughfragmentsareavailable
for reconstructiondueto network partitionsandmachine

3Privacy of datacanbeenforcedby end-to-endencryption.

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60

N
um

be
r

of
 fa

ile
d

di
sk

s
pe

r
m

ill
io

n
di

sk
s

Age in months

Failure distribution of hard disks

Measured
Calculated

Figure2: Disk failuredistribution

failuresdecreases.The availability of an objectcanbe
summarizedasbelow:!#"

probabilitythatanobjectis available$&% maximumsafenumberof unavailablefragments'
totalnumberof fragments� totalnumberof machinesin theworld(numberof currentlyunavailablemachines

! "*),+.-/ 0 1 �
243 0�5 2468793% 7 0�52 6 % 5 (1)

Thisformulastatesthattheprobabilitythatanobjectis
availableis equalto thenumberof waysin whichwecan
arrangeunavailable fragmentson unreachableservers,
multiplied by the numberof ways in which we canar-
rangeavailablefragmentson reachableservers,divided
by thetotal numberof waysin which we canarrangeall
of thefragmentson all of theservers.

For instance,with a million machines,ten percent
of which are currently down, simply storing two com-
plete replicasprovides only two nines (:<;
�
) of avail-
ability. A ����= -rateerasurecoding of a documentinto
16 fragmentsgives the documentover five nines of
availability(:<;
�
�
�
�
�>),yetconsumesthesameamountof
storage.With 32 fragments,theavailability increasesby
anotherfactorof 4000,supportingtheassertionthatfrag-
mentationincreasesavailability. This is a consequence
of thelaw of largenumbers.

3.1.2 Durability

An analysis of the MTTF of fragments and frag-
mentedobjectsis alsoessentialin motivatingdistributed
archives. Disk failure distributionsobtainedfrom [10]
and shown in Figure 2 indicate that while disks have
someinfantmortality, ahighnumberof themsurvivethe

4

0 0.5 1 1.5 2 2.5 3 3.5 4
Repair Epoch

(months) 0
10

20
30

40
50

60
70

Number of
fragments
(rate = 2)

1
1e+10
1e+20
1e+30
1e+40
1e+50
1e+60

MTTF (years)

Figure3: MeanTime to Failureof aBlock

durationof their servicelife of five years. Using these
numbers,we determinedthat the ageof a randomlyse-
lecteddisk wasuniformly distributedfrom zeroto sixty
months.Thisallowsusto calculatetheexpectedlifetime
of a fragmentafterdissemination,andultimately to cal-
culatethemeantimeto failureof anentireobject.Weac-
ceptthesimplifying assumptionthatall fragmentswould
fail independently, no servers behave maliciously, and
that the repairmechanismwould (if the objectwasstill
alive), periodicallyreconstructandre-disseminateevery
fragment. Our parametersincludethe rateof encoding
(���?=), the numberof fragments(varying from > to @�>
in incrementsof >), and the lengthof the repairepoch
(varyingfrom ���A> monthsto > monthsin incrementsof���A> month).

Figure 3 shows the resultsof our calculations.The
scaleof theMTTF axisis exponential,indicatingthatthe
MTTF of objectsscalessuper-linearly with the inverse
of the repair epoch. A more exciting result is that the
MTTF of objectsscalesexponentiallywith the number
of fragments.With twelvefragmentsandarepairtimeof
two weeks,we seethat an objecthasan MTTF of over
onehundredbillion years.

3.2 Verification Scheme

Erasurecoding requires the precise identification of
failed or corruptedfragments. As a result, the system
needsto detectwhena fragmenthasbeencorruptedand
throw it away. We thereforeintroducea secureverifica-
tion schemefor fragments.

For eachencodedblock, we createa verificationtree
over its fragments. Figure 4(a) is a binary verification
tree. Theschemeworksasfollows: We producea hash

(a)

(b)

Figure4: A VerificationTree is a hierarchicalhashover
the fragmentsof the blow. The top-mosthashis the
block’sGUID.

over eachfragment,concatenatethecorrespondinghash
with a sibling hashto producea higher level hash,we
continuethealgorithmuntil thereis a topmosthash.We
thenstorewith eachfragmentall of thesibling hashesto
thetopmosthash,a total of log � hashes,where � is the
numberof fragments.Figure 4(b)shows thecontentsof
a “disseminationfragment”. Thehashat the root of the
tree is the nameor GUID of the block. To ensurethat
otherdatadoesnot hashto the sameGUID, we usethe
SHA-1 [9] securehash.

Onreceiving a fragmentfor recoalescing,aclient ver-
ifies it by hashingover the dataof the fragment,con-
catenatingthat hashwith the sibling hashstoredin the
fragment,hashingover the concatenation,andcontinu-
ing this algorithm until thereis a topmosthash. If the
final hashmatchestheGUID for theblock,thenthefrag-
menthasbeenverified; otherwise,the fragmentis cor-
rupt andshouldbediscarded.

3.3 Dissemination

The serializermust store fragmentsin a mannerthat
avoids correlatedfailures. Otherwise,the statisticalad-
vantagesof erasurecoding becomesgreatly reduced.
Correlatedfailurescan occur, for instance,within ge-
ographicregions or administrative domains. Avoiding
correlationis importantenoughthat we devote a com-
pletesectionto this in Section4.3.1.

3.4 Repair

Crucial to the implementationof a durablearchival sys-
temis theuseof efficient, robustrepairalgorithms.In a

5

distributedarchival systemwith thepreviouslydiscussed
properties,thereare threebasictypesof repairmecha-
nisms: local fragmentmaintenance, passivedetection,
and active sweep. Servers can perform local fragment
maintenanceby periodicallycheckingtheintegrity of lo-
cal fragments. Whenservers fail, however, the system
requiresa distributedschemeto detectlossof fragment
availability. If neighbornodesmonitor their peers,they
caninform interestedpartieswhencertainfragmentsare
no longeravailable. Yet even this schemefalls short in
the presenceof maliciousservers. A periodicsweepof
all thefragmentsbysomeentityis requiredto completely
protectagainstacatastrophiclossof data.

Passive detection,notification,andactive sweepsare
simplified by the existenceof someentity chargedwith
the survival of a user’s data. A ResponsibleParty is a
serviceprovider paid by usersthat plays such a role.
Becauseit is a serviceprovider, the ResponsibleParty
canremainonlinecontinuously, andthusreceive notifi-
cationsof fragmentfailuresaswell asperiodicallysweep
throughusers’data.

3.5 A Mole of Bytes

Humanitycurrentlygeneratesanestimated��; B exabytes
of dataperyear. An archival systemshouldbedurableon
theorderof �C:�:�: years,soa capacityof over �C: � � bytes
is desirable.Thisnumberis closeto onemole(@D�E�C: ���)
of bytes. The mechanismsdescribedin the preceeding
sections,combinedwith theincreasingcapacityof disks
andnetworks,make it possiblefor the first time to pos-
tulate the storageandmaintenanceof a mole of bytes.
Put anotherway, what arethe resourcesneededto pre-
vent the lossof a singlebyte in a moleof bytesfor one
thousandyears?Assumingthatencodedobjectsfail in-
dependently, theanalysisperformedfor a singleobject’s
MTTF canbeextendedto any number, F , of objectssim-
ply by taking the FHGJI root of the desiredprobability of
failure(in ourcase,;KB).

Using the repair schemedescribedin Section3.1.2,
with sixty-four total fragments,a rate ���A> erasurecode,
anda repairepochof ten months,a moleof bytes(bro-
ken up into > kB blocks, can be expectedto fail after
twenty-seventhousandyears.Therepairmechanismfor
a mole of bytesrequiresthat onebillion billion bits be
transferredper second.If we assumethat thereare ten
billion machinesin the world, the bandwidthrequired
per machineis thereforeonehundredMbs. This num-
ber is within oneorderof magnitudeof today’s network
capacity, indicatingthata wide-areaarchival systemcan
successfullyscaleto serviceonemole of bytes. Scala-
bility becomeseven more feasiblewhenmoreefficient

Decoder
Network

Application

Client

Network

Update

Encoder/Decoder

Serializer

Tapestry

Local Storage

Archival Storage

Network

Storage Server

Figure5: ArchiveArchitecture

repairschemesareused— schemeswhich only transfer
fragmentswhich requirereconstitution.Additionally, as
network bandwidthgrowswith Moore’sLaw, increasing
numbersof byteswill becomemaintainable.

4 Implementation

Figure5 shows the architectureof the prototypeSilver-
backarchival system.The wide-arealocationandrout-
ing infrastructureshown in the middle of the architec-
ture is Tapestry[17], a wide-arearouting and location
infrastructurediscussedin greaterdepthin Section4.2.
All nodesin our implementationcommunicatethrough
Tapestry, sothat thesetof storageservers(shown at the
bottomof the figure) which storefragmentsfrom a sin-
gleobjectcanall becontactedby asinglemessage.Each
nodein thenetwork canserve asa client, a serializer, a
storageserver, or asany combinationof theseroles.We
haveshown nodestakingon singlerolesfor simplicity.

In this sectionwe discussour implementationsof the
componentsandinterfacesoutlinedin 2 and3. Webegin
ourexplainationwith thearchival objectstructurein 4.1,
thenTapestryin4.2,next theserializerin 4.3,andfinally
maintainingthesystemin 4.4.

4.1 Ar chival Object Structure

Figure 6 presentsgraphicallythe centraldatastructure
usedby the Silverbackarchival layer. At the heartof
this structureis the data B-tree, a conventionalB-tree
with blocksof datastoredat the leaves. This structure
is shown in the figure inside the dashedbox. As in
databases,all blocksof theB-treesneednotbecolocated
at all times. To ensurethe integrity of blocks prior to
archival, the dataB-treeusessecureSHA-1 hashes,or-
ganizedasin Section3.2, to refer to othernodesin the

6

Figure6: Thedataobjectstructure.

tree.
ThedataB-treeusesacopy-on-writemechanism.The

serializeroperateson thedataB-tree,utilizing thecopy-
on-write mechanism,to transformthe object from one
consistentstateto the next. Becauseof the properties
of thecopy-on-writemechanism,asmallupdateonly re-
quireschanginga numberof blocksequalto the height
of thetreeandboththeold versionandthenew version
areaccessibleby referencingtheir distinctroot nodes.

As theserializerproducesnew versionsof thedataB-
tree, it passesthe new versionto the archival layer for
checkpointing. A checkpointis aself-containedobjectin
thearchive; thatis, it canbereconstructedwithout refer-
enceto otherversionsor thelog (to bediscussedbelow).
To createa self-containedarchive, thearchival layerde-
scendsthetreearchiving blocksasin a pre-ordertraver-
sal; thatis, all child blocksarearchivedbeforetheir par-
ent.For archive,a block is erasureencodedto producea
numberof encodedfragments. Theseencodedfragments
arehashedusingtheSHA-1 algorithmto producea ver-
ification tree, as describedin Section3.2. The hashes
neededto verify anencodedfragmentarecombinedwith
the encodedfragmentto producea disseminationfrag-
ment, or simply fragment. The root hashproducedby
theverificationtreebecomesthename,or GUID, for the
block, andeachdisseminationfragmentof thatblock is
namedby that GUID. This GUID is storedin the par-
entblocksothatavalid, permanentreferenceis archived
whentheparentis archived.In Figure6, versionsLNM and

L �O� have beencheckpointedandthe full encodingpro-
cesshasbeenshown for blocks P � and PQ�R .

Evenwith thecopy-on-writeoptimization,any change
to a dataobjectrequiresencodingandarchiving at least
a numberof blocksequalto the heightof the tree. For
small updates,even this seemsinordinantly expensive.
To avoid the overheadof archiving blocksfor eachup-
date,mostof whichwill besmall,thearchival layerdoes
not archiveeveryversionwith a checkpointasdescribed
above. For versionswhich are not checkpointed,the
archival layer insertsa log entry. Log entriesdescribe
how to alter a checkpointedversionof a dataobject to
restorean intermediateversion. In Figure6, thearchive
canreconstructversion LTS by applying log entry LNS to
checkpointedversion LNM ; version L R is recoveredby ap-
plying log entry L R to versionLNS , andsoon. VersionL �O�
is recoveredby accessingthecheckpointfor version L �O�
directly, withoutany referenceto thelog. Thefrequency
of checkpointis variableandcouldevenbeintrospected
upon,basedon thefrequency andsizeof updates.

4.2 Tapestry

Objectsin Silverbackare free to residean any server.
While this provides tremendousflexibility for replica-
tion, caching,andmigrationpolicies, it makesthe task
of findingobjectmuchmoredifficult.

This task falls to Tapestry,Silverback’s routing and
locationsubsystem.Tapestryis anIP overlayinfrastruc-

7

L4

L2

L1

L3

L4

L4

L3

L2

L3
L2

L1

2118

4598

0098

3E98

7598

87CA

9098

0325

2BB8

B4F8

D598

1598

Figure7: Tapestryroutingexample. This figureshows a
routethatmight betakenby a messageoriginatingfrom
Node :�U�=�B destinedfor Node >QB?
�V .
ture that usesa distributed, fault-tolerantdatastructure
to explicity track, by GUID, the locationof all objects
in thenetwork. EachGUID mapsdeterministicallyto its
uniqueroot nodein thenetwork. A storageserver pub-
lishesan object’s by routing via Tapestry(asdescribed
below) from itself to therootnode,depositingpointersto
theobject’s locationat eachTapestryhopalongtheway.
To find anobject,a client mapstheobject’s GUID to its
root nodeand routesto that root node. Tapestryrout-
ing is hierarchical,andmultiple routesto a destination
form atreerootedat thedestination.Thisprovideslocal-
ity properties,sincethe pathtaken to root by any client
searchingfor anobjectnearbywill with high probability
intersectthe pathtaken by the storageserver at publish
time. TheTapestrylocationclient routesdirectly to the
storageserverwhenit findsa locationpointerfor theob-
ject it is looking for. If sucha crossingdoesnot occur,
the route will eventually reachthe object’s root which
alsoholdsa pointerto theobject.

The Tapestryroutingschemeis basedon the hashed-
suffix routing structureoriginally presentedby Plaxton,
et. al. [12]. It useslocal neighbormapsto incrementally
routemessageto the destinationaddressdigit by digit.
For example,a nodewith address0325searchingfor a
nodewith address4598wouldfollow aroutealongnodes
with addressWXWXW V)ZY W[W
�V)ZY W B�
�V)ZY >QB?
�V ,
whereW ’s representwildcards.Thisprocessis illustrated
in Figure7.

A key propertyof Tapestrylocationthat the archival
layer utilizes is that of locality. Since all fragments
belonging to a block are namedby the block GUID,
a searchfor fragmentsfor reconstructionroutesto the
“root node”of theblock, returningtheclosest\ blocks

to satisfythethreshold.

4.3 Serializer

Theserializeris theonly nodein thesystemwhichis ca-
pableof encodingobjectsfor storage.Sinceit is respon-
sible for orderingupdatesto anarchive, it mustpossess
a copy (or a sliceof a copy) which it altersaccordingto
writesit receivesfrom theclient. Also, thereis a unique
serializeron a per archival objectbasis. Therefore,up-
datesto differentarchival objectswill communicatewith
different archives. The seperationsallows the archival
systemto scaleto thewidearea.

Theclientapplicationcodecommunicatesthroughthe
network to the serializerupdatemechanismto get V-
GUIDs andto write changesto archives. Note that the
decodelayer of the client is capableof communicating
directly with the archive; it can sendrequestsfor ver-
sions throughTapestryand is thereforecapableof ac-
cessingread-onlycopiesof datawithout contactingthe
serializer, solongasit hastheversions’V-GUIDs.

4.3.1 Dissemination

Oncetheserializerreceivesanupdaterequestthearchive
systemmuststorefragmentsin amannerwhichachieves
independenceof fragmentfailures. Correlatedfailures
canoccurasaresultof similargeographiclocationor ad-
ministrative domainof thestorageservers. Independent
failureswill not posedifficulty to a randomdissemena-
tion schemeif the pool of storageserversis large. For
example, it is extremely unlikely that twenty-four ran-
domly placedfragmentsof thirty-two fragmentsetwill
all belocatedon theWestCoast.

We define a simple randomizedalgorithm that en-
suresindependenceof fragmentplacementby avoiding
a catastrophic collision with extremely high probabil-
ity. In the rare casethat the algorithm fails, only the
co-locatedfragmentsneedredissemination.

Definition: A catastrophiccollision is where] �_^���` �
or morefragmentsareco-located.

Input: � � fragments
�
0,.. . , � � ^a�?� .

Output: Disseminatefragmentsto serversonournet-
work s.t. � � fragmentssatisfyasystemof (constraints,
where a constraint is a rule that statesa catastrophic
(i.e.] �b^c�&` �) amountof fragmentscannotshareagiven
property(i.e. geographicregion,domain,admin,etc.. .).

Algorithm:

1. d
0
pick aserver ef]Jg ` u.a.r. anddisseminateg to ef]Jg ` .

2. d
0
, ef]Jg ` sendsbackan h8i �

0
with its properties.

8

3. Analyzeeachh8i �
0

If all (constraintsaresatisfied- Done.
Elsepick a maximalsubsetof � � fragmentss.t. all(constraintsaresatisfiedandredisseminatefrag-
mentsnot in thesubset.

Analysis:

Claim:
! $8j catastrophiccollisionkZl �m�npoHqQrtsvu .

Proof: We generalizeour analysisto a systemwith
only one constraint � property, but the property has
many values w . Given a property, distribution can be
madeuniform. Simplystated,theprobabilitythata frag-
ment g is storedon a server with propertyvalue xHy is �m .
Theprobabilitythata secondfragmentgNz � is storedon
the sameserver with propertyvalue xHy is �m � � m) �m|{ .
Hencethe fragments] ��^}�&` � fragmentsarestoredon
thesameserverwith propertyvalue x y is �m~nvo�qQrJspu .

Example:
As an example, given geography as property with

32 unique cities or 32 values, �) �&@ and �) = ,
wherea rate �A�?� encodingrequiresa minimum set of� fragmentsto reconstructthe original object. The! $�j catastrophiccollisionkZl ��.� rJ� .Given �&: �O� usersand �&:A� objectsperuser, theproba-
bility of a catastrophiccollision in thesystemis ��� r���.� rJ������� rJ�
4.3.2 Tombstones

Our systemallows serializersto be taken offline after
long periodsof no use.Whena serializeris takendown,
it first storesthe mappingsfrom its A-GUIDs to its V-
GUIDs in tombstones, so namedbecausethe serializer
putsthemin placein theeventof its own death.A tomb-
stonefor aparticulararchiveisnamedandlocatedby that
archive’sA-GUID, andcontainsthepublickey of these-
rializer, the nameof the archive, andthe latestV-GUID
of the archive. It alsocontainsa signatureover this in-
formationwhich is producedby the serializer’s private
key. Thus,a tombstoneis verifiableby its archive’s A-
GUID: oneneedsimply hashover the concatenationof
the public key and human-readablenameto verify the
public key againsttheA-GUID, andthenusethepublic
key to verify the tombstone’s signature.Whenthe seri-
alizerproducesnew tombstonesfor anarchive, it routes
themto thestorageserverscontainingtheold tombstones
for thatarchive. Theseserversverify thenew tombstones
andthenoverwritetheir oldercounterparts.

In thepresenceof a responsibleparty, theuseris able
requestto senda requestto thearchival systemfor a file
evenif no serializeris currentlyactive. Therequestwill

be routed to the tombstonesfor the archive, which in
turn are sentto the responsibleparty. The responsible
partyspawnsa new serializerwhich beginsservicingre-
quests.

4.4 Maintenance

In order to provide long term availability in a dynamic
environment, Silverbackshouldsurvive changesto the
physicalinfrastructureover time with minimal external
management.Duringnormaloperation,new nodesregu-
larly becomeavailableto thenetwork, while othernodes
exit thesystemfor maintenanceor dueto failure.Silver-
backprovidesmechanismsthatseamlesslyintegratenew
nodes,extractexiting nodes,andrecoversfrom link and
nodefailures,all with minimalexternalintervention.

4.4.1 Integration

To make a new server available for archival storage,it
only needsa network connectionandthelocationof one
known Tapestrynode.Theserver thenweavesitself into
the routingandlocationlayer, advertisesthat it is ready
to storenew fragments.Tapestryincludesa setof dis-
tributedalgorithmsto supportautomaticserver integra-
tion andremoval withouthumanadministration.To inte-
grate into the network, a server populatesits neighbor
mapsby copying and optimizing neighbormapsfrom
nearbynodesthatshareportionsof its address.Thenode
completesintegration by notifying nearbynodesof its
existenceso that neighborsmay includeit in their own
neighbormaps.

If a server cannotstorenew fragmentsdue to stor-
ageconstraints,it may ceasethis advertisementat any
time, either throughmanual intervention or introspec-
tively. Similarly, serializerscanadvertisetheir availabil-
ity throughTapestrywhenthey areintroducedto thenet-
work.

4.4.2 Removal

A server canbe removed from Silverbackif it becomes
obsolete,needsscheduledmaintenance,or experiences
componentfailures. Whenpossible,the server runsan
optionalshutdown script which proactively informs the
routinglayerof its imminentdeparture.Neighbornodes
whichreceivethismessagecanupdatetheirroutingmaps
to eliminatereferencesto the departingnode. Location
pointersto fragmentsandfragmentsthemselvescanbe
movedoff the server, or regeneratedafter its departure.
Since Tapestrynodesutilize a soft state fault-handling
model, nodesuseregular heartbeatbeaconsto inform

9

neighborneighborsof their existance,while objectstor-
age servers republishtheir objectson a regular basis.
In the absenceof a departureannouncement,the rout-
ing layerwill detectandcorrectfor theserver’sabsence.
First, its neighbornodeswill detectits absenceandup-
date their routing maps. Nodeswhich dependon the
server for routing will promotesecondaryroutersand
find new backups.Second,objectpointerswill berepub-
lished. Finally, theTapestryrootnodeswill missregular
advertisementsfor fragments,andif redundancy fallsbe-
low acceptablelevels,sendnotificationto theobjects’re-
sponsiblepartiesor to otherstoragenodes,whowill then
ensureregenerationandredisseminationof fragments.

4.4.3 Fault-handling

To maintainobjectssuchasfragmentsandtombstones,
our archival systemmakesuseof the repair methodol-
ogy discussedin Section3.4,andrelieson built-in fault-
handlingmechanismsin Tapestry.

At alowerlevel,Tapestryattemptsto recoverfrom rou-
tine failures,andnotifiesSilverbackof application-level
failures. For example,to toleraterouting failures,a lo-
cal routingmapwhich determinesthenext hop location
containsseveral secondaryroutesin additionto the pri-
mary route. Failureson the primary link result in mes-
sagesswitchingtransparentlyover to secondaryroutes.
To reducethe impactof locationfailures,Tapestrypub-
lishesanobjectmultipletimeswith differentnames.This
greatlyimprovesthe probability thata nodecanfind an
object’s location, even in the presenceof full network
partitions.

As part of its failure detection, Silverbackstorage
serverson thenetwork periodicallyissueheartbeatbea-
consfor eachof its fragments.Thesebeaconsareprop-
agatedthrough Tapestryin exactly the samefashionas
theinitial publicationof a new object(describedin Sec-
tion 4.2). Our analysisin Section3.1 show that main-
tenanceneedonly occuron theorderof months.Conse-
quently, heartbeatscanberelatively infrequent,minimiz-
ing theoverheadof thebandwidththey consume.When
therootnodeof aparticularobjecthasfailedto receivea
beaconfor a givenfragmentafterseveralheartbeatperi-
ods,it sendsnotificationto theobject’sresponsibleparty,
which will thenreconstructandredisseminateasneces-
sary.

Finally, an active maintenancesweepmust be per-
formed to protectdataagainstadversariesin the wide
area. This taskcanbe performedby a user’s responsi-
ble party, which can be trusted,but may have limited
CPU andbandwidthresources.Alternatively, the stor-
age servers themselves can perform this task. While
they have lesscontendedresources,arenot completely

trustworthy. This tradeoff can be explored depending
on the degreeto which userstrust the wide areaandon
resourceavailability. Note that the responsibleparty is
only neededif the userdesiressomeoneto be responsi-
ble for a given operation,sincestorageserversarealso
capableof repair. Therefore,responsiblepartiesarenot
essentialto anarchivemodelor to our implementation.

4.5 Scalability

We now attemptto analyticallyevaluateour designand
implementationon thescalabilitymetric. With thelarge
scaleof datastoragediscussedin Section3.5,any point
of centralizationor potentialbottleneckwill hamperthe
scalabilityof theoverall system.

To understandhow theSilverbacksystemscales,one
needsto recognizethe pervasivenessof data indepen-
dencethroughoutour design. Our key approachis to
remove any centralauthoritywhich could buckle under
heavy load.Eacharchivecontainsall versionsof asingle
file, andeacharchiveis associatedwith its own serializer.
This impliesthatserializerscanbedistributedacrossall
availablenodes,andload-balancingcanbe achievedon
a fine granularity. The otherkey mechanism,Tapestry,
takesa fully decentralizedapproachto routingandloca-
tion [17]. As a result,granularityis maintainedon the
orderof files,andthelackof centralizedmechanismsal-
lows thesystemto scaleup with theamountof available
resources.

5 Performance

In this section,we evaluateour systemby focusingon
threemetricscritical to theoperationof anarchival sys-
tem: dataexpansion, timeto durability, andreadperfor-
mance. By dataexpansion,wemeanthefactorby which
thesizeof thedataincreasesin thearchive. For instance,
if a systemusesan erasurecodewith rateone-half,the
expansionfactoris at leasttwo. Timeto durability refers
to the time it takesthe systemto take new bytesfrom a
userandfinishstoringthemin adurablefashion.Finally,
readperformanceis thetimebetweenwhenauserissues
a requestfor bytesof a versionof anobjectandthetime
thathereceivesthosebytes.

5.1 Initial Prototype

To explore the performanceof Silverback, we con-
structeda prototypefile systembackupserviceon top
of Silverback. Referback to figure 5 to seewherethe
client applicationlevel coderesidesin the system. We
placedNFSI [6], a java-basedNFS[13] serveron top of

10

our implementationof a serializer. Our serializerresides
onthesamemachineor LAN asits clientswould to limit
thenetwork latency of requeststo theserializer.

Userscanmounta directorystoredin Silverbackjust
like any NFSdirectory. Thekernelprocessesfile system
calls from the userandpassesthemthroughthe vnode
layerto theSilverbackserver, which cachesfiles anddi-
rectorieson a local backenddirectory. Silverbackser-
vices requestsby accessingfiles in its local cacheor,
whennecessary, by accessingthearchival layer.

Filesanddirectoriesin Silverbackarenamedjust like
files in standardUNIX file systems.Userscanappend
versionnumbersor timestampsto thesenameswhenthey
wish to accesspastversionsin a similar syntaxto that
usedin theElephantfile system[14].

Finally our filesytemcodeis similar to the Archival
FilesystemBackuppresentedin figure1. Theonly differ-
enceis insteadof implementingtheexpensiveSEARCH()
function, we developeda moreefficient meta-objectli-
brary, calledMLib’s. A MLib is metadatafor adirectory
andcontainsanentryfor everychild of thedirectory, and
eachentry, in turn, storesthe versionnumber, time of
creation,andV-GUID for everyversionof its file.

In the context of the discussionabove andin the be-
ginning of section5, we analyzeSilverbackin terms
of data expansion, time to durability, and readperfor-
mancemetricsin the following sectionsby a combina-
tion of resultsfrom analysis,simulation,andmeasure-
mentfrom our prototype.To drive our microbenchmark
results,weusedaccesspatternsfrom theAndrew Bench-
mark [5], a standardfile systembenchmarkwhich tests
all majorcomponentsof a file system.We ranour stor-
ageserverson a large collectionof campus-sizedclus-
ters [2], andour routing infrastructuresimulatedwide
arealatency by varying the time to thesenodesto up to=?:�: ms. Runningthe benchmarkagainstNFSI without
Silverbacktook188seconds.

5.2 StorageOverhead

An importantmeasureof the efficiency of an archival
systemis the data expansion,or the numberof bytes
storedfor every byte the usercommits. In Silverback,
every archive versionhassomemetadataand a B-tree
for data.Datablocksarecurrentlyexactly > kB large,but
indirectblocksareno largerthannecessary(they arenot
paddedto > kB). Rootblocksarealwaysindirectblocks,
even for files smaller than > kB, and have appendedto
themthemetadatafor theversion.TheCauchyencoder
weusepadsthetopblockplusthemetadatato 896bytes
(thesmallestpossibleevenmultiple of 128)beforegen-
eratingtheblock’s U�= fragments.Eachfragmenthasap-

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

T
ot

al
 S

to
ra

ge
 S

iz
e

(k
B

)

�

Original File Size (kB)

using 4kB blocks
using 8kB blocks

Figure 8: StorageOverhead:Total bytesstoredversus
original file size

pendedto it =A> bytesof encodingmetadataand �&=?: bytes
of verificationhashes(seeSection 3.2). Thus, the top
block for thesmallestpossiblefile is @?>Q:�: bytes.

The datablock for a file of size ��> kB is paddedto> kB andfragmentedinto U�= encodefragments,eachof
which is =�B?@ byteslarge. The systemappendsto these
fragments=A> bytesof encodingmetadataplus �&=�: bytes
of verificationinformation,makingthe total numberof
bytesdisseminated�&=�V�:�: bytes.Thus,thesmallestsize
file in Silverbackis �C
�=�:�: bytes. Files of sizesmaller
than > kB will all be of this size,andfiles between> kB
and V kB will beof size U�=?:�:�: bytes.Thesizescontinue
in a stair-stepfashionevery > kB, asshown in Figure8.
Thisfigurealsoshowsdisseminationsizesfor fileswhenV kB blocksareused.Notethatin this case,smallerfiles
are slightly larger, but that larger files — wheremost
bytesare stored— are steadilysmallerthan their > kB
blockequivalents.

5.3 Time to Durability

Usersof anarchival systemwanttheirdatato bedurably
committedasquickly aspossible.The time requiredto
producedisseminationfragmentsis a key componentof
this figure. Using a stand-aloneprogram,we measured
thetime it took to encodea > kB block to be �8; :?> mswith
a standarddeviationof :T; =�U ms.

In our run againstAndrew, we measuredthe time in-
terval betweenwhenSilverbackbeganto commitanup-
dateto thearchival layerto whenit put thelastfragment
onthenetwork for dissemination.Thisnumberis amea-
surementof theloadupdatesproduceonaserializer. Fig-
ure 9 shows that the time to durability hada minimum
sizewhich grew linearly with thenumberof bytesbeing
disseminated.Thevariability shown in thegraphis a re-

11

10

100

1000

10000 100000 1e+06

T
im

e
to

 th
e

N
et

w
or

k
(m

s)

�

Dissemination Size (bytes)

Figure9: Time to Durability

10

100

1000

10000

100000

10 100 1000 10000 100000 1e+06

T
ot

al
 T

im
e

to
 R

ec
oa

le
sc

e
(m

s)

�

File Size (bytes)

Figure10: RecoalesceTime

sult of threadcontext switchingandgarbagecollection
in our Java implementation.To helpmasktheseeffects,
we have removed all times which weremore than two
standarddeviationsabove themeantime for a particular
disseminationsize.

5.4 ReadPerformance

To serviceareadrequest,anarchival systemneedsto re-
questmultiple fragmentsfrom thenetwork andperform
computationto reconstructtheobject.Becausetheseop-
erationsimpacttheuser-perceivedlatency of theread,it
is importantthat an archival systemexecutethesesteps
efficiently. Thelocalcomputationrequiredto reconstruct
a > kB blockfrom fragmentswasmeasuredusingastand-
aloneprogramto be U<; V�U ms with standarddeviation of:<;v��� ms.

We also measuredthe time our run againstAndrew
took to servicefile requestswhich resultedin a cache
miss. Thesenumbersareshown in Figure10. This fig-
uresshows thatfor files consistingof just oneblock, the

Time to Coalesce vs. Fragments Requested

0

20

40

60

80

100

120

140

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fragments Requested (32 total, threshold 16)

A
ve

ra
g

e
T

im
e

to
 C

o
al

es
ce

 (
H

o
p

 U
n

it
s)

Figure 11: ReconstructionLatency: This chart shows
latency required to receive enoughfragmentsfor re-
constructionin a Transit-stubnetwork of 4096Tapestry
nodes.

timefrom arequestto thetimethatthedatahasbeende-
codeis independentof thefile size. For files largerthan> kB, we seethattheminimumtimerequiredto servicea
requestgrows linearly with thesizeof thefile. Because
we implementedour prototypein Java, we hadto con-
tendwith garbagecollection. Additionally, we ran our
simulationat a time when the resourcesof the cluster
thatwe usedwerebeingtaxedby otherparties.Both of
thesefactorscontributedto ahighvariability in thereco-
alescetimes,sowe removedall datapointswhich were
two standarddeviationsabove themeanrecoalescetime
for otherfilesof thesamedisseminationsize.

5.5 Lar ge-scaleSimulations

When we receive a readrequestfor a block no longer
actively maintained,thearchival layer reconstructsit by
locatingandrequesting(via Tapestry)enoughfragments
of that block, and reconstructingthe block from them.
To better understandthe latenciesinvolved in serving
suchrequestson a wider scaleusinga routing overlay
suchasTapestry, weranthreesimulationsmeasuringthe
tradeoff betweennumberof fragmentsrequestedandvar-
iousperformancemetrics.Theseresultsconfirmour hy-
pothesis,that requestinga small numberof blocksover
the thresholddrasticallyreducesresponsetime in nor-
mal and failure-proneenvironmentswhile incurring a
low costin additionalaggregatebandwidthused.

We ranourexperimentson apacket level simulatorof
Tapestry, running4096overlaynodeson severaltopolo-
gies,includingTransit-stubnetworks,TIERSnetworks,
andmodelsof theMBoneandAutonomousSystemson
the Internet. The resultsare similar acrosstopologies,
andweshow hereonly theTransit-stubresults.For these

12

Time to Coalesce in Presence of Failures

0

20

40

60

80

100

120

140

160

180

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fragments Requested (32 total, threshold 16)

A
ve

ra
g

e
T

im
e

to
 C

o
al

es
ce

 (
H

o
p

 U
n

it
s)

LinkFailure=0% LinkFailure=2% LinkFailure=4%

Figure 12: Reconstructionwith Failures: This chart
showssimulatedtimenecessaryfor blockreconstruction
in a Transit-stubnetwork of 4096Tapestrynodes,retry-
ing afterlink failures.

Aggregate Bandwidth as Function of Server Distance to Root

0

200

400

600

800

1000

1200

1400

1600

1800

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fragments Requested

B
an

d
w

id
th

 C
o

n
su

m
ed

 (
F

ra
g

m
en

ts
 *

 H
o

p
s)

3�Hops 6�Hops 9�Hops 11�Hops 14�Hops

Figure13: AggregateBandwidthUsed: Thischartshows
the aggregatebandwidthusedduring block reconstruc-
tion asa functionof fragmentsrequested.A bandwidth
unit is bandwidthusedtransmitting1 fragmentacross
onenetwork hop.

simulations,we assumeda memorylessdistribution ap-
plied to network hop latency, wheretheaveragehop la-
tency was1 “hop unit.” For eachrun, we simulatethe
latency requiredfor a randomlyplacedclient to request
and receive 16 (threshold)out of 32 (total) fragments
for a block. The client needsto only issuea single re-
questspecifyingthenumberof fragments(\) desiredto
Tapestry, which travels to the “root node” of the block,
gatheringtheclosest\ fragments.We alsoassumethat
25%of the32randomlyplacedfragmentstorageservers
arehighly loaded,requiringanadditional5 hopunitsfor
queuing,whereunloadedserversrequireonly 1 hopunit
for queueprocessing.

Figure11showsthetimebeforeat leastthreshold(i.e.
16) fragmentsarereceivedby theclient. Theresultfol-

lows a power curve, showing that increasingfragment
requestsgraduallyremovesfactorssuchasnetwork la-
tency varianceandserver load.Error barsshowing stan-
darddeviation alsodecreasesignificantlyasnumberof
requestsincreases.Figure12 confirmsthis result in the
casewherelinks fail, clients detectend-to-endfailures
andissuesretriesuntil success.Finally, Figure13 shows
the expectedbandwidthusage,whereeachunit repre-
sentsbandwidthrequiredfor onefragmentoveronenet-
work hop.We vary locality by measuringfrom clientsat
differentdistancesfrom the object’s root node. The re-
sultshowsclientscloserto theroot incuralowerslopein
aggregatebandwidth,meaningthat they find morefrag-
mentswith lesshops,decreasingthe penaltyfor higher
fragmentrequests.Our resultsdemonstratethat by re-
questingafew fragmentsoverthethreshold,wegainsig-
nificantbenefitsbothin responsetimeandresponsevari-
ability, while incurringa relatively low bandwidthover-
head.

6 Futur e Work

There are several unresolved security issues in our
archival architecture.Chief amongthemis thatwe have
not discussedmeansof preventinga machinefrom pub-
lishing false advertisementsTo prevent misrepresenta-
tion, anintrospectionlayermustusesomeform of repu-
tationschemeto helpfilter out maliciousmachines.

Another (unresolved) issue in Silverback’s utility
model is the questionof billing. Clients will presum-
ably pay a responsibleparty to ensurethe integrity of
their data,andtheresponsiblepartywill in turn cooper-
atewith andpay storageproviders. Eacharchival frag-
mentmust thereforebe taggedwith a billing certificate
whichcanbeusedonaregularbasisto acquirepayment,
ultimately from theobject’s owner. Any billing scheme
mustbe thoroughenoughthat doublebilling (two stor-
agenodesclaimingfundsfor thesamefragment)should
beimpossible.

Finally, theserializerpresentedin thispaperis neither
scalablenor fault tolerant. A setof serverson the wide
areausingabyzantineagreementprotocolcanbeusedto
provideconsistency andconflictresolutionfor anarchive
in a fault tolerantmanner.

7 RelatedWork

The idea of using versioning as a meansto provid-
ing time-travel was first introducedwith the Postgress
database[15]. TheElephantfile system[14] studiedthe
idea of time travel in a file system. Additionally, the

13

projectexaminedschemesfor reducingthestorageover-
headby understandingtradeoffs betweenthenumberof
versionsstoredandthe granularityof time-travel possi-
ble.

Severalotherprojectsusetheideaof distributing data
of multiple machinesfor persistanceand availability.
TheFarSiteproject[1] replicatesdataat multiple nodes
throughoutanorganization-scalenetwork. They demon-
stratethat sucha distribution on a typical network can
provide five ninesavailability with a replicationfactor
of only three. ThePAST project[3] providespersistant
storagein their peer-to-peersystemby replicatingob-
jectsanddistributing themthroughoutthe system.Ob-
jectsstoredin PAST areimmutableandthusdo provide
facilities for time-travel. PAST, however, suffers from
large storagerequirementsbecauseand doesnot pro-
vide any mechanismsfor repairother thanclient scans.
Most similar to the Silverbackarchival layer is Inter-
memory[4]. This systemusesCauchyReed-Solomon
erasurecodesto fragmentdata; the fragmentsare then
distributedamongmembersof theservice.In intermem-
ory, repairis drivenfrom a centralizedsource.

8 Conclusion

Themostimportantconcernin today’s world of ubiqui-
touscomputingis that of informationpersistence.This
paperdescribesSilverback,aglobal-scale,version-based
archival systemthat is durable, verifiable, available,
maintainable, andatomic, whichscalesto handlebillions
of usersanda mole of bytes. We discussedthe imple-
mentationof Silverbackand explored the performance
of a prototypebackupsystembuilt on topof it.

Threetechnologiesmake thissystempossible:	 ErasureCoding:Erasurecodingprovidesdurability
by exploiting the statisticalstability of large num-
bersof independentcomponents.	 SecureHashing: Securehashespermit globally-
unique IDs to be unforgeably associatedwith
archival data.	 TapestryRoutingandDataLocation: Tapestryis a
distributedinfrastructurethatroutesqueriesdirectly
to fragmentsandresources(suchasserializers)us-
ing only local information.

Version-basedarchival systemssuchasSilverbackare
enabledby Moore’s law growth in disk andstoragere-
sources.Oneof themostexciting consequencesof such
a systemis the legitimateprospectof preservingdigital
informationfor 1000sof years.

References
[1] BOLOSKY, W., DOUCEUR, J., ELY, D., AND THEIMER,

M. Feasibilityof a serverlessdistributedfile systemde-
ployed on an existing set of desktopPCs. In Proc. of
Sigmetrics(June2000).

[2] CHUN, B. N., AND CULLER., D. E. Rexec: A decen-
tralized, secureremoteexecutionenvironmentfor clus-
ters. To appearin 4th Workshopon Communication,Ar-
chitecture,andApplicationsfor Network-basedParallel
Computing.

[3] DRUSCHEL , P., AND ROWSTRON, A. PAST: A persis-
tentandanonymousstore.http://www.research.
microsoft.com/˜antr/PAST/ , February2001.

[4] GOLDBERG, A., AND Y IANILOS, P. Towardsanarchival
intermemory. In Proc.of IEEEADL (Apr. 1998),pp.147–
156.

[5] HOWARD, J., KAZAR, M., MENEES, S., NICHOLS,
D., SATYANARAYANAN, M., SIDEBOTHAM , R., AND

WEST, M. Scaleandperformancein a distributed file
system. ACM Transactionson ComputerSystems6, 1
(Feb. 1988),51–81.

[6] KL IMOV, V. Network file system interface (NFSI).
http://www.angelfire.com/on/vkjava/ ,
1999.

[7] KUBIATOWICZ, J., ET AL . Oceanstore:An architecture
for global-scalepersistentstorage. In Proc. of ASPLOS
(Nov. 2000),ACM.

[8] LUBY, M., M ITZENMACHER, M., SHOKROLLAHI , M.,
SPIELMAN, D., AND STEMANN, V. Analysisof low den-
sity codesand improved designsusing irregular graphs.
In Proc.of ACM STOC (May 1998).

[9] NIST. FIPS186digital signaturestandard.May 1994.

[10] PATTERSON, D. A., AND HENNESSY, J. L . Computer
Architecture: A QuantitativeApproach. Forthcoming
Edition.

[11] PLANK , J. A tutorial on reed-solomoncodingfor fault-
tolerancein RAID-lik e systems.Software Practiceand
Experience27, 9 (Sept.1997),995–1012.

[12] PLAXTON, C., RAJARAMAN, R., AND RICHA , A. Ac-
cessingnearbycopiesof replicatedobjectsin adistributed
environment.In Proc.of ACM SPAA (June1997).

[13] SANDBERG, R., GOLDBERG, D., KLEIMAN, S.,
WALSH, D., AND LYON, B. Designand implementa-
tion of theSunNetwork Filesystem.In Proc.of USENIX
SummerTechnicalConf. (June1985).

[14] SANTRY, D., FEELEY, M., HUTCHINSON, N., VEITCH,
A., CARTON, R., AND OFIR, J. Decidingwhento forget
in theElephantfile system.In Proc.of ACM SOSP(Dec.
1999).

[15] STONEBRAKER, M. Thedesignof thePostgresstorage
system.In Proc.of Intl. Conf. onVLDB (Sept.1987).

14

[16] WILKES, J., GOLDING, R., STAELIN, C., AND SULLI-
VAN, T. TheHP AutoRAID hierarchicalstoragesystem.
ACM Transactionson ComputerSystems(Feb. 1996),
108–136.

[17] ZHAO, B. Y., KUBIATOWICZ, J., AND JOSEPH, A. D.
Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Submittedfor publication
to SIGCOMM, http://www.cs.berkeley.edu/
˜ravenben/tapestry.pdf , 2001.

15

