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ABSTRACT: With the wide application of FRP composites for retrofitting and strengthening of 
existing structures, accurate and efficient analyses of models become very important as the 
study of interface crack growth is essential to ensure the reliability of structures under static and 
cyclic loading conditions. In the absence of exact analytical solutions for complex plate prob-
lems, numerical methods such as the finite element method, the boundary element method, and 
recently meshless methods have been frequently used and extended to include nonlinear effects. 
In the past decade, meshless methods have been widely developed and implemented to various 
engineering problems. Krysl and Belytschko have extended the element free Galerkin (EFG) 
method for static analysis of thin plates and shells. All EFG formulations require a background 
mesh of cells for integration. In a different meshless approach, the proposed truly meshless Fi-
nite Point Method (FPM) uses a moving least square approximation within a collocation strong 
form for solving the governing equilibrium equation. In FPM, imposition of boundary condi-
tions is not directly performed. Instead, a procedure similar to other internal nodes is followed. 
In this paper, the fracture analysis of two dimensional FRP composites is considered. Enriched 
basis functions are introduced in the meshless formulation to capture the singularity at potential 
crack tips. A number of problems are solved and the results are compared with available ana-
lytical solutions and other numerical techniques to assess the performance of the proposed ap-
proach. 

1 INTRODUCTION 

The needs of modeling orthotropic materials have been recently revived with great interest, ha-
ving enormous applications in various structural systems like aerospace and automobile indust-
ries. The main advantages of using these materials can be attributed to their high stiffness and 
low ratio of weight to strength. Some analytical investigations have been reported on the fractu-
re behaviour of such materials such as the pioneering one by (Muskelishvili 1952) and (Sih & 
Paris & Irwin 1965 ; Tupholme 1974 ; Ting 1996 ; Asadpoure & Mohammadi 2007). Numerical 
methods, however, have been widely utilized for solving different mechanical problems. De-
spite the fact that the finite element method is more convenient and applicable because of its 
ability in modeling complex behaviors, meshless methods have been increasingly adapted for 
simulation of complex problems such as crack initiation and propagation problems. For elastic-
ity problems(Oñate & Perazzo & Miquel 2001) presented a finite point method using the FIC 
technique in order to overcome the instability of the results obtained from the conventional ver-
sion of FPM. (Boroomand & Tabatabaei & Oñate 2005) proposed a mapping scheme to reduce 
the problem of ill-conditioning of the coefficient matrix which sometimes occurs due to non-
isotropic arrangement of the points. This stabilization procedure dramatically improves the con-
vergence and accuracy of the method. (Bitaraf & Mohammadi 2006) solving the chloride diffu-
sion equation for prediction of service life of concrete structures and initiation time of corrosion 
of reinforcements. 

In this study, the truly meshless finite point method (FPM) is combined with principles of partition of 
unity and the extended finite element method to accurately simulate singular fields around a crack tip and 
the discontinuous field along the crack. FPM is a strong form solution and can be regarded as a continu-
ous extension of the finite difference method based on the moving least square approximation. 
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2 FRACTURE MECHANICS FOR 2D ORTHOTROPIC MATERIALS 
The stress-strain law in an arbitrary linear elastic material can be written as 

( ), , , 1, 2,3ij ijkl kls i j k lε σ= =  (1) 
where ijε  and klσ  are linear strain and stress tensors, respectively, and ijkls  is a fourth-order 
compliance tensor. By introducing the contracted form (Lekhnitskii 1963), the stress-strain rela-
tion for a plane stress problem can be re-written as 

)6,2,1,( == βασε βαβα a  (2) 
Now assume an anisotropic body is subjected to arbitrary forces with general boundary condi-
tions and a crack. Global Cartesian co-ordinate ( )1 2,X X , local Cartesian co-ordinate ( ),x y  
and local Polar co-ordinate ( ),r θ  defined on the crack-tip are illustrated in Figure 1. A fourth-
order partial differential equation with the following characteristic equation can be obtained us-
ing equilibrium and compatibility conditions(Lekhnitskii 1963) 

( )4 3 2
11 16 12 66 26 222 2 2 0a a a a a aμ μ μ μ− + + − + =  (3) 

 

Figure 1. An arbitrary orthotropic cracked body subjected to traction t. 

 
The two dimensional displacement field in the vicinity of the crack-tip have been previously de-
rived by (Sih & Paris & Irwin 1965) by means of analytical functions and complex vari-
ables, )2,1(, =+= kyxz kkk μ . The displacement components for pure mode I are: 
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where kp and kq are defined as:  
2
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(Lekhnitskii 1963) showed that the roots of (Eq. 3) are always complex or purely 

imaginary ( ( ), 1, 2k kx kyi kμ μ μ= + = ) and occur in conjugate pairs as 1μ , 1

_

μ  and 2μ , 
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3 ENRICHED FINITE POINT METHOD 

In this section an overview is given to the approximation used to construct the shape functions 
of the proposed FPM. 
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3.1 Weighedt least square method 

Least square methods are among the efficient procedures frequently used for approximation of 
unknown functions in meshless methods. Assume that a function u(x) is to be approximated in a 
domain Ω  with n nodal points. The approximate function in sub-domain iΩ  in the vicinity of 
the ith node with ni neighboring nodes may be written as  
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where p(x) is a vector of base monomials and α  is a vector of coefficients. Assuming that gen-
erally ni is greater than m, then satisfaction of (7) requires a least square procedure, which leads 
to minimization of the following discrete norm: 
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where wi (x) is a suitable weighting function for the ith sub-domain. Note that for each domain a 
local co-ordinate system is defined; the origin of which is located at the master node of the do-
main (node number i). The discrete norm in Equation (8) is minimized as 
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which yields to the following system of equations: 
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and 
)()(),...,()([ 11 ii nnii xpxwxpxwB =  (12) 

Solution of (10) gives 
_

1 uBA−=α  
(13) 

The approximation for the ith sub-domain is obtained by substituting Equation (13) into (7) 
__

1 )()()( uxNuBAxpxu T == −
∧

 
(14) 

where N(x) is a matrix containing the shape functions for each domain. 

3.2 Crack tip enrichment 

 One way to enrich the FPM formulation for modeling singular stress fields around a crack tip is 
to include the leading terms of the near-tip asymptotic expansion for the displacement field in 
the basis function. In the full intrinsic enrichment of FPM approximation for orthotropic fracture 
problems, the entire near-tip asymptotic displacement terms are added to the linear terms of the 
basis: 
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where 

)2,1(,)sin()sin(cos)( 22 =++= kg kykxk θμθμθθ  (16) 
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4 NUMERICAL SIMULATION 

4.1  Crack analysis in an isotropic plate 

A closed form solution for a crack can be constructed by using the well-known near- tip field in 
a domain around the crack tip and prescribing the displacement along the boundaries accord-
ingly. This can be considered as a patch test for singular fields. A square patch with side length 
of 2d and a crack length d is considered. The exact solutions for the stress field are given by: 
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Also, the quartic spherical weight function with a radius of mld  is adopted: 
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Figure 2 illustrates the nodal distribution and selection of support domains for a typical node 
and a crack tip. The total number of nodes is 187, and each cloud includes about 12 nodes. 

 
(a) (b)

Figure 2.  a) nodal distribution, b) support domain of node xkp 
 

Figure 3 depicts the mode I stress contours over the cracked plate obtained by the proposed ap-
proach in comparison with the exact solution (Eq.18). The low level of generated error shows 
the quality of the numerical predictions by the proposed enriched finite point method.   

  
(a) (b)
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(c) (d)

Figure 3. Stress contours: a) xxσ (FPM), b) xxσ (exact), c) yyσ (FPM), d) yyσ (exact). 

4.2 Orthotropic FRP plate 

A square patch test with a side length 2d and a crack length d is considered. The plate is com-
posed of a graphite-epoxy material with the following orthotropic properties: 

1E = 114.8 GPa, 2E  = 11.7 GPa, 12G   = 9.66 GPa, 12υ = 0.21 
Figure 4 and figure 5 depicts the mode I displacement contours over the cracked plate obtained 
by the proposed approach in comparison with the exact solution (Eq.4 and Eq.5). Similar to iso-
tropic plate, the total number of nodes is 187 and each cloud includes at least 12 nodes. 
 

  

(a) (b)
Figure 4. Displacements contours: a) xu (FPM), b) xu  (exact). 
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(a) (b)

Figure 5. Displacements contours: a) yu  (FPM), b)  yu  (exact). 

5 CONCLUSIONS 

A truly meshless enriched finite point approach has been presented for solving the governing 
equations of FRP cracked plates.  FPM is a strong form solution based on the moving least 
square approximation for the displacement field variable. Enriched basis functions have been in-
troduced in the meshless approximation to capture the singularity of the stress field at crack tips. 
Numerical results have shown good agreement with available analytical solutions. 
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