

A TUTORIAL ON ACCOUNTING FOR COMPETING RISKS IN SURVIVAL ANALYSIS

Rebecca Scherzer, PhD

Principal Research Statistician
Kidney Health Research Collaborative
San Francisco VA Medical Center
University of California at San Francisco

OUTLINE

- Background
 - When does the problem occur, when does it matter?
- Methods and illustrations
 - Survival curves and other graphical methods
 - Regression models
 - Number-needed-to-treat (NNT)
- Interpretation
 - Cause-specific hazard versus sub-distribution hazard:
 - which to use and when?
- Discussion
 - Best practices and caveats
 - Limitations and research gaps
 - Further reading and resources

BACKGROUND

- Clinical research studies often record the time to more than one outcome:
 - Examples: death, cardiovascular disease (CVD), end stage renal disease (ESRD)
- A competing event is one that precludes the occurrence of the event of interest:
 - Example: after transplant or death, patient is no longer at risk for primary outcome of interest (ESRD or CVD).

BACKGROUND, CONTINUED

- If a patient experiences a competing event, standard survival analysis methods treat that patient as *censored* for the outcome of interest (e.g., ESRD or CVD).
- Why is this a problem?
 - Kaplan-Meier curves overestimate the incidence of the outcome over time
 - Cox models inflate the relative differences between groups, resulting in biased hazard ratios

ALTERNATIVES TO STANDARD METHODS:

- Survival curves: Cumulative Incidence Function (CIF)
 - Non-parametric CIF
 - Fine-Gray (1999) CIF
 - Inverse probability weighting (IPW) corrected Kaplan-Meier
- Options for regression models:
 - Sub-distribution hazard ratio (SHR)
 - Fine-Gray (1999)
 - Klein-Andersen (2005)
 - Cause-specific hazard ratio (CHR)
- Number-needed-to-treat (NNT):
 - Gouskova et al (2014)

FINE-GRAY (FG) MODEL

METHODS: PLOTTING THE CUMULATIVE INCIDENCE

- In each case, we code the event categories as follows:
 - event=0: censored, event=1: outcome of interest, event=2: competing event.

	Non-parametric:	Fine-Gray:
SAS	<pre>proc lifetest; time year*event(0) / eventcode=1; run;</pre>	<pre>proc phreg; model year*event(0)=x / eventcode=1; run;</pre>
Stata	stset year, failure(event==1) stcrreg, compete(event==2) stcurve, cif	stset year, failure(event==1) stcrreg x, compete(event==2) stcurve, cif
R	library(cmprsk) plot (cuminc (year, event, cencode=0))	library(cmprsk) result<- crr(year, event, x, failcode=1, cencode=0) plot(predict(result, x))

ILLUSTRATION:

NON PARAMETRIC ESTIMATION GIVES VISUAL COMPARISON OF CUMULATIVE RISK OF CVD AND DEATH:

ILLUSTRATION:

COMPARISON OF CUMULATIVE INCIDENCE ESTIMATES BY WALKING SPEED, CVD VS. DEATH:

METHODS:

CALCULATION OF SUB-DISTRIBUTION HAZARD RATIO (SHR):

- Stata:
 - stset year, id(idno) failure (event==1)
 - stcrreg x, compete(event==2)
- SAS:
 - proc phreg;
 - model year*event(0)=x / eventcode=1;
 - run;
- R:
 - library(cmprsk)
 - crr(year, event, x, failcode=1,censcode=0)

METHODS:

CALCULATION OF CAUSE-SPECIFIC HAZARD RATIO (CHR)

- Stata:
 - stset year, id(idno) failure (event==1)
 - stcox x
- SAS:
 - proc phreg;
 - model year*event(0,2)=x / eventcode=1;
 - run;
- R:
 - coxph(formula=Surv (year, event=="1") ~x)

COMPARISON OF MODELS SHOWS INFLATED HAZARD RATIOS FOR COX CHR VERSUS FG SHR

Example 1: slower walking speed and risk of CVD

Method	Hazard	95% Hazard Ratio		P-value	
	Ratio	Confide	nce Limits		
Fine-Gray SHR	1.69	1.29	2.21	0.0001	
Cox CSH	2.82	2.12	3.76	<.0001	

Example 2: elevated biomarker and risk of ESRD

Method	Hazard	95% Hazard Ratio		P-value
	Ratio	Confide		
Fine-Gray SHR	1.15	1.09	1.22	<.0001
Cox CSH	1.18	1.11	1.25	<.0001

ILLUSTRATION:

COMPARISON OF CUMULATIVE CVD INCIDENCE ESTIMATES BY WALKING SPEED, COX VERSUS FINE-GRAY MODEL:

METHODS: NUMBER-NEEDED-TO TREAT (NNT)

- NNT is the reciprocal of the absolute risk difference:
 - Example: AR=5% => NNT=20, means that treating 20 patients would prevent one case of disease
- In the presence of competing risks, Gouskova et al (2014) define the NNT at time t using the CIF from the Fine-Gray model:

$$NNT(t) = \frac{1}{CIF^{Ctl}(t) - CIF^{Trt}(t)}$$

METHODS:

ESTIMATE NNT USING CIF FROM FINE-GRAY MODEL:

- Example 1: Suppose a drug is available that can increase walking speed. How many patients must we treat to prevent CVD, in the presence of competing risk of death?
 - CIF for slow walkers at year 10 = 0.38
 - CIF for fast walkers at year 10 = 0.25
 - AR = $0.38 0.25 = 0.13 \Rightarrow NNT$ at 10 years = 8
- Example 2: Suppose a drug is available that can reduce biomarker levels. How many patients must we treat to prevent ESRD, in the presence of competing risk of death?
 - CIF for elevated biomarker at year 5 = 0.117
 - CIF for normal biomarker at year 5 = 0.102
 - AR = 0.015 = NNT at 5 years = 67

ILLUSTRATION:

ESTIMATION OF NNT OVER TIME:

Example 1: walk speed and CVD

Example 2: biomarker and ESRD

WHEN DO COX AND FG RESULTS DIFFER?

- If competing event is frequent
- If competing event occurs early
- Effect of censoring proportion ...
- Effect of event time correlation ...

Table 4

Comparison of competing risks regression models examining treatment and two covariates for competing outcomes in prostate cancer (RTOG 8610)

	Model Effect Estimates					
	Cox CSH		Fine-Gray SDH		Klein-Andersen	
Event type (death)	CHR	95% CI	SHR	95% CI	SHR	95% CI
A. Prostate Cancer						
ADT (vs RT only)	0.67	0.49-0.92	0.66	0.48-0.91	0.67	0.49-0.93
Age*	0.89	0.71-1.13	0.75	0.60-0.95	0.79	0.63-1.00
Grade 2 vs 1	1.84	1.04-3.23	1.83	1.05-3.17	1.87	1.06-3.31
Grade 3 vs 1	2.87	1.66-4.98	2.83	1.65-4.87	2.94	1.70-5.08
B. Other causes						
ADT (vs RT only)	1.13	0.85-1.51	1.26	0.95-1.68	1.20	0.89-1.61
Age	2.02	1.60-2.57	1.93	1.54-2.43	1.88	1.49-2.38
Grade 2 vs 1	0.87	0.59-1.28	0.75	0.52-1.08	0.82	0.56-1.20
Grade 3 vs 1	0.91	0.62-1.35	0.60	0.41-0.87	0.61	0.41-0.90
All deaths						
ADT (vs RT only)	0.88	0.71-1.09	-	1	ı	-
Age	1.36	1.15-1.61	ı	-	i	-
Grade 2 vs 1	1.13	0.83-1.55	_	-	ı	-
Grade 3 vs 1	1.44	1.06-1.97	-	-	-	-

* per 10 year increment in age

EFFECT OF CENSORING ON HR:

Scenario: 2x CVD rate in Group B vs. Group A, same death rate in both groups

% of cases censored

INDEPENDENT EVENT TIMES:

SCENARIO 1: 33% CENSORING, CVD & DEATH EVENT TIMES UNCORRELATED

CORRELATED EVENT TIMES

SCENARIO 2: 33% CENSORING, CVD & DEATH EVENT TIMES CORRELATED (r=0.6)

Recommendations for Analyzing Competing Risk Survival Data

- Cumulative incidence functions (CIFs) should be used to estimate the incidence of each of the different types of competing risks. Do not use the Kaplan-Meier estimate of the survival function for this purpose.
- Researchers need to decide whether the research objective is on addressing etiologic questions or on estimating incidence or predicting prognosis.
- Use the Fine-Gray subdistribution hazard model when the focus is on estimating incidence or predicting prognosis in the presence of competing risks.
- Use the cause-specific hazard model when the focus is on addressing etiologic questions.
- In some settings, both types of regression models should be estimated for each of the competing risks to permit a full understanding of the effect of covariates on the incidence and the rate of occurrence of each outcome.

DISCUSSION

Caveats:

- Interpretation can be difficult: effect of covariate on CSH may be different (even opposite!) effect on incidence.
- Still need to check proportional hazard assumption, just as with ordinary Cox models
- Non-informative censoring assumption:
 - probability of event should be unrelated to mechanism of censoring
 - length of follow-up should not depend on a patient's medical condition

Best practices:

- Do the usual regression checks: check for outliers and influential data points, assess linearity, collinearity, etc.
- Use CIF plots and other visualization to examine covariate effects for each event type

DISCUSSION

Limitations:

 When running competing risk models, standard software has fewer options for stratification, shared frailty, tests of model fit, and variable selection methods.

Research and software gaps:

- Optimal method for reweighting
- Left or interval censoring and truncation
- Censoring assumptions: effect of competing risk on subsequent events (preclude versus change probability)

FURTHER READING AND RESOURCES

Software:

- https://cran.r-project.org/web/packages/cmprsk/cmprsk.pdf
- www.stata.com/manuals13/ststcrreg.pdf
- https://support.sas.com/rnd/app/stat/papers/2014/competingrisk2014.pdf
- https://cran.r-project.org/web/packages/mstate/vignettes/Tutorial.pdf

References:

- Peter C. Austin, Douglas S. Lee and Jason P. Fine. Introduction to the Analysis of Survival Data in the Presence of Competing Risks Circulation. 2016;133:601-609, originally published February 8, 2016
- Dignam JJ, Zhang Q, Kocherginsky MN. The Use and Interpretation of Competing Risks Regression Models.
 Clinical Cancer Research. 2012;18(8):2301-2308.
- Marlies Noordzij, Karen Leffondré, Karlijn J. van Stralen, Carmine Zoccali, Friedo W. Dekker, Kitty J. Jager;
 When do we need competing risks methods for survival analysis in nephrology?. Nephrol Dial
 Transplant 2013; 28 (11): 2670-2677.
- Wolbers M, Koller MT, Stel VS, Schaer B, Jager KJ, Leffondré K, Heinze G. Competing risks analyses:
 objectives and approaches. European heart journal. 2014; 35: 2936-2941.
- Zhou, Bingging, et al. "Competing risks regression for stratified data." Biometrics 67.2 (2011): 661-670.
- Zhou, Bingqing, et al. "Competing risks regression for clustered data." Biostatistics 13.3 (2012): 371-383.