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OUTLINE 
• Background    

• When does the problem occur, when does it matter?    

 

• Methods and illustrations 

• Survival curves and other graphical methods 

• Regression models 

• Number-needed-to-treat (NNT) 

 

• Interpretation 

• Cause-specific hazard versus sub-distribution hazard:   

• which to use and when? 

 

• Discussion 

• Best practices and caveats 

• Limitations and research gaps 

• Further reading and resources 
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BACKGROUND 

• Clinical research studies often record the time 

to more than one outcome: 
• Examples:  death, cardiovascular disease (CVD), end stage 

renal disease (ESRD) 

 

• A competing event is one that precludes the 

occurrence of the event of interest:    

• Example:  after transplant or death, patient is no longer at risk 

for primary outcome of interest (ESRD or CVD). 

 

 

 

 

3 



BACKGROUND, CONTINUED 

• If a patient experiences a competing event, 

standard survival analysis methods treat that 

patient as censored for the outcome of interest 

(e.g., ESRD or CVD).  

• Why is this a problem? 

• Kaplan-Meier curves overestimate the incidence of the 

outcome over time 

• Cox models inflate the relative differences between groups, 

resulting in biased hazard ratios   
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ALTERNATIVES TO STANDARD METHODS: 

 

• Survival curves:   Cumulative Incidence Function (CIF) 

• Non-parametric CIF  

• Fine-Gray (1999) CIF 

• Inverse probability weighting (IPW) corrected Kaplan-
Meier 

 

• Options for regression models: 

• Sub-distribution hazard ratio (SHR) 

• Fine-Gray (1999) 

• Klein-Andersen (2005)  

• Cause-specific hazard ratio (CHR) 

 

• Number-needed-to-treat (NNT): 

• Gouskova et al (2014) 
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FINE-GRAY (FG) MODEL 
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METHODS:   
PLOTTING THE CUMULATIVE INCIDENCE 

• In each case, we code the event categories as follows: 
• event=0: censored, event=1: outcome of interest, event=2: competing event. 
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Non-parametric: Fine-Gray: 

SAS proc lifetest; 

time year*event(0) / 

eventcode=1;  

run; 

proc phreg; 

model year*event(0)=x / 

eventcode=1;  

run; 

Stata stset year, 

failure(event==1) 

stcrreg , 

compete(event==2) 

stcurve, cif 

stset year, failure(event==1) 

stcrreg x, compete(event==2) 

stcurve, cif 

R library(cmprsk) 

plot (cuminc (year, event, 

cencode=0)) 

 

 

library(cmprsk)  

result<- crr(year, event, x, 

failcode=1, cencode=0) 

plot(predict(result, x)) 

 



ILLUSTRATION:   
NON PARAMETRIC ESTIMATION GIVES VISUAL COMPARISON 

OF CUMULATIVE RISK OF CVD AND DEATH: 
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ILLUSTRATION:    
COMPARISON OF CUMULATIVE INCIDENCE ESTIMATES BY 

WALKING SPEED, CVD VS. DEATH: 
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METHODS:   
CALCULATION OF SUB-DISTRIBUTION HAZARD 

RATIO (SHR): 

 

• Stata: 
• stset year, id(idno) failure (event==1) 

• stcrreg x, compete(event==2) 

• SAS: 
• proc phreg; 

• model year*event(0)=x / eventcode=1;  

• run; 

• R: 
• library(cmprsk) 

• crr(year, event, x, failcode=1,censcode=0) 
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METHODS:   
CALCULATION OF CAUSE-SPECIFIC HAZARD RATIO (CHR) 

 

 

• Stata: 
• stset year, id(idno) failure (event==1) 

• stcox x 

• SAS: 
• proc phreg; 

• model year*event(0,2)=x / eventcode=1;  

• run; 

• R: 
• coxph(formula=Surv (year, event=="1") ~x) 
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COMPARISON OF MODELS SHOWS INFLATED HAZARD 

RATIOS FOR COX CHR VERSUS FG SHR 
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• Example 1:  slower walking speed and risk of CVD 

 

 

 

 

• Example 2:  elevated biomarker and risk of ESRD 

 

 

Method Hazard 

Ratio 

95% Hazard Ratio  

Confidence Limits 

P-value 

Fine-Gray SHR 1.69 1.29 2.21 0.0001 

Cox CSH 2.82 2.12 3.76 <.0001 

Method Hazard 

Ratio 

95% Hazard Ratio  

Confidence Limits 

P-value 

Fine-Gray SHR 1.15 1.09 1.22 <.0001 

Cox CSH 1.18 1.11 1.25 <.0001 



ILLUSTRATION:   
COMPARISON OF CUMULATIVE CVD INCIDENCE ESTIMATES BY 

WALKING SPEED, COX VERSUS FINE-GRAY MODEL: 
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METHODS:   
NUMBER-NEEDED-TO TREAT (NNT) 

 
• NNT is the reciprocal of the absolute risk difference: 

• Example: AR=5% => NNT=20, means that treating 20 

patients would prevent one case of disease 

 

• In the presence of competing risks, Gouskova et al 

(2014) define the NNT at time t using the CIF from 

the Fine-Gray model :   
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METHODS:   
ESTIMATE NNT USING CIF FROM FINE-GRAY 

MODEL: 
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• Example 1:  Suppose a drug is available that can increase walking 
speed.  How many patients must we treat to prevent CVD, in the 
presence of competing risk of death? 

 
• CIF for slow walkers at year 10 = 0.38 

• CIF for fast walkers at year 10 = 0.25 

• AR = 0.38 – 0.25 = 0.13 => NNT at 10 years = 8 

 

• Example 2:  Suppose a drug is available that can reduce biomarker 
levels.  How many patients must we treat to prevent ESRD, in the 
presence of competing risk of death? 

 
• CIF for elevated biomarker at year 5 = 0.117 

• CIF for normal biomarker at year 5 = 0.102 

• AR = 0.015 => NNT at 5 years = 67 

 

 

 



ILLUSTRATION:   
ESTIMATION OF NNT OVER TIME: 
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Example 1:  walk speed and CVD Example 2:  biomarker and ESRD 

NNT=67 

NNT=8 



WHEN DO COX AND FG RESULTS 

DIFFER? 

 
• If competing event is frequent 

• If competing event occurs early 

• Effect of censoring proportion … 

• Effect of event time correlation … 
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Adapted from T4, Dignam et al. 2012, Clin Cancer Res 

  



EFFECT OF CENSORING ON HR: 
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Scenario:  2x CVD rate in Group B vs. Group A, same death rate in both groups 

Adapted from T3, Dignam et al. 2012, Clin Cancer Res 
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2x more CVD group B, 
2x more CVD & 

Death  

in group B vs. A 

2x more CVD, 

1.3x more 

Death in group 

B vs. A Adapted from T1, Dignam et al. 2012, Clin Cancer Res 

INDEPENDENT EVENT TIMES: 
SCENARIO 1:  33% CENSORING, CVD & DEATH EVENT TIMES 

UNCORRELATED 

 



CORRELATED EVENT TIMES 
SCENARIO 2:  33% CENSORING, CVD & DEATH EVENT TIMES 

CORRELATED (r=0.6) 
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Adapted from T2, Dignam et al. 2012, Clin Cancer Res 
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• Cumulative incidence functions (CIFs) should be used to estimate the 

incidence of each of the different types of competing risks. Do not use the 

Kaplan-Meier estimate of the survival function for this purpose. 

• Researchers need to decide whether the research objective is on 

addressing etiologic questions or on estimating incidence or predicting 

prognosis. 

• Use the Fine-Gray subdistribution hazard model when the focus is on 

estimating incidence or predicting prognosis in the presence of competing 

risks. 

• Use the cause-specific hazard model when the focus is on addressing 

etiologic questions. 

• In some settings, both types of regression models should be estimated 

for each of the competing risks to permit a full understanding of the effect 

of covariates on the incidence and the rate of occurrence of each 

outcome. 

Recommendations for Analyzing Competing Risk Survival Data 

Austin et al, 2016 

  



DISCUSSION 
• Caveats: 

• Interpretation can be difficult:  effect of covariate on CSH may 
be different (even opposite!) effect on incidence.  

• Still need to check proportional hazard assumption, just as 
with ordinary Cox models 

• Non-informative censoring assumption:   

• probability of event should be unrelated to mechanism of 
censoring 

• length of follow-up should not depend on a patient’s medical 
condition 

• Best practices: 

• Do the usual regression checks:  check for outliers and 
influential data points, assess linearity, collinearity, etc. 

• Use CIF plots and other visualization to examine covariate 
effects for each event type 
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DISCUSSION 

• Limitations: 

• When running competing risk models, standard software has 
fewer options for stratification, shared frailty, tests of model fit, 
and variable selection methods. 

• Research and software gaps: 

• Optimal method for reweighting 

• Left or interval censoring and truncation 

• Censoring assumptions:  effect of competing risk on 
subsequent events (preclude versus change probability) 
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FURTHER READING AND RESOURCES 
• Software: 

• https://cran.r-project.org/web/packages/cmprsk/cmprsk.pdf 

• www.stata.com/manuals13/ststcrreg.pdf 

• https://support.sas.com/rnd/app/stat/papers/2014/competingrisk2014.pdf 

• https://cran.r-project.org/web/packages/mstate/vignettes/Tutorial.pdf 

 

• References: 

• Peter C. Austin, Douglas S. Lee and Jason P. Fine. Introduction to the Analysis of Survival Data in the 

Presence of Competing Risks Circulation. 2016;133:601-609, originally published February 8, 2016 

• Dignam JJ, Zhang Q, Kocherginsky MN. The Use and Interpretation of Competing Risks Regression Models. 

Clinical Cancer Research. 2012;18(8):2301-2308.  

• Marlies Noordzij, Karen Leffondré, Karlijn J. van Stralen, Carmine Zoccali, Friedo W. Dekker, Kitty J. Jager; 

When do we need competing risks methods for survival analysis in nephrology?. Nephrol Dial 

Transplant 2013; 28 (11): 2670-2677.  

• Wolbers M, Koller MT, Stel VS, Schaer B, Jager KJ, Leffondré K, Heinze G. Competing risks analyses: 

objectives and approaches. European heart journal. 2014; 35: 2936-2941. 

• Zhou, Bingqing, et al. “Competing risks regression for stratified data.” Biometrics 67.2 (2011): 661-670. 

• Zhou, Bingqing, et al. “Competing risks regression for clustered data.” Biostatistics 13.3 (2012): 371-383. 

25 

https://cran.r-project.org/web/packages/cmprsk/cmprsk.pdf
https://cran.r-project.org/web/packages/cmprsk/cmprsk.pdf
https://cran.r-project.org/web/packages/cmprsk/cmprsk.pdf
https://cran.r-project.org/web/packages/cmprsk/cmprsk.pdf
https://cran.r-project.org/web/packages/cmprsk/cmprsk.pdf
http://www.stata.com/manuals13/ststcrreg.pdf
https://support.sas.com/rnd/app/stat/papers/2014/competingrisk2014.pdf
https://support.sas.com/rnd/app/stat/papers/2014/competingrisk2014.pdf
https://support.sas.com/rnd/app/stat/papers/2014/competingrisk2014.pdf
https://cran.r-project.org/web/packages/mstate/vignettes/Tutorial.pdf
https://cran.r-project.org/web/packages/mstate/vignettes/Tutorial.pdf
https://cran.r-project.org/web/packages/mstate/vignettes/Tutorial.pdf

