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Abstract

Many deep neural networks trained on natural images exhibit a curious phe-
nomenon in common: on the first layer they learn features similar to Gabor filters
and color blobs. Such first-layer features appear not to be specific to a particular
dataset or task, but general in that they are applicable to many datasets and tasks.
Features must eventually transition from general to specific by the last layer of
the network, but this transition has not been studied extensively. In this paper we
experimentally quantify the generality versus specificity of neurons in each layer
of a deep convolutional neural network and report a few surprising results. Trans-
ferability is negatively affected by two distinct issues: (1) the specialization of
higher layer neurons to their original task at the expense of performance on the
target task, which was expected, and (2) optimization difficulties related to split-
ting networks between co-adapted neurons, which was not expected. In an exam-
ple network trained on ImageNet, we demonstrate that either of these two issues
may dominate, depending on whether features are transferred from the bottom,
middle, or top of the network. We also document that the transferability of fea-
tures decreases as the distance between the base task and target task increases, but
that transferring features even from distant tasks can be better than using random
features. A final surprising result is that initializing a network with transferred
features from almost any number of layers can produce a boost to generalization
that lingers even after fine-tuning to the target dataset.

1 Introduction

Modern deep neural networks exhibit a curious phenomenon: when trained on images, they all tend
to learn first-layer features that resemble either Gabor filters or color blobs. The appearance of these
filters is so common that obtaining anything else on a natural image dataset causes suspicion of
poorly chosen hyperparameters or a software bug. This phenomenon occurs not only for different
datasets, but even with very different training objectives, including supervised image classification
(Krizhevsky et al., 2012), unsupervised density learning (Lee et al., 2009), and unsupervised learn-
ing of sparse representations (Le et al., 2011).

Because finding these standard features on the first layer seems to occur regardless of the exact cost
function and natural image dataset, we call these first-layer features general. On the other hand, we
know that the features computed by the last layer of a trained network must depend greatly on the
chosen dataset and task. For example, in a network with an N-dimensional softmax output layer that
has been successfully trained toward a supervised classification objective, each output unit will be
specific to a particular class. We thus call the last-layer features specific. These are intuitive notions
of general and specific for which we will provide more rigorous definitions below. If first-layer



features are general and last-layer features are specific, then there must be a transition from general
to specific somewhere in the network. This observation raises a few questions:

e Can we quantify the degree to which a particular layer is general or specific?
e Does the transition occur suddenly at a single layer, or is it spread out over several layers?

e Where does this transition take place: near the first, middle, or last layer of the network?

We are interested in the answers to these questions because, to the extent that features within a
network are general, we will be able to use them for transfer learning (Caruana, 1995; Bengio
et al., 2011; Bengio, 2011). In transfer learning, we first train a base network on a base dataset and
task, and then we repurpose the learned features, or transfer them, to a second target network to
be trained on a target dataset and task. This process will tend to work if the features are general,
meaning suitable to both base and target tasks, instead of specific to the base task.

When the target dataset is significantly smaller than the base dataset, transfer learning can be a
powerful tool to enable training a large target network without overfitting; Recent studies have
taken advantage of this fact to obtain state-of-the-art results when transferring from higher layers
(Donahue et al., 2013a; Zeiler and Fergus, 2013; Sermanet et al., 2014), collectively suggesting that
these layers of neural networks do indeed compute features that are fairly general. These results
further emphasize the importance of studying the exact nature and extent of this generality.

The usual transfer learning approach is to train a base network and then copy its first n layers to
the first n layers of a target network. The remaining layers of the target network are then randomly
initialized and trained toward the target task. One can choose to backpropagate the errors from
the new task into the base (copied) features to fine-fune them to the new task, or the transferred
feature layers can be left frozen, meaning that they do not change during training on the new task.
The choice of whether or not to fine-tune the first n layers of the target network depends on the
size of the target dataset and the number of parameters in the first n layers. If the target dataset is
small and the number of parameters is large, fine-tuning may result in overfitting, so the features
are often left frozen. On the other hand, if the target dataset is large or the number of parameters is
small, so that overfitting is not a problem, then the base features can be fine-tuned to the new task
to improve performance. Of course, if the target dataset is very large, there would be little need to
transfer because the lower level filters could just be learned from scratch on the target dataset. We
compare results from each of these two techniques — fine-tuned features or frozen features — in
the following sections.

In this paper we make several contributions:

1. We define a way to quantify the degree to which a particular layer is general or specific, namely,
how well features at that layer transfer from one task to another (Section 2). We then train pairs
of convolutional neural networks on the ImageNet dataset and characterize the layer-by-layer
transition from general to specific (Section 4), which yields the following four results.

2. We experimentally show two separate issues that cause performance degradation when us-
ing transferred features without fine-tuning: (i) the specificity of the features themselves, and
(ii) optimization difficulties due to splitting the base network between co-adapted neurons on
neighboring layers. We show how each of these two effects can dominate at different layers of
the network. (Section 4.1)

3. We quantify how the performance benefits of transferring features decreases the more dissimilar
the base task and target task are. (Section 4.2)

4. On the relatively large ImageNet dataset, we find lower performance than has been previously
reported for smaller datasets (Jarrett et al., 2009) when using features computed from random
lower-layer weights vs. trained weights. We compare random weights to transferred weights—
both frozen and fine-tuned—and find the transferred weights perform better. (Section 4.3)

5. Finally, we find that initializing a network with transferred features from almost any number
of layers can produce a boost to generalization performance after fine-tuning to a new dataset.
This is particularly surprising because the effect of having seen the first dataset persists even
after extensive fine-tuning. (Section 4.1)



2 Generality vs. Specificity Measured as Transfer Performance

We have noted the curious tendency of Gabor filters and color blobs to show up in the first layer of
neural networks trained on natural images. In this study, we define the degree of generality of a set
of features learned on task A as the extent to which the features can be used for another task B. It
is important to note that this definition depends on the similarity between A and B. We create pairs
of classification tasks A and B by constructing pairs of non-overlapping subsets of the ImageNet
dataset.! These subsets can be chosen to be similar to or different from each other.

To create tasks A and B, we randomly split the 1000 ImageNet classes into two groups each con-
taining 500 classes and approximately half of the data, or about 645,000 examples each. We train
one eight-layer convolutional network on A and another on B. These networks, which we call baseA
and baseB, are shown in the top two rows of Figure 1. We then choose a layer n from {1,2,...,7}
and train several new networks. In the following explanation and in Figure 1, we use layer n = 3 as
the example layer chosen. First, we define and train the following two networks:

o A selffer network B3B: the first 3 layers are copied from baseB and frozen. The five higher
layers (4-8) are initialized randomly and trained on dataset B. This network is a control for the
next transfer network. (Figure 1, row 3)

o A transfer network A3B: the first 3 layers are copied from baseA and frozen. The five higher
layers (4-8) are initialized randomly and trained toward dataset B. Intuitively, here we copy
the first 3 layers from a network trained on dataset A and then learn higher layer features on top
of them to classify a new target dataset B. If A3B performs as well as baseB, there is evidence
that the third-layer features are general, at least with respect to B. If performance suffers, there
is evidence that the third-layer features are specific to A. (Figure 1, row 4)

We repeated this process for all n in {1,2,...,7}* and in both directions (i.e. AnB and BnA). In
the above two networks, the transferred layers are frozen. We also create versions of the above two
networks where the transferred layers are fine-tuned:

o A selffer network B3B: just like B3B, but where all layers learn.

o A transfer network A3B™: just like A3B, but where all layers learn.

To create base and target datasets that are similar to each other, we randomly assign half of the 1000
ImageNet classes to A and half to B. ImageNet contains clusters of similar classes, particularly dogs
and cats, like these 13 classes from the biological family Felidae: {tabby cat, tiger cat, Persian cat,
Siamese cat, Egyptian cat, mountain lion, lynx, leopard, snow leopard, jaguar, lion, tiger, cheetah}.
On average, A and B will each contain approximately 6 or 7 of these felid classes, meaning that
base networks trained on each dataset will have features at all levels that help classify some types
of felids. When generalizing to the other dataset, we would expect that the new high-level felid
detectors trained on top of old low-level felid detectors would work well. Thus A and B are similar
when created by randomly assigning classes to each, and we expect that transferred features will
perform better than when A and B are less similar.

Fortunately, in ImageNet we are also provided with a hierarchy of parent classes. This information
allowed us to create a special split of the dataset into two halves that are as semantically different
from each other as possible: with dataset A containing only man-made entities and B containing
natural entities. The split is not quite even, with 551 classes in the man-made group and 449 in the
natural group. Further details of this split and the classes in each half are given in the supplementary
material. In Section 4.2 we will show that features transfer more poorly (i.e. they are more specific)
when the datasets are less similar.

'The ImageNet dataset, as released in the Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)
(Deng et al., 2009) contains 1,281,167 labeled training images and 50,000 test images, with each image labeled
with one of 1000 classes.

*Note that n = 8 doesn’t make sense in either case: B8B is just baseB, and A8B would not work because
it is never trained on B.
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Figure 1: Overview of the experimental treatments and controls. Top two rows: The base networks
are trained using standard supervised backprop on only half of the ImageNet dataset (first row: A
half, second row: B half). The labeled rectangles (e.g. W 41) represent the weight vector learned for
that layer, with the color indicating which dataset the layer was originally trained on. The vertical,
ellipsoidal bars between weight vectors represent the activations of the network at each layer. Third
row: In the selffer network control, the first n weight layers of the network (in this example, n = 3)
are copied from a base network (e.g. one trained on dataset B), the upper 8 — n layers are randomly
initialized, and then the entire network is trained on that same dataset (in this example, dataset B).
The first n layers are either locked during training (“frozen” selffer treatment B3B) or allowed to
learn (“fine-tuned” selffer treatment B3B™). This treatment reveals the occurrence of fragile co-
adaptation, when neurons on neighboring layers co-adapt during training in such a way that cannot
be rediscovered when one layer is frozen. Fourth row: The transfer network experimental treatment
is the same as the selffer treatment, except that the first n layers are copied from a network trained
on one dataset (e.g. A) and then the entire network is trained on the other dataset (e.g. B). This
treatment tests the extent to which the features on layer n are general or specific.

3 Experimental Setup

Since Krizhevsky et al. (2012) won the ImageNet 2012 competition, there has been much interest
and work toward tweaking hyperparameters of large convolutional models. However, in this study
we aim not to maximize absolute performance, but rather to study transfer results on a well-known
architecture. We use the reference implementation provided by Caffe (Jia et al., 2014) so that our
results will be comparable, extensible, and useful to a large number of researchers. Further details of
the training setup (learning rates, etc.) are given in the supplementary material, and code and param-
eter files to reproduce these experiments are available at http://yosinski.com/transfer.

4 Results and Discussion

We performed three sets of experiments. The main experiment has random A/B splits and is dis-
cussed in Section 4.1. Section 4.2 presents an experiment with the man-made/natural split. Sec-
tion 4.3 describes an experiment with random weights.
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Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB™ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB™ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown? in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.



1. The white baseB circles show that a network trained to classify a random subset of 500 classes
attains a top-1 accuracy of 0.625, or 37.5% error. This error is lower than the 42.5% top-1 error
attained on the 1000-class network. While error might have been higher because the network is
trained on only half of the data, which could lead to more overfitting, the net result is that error is
lower because there are only 500 classes, so there are only half as many ways to make mistakes.

2. The dark blue BnB points show a curious behavior. As expected, performance at layer one is
the same as the baseB points. That is, if we learn eight layers of features, save the first layer of
learned Gabor features and color blobs, reinitialize the whole network, and retrain it toward the
same task, it does just as well. This result also holds true for layer 2. However, layers 3, 4, 5,
and 6, particularly 4 and 5, exhibit worse performance. This performance drop is evidence that
the original network contained fragile co-adapted features on successive layers, that is, features
that interact with each other in a complex or fragile way such that this co-adaptation could not be
relearned by the upper layers alone. Gradient descent was able to find a good solution the first
time, but this was only possible because the layers were jointly trained. By layer 6 performance
is nearly back to the base level, as is layer 7. As we get closer and closer to the final, 500-way
softmax output layer 8, there is less to relearn, and apparently relearning these one or two layers
is simple enough for gradient descent to find a good solution. Alternately, we may say that
there is less co-adaptation of features between layers 6 & 7 and between 7 & 8§ than between
previous layers. To our knowledge it has not been previously observed in the literature that such
optimization difficulties may be worse in the middle of a network than near the bottom or top.

3. The light blue BnB™ points show that when the copied, lower-layer features also learn on the
target dataset (which here is the same as the base dataset), performance is similar to the base
case. Such fine-tuning thus prevents the performance drop observed in the BnB networks.

4. The dark red AnB diamonds show the effect we set out to measure in the first place: the transfer-

ability of features from one network to another at each layer. Layers one and two transfer almost
perfectly from A to B, giving evidence that, at least for these two tasks, not only are the first-layer
Gabor and color blob features general, but the second layer features are general as well. Layer
three shows a slight drop, and layers 4-7 show a more significant drop in performance. Thanks
to the BnB points, we can tell that this drop is from a combination of two separate effects: the
drop from lost co-adaptation and the drop from features that are less and less general. On layers
3, 4, and 5, the first effect dominates, whereas on layers 6 and 7 the first effect diminishes and
the specificity of representation dominates the drop in performance.
Although examples of successful feature transfer have been reported elsewhere in the literature
(Girshick et al., 2013; Donahue et al., 2013b), to our knowledge these results have been limited
to noticing that transfer from a given layer is much better than the alternative of training strictly
on the target task, i.e. noticing that the AnB points at some layer are much better than training
all layers from scratch. We believe this is the first time that (1) the extent to which transfer is
successful has been carefully quantified layer by layer, and (2) that these two separate effects
have been decoupled, showing that each effect dominates in part of the regime.

5. The light red AnB™" diamonds show a particularly surprising effect: that transferring features
and then fine-tuning them results in networks that generalize better than those trained directly on
the target dataset. Previously, the reason one might want to transfer learned features is to enable
training without overfitting on small target datasets, but this new result suggests that transferring
features will boost generalization performance even if the target dataset is large. Note that this
effect should not be attributed to the longer total training time (450k base iterations + 450k fine-
tuned iterations for AnBT vs. 450k for baseB), because the BnBT networks are also trained
for the same longer length of time and do not exhibit this same performance improvement.
Thus, a plausible explanation is that even after 450k iterations of fine-tuning (beginning with
completely random top layers), the effects of having seen the base dataset still linger, boosting
generalization performance. It is surprising that this effect lingers through so much retraining.
This generalization improvement seems not to depend much on how much of the first network
we keep to initialize the second network: keeping anywhere from one to seven layers produces
improved performance, with slightly better performance as we keep more layers. The average
boost across layers 1 to 7 is 1.6% over the base case, and the average if we keep at least five
layers is 2.1%.* The degree of performance boost is shown in Table 1.

*We aggregate performance over several layers because each point is computationally expensive to obtain
(9.5 days on a GPU), so at the time of publication we have few data points per layer. The aggregation is



Table 1: Performance boost of AnB* over controls, averaged over different ranges of layers.

mean boost | mean boost
layers over over
aggregated baseB selffer BnB™
1-7 1.6% 1.4%
3-7 1.8% 1.4%
5-7 2.1% 1.7%

4.2 Dissimilar Datasets: Splitting Man-made and Natural Classes Into Separate Datasets

As mentioned previously, the effectiveness of feature transfer is expected to decline as the base and
target tasks become less similar. We test this hypothesis by comparing transfer performance on
similar datasets (the random A/B splits discussed above) to that on dissimilar datasets, created by
assigning man-made object classes to A and natural object classes to B. This man-made/natural split
creates datasets as dissimilar as possible within the ImageNet dataset.

The upper-left subplot of Figure 3 shows the accuracy of a baseA and baseB network (white circles)
and BnA and AnB networks (orange hexagons). Lines join common target tasks. The upper of the
two lines contains those networks trained toward the target task containing natural categories (baseB
and AnB). These networks perform better than those trained toward the man-made categories, which
may be due to having only 449 classes instead of 551, or simply being an easier task, or both.

4.3 Random Weights

We also compare to random, untrained weights because Jarrett ez al. (2009) showed — quite strik-
ingly — that the combination of random convolutional filters, rectification, pooling, and local nor-
malization can work almost as well as learned features. They reported this result on relatively small
networks of two or three learned layers and on the smaller Caltech-101 dataset (Fei-Fei et al., 2004).
It is natural to ask whether or not the nearly optimal performance of random filters they report carries
over to a deeper network trained on a larger dataset.

The upper-right subplot of Figure 3 shows the accuracy obtained when using random filters for the
first n layers for various choices of n. Performance falls off quickly in layers 1 and 2, and then
drops to near-chance levels for layers 3+, which suggests that getting random weights to work in
convolutional neural networks may not be as straightforward as it was for the smaller network size
and smaller dataset used by Jarrett et al. (2009). However, the comparison is not straightforward.
Whereas our networks have max pooling and local normalization on layers 1 and 2, just as Jarrett
et al. (2009) did, we use a different nonlinearity (relu(x) instead of abs(tanh(x))), different layer
sizes and number of layers, as well as other differences. Additionally, their experiment only consid-
ered two layers of random weights. The hyperparameter and architectural choices of our network
collectively provide one new datapoint, but it may well be possible to tweak layer sizes and random
initialization details to enable much better performance for random weights.>

The bottom subplot of Figure 3 shows the results of the experiments of the previous two sections
after subtracting the performance of their individual base cases. These normalized performances
are plotted across the number of layers n that are either random or were trained on a different,
base dataset. This comparison makes two things apparent. First, the transferability gap when using
frozen features grows more quickly as n increases for dissimilar tasks (hexagons) than similar tasks
(diamonds), with a drop by the final layer for similar tasks of only 8% vs. 25% for dissimilar tasks.
Second, transferring even from a distant task is better than using random filters. One possible reason
this latter result may differ from Jarrett er al. (2009) is because their fully-trained (non-random)
networks were overfitting more on the smaller Caltech-101 dataset than ours on the larger ImageNet

informative, however, because the performance at each layer is based on different random draws of the upper
layer initialization weights. Thus, the fact that layers 5, 6, and 7 result in almost identical performance across
random draws suggests that multiple runs at a given layer would result in similar performance.

SFor example, the training loss of the network with three random layers failed to converge, producing only
chance-level validation performance. Much better convergence may be possible with different hyperparameters.
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Figure 3: Performance degradation vs. layer. Top left: Degradation when transferring between dis-
similar tasks (from man-made classes of ImageNet to natural classes or vice versa). The upper line
connects networks trained to the “natural” target task, and the lower line connects those trained to-
ward the “man-made” target task. Top right: Performance when the first n layers consist of random,
untrained weights. Bottom: The top two plots compared to the random A/B split from Section 4.1
(red diamonds), all normalized by subtracting their base level performance.

dataset, making their random filters perform better by comparison. In the supplementary material,
we provide an extra experiment indicating the extent to which our networks are overfit.

5 Conclusions

We have demonstrated a method for quantifying the transferability of features from each layer of
a neural network, which reveals their generality or specificity. We showed how transferability is
negatively affected by two distinct issues: optimization difficulties related to splitting networks in
the middle of fragilely co-adapted layers and the specialization of higher layer features to the original
task at the expense of performance on the target task. We observed that either of these two issues
may dominate, depending on whether features are transferred from the bottom, middle, or top of
the network. We also quantified how the transferability gap grows as the distance between tasks
increases, particularly when transferring higher layers, but found that even features transferred from
distant tasks are better than random weights. Finally, we found that initializing with transferred
features can improve generalization performance even after substantial fine-tuning on a new task,
which could be a generally useful technique for improving deep neural network performance.
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A Training Details

Since Krizhevsky et al. (2012) won the ImageNet 2012 competition, there has naturally been much
interest and work toward tweaking hyperparameters of large convolutional models. For example,
Zeiler and Fergus (2013) found that it is better to decrease the first layer filters sizes from 11 x 11
to 7 x 7 and to use a smaller stride of 2 instead of 4. However, because this study aims not for
maximum absolute performance but to use a commonly studied architecture, we used the reference
implementation provided by Caffe (Jia ef al., 2014). We followed Donahue et al. (2013) in making
a few minor departures from Krizhevsky et al. (2012) when training the convnets in this study. We
skipped the data augmentation trick of adding random multiples of principle components of pixel
RGB values, which produced only a 1% improvement in the original paper, and instead of scaling to
keep the aspect ratio and then cropping, we warped images to 256 x 256. We also placed the Local
Response Normalization layers just after the pooling layers, instead of before them. As in previous
studies, including Krizhevsky et al. (2012), we use dropout (Hinton et al., 2012) on fully connected
layers except for the softmax output layer.

We trained with stochastic gradient descent (SGD) with momentum. Each iteration of SGD used a
batch size of 256, a momentum of 0.9, and a multiplicative weight decay (for those weights with
weight decay enabled, i.e. not for frozen weights) of 0.0005 per iteration. The master learning rate
started at 0.01, and annealed over the course of training by dropping by a factor of 10 every 100,000
iterations. Learning stopped after 450,000 iterations. Each iteration took about ~1.7 seconds on a
NVidia K20 GPU, meaning the whole training procedure for a single network took ~9.5 days.

Our base model attains a final top-1 error on the validation set of 42.5%, about the same as the 42.9%
reported by Donahue et al. (2013) and 1.8% worse than Krizhevsky et al. (2012), the latter difference
probably due to the few minor training differences explained above. We checked these values only
to demonstrate that the network was converging reasonably. As our goal is not to improve the state
of the art, but to investigate the properties of transfer, small differences in raw performance are not
of concern.

Because code is often more clear than text, we’ve also made all code and parameter files necessary
to reproduce these experiments available on http://yosinski.com/transfer.

B How Much Does an AlexNet Architecture Overfit?

We observed relatively poor performance of random filters in an AlexNet architecture (Krizhevsky
et al., 2012) trained on ImageNet, which is in contrast to previously reported successes with ran-
dom filters in a smaller convolutional networks trained on the smaller Caltech-101 dataset (Jarrett
et al., 2009). One hypothesis presented in the main paper is that this difference is observed because
ImageNet is large enough to support training an AlexNet architecture without excessive overfitting.
We sought to support or disprove this hypothesis by creating reduced size datasets containing the
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Figure S1: Top-1 validation accuracy for networks trained on datasets containing reduced numbers
of examples. The largest dataset contains the entire ILSVRC2012 (Deng et al., 2009) release with
a maximum of 1300 examples per class, and the smallest dataset contains only 1 example per class
(1000 data points in total). Top: linear axes. The slope of the rightmost line segment between 1000
and 1300 is nearly zero, indicating that the amount of overfit is slight. In this region the validation
accuracy rises by 0.010820 from 0.54094 to 0.55176. Bottom: logarithmic axes. It is interesting to
note that even the networks trained on a single example per class or two examples per class manage
to attain 3.8% or 4.4% accuracy, respectively. Networks trained on {5,10,25,50,100} examples per
class exhibit poor convergence and attain only chance level performance.

same 1000 classes as ImageNet, but where each class contained a maximum of n examples, for
each n € {1300, 1000, 750, 500, 250, 100, 50, 25, 10, 5, 2, 1}. The case of n = 1300 is the complete
ImageNet dataset.

Because occupying a whole GPU for this long was infeasible given our available computing re-
sources, we also devised a set of hyperparameters to allow faster learning by boosting the learning
rate by 25% to 0.0125, annealing by a factor of 10 after only 64,000 iterations, and stopping after
200,000 iterations. These selections were made after looking at the learning curves for the base case
and estimating at which points learning had plateaued and thus annealing could take place. This
faster training schedule was only used for the experiments in this section. Each run took just over 4
days on a K20 GPU.

The results of this experiment are shown in Figure S1 and Table S1. The rightmost few points in the
top subplot of Figure S1 appear to converge, or nearly converge, to an asymptote, suggesting that
validation accuracy would not improve significantly when using an AlexNet model with much more
data, and thus, that the degree of overfit is not severe.



Table S1: An enumeration of the points in Figure S1 for clarity.

Number | Top-1
of examples | validation

per class | accuracy

1300 | 0.55176

1000 | 0.54094

750 | 0.51470

500 | 0.47568

250 | 0.38428

100 | 0.00110

50 | 0.00111

25 | 0.00107

10 | 0.00106

5 | 0.00108

2 | 0.00444

1 | 0.00379

C Man-made vs. Natural Split

In order to compare transfer performance between tasks A and B such that A and B are as semanti-
cally dissimilar as possible, we sought to find two disjoint subsets of the 1000 classes in ImageNet
that were as unrelated as possible. To this end we annotated each node z; in the WordNet graph
with a label n; such that n; is the number of distinct ImageNet classes reachable by starting at z;
and traversing the graph only in the parent — child direction. The 20 nodes with largest n; are the
following:

n_1i X_1i
1000 n00001740: entity

997 n00001930: physical entity

958 n00002684: object, physical object

949 n00003553: whole, unit

522 n00021939: artifact, artefact

410 n00004475: organism, being

410 n00004258: living thing, animate thing

398 n00015388: animal, animate being, beast, brute, creature, fauna
358 n03575240: instrumentality, instrumentation

337 n01471682: vertebrate, craniate

337 n01466257: chordate

218 n01861778: mammal, mammalian

212 n01886756: placental, placental mammal, eutherian, eutherian mammal
158 n02075296: carnivore

130 n03183080: device

130 n02083346: canine, canid

123 n01317541: domestic animal, domesticated animal
118 n02084071: dog, domestic dog, Canis familiaris
100 n03094503: container

90 n03122748: covering

Starting from the top, we can see that the largest subset, entity, contains all 1000 ImageNet
categories. Moving down several items, the first subset we encounter containing approximately
half of the classes is artifact with 522 classes. The next is organism with 410. Fortunately
for this study, it just so happens that these two subsets are mutually exclusive, so we used the
first to populate our man-made category and the second to populate our natural category. There are
1000—522—410 = 68 classes remaining outside these two subsets, and we manually assigned these
to either category as seemed more appropriate. For example, we placed pizza, cup, and bagel
into man-made and strawberry, volcano, and banana into natural. This process results in
551 and 449 classes, respectively. The 68 manual decisions are shown below, and the complete list
of 551 man-made and 449 natural classes is available at http://yosinski.com/transfer.



Classes manually placed into the man-made category:

n07697537
n07860988
n07875152
n07583066
n07892512
n07614500
n09229709
n07831146
n07565083
n07871810
n07693725
n07920052
n07590611
n07873807
n07579787
n06874185
n07836838
nl5075141
n07613480
n07880968
n06794110
n07711569
n07932039
n07695742
n07684084
n07697313
n07615774
n07584110
n07930864

hotdog, red hot
dough
potpie
guacamole
red wine
ice cream,
bubble
carbonara
menu

meat loaf, meatloaf

bagel, beigel

espresso

hot pot, hotpot

pizza, pizza pie

plate

traffic light, traffic signal,
chocolate sauce, chocolate syrup
toilet tissue, toilet paper,
trifle

burrito

street sign
mashed potato
€ggnog

pretzel

French loaf
cheeseburger

ice lolly, lolly,
consomme

cup

hot dog,

icecream

lollipop, popsicle

Classes manually placed into the natural category:

nl3133613
n07745940
n07714571
n09428293
n07753113
n07753275
n07730033
n07749582
n07742313
nl2768682
n07734744
n09246464
nll1879895
n07718472
n09468604
n07802026
n09288635
n07720875
n07760859
n07716358
n09332890
n09193705
n09399592
n07717410
n07717556
n07714990
n09256479
n09472597
n07747607
n07716906
nl2620546
n07768694
nl2267677
nl2144580
n07718747
n07753592
n09421951
n07715103
n07754684

ear, spike,
strawberry
head cabbage
seashore, coast,
fig
pineapple,
cardoon
lemon
Granny Smith

buckeye, horse chestnut,
mushroom
cliff, drop,
rapeseed
cucumber, cuke
valley, vale

hay

geyser

bell pepper

custard apple
zucchini, courgette
lakeside, lakeshore
alp
promontory,
acorn squash
butternut squash
broccoli

coral reef

volcano

orange

spaghetti squash

hip, rose hip, rosehip
pomegranate
acorn

corn
artichoke,
banana
sandbar, sand bar
cauliflower
jackfruit,

capitulum

seacoast, sea-coast

ananas

conker

drop-off

headland, head, foreland

globe artichoke

jak, jack

stoplight

bathroom tissue
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