SAMS

C++

Primer Plus

Fifth Edition

Stephen Prata

C++

Primer Plus

Fifth Edition

Stephen Prata

SAMS

800 East 96th St., Indianapolis, Indiana, 46240 USA

C++ Primer Plus

Copyright © 2005 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for errors
or omissions. Nor is any liability assumed for damages resulting from the use of the infor-
mation contained herein.

International Standard Book Number: 0-672-32697-3
Library of Congress Catalog Card Number: 2004095067
Printed in the United States of America

First Printing: November, 2004

07 06 05 04 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
1-317-428-3341

international@pearsontechgroup.com

ASSOCIATE PUBLISHER
Michael Stephens

ACQUISITIONS EDITOR
Loretta Yates

DEVELOPMENT EDITOR
Songlin Qiu
MANAGING EDITOR
Charlotte Clapp

PROJECT EDITOR
George E. Nedeff

COPY EDITOR
Kitty Jarrett

INDEXER
Erika Millen

PROOFREADER
Suzanne Thomas

TECHNICAL EDITOR
David Horvath

PUBLISHING
COORDINATOR
Cindy Teeters

MULTIMEDIA DEVELOPER
Dan Scherf

BOOK DESIGNER
Gary Adair

CONTENTS AT A GLANCE

INTRODUCTION

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G

0 N & U1 A W N =

©

1
Getting Started 11
Setting Out to CH++o 29
Dealingwith Data 65
Compound Types 109
Loops and Relational Expressions 177
Branching Statements and Logical Operators 231
Functions: C++s Programming Modules 279
Adventures in Functions 337
Memory Models and Namespaces 393
Objectsand Classes i 445
Working with Classes 501
Classes and Dynamic Memory Allocation 561
Class Inheritance 633
Reusing Code in C++o 701
Friends, Exceptions, and More 787
The string Class and the Standard Template Library 857
Input, Output, and Files 951
Number Bases 1041
C++Reserved Words 1047
The ASCII Character Set 1051
Operator Precedence 1057
Other Operators 1063
The string Template Class 1075

The STL Methods and Functions 1095

APPENDIX H Selected Readings and Internet Resources

APPENDIX | Converting to ANSI/ISO Standard C++ . .
APPENDIX J Answers to Review Questions

INDEX

TABLE OF CONTENTS

INTRODUCTION 1
CHAPTER 1: Getting Started 11
Learning C++: What Lies Before You 11
The Origins of C++: A Little History 12
The CLanguaget 13

C Programming Philosophy L 13
The C++ Shift: Object-Oriented Programming 14
C++ and Generic Programming 15
The Genesis Of C+ . ..o oo 16
Portability and Standards L 17
The Mechanics of Creating a Program 19
Creating the Source Code File 20
Compilation and Linking 22
SUMMATY . ..o 27
CHAPTER 2: SettingOut to C++o 29
C++ Initiation 29
The main() Function 31
CH+ COMMENLS . ..ot 34
The C++ Preprocessor and the iostreamFile 35
Header Filenames 36
Namespaces 37
C++ Output with cout 38
C++ Source Code Formatting 41
C+ SEABMENLSo 43
Declaration Statements and Variables 43
Assignment Statements 45

A New Trick forcout 46
More Ca+ STAtEMENTSo\ o ittt e e e 47
Using cin ... 47
Concatenating with cout 48
cinand cout: ATouchof Class 48
Functions 50
Using a Function That Has a Return Value 50
Function Variations 54
User-Defined Functions, 55
Using a User-Defined Function That Has a Return Value 58

Placing the using Directive in Multifunction Programs 60

vi C++ PRIMER PLUS, FIFTH EDITION

SUMMATYo 62
Review Questions 63
Programming Exercises 64
CHAPTER 3: DealingwithData 65
Simple Variables 66
Names for Variables 66
Integer Types 68
The short, int, and long Integer Types 68
Unsigned Types oot 73
Choosing an Integer Type i 75
Integer CONSLANLSottt 76
How C++ Decides What Type a ConstantIs 78
The char Type: Characters and Small Integers 79
The bool TyPe . . oo oot 87
The const Qualifier 88
Floating-Point Numbers 89
Writing Floating-Point Numbers 89
Floating-Point Types 91
Floating-Point Constants i .. 93
Advantages and Disadvantages of Floating-Point Numbers 94
Ct++ Arithmetic Operators it 95
Order of Operation: Operator Precedence and Associativity 96
Division Diversions 97
The Modulus Operator 99
Type Conversions 100
SUMIMATY . . oottt e 105
Review QUESHIONS 106
Programming ExXercises 107
CHAPTER 4: Compound Typesottt 109
Introducing AITays 110
Program Notes 112
Initialization Rules for Arrays L. 113
SIINES . oo 114
Concatenating String Constantsuiiiea... 116
Using Strings in an ATrayt 116
Adventures in String Input 118
Reading String Input a Lineata Time 119

Mixing String and Numeric Input 124

CONTENTS vii

Introducing the string Class 125
Assignment, Concatenation, and Appending 126
More string Class Operations 127
More on string Class /O 129

Introducing StrUCtUresot 131
Using a Structure ina Program 133
Can a Structure Use a string Class Member? 135
Other Structure Properties i 136
Arrays of Structures 137
Bit Fields in Structures 139

Unions 139

Enumerations 141
Setting Enumerator Values 142
Value Ranges for Enumerations 143

Pointers and the Free Store 144
Declaring and Initializing Pointers 147
Pointer Danger 149
Pointers and Numbers 150
Allocating Memory withnew 150
Freeing Memory with delete 152
Using new to Create Dynamic Arrays 153

Pointers, Arrays, and Pointer Arithmetic 156
Program Notes 157
Pointers and Strings 162
Using new to Create Dynamic Structures 166
Automatic Storage, Static Storage, and Dynamic Storage 170

SUMMATY . ..ot 172

Review Questions 173

Programming Exercises 174

CHAPTER 5: Loops and Relational Expressions 177

Introducing for Loops 178
forLoop Parts 179
Backtothe forLoop 185
Changing the Step Size 187
Inside Strings with the for Loop 188
The Increment (++) and Decrement (--) Operators 189
Side Effects and Sequence Points 190
Prefixing Versus Postfixing 191
The Increment/Decrement Operators and Pointers 191

Combination Assignment OPerators 192

viii

C++ PRIMER PLUS, FIFTH EDITION

Compound Statements, or Blocks o 193
The Comma Operator (or More Syntax Tricks) 195
Relational Expressions i 198
A Mistake You'll Probably Make, 199
Comparing C-Style Strings 201
Comparing string Class Strings 204
The while Loopo 205
Program Notes 207
for Versuswhile 207
Just a Moment—-Building a Time-Delay Loop 209
The do While LOODot 211
Loopsand Text Input 213
Using Unadorned cinforInput 214
cin.get(char) tothe Rescue, 215
Which cin.get()? 216
The End-of-File Condition 217
Yet Another Version of cin.get() 220
Nested Loops and Two-Dimensional Arrays 223
Initializing a Two-Dimensional Array 225
SUMMATY . ..o 227
Review Questions 228
Programming Exercises 229
CHAPTER 6: Branching Statements and Logical Operators 231
The if Statemento 231
The if else Statemento..iiuiinnenaanoo .. 233
Formatting if else Statements 235
The if else if else Construction 236
Logical EXPressions 238
The Logical OR Operator: || 238
The Logical AND Operator: && 239
The Logical NOT Operator: |, 244
Logical Operator Facts 246
Alternative Representations 247
The cctype Library of Character Functions, 247
The 2 OPeratoro 250
The switch Statement 251
Using Enumerators as Labels 255
switchand if else i 256
The break and continue Statements 256

Program Notes 258

CONTENTS ix

Number-Reading Loopso 259
Program Notes 262
Simple File Input/Output 202
Text /Oand Text Files 263
Writingtoa Text File 2064
Reading froma Text File 268
SUMMATY . ..o 273
Review QUESHIONS 274
Programming Exercises 276
CHAPTER 7: Functions: C++5 Programming Modules 279
Function Review 280
Defininga Function 281
Prototyping and Calling a Function 283
Function Arguments and Passing by Value, 286
Multiple ArgUments 288
Another Two-Argument Function 290
Functions and Atrays 293
How Pointers Enable Array-Processing Functions 294
The Implications of Using Arrays as Arguments 295
More Array Function Examples, 297
Functions Using Array Ranges 303
Pointersand const 305
Functions and Two-Dimensional Arrays 308
Functions and C-Style Strings 309
Functions with C-Style String Arguments 310
Functions That Return C-Style Strings 312
Functions and Structures 313
Passing and Returning Structures 314
Another Example of Using Functions with Structures 316
Passing Structure Addresses 320
Functions and string Class Objects 322
Recursion 324
Recursion with a Single Recursive Call 324
Recursion with Multiple Recursive Calls 326
Pointers to Functions 327
Function Pointer Basics Lo 328

A Function Pointer Example L 330
SUMMATY . ..ot 332
Review QUESHIONS 333

Programming Exercises 334

X

C++ PRIMER PLUS, FIFTH EDITION

CHAPTER 8: Adventuresin Functions 337
C++ Inline Functions 337
Reference Variables 340

Creating a Reference Variable 341
References as Function Parameters 344
Reference Properties and Oddities 347
Using References with a Structure 351
Using References with a Class Object 355
Another Object Lesson: Objects, Inheritance, and References 358
When to Use Reference Arguments 361
Default Arguments 362
Program Notes 364
Function Overloading 365
An Overloading Example 367
When to Use Function Overloading 370
Function Templates 370
Overloaded Templates, 374
Explicit Specializations 376
Instantiations and Specializations 380
Which Function Version Does the Compiler Pick? 382
SUMMATY . ..ot 388
Review Questions 389
Programming Exercises 390

CHAPTER 9: Memory Models and Namespaces 393
Separate Compilation 393
Storage Duration, Scope, and Linkage 399

Scopeand Linkage 399
Automatic Storage Duration 400
Static Duration Variables L L 406
Specifiers and Qualifiers L 415
Functions and Linkage 418
Language Linking 419
Storage Schemes and Dynamic Allocation 419
The Placement new OPerator, 420
Program Notes 423
Namespaces 424
Traditional C++ Namespacest 424
New Namespace Featuresttt 426
A Namespace Example 433
Namespaces and the Future 437

SUMMATY . ..o 437

CONTENTS xi

Review QUeSHIONS 438
Programming Exercises 441
CHAPTER 10: Objectsand Classes 445
Procedural and Object-Oriented Programming 446
Abstraction and Classes 447
WhatIsaType? 447
Classes in CH+ oo 448
Implementing Class Member Functions 453
Using Classes 458
Reviewing Our StorytoDate 462
Class Constructors and Destructorso.oo.... 463
Declaring and Defining Constructors 464
Using COnStruCtorst 465
Default ConstruCtorsot 466
DESITUCIOTSottt 467
Improving the Stock Class 468
Constructors and Destructors in Review 475
Knowing Your Objects: The this Pointer 477
An Array of Objects 483
The Interface and Implementation Revisited 486
Class SCOPE . . .ot 487
Class Scope CONSLANTSottt 488
Abstract Data Types 489
SUMMATY . ..ot 495
Review QUESHIONS 496
Programming Exercises 496
CHAPTER 11: Workingwith Classes 501
Operator Overloading 502
Time on Our Hands: Developing an Operator Overloading Example 503
Adding an Addition Operator 506
Overloading Restrictions i 510
More Overloaded Operatorso .. 512
Introducing Friends 515
Creating Friends 516

A Common Kind of Friend: Overloading the << Operator 518
Overloaded Operators: Member Versus Nonmember Functions 524
More Overloading: A Vector Class 525
Using a State Member 533
Overloading Arithmetic Operators for the Vector Class 535
An Implementation Comment 537

Taking the Vector Class ona Random Walk 538

xii

C++ PRIMER PLUS, FIFTH EDITION

Automatic Conversions and Type Casts for Classes 541
Program Notes 547
Conversion Functions 547
Conversions and Friends 553

SUMIMATY . . oottt e 556

Review QUESHIONS 558

Programming Exercises 558

CHAPTER 12: Classes and Dynamic Memory Allocation 561

Dynamic Memory and Classes i 562
A Review Example and Static Class Members 562
Implicit Member Functions 571
The New, Improved String Class 579
Things to Remember When Using new in Constructors 590
Observations About Returning Objects 593
Using Pointers to Objects i 596
Reviewing Techniques 606

A Queue Simulation 607
AQueue Class 608
The Customer Class 618
The Simulation 621

SUMMATY . ..o 626

Review QUeSHIONS 627

Programming Exercises 629

CHAPTER 13: Class Inheritance 633

Beginning with a Simple Base Class 634
Derivinga Class 636
Constructors: Access Considerations 638
Using a Derived Class 641
Special Relationships Between Derived and Base Classes 643

Inheritance: An Is-a Relationship 645

Polymorphic Public Inheritance 647
Developing the Brass and BrassPlus Classes 648
Static and Dynamic Binding o L. 660
Pointer and Reference Type Compatibility 660
Virtual Member Functions and Dynamic Binding 662
Things to Know About Virtual Methods 664

Access Control: protected 668

Abstract Base Classes 670
Applying the ABC Conceptt ... 672

ABC Philosophy 677

CONTENTS

Inheritance and Dynamic Memory Allocation 677
Case 1: Derived Class Doesnt Use new 677
Case 2: Derived Class Does Use new 679
An Inheritance Example with Dynamic Memory Allocation and

Friends 681

Class Design Review i 685
Member Functions That the Compiler Generates for You 686
Other Class Method Considerations 687
Public Inheritance Considerations 691
Class Function SUMmMaryiuiininannan oo, 695

SUMMATY .« . oot e 696

Review QUESHIONS 697

Programming Exercises 698

CHAPTER 14: ReusingCode in C+ot 701

Classes with Object Members 701
The valarray Class: A Quick Look 702
The student Class Design 703
The student Class Example 705

Private Inheritance 712
The student Class Example (New Version) 713

Multiple Inheritance 723
How Many Workers? 728
Which Method? 732
MISYNOPpsis 743

Class Templates 744
Defining a Class Template 744
Using a Template Class i 748
A Closer Look at the Template Class 750
An Array Template Example and Non-Type Arguments 756
Template Versatility 758
Template Specializations 762
Member Templates 765
Templates as Parameters i 768
Template Classes and Friends 770

SUMMATY . ..o 777

Review QUeSHiONS 779

Programming Exercises 781

xiii

xiv. C++ PRIMER PLUS, FIFTH EDITION

CHAPTER 15: Friends, Exceptions, and More 787
Friends 787
Friend Classes 788
Friend Member Functions 793
Other Friendly Relationships 796
Nested Classes 798
Nested Classes and ACCess 800
Nestingina Template 801
Exceptions 805
Calling abort ()o 805
Returning an Error Code 807
The Exception Mechanism 808
Using Objects as EXceptions 812
Unwinding the Stack 816
More Exception Features 822
The exception Class 824
Exceptions, Classes, and Inheritance 829
When Exceptions GO AStrayttt 834
Exception Cautions 837
RI T 839
What Is RTTI For? e 840
How Does RITI Work? e 840
Type Cast OPeratorsot 848
SUMMATY . ..o 852
Review QUeSHIONS 853
Programming Exercises 854
CHAPTER 16: The string Class and the Standard Template Library 857
The string Class 857
Constructing a String 858
string Class Input 862
Working with Strings 864
What Else Does the string Class Offer? 870
The auto_ptr Class 873
Using auto_ptr 874
auto_ptr Considerations 876
The STL . . oo 877
The vector Template Class 878
Things to Do to VeCtOTS oot 880

More Things to Do to Vectorst .. 885

CONTENTS xv

Generic Programming 890
Why [terators? 890
Kinds of Tterators 894
Iterator Hierarchy 897
Concepts, Refinements, and Models 898
Kinds of Containers 905
Associative Containers 915

Function Objects (aka Functors), 922
Functor COnCeptsot 923
Predefined Functors 926
Adaptable Functors and Function Adapters 928

Algorithms 930
Algorithm Groups 931
General Properties of Algorithms 932
The STL and the string Class 933
Functions Versus Container Methods 934
Using the STL 936

Other Libraries 940
vector and valarray 940

SUMMATY . ..o 946

Review Questions 948

Programming Exercises 949

CHAPTER 17: Input, Output,and Files 951

An Overview of C++ Inputand Output 952
Streams and Buffers 952
Streams, Bulffers, and the iostream File 955
Redirection 957

Output with cout 958
The Overloaded << Operator 958
The Other ostream Methods 961
Flushing the Output Buffer 964
Formatting with cout 965

Input with cin 983
How cin >>ViewsInput 985
Stream States 087
Other istream Class Methods 991
Other istream Methods 999

File Input and Output 1003
Simple File /O o 1004
Stream Checking and is_open(), 1007

Opening Multiple Files 1008

xvi

C++ PRIMER PLUS, FIFTH EDITION

Command-Line Processing 1008

File Modes 1011
RanNdom ACCESSot 1021

Incore Formatting 1030
What NOW? ..o 1032
SUMMATY . ..o 1033
Review QUeSIONS 1034
Programming Exercises 1036
APPENDIX A: NumberBases 1041
Decimal Numbers (Base 10)o 1041
Octal Integers (Base 8)ot 1041
Hexadecimal Numbers (Base 16) 1042
Binary Numbers (Base 2) 1043
Binaryand Hex 1043
APPENDIX B: C++Reserved Words 1047
C+ Keywordso 1047
Alternative Tokens 1048

C++ Library Reserved Names i, 1048
APPENDIX C: The ASCII Character Set 1051
APPENDIX D: Operator Precedence 1057
APPENDIX E: Other Operatorso.uiiuitin 1063
Bitwise Operators i 1063

The Shift Operators 1063

The Logical Bitwise Operators 1065
Alternative Representations of Bitwise Operators 1067

A Few Common Bitwise Operator Techniques 1068
Member Dereferencing Operatorsouooo... 1070
APPENDIX F: The string Template Class 1075
Thirteen Typesand a Constant 1076

Data Information, Constructors, and Oddsand Ends 1077
Default Constructors 1079
Constructors That Use Arrays 1079
Constructors That Use Part of an Array 1080

Copy CONSIIUCIOLS . .\ oottt e e e e e e e 1080
Constructors That Use n Copies of a Character 1081
Constructors That UseaRange 1082
Memory Miscellany 1082

SHING ACCESS .« . o oot 1083

Basic Assignment 1084

CONTENTS xvii

String Searching 1084
The find() Family 1084
The rfind() Family 1085
The find_first_of() Family 1086
The find_last_of() Family 1086
The find_first_not_of() Family 1087
The find_last_not_of() Family 1087

Comparison Methods and Functions 1088

String Modifiers 1089
Methods for Appending and Adding 1089
More Assignment Methods 1090
Insertion Methods 1091
Erase Methods 1091
Replacement Methods 1092
Other Modifying Methods: copy () and swap() 1093

Output and Input 1093

APPENDIX G: The STL Methods and Functions 1095

Members Common to All Containers. 1095

Additional Members for Vectors, Lists, and Deques 1098

Additional Members for Setsand Maps 1101

STLFUNCHONS 1102
Nonmodifying Sequence Operations 1103
Mutating Sequence Operations 1107
Sorting and Related Operations 1115
Numeric Operations, 1126

APPENDIX H: Selected Readings and Internet Resources 1129
Selected Readings 1129
Internet Resources L 1131

APPENDIX I: Converting to ANSI/ISO Standard C++ 1133

Use Alternatives for Some Preprocessor Directives 1133
Use const Instead of #define to Define Constants 1133
Use inline Instead of #define to Define Short Functions 1135

Use Function Prototypes, 1136

Use Type Castso 1136

Become Familiar with C++ Features 1137

Use the New Header Organization 1137

Use Namespacest 1137

Use the autoptr Template 1138

Use the string Class 1139

Use the STL 1139

APPENDIX J: Answers to the Review Questions 1141

Answers to Review Questions for Chapter2 1141
Answers to Review Questions for Chapter 3 1142
Answers to Review Questions for Chapter4 1143
Answers to Review Questions for Chapter 5 1144
Answers to Review Questions for Chapter 6 1145
Answers to Review Questions for Chapter 7 1147
Answers to Review Questions for Chapter 8 1148
Answers to Review Questions for Chapter9 1150
Answers to Review Questions for Chapter 10 1151
Answers to Review Questions for Chapter 11 1154
Answers to Review Questions for Chapter 12 1155
Answers to Review Questions for Chapter 13 1157
Answers to Review Questions for Chapter 14 1159
Answers to Review Questions for Chapter 15 1160
Answers to Review Questions for Chapter 16 1161
Answers to Review Questions for Chapter 17 1162

ABOUT THE AUTHOR

Stephen Prata teaches astronomy, physics, and computer science at the College of Marin in
Kentfield, California. He received his B.S. from the California Institute of Technology and his
Ph.D. from the University of California, Berkeley. Stephen has authored or coauthored more
than a dozen books for The Waite Group. He wrote The Waite Group’s New C Primer Plus,
which received the Computer Press Association’s 1990 Best How-to Computer Book Award,
and The Waite Group’s C++ Primer Plus, nominated for the Computer Press Association’s Best
How-to Computer Book Award in 1991.

DEDICATION

To my colleagues and students at the College of Marin, with whom it is a pleasure
to work.

—Stephen Prata

ACKNOWLEDGMENTS

Acknowledgments for the Fifth Edition

I'd like to thank Loretta Yates and Songlin Qiu of Sams Publishing for guiding and managing
this project. Thanks to my colleague Fred Schmitt for several useful suggestions. Once again,
I'd like to thank Ron Liechty of Metrowerks for his helpfulness.

Acknowledgments for the Fourth Edition

Several editors from Pearson and from Sams helped originate and maintain this project; thanks
to Linda Sharp, Karen Wachs, and Laurie McGuire. Thanks, too, to Michael Maddox, Bill
Craun, Chris Maunder, and Phillipe Bruno for providing technical review and editing. And
thanks again to Michael Maddox and Bill Craun for supplying the material for the Real World
Notes. Finally, I'd like to thank Ron Liechty of Metrowerks and Greg Comeau of Comeau
Computing for their aid with C++ compilers.

Acknowledgments for the Third Edition

I'd like to thank the editors from Macmillan and The Waite Group for the roles they played in
putting this book together: Tracy Dunkelberger, Susan Walton, and Andrea Rosenberg.
Thanks, too, to Russ Jacobs for his content and technical editing. From Metrowerks, I'd like to
thank Dave Mark, Alex Harper, and especially Ron Liechty, for their help and cooperation.

Acknowledgments for the Second Edition

I'd like to thank Mitchell Waite and Scott Calamar for supporting a second edition and Joel
Fugazzotto and Joanne Miller for guiding the project to completion. Thanks to Michael
Marcotty of Metrowerks for dealing with my questions about their beta version CodeWarrior
compiler. I'd also like to thank the following instructors for taking the time to give us feedback
on the first edition: Jeff Buckwalter, Earl Brynner, Mike Holland, Andy Yao, Larry Sanders,

Shahin Momtazi, and Don Stephens. Finally, I wish to thank Heidi Brumbaugh for her helpful
content editing of new and revised material.

Acknowledgments for the First Edition

Many people have contributed to this book. In particular, I wish to thank Mitch Waite for his
work in developing, shaping, and reshaping this book, and for reviewing the manuscript. 1
appreciate Harry Henderson’s work in reviewing the last few chapters and in testing programs
with the Zortech C++ compiler. Thanks to David Gerrold for reviewing the entire manuscript
and for championing the needs of less-experienced readers. Also thanks to Hank Shiffman for
testing programs using Sun C++ and to Kent Williams for testing programs with AT&T cfront
and with G++. Thanks to Nan Borreson of Borland International for her responsive and cheer-
ful assistance with Turbo C++ and Borland C++. Thank you, Ruth Myers and Christine Bush,
for handling the relentless paper flow involved with this kind of project. Finally, thanks to
Scott Calamar for keeping everything on track.

WE WANT TO HEAR FROM YOU!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as what
we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do have
a User Services group, however, where I will forward specific technical questions related to the book.

When you write, please be sure to include this book’s title and author as well as your name,
email address, and phone number. I will carefully review your comments and share them with
the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: ~ Michael Stephens
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our web site at
www . samspublishing.com. Type the ISBN (0672326973) or the title of a book in the Search
field to find the page you're looking for.

INTRODUCTION

Preface to the Fifth Edition

Learning C++ is an adventure of discovery, particularly because the language accommodates
several programming paradigms, including object-oriented programming, generic program-
ming, and the traditional procedural programming. C++ was a moving target as the language
added new features, but now, with the ISO/ANSI C++ Standard, Second Edition (2003), in
place, the language has stabilized. Contemporary compilers support most or all of the features
mandated by the standard, and programmers have had time to get used to applying these fea-
tures. The fifth edition of this book, C++ Primer Plus, reflects the ISO/ANSI standard and
describes this matured version of C++.

C++ Primer Plus discusses the basic C language and presents C++ features, making this book
self-contained. It presents C++ fundamentals and illustrates them with short, to-the-point pro-
grams that are easy to copy and experiment with. You'll learn about input/output (I/O), how to
make programs perform repetitive tasks and make choices, the many ways to handle data, and
how to use functions. You'll learn about the many features C++ has added to C, including the
following;

* Classes and objects

¢ Inheritance

 Polymorphism, virtual functions, and runtime type identification (RTTI)
» Function overloading

 Reference variables

* Generic, or type-independent, programming, as provided by templates and the Standard
Template Library (STL)

¢ The exception mechanism for handling error conditions

* Namespaces for managing names of functions, classes, and variables

The Primer Approach

C++ Primer Plus brings several virtues to the task of presenting all this material. It builds on
the primer tradition begun by C Primer Plus nearly two decades ago and embraces its success-
ful philosophy:

2 C++ PRIMER PLUS, FIFTH EDITION

o A primer should be an easy-to-use, friendly guide.

o A primer doesn’t assume that you are already familiar with all relevant programming
concepts.

A primer emphasizes hands-on learning with brief, easily typed examples that develop
your understanding, a concept or two at a time.

A primer clarifies concepts with illustrations.

* A primer provides questions and exercises to let you test your understanding, making
the book suitable for self-learning or for the classroom.

Following these principles, the book helps you understand this rich language and how to use
it. For example:

o It provides conceptual guidance about when to use particular features, such as using
public inheritance to model what are known as is-a relationships.

o It illustrates common C++ programming idioms and techniques.

o It provides a variety of sidebars, including tips, cautions, things to remember, compati-
bility notes, and real-world notes.

The author and editors of this book do our best to keep the presentation to-the-point, simple,
and fun. Our goal is that by the end of the book, you'll be able to write solid, effective pro-
grams and enjoy yourself doing so.

Sample Code Used in This Book

This book provides an abundance of sample code, most of it in the form of complete pro-
grams. Like the previous editions, this book practices generic C++ so that it is not tied to any
particular kind of computer, operating system, or compiler. Thus, the examples were tested on
a Windows XP system, a Macintosh OS X system, and a Linux system. Only a few programs
were affected by compiler non-conformance issues. Compiler compliance with the C++ stan-
dard has improved since the previous edition of this book first appeared.

The sample code for the complete programs described in this book is available on the Sams
website, at www. samspublishing.com. Enter this book’s ISBN (without the hyphens) in the
Search box and click Search. When the books title is displayed, click the title to go to a page
where you can download the code. You also can find solutions to selected programming exer-
cises at this site.

How This Book Is Organized

This book is divided into 17 chapters and 10 appendixes, summarized here.

INTRODUCTION

Chapter 1: Getting Started

Chapter 1 relates how Bjarne Stroustrup created the C++ programming language by adding
object-oriented programming support to the C language. You'll learn the distinctions between
procedural languages, such as C, and object-oriented languages, such as C++. You'll read about
the joint ANSI/ISO work to develop a C++ standard. This chapter discusses the mechanics of
creating a C++ program, outlining the approach for several current C++ compilers. Finally, it
describes the conventions used in this book.

Chapter 2: Setting Out to C++

Chapter 2 guides you through the process of creating simple C++ programs. You'll learn about
the role of the main() function and about some of the kinds of statements that C++ programs
use. You'll use the predefined cout and cin objects for program output and input, and you'll
learn about creating and using variables. Finally, you'll be introduced to functions, C++% pro-
gramming modules.

Chapter 3: Dealing with Data

C++ provides built-in types for storing two kinds of data: integers (numbers with no fractional
parts) and floating-point numbers (numbers with fractional parts). To meet the diverse
requirements of programmers, C++ offers several types in each category. Chapter 3 discusses
those types, including creating variables and writing constants of various types. You'll also
learn how C++ handles implicit and explicit conversions from one type to another.

Chapter 4: Compound Types

C++ lets you construct more elaborate types from the basic built-in types. The most advanced
form is the class, discussed in Chapters 9 through 13. Chapter 4 discusses other forms, includ-
ing arrays, which hold several values of a single type; structures, which hold several values of
unlike types; and pointers, which identify locations in memory. You'll also learn how to create
and store text strings and to handle text I/O by using C-style character arrays and the C++
string class. Finally, you'll learn some of the ways C++ handles memory allocation, including
using the new and delete operators for managing memory explicitly.

Chapter 5: Loops and Relational Expressions

Programs often must perform repetitive actions, and C++ provides three looping structures for
that purpose: the for loop, the while loop, and the do while loop. Such loops must know
when they should terminate, and the C++ relational operators enable you to create tests to
guide such loops. In Chapter 5 you learn how to create loops that read and process input
character-by-character. Finally, you'll learn how to create two-dimensional arrays and how to
use nested loops to process them.

4

C++ PRIMER PLUS, FIFTH EDITION

Chapter 6: Branching Statements and Logical
Operators

Programs can behave intelligently if they can tailor their behavior to circumstances. In Chapter
6 you'll learn how to control program flow by using the if, if else, and switch statements
and the conditional operator. You'll learn how to use logical operators to help express deci-
sion-making tests. Also, you'll meet the cctype library of functions for evaluating character
relations, such as testing whether a character is a digit or a nonprinting character. Finally,
you'll get an introductory view of file I/O.

Chapter 7: Functions: C++’s Programming Modules

Functions are the basic building blocks of C++ programming. Chapter 7 concentrates on fea-
tures that C++ functions share with C functions. In particular, you'll review the general format
of a function definition and examine how function prototypes increase the reliability of pro-
grams. Also, you'll investigate how to write functions to process arrays, character strings, and
structures. Next, you'll learn about recursion, which is when a function calls itself, and see
how it can be used to implement a divide-and-conquer strategy. Finally, you'll meet pointers to
functions, which enable you to use a function argument to tell one function to use a second
function.

Chapter 8: Adventures in Functions

Chapter 8 explores the new features C++ adds to functions. You'll learn about inline functions,
which can speed program execution at the cost of additional program size. You'll work with
reference variables, which provide an alternative way to pass information to functions. Default
arguments let a function automatically supply values for function arguments that you omit
from a function call. Function overloading lets you create functions having the same name but
taking different argument lists. All these features have frequent use in class design. Also, you'll
learn about function templates, which allow you to specify the design of a family of related
functions.

Chapter 9: Memory Models and Namespaces

Chapter 9 discusses putting together multifile programs. It examines the choices in allocating
memory, looking at different methods of managing memory and at scope, linkage, and name-
spaces, which determine what parts of a program know about a variable.

Chapter 10: Objects and Classes

A class is a user-defined type, and an object (such as a variable) is an instance of a class.
Chapter 10 introduces you to object-oriented programming and to class design. A class decla-
ration describes the information stored in a class object and also the operations (class meth-
ods) allowed for class objects. Some parts of an object are visible to the outside world (the
public portion), and some are hidden (the private portion). Special class methods (construc-
tors and destructors) come into play when objects are created and destroyed. You will learn

INTRODUCTION

about all this and other class details in this chapter, and you'll see how classes can be used to
implement ADTs, such as a stack.

Chapter 11: Working with Classes

In Chapter 11 you'll further your understanding of classes. First, you'll learn about operator
overloading, which lets you define how operators such as + will work with class objects. You'll
learn about friend functions, which can access class data that’s inaccessible to the world at
large. You'll see how certain constructors and overloaded operator member functions can be
used to manage conversion to and from class types.

Chapter 12: Classes and Dynamic Memory Allocation

Often it’s useful to have a class member point to dynamically allocated memory. If you use new
in a class constructor to allocate dynamic memory, you incur the responsibilities of providing
an appropriate destructor, of defining an explicit copy constructor, and of defining an explicit
assignment operator. Chapter 12 shows you how and discusses the behavior of the member
functions generated implicitly if you fail to provide explicit definitions. You'll also expand your
experience with classes by using pointers to objects and studying a queue simulation problem.

Chapter 13: Class Inheritance

One of the most powerful features of object-oriented programming is inheritance, by which a
derived class inherits the features of a base class, enabling you to reuse the base class code.
Chapter 13 discusses public inheritance, which models is-a relationships, meaning that a
derived object is a special case of a base object. For example, a physicist is a special case of a
scientist. Some inheritance relationships are polymorphic, meaning you can write code using a
mixture of related classes for which the same method name may invoke behavior that depends
on the object type. Implementing this kind of behavior necessitates using a new kind of mem-
ber function called a virtual function. Sometimes using abstract base classes is the best
approach to inheritance relationships. This chapter discusses these matters, pointing out when
public inheritance is appropriate and when it is not.

Chapter 14: Reusing Code in C++

Public inheritance is just one way to reuse code. Chapter 14 looks at several other ways.
Containment is when one class contains members that are objects of another class. It can be
used to model has-a relationships, in which one class has components of another class. For
example, an automobile has a motor. You also can use private and protected inheritance to
model such relationships. This chapter shows you how and points out the differences among
the different approaches. Also, you'll learn about class templates, which let you define a class
in terms of some unspecified generic type, and then use the template to create specific classes
in terms of specific types. For example, a stack template enables you to create a stack of inte-
gers or a stack of strings. Finally, you'll learn about multiple public inheritance, whereby a
class can derive from more than one class.

6

C++ PRIMER PLUS, FIFTH EDITION

Chapter 15: Friends, Exceptions, and More

Chapter 15 extends the discussion of friends to include friend classes and friend member func-
tions. Then it presents several new developments in C++, beginning with exceptions, which
provide a mechanism for dealing with unusual program occurrences, such an inappropriate
function argument values and running out of memory. Then you'll learn about RTTI, a mecha-
nism for identifying object types. Finally, you'll learn about the safer alternatives to unre-
stricted typecasting.

Chapter 16: The string Class and the Standard
Template Library

Chapter 16 discusses some useful class libraries recently added to the language. The string
class is a convenient and powerful alternative to traditional C-style strings. The auto_ptr class
helps manage dynamically allocated memory. The STL provides several generic containers,
including template representations of arrays, queues, lists, sets, and maps. It also provides an
efficient library of generic algorithms that can be used with STL containers and also with ordi-
nary arrays. The valarray template class provides support for numeric arrays.

Chapter 17: Input, Output, and Files

Chapter 17 reviews C++ I/O and discusses how to format output. You'll learn how to use class
methods to determine the state of an input or output stream and to see, for example, whether
there has been a type mismatch on input or whether the end-of-file has been detected. C++
uses inheritance to derive classes for managing file input and output. You'll learn how to open
files for input and output, how to append data to a file, how to use binary files, and how to get
random access to a file. Finally, you'll learn how to apply standard I/O methods to read from
and write to strings.

Appendix A: Number Bases

Appendix A discusses octal, hexadecimal, and binary numbers.

Appendix B: C++ Reserved Words

Appendix B lists C++ keywords.

Appendix C: The ASCII Character Set

Appendix C lists the ASCII character set, along with decimal, octal, hexadecimal, and binary
representations.

Appendix D: Operator Precedence

Appendix D lists the C++ operators in order of decreasing precedence.

INTRODUCTION

Appendix E: Other Operators

Appendix E summarizes the C++ operators, such as the bitwise operators, not covered in the
main body of the text.

Appendix F: The string Template Class

Appendix F summarizes string class methods and functions.

Appendix G: The STL Methods and Functions

Appendix G summarizes the STL container methods and the general STL algorithm functions.

Appendix H: Selected Readings and Internet Resources

Appendix H lists some books that can further your understanding of C++.

Appendix I: Converting to ANSI/ISO Standard C++

Appendix [provides guidelines for moving from C and older C++ implementations to
ANSI/ISO Ci+.

Appendix J: Answers to Review Questions

Appendix J contains the answers to the review questions posed at the end of each chapter.

Note to Instructors

One of the goals of this edition of C++ Primer Plus is to provide a book that can be used as
either a teach-yourself book or as a textbook. Here are some of the features that support using
C++ Primer Plus, Fifth Edition, as a textbook:

* This book describes generic C++, so it isnt dependent on a particular implementation.

e The contents track the ISO/ANSI C++ standards committee’s work and include discus-
sions of templates, the STL, the string class, exceptions, RTTI, and namespaces.

* It doesn’t assume prior knowledge of C, so it can be used without a C prerequisite.
(Some programming background is desirable, however.)

* Topics are arranged so that the early chapters can be covered rapidly as review chapters
for courses that do have a C prerequisite.

 Chapters include review questions and programming exercises. Appendix] provides the
answers to the review questions. Solutions to selected programming exercises can be
found at the Sams website (www.samspublishing.com).

8

C++ PRIMER PLUS, FIFTH EDITION

* The book introduces several topics that are appropriate for computer science courses,
including abstract data types (ADTs), stacks, queues, simple lists, simulations, generic
programming, and using recursion to implement a divide-and-conquer strategy.

* Most chapters are short enough to cover in a week or less.

* The book discusses when to use certain features as well as how to use them. For exam-
ple, it links public inheritance to is-a relationships and composition and private inheri-
tance to has-a relationships, and it discusses when to use virtual functions and when
not to.

Conventions Used in This Book

This book uses several typographic conventions to distinguish among various kinds of text:

* Code lines, commands, statements, variables, filenames, and program output appear in a
computer typeface:
#include <iostream>
int main()

{

using namespace std;
cout << "What's up, Doc!\n";
return 0;

}
e Program input that you should type appears in bold computer typeface:

Please enter your name:
Plato

 Placeholders in syntax descriptions appear in an italic computer typeface. You
should replace a placeholder with the actual filename, parameter, or whatever element it
represents.

o [talic type is used for new terms.

This book includes several elements intended to illuminate specific points:

g Compatibility Note

Most compilers are not yet 100% compliant with the ISO/ANSI Standard, and these notes warn you
of discrepancies you may encounter.

Remember

These notes highlight points that are important to remember.

INTRODUCTION

=)
Ul Real-World Note

Several professional programmers offer observations based on their experiences.

Sidebar

A sidebar provides a deeper discussion or additional background to help illuminate a topic.

Tip

Tips present short, helpful guides to particular programming situations.

-

<Yy .
é Caution
—r

A caution alerts you to potential pitfalls.

ﬁ Note

The notes provide a catch-all category for comments that don‘t fall into one of the other categories.

Systems Used to Develop This Book’s
Programming Examples

For the record, the examples in this book were developed using Microsoft Visual C++ 7.1 (the
version that comes with Microsoft Visual Studio .NET 2003) and Metrowerks CodeWarrior
Development Studio 9 on a Pentium PC with a hard disk and running under Windows XP
Professional. Most programs were checked using the Borland C++ 5.5 command-line compiler
and GNU gpp 3.3.3 on the same system, using Comeau 4.3.3 and GNU g++ 3.3.1 on an IBM-
compatible Pentium running SuSE 9.0 Linux, and using Metrowerks Development Studio 9 on
a Macintosh G4 under OS 10.3. This book reports discrepancies stemming from lagging
behind the standard generically, as in “older implementations use ios: :fixed instead of
ios_base: :fixed.” This book reports some bugs and idiosyncrasies in older compilers that
would prove troublesome or confusing; most of these have been fixed in current releases.

C++ offers a lot to the programmer; learn and enjoy!

CHAPTER 1

GETTING STARTED

In this chapter you’ll learn about the following:

¢ The history and philosophy of C e How C++ adds generic program-
and of C++ ming concepts to the C language
e Procedural versus object-oriented e Programming language standards

programming e The mechanics of creating a pro-

e How C++ adds object-oriented gram
concepts to the C language

elcome to C++! This exciting language, which blends the C language with support for

object-oriented programming, became one of the most important programming lan-

guages of the 1990s and continues strongly into the 2000s. Its C ancestry brings to
C++ the tradition of an efficient, compact, fast, and portable language. Its object-oriented her-
itage brings C++ a fresh programming methodology, designed to cope with the escalating com-
plexity of modern programming tasks. Its template features bring yet another new
programming methodology: generic programming. This triple heritage is both a blessing and a
bane. It makes the language very powerful, but it also means there’s a lot to learn.

This chapter explores C++s background further and then goes over some of the ground rules
for creating C++ programs. The rest of the book teaches you to use the C++ language, going
from the modest basics of the language to the glory of object-oriented programming (OOP)
and its supporting cast of new jargon—objects, classes, encapsulation, data hiding, polymor-
phism, and inheritance—and then on to its support of generic programming. (Of course, as
you learn C++, these terms will be transformed from buzzwords to the necessary vocabulary of
cultivated discourse.)

Learning C++: What Lies Before You

C++ joins three separate programming traditions: the procedural language tradition, repre-
sented by C; the object-oriented language tradition, represented by the class enhancements
C++ adds to C; and generic programming, supported by C++ templates. This chapter looks

12

C++ PRIMER PLUS, FIFTH EDITION

into those traditions. But first, let’s consider what this heritage implies about learning C++.
One reason to use C++ is to avail yourself of its object-oriented features. To do so, you need a
sound background in standard C, for that language provides the basic types, operators, control
structures, and syntax rules. So if you already know C, you're poised to learn C++. But it’s not
just a matter of learning a few more keywords and constructs. Going from C to C++ involves
about as much work as learning C in the first place. Also, if you know C, you must unlearn
some programming habits as you make the transition to C++. If you don’t know C, you have to
master the C components, the OOP components, and the generic components to learn C++,
but at least you may not have to unlearn programming habits. If you are beginning to think
that learning C++ may involve some mind-stretching effort on your part, you're right. This
book will guide you through the process in a clear, helpful manner, one step at a time, so the
mind-stretching will be sufficiently gentle to leave your brain resilient.

C++ Primer Plus approaches C++ by teaching both its C basis and its new components, so it
assumes that you have no prior knowledge of C. You'll start by learning the features C++ shares
with C. Even if you know C, you may find this part of the book a good review. Also, it points
out concepts that will become important later, and it indicates where C++ differs from C. After
you have a good grounding in the basics of C, you'll learn about the C++ superstructure. At
that point, you'll learn about objects and classes and how C++ implements them. And you will
learn about templates.

This book is not intended to be a complete C++ reference; it doesn’t explore every nook and
cranny of the language. But you will learn all the major features of the language, including
some, such as templates, exceptions, and namespaces, that are more recent additions.

Now let’s take a brief look at some of C++%s background.

The Origins of C++: A Little History

Computer technology has evolved at an amazing rate over the past few decades. Today a note-
book computer can compute faster and store more information than the mainframe computers
of the 1960s. (Quite a few programmers can recall bearing offerings of decks of punched cards
to be submitted to a mighty, room-filling computer system with a majestic 100KB of mem-
ory—not enough memory to run a good personal computer game today.) Computer languages
have evolved, too. The changes may not be as dramatic, but they are important. Bigger, more
powerful computers spawn bigger, more complex programs, which, in turn, raise new prob-
lems in program management and maintenance.

In the 1970s, languages such as C and Pascal helped usher in an era of structured program-
ming, a philosophy that brought some order and discipline to a field badly in need of these
qualities. Besides providing the tools for structured programming, C also produced compact,
fast-running programs, along with the ability to address hardware matters, such as managing
communication ports and disk drives. These gifts helped make C the dominant programming
language in the 1980s. Meanwhile, the 1980s witnessed the growth of a new programming
paradigm: object-oriented programming, or OOP, as embodied in languages such as SmallTalk
and C++. Let’s examine these C and OOP a bit more closely.

Chapter 1 ¢ GETTING STARTED 13

The C Language

In the early 1970s, Dennis Ritchie of Bell Laboratories was working on a project to develop the
Unix operating system. (An operating system is a set of programs that manages a computer’s
resources and handles its interactions with users. For example, it's the operating system that
puts the system prompt onscreen and that runs programs for you.) For this work Ritchie
needed a language that was concise, that produced compact, fast programs, and that could
control hardware efficiently. Traditionally, programmers met these needs by using assembly
language, which is closely tied to a computer’s internal machine language. However, assembly
language is a low-level language—that is, it is specific to a particular computer processor. So if
you want to move an assembly program to a different kind of computer, you may have to com-
pletely rewrite the program, using a different assembly language. It was a bit as if each time
you bought a new car, you found that the designers decided to change where the controls
went and what they did, forcing you to relearn how to drive. But Unix was intended to work
on a variety of computer types (or platforms). That suggested using a high-level language. A
high-level language is oriented toward problem solving instead of toward specific hardware.
Special programs called compilers translate a high-level language to the internal language of a
particular computer. Thus, you can use the same high-level language program on different
platforms by using a separate compiler for each platform. Ritchie wanted a language that com-
bined low-level efficiency and hardware access with high-level generality and portability. So,
building from older languages, he created C.

C Programming Philosophy

Because C++ grafts a new programming philosophy onto C, we should first take a look at the
older philosophy that C follows. In general, computer languages deal with two concepts—data
and algorithms. The data constitutes the information a program uses and processes. The algo-
rithms are the methods the program uses (see Figure 1.1). Like most mainstream languages
when C was created, C is a procedural language. That means it emphasizes the algorithm side
of programming. Conceptually, procedural programming consists of figuring out the actions a
computer should take and then using the programming language to implement those actions.
A program prescribes a set of procedures for the computer to follow to produce a particular
outcome, much as a recipe prescribes a set of procedures for a cook to follow to produce a
cake.

Earlier procedural languages, such as FORTRAN and BASIC, ran into organizational problems
as programs grew larger. For example, programs often use branching statements, which route
execution to one or another set of instructions, depending on the result of some sort of test.
Many older programs had such tangled routing (called “spaghetti programming”) that it was
virtually impossible to understand a program by reading it, and modifying such a program was
an invitation to disaster. In response, computer scientists developed a more disciplined style of
programming called structured programming. C includes features to facilitate this approach.
For example, structured programming limits branching (choosing which instruction to do
next) to a small set of well-behaved constructions. C incorporates these constructions (the for
loop, the while loop, the do while loop, and the if else statement) into its vocabulary.

14 C++ PRIMER PLUS, FIFTH EDITION

FIGURE 1'1, DATA ALGORITHMS
Data + algorithms =
program. 1/2 cup butter cream butter
1 cup sugar + gradually, add sugar
2 eggs break eggs

PROGRAM

Top-down design was another of the new principles. With C, the idea is to break a large pro-
gram into smaller, more manageable tasks. If one of these tasks is still too broad, you divide it
into yet smaller tasks. You continue with this process until the program is compartmentalized
into small, easily programmed modules. (Organize your study. Aargh! Well, organize your
desk, your table top, your filing cabinet, and your bookshelves. Aargh! Well, start with the
desk and organize each drawer, starting with the middle one. Hmmm, perhaps I can manage
that task.) Cs design facilitates this approach, encouraging you to develop program units called
functions to represent individual task modules. As you may have noticed, the structured pro-
gramming techniques reflect a procedural mind-set, thinking of a program in terms of the
actions it performs.

The C++ Shift: Object-Oriented Programming

Although the principles of structured programming improved the clarity, reliability, and ease of
maintenance of programs, large-scale programming still remains a challenge. OOP brings a
new approach to that challenge. Unlike procedural programming, which emphasizes algo-
rithms, OOP emphasizes the data. Rather than try to fit a problem to the procedural approach
of a language, OOP attempts to fit the language to the problem. The idea is to design data
forms that correspond to the essential features of a problem.

In C++, a class is a specification describing such a new data form, and an object is a particular
data structure constructed according to that plan. For example, a class could describe the gen-
eral properties of a corporation executive (name, title, salary, unusual abilities, for example),
while an object would represent a specific executive (Guilford Sheepblat, vice president,
$325,000, knows how to restore the Windows registry). In general, a class defines what data is
used to represent an object and the operations that can be performed on that data. For exam-
ple, suppose you were developing a computer drawing program capable of drawing a rectan-
gle. You could define a class to describe a rectangle. The data part of the specification could

Chapter 1 e GETTING STARTED

include such things as the location of the corners, the height and width, the color and style of
the boundary line, and the color and pattern used to fill the rectangle. The operations part of
the specification could include methods for moving the rectangle, resizing it, rotating it,
changing colors and patterns, and copying the rectangle to another location. If you then used
your program to draw a rectangle, it would create an object according to the class specifica-
tion. That object would hold all the data values describing the rectangle, and you could use
the class methods to modify that rectangle. If you drew two rectangles, the program would
create two objects, one for each rectangle.

The OOP approach to program design is to first design classes that accurately represent those
things with which the program deals. For example, a drawing program might define classes to
represent rectangles, lines, circles, brushes, pens, and the like. The class definitions, recall,
include a description of permissible operations for each class, such as moving a circle or rotat-
ing a line. Then you would proceed to design a program, using objects of those classes. The
process of going from a lower level of organization, such as classes, to a higher level, such as
program design, is called bottom-up programming.

There’s more to OOP than the binding of data and methods into a class definition. For exam-
ple, OOP facilitates creating reusable code, and that can eventually save a lot of work.
Information hiding safeguards data from improper access. Polymorphism lets you create multi-
ple definitions for operators and functions, with the programming context determining which
definition is used. Inheritance lets you derive new classes from old ones. As you can see, OOP
introduces many new ideas and involves a different approach to programming than does pro-
cedural programming. Instead of concentrating on tasks, you concentrate on representing con-
cepts. Instead of taking a top-down programming approach, you sometimes take a bottom-up
approach. This book will guide you through all these points, with plenty of easily grasped
examples.

Designing a useful, reliable class can be a difficult task. Fortunately, OOP languages make it
simple to incorporate existing classes into your own programming. Vendors provide a variety
of useful class libraries, including libraries of classes designed to simplify creating programs for
environments such as Windows or the Macintosh. One of the real benefits of C++ is that it lets
you easily reuse and adapt existing, well-tested code.

C++ and Generic Programming

Generic programming is yet another programming paradigm supported by C++. It shares with
OOP the aim of making it simpler to reuse code and the technique of abstracting general con-
cepts. But whereas OOP emphasizes the data aspect of programming, generic programming
emphasizes the algorithmic aspect. And its focus is different. OOP is a tool for managing large
projects, whereas generic programming provides tools for performing common tasks, such as
sorting data or merging lists. The term generic refers to create code that is type independent.
C++ data representations come in many types—integers, numbers with fractional parts, char-
acters, strings of characters, and user-defined compound structures of several types. If, for
example, you wanted to sort data of these various types, you would normally have to create a
separate sorting function for each type. Generic programming involves extending the language

15

16 C++ PRIMER PLUS, FIFTH EDITION

so that you can write a function for a generic (that is, not specified) type once and use it for a
variety of actual types. C++ templates provide a mechanism for doing that.

The Genesis of C++

Like C, C++ began its life at Bell Labs, where Bjarne Stroustrup developed the language in the
early 1980s. In Stroustrup’s own words, “C++ was designed primarily so that my friends and 1
would not have to program in assembler, C, or various modern high-level languages. Its main
purpose was to make writing good programs easier and more pleasant for the individual pro-
grammer” (Bjarne Stroustrup, The C++ Programming Language, Third Edition. Reading, MA:

Addison-Wesley, 1997).

=] _
Ud Real-World Note: Bjarne Stroustrup’s Home Page

Bjarne Stroustrup designed and implemented the C++ programming language and is the author of

the definitive reference manuals The C++ Programming Language and The Design and Evolution of
C++. His personal website at AT&T Labs Research should be the first C++ bookmark, or favorite, you
create:

www.research.att.com/~bs

This site includes an interesting historical perspective of the hows and whys of the C++ language,
Stroustrup’s biographical material, and C++ FAQs. Surprisingly, Stroustrup’s most frequently asked
question is how to pronounce Bjarne Stroustrup. Download the .WAV file to hear for yourself!

Stroustrup was more concerned with making C++ useful than with enforcing particular pro-
gramming philosophies or styles. Real programming needs are more important than theoretical
purity in determining C++ language features. Stroustrup based C++ on C because of Cs
brevity, its suitability to system programming, its widespread availability, and its close ties to
the Unix operating system. C++s OOP aspect was inspired by a computer simulation language
called Simula67. Stroustrup added OOP features and generic programming support to C with-
out significantly changing the C component. Thus C++ is a superset of C, meaning that any
valid C program is a valid C++ program, too. There are some minor discrepancies, but nothing
crucial. C++ programs can use existing C software libraries. Libraries are collections of pro-
gramming modules that you can call up from a program. They provide proven solutions to
many common programming problems, thus saving you much time and effort. This has
helped the spread of C++.

The name C++ comes from the C increment operator ++, which adds one to the value of a vari-
able. Therefore, the name C++ correctly suggests an augmented version of C.

A computer program translates a real-life problem into a series of actions to be taken by a
computer. While the OOP aspect of C++ gives the language the ability to relate to concepts
involved in the problem, the C part of C++ gives the language the ability to get close to the
hardware (see Figure 1.2). This combination of abilities has enabled the spread of C++. It may
also involve a mental shift of gears as you turn from one aspect of a program to another.
(Indeed, some OOP purists regard adding OOP features to C as being akin to adding wings to

Chapter 1 e GETTING STARTED 17

a pig, albeit a lean, efficient pig.) Also, because C++ grafts OOP onto C, you can ignore C++%
object-oriented features. But you'll miss a lot if that’ all you do.

FIGURE 1.2
C++ duality.

OOP heritage provides
a high level of abstraction.

north_america.show();

BO

C heritage provides
low-level hardware access.

set byte at
address

01000 to 0

Only after C++ achieved some success did Stroustrup add templates, enabling generic pro-
gramming. And only after the template feature had been used and enhanced did it become
apparent that templates were perhaps as significant an addition as OOP—or even more signifi-
cant, some would argue. The fact that C++ incorporates both OOP and generic programming,
as well as the more traditional procedural approach, demonstrates that C++ emphasizes the
utilitarian over the ideological approach, and that is one of the reasons for the language’s suc-
cess.

Portability and Standards

Say you've written a handy C++ program for the elderly Pentium PC computer at work, but
management decides to replace the machine with a Macintosh G5—a computer using a differ-
ent processor and a different operating system. Can you run your program on the new plat-
form? Of course, you'll have to recompile the program, using a C++ compiler designed for the
new platform. But will you have to make any changes to the code you wrote? If you can
recompile the program without making changes and it runs without a hitch, we say the pro-
gram is portable.

18

C++ PRIMER PLUS, FIFTH EDITION

There are a couple obstacles to portability, the first of which is hardware. A program that is
hardware specific is not likely to be portable. One that takes direct control of an IBM PC video
board, for example, speaks gibberish as far as, say, a Sun is concerned. (You can minimize
portability problems by localizing the hardware-dependent parts in function modules; then
you just have to rewrite those specific modules.) We will avoid that sort of programming in
this book.

The second obstacle to portability is language divergence. Certainly, that can be a problem
with spoken languages. A Yorkshireman’s description of the day’s events may not be portable
to Brooklyn, even though English is spoken in both areas. Computer languages, too, can
develop dialects. Is the Windows XP C++ implementation the same as the Red Hat Linux
implementation or the Macintosh OS X implementation? Although most implementers would
like to make their versions of C++ compatible with others, it’s difficult to do so without a pub-
lished standard describing exactly how the language works. Therefore, the American National
Standards Institute (ANSI) created a committee in 1990(ANSI X3]J16) to develop a standard
for C++. (ANSI had already developed a standard for C.) The International Organization for
Standardization (ISO) soon joined the process with its own committee (ISO-WG-21), creating
a joint ANSI/ISO effort to develop the a standard for C++. These committees met jointly three
times a year, and we’ll simply lump them together notationally as the ANSI/ISO committee.
ANSV/ISO committee’s decision to create a standard emphasizes that C++ has become an
important and widespread language. It also indicates that C++ has reached a certain level of
maturity, for it's not productive to introduce standards while a language is developing rapidly.
Nonetheless, C++ has undergone significant changes since the ANSI/ISO commiittee began its
work.

Work on the ANSI/ISO C++ Standard began in 1990. The committee issued some interim
working papers in the following years. In April 1995 it released a Committee Draft (CD) for
public comment. In December 1996 it released a second version (CD2) for further public
review. These documents not only refined the description of existing C++ features but also
extended the language with exceptions, runtime type identification (RTTI), templates, and the
Standard Template Library (STL). The final International Standard (ISO/IEC 14882:1998) was
adopted in 1998 by the ISO, International Electrotechnical Commission (IEC), and ANSI.
2003 brought the publication of the second edition of the C++ standard (IOS/IEC
14882:2003); the new edition is a technical revision, meaning that it tidies up the first edi-
tion—fixing typos, reducing ambiguities, and the like—but doesn’t change the language fea-
tures. This book is based on that standard.

The ANSI/ISO C++ Standard additionally draws on the ANSI C Standard because C++ is sup-
posed to be, as far as possible, a superset of C. That means that any valid C program ideally
should also be a valid C++ program. There are a few differences between ANSI C and the cor-
responding rules for C++, but they are minor. Indeed, ANSI C incorporates some features first
introduced in C++, such as function prototyping and the const type qualifier.

Prior to the emergence of ANSI C, the C community followed a de facto standard based on the
book The C Programming Language, by Kernighan and Ritchie (Addison-Wesley Publishing

Chapter 1 e GETTING STARTED

Company, Reading, MA, 1978). This standard was often termed K&R C; with the emergence
of ANSI C, the simpler K&R C is now sometimes called classic C.

The ANSI C Standard not only defines the C language, it also defines a standard C library that
ANSI C implementations must support. C++ also uses that library; this book refers to it as the
standard C library or the standard library. In addition, the ANSI/ISO C++ standard provides a
standard library of C++ classes.

More recently, the C Standard has been revised; the new standard, often called C99, was
adopted by the ISO in 1999 and ANSI in 2000. This standard adds some features to C, such as
anew integer type, that some C++ compilers support. Although not part of the current C++
Standard, these features may become part of the next C++ Standard.

Before the ANSI/ISO C++ committee began its work, many people accepted the most recent
Bell Labs version of C++ as a standard. For example, a compiler might describe itself as being
compatible with Release 2.0 or Release 3.0 of C++.

C++ continues to evolve, and work has already begun on producing the next version of the
standard. The new version is informally labeled C++0X because the expected completion date
is near the end of this decade, around 20009.

This book describes the ISO/ANSI C++ Standard, second edition (ISO/IEC 14882:2003), so
the examples should work with any C++ implementation that is compatible with that stan-
dard. (At least, this is the vision and hope of portability.) However, the C++ Standard is still
new, and you may find a few discrepancies. For example, if your compiler is not a recent ver-
sion, it may lack namespaces or the newest template features. Support for the STL, described
in Chapter 16, “The string Class and the Standard Template Library,” is spotty for older com-
pilers. Some older Unix systems use a front-end translator that passes the translated code to a
C compiler that is not fully ANSI compatible, resulting in some language features being left
unimplemented and in some standard ANSI library functions and header files not being sup-
ported. Even if a compiler does conform to the Standard, some things, such as the number of
bytes used to hold an integer, are implementation dependent.

Before getting to the C++ language proper, let’s cover some of the groundwork related to creat-
ing programs.

The Mechanics of Creating a Program

Suppose you've written a C++ program. How do you get it running? The exact steps depend
on your computer environment and the particular C++ compiler you use, but they should
resemble the following steps (see Figure 1.3):

1. Use a text editor of some sort to write the program and save it in a file. This file consti-
tutes the source code for your program.

2. Compile the source code. This means running a program that translates the source code
to the internal language, called machine language, used by the host computer. The file
containing the translated program is the object code for your program.

19

20 C++ PRIMER PLUS, FIFTH EDITION

3. Link the object code with additional code. For example, C++ programs normally use
libraries. A C++ library contains object code for a collection of computer routines, called
functions, to perform tasks such as displaying information onscreen or calculating the
square root of a number. Linking combines your object code with object code for the
functions you use and with some standard startup code to produce a runtime version of
your program. The file containing this final product is called the executable code.

You will encounter the term source code throughout this book, so be sure to file it away in your
personal random-access memory.

FIGURE 1.3

. source code
Programming steps.

COMPILER

object code

startup code

\
LINKER
/

library code

}

executable code

The programs in this book are generic and should run in any system that supports modern
C++. (However, you may need one of the latest versions to get support for namespaces and the
newest template features.) The steps for putting together a program may vary. Let’s look a little
further at these steps.

Creating the Source Code File

The rest of the book deals with what goes into a source file; this section discusses the mechan-
ics of creating one. Some C++ implementations, such as Microsoft Visual C++, Borland C++
(various versions), Watcom C++, Digital Mars C++, and Metrowerks CodeWarrior, provide
Integrated Development Environments (IDEs) that let you manage all steps of program develop-
ment, including editing, from one master program. Other implementations, such as AT&T
C++ or GNU C++ on Unix and Linux, and the free versions of the Borland and Digital Mars
compilers, just handle the compilation and linking stages and expect you to type commands
on the system command line. In such cases, you can use any available text editor to create and
modify source code. On a Unix system, for example, you can use vi or ed or ex or emacs. On
a DOS system, you can use edlin or edit or any of several available program editors. You can

Chapter 1 e GETTING STARTED 21

even use a word processor, provided that you save the file as a standard DOS ASCII text file
instead of in a special word processor format.

In naming a source file, you must use the proper suffix to identify the file as a C++ file. This
not only tells you that the file is C++ source code, it tells the compiler that, too. (If a Unix
compiler complains to you about a “bad magic number,” that’s just its endearingly obscure way
of saying that you used the wrong suffix.) The suffix consists of a period followed by a charac-
ter or group of characters called the extension (see Figure 1.4).

FIGURE 1.4 Soiffy.c
The parts of a source &chﬂ
code filename. |

| a period

base name for file file name extension

The extension you use depends on the C++ implementation. Table 1.1 shows some common
choices. For example, spiffy.C is a valid Unix C++ source code filename. Note that Unix is
case sensitive, meaning you should use an uppercase C character. Actually, a lowercase ¢
extension also works, but standard C uses that extension. So, to avoid confusion on Unix sys-
tems, you should use ¢ with C programs and € with C++ programs. If you don’t mind typing
an extra character or two, you can also use the cc and cxx extensions with some Unix systems.
DOS, being a bit simple-minded compared to Unix, doesn't distinguish between uppercase
and lowercase, so DOS implementations use additional letters, as shown in Table 1.1, to dis-
tinguish between C and C++ programs.

TABLE 1.1 Source Code Extensions

C++ Implementation Source Code Extension(s)
Unix C, cC, CXX, C

GNU C++ C, CC, CXX, Cpp, C++
Digital Mars Cpp, CXX

Borland C++ cpp

Watcom cpp

Microsoft Visual C++ cpp, CXX, CcC

Metrowerks CodeWarrior CPP, CP, CC, CXX, C++

22

C++ PRIMER PLUS, FIFTH EDITION

Compilation and Linking

Originally, Stroustrup implemented C++ with a C++-to-C compiler program instead of devel-
oping a direct C++-to-object code compiler. This program, called cfront (for C front end),
translated C++ source code to C source code, which could then be compiled by a standard C
compiler. This approach simplified introducing C++ to the C community. Other implementa-
tions have used this approach to bring C++ to other platforms. As C++ has developed and
grown in popularity, more and more implementers have turned to creating C++ compilers that
generate object code directly from C++ source code. This direct approach speeds up the com-
pilation process and emphasizes that C++ is a separate, if similar, language.

Often the distinction between a cfront translator and a compiler is nearly invisible to the user.
For example, on a Unix system the CC command may first pass your program to the cfront
translator and then automatically pass the translator’s output on to the C compiler, which is
called cc. Henceforth, we'll use the term compiler to include translate-and-compile combina-
tions. The mechanics of compiling depend on the implementation, and the following sections
outline a few common forms. These sections outline the basic steps, but they are no substitute
for consulting the documentation for your system.

If you have access to the cfront translator and know C, you may want to inspect the C trans-
lations of your C++ programs to get an inside look at how some C++ features are imple-
mented.

Unix Compiling and Linking

The traditional C++ Unix system compiler is invoked with the CC command. However, these
days a Unix computer instead might have no compiler, a proprietary compiler, or a third-party
compiler, perhaps commercial, perhaps freeware, such as the GNU g++ compiler. In many of
these other cases (but not in the no-compiler case!), the ¢C command still works, with the
actual compiler being invoked differing from system to system. For simplicity, you should
assume that CC is available, but realize that you might have to substitute a different command
for ¢C in the following discussion.

You use the ¢C command to compile your program. The name is in uppercase letters to distin-
guish it from the standard Unix C compiler cc. The ¢C compiler is a command-line compiler,
meaning you type compilation commands on the Unix command line.

For example, to compile the C++ source code file spiffy.C, you would type this command at
the Unix prompt:

CC spiffy.C

If, through skill, dedication, or luck, your program has no errors, the compiler generates an
object code file with an o extension. In this case, the compiler produces a file named
spiffy.o.

Next, the compiler automatically passes the object code file to the system linker, a program
that combines your code with library code to produce the executable file. By default, the exe-
cutable file is called a.out. If you used just one source file, the linker also deletes the

Chapter 1 e GETTING STARTED

spiffy.o file because it’s no longer needed. To run the program, you just type the name of the
executable file:

a.out

Note that if you compile a new program, the new a.out executable file replaces the previous
a.out. (That’s because executable files take a lot of space, so overwriting old executable files
helps reduce storage demands.) But if you develop an executable program you want to keep,
you just use the Unix mv command to change the name of the executable file.

In C++, as in C, you can spread a program over more than one file. (Many of the programs in
this book in Chapters 8, “Adventures in Functions,” through 16 do this.) In such a case, you
can compile a program by listing all the files on the command line, like this:

CC my.C precious.C

If there are multiple source code files, the compiler does not delete the object code files. That
way, if you just change the my. C file, you can recompile the program with this command:

CC my.C precious.o
This recompiles the my.C file and links it with the previously compiled precious.o file.

You might have to identify some libraries explicitly. For example, to access functions defined
in the math library, you may have to add the -1m flag to the command line:

CC usingmath.C -1m

Linux Compiling and Linking

Linux systems most commonly use g++, the GNU C++ compiler from the Free Software
Foundation. The compiler is included in most Linux distributions, but it may not always be
installed. The g++ compiler works much like the standard Unix compiler. For example,

g++ spiffy.cxx

produces an executable file call a.out.

Some versions might require that you link in the C++ library:

g++ spiffy.cxx -1lg++

To compile multiple source files, you just list them all in the command line:
g++ my.cxx precious.cxx

This produces an executable file called a.out and two object code files, my.o and precious.o.
If you subsequently modify just one of the source code files, say my.cxx, you can recompile by
using my.cxx and the precious.o:

g++ my.cxx precious.o
The Comeau C++ compiler (see www.comeaucomputing.com) is another possibility; it

requires the presence of the GNU compiler. However, the Comeau compiler provides the most
complete and rigorous implementation of the C++ standard.

23

24 C++ PRIMER PLUS, FIFTH EDITION

The GNU compiler is available for many platforms, including the command-line mode for
Windows-based PCs as well as for Unix systems on a variety of platforms.

Command-Line Compilers for Windows Command-Line Mode

The most inexpensive route for compiling C++ programs on a Windows PC is to download a
free command-line compiler that runs in a Windows MS-DOS window. The MS-DOS version
of the GNU C++ compiler is called gpp, and it is available at www.delorie.com/djgpp. Borland
provides a free command-line compiler at www.borland.com/bcppbuilder/freecompiler. A
slightly newer version of this compiler comes with the relatively inexpensive personal version
of Borland C++BuilderX. Digital Mars has a free command-line compiler at
www.digitalmars.com. The C++BuilderX installation is pretty automatic. For the rest, you need
to read the installation directions carefully because parts of the installation processes are not
automatic.

To use the gpp compiler, you first open an MS-DOS window. To compile a source code file
named great.cpp, you type the following command at the prompt:

gpp great.cpp
If the program compiles successfully, the resulting executable file is named a. exe.

To use the Borland online compiler, you first open an MS-DOS window. To compile a source
code file named great.cpp, you type the following command at the prompt:

bcc32 great.cpp

If the program compiles successfully, the resulting executable file is named great.exe.

Windows Compilers

Windows products are too abundant and too often revised to make it reasonable to describe
them all individually. Popular ones include Microsoft, Borland, Metrowerks, and Digital Mars.
Despite different designs and goals, they share some common features.

Typically, you must create a project for a program and add to the project the file or files consti-
tuting the program. Each vendor supplies an IDE with menu options and, possibly, automated
assistance, in creating a project. One very important matter you have to establish is the kind of
program you're creating. Typically, the compiler offers many choices, such as a Windows appli-
cation, an MFC Windows application, a dynamic link library, an ActiveX control, a DOS or
character-mode executable, a static library, or a console application. Some of these may be
available in both 16-bit and 32-bit versions.

Because the programs in this book are generic, you should avoid choices that require platform-
specific code, such as Windows applications. Instead, you want to run in a character-based
mode. The choice depends on the compiler. For Microsoft Visual C++, you use the Win32
Console Application option. (If you are using Visual Studio .NET, you can also check the
Empty Project option I Application Settings.) Metrowerks compilers offer a Win32 Console
C++ App option and a Win32 WinSIOUX C++ App option, both of which work. (The former
runs the compiled program in a DOS window; the latter runs it in a standard Windows

Chapter 1 e GETTING STARTED

window.) Some Borland versions feature an EasyWin choice that emulates a DOS session;
other versions offer a Console option. In general, you should look to see if there is an option
labeled Console, character-mode, or DOS executable, and try that.

After you have the project set up, you have to compile and link your program. The IDE typi-
cally gives you several choices, such as Compile, Build, Make, Build All, Link, Execute, and
Run (but not necessarily all these choices in the same IDE!):

* Compile typically means compile the code in the file that is currently open.

* Build or Make typically means compile the code for all the source code files in the pro-
ject. This is often an incremental process. That is, if the project has three files, and you
change just one, then just that one is recompiled.

* Build All typically means compile all the source code files from scratch.

* As described earlier, Link means combine the compiled source code with the necessary
library code.

* Run or Execute means run the program. Typically, if you have not yet done the earlier
steps, Run does them before trying to run a program.

A compiler generates an error message when you violate a language rule and identifies the line
that has the problem. Unfortunately, when you are new to a language, you may find it difficult
to understand the message. Sometimes the actual error may occur before the identified line,
and sometimes a single error generates a chain of error messages.

When fixing errors, fix the first error first. If you can’t find it on the line identified as the line with the
error, check the preceding line.

Be aware that the fact that a particular compiler accepts a program doesn't necessarily mean
that the program is valid C++. And the fact that a particular compiler rejects a program doesn't
necessarily mean that the program is invalid C++. Current compilers are more compliant with
the Standard than their predecessors of two or three years ago. At this time, the Comeau com-
piler (and other users of the Edison Design Group front end) comes closest an exact image of
the standard.

@ Tip
=
Occasionally, compilers get confused after incompletely building a program and respond by giving
meaningless error messages that cannot be fixed. In such cases, you can clear things up by selecting
Build Al to restart the process from scratch. Unfortunately, it is difficult to distinguish this situation

from the more common one in which the error messages merely seem to be meaningless.

25

26

C++ PRIMER PLUS, FIFTH EDITION

Usually, the IDE lets you run the program in an auxiliary window. Some IDEs close the win-
dow as soon as the program finishes execution, and some leave it open. If your compiler closes
the window, youw'll have a hard time seeing the output, unless you have quick eyes and a pho-
tographic memory. To see the output, you must place some additional code at the end of the
program:

cin.get(); // add this statement

cin.get(); // and maybe this, too

return 0;

}

The cin.get () statement reads the next keystroke, so this statement causes the program to
wait until you press the Enter key. (No keystrokes get sent to a program until you press Enter,
so there’s no point in pressing another key.) The second statement is needed if the program
otherwise leaves an unprocessed keystroke after its regular input. For example, if you enter a
number, you type the number and then press Enter. The program reads the number but leaves
the Enter keystroke unprocessed, and it is then read by the first cin.get().

The Borland C++Builder compiler departs a bit from more traditional designs. Its primary aim
is Windows programming. To use older versions for generic programs, you select File, New.
Then you select Console App. A window opens that includes a skeleton version of main().
You should retain the following two nonstandard lines if they appear in the skeleton:

#include <vcl\condefs.h>
#pragma hdrstop

For C++BuilderX, select File, New, New Console. You don't get a skeleton main (). Instead, you
need to select File, New File and add a new .cpp file to the project.

C++ on the Macintosh

The primary Macintosh C++ compiler is Metrowerks CodeWarrior. It provides project-based
IDEs that are similar, in basic concepts, to what you would find in a Windows compiler. You
start by selecting File, New Project. You are then given a choice of project types. For
CodeWarrior, choose MacOS:C/C++:ANSI C++ Console in older versions, or
MacOS:C/C++:Standard Console:Std C++ Console in mid-vintage versions, or MacOS C++
Stationery:Mac OS Carbon:Standard Console:C++ Console Carbon. (You can make other valid
choices; for example, you might opt for Classic instead of Carbon or C++ Console Carbon
Altivec instead of plain C++ Console Carbon.)

CodeWarrior supplies a small source code file as part of the initial project. You can try compil-
ing and running that program to see if you have your system set up properly. However, after
you provide your own code, you should delete this file from the project. You do so by high-
lighting the file in the project window and then selecting Project, Remove.

Next, you must add your source code to the project. You can use File, New to create a new file
or File, Open to open an existing file. You should use a proper suffix, such as .cp or .cpp. You
use the Project menu to add this file to the project list. Some programs in this book require
that you add more than one source code file. When you are ready, you select Project, Run.

Chapter 1 e GETTING STARTED

@ Tip

©
To save time, you can use just one project for all the sample programs. You should delete the previ-
ous sample source code file from the project list and add the current source code. This saves disk

space.

The compiler includes a debugger to help you locate the causes of runtime problems.

Summary

As computers have grown more powerful, computer programs have become larger and more
complex. In response to these conditions, computer languages have evolved so that it’s easier
to manage the programming process. The C language incorporated features such as control
structures and functions to better control the flow of a program and to enable a more struc-
tured, modular approach. To these tools C++ adds support for object-oriented programming
and generic programming. This enables even more modularity and facilitates the creation of
reusable code, which saves time and increases program reliability.

The popularity of C++ has resulted in a large number of implementations for many computing
platform; the ISO/ANSI C++ Standard provides a basis for keeping these many implementa-
tions mutually compatible. The Standard establishes the features the language should have, the
behavior the language should display, and a standard library of functions, classes, and tem-
plates. The Standard supports the goal of a portable language across different computing plat-
forms and different implementations of the language.

To create a C++ program, you create one or more source files containing the program as
expressed in the C++ language. These are text files that must be compiled and linked to pro-
duce the machine-language files that constitute executable programs. These tasks are often
accomplished in an IDE that provides a text editor for creating the source files, a compiler and
a linker for producing executable files, and other resources, such as project management and
debugging capabilities. But the same tasks can also be performed in a command-line environ-
ment by invoking the appropriate tools individually.

27

	C++ Primer Plus, Fifth Edition
	Copyright © 2005 by Sams Publishing
	CONTENTS AT A GLANCE
	TABLE OF CONTENTS
	ABOUT THE AUTHOR
	WE WANT TO HEAR FROM YOU!

	INTRODUCTION
	CHAPTER 1 GETTING STARTED
	Learning C++: What Lies Before You
	The Origins of C++: A Little History
	Portability and Standards
	The Mechanics of Creating a Program
	Summary

