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Most multiprocessors are multiprogrammed to achieve acceptable response 
time and to increase their utilization. Unfortunately, inopportune preemption 
may significantly degrade the performance of synchronized parallel applica- 
tions. To address this problem, researchers have developed two principal 
strategies for a concurrent, atomic update of shared data structures: 
(1) preemption-safe locking and (2) nonblocking (lock-free) algorithms. 
Preemption-safe locking requires kernel support. Nonblocking algorithms 
generally require a universal atomic primitive such as compare - and- swap 
or load-linkedlstore-conditional and are widely regarded as 
inefficient. 

We evaluate the performance of preemption-safe lock-based and nonblock- 
ing implementations of important data structures-queues, stacks, heaps, 
and counters-including nonblocking and lock-based queue algorithms of 
our own, in microbenchmarks and real applications on a 12-processor SGI 
Challenge multiprocessor. Our results indicate that our nonblocking queue 
consistently outperforms the best known alternatives and that data-structure- 
specific nonblocking algorithms, which exist for queues, stacks, and counters, 
can work extremely well. Not only do they outperform preemption-safe 
lock-based algorithms on multiprogrammed machines, they also outperform 
ordinary locks on dedicated machines. At the same time, since general- 
purpose nonblocking techniques do not yet appear to be practical, preemp- 
tion-safe locks remain the preferred alternative for complex data structures: 
they outperform conventional locks by significant margins on multiprogramrned 
systems. 0 1998 Academic Press 
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1. INTRODUCTION 

Shared data structures are widely used in parallel applications and multipro- 
cessor operating systems. To ensure the consistency of these data structures, 
processes perform synchronized concurrent update operations, mostly using critical 
sections protected by mutual exclusion locks. To achieve acceptable response time 
and high utilization, most multiprocessors are multiprogrammed by time-slicing 
processors among processes. The performance of mutual exclusion locks in parallel 
applications degrades significantly on time-slicing multiprogrammed systems [42] 
due to the preemption of processes holding locks. Any other processes busy-waiting 
on the lock are then unable to perform useful work until the preempted process is 
rescheduled and subsequently releases the lock. 

Alternative multiprogramming schemes to time-slicing have been proposed to 
avoid the adverse effect of time-slicing on the performance of synchronization 
operations. However, each has limited applicability and/or reduces the utilization of 
the multiprocessor. Coscheduling [29] ensures that all processes of an application 
run together. It has the disadvantage of reducing the utilization of the multi- 
processor if applications have a variable amount of parallelism or if processes 
cannot be evenly assigned to time-slices of multiprocessor. Another alternative is 
hardware partitioning, under which no two applications share a processor. 
However, fixed size partitions have the disadvantage of resulting in poor response 
time when the number of processes is larger than the number of processors, and 
adjustable size partitions have the disadvantage of requiring applications to be able 
to adjust their number of processes as new applications join the system. Otherwise, 
processes from the same application might have to share the same processor, 
allowing one to be preempted while holding a mutual exclusion lock. Traditional 
time-slicing remains the most widely used scheme of multiprogramming on 
multiprocessor systems. 

For time-sliced systems, researchers have proposed two principal strategies to 
avoid inopportune preemption: preemption safe locking and nonblocking algorithms. 
Most preemption-safe locking techniques require a widening of the kernel interface 
to facilitate cooperation between the application and the kernel. Generally, these 
techniques try either to recover from the preemption of lock-holding processes (or 
processes waiting on queued locks) or to avoid preempting processes while holding 
locks. 

An implementation of a data structure is nonblocking (also known as lock-free) 
if it guarantees that at least one process of those trying to update the data structure 
concurrently will succeed in completing its operation within a bounded amount of 
time, assuming that at least one process is active, regardless of the state of other 
processes. Nonblocking algorithms do not require any communication with the 
kernel and by definition they cannot use mutual exclusion. Rather, they generally 
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rely on hardware support for a universal3 atomic primitive such as compare - and 
swap4 or the pair l o a d - l i n k e d  and s t o r e - c o n d i t i o n a l , '  while mutual 
exclusion locks can be implemented using weaker atomic primitives such as t e s t  - 
a n d - s e t ,  f e t c h - a n d - i n c r e m e n t , o r  f e t c h - a n d - s t o r e .  

Few of the above-mentioned techniques have been evaluated experimentally and 
then only in comparison to ordinary (preemption-oblivious) mutual exclusion 
locks. We evaluate the relative performance of preemption-safe and nonblocking 
atomic update techniques on multiprogrammed (time-sliced) as well as dedicated 
multiprocessor systems. We focus on four important data structures: queues, stacks, 
heaps, and counters. For queues, we present fast new nonblocking and lock-based 
algorithms [27]. Our experimental results, employing both microbenchmarks and 
real applications, on a 12-processor Silicon Graphics Challenge multiprocessor, 
indicate that our nonblocking queue algorithm outperforms existing algorithms 
under almost all circumstances. In general, efficient data-structure-specific non- 
blocking algorithms outperform both ordinary and preemption-safe lock-based 
alternatives, not only on time-sliced systems, but on dedicated machines as well 
[28]. At the same time, preemption-safe algorithms outperform ordinary locks on 
time-sliced systems and should therefore be supported by multiprocessor operating 
systems. We do not examine general-purpose nonblocking techniques in detail; 
previous work indicates that they are highly inefficient, though they provide a level 
of fault tolerance unavailable with locks. Our contributions include: 

A simple, fast, and practical nonblocking queue algorithm that outperforms 
all known alternatives and should be the algorithm of choice for multiprocessors 
that support universal atomic primitives. 

A two-lock queue algorithm that allows one enqueue and one dequeue to 
proceed concurrently. This algorithm should be used for heavily contended queues 
or multiprocessors with nonuniversal atomic primitives such as t e s t  - and - s e t  or 
f e t c h - a n d - a d d .  

An evaluation of the performance of nonblocking algorithms in comparison 
to preemption-safe and ordinary (preemption-oblivious) locking for queues, stacks, 

Herlihy [9] presented a hierarchy of nonblocking objects that also applies to atomic primitives. 
A primitive is at level n of the hierarchy if it can provide a nonblocking solution to a consensus problem 
for up to n processors. Primitives at higher levels of the hierarchy can provide nonblocking implementa- 
tions of those at lower levels, but not conversely. Compare - and- swap and the pair load- linked 
and store-conditional are universal primitives as they are at level oo of the hierarchy. Widely sup- 
ported primitives such as test-and-set, fetch-and-add, and fetch-and-store are at level 2. 

Compare- and- swap, introduced on the IBM System 370, takes as arguments the address of a 
shared memory location, an expected value, and a new value. If the shared location currently holds the 
expected value, it is assigned the new value atomically. A Boolean return value indicates whether the 
replacement occurred. Compare-and-swap is supported on the Intel Pentiurn Pro and Sparc V9 
architectures. 
'~oad-linked and store-conditional, proposed by Jensen et al. [15], must be used together 

to read, modify, and write a shared location. Load-linked returns the value stored at the shared 
location. Store - conditional checks if any other processor has since written to that location. If not 
then the location is updated and the operation returns success, otherwise it returns failure. Load- 
linkedlstore - conditional is supported by the MIPS 11, PowerPC, and Alpha architectures. 
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heaps, and counters. The paper demonstrates the superior performance of data- 
structure-specific nonblocking algorithms on time-slicing as well as dedicated 
multiprocessor systems. 

The rest of this paper is organized as follows. We discuss preemption-safe locking 
in Section 2 and nonblocking algorithms in Section 3. In Section 4, we discuss 
nonblocking queue algorithms and present two concurrent queue algorithms of our 
own. We describe our experimental methodology and results in Section 5. Finally, 
we summarize our conclusions and recommendations in Section 6. 

2. PREEMPTION-SAFE LOCKING 

For simple mutual exclusion locks (e.g., test - and - s e t ), preemption-safe 
locking techniques allow the system either to avoid or to recover from the adverse 
effect of the preemption of processes holding locks. Edler et a/.'s Symunix system 
[7] employs an avoidance technique: a process may set a flag requesting that the 
kernel not preempt it because it is holding a lock. The kernel will honor the request 
up to a predefined time limit, setting a second flag to indicate that it did so and 
deducting any extra execution time from the beginning of the process's next 
quantum. A process yields the processor if it finds, upon leaving a critical section, 
that it was granted an extension. 

The first-class threads of Marsh et al.'s Psyche system [21] employ a different 
avoidance technique: they require the kernel to warn an application process a fixed 
amount of time in advance of preemption by setting a flag that is visible in user 
space. If a process verifies that the flag is unset before entering a critical section 
(and if critical sections are short), then it is guaranteed to be able to complete its 
operation in the current quantum. If it finds the flag is set, it can voluntarily yield 
the processor. 

Recovery-based preemption-safe locking techniques include the spin-then-block 
locks of Ousterhout [29] which let a waiting process spin for a certain period of 
time and then-if unsuccessful in entering the critical section-block, thus minimiz- 
ing the adverse effect of waiting for a lock held by a descheduled process. Karlin 
et al. [16] presented a set of spin-then-block alternatives that adjust the spin time 
based on past experience. Black's work on Mach [6] introduced another recovery 
technique: a process may suggest to the kernel that it be descheduled in favor of 
some specific other process (presumably the one that is holding a desired lock). The 
scheduler activations of Anderson et al. [4] also support recovery: when a processor 
is taken from an application process, another active process belonging to the same 
application is informed via software interrupt. If the preempted process was holding 
a lock, the interrupted process can perform a context switch to the preempted 
process and push it through the critical section. 

Simple preemption-safe techniques rely on the fact that processes acquire a 
test - and - set lock in nondeterministic order. Unfortunately, test - and - set 
locks do not scale well to large machines. Queue-based locks scale well, but impose 
a deterministic order on lock acquisitions, forcing a preemption-safe technique to 
deal with preemption not only of the process holding a lock, but of processes 
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waiting in the lock's queue as well. Preempting and scheduling processes in an 
order inconsistent with their order in the lock's queue can degrade performance 
dramatically. Kontothanassis et al. [ 171 presented preemption-safe (or "scheduler- 
conscious") versions of the ticket lock, the MCS lock [24], and Krieger et al.'s 
reader-writer lock [IS]. These algorithms detect the descheduling of critical 
processes using handshaking and/or a widened kernel-user interface and use this 
information to avoid handing the lock to a preempted process. 

The proposals of Black and of Anderson et al. require the application to 
recognize the preemption of lock-holding processes and to deal with the problem. 
By performing recovery on a processor other than the one on which the preempted 
process last ran, they also sacrifice cache footprint. The proposal of Marsh et al. 
requires the application to estimate the maximum duration of a critical section, 
which is not always possible. To represent the preemption-safe approach in our 
experiments, we employ test-and-test-and-set locks with exponential backoff, based 
on the kernel interface of Edler et al.. For machines the size of ours (12 processors), 
the results of Kontothanassis et al. indicate that these will out-perform queue-based 
locks. 

3. NONBLOCKING ALGORITHMS 

Several nonblocking implementations of widely used data structures as well as 
general methodologies for developing such implementations systematically have 
been proposed in the literature. These implementations and methodologies were 
motivated in large part by the performance degradation of mutual exclusion locks 
as a result of arbitrary process delays, particularly those due to preemption on a 
multiprogrammed system. 

3.1. General Nonblocking Methodologies 

Herlihy [lo] presented a general methodology for transforming sequential 
implementations of data structures into concurrent nonblocking implementations 
using compare-and- swap or load-linkedlstore- conditional. The basic 
methodology requires copying the entire data structure on every update. Herlihy 
also proposed an optimization by which the programmer can avoid some fraction 
of the copying for certain data structures; he illustrated this optimization in a non- 
blocking implementation of a skew-heap-based priority queue. Alemany and Felten 
[ 1 ] and LaMarca [ 191 proposed techniques to reduce unnecessary copying and 
useless parallelism associated with Herlihy's methodologies using extra cornmunica- 
tion between the operating system kernel and application processes. Barnes [5] 
presented a general methodology in which processes record and timestamp their 
modifications to the shared object and cooperate whenever conflicts arise. Shavit 
and Touitou [32] presented software transactional memory, which implements a 
k-word compare - and- swap using load- linkedlstore - conditional. Also, 
Anderson and Moir [2] presented nonblocking methodologies for large objects 
that rely on techniques for implementing multiple-word compare -and- swap 
using load-linkedlstore- conditional and vice verse. Turek et al. [39] and 
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Prakash et al. [30] presented methodologies for transforming multiple lock 
concurrent objects into lock-free concurrent objects. Unfortunately, theperformance 
of nonblocking algorithms resulting from general methodologies is acknowledged to 
be significantly inferior to that of the corresponding lock-based algorithms [ 10,19,32]. 

Two proposals for hardware support for general nonblocking data structures 
have been presented: transactional memory by Herlihy and Moss [ l l ]  and the 
Oklahoma update by Stone et al. [37]. Neither of these techniques has been 
implemented on a real machine. The simulation-based experimental results of 
Herlihy and Moss show performance significantly inferior to that of spin locks. 
Stone et al. did not present experimental results. 

3.2. Data-Structure-Specific Nonblocking Algorithms 

Treiber [38] proposed a nonblocking implementation of concurrent link-based 
stacks. It represents the stack as a singly linked list with a Top pointer. It uses 
compare - and - swap to modify the value of Top atomically. Commented pseudo- 
code of Treiber's nonblocking stack algorithm is presented in Fig. 1. No perfor- 
mance results were reported for nonblocking stacks. However, Treiber's stack is 
very simple and can be expected to be quite efficient. We also observe that a stack 
derived from Herlihy's general methodology, with unnecessary copying removed, 
seems to be simple enough to compete with lock-based algorithms. 

Valois [41] proposed a nonblocking implementation of linked lists. Simple non- 
blocking centralized counters can be implemented trivially using a fetch - and - 
add atomic primitive (if supported by hardware), or a read-modify-check-write 
cycle using compare-and-swap or load-linkedlstore- conditional. 

structure pointer-t {ptr: pointer to node-i, count: unsigned integer} 
structure node2 {value: data type, next: pointers} 
structure stack-i {Top: pointer-t} 

INITIALIZE(S: pointer to stack-t) 
S-+Top.ptr = NULL 

PUSH(% pointer to stack-t, value: data type) 
node = newnode() 
nodc+value = value 
node-+next.ptr = NULL 
repeat 

top = S-+Top 
node-+next.ptr = top.ptr 

until CAS(&S+Top, top, [node, top.count+I]) 

# Empty stack. Top points to NULL 

# Allocate a new node from the free list 
# Copy stacked value into node 
# Set next pointer of node to NULL 
# Keep trying until Push is done 
# Read Top.ptr and Top.count together 
# Link new node to head of list 
#Try to swing Top to new node 

PoP(S: pointer to stack..!, pvalue: pointer to data type): boolean 
repeat # Keep trying until Pop is done 

top = S-Top # Read Top 
if top.ptr == NULL # Is the stack empty? 

return FALSE #The stack was empty, couldn't pop 
endif 

until CAS(&S+Top, top, [top.ptr+next.ptr, top.count+I]) # Try to swing Top to the next node 
*pvalue = top.ptr-+value # Pop is done. Read value 
free(top.ptr) # It is safe now to free the old node 
return TRUE # The stack was not empty, pop succeeded 

FIG. 1. Structure and operation of Treiber's nonblocking concurrent stack algorithm [38] 



NONBLOCKING ALGORITHMS AND PREEMPTION-SAFE LOCKING 7 

ADD(X: pointer to integer, value: integer): integer 
repeat 

count = LL(X) 
until SC(X, count+value) 
return count 

# Keep trying until SC succeeds 
# Read the current value of X 

# Add is done, return previous value 

FIG. 2. A nonblocking concurrent counter using load- linked and store- conditional 

Figure 2 shows a nonblocking counter implementation using load-linked/ 
store-conditional. 

Massalin and Pu [22] presented nonblocking algorithms for array-based stacks, 
array-based queues, and linked lists. Unfortunately, their algorithms require 
double - compare- and- swap, a primitive that operates on two arbitrary 
memory locations simultaneously and that appears to be available only on the 
Motorola 68020 processor and its direct descendants. No practical nonblocking 
implementations for array-based stacks or circular queues have been proposed. The 
general methodologies can be used, but the resulting algorithms would be very 
inefficient. For these data structures lock-based algorithms seem to be the only 
option. 

In the following section, we continue the discussion of data-structure-specific 
nonblocking algorithms, concentrating on queues. Our presentation includes two 
new concurrent queue algorithms. One is non-blocking; the other uses a pair of 
mutual exclusion locks. 

4. CONCURRENT QUEUE ALGORITHMS 

4.1. Discussion of Previous Work 

Many researchers have proposed lock-free algorithms for concurrent queues. 
Hwang and Briggs [ 141, Sites [33], and Stone [34] presented lock-free algorithms 
based on compare - and - swap. These algorithms are incompletely specified; they 
omit important details such as the handling of empty or single-item queues or con- 
current enqueues and dequeues. Lamport [20] presented a wait-free algorithm that 
allows only a single enqueuer and a single deq~euer .~  Gottlieb et al. [8] and 
Mellor-Crummey [23] presented algorithms that are lock-free but not nonblock- 
ing: they do not use locking mechanisms, but they allow a slow process to delay 
faster processes indefinitely. Treiber [38] presented an algorithm that is nonblock- 
ing but inefficient: a dequeue operation takes time proportional to the number of 
the elements in the queue. 

As mentioned above, Massalin and Pu [22] presented a nonblocking array- 
based algorithm based on double - compare - and - swap, a primitive available 
only on later members of the Motorola 68000 family of processors. Herlihy and 
Wing [12] presented an array-based algorithm that requires infinite arrays. Valois 
[40] presented an array-based algorithm that requires either an unaligned 

A wait-free algorithm is both nonblocking and starvation free: it guarantees that every active process 
will make progress within a bounded number of time steps. 
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compare - and - swap (not supported on any architecture) or a Motorola-like 
double-compare-and-swap. 

Stone [35] presented a queue that is lock-free but nonlinearizable7 and not non- 
blocking. It is nonlinearizable because a slow enqueuer may cause a faster process 
to enqueue an item and subsequently observe an empty queue, even though the 
enqueued item has never been dequeued. It is not nonblocking because a slow 
enqueue can delay dequeues by other processes indefinitely. Our experiments also 
revealed a race condition in which a certain interleaving of a slow dequeue 
with faster enqueues and dequeues by other process(es) can cause an enqueued 
item to be lost permanently. Stone also presented [36] a nonblocking queue based 
on a circular singly linked list. The algorithm uses one anchor pointer to manage 
the queue instead of the usual head and tail. Our experiments revealed a race 
condition in which a slow dequeuer can cause an enqueued item to be lost per- 
manently. 

Prakash, Lee, and Johnson [31] presented a linearizable nonblocking algorithm 
that uses a singly linked list to represent the queue with Head and Tail pointers. It 
uses compare - and- swap to enqueue and dequeue nodes at the tail and the head 
of the list, respectively. A process performing an enqueue or a dequeue operation 
first takes a snapshot of the data structure and determines if there is another opera- 
tion in progress. If so it tries to complete the ongoing operation and then takes 
another snapshot of the data structure. Otherwise it tries to complete its own 
operation. The process keeps trying until it completes its operation. 

Valois [40] presented a list-based nonblocking queue algorithm that avoids the 
contention caused by the snapshots of Prakash et al.'s algorithm and allows more 
concurrency by keeping a dummy node at the head (dequeue end) of a singly linked 
list, thus simplifying the special cases associated with empty and single-item queues 
(a  technique suggested by Sites [33]). Unfortunately, the algorithm allows the tail 
pointer to lag behind the head pointer, thus preventing dequeuing processes from 
safely freeing or reusing dequeued nodes. If the tail pointer lags behind and a 
process frees a dequeued node, the linked list can be broken, so that subsequently 
enqueued items are lost. Since memory is a limited resource, prohibiting memory 
reuse is not an acceptable option. Valois therefore proposes a special mechanism to 
free and allocate memory. The mechanism associates a reference counter with each 
node. Each time a process creates a pointer to a node it increments the node's 
reference counter atomically. When it does not intend to access a node that it has 
accessed before, it decrements the associated reference counter atomically. In addi- 
tion to temporary links from process-local variables, each reference counter reflects 
the number of links in the data structure that point to the node in question. For 
a queue, these are the head and tail pointers and linked-list links. A node is freed 
only when no pointers in the data structure or temporary variables point to it. We 
discovered and corrected [26] race conditions in the memory management 
mechanism and the associated nonblocking queue algorithm. 

A n  implementation of a data structure is linearizable if it can always give an external observer, 
observing only the abstract data structure operations, the illusion that each of these operations takes 
effect instantaneously at some point between its invocation and its response [13]. 
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Most of the algorithms mentioned above are based on compare - and-  swap 
and must therefore deal with the ABA problem: if a process reads a value A in a 
shared location, computes a new value, and then attempts a compare - and - swap 
operation, the compare - and-  swap may succeed when it should not, if between 
the read and the compare - and-  swap some other process(es) change the A to a 
B and then back to an A again. The most common solution is to associate a 
modification counter with a pointer, to always access the counter with the pointer 
in any read-modify-compare - and- swap sequence, and to increment it in each 

structure pointer-t {ptr: pointer to node-t, count: unsigned integer} 
structure node-t {value: data type, next: pointer-t} 
structure queue1 {Head: pointer-t, Tail: pointer-t} 

INITIALIZE(Q: pointer to queue-c) 
node = newnode() 
node+next.ptr = NULL 
Q-+Head.ptr = Q+Tail.ptr = node 

ENQUEUE(Q: pointer to queue-c, value: data type) 
El:  
E2: 
E3: 
E4: 
ES: 
E6: 
E7: 
E8: 
E9: 
E10: 
El I: 
E12: 
E13: 
E14: 
ElS: 
E16: 
E17: 

node = newnode() 
nodc+value =value 
node-+next.ptr = NULL 
loop 

tail = Q-+Tail 
next = tail.ptr+next 
if tail == Q+Tail 

if next.ptr == NULL 
if CAS(&tail.ph~mext, next, [node, next.count+l]) 

break 
endif 

else 
CAS(&Q+Tail, tail, [next.ptr, tail.count+l]) 

endif 
endif 

endloop 
CAS(&Q+Tail, tail, [node, tail.count+l]) 

DEQUEUE(Q: pointer to queue-t, pvalue: pointer to data type): boolean 
Dl: 
D2: 
D3: 
D4: 
D5: 
D6: 
D7: 
D8: 
09 :  
D10: 
Dl I: 

D12: 
D13: 
D14: 
D15: 
D16: 
D17: 
D18: 
D19: 
D20: 

loop 
head = Q-+Head 
tail = Q+Tail 
next = head.ptr+next 
if head == Q-+Head 

if head.ptr == tail.ptr 
if ncxt.ptr == NULL 

return FALSE 
endif 
CAS(&Q+Tail, tail, [next.ptr, tail.count+l]) 

else 

# Allocate a free node 
#Make it the only node in the linked list 
# Both Head and Tail point to it 

# Allocate a new node from the free list 
# Copy enqueued value into node 
# Set next pointer of node to NULL 
# Keep trying until Enqueue is done 
# Read Tail.ptr and Tail.count together 
# Read next ptr and count fields together 
# Are tail and next consistent? 
# Was Tail pointing to the last node? 
# Try to link node at the end ofthe linked list 
# Enqueue is done. Exit loop 

# Tail was not pointing to the last node 
# Try to swing Tail to the next node 

# Try to swing Tail to the inserted node 

# Keep trying until Dequeue is done 
# Read Head 
# Read Tail 
# Read Head.ptr+next 
# Are head, tail, and next consistent? 
# Is queue empty or Tail falling behind? 
# Is queue empty? 
# Queue is empty, couldn't dequeue 

# Tail is falling behind. Try to advance it 
# No need to deal with Tail 

# Read value before CAS, otherwise another dequeue might free the next node 
*pvalue = next.ptr-+value 
if CAS(&Q+Head, head, [next.ptr, head.count+l]) #Try to swing Head to the next node 

break # Dequeue is done. Exit loop 
endif 

endif 
endif 

endloop 
free(head.ptr) # It is safe now to free the old dummy node 
return TRUE # Queue was not empty, dequeue succeeded 

FIG. 3. Structure and operation of a nonblocking concurrent queue. 
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successful compare - and- swap. This solution does not guarantee that the ABA 
problem will not occur, but makes it extremely unlikely. To implement this solu- 
tion, one must either employ a double-word compare-and- swap or else use 
array indices instead of pointers, so that they may share a single word with a coun- 
ter. Valois's reference counting technique guarantees preventing the ABA problem 
without the need for modification counters or the double-word compare - and- 
swap. Mellor-Crumrney's lock-free queue [23] requires no special precautions 
to a void the ABA problem because it uses compare - and - swap in a fetch- 
and - s tor e-modify-c ompar e - and - swap sequence rather than the usual read- 
modify-compare - and- swap sequence. However, this same feature makes the 
algorithm blocking. 

4.2. New Algorithms 

We present two concurrent queue algorithms inspired by ideas in the work 
described above. Both of the algorithms are simple and practical. One is nonblock- 
ing; the other uses a pair of locks. Figure 3 presents commented pseudocode for the 
nonblocking queue data structure and operations. The algorithm implements the 
queue as a singly linked list with Head and Tail pointers. Head always points to a 

structure node-t {value: data type, next: pointer to node-t} 
structure queue-t {Head: pointer to node-t, Tail: pointer to node-t, H-lock: lock type, TJock: lock type} 

INIT[ALIZE(Q: pointer to queued) 
node = newnode() # Allocate a free node 
node-mext = NULL # Make it the only node in the linked list 
Q-+Head = Q-Tail = node # Both Head and Tail point to it 
Q-H-lock = Q-T-lock = FREE # Locks are initially free 

ENQUEUE(Q: pointer to queue-t, value: data type) 
node = newnode() # Allocate a new node from the free list 
node-lvalue = value # Copy enqueued value into node 
node-next = NULL # Set next pointer of node to NULL 
lock(&Q-T-lock) # Acquire TJock in order to access Tail 

Q-Tail~mext = node # Link node at the end of the linked list 
Q-Tail = node # Swing Tail to node 

unlock(&Q+TJock) # Release T-lock 

DFQUEUE(Q: pointer to queue-t, pvalue: pointer to data type): boolean 
lock(&Q-H-lock) # Acquire H-lock in order to access Head 

node = Q-+Head  # Read Head 
new-head = n o d e ~ m e x t  # Read next pointer 
if new-head == NULL # Is queue empty? 

unlock(&Q+Hlock) # Release H-lock before return 
return FALSE # Queue was empty 

endif 
*pvalue = newhead-value # Queue not empty. Read value before release 
Q-Head = new-head # Swing Head to next node 

unlock(&Q+HJock) # Release HJock 
free(node) # Free node 
return TRUE # Queue was not empty, dequeue succeeded 

FIG. 4. Structure and operation of a two-lock concurrent queue. 
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dummy node, which is the first node in the list. Tail points to either the last or 
second to last node in the list. The algorithm uses compare-and- swap with 
modification counters to avoid the ABA problem. To allow dequeuing processes to 
free and then reuse dequeued nodes, the dequeue operation ensures that Tail does 
not point to the dequeued node or to any of its predecessors. 

To obtain consistent values of various pointers we rely on sequences of reads that 
recheck earlier values to be sure they have not changed. These sequences of reads 
are similar to, but simpler than, the snapshots of Prakash et al. (we need to check 
only one shared variable rather than two). A similar technique can be used to 
prevent the race condition in Stone's blocking algorithm. A simple and efficient 
nonblocking stack algorithm due to Treiber [38] can be used to implement a 
nonblocking free list. 

Figure 4 presents commented pseudocode for the two-lock queue data structure 
and operations. The algorithm employs separate Head and Tail locks to allow com- 
plete concurrency between enqueues and dequeues. As in the nonblocking queue, 
we keep a dummy node at the beginning of the list. Because of the dummy node, 
enqueuers never have to access Head, and dequeuers never have to access Tail, thus 
avoiding deadlock problems that might arise from processes trying to acquire the 
locks in different order. 

Experimental results comparing these algorithms with others are presented in 
Section 5. A discussion of algorithm correctness is presented in Appendix A. 

5. EXPERIMENTAL RESULTS 

We use a Silicon Graphics Challenge multiprocessor with twelve 100 MHz MIPS 
R4000 processors to compare the performance of the most promising nonblocking, 
ordinary lock-based, and preemption-safe lock-based implementations of counters 
and of link-based queues, stacks, and skew heaps. We use microbenchmarks to 
compare the performance of the alternative algorithms under various levels of con- 
tention. We also use two versions of a parallel quicksort application, together with 
a parallel solution to the traveling salesman problem, to compare the performance 
of the algorithms when used in a real application.' 

To ensure the accuracy of our results regarding the level of multiprogramming, 
we prevented other users from accessing the multiprocessor during the experiments. 
To evaluate the performance of the algorithms under different levels of multi- 
programming, we used a feature of the Challenge's Irix operating system that allows 
programmers to pin processes to processors. We then used one of the processors to 
serve as a pseudoscheduler. Whenever a process is due for preemption, the 
pseudoscheduler interrupts it, forcing it into a signal handler. The handler spins on 
a flag which the pseudoscheduler sets when the process can continue computation. 
The time spent executing the handler represents the time during which the pro- 
cessor is taken from the process and handed over to a process that belongs to some 
other application. The time quantum is 10 ms. 

C code for all the microbenchmarks and the real applications are available from ftp://ftp.cs.rochester. 
edu/pub/packages/sched_conscious_synch/multiprogramming. 
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All ordinary and preemption-safe locks used in the experiments are test-and-test- 
and-set locks with bounded exponential backoff. All nonblocking algorithms also 
bounded exponential backoff. The effectiveness of backoff in reducing contention on 
locks and synchronization data is demonstrated in the literature [3, 241. The back- 
off was chosen to yield good overall performance for all algorithms and not to 
exceed 30 us. We emulate both t e s t - a n d - s e t  and compare-and-swap, using 
l o a d -  l i n k e d  and s t o r e  - c o n d i t i o n a l  instructions, as shown in Fig. 5. 

In the figures, multiprogramming level represents the number of applications 
sharing the machine, with one process per processor per application. A multi- 
programming level of 1 (the top graph in each figure) therefore represents a 
dedicated machine; a multiprogramming level of 3 (the bottom graph in each 
figure) represents a system with a process from each of three different applications 
on each processor. 

5.1. Queues 

Figure 6 shows performance results for eight queue implementations on a 
dedicated system (no multiprogramming), and on multiprogrammed systems with 
two and three processes per processor. The eight implementations are the usual 
single-lock algorithm using both ordinary and preemption-safe locks (single 
ordinary lock and single safe lock); our two-lock algorithm, again using both 
ordinary and preemption-safe locks (two ordinary locks and two safe locks); our 
nonblocking algorithm (MS nonblocking) and those due to Prakash et al. [31] 
(PLJ  nonblocking) and Valois [40] (Valois nonblocking); and Mellor-Crummey's 
blocking algorithm [23] (MC blocking). We include the algorithm of Prakash et al. 
because it appears to be the best of the known nonblocking alternatives. Mellor- 
Crummey's algorithm represents non-lock-based but blocking alternatives; it is 
simpler than the code of Prakash et al. and could be expected to display lower 
constant overhead in the absence of unpredictable process delays, but is likely to 
degenerate on a multiprogrammed system. We include Valois's algorithm to 
demonstrate that on multiprogrammed systems even a comparatively inefficient 
nonblocking algorithm can outperform blocking algorithms. 

TESTANDSET(X: pointer to boolean): boolean 
repeat 

local = LL(X) 
if local == TRUE 

return TRUE 
until SC(X, TRUE) 
return FALSE 

# Keep trying SC succccds or X is TRUE 
# Read the current value of  X 

# TAS should return TRUE 

# TAS is done. indicate that X was FALSE 

COMPAREANDSWAP(X: pointer to integer, expected: integer, new: integer): boolean 
repeat # Keep trying until SC succeeds or X # expected 

local = LL(X) # Read the current value o f  X 
if local # expected 

return FALSE # CAS should fail 
until SC(X, new) 
return TRUE # CAS succeeded 

FIG. 5. Implementations of test - and- set and compare - and- swap using load- linked and 
store-conditional. 
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FIG. 6. Normalized execution time for 1,000,000 enqueueldequeue pairs on a multiprogramrned 
system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom). 

The horizontal axes of the graphs represent the number of processors. The vertical 
axes represent execution time normalized to that of the preemption-safe single lock 
algorithm. This algorithm was chosen as the basis of normalization because it yields 
the median performance among the set of algorithms. We use normalized time in 
order to show the difference in performance between the algorithms uniformly 
across different numbers of processors. If we were to use absolute time, the vertical 
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axes would have to be extended to cover the high absolute execution time on a 
single processor, making the graph too small to read for larger numbers of pro- 
cessors. The absolute times in seconds for the preemption-safe single-lock algorithm 
on one and 11 processors, with one, two, and three processes per processor, are 
18.2 and 15.6, 38.8 and 15.4, and 57.6 and 16.3, respectively. 

The execution time is the time taken by all processors to perform one million 
pairs of enqueues and dequeues to an initially empty queue (each process performs 
1,000,000/p enqueueldequeue pairs, where p is the number of processors). Every 
process spends 6 ,us ( Â  10% randomization) spinning in an empty loop after 
performing every enqueue or dequeue operation (for a total of 12 ,us per iteration). 
This time is meant to represent "real" computation. It prevents one process from 
dominating the data structure and finishing all its operations while other processes 
are starved by caching effects and backoff. 

The results show that as the level of multiprogramming increases, the perfor- 
mance of ordinary locks and Mellor-Crummey's blocking algorithm degrades 
significantly, while the performance of preemption-safe locks and nonblocking 
algorithms remains relatively unchanged. The "bump" at two processors is due 
primarily to cache misses, which do not occur on one processor, and to a smaller 
amount of overlapped computation, in comparison to larger numbers of processors. 
This effect is more obvious in the multiple lock and nonblocking algorithms, which 
have a greater potential amount of overlap among concurrent operations. 

The two-lock algorithm outperforms the single-lock in the case of high conten- 
tion since it allows more concurrency, but it suffers more with multiprogramming 
when using ordinary locks, as the chances are larger that a process will be 
preempted while holding a lock needed by other processes. On a dedicated system, 
the two-lock algorithm outperforms a single lock when more than four processors 
are active in our microbenchmark. With multiprogramming levels of 2 and 3, the 
crossover points for the one- and two-lock algorithms with preemption-safe locks 
occur at  six and eight processors, respectively. The nonblocking algorithms, except 
for that of Valois, provide better performance; they enjoy added concurrency 
without the overhead of extra locks and without being vulnerable to interference 
from multiprogramming. Valois's algorithm suffers from the high overhead of the 
complex memory management technique associated with it. 

In the absence of contention, any overhead required to communicate with the 
scheduler in a preemption-safe algorithm is "wasted," but the numbers indicate that 
this overhead is low. 

Overall, our nonblocking algorithm yields the best performance. It outperforms 
the single-lock preemption-safe algorithm by more than 40 % on 11 processors with 
various levels of multiprogramming, since it allows more concurrency and needs to 
access fewer memory locations. In the case of no contention, it is essentially tied 
with the single ordinary lock and with Mellor-Crummey's queue. 

5.2. Stacks 

Figure 7 shows performance results for four stack implementations on a 
dedicated system and on multiprogrammed systems with two and three processes 
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FIG. 7. Normalized execution time for 1,000,000 push/pop pairs on a multiprogrammed system, 
with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom). 

per processor. The four stack implementations are the usual single-lock algorithm 
using ordinary and preemption-safe locks, Treiber's nonblocking stack algorithm 
[38], and an optimized nonblocking algorithm based on Herlihy's general 
methodology [ lo]. 

Like Treiber's nonblocking stack algorithm, the optimized algorithm based on 
Herlihy's methodology uses a singly linked list to represent the stack with a Top 
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pointer. However, every process has its own copy of Top and an operation is suc- 
cessfully completed only when the process uses l o a d  - l i n k e d / s  t o  r e  - condi  - 
t i o n a l  to swing a shared pointer to its copy of Top. The shared pointer can be 
considered as pointing to the latest version of the stack. 

The axes in the graphs have the same semantics as those in the queue graphs. 
Execution time is normalized to that of the preemption-safe single lock algorithm. 
The absolute times in seconds for the preemption-safe lock-based algorithm on one 
and 11 processors, within one, two, and three processes are 19.0 and 20.3, 40.8 and 
20.7, and 60.2 and 21.6, respectively. Each process executes l,OOO,OOO/p push/pop 
pairs on an initially empty stack, with a 6-ps average delay between successive 
operations. 

As the level of multiprogramming increases, the performance of ordinary locks 
degrades, while the performance of the preemption-safe and nonblocking algo- 
rithms remains relatively unchanged. Treiber's algorithm outperforms all the others 
even on dedicated systems. It outperforms the preemption-safe algorithm by over 
45 % on 11 processors with various levels of multiprogramming. This is mainly due 
to the fact that a push or a pop in Treiber's algorithm typically needs to access only 
two cache lines in the data structure, while a lock-based algorithm has the overhead 
of accessing lock variables as well. Accordingly, Treiber's algorithm yields the best 
performance even with no contention. 

5.3. Heaps 

Figure 8 shows performance results for three skew heap implementations on a 
dedicated system and on multiprogrammed systems with two and three processes 
per processor The three implementations are the usual single-lock algorithm using 
ordinary and preemption-safe locks and an optimized nonblocking algorithm due 
to Herlihy [lo]. 

The optimized nonblocking algorithm due to Herlihy uses a binary tree to 
represent the heap with a Root pointer. Every process has its own copy of Root. 
A process performing a heap operation copies the nodes it intends to modify to 
local free nodes and finally tries to swing a global shared pointer to its copy of Root 
using l o a d -  l i n k e d l s  t o r e  - condi  t t o n a l .  If it succeeds, the local copies of the 
copied nodes become part of the global structure and the copied nodes are recycled 
for use in future operations. 

The axes in the graphs have the same semantics as those for the queue and stack 
graphs. Execution time is normalized to that of the preemption-safe single lock 
algorithm. The absolute times in seconds for the preemption-safe lock-based algo- 
rithm on one and 11 processors, with one, two, and three processes per processor, 
are 21.0 and 27.7, 43.1 and 27.4, and 65.0 and 27.6, respectively. Each process 
executes l,OOO,OOO/p insertldeleteanin pairs on an initially empty heap with a 6-ps 
average delay between successive operations. Experiments with nonempty heaps 
resulted in relative performance similar to that depicted in the graphs. 

As the level of multiprogramming increases the performance of ordinary locks 
degrades, while the performance of the preemption-safe and nonblocking algo- 
rithms remains relatively unchanged. The degradation of the ordinary locks is 
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FIG. 8. Normalized execution time for 1,000,000 insertldelete~n pairs on a multiprogrammed 
system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom). 

larger than that suffered by the locks in the queue and stack implementations, 
because the heap operations are more complex and result in higher levels of conten- 
tion. Unlike the case for queues and stacks, the nonblocking implementation of 
heaps is quite complex. It cannot match the performance of the preemption-safe 
lock implementation on either dedicated or multiprogrammed systems, with or 
without contention. Heap implementations resulting fi-om general nonblocking 



18 MICHAEL AND SCOTT 

methodologies (without data-structure-specific elimination of copying) are even 
more complex and could be expected to perform much worse. 

5.4. Counters 

Figure 9 shows performance results for three implementations of counters on a 
dedicated system and on multiprogrammed systems with two and three processes 
per processor. The three implementations are the usual single-lock algorithm using 
ordinary and preemption-safe locks and the nonblocking algorithm using load- 
linkedlstore-conditional. 

The axes in the graphs have the same semantics as those for the previous graphs. 
Execution time is normalized to that of the preemption-safe single-lock algorithm. 
The absolute times in seconds for the preemption-safe lock-based algorithm on one 
and 11 processors, with one, two, and three processes per processor, are 17.7 and 
10.8, 35.0 and 11.3, and 50.6 and 10.9, respectively. Each process executes 
l,OOO,OOO/p increments on a shared counter with a 6-ps average delay between 
successive operations. 

The results are similar to those observed for queues and stacks, but are even 
more pronounced. The nonblocking algorithm outperforms the preemption-safe 
lock-based counter by more than 55% on 11 processors with various levels of 
multiprogramming. The performance of a f e t c h  - and - add atomic primitive 
would be even better [25]. 

5.5. Quicksort Application 

We performed experiments on two versions of a parallel quicksort application, 
one that uses a link-based queue and another that uses a link-based stack for 
distributing items to be sorted among the cooperating processes. We used three 
implementations for each of the queue and the stack: the usual single-lock algo- 
rithm using ordinary and preemption-safe locks and our nonblocking queue and 
Treiber's stack, respectively. In each execution, the processes cooperate in sorting 
an array of 500,000 pseudorandom numbers using quicksort for intervals of more 
than 20 elements and insertion sort for smaller intervals. 

Figure 10 shows performance results for the three queue-based versions; Fig. 11 
shows results for the three stack-based versions. Execution times are normalized to 
those of the preemption-safe lock-based algorithms. The absolute times in seconds 
for the preemption-safe lock-based algorithm on one and 11 processors, with one, 
two, and three processes per processor, are 4.0 and 1.6, 7.9 and 2.3, and 11.6 and 
3.3, respectively, for a shared queue, and 3.4 and 1.5, 7.0 and 2.3, and 10.2 and 3.1, 
respectively, for a shared stack. 

The results confirm our observations from experiments on microbenchmarks. 
Performance with ordinary locks degrades under multiprogramming, though not as 
severely as before, since more work is being done between atomic operations. 
Simple nonblocking algorithms yield superior performance even on dedicated 
systems, making them the algorithm of choice under any level of contention or 
multiprogramming. 
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FIG. 9. Normalized execution time for 1,000,000 atomic increments on a multiprogrammed system, 
with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom). 

5.6. Traveling Salesman Application 

We performed experiments on a parallel implementation of a solution to the 
traveling salesman problem. The program uses a shared heap, stack, and counters. 
We used three implementations for each of the heap, stack, and counters: the usual 
single lock algorithm using ordinary and preemption-safe locks and the best respective 
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FIG. 10. Normalized execution time for quicksort of 500,000 items using a shared queue on a multi- 
programmed system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom). 

nonblocking algorithms (Herlihy-optimized, Treiber, and l o a d  - 1 inked/s tore - 
conditional). In each execution, the processes cooperate to find the shortest 
tour in a 17-city graph. The processes use the priority queue heap to share informa- 
tion about the most promising tours and the stack to keep track of the tours that 
are yet to be computed. We ran experiments with each of the three implementations 
of the data structures. In addition, we ran experiments with a "hybrid" program 
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FIG. 11. Normalized execution time for quicksort of 500,000 items using a shared stack on a multi- 
programmed system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom). 

that uses the version of each data structure that ran the fastest for the micro- 
benchmarks: nonblocking stacks and counters and a preemption-safe priority 
queue. 

Figure 12 shows performance results for the four different experiments. Execution 
times are normalized to those of the preemption-safe lock-based experiment. The 
absolute times in seconds for the preemption-safe lock-based experiment on one 
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FIG. 12. Normalized execution time for a 17-city traveling salesman problem using a shared priority 
queue, stack and counters on a multiprogramrned system, with multiprogramming levels of 1 (top), 
2 (middle), and 3 (bottom). 

and 11 processors, with one, two, and three processes per processor, are 34.9 and 
14.3, 71.7 and 15.7, and 108.0 and 18.5, respectively. Confirming our results with 
microbenchmarks, the experiment based on ordinary locks suffers under multi- 
programming. The hybrid experiment yields the best performance, since it uses the 
best implementation of each of the data structures. 
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6. CONCLUSIONS 

For atomic updates of a shared data structure, the programmer may ensure 
consistency using (1) a single lock, (2) multiple locks, (3 )  a general-purpose 
nonblocking technique, or (4) a special-purpose (data-structure-specific) nonblock- 
ing algorithm. The locks in (1) and (2) may or may not be preemption-safe. 

Options (1) and (3) are easy to generate, given code for a sequential version of 
the data structure, but options (2) and (4) must be developed individually for each 
different data structure. Good data-structure-specific multilock and nonblocking 
algorithms are sufficiently tricky to devise that each has tended to constitute an 
individual publishable result. 

Our experiments indicate that for simple data structures, special-purpose 
nonblocking atomic update algorithms will outperform all alternatives, not only 
on multiprogrammed systems, but on dedicated machines as well. Given the 
availability of a universal atomic hardware primitive, there seems to be no reason 
to use any other version of a link-based stack, a link-based queue, or a small, 
fixed-sized object such as a counter. 

For more complex data structures, however, or for machines without universal 
atomic primitives, preemption-safe locks are clearly important. Preemption-safe 
locks impose a modest performance penalty on dedicated systems, but provide 
dramatic savings on time-sliced systems. 

For the designers of future systems, we recommend (1) that hardware always 
include a universal atomic primitive, and (2) that kernel interfaces provide a 
mechanism for preemption-safe locking. For small-scale machines, the Symunix 
interface [7] appears to work well. For larger machines, a more elaborate interface 
may be appropriate [17]. 

We have presented a concurrent queue algorithm that is simple, nonblocking, 
practical, and fast. It appears to be the algorithm of choice for any queue-based 
application on a multiprocessor with a universal atomic primitive. Also, we have 
presented a two-lock queue algorithm. Because it is based on locks, it will work on 
machines with such nonuniversal atomic primitives as t e s t - and - s e t  . We recom- 
mend it for heavily utilized queues on such machines. For a queue that is usually 
accessed by only one or two processors, a single lock will perform better. 
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