
What do a Longest Increasing Subsequence and a Longest 
Decreasing Subsequence Know About Each Other?

Elizabeth J. Itskovich and Vadim E. Levit*

Department of Computer Science
Ariel University, Israel

Corresponding: levitv@ariel.ac.il

Abstract
As a kind of converse of the celebrated Erdős-Szekeres theorem, we present a 
necessary and sufficient condition for a sequence of length n to contain a longest 
increasing subsequence and a longest decreasing subsequence of given lengths x 
and y, respectively.
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1. Introduction

In 1935, Hungarian mathematicians Paul Erdős and George Szekeres proved
a celebrated theorem, which is now a classic, on relations between lengths of a
sequence and its increasing (decreasing) subsequence [2].

Theorem 1.1. (Erdős-Szekeres) Suppose

a, b ∈ N, n ≥ a · b + 1

and x1, x2, · · · , xn is a sequence of real numbers. Then this sequence contains a
monotonic increasing (decreasing) subsequence of a + 1 terms or a monotonic
decreasing (increasing) subsequence of b + 1 terms.

More than 85 years have passed since then, and a whole subarea of combina-
torics has grown up from the Erdős-Szekeres theorem. Even today we cannot fully
appreciate the significance of this theorem, see, for instance, [1, 3, 4, 6, 7, 8, 9].

The main goal of this paper is to describe the complete family of constraints
on the lengths of a sequence, its longest increasing subsequence, and its longest
decreasing subsequence.
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2. Main Results

Theorem 2.1. There exists a sequence T of length n > 1 containing a longest
increasing subsequence of length x = lis(T ) > 1 and a longest decreasing subse-
quence of length y = lds(T ) > 1 if and only if the numbers x, y and n satisfy the
following conditions:

x · y ≥ n (*)

x + y ≤ n + 1 (**)

Proof. First, we prove the necessity of the conditions (*) and (**).

Necessity of the condition (*) immediately follows from the theorem of Erdős-
Szekeres. Assume that the condition (*) is not satisfied, i.e. x · y ≤ n − 1, then,
according to the Erdős-Szekeres theorem, the sequence T of length n contains a
monotone increasing subsequence of the length x + 1 or a monotone decreasing
subsequence of the length y + 1 , which contradicts the hypothesis of the theorem.
The violation of the condition (**) makes impossible the existence of two subse-
quences with specified lengths, one of which increases, while the other decreases.
In fact, these two subsequences can have no more than one element in common;
that is, the sum of their lengths should not exceed n + 1.

Sufficiency. Assume that x · y ≥ n and x + y ≤ n + 1, and build a sequence
T of length n, such that x = lis(T ), y = lds(T ). This sequence is built according
to the following scheme. We take a sequence of n natural numbers 1, 2, · · · , n and
divide it into x groups, in such a way that T = Concatenation(T1,T2, · · · ,Tx) and
satisfies the following conditions:

1. The numbers in each group are arranged in decreasing order.
2. All the numbers of a subsequent group are greater than all the numbers of a

preceding group.
3. The first group consists of y elements: y, y−1, y−2, · · · , 1, which is possible

by the condition y < n.
4. We divide the remaining n − y elements into x − 1 groups as follows. Let

p =
⌊n − y

x − 1

⌋
and r = (n − y) mod(x − 1), (p > 0, 0 ≤ r < x − 1). The first r
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groups represent decreasing subsequences T2, ...,Tr+1 of the length p + 1:
T2 = {y + p + 1, y + p, y + p − 1, · · · , y + 1}
. . .
Tr+1 = {y + r(p + 1), y + r(p + 1) − 1, y + r(p + 1) − 2, · · · ,
y + r(p + 1) − p}.
The last x − r − 1 groups represent decreasing subsequences Tr+2, ...,Tx of
length p. (In case of r = 0, all x−1 decreasing subsequences have the length
p):
Tr+2 = {y + r(p + 1) + p, y + r(p + 1) + p − 1, · · · , y + r(p + 1) + 1}, . . .
Tx = {n, n − 1, n − 2, · · · , n − p + 1}.

The algorithm building the sequence T and the proof of its correctness are
given below. Before passing to the proof of the sufficiency, we prove the follow-
ing.

Claim 2.2. At the partition of n−y elements into x−1 groups satisfying Conditions
1-4, the number of elements in each group does not exceed y.

Proof. It is given that y + p · (x − 1) + r = n. Then,

y + p · (x − 1) + r ≤ y + (x − 1) · y

in accordance with the condition x · y ≥ n. Thus

p +
r

x − 1
≤ y.

Since 0 ≤ r < x − 1, while p and y are positive integers, the number of elements
in a longest group p + 1 ≤ y if r > 0. In the case of r = 0 all the x − 1 groups are
of the same length p and p ≤ y.

Now we prove the sufficiency of the conditions (*) and (**) under the assump-
tion that the sequence T is built and satisfies Conditions 1-4.

First, we prove that the group named LDS is a longest decreasing subsequence
of T . Actually, the number of groups is equal to x. The number of elements in
the first group is equal to y. By Claim 2.2, the number of elements in any other
group does not exceed y. Besides, by the fact that the elements of each of x
groups are arranged in decreasing order, and for every group all the elements of
the subsequent group are greater than all the elements of this group, the longest
decreasing subsequence can be made up from elements of one group only, and a
largest group is the first one, its length being y.
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Now we build a sequence and name it LIS , which includes one element of
each of x groups, and prove that it is, actually, the longest increasing subsequence
of T . In fact, since the elements of each of x groups are arranged in decreasing
order, the subsequence LIS can include no more than one element of each group.
And since for every group all the elements of the subsequent group are greater than
all the elements of this group, the subsequence LIS is an increasing sequence that
has the maximal possible length equal to x. That is, LIS is a longest increasing
subsequence of T . For example, LIS may be composed of the first elements of
each group.

2.3. Building Sequence T
Input: Integer numbers n > 1, x > 1, y > q, which satisfy conditions (*), (**).
Output: The sequence T = T1 ‖ T2 · · · ‖ Tx, which represents a concatenation of
subsequences T1,T2, · · · Tx and satisfies Conditions 1-4.

The procedure of producing the desired sequence T is as follows. In Lines
5-8 we build the first group of numbers representing a decreasing subsequence
of the length y, whose elements are the numbers y, y − 1, y − 2, · · · 1. In Lines
9, 10 the numbers p =

⌊ n − y
(x − 1

⌋
and r = (n − y)mod(x − 1) are computed. In

Lines 11-17 we build r groups consisting of p + 1 elements, and in Lines 18-24
we build x − r − 1 groups consisting of p elements. In each group the elements
are arranged in decreasing order, and for all groups each number of a subsequent
group is greater than all the numbers of this group. Therefore, T is the desired
sequence.

Example 2.4. n = 10, x = 3, y = 4. The conditions (*) and (**) are satisfied.
Hence, p =

⌊n − y
x − 1

⌋
= 3, r = 0. We have the first group of length 4 and 2 groups

of length 3. Hence, the desired sequence has the form
T = {4, 3, 2, 1, 7, 6, 5, 10, 9, 8} and
LIS = {4, 7, 10}, LDS = {4, 3, 2, 1}.

Example 2.5. n = 11, x = 5, y = 5. The conditions (*) and (**) are satisfied.
Hence, p =

⌊n − y
x − 1

⌋
= 1, r = 2. We have the first group of length 5, 2 groups of

length 2 and two groups of length 1. Hence, the desired sequence has the form:
T = {5, 4, 3, 2, 1, 7, 6, 9, 8, 10, 11} and
LIS = {5, 7, 9, 10, 11}, LDS = {5, 4, 3, 2, 1}.
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Algorithm 1 Build Sequence T
1: function T(n,x,y)
2: T = newint[n]
3: k ← 0
4: value← y
5: for i← y to 1 step=-1 do
6: T [k]← i
7: k ← k + 1
8: end for
9: p← (n − y)/(x − 1)

10: r ← (n − y) mod (x − 1)
11: for i← 1 to r step=1 do
12: for j← p+1 to 1 step=-1 do
13: T [k]← value + j
14: k ← k + 1
15: end for
16: value← value + p + 1
17: end for
18: for i← 1 to x-1-r step=1 do
19: for j← p to 1 step=-1 do
20: T [k]← value + j
21: k ← k + 1
22: end for
23: value← value + p
24: end for
25: return T
26: end function
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Example 2.6. n = 8, x = 4, y = 2. The conditions (*) and (**) are satisfied.
Hence, p =

⌊n − y
x − 1

⌋
= 2, r = 0. We have all four groups of length 2. Hence, the

desired sequence has the form:

T = {2, 1, 4, 3, 6, 5, 8, 7}

and
LIS = {2, 4, 6, 8}, LDS = {2, 1}.

Remark 2.7. There are other methods of building sequences satisfying the con-
ditions (*) and (**). For instance, the sequence 1, 2, · · · , n can be divided into y
groups as follows:

1. Numbers in each group are arranged in the increasing order.
2. All the numbers of a subsequent group are smaller than all the numbers of

a preceding group.
3. The first group consists of x elements, its elements being the numbers

1, 2, · · · , x − 1, x, which is possible by the condition x < n. Here is an
example of such a sequence: Let n = 10, x = 3, y = 4. The sequence T =

{8, 9, 10, 5, 6, 7, 3, 4, 1, 2}, while LIS = {8, 9, 10}, LDS = {8, 5, 3, 1}.

As a result of Algorithm 2.3, we obtain a sequence T , satisfying Conditions
1-4. Also, we have shown that this sequence contains a longest increasing subse-
quence of length x and a longest decreasing subsequence of length y. This allows
us to formulate the following:

Theorem 2.8. Algorithm 2.3 constructs the sequence T , such that
x = lis(T ), y = lds(T ). Its complexity is O(n).

3. Conclusions

A set of integer points in a plane with the coordinates (x, y) satisfying the
conditions (*) and (**) is located in the area between a straight line x + y = n + 1
and a hyperbola x · y = n (Figure 1). The number f (n) of such points is defined
as the difference between the number of integer points with positive coordinates
located between the straight line x +y = n+1 and coordinate axes and the number
of integer points with positive coordinates located between the hyperbola x · y = n
and the coordinate axes.
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Figure 1: Example: n=9, (x · y ≥ n ) and (x + y ≤ n + 1)

The number of integer points located between the straight line x+y = n+1 and
the coordinate axes equals n(n + 1) ÷ 2, and the number of integer points located
between the hyperbola x · y = n and the coordinate axes equals

D(n) =

n−1∑
i=1

τ(i),

where τ(i) is the divisor function computing the number of divisors of i, and D(n)
is the divisor summatory function [5]. Hence, the number of integer points satis-
fying the conditions (*) and (**) equals

f (n) =
n(n + 1)

2
− D(n).

A simple and efficient method of computing D(n) with the complexity O(
√

n)
is known:

D(n) = 2
b
√

nc∑
i=1

⌊n
i

⌋
− b
√

nc
2
.

A question of improving on the efficiency of D(n) computation remains.
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[2] Paul Erdős, George Szekeres, A combinatorial problem in geometry, Com-
positio Mathematica T.2:463-470, 1935.

[3] Sebastian Deorowich, On Some Variants of the Longest Increasing Subse-
quence Problem, Theoretical and Applied Informatics, ISSN 1896–5334,
Vol.21 (2009), no. 3-4, 135-148.

[4] Gottlieb, Eric(1-RHOD); Sheard, Michael(1-RHOD) Erdos-Szekeres results
for set partitions. Integers 15 (2015), Paper No. A29, 8 pp.

[5] Melvyn B. Natanson, Elementary Methods in Number Theory, Graduate
Texts in Mathematics, 195. Springer-Verlag, New York, 2000. xviii+513 pp.

[6] Dan Romik, The Surprising Mathematics of Longest Increasing Subse-
quences, Institute of Mathematical Statistics Textbooks, 4. Cambridge Uni-
versity Press, New York, 2015. xi+353 pp.

[7] Richard P. Stanley, Increasing and decreasing subsequences and their vari-
ants, International Congress of Mathematicians. Vol. I, 545-549, Eur. Math.
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