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Preface

This book is intended for beginning courses in finite elements (FE) that are oriented to-
ward users of the method. The courses envisioned emphasize the behavior of FE and in-
clude computational work in which problems are solved by means of commercial soft-
ware and the computed results are critically examined. The instructor may often sit with
students at the computer to offer advice and to monitor their skill in modeling and assess-
ment of results. The courses would use computational problems as vehicles to teach
proper use of FE, rather than use FE as a way to solve certain problems. The book pre-
sents a modest amount of theory, discusses the nature of FE solutions, offers modeling
advice, suggests computational problems, and emphasizes the need for checking the com-
puted results. Problem areas treated are common in mechanical engineering and related
disciplines. Suggested computational problems include topics often treated in a second
course in stress analysis, such as spinning disks and elastic foundations. The computa-
tional problems usually have simple geometry, so that FE may be emphasized rather than
details of data preparation. Some instructors especially those who teach more advanced
students, may wish to devise problems of a more “real world” nature, despite their greater
complexity.

Several commercial FE programs are available for use on microcomputers and work-
stations. This book is not tailored to any particular FE program and therefore does not
discuss the formalisms of input data preparation. Suitable software will have most of the
following features: capability in static stress analysis, structural dynamics, vibration, and
heat transfer; a good library of elements; some node and element generation capability;
help screens; plotting and animation of displaced shapes; contour plotting of computed
stresses without nodal averaging. The software must be easy to use, at the expense of ver-
satility if necessary, so that time will not be wasted in learning procedures peculiar to a
certain code but having little to do with insight into the FE method.

Many powerful analytical tools are readily available in the form of computer software.
Engineers do not have time to study the theory of all these tools, and undergraduates usu-
ally study theory with little enthusiasm. For undergraduate and graduate students alike, it
appears that study of only the theory of FE confers no ability in the use of FE. Theory
cannot be ignored, however; an engineer must understand the nature of the analytical
method as well as the physical nature of the phenomenon to be studied because computer
implementation makes it all too easy to choose inappropriate options or push an analyti-
cal method beyond its limits of applicability. Fortunately, the user of FE software need
not understand all its details. Mainly, the FE user should grasp the physical problem, un-
derstand how FE’s behave, know the limitations of the theory on which they are based,
and be able and willing to check results for correctness. The checking phase relies more
on physical understanding of the problem than on knowledge of FE.

The presentation in this book presumes a knowledge of elementary matrix algebra and
the level of physical understanding that a good student should have after completing a
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first course in mechanics of materials. This is adequate preparation for a one-semester
course in the practice of FE, during which students will inevitably be exposed to concepts
of stress analysis not treated in an elementary mechanics of materials course. The under-
standing they gain by working with these problems will be primarily physical but will be
helpful if theory is to be studied subsequently. In my opinion students in a beginning
course learn theory only if forced to do so, and then with little understanding of it. Only
later, when the nature of a problem area has become familiar, can theory be understood
and its practical value appreciated. These remarks are not intended to imply that the book
is unsuitable for students who have advanced knowledge of stress analysis theory. In my
experience, a student at any level may be deficient in physical understanding, and gradu-
ate students make many of the modeling mistakes also made by undergraduates.

The beginning course I teach is taken by seniors. We currently discuss most of
Chapters 1 through 7 and the first four articles of Chapter 9. Isoparametric elements and
Sections 5.5 and 6.6 are omitted. For this course I find that previous exposure to the theo-
ries of elasticity, plates, shells, and vibrations is not necessary because the essential phys-
ical behavior of such problems is easily grasped: flat plates can stretch or bend; curved
plates (shells) can simultaneously stretch and bend; examples of vibration are cormmon-
place (e.g., a bell). If courses in these areas were prerequisites, few would enroll in the
FE course. Students would then have education in neither FE nor problems to which FE
analyis is applied. Yet after graduation they will use FE whether or not they are prepared
to do so.

In addition to serving as the primary text in a first FE course, the book should be use-
ful as an adjunct text in a second FE course that considers theory in more detail, and in
other courses such as vibrations where the solution of practical problems is considered
important. It is in this context that the latter part of Chapter 9 (Vibration and Dynamics)
and Chapter 10 (Nonlinearity in Stress Analysis) seem most appropriate. Practicing engi-
neers as well as students may find that the book contains useful suggestions for modeling
and solution strategy.

Several reviewers of the manuscript made many good suggestions. Their contributions
are gratefully acknowledged. Thanks are also due to Pat Grinyer, who made it unneces-
sary for me to update my technical typing skills.

Robert D. Cook
Madison, Wisconsin
July 1994
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Symbols most often used in stress analysis appear in the following list. Matrices and vec-
tors are denoted by boldface type.

LATIN SYMBOLS

d.o.f.

RS N
‘z,;_

=
5

E N mee S g

uU,w
%
z

Cross-sectional area

Element strain displacement matrix; £= Bd

Constraint matrix, damping matrix

Nodal d.o.f., structure (global) and element, respectively
Amplitudes of structure (global) d.o.f. in vibration
Degrees of tfreedom

Material property matrix, as in 0= Eg

Elastic modulus

Cyclic frequency of vibration, f= w/2x

Shear modulus

Unit (or identity) matrix

Moment of inertia of cross-sectional area

Jacobian matrix of an isoparametric element

Stiffness matrix, structure {global) and element, respectively
Length

Mass maltrix, structure (global) and element, respectively
Element shape (or interpolation) function matrix
Pressure

Distributed load along a line or on a surface

Vector of nodal loads applied to a structure

A transformation matrix

Temperature; also period of vibration (T = 1/f)
Thickness or time

Vector of displacement components, u={u v w}
Components of displacement at an arbitrary material point
Volume

Vector of scale factors of vibration modes

GREEK SYMBOLS

g
@

3

£ QDN T T3 m QT
=
™y

Generalized coordinate (amplitude of a displacement mode)
Coefficient of thermal expansion
Vector of strains; for example, €= {&, €, ¥} in the xy plane
An error measure, applied to the computed stress field
Rotation angles about x, y, and z axes, respectively
Poissen’s ratio
Damping ratio ¢/c.. in dynamic analyses
“Natural” coordinates used for isoparametric elements
Mass density or radius of curvature
‘ectcr of stresses; for example, 0= {0, 0, 1} inthe xy plane
von Mises or “effective” stress
Modal matrix; its columns are vibration modes D,
Narturzl frequency of vibration (radians per second)

X1
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CHAPTER ]

Introduction

This chapter introduces concepts and procedures that are discussed in detail in subse-
quent chapters. The finite element (FE) analysis procedure described in Section 1.3 is
used in example applications at the ends of Chapters 2, 3, 6, 7, 8, 9, and 10. Chapter 1
closes with a review of elementary matrix algebra, which is used throughout the book.

1.1 THE FINITE ELEMENT METHOD

The FE method was developed more by engineers using physical insight than by mathe-
maticians using abstract methods. It was first applied to problems of stress analysis and
has since been applied to other problems of continua. In all applications the analyst seeks
to calculate a field quantity: in stress analysis it is the displacement field or the stress
field; in thermal analysis it is the temperature field or the heat flux; in fluid flow it is the
stream function or the velocity potential function; and so on. Results of greatest interest
are usually peak values of either the field quantity or its gradients. The FE method is a
way of getting a numerical solution to a specific problem. A FE analysis does not pro-
duce a formula as a solution, nor does it solve a class of problems. Also, the solution is
approximate unless the problem is so simple that a convenient exact formula is already
available.

An unsophisticated description of the FE method is that it involves cutting a structure
into several elements (pieces of the structure), describing the behavior of each element in
a simple way, then reconnecting elements at “nodes” as if nodes were pins or drops of
glue that hold elements together (Fig. 1.1-1). This process results in a set of simultaneous
algebraic equations. In stress analysis these equations are equilibrium equations of the
nodes. There may be several hundred or several thousand such equations, which means
that computer implementation is mandatory.

A more sophisticated description of the FE method regards it as piecewise polynomial
interpolation. That is, over an element, a field quantity such as displacement is interpo-
lated from values of the field quantity at nodes. By connecting elements together, the
field quantity becomes interpolated over the entire structure in piecewise fashion, by as
many polynomial expressions as there are elements. The “best” values of the field quan-
tity at nodes are those that minimize some function such as total energy. The minimiza-
tion process generates a set of simultaneous algebraic equations for values of the field
quantity at nodes. Matrix symbolism for this set of equations is KD = R, where D is a
vector of unknowns (values of the field quantity at nodes), R is a vector of known loads,
and K is a matrix of known constants. In stress analysis K is known as a “stiffness ma-
trix.”
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Typical

element
TypZal Fig. 1.1-1. A coarse-mesh, two-dimen-
node sional model of a gear tooth. All nodes

and elements lie in the plane of the paper.

The power of the FE method is its versatility. The structure analyzed may have arbi-
trary shape, arbitrary supports, and arbitrary loads. Such generality does not exist in clas-
sical analytical methods. For example, temperature-induced stresses are usually difficult
to analyze with classical methods, even when the structure geometry and the temperature
field are both simple. The FE method treats thermal stresses as easily as stresses induced
by mechanical load, and the temperature distribution itself can be calculated by FE.

Preprocessing and Postprocessing. The theory of FE includes matrix manipulations,
numerical integration, equation solving, and other procedures carried out automatically
by commercial software. The user may see only hints of these procedures as the software
processes data. The user deals mainly with preprocessing (describing loads. supports,
materials, and generating the FE mesh) and postprocessing (sorting output. listing, and
plotting of results). In a large software package the analysis portion is accompanied by
the preprocessor and postprocessor portions of the software. There also exist stand-alone
pre- and postprocessors that can communicate with other large programs. Specific proce-
dures of “pre” and “post” are different in different programs. Learning to use them is of-
ten a matter of trial, assisted by introductory notes, manuals, and on-line documentation
that accompanies the software. Also, vendors of large-scale programs offer training
courses. Fluency with pre- and postprocessors is helpful to the user but is unrelated to the
accuracy of FE results produced. This book emphasizes how to use the FE method prop-
erly, not how to use pre- and postprocessors.

FE Method and the Typical User. The typical user of the FE method asks what kinds
of elements should be used, and how many of them? Where should the mesh be fine and
where may it be coarse? Can the model be simplified? How much physical detail must be
represented? Is the important behavior static, dynamic, nonlinear, or what? How accurate
will the answers be, and how can they be checked? One need not understand the mathe-
matics of FE to answer these questions. However, a competent user must understand how
elements behave in order to choose suitable kinds, sizes, and shapes of elements, and to
guard against misinterpretations and unrealistically high expectations. A user must also
realize that the FE method is a way of implementing a mathematical theory of physical
behavior. Accordingly, assumptions and limitations of theory must not be violated by
what we ask the software to do. In some dynamic and nonlinear analyses, algorithms by
which theory is implemented must be understood, to avoid choosing an inapproprate al-
gorithm, and to avoid interpreting results produced by algorithmic quirks or limitations as
actual physical behavior. Despite all this understanding it is still easy to make mistakes in
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petent user have a good physical grasp of the problem so that errors in computed results
can be detected and a judgment made as to whether the results are to be trusted or not. An
analyst unable to do even a crude pencil-and-paper analysis of the problem probably does
not know enough about it to attempt a solution by FE!

A Short History of FE Method. In a 1943 paper, the mathematician Courant described
a piecewise polynomial solution for the torsion problem [1.1].* His work was not noticed
by engineers and the procedure was impractical at the time due to the lack of digital com-
puters. In the 1950s, work in the aircraft industry introduced the FE method to practicing
engineers. A classic paper described FE work that was prompted by a need to analyze
delta wings, which are too short for beam theory to be reliable [1.2]. The name “finite el-
ement” was coined in 1960 {1.3, 1.4]. By 1963 the mathematical validity of the FE
method was recognized and the method was expanded from its structural beginnings to
include heat transfer. groundwater flow, magnetic fields, and other areas. Large general-
purpose FE software began to appear in the 1970s. By the late 1980s the software was
available on microcomputers, complete with color graphics and pre- and postprocessors.
By the mid-1990s roughly 40,000 papers and books about the FE method and its applica-
tions had been published.

Overview of the Remainder of the Book. Chapter 2 considers elements for bar and
beam problems and discusses the mathematical structure of the FE method (the “stiffness
method”). Plane problems are treated in Chapter 3. Chapter 4 discusses special methods
for element formulation and linear static analysis. After studying Chapters 1 through 4
the reader should have enough background to profit from a thorough discussion of how to
use the FE method properly, with attention to planning the model, detecting errors, and
verifying results. This material appears in Chapter 5 and is an elaboration of Section 1.3.
Chapters 6 and 7 discuss general solids, solids of revolution, plates, and shells. Tempera-
ture distribution is considered in Chapter 8, with emphasis on its use in thermal stress
analysis. Vibration and other dynamic problems occupy Chapter 9. Chapter 10 is devoted
to nonlinear problems and buckling. Example applications of the FE method appear near
the ends of most chapters.

1.2 ELEMENTS AND NODES

Finite elements resemble fragments of the structure. Nodes appear on element boundaries
and serve as connectors that fasten elements together. In Fig. 1.2-1, elements are triangu-
lar or quadrilateral areas and nodes are indicated by dots. Except for element midside
nodes along AED and nodes at A, B, and E, each node acts as a connector between two or
more elements. All elements that share a node have the same displacement components at
that node. Lines in Fig. 1.2-1 indicate boundaries between elements. Thus we see ele-
ments with corner nodes only and elements with side nodes as well. Such a mixture of el-
ement types is neither necessary nor common but serves the present discussion.
Superficially, it appears that a FE structure can be produced by sawing the actual
structure apart and then pinning it back together at nodes. Clearly, such an assemblage
would be weak and unrepresentative of the actual structure because of strain concentra-
tions at nodes, sliding of elements on one another, and even gaps that would appear be-

*Numbers in brackets indicate references listed at the back of the book.
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Fig. 1.2-1. (a) A flat bracket modeled by several element types (more types than
would actually be used for this problem). (b) One of the elements, a “constant strain
triangle”. All nodes and elements lie in the plane of the paper.

tween some elements. To avoid these defects and to permit convergence toward exact re-
sults as more and more elements are used in the FE model, each element is restricted in
its mode of deformation. This leads us to ask what kind of behavior can be expected of
each element type. The question is answered repeatedly in subsequent chapters. For now
we discuss only the following abbreviated examples of plane elements, which are dis-
cussed in more detail in Chapter 3. .

Consider the plane triangular element in Fig. 1.2-1b. It does not matter that the origin
of coordinates has been moved from its position in Fig. 1.2-1a. The x and y direction
components of displacement of an arbitrary point within the element are given thc names
u and v. In the three-node triangular element each is restricted to be a linear polynomial
in x and y:

u=p, + Box+ By (1.2-1a)
v= 0+ Bsx + Bey (1.2-1b)
where the 3, are called “generalized coordinates.” They can be regarded as displacement
amplitudes. As examples, in Eq. 1.2-1a, f, is the amplitude of rigid-body displacement,
and 3, and f3; are amplitudes of linearly varying displacement, 2ll in the x direction.
Alternative forms of Egs. 1.2-1 can be written by expressing the [3; in terms of nodal dis-
placements u,, Uy, u,, U,, U5, and v5. To do so for the element in Fig. 1.2-1b we make the
following substitutions in Egs. 1.2-1:
u=u, and v=v, at x=0 and y=0
u=u, and v=v, at x=a and y=0 (1.2-2)

u=uy and v=v; at x=0 and y=b

Thus, for the element in Fig. 1.2-1b, alternative forms of Egs. 1.2-1 are found to be

L,z( . ;’ju, b S L (12-33)
a
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U:(l - - - Z)Ul + U, + 'ZU3 (1.2-3b)
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In either form, Egs. 1.2-1 or 1.2-3, the displacement field u = u(x, y) and v = v(x, y) has
six degrees of freedom. abbreviated d.o.f. That is, six quantities define the deformed con-
figuration, namely. the six f3; in Egs. 1.2-1 or the three u, and three v, in Eqs. 1.2-3. In
Chapter 3 we will explain that strains are displacement gradients. Therefore

E = H hence €, = 3,
dx '
ov
£ =— hence g, = 1.2-4
Y y = Be ( )
_ du

}/\\_5+% hel’lce ’y,\}':ﬁ3+185

This three-node element is called a “constant strain triangle” because none of the strains
varies over the element. This means that the element has a very limited response—it
could not represent the linear strain field of pure bending, for example—but at least there
will be no strain concentrations at nodes. Also, from Eqs. 1.2-3 we can conclude that ele-
ment sides will remain straight after deformation. For example, set x = 0 to examine side
I-3 in Fig. 1.2-1b: thus u becomes linear in y and depends only on d.o.f. u, and u,. The
same will be true along this side in the adjacent element. Because deformed sides remain
straight, elements will not gap apart or overlap when load is applied. Similarly, we can
show that v along side 1-3 is linear in y and depends only on v, and v,, whether we ex-
amine the element on the left or the element on the right of side 1-3. Summing up, it is
possible to demonstrate that the triangular element can display constant strain states and
will deform in a way that is compatible with its neighbors. The same can be demonstrated
for other shapes and types of element. It can be shown that these properties allow exact
results to be approached as a mesh is refined; that is, as more and more elements are used
to model a structure.

Let us also consider briefly a six-node triangle, such as element L somewhat above E
in Fig. 1.2-1a. It has three vertex nodes and three midside nodes. In terms of generalized
coordinates f3,, its displacement field is

U=+ Bx+ iy + ﬁv‘l + Bsxy + ﬁs)’z

1.2-5

v =B+ Bex+ Boy + Brox® + By + By ( :
Deformed shapes of sides can be straight or parabolic. Some tedious algebra shows that
the deformed shape of a side depends on d.o.f. of nodes attached to that side but does not
depend on d.o.f. of nodes nor attached to that side. Accordingly, the element will be com-
patible with its neighbors because adjacent elements share the same nodes and d.o.f.
along a common side. By applying the differentiation used in Eqs. 1.2-4, we see that the
six-node element contains constant and linear terms in its strain field. Therefore this ele-
ment can model constant strain states and also linear strain states that arise in pure bend-
ing. Clearly, it is a more competent element than the constant strain triangle. It is also
more complicated, which suggests another choice faced by the user of FE: Is it better to
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use many simple elements or a few complicated elements? We postpone this matter, as
the answer is neither short nor simple.

The foregoing discussion is couched in stress analysis terminology. In plane stress
analysis the displacement field is a vector field because it has two components, u = u(x, y)
and v = v(x, ¥). In other applications the field may be a scalar field, ¢ = ¢(x, y) in two-di-
mensional problems and ¢ = ¢(x, y, z) in three-dimensional problems, where ¢ represents
temperature in a heat conduction problem, voltage in an electric field problem, and so on.
To restate the foregoing equations in scalar field terms, one may discard equations that
contain v and replace u by ¢ in equations that remain.

Equations such as Eqgs. 1.2-1 and 1.2-5 constitute the “basis” of a finite element. What
remains is to manipulate the basis to generate a “stiffness matrix” that describes element
behavior, connect elements together to produce the FE model, apply loads, impose sup-
port conditions, solve for nodal d.o.f., and use the d.o.f. to compute strains and finally
stresses. Some of these procedures are primarily computational and others require that the
analyst make decisions. Subsequent chapters contain a more complete discussion of these
matters.

Classification of Stress Analysis Problems. Elements summarized above are used for
plane problems, in which there is negligible variation of displacement and stress in the z
direction, that is, in the direction normal to the analysis plane. If displacements and
stresses may vary in a general way with all three coordinates, the object may be called a
3D solid. The special case of a solid having axial symmetry (like a bell) is usually called
a solid of revolution. Loads may or may not be axially symmetric. A flat plate that carries
in-plane loads is a plane problem, but if the plate is loaded laterally so that it bends it is
called a plate bending problem or simply a plate problem. Floor slabs and highway slabs
are examples of plates. Note that thickness must be much less than span if the object is to
be analyzed as a plate. If a plate is curved it becomes a shell. Water tanks and com-
pressed air tanks are commonly seen shells. Shells can carry both in-plane loads and lat-
eral loads; thus plane deformation and bending deformation usually appear simultane-
ously in a shell. Elements have been devised for all these problems. Thus there are plane
elements, general solid elements, axisymmetric solid elements, plate elements, and shell
elements. In addition, there are elements for bars and beams and many specialty elements
for elastic foundations, crack tips. pipe bends, and more.

1.3 MODELING THE PROBLEM AND
CHECKING RESULTS

Modeling is the simulation of a physical structure or physical process by means of a sub-
stitute analytical or numerical construct. It is not simply preparing a mesh of nodes and
elements. Modeling requires that the physical action of the problem be understood well
enough to choose suitable kinds of elements, and enough of them, to represent the physi-
cal action adequately. We want to avoid badly shaped elements and elements too large to
represent important variations of the field quantity. At the other extreme we want to
avoid the waste of analyst time and computer resources associated with over-refinement,
that is, using many more elements than needed to adequately represent the field and its
gradients. Later, when the computer has done the calculations, we must check the results
to see if they are reasonable. Checking is very important because it is easy to make mis-
takes in describing the problem to the software. The following discussion is a brief sur-
vey of these matters. Further discussion appears in subsequent chapters.
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PDF Compr@EQO?rFWM@ﬁSi@ﬁ very important but are often misrepresented. Consider the
problem of Fig. 1.2-1 again. Support along AE is portrayed as rigid, meaning that nodes

along AE are not allowed to move at all. This is probably unrealistic. No support is infi-
nitely stff. It would be better to enlarge the FE model so that there are finite elements be-
low AE to represent the elasticity of the foundation. However, perhaps the intent is to an-
alyze a C-shaped part that has AE as an axis of symmetry, and reduce effort by modeling
only the upper half. Supports suited to this situation appear in Fig. 1.3-1a. These supports
are placed at all nodes along AE. Node A is fixed and other nodes along AE are allowed
to move in only the x direction. Thus we prevent rigid-body motion in the xy plane and
keep AE a straight line as symmetry requires.

The mixture of element types in Fig. 1.2-1 is unusual, but otherwise is the mesh layout
good? We cannot say for sure without knowing more about how elements behave.
However, by anticipating the results we can see that the mesh grading looks reasonable.
Stresses near B will be low and of little interest. Indeed, theory says that stresses at B are
zero because it is a point where two free surfaces intersect at an interior angle of less than
180°. Accordingly, a coarse mesh near B is acceptable: stresses near B may have a large
percentage error but this does not matter if stresses near B are small. The same is true
near D, so perhaps the mesh near D is more detailed than necessary. At C the stresses are
theoretically infinite because of the concentrated load P. In reality, one cannot apply a
load that is truly concentrated at a point. Probably load P is a convenient way of repre-
senting a load that is actually distributed over a small span, and stresses near C are not the
object of study, so the modeling near C is acceptable. Stresses near E are probably the
stresses of concern. There the stresses and stress gradients are expected to be large, so the
model properly displays a finer mesh and/or more competent elements in this area.

The IE method calculates nodal displacements, then (in present software) uses the dis-
placement information to calculate strains and finally stresses. If displacements are incor-
rect, stresses will probably be incorrect. Accordingly, we should examine the computed
displacements first. Without calculation, we anticipate that the displaced shape of our ex-
ample structure will be as shown in Fig. 1.3-1b. If the computed result is substantially
different from this we suspect an error in our model. The software will permit us to dis-
play the displaced shape superposed on the original shape, with displacements scaled up
so that they are easily visible. Additionally, we can animate the displaced shape, so that
the model appears to be vibrating slowly between its deformed and undeformed posi-

(Mesh not shown)

(@ (b)

Fig. 1.3-1. (a) Alternative support conditions at nodes along AE of the structure of Fig.
1.2-1. (b) Dashed lines show the anticipated deformation, greatly exaggerated.
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tions. Thus we can easily see, for example, if nodes along AE move in only the x direc-
tion as was intended.

As for stresses, the software will plot them either as contour lines or bands of different
colors. A stress contour line connects points that have the same stress. Users may elect an
option in the software that calls for averaging of stresses. This means that stresses from
individual elements are averaged at nodes before plotting, so that stress contours have no
discontinuities between elements. This is poor practice because it removes information
useful to the analyst. As we will see, unaveraged stresses are usually discontinuous across
interelement boundaries. A contour plot that displays significant interelement discontinu-
ities warns that a finer mesh is needed. This point is made in Fig. 1.3-2. In Fig. 1.3-2c,
nothing betrays a lack of perfection but small changes of direction where contour lines
cross interelement boundaries.

The separate stress contour plots (one for o,, one for 0, etc.) are examined in turn.
Based on experience, physical intuition, and knowledge of theory (including statics, me-
chanics of materials, and possibly more), it is possible to describe the expected stresses
qualitatively. For the problem of Fig. 1.3-1 we expect the following (this is not an ex-
haustive list):

° O, 1s a large compressive stress near £
* 0, 1s tensile near A but smaller in magnitude than o, near E
= O, is compressive but small in magnitude between A and E

+ 0, and 7, are very small along AB because of the free surface condition (computed
stresses will not be exactly zero because the solution is approximate)

Significant departures from these expectations warn of trouble with the model or short-
comings in physical understanding of the problem. Discrepancies must be corrected or
logically explained before the results can be trusted.

The analyst should also obtain analytical or experimental results for comparison with
FE results. For the problem of Fig. 1.3-1 this task is easy. Cross section AE is loaded by
direct force and by bending. The elementary formula for stress in straight beams should
provide a fair approximation, the formula for stress in curved beams should provide a
good approximation, and tabulated results are available [1.5]. Indeed, FE analysis is prob-
ably not needed for this problem. For many problems, approximate solutions can be ob-
tained from tabulated formulas in standard textbooks and handbooks [1.5]. Much of this
information is available as software, which makes it far easier to use. However, if this

s é s 50
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40
20 30
(a) (b) (c)
Fig. 1.3-2. Three hypothetical sets of stress contours near a node shared by four elements.
(a) Without nodal averaging: imperfect but adequate continuity. (b) Without nodal averaging:

inadequate continuity. (c) After nodal averaging: continuity, but difficult to say whether the
raw data were good or bad.
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Fig. 1.3-3. Outline of a FE analysis project.

phase of verification is done after doing FE analysis, there will be a tendency, perhaps
unconscious, to obtain analytical results that agree with FE results already obtained. We
tend to find what we expect, whether it is there or not. Therefore some approximate re-
sults should be in hand before undertaking FE analysis. Figure 1.3-3 summarizes the pro-
cedure for FE analysis that is advocated in this book.

Organized and careful work will take less total time than a hurried approach that pro-
duces and propagates errors that must be discovered later and corrected. Festina lente.

1.4 DISCRETIZATION AND OTHER APPROXIMATIONS

Whatever the analysis method, we do not analyze the actual physical problem; rather, we
analyze a mathematical model of it. Thus we introduce modeling error. For example, in
elementary beam theory we represent a beam by a line (its axis) and typically ignore de-
formations associated with transverse shear. This is an excellent approximation for slen-
der beams but not for very short beams. Or, for the axial-load problem of Fig. 1.4-1a, we
would probably assume that a state of uniaxial stress prevails throughout the bar, which is
proper if taper is slight but improper if taper is pronounced. Real structures are not so
casily classified, as they are often built of parts that would be idealized mathematically in
different ways and have cutouts, stiffeners, and connectors whose behavior is uncertain.
The foregoing considerations must be addressed in order to decide what types of ele-
ments to use and how many of them. If a beam is deep, transverse shear deformation may
become important and should be included in beam elements. If a beam is very deep, two-
or three-dimensional elements are more appropriate than beam elements. If a beam has a

hg
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(a) (b)
Fig. 1.4-1. (a) A tapered bar loaded by axial force P. (b) Discretization of the bar into four
uniform two-node elements of equal length.
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wide cross section, plate theory may be more appropriate than beam theory (then, of
course, choose plate elements rather than beam elements). If an axisymmetric pressure
vessel has a thick wall one should regard it as a solid of revolution rather than a shell of
revolution and choose axisymmetric solid elements rather than axisymmetric shell ele-
ments.

Let us consider the axially loaded tapered bar of Fig. 1.4-1a in more detail and de-
scribe how the FE method implements the mathematical model. We will assume that
a satisfactory mathematical model is based on a state of uniaxial stress. An analytical
solution is then rather easy, but we pretend not to know it and ask for a FE solution
instead. We discretize the mathematical model by dividing it into two-node elements
of constant cross section, as shown in Fig. 1.4-1b. Each element has length L, ac-
counts only for a constant uniaxial stress along its length, and has an axial deforma-
tion given by the elementary formula PL/AE. For each element, A may be taken as
constant and equal to the cross-sectional area of the tapered bar at an x coordinate
corresponding to the element center. The displacement of load P is equal to the sum
of the element deformations. Intuitively, we expect that the exact displacement is ap-
proached as more and more elements are used to span the total length L,. However,
even if a great many elements are used there is an error, known as discretization er-
ror, which exists because the physical structure and the mathematical model each
have infinitely many d.o.f. (namely, the displacements of infinitely many points)
while the FE model has a finite number of d.o.f. (the axial displacements of its
nodes).

How many elements are enough? Imagine that we carry out two FE analyses, the sec-
ond time using a more refined mesh. The second FE model will have less discretization
error than the first, and will also represent the geometry better if the physical object has
curved surfaces. If the two analyses yield similar solutions, we suspect that results are not
much in error. Or, we might establish a sequence of solutions by solving the problem
more than twice, using a finer mesh each time. By study of how the sequence converges
we may be able to state with some confidence that results from the finest mesh are in er-
ror by less than (say) 5%.

After the analyst has introduced modeling error and discretization error, the computer
introduces numerical error by rounding or truncating numbers as it builds matrices and
solves equations. Usually numerical error is small, but some modeling practices can
greatly increase it.

Finally, it must be admitted that the software almost certainly contains errors [5.6].
Commercial software packages are large, versatile, and under continual revision. It is
practically impossible to get everything right. Many errors either make a software feature
inoperable or cause the program to crash, but some can lead to erroneous results. It is
tempting to blame all strange results on the software, but it is far more often the case that
we have blundered in modeling or in describing the model to the software. Strange results
are obtained so often that (to repeat) it is vital that the analyst be able to recognize that re-
sults are strange.

1.5 RESPONSIBILITY OF THE USER

FE computer programs have become widely available, easier to use, and can display
results with attractive graphics. Even an inept user can produce some kind of answer.
It is hard to disbelieve FE results because of the effort needed to get them and the
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PDF Comppéistoaf Feeephasesiogpn. But smooth and colorful stress contours can be produced
by any model, good or bad. It is possible that most FE analyses are so flawed that
they cannot be trusted. Even a poor mesh, inappropriate element types, incorrect
loads, or improper supports may produce results that appear reasonable on casual in-
spection. A poor model may have defects that are not removed by refinement of the
mesh.

A responsible user must understand the physical nature of the problem and the behav-
ior of finite elements well enough to prepare a suitable model and evaluate the quality of
the results. Competence in using FE for stress analysis does not imply competence in us-
ing FE for (say) magnetic field problems. Responsibility for results produced is taken by
the engineer who uses the software, not the software vendor, even if results are affected
by errors in the software.

Figure 1.5-1 is an example of discrepancies that may appear [1.6]. A pressure pulse is
applied to a straight beam with hinge supports. The loading causes the material to yield
and the beam to vibrate. Analysis seeks to track the lateral displacement of the midpoint
as a function of time. The results plotted come from ten reputable analysis codes and
were obtained by users regarded as expert. Yet if any of the curves is correct we cannot
tell which one it is. Admittedly, the problem is difficult. The results indicate “strong sen-
sitivities of both physical and computational nature” [1.6]. This example reminds us that
any analysis program Is based on theory and approximation, and that a user may push the
program beyond its range of validity [1.7].
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Fig. 1.5-1. Lateral midpoint displacement versus time for a beam loaded by a pressure pulse
[1.6] The material is elastic—perfectly plastic. Plots were generated by various users and vari-
ous codes.
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1.6 ELEMENTARY MATRIX ALGEBRA

One need not understand matrix algebra in order to use FE software. However, our expla-
nations of algorithms and of how elements behave are conveniently stated in matrix for-
mat. The following matrix theory is used in this book.

A matrix contains numbers, and/or symbols that represent numbers, arrayed in Tows
and columns. A matrix may be denoted by boldface type, A, or by use of brackets, [A].

An A12 Aln
_ Ay Ay Ay
A=l T : (1.6-1)
A A

ml m?2 mn

Matrix A has m rows and n columns, where m and n are positive integers of any magni-
tude. If m = n, A is called square, and n is its order. Coefficients with like subscripts
(A,,, Ay, etc.) lie on the diagonal of a square matrix. If m = 1, A is a row matrix (also
called a row vector); if n = 1, A is a column martrix (also called a column vector). Braces
are often used to indicate a column vector; for example, {A} means that A has only one
column. If m = n =1, A is the scalar A = A.

If two matrices A and B have the same m and the same 7, they may be added or sub-
tracted term by term; for example, in C = A + B, C; = A; + B;. A scalar multiplier of A
acts on every term of A; for example, LA contains AA;,, AA ,, and so on. The integral
(or derivative) of a matrix with respect to a scalar parameter, such as time, is a matrix that
contains the integral (or derivative) of every term.

The transpose of A is A but with rows and columns interchanged. Thus

Al] AZ] A3)
A, A, A
AT =1 T2 (1.6-2)

A]3 A23 A33

If A7 = A, the matrix is called symmetric, and A, = A,,, Aj3 = A3, and so on. A symmet-
ric matrix must be square (m = n).
The product of two matrices is

A B =P where F =) A.B; (1.6-3)
k=1

for example, Pys = Ay B3 + AxyBas + AgsBayt . For multiplication, A and B must be con-
formable; that is, if A has m columns then B must have m rows. An example of multipli-

cation is
1 2](5 6 7] [21 24 9 ea
3 4||8 9 1| {47 54 25 (1.6-4)

In general, AB = BA. If B is square and symmetric, so is the product P = A'BA.IfAisa
column vector, then ATBA is a scalar. The transpose of a product is the product of the
transposes in reverse order; that is, if P = AB, then PT=B7AT.
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10 - 0
01 « 0

1= : (1.6-5)
00 - 1

The inverse of a square matrix A is denoted by A™!, where A™! is constructed in such a
way that A'A = L. It is also true that AA™! = I. In this book we need to know what A~}
means but not how to construct A™' from A. The inverse of a product is the product of the
inverses in reverse order; that is, if P = AB, then P~' = B~'A~!

A set of simultaneous linear algebraic equations may be symbolized as

KD =R (1.6-6)

where K is a square matrix of known constants, R is a column vector of known constants,
and D is a column vector of unknowns. Solution for D may be symbolized as

D=K R (1.6-7)

In FE work, K is a “stiffness” matrix that is usually large and sparse. It would be wasteful
of storage and time to invert it. Thus D = K™'R usually means “solve for the unknowns,”
probably by some efficient form of Gauss elimination or perhaps by an iterative method.
Solving Eq. 1.6-6 for D is a major part of FE calculations, but usually the user need not
know how the software goes about it.

A square matrix is called singular if its determinant is zero. If K in Eq. 1.6-6 is singu-
lar, there is no unique solution vector D, and standard equation-solving subroutines will
fail. As examples, the following matrices are singular.

bo [23]

Let K be an 7 by n matrix and D an n by 1 column vector. Also let D 0, which means
that at least one coefficient D, is nonzero. Then, for all D,

if D'’KD >0, K is called positive definite (1.6-9a)

if D'’KD >0, Kiscalled positive semidefinite (1.6-9b)

A positive definite matrix is nonsingular. In stress analysis, a stiffness matrix K is posi-

tive semidefinite (and singular) if supports of the FE structure do not prevent all possible
rigid-body motions.

ANALYTICAL PROBLEMS
1.1 (a) Show that Egs. 1.2-3 follow from Egs. 1.2-1 and 1.2-2.

(b) Differentiate Egs. 1.2-3 to obtain expressions for strains in terms of nodal dis-
placements.
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Show that sides 1-2 and 2-3 of the triangular element in Fig. 1.2-1b remain straight
as the element is deformed.

Equations 1.2-1 may be applied to each of the elements shown, and conditions analo-
gous to Egs. 1.2-2 used to express displacernents u = u(x, y) and v = v(x, ¥) in terms
of nodal d.o.f. u; and v,. Carry out these operations. (As a partial check, note that the
resulting expressions must yield u = u; and v = v, when x = x; and y = y;, where i is 1,
2,0r3)

¥ v YU »u
| N
b b b
X i xXou XU
fe——a ——> e @ —fe— a > ca—>t<—ua
(@ (b (©) Problem 1.3
Show that side 1-3 of each of the elements in Problem 1.3 remains straight when the

element is deformed.

(a) In terms of the f, and x and y. evaluate the strains &, £, and ¥,, associated with
the displacement field of a six-node triangle, Eq. 1.2-5.

(b) Pure moment loading is applied to a cantilever beam built of these elements, as
shown. Exact values of computed stresses are desired, if possible. Why are roller
supports placed at A and at B, rather than pin supports as shown at C?

(c) Sketch an alternative arrangement of supports at the left end of the beam that
would work just as well.

(d) Which of the 8, in Eq. 1.2-5 will be zero for this particular cantilever beam prob-
lem? Which of the other f; are related to one another, and how? Consider the
strains calculated in part (a) to answer these questions.

A £ Problem 1.5

Elaborate on the list of stress predictions in the latter part of Section 1.3. For exam-
ple, in Fig. 1.3-1a, where do you expect that stresses O,, Oy, Or T,, should approach
zero? Also, where do you expect that these stresses may have large magnitudes, and
of what algebraic signs?

Let dimensions in Fig. 1.3-1abe g = 16 mm, /1= 18 mm, € = 28 mm, and r = 6 mm.
Also let the thickness be r and the elastic modulus be E. Place roller supports along
AE, as in Fig. 1.3-1. Use mechanics of materials analysis to estimate the following in
terms of E. ¢, and load P.

(a) Stress o, at A and at E. Use straight beam theory.

(b) Stress o, at A and at E. Use curved beam theory.
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(d) The vertical displacement component of load P.

A bar element used for the FE model in Fig. 1.4-1b has two d.o.f., namely, the axi-
ally directed displacement at each end. Express the element displacement field in the
form of Eq. 1.2-1 and in the form of Eq. 1.2-3. Let x = 0 at the left end of the ele-
ment.

Assume that the bar in Fig. 1.4-1a has a rectangular cross section. Let Ak = 34, and
let thickness ¢ (perpendicular to the paper) be constant. Evaluate the following in
terms of P, Ly, Ay, and ¢.

(a) The exact displacement of load P.

(b) The displacement of P using one, two, and then four uniform elements of equal
length. What is the percentage error in each case?

(¢) On a set of axes showing x (abscissa) and o/(P/thg) (ordinate), plot the exact ax-
ial stress and the axial stress prediction of the four-element model. By approxi-
mately what factor are stress errors reduced each time the number of elements is
doubled?

COMPUTATIONAL PROBLEMS

No specific computational problems are suggested in this chapter. However, students
may wish to get acquainted with the FE software chosen for the remainder of the course
by using it to solve simple bar and beam problems for which tabulated solutions are read-
ily available.
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CHAPTER 2

Bars and Beams.
Linear Static Analysis

Stiffness matrices are developed for bar elements and beam elements. The physical
meaning of these matrices is explained. Also explained is how loads are treated, what
support conditions are appropriate for a structure built of bar or beam elements, and how
the formulation yields displacements and stresses. Finally, an example application shows
how beam elements may be used in practice.

2.1 INTRODUCTION

Static analysis omits time as an independent variable and is appropriate if deflections are
constant or vary only slowly. A structure forced to vibrate at a frequency less than about
one-third of its lowest natural frequency is a case in point. Such ° ‘quasistatic” problems
may include steady inertia loads, such as those due to spinning about an axis at constant
speed. Linear static analysis excludes plastic action and deflections large enough to
change the way loads are applied or resisted. Thus elements that fail, large rotations, and
gaps that open or close are excluded.

After doing an approximate preliminary analysis, planning how to do the computa-
tional analysis, and perhaps sketching an initial FE model, the analyst turns to software.
FE analysis requires that the following steps be taken:

1. Prepare the FE model. The analyst must
a. discretize the structure or continuum by dividing it into finite elements,
b. prescribe how the structure is loaded, and
c. prescribe how the structure is supported.
2. Perform the calculations. The software must
a. generate the stiffness matrix k of each element,

b. connect elements together, that is, assemble the element k matrices to obtain the
structure or “global” matrix K,

¢. assemble loads into a global load vector R,
d. impose support conditions, and
e. solve the global equations KD = R for the vector D of unknowns. In structural
problems D contains displacement components of the nodes.
3. Postprocess the information contained in D. In stress analysis this means compute
strains and stresses.
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Step la requires that the analyst exercise judgment about what types of element to use
and how coarse or refined the mesh should be in different regions of the model. Steps 1b
and lc are often more straightforward than step la but it is easy to be inattentive and do
them improperly. The work in step 1 is greatly assisted by the preprocessor portion of the
software. Nevertheless, this phase of the analysis will probably take considerable time.
Step 2 is carried out automatically by the software. Similarly, step 3 is automatic, al-
though the analyst must instruct the program as to which results to present and the format
of their presentation. The displaced shape and various stress contours are usually plotted.

Except for discretization and the plotting of stress contours, the foregoing FE proce-
dure is also applied to the numerical analysis of trusses and frames. These structures are
inherently discretized, in the sense that their members are already separate elements. In
our terminology, truss elements are hinged at connection points and resist only axial
force; frame elements are welded together at connection points and resist axial and trans-
verse forces and bending moments. All these members can be regarded as special cases
of what we will call a 3D beam element, which resists axial force, transverse shear force
in each of two directions, bending about each principal axis of the cross section, and
torque about the longitudinal axis of the member. The response of the member to these
loads can be formulated exactly, or at least quite accurately, using only the tools of me-
chanics of materials. In this chapter we examine beam elements, beginning with plane bar
and plane beam elements as special cases, in order to explain the nature of a stiffness ma-
trix, how loads and supports are treated, and how stresses are extracted from displace-
ments.

A crude initial model of a complicated structure is sometimes built of bars and beams
because the effort 1s comparatively small and information useful in subsequent FE model-
ing may appear.

2.2 STIFFNESS MATRIX FORMULATION:
BAR ELEMENT

Direct Method. Consider a uniform prismatic elastic bar of length L, Fig. 2.2-1, with
elastic modulus E and cross-sectional area A. A node is located at each end. For now we
allow only axially directed displacements. We displace first one node and then the other
and, in each case, calculate forces that must be applied to nodes in order to maintain the
displacement state. These forces are easily calculated from the elementary formula for
stretching a bar an amount &, namely, 6 = FL/AE, which gives force F as F = (AE/L)0.
For the respective cases in Fig. 2.2-1, with 6 = u; and then 6 = u,,

AE
=5 :Tul and F,=F; :%“‘2 (2.2-1)

where F; is the force at node i (i = 1, 2) associated with displacement of node j (j =1, 2).
Next, these results are written in matrix format, allowing both nodes to displace simulta-
neously, and using the sign convention that forces and displacements are positive in the
same direction. In the present case positive is to the right. Thus

F, —F, 1 K AE| 1 -1 i
-k, F, 1 K Li-11 iy

H
—
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[——
~
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Fig. 2.2-1. Nodal forces associated with deformation of a two-node bar element. (a) Node
1 displaced u, units. (b) Node 2 displaced u, units.

where F| and F), are the resultant forces applied to the bar at nodes 1 and 2, F, = F,, —
Fy, and F, = —F,, + Fy,. The square matrix in the latter equation, including its scalar mul-
tiplier AE/L, is the element stiffness matrix k. Symbolically, we write Eq. 2.2-2 as kd =,
where d = [u;, u,] for this element.

In Eq. 2.2-2 we see an instance of a general rule: a column of k is a vector of nodal
loads that must be applied to the element to sustain a deformation state in which the cor-
responding nodal d.o.f. has unit value and all other nodal d.o.f. are zero. For example,
with u; = | and u, = 0, the multiplication kd in Eq. 2.2-2 yields the first column of k:

Tl e = e - L)
_ = hence = — u = (22—3)
L|-11]]0 F F, L (-] —h,

where £}, and F,, are shown in Fig. 2.2-1a.

Formal Procedure. The foregoing “direct method” can produce a stiffness matrix cnly
for simple elements, where formulas from mechanics of materials provide relations be-
tween nodal displacements and associated nodal loads. For most elements a general for-
mula for k must be used instead. We now take a first look at this formula, and the manip-
ulations it requires, by applying it to the bar element, which is the simplest special case.
The general formula is

k= [BTEB av (22-4)

where B is the strain-displacemenr matrix, E is the material property matrix (it may also
be called the constitutive matrix), and dV is an increment of the element volume V.
Equation 2.2-4 can be derived by stating that work is done by nodal loads that are applied
to create nodal displacements, and that this work is stored in the element as elastic strain
energy. (See Egs. 3.1-9 and 3.1-10 for a more complete explanation.) To obtain B for the
bar element we begin by writing an expression for axial displacement « of an arbitrary
point on the bar. As shown in Fig. 2.2-2, linear interpolation of « between its nodal values

u, and u, yields
L—x X U 4
U= — or u=Nd 2.2-5
[ L [J {”2} ( )

where N is called the shape function matrix and d is the vector of element nodal d.o.f. In
the present example N contains the two individual shape functions N, = (L - x)/L and
N, = x/L. Each shape function N, describes how u varies with x when the corresponding
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Fig. 2.2-2. (a,b) Shape functions N, and N, of a two-node bar element. (¢) Linear in-
terpolation of axial displacement between node 1 and node 2.

d.o.f. u; is unity while the other is zero. Axial strain g, is the gradient of axial displace-
ment:

SX“—‘Q:l:iN:Id:Bd where B=[~~l~ l} (2.2-6)
dx | dx L L -

Thus &, = (u, — u,;)/L, which is the basic definition of strain as change in length divided
by original length. Finally, for the bar problem, matrix E is simply the elastic modulus E,
a scalar, and dV is A dx. Equation 2.2-4 becomes

t(-1/L 1 1 AET1 -1
k:J{l/L}E[‘Z E}Adx:l{—l 1} (2.2-7)

0

which agrees with the stiffness matrix in Eq. 2.2-2. Note that the form of Eq. 2.2-4 guar-
antees that k will be a symmetric matrix.

Limitation. The displacement and strain fields of the element, Eqs. 2.2-5 and 2.2-6.
clearly show a limitation of the two-node bar element: it can represent only a constant
state of strain. Linear and higher order strain variations are not represented. Accordingly.
if axial forces are applied only at nodes, the element agrees exactly with a mathematical
model that represents the bar as a straight line having constant A and £ between locations
where axial forces are applied. If axial forces are instead distributed along all or part of
the length, or if the bar is tapered, then the element is only approximate. Distributed load
can still be applied, in the form of equivalent forces applied to nodes of a bar built of sev-
eral elements; then exact results are approached as more and more elements are used to
model the bar. Similarly, if a bar is tapered, so that its axial strain varies continuously, a
stepwise-constant FE model becomes more and more accurate as more and more ele-
ments are used (Fig. 1.4-1).

That the two-node element is limited to a constant strain state can also be seen when
the displacement field is written in terms of generalized coordinates [3; that is. as « = f3; +
B.x. By differentiation, £, = du/dx = J3,, a constant. In Eq. 2.2-5 the two f3; have been re-
placed by the two nodal d.o.f. u,.

2.3 STIFFNESS MATRIX FORMULATION:
BEAM ELEMENT

We begin with a plane beam element that can resist only in-plane bending and transverse
shear force. This element requires only four d.o.f. and will be called a “simple™ plane
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d.o.f. It will be described later in this section and will be called a 2D beam element.

Finally, a beam element in space that resists all components of nodal force and moment
requires six d.o.f. per node and will be called a 3D beam element. This element will be
discussed last.

Direct Method, Simple Plane Beam Element. Figure 2.3-1a shows a simple plane
beam element. The element is prismatic, with elastic modulus £ and centroidal moment
of inertia / of its cross-sectional area. The beam centerline has lateral displacement v =
v(x). According to elementary beam theory, v = v(x) is cubic in x for a uniform prismatic
beam loaded only at its ends; that is, by the nodal forces and moments in Fig. 2.3-1b.
Nodal d.o.f. consist of lateral translations v, and v, and rotations 6., and 6., about the z
axis (normal to the paper). We will ignore transverse shear deformation in our explana-
tions, although commercial software usually accounts for it.

The element stiffness matrix k can be constructed column by column, according to the
general rule stated below Eq. 2.2-2. To obtain terms in a column we must solve a stati-
cally indeterminate beam problem, but this requires only elementary methods. Consider
column 1 of k. Figure 2.3-1c shows nodal forces and moments that must be applied to
sustain a deformation state in which the first d.o.f. has unit value and all other d.o.f. are
zero. Nodal loads in Fig. 2.3-1 are labeled according to their position in k and with
proper algebraic sign: positive directions are upward for translation and force and coun-
terclockwise for rotation and moment. Clearly, not all numerical values of the k; can be
positive; for example, in Fig. 2.3-1c, forces k,; and k;, must be of opposite sign to pre-

»v U
9 1 8 2 Ml AWZ
~ ET s E 7
= S e
vy . v2 F1| L £
(a) (b)
23 242 3

k31 k1o k32
(c) (d)
Na = ﬁ — g_ k43
3T T N %2 3
o e = - Sy 2
k3 - k ¢ L2 k
——’r 24 44
k33| vg=1 —""‘~~~:F___,’
6., =
k13 k1a 2 k34
(e) (f)

Fig. 2.3-1. (a) Simple plane beam element and its nodal d.o.f. (b) Nodal loads associated with the
d.of. (c—f) Deflected shapes and shape functions associated with activation of each d.o.f. in turn.
Nodal loads are labeled according to their position in k. (Reprinted from [2.2] by permission of
John Wiley & Sons, Inc.)
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serve equilibrium of vertical forces. To solve for the first column of k, that is, for the col-
umn vector [ky, ko, ks ka)7, the following conditions are used:

kL kI
v, =1 atnode l 1= WL kB (2.3-1a)

3EI  2EI

ki, [* kL
=0 at 0= -4 2o 23-

6,,=0 atnodel e E (2.3-1b)
Y (forces), =0 0=k, +ky (2.3-1c)
Y (moments)ppse 2 =0 0 =kyy +kyy—ky L (2.3-1d)

The first two of these equations use standard beam deflection formulas and state that end
deflections and rotations produced by force k;; and moment k;, are superposed to pro-
duce unit deflection and zero rotation at node 1. These two equations yield k,, and &y, in
terms of E, I, and L. The latter two equations use statics and yield ks, and k,; when &,
and k,, are known. Similar arguments produce an analogous set of four equations for
each of the remaining three deformation states. Each deformation state yields terms in
one column of k. The result of this process is the element stiffness matrix,

12EI/I} 6EI/I* —12El/L* 6EIIL

Lo 6EI/I? 4EI/L —6EI/I* 2EI/L 530
T -12EI3 -6EIIL} 12EI/L} —6EIIIL? (2.3-2)

6EI/[* 2EIIL —6EI/L* 4EI/L
which operates on the vector of nodal d.o.f.d=[v, 6, v, 0.,)".

Formal Procedure, Simple Plane Beam Element. The special form of Eq. 2.2-4 ap-
plicable to a beam element is

L
k:JBTEIde (2.3-3)
0

where B is now a matrix that yields curvature d°v/dx” of the beam element from the prod-
uct Bd. The commonality of all forms of Eq. 2.2-4 is that in each case the expression
d’kd/2 represents strain energy in an element under nodal displacements d. In bars, strain
energy depends on axial strain; in beams, strain energy depends on curvature. Energy
principles are matters of theory that are not essential to an understanding of how elements
behave (see Eq. 3.1-9 for a brief explanation related to Eq. 2.2-4). In terms of generalized
coordinates f3; the lateral displacement v = v(x) of a plane beam element is the following
cubic in x:

v= P+ Box + Byx? +Bx° . (2.3-4)

The f3, can be stated in terms of nodal d.o.f. by making substitutions similar to those used
in Eq. 1.2-2, for example, at x =0, v = v, and 6, = 6_,, where 6. = dv/dx. Thus an alterna-
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PDF ConipedssoroFEge2Ve#sissa shape functions N, to interpolate the lateral displacement v =
v(x) of the beam from its nodal d.o.f. d.

v =[N N, Ny N,

The separate N, are stated in Fig. 2.3-1. They may also be found in a comprehensive tabu-
lation of beam deflection formulas, as each N, states the deflected shape associated with a
particular end translation or rotation. Curvature of the beam element is

L [d—l N}d:Bd (2.3-6)

dx

where strain-displacement matrix B is the 1 by 4 row vector

S e A (2.3-7)

)

{ 6 I2x 4 6x 6 12x 2 6;}
B s 3 ——-+—-‘7— 2 3 ‘
L L L L L L L

After substitution of Eq. 2.3-7 into Eq. 2.3-3. and rather tedious multiplication and inte-
gration, Eq. 2.3-2 again results.

Limitation. Subject to the usual restrictions—that the beam is initially straight, linearly
elastic, without taper, and so on—a beam loaded by end forces and end moments has a
deflected shape v = v(x) that is cubic in x, just as described by Eq. 2.3-4 and the M, of Fig.
2.3-1. Therefore an FE model built of beam elements provides an exact solution when
force and/or moment loads are applied to its nodes. A uniformly distributed load pro-
duces a beam deflection v that is fourth degree in x. Accordingly, beam elements are in-
exact under distributed load, but exact results are approached as more and more elements
are used in the FE model.

Stress. Flexural stress is computed as ¢, = My/I, and bending moment M is computed
from curvature d”v/dx?, which in turn depends on nodal d.o.f. d.

M=%l prpd (2.3-8)
dx~

Equations 2.3-4 and 2.3-8 show that M caused by d varies linearly with x in each ele-
ment.

2D Beam Element. A 2D beam element might also be called a plane frame element. It is
a combination of a bar element and a simple plane beam element. It resists axial stretch-
ing, transverse shear force, and bending in one plane. By combination of Eqs. 2.2-7 and
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2.3-2, the stiffness matrix of a 2D beam element that lies along the x axis is

[ AE/L 0 0 ~AE/L 0 0 ”
0 12EI/I* 6EI/L> O —12EI/ G6ENL | v
. 0 6EI/L*  4EI/L 0  —6EI/I} 2EI/L 6.,
T -AE/IL 0 0 AE/L 0 0 u, 239
0 —12EI/I} —6EI/L* O 12El/I} —6E/L | v,
0  6ENI* 2EI/L 0 -6EI/[> 4EI/L | 6.,

where the symbols on the right are appended to show the d.o.f. on which k operates.

3D Beam Element. A beam element in a general-purpose FE program has three-dimen-
sional capability and may also be called a “space beam” element. For explanation, we in-
troduce “global” coordinate axes X¥Z and let the element lie along a “local” x axis (Fig.
2.3-2). Local coordinate axes xyz may arbitrarily be oriented in global XYZ space. The x
axis is defined by the coordinates of nodes 1 and 2. The web of the beam lies in the xy
plane, which contains nodes 1, 2, and 3. Node 3 is either an extra node or another node of
the structure, whose coordinates serve to orient the xy plane in XYZ space. No d.o.f. of the
element are associated with node 3. At node 1 and at node 2 the element has six d.o.f.,
namely, three displacements and three rotations, for a total of 12 d.o.f. per element. In the
software, k of this element is formulated using d.o.f. in local coordinates; then k is trans-
formed so that global d.o.f. replace local d.o.f. at each node, in preparation for attaching
the element to adjacent elements that use the same global d.o.f. The element resists force
in any direction and moment about any axis. The following data are needed by the pro-
gram: nodal coordinates, elastic modulus E, shear modulus G, cross-sectional area A,
principal moments of inertia I, and [, of A, torsional constant J, and transverse shear de-
formation factors £, and f,. Additional data are needed for stress computation, such as the
appropriate y distance in the flexure formula g, = M_y/,,. Note that if the cross section is
noncircular, J is not the polar moment of the cross-sectional area A. J is a property of the
cross section, such that the correct relative rotation of nodes 1 and 2 under torque 7 is
given by TL/GJ. Often this J is much less than the polar moment of A. We will not pur-
sue further details of this element but urge careful study of beam bending and twisting
theory [2.1] as well as the software documentation.

Nodal d.o.f. in
Nodal d.o.f. in global coordinates

focal coordinates

Fig. 2.3-2. 3D beam element arbitrarily oriented in global coordinates XYZ, with nodal
d.o.f. in local and global coordinate systems.
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PDF Comprasgerdorée a¥ensiapbort conditions: if a 3D beam element is used to model a can-
tilever beam along the x axis, what d.o.f. must be suppressed at the support? All six of
them, including 6,; to prevent the beam from being free to spin about its axis (even if no
torque is applied).

Release. To model a continuous beam, either straight or curved (as in Fig. 2.5-3), adja-
cent elements are rigidly connected together at shared nodes. This means that adjacent el-
ements have the same d.o.f. at nodes they share. Software usually allows the user to acti-
vate a “release” of one or more d.o.f. at a node, so that specified d.o.f. are not connected.
For example, let two 3D beam elements be connected end to end. Release of all three ro-
tational d.o.f. at the shared node makes the node a ball and socket joint. In effect, d.o.f.
are not “released” but simply left unconnected when adjacent elements are put together.

Global and Local Coordinate Systems. The user defines the geometry of a FE model in
a global coordinate system XYZ. Software typically generates an element stiffness matrix
in a local coordinate system xyz, then automatically converts to the global system for as-
sembly of elements. Global and local systems may be parallel or even coincident, in
which case nodal displacement components are the same in both systems and the distinc-
tion between systems largely disappears. In our discussions we will use global coordi-
nates XYZ only when it is desirable to distinguish between global and local systems.

2.4 PROPERTIES OF k AND K.
AVOIDING SINGULARITY

Stiffness matrices k (element) and K (structure; global) are symmetric. This is true of any
element or structure when there is a linear relationship between applied loads and the re-
sulting deformations.

Each diagonal coefficient of k (and of K) is positive. We argue as follows. Imagine
that a certain d.o.f. 4, is the only nonzero d.o.f,, so that the load associated with d, is r, =
k;d;. Since d; and r; are positive in the same direction, a negative diagonal coefficient k,
would mean that a load and its displacement are oppositely directed, which is unreason-
able.

A structare that is either unsupported or inadequately supported has a singular stiff-
ness matrix K, and FE software will be unable to solve the equations KD = R for nodal
d.o.f. D. To prevent singularity, supports must be sufficient to prevent all possible rigid-
body motions. These are motions that produce no deformation of the structure. For exam-
ple, consider a one-element structure, namely, a single bar element. The formulation in
Section 2.2 allows only axial translation. In effect, all nodal d.o.f. but 1, and u, have al-
ready been suppressed. If unsupported, the bar element can have the rigid-body motion
Uy = Uy = ¢, a constant. This motion is prevented by prescribing u; or u, as either zero or a
nonzero value. Similarly, consider a one-element beam structure. If the four-d.o.f. simple
plane beam element of Section 2.3 is unsupported, it can have two rigid-body motions in
the xy plane, namely, lateral translation and rotation about a point, neither of which
causes the element to bend. In terms of nodal d.o.f,, these motions of the beam element
can be written '

d,=[c;, 0 ¢ 0]7 and dg=[0 ¢, oL )7 (2.4-1)

where d, represents the rigid body translation v = ¢, and d, represents rigid-body rotation
through a small angle ¢, about node 1. The simple plane beam element is adequately sup-
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ported if any two of its four d.o.f. are prescribed (except for prescription of only 6., and
.,, which would allow rigid-body translation). Essentially the same remarks apply to a
multi-element structure. Usually it is not difficult to devise supports adequate to prevent
rigid-body motion. (Support reactions can then be determined by writing only the equa-
tions of statics.) Adequate supports make a structure statically determinate. More than ad-
equate supports make the support reactions statically indeterminate. This is perfectly ac-
ceptable and does not complicate the FE process in any way.

At each node of an assembled structure, general-purpose software makes three dis-
placements and three rotations available for use as d.o.f. These are the structure or
“global” d.o.f. If at any node a global d.o.f. causes no strain in any element attached to
that node, the d.o.f. will not be resisted and the structure stiffness matrix will be singular

.. unless the offending global d.o.f. is restrained. Accordingly, part of the task of pre-
scribing support conditions is imposing zero as the value of each “unresisted” d.o.f. Thus
in modeling a 2D or 3D truss by two-node bar elements, all rotational nodal d.o.f. must
be restrained at all nodes of the structure. Rotational d.o.f. are absent from the element
formulation and a bar element has no stiffness with which to resist them. This does not
prevent bar elements from having a relative rotation between them at a node they share,
nor does it prevent a bar element from rotating in space because of unequal lateral dis-
placements at its two nodes. At a node to which 3D beam elements are connected, all six
d.o.f. are resisted by all beam elements at that node. In the absence of a release, beam ele-
ments are rigidly connected to one another at a shared node, which means that they have
no relative rotation between them ar the node. No restraint of nodal rotation is needed ex-
cept in the infrequent situation of wanting to prevent the entire joint from rotating. A
frame, like a truss, can be adequately supported by prescribing translational d.o.f. only.

A structure may have a singular K because it contains a mechanism. Imagine a straight
beam, attached to a rigid support at each end, and modeled by two beam elements. Thus
there is a node at the middle of the beam, to which both elements are connected. This FE
model is stable and has no mechanism. Now if the two beam elements are replaced by
two bar elements the FE model contains a mechanism because two collinear bar elements
cannot resist a lateral force applied to the node they share. It does not matter that no such
force may be applied; K is singular regardless of the load vector. (Physically, such a load
could be sustained, but only after some lateral displacement has taken place; that is, after
nonlinearity is taken into account. The present linear analysis yields K only for the undis-
placed configuration.)

General-purpose FE software may regard all structures as three dimensional unless the
user directs otherwise. Thus by default three displacements and three rotations are active
at every node. No stiffness is associated with any d.o.f. unless it contributes to strain in at
least one element. The user must assign a numerical value to each zero-stiffness d.o.f.
Usually the assigned value is zero, thus suppressing the d.o.f. A program may automati-
cally suppress d.o.f. not included in element formulations. Thus all rotational d.o.f. would
automatically be suppressed if only bar elements were used, as in modeling a truss.
Nevertheless, to minimize mistakes and surprises, a wise user will remember that in gen-
eral there are six d.o.f. per node and will determine what the program actually does rather
than assume what it will do.

2.5 MECHANICAL LOADS. STRESSES

Loads. Load may be applied as a force or a moment at a point or as surface pressure.
Line load is conceptually intermediate to point load and surface pressure. Line load is
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Another possible load is body force loading, which acts at every material point in the
body rather than only on the surface of the body. Sources of body force loading include
self-weight (gravity) loading and acceleration. Thermal loading comes from temperature
changes and is considered in the next section.

A concentrated force or moment is applied directly to a node. Moment load can be ap-
plied to a node only if at least one element connected to the node has rotational d.o.f. in
its stiffness formulation. Input data to software consists of the magnitude, direction, and
node associated with the force or moment. Distributed loading, such as pressure in a tank
or line loading along a beam, acts between nodes and must be converted to direct nodal
loading that is in some way equivalent. Most software is able to accomplish the conver-
sion, whether or not elements are collinear or of equal length. The user need only tell the
software what the loading is and where it acts. We will not detail the theory of the
process [2.2]. The following results are for uniform loading on bar and beam elements.

Let a uniformly distributed axial force ¢ act on a bar element, Fig. 2.5-1a. The dimen-
sions of g are [force/length]. Load g may be externally applied. Or, it may represent the
weight, or resistance to acceleration, of the element itself. The total force on an element
of length L is gL. Half of this total is applied to each node. If two collinear elements of
lengths L, and L, are connected, the node they share receives a total force gL,/2 + gL,/2 .
The final set of nodal forces on a straight bar modeled by equal-length elements appears
in Fig. 2.5-1d. Equivalent nodal forces for a distributed load ¢ that varies linearly are dis-
cussed in Section 3.9.

Theory indicates that a uniformly distributed transverse force on a beam element is re-
placed by nodal loads that consist of forces and moments (Fig. 2.5-2). The reader may
recognize these loads as support reactions for a uniform beam fixed at both ends and uni-
formly loaded. except that nodal loads are directed opposite to beam support reactions. If
elements of equal length and equal distributed load are assembled, moment loads cancel
at nodes shared by two elements. The final result for collinear elements of equal length
appears in Fig. 2.5-2d.

Note that no loads are needed at the supported ends of the structures in Figs. 2.5-1 and
2.5-2. As a general rule, load applied to a restrained d.o.f. may be omitted because such a
load is reacted directly by the support rather than acting to deform the structure.

Usually, concentrated load is not applied at a non-nodal location because this circum-
stance is awkward to treat in the software. Instead, one simply arranges the FE mesh so
that a node appears where the concentrated load must be applied. Beam elements may be
an exception to this rule: beams are comparatively simple to treat and so often analyzed
that some software is specially coded to accommodate a variety of non-nodal loadings.

Element Structure
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Fig. 2.5-1. Uniformly distributed axial force g on a two-node bar element and its conversion to
equivalent nodal loads.
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Fig. 2.5-2. Uniformly distributed transverse force g on a simple plane beam element and its con-
version to equivalent nodal loads.

Remarks. Nodal loads that replace distributed loading in Figs. 2.5-1 and 2.5-2 come
from FE theory and are called “kinematically equivalent” or “work-equivalent” nodal
loads for the following reason. Let any one of the nodal d.o.f. d; be nonzero, and use Eq.
2.2-5 or 2.3-5 to obtain the associated displacement field of the element. Compute work
done by load ¢ during this displacement, by integration of ug dx (for a bar) or vg dx (for a
beam) over element length L. This work is equal to work done by the nodal load associ-
ated with 4, in acting through displacement d,. Work-equivalent nodal loads are also stari-
cally equivalent, meaning that they have the same resultant force and the same moment
about an arbitrarily chosen point as does the original distributed loading.

Nodal loading that is not work-equivalent is often called lumped. Lumped loading typ-
ically omits the nodal moments of work-equivalent loading. Lumped loading is often pre-
ferred for elements that have rotational d.o.f. Specifically, lumped loading is usually
preferable for arches and shells and is often preferable for beams and plates. An example
appears in Fig. 2.5-3. Nodal moments would clearly be spurious at the support nodes A
and B. Also, if elements were of unequal length, work-equivalent loading would produce
net moments at other nodes as well, but these moments would not be beneficial to accu-
racy. Work-equivalent loading and lumped loading both provide convergence toward ex-
act results as the mesh is refined.

In general, computed nodal d.o.f. are not exact. But a uniform bar or beam represented
by a FE model with work-equivalent nodal loads is an exception: computed nodal d.o.f.
are exact. This does not mean that displacements are exact between nodes or that element
stresses are exact. If the nodal loading is lumped, exact nodal d.o.f. will not be computed,
but, depending on the situation, stresses at an arbitrary point may be more exact than ob-
tained from work-equivalent loading. A user who wishes to know if software includes the
nodal moment loads of Fig. 2.5-2 can find out by study of a one-element test case, in
which computed displacements and bending moments are compared with those obtained
by elementary beam theory.

Stresses. A FE program solves for nodal d.o.f. first, then (in present software) uses them
to compute stresses. In a bar element. axial stress is o, = Eg,, where E is the elastic mod-
ulus. Axial strain g, is given by £_= Bd, where B is stated in Eq. 2.2-6. An example prob-
lem in Section 2.6 provides details of this process. Here we discuss the nature of the re-
sults. The FE model of a bar in Fig. 2.5-1d yields the displacements and stresses shown in
Fig. 2.5-4. We see that stresses are discontinuous between elements. Indeed, this is the
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Lumped nodal loads

Fig. 2.5-3. Hinged arch with distributed normal loading ¢, and a coarse-mesh FE model with stati-
cally equivalent lumped loading.

way most types of element behave. Also, we see that displacements are more accurate
than stresses. This is usually the case, because stresses are proportional to strains and
strains are derivatives of displacement. Differentiation brings out differences between
functions. For example, the two functions and y = ¢* and y = 1 + x look very similar over
the range 0 < x < 0.2, but the first derivatives are y’ = e* and y" = 1 (rather different) and
the second derivatives are y” = ¢* and y” = 0 (very different).

In Fig. 2.5-4b we see that the most accurate values of stress are element center stresses
and nodal average stresses. Unfortunately, the highest stress. o, at x = 0, is not as accu-
rate. This is typical of FE models. Stresses of greatest interest usually appear at bound-
aries, but this is not where stresses are most accurately computed.

In a beam element we solve first for bending moment M rather than solving directly
for stress. When nodal d.o.f. d are known, Egs. 2.3-6 and 2.3-7 yield the curvature
d*vldx?, from which we obtain the bending moment M = E/(dv/dx>) and finally the flex-
ural stress 0, = My//. Note that B is a function of x for this element, so we must decide
where in the element to calculate the curvature. If software allows non-nodal loading on
beam elements, the computed bending moment in each element is an algebraic sum: the
foregoing M produced by nodal displacements and rotations, plus bending moment pro-
duced by the non-nodal loading with the element regarded as a fixed—fixed beam. Thus,
for example, a uniformly loaded beam element that happens to undergo rigid-body mo-
tion will still display the end moments gL*/12 seen in Fig. 2.5-2. This computation is in-
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Fig. 2.5-4. Axial displacement u and axial stress o, in a bar, computed from the FE mode] of Fig.
2.5-1d.
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dependent of whether loads are lumped for the purpose of constructing load vector R in
the equations KD = R. “Fixed—fixed moments” can improve results, even providing exact
bending moments in some situations, but in other situations may produce moments where
none are expected (e.g., at A and B in Fig. 2.5-3).

3D beam elements may carry axial, bending, or torsional loads. A beam element sus-
tains axial stress o, = P/A and flexural stresses o, = M_y/I,, and o, = M, 2/l,,. These con-
tributions to the resultant ¢, combine algebraically. Torque T about the axis of the beam
creates shear stress 7= Tc¢/J, where ¢ and J must be appropriate to the shape of the cross
section [1.5, 2.1]. Typical software may report the following at each end of an element:
P, M,, M_, T, transverse shear forces V, and V., the resultant o, values on y-parallel and z-
parallel sides of the cross section, and shear stress associated with T.

2.6 THERMAL LOADS. STRESSES

If a homogeneous and isotropic elastic body is uniformly changed in temperature or has a
temperature field that is linear in Cartesian coordinates, and the body 1s unrestrained by
external supports, then its state of stress is unchanged. Thus if the body is initially un-
stressed it remains unstressed, although it does deform. More often, temperature gradients
are more complicated, and thermal stresses arise with or without external supports.

FE thermal stresses are calculated by the following procedure, which applies to any
kind of FE model: bar, solid, shell, and so on. These steps are carried out automatically
by the software; the user need not take special action to activate them.

1. For each element, restrain all nodal d.o.f. and compute loads applied by the ele-
ment to its nodes owing to temperature change. (We will not detail the theory,
which is similar to the theory that yields work-equivalent nodal loads.)

2. Assemble the elements and element loads calculated in step 1. The result is a FE
structure, as yet undeformed, whose nodal loads are produced by temperature
changes.

3. Solve for nodal d.o.f., next compute element strains produced by these d.o.f., and
then compute stresses from strains. These calculations are exactly the same as
those used to calculate stresses produced by mechanical loads.

4. Superpose on stresses from step 3 the “initial” stresses, which are stresses that ap-
pear in step 1 when all d.o.f. are restrained and temperature change is applied.

Mechanical loads may be superposed on thermal loads. This is done in the assembly
process, step 2.

Example 1. A simple bar problem illustrates the assembly of elements. application of
loads and supports, and solution for stresses. These processes are carried out automati-
cally by FE software. Software uses numbers but we will use symbols for the sake of
clarity. Recall that software allows six d.o.f. per node, which means that in the present
example all d.o.f. but axial displacements u; must be suppressed at every node to prevent
rigid-body motions and singularity of K. To save space we will assume that this has al-
ready been done, so that only axial displacement d.o.f. , are represented in what follows.

Let the bar in Fig 2.6-1 be uniform, with cross-sectional area A, elastic modulus £, and
coefficient of thermal expansion ¢ Mechanical loading consists of forces P as shown.
Thermal loading consists of uniform heating an amount AT. In this problem both ele-
ments have the same stiffness matrix k (Eq. 2.2-7) and the same thermal load vector rs.
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Fig. 2.6-1. (a) Two-element bar model loaded by externally applied forces P and by
uniform heating an amount A7. (b) Loads F, = cAE AT associated with heating, ap-
plied by elements to nodes.

Specifically, for elements 1 and 2, respectively,

AEl 1 -1 -F
k] = k2 :Ti:_] | :| Iy = Tpy :{ FTT} (26~1)

where F, = 0¢AE AT is the force a bar would exert on confining walls when heated an
amount A7, as is shown in elementary mechanics of materials. Assembly of elements
yields the following set of global equations, whose unknowns are the axial displacement
d.of. uy, u,, and u;. (One may note that the physical meaning ascribed to columns of k,
and Kk, is also true of the following structure stiffness matrix.)

I =1 0w -F + R

AE

— -1 2 —1{Suyy=<x F, -F — P (2.6-2)
0 -1 1| |u; F + P

where R, is the force applied to node 1 by the support. This force is regarded as an un-
known. Known mechanical loads P have been added as part of the assembly process.
Note that d.o.f. u, receives stiffness and nodal load contributions from both elements to
which it is connected. At node 2 the loads F; are equal but oppositely directed and there-
fore cancel, leaving only load —P at node 2. Load —F at node 1 is reacted by the support
and is discarded in the step we take next.

The stiffness matrix in Eq. 2.6-2 is singular because rigid-body axial translation is pos-
sible. Singularity is removed by the support condition, which is imposed by substituting
u,; = 0 into Egs. 2.6-2. This leaves only u, and u; as unknown d.o.f. They are obtained by

solving the equation
AE| 2 —1][u —-P
=z o= (2.6-3)
L|-11]uy F+P

By suppressing the first d.o.f. we have, in effect, discarded row | and column 1 from Eq.
2.6-2 to obtain Eq. 2.6-3. After solving Eq. 2.6-3, with Fr = cAE AT, we know the values
of all d.o.f.

PL
, =0 u, =0 L AT uy =20 L AT +-— (2.6-4)
B AE

Axial stress o, in each element is calculated from the formula

o.=E&.+ Oy (2.6-5)
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where E is the elastic modulus, €, is the strain computed from nodal d.o.f.. and 0, is the
initial stress the element, here caused by temperature change with all element d.o.f. re-
strained. For the respective elements, Eg. 2.6-5 is

o, =EX2 "M (—Eq AT)=Ea AT-Ea AT=0 (2.6-62)
— U, P
6,=EB 2 {(-Ea AT)=Ex AT+—§—E0¢ AT == (2.6-6b)

Heating has caused the bar to expand but has produced no stress because thermal expan-
sion is unrestrained in the present example.

Example 2. If the foregoing example is now altered by fixing both ends of the bar, Eq.
2.6-2 reduces to a single equation. This equation and the resulting d.o.f. are

2 L
AE u, =—P hence u,= —i—, w=u, =0 (2.6-7)
- - 2AE ;
and Eq. 2.6-5 yields the element stresses
U, — i P
o, =E—= +(-Ea AT)z—ﬂ*Eo: AT (2.6-8a)
Uz — Uy P
0, =E——=+(-E0 AT)z—?:Z—Ea AT (2.6-8b)

All results for displacement and stress are exact in the foregoing examples because the
loadings have not demanded a displacement field or a stress field more complicated than
the elements can represent.

Spurious Stresses. The following example shows how thermal stresses may be incor-
rectly computed. Let a two-node bar element of length L be supported at only its left end
and have a linear variation of temperature along its length, say

AT = cx (2.6-9)

where ¢ is a constant and x = O at node 1. This AT causes the element to expand an
amount cel4/2. so that nodal d.o.f. are i, = 0 and u, = acL?/2. Thus €, = (u, - u;)/L =
acl/2, and Eq. 2.6-5 yields

=Ee, +(~Ea AT)zEac(é—x) (2.6-10)

However, this ¢, is incorrect. We know that the bar should be stress-free. The spurious o,
arises because of a mismatch: the temperature field is linear in x but the strain field is
constant. The correct stress, o, = 0, would be computed if AT were evaluated at the ele-
ment center, x = L/2, and this AT taken as constant over the element, just as &, in Eq. 2.2-
6 is constant over the element. Regardless of the element type (bar, plane. solid, etc.), it is
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gree no higher than that of the strain field produced by nodal d.o.f. d. This usually re-
quires that the actual AT variation be simplified for use in stress calculation. The user
need not worry about this if the software has been suitably coded. (See also the discus-
sion in Section 3.10.)

2.7 AN APPLICATION

We present an example problem, with emphasis on modeling and checking results rather
than on matrices and manipulations. The structure is a flat oval bar loaded in its own
plane, as shown in Fig. 2.7-1. Stresses and deflections of greatest magnitude are desired.
The solution strategy suggested in Section 1.3 is used in the following analysis.

Preliminary Analysis. The structure is roughly circular. Therefore a crude analytical
model of the problem is that of a circular ring having the same perimeter as the actual
oval and loaded by concentrated forces, as shown in Fig. 2.7-2. Data in Fig. 2.7-1b are
such that the radius of the substitute circular ring is » = 78.2 mm, and the pressure load
produces the force F = pt(b + ¢) = 300 N. Handbook formulas [1.5] state deflections and
bending moments in a circular ring loaded by two diametrically opposing forces. By su-
perposing two such cases, one with inward forces and the other with outward forces, we
obtain

3

F
§=0143 L
El

=0338mm and M=05Fr=11730 N-mm (2.7-1)

as the magnitudes of radial deflection and bending moment at loaded points. Hence direct
axial stress and flexural stress in the circular ring have magnitudes

/2
= fl{i =333MPa and o, = _M_([L.): 174 MPa (2.7-2)
t

These results will be compared with FE results. This simple analysis is done before FE
analysis to avoid the natural tendency to calculate a result that agrees with what FE
analysis has led us to expect. Also, by having an approximate solution in hand, we will be

< a < h >t o = 4>
h
{f{f}fﬁf} a=b=c=d=30mm
7 R =40 mm
F F h=9.0mm
- L t=50mm
| E =200 GPa
y p R v =0.28
: Ty A
\y F=300N
Rzctangular cross section, Ax ¢
[€)] (b)

Fig. 2.7-1. (a) Plane structure under mechanical loading. (b) Data used in the numerical
example.
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Fig. 2.7-2. Simple analytical model for approximate analysis,
withr=R+(@+b+c+dyn.

able to immediately detect FE results that happen to be greatly in error, owing perhaps to
a blunder in data input.

FE Model and Analysis. There is symmetry of geometry, loading, and elastic properties
about horizontal and vertical centerlines. Therefore only one quadrant need be analyzed,
Fig. 2.7-3a. (Symmetry is discussed more fully in Section 4.12.) Supports shown are con-
sistent with horizontal displacement allowed at end A, vertical displacement allowed at
end D, and neither A nor D allowed to rotate. Between A and D, points will displace in
both x and y directions and cross sections will rotate.

Beam elements are appropriate for this problem. A coarse-mesh model is shown in
Fig. 2.7-3b. Portion BD is modeled by two elements, BC and CD, so that nodal force gL/2
and nodal moment gL%/12 of Fig. 2.5-2 can conveniently be applied at C.* No moment
load is needed at D because it would be reacted directly by the support. Support condi-
tions indicated in Fig. 2.7-3c allow only translation « at A and only translation v at D.
One need not also set w = 8, = 6, = 0 at nodes B and C; however, this excessive fixity
would do no harm in the present problem. Similarly, the amount of fixity at A and D is
excessive; for example, we need not restrain w, 8,, or 6, at D because similar fixity at A
will avoid the possibilities of translation in the z direction and rigid-body rotations about
x and y axes. K is rendered nonsingular by the support conditions.

Critique of FE Results. How good are the answers? Before comparing computed num-
bers with analytical approximations, and before looking at stress plots produced by the
FE method, we look at the displaced shape. We sketch an intuitive approximation,
shown dashed in Fig. 2.7-4a. Software will plot the computed displaced shape, scaled up
to be easily visible, and animated so the model can be seen to move back and forth be-
tween its original shape and its deformed shape. We should see reasonable agreement
between approximate and computed shapes. In particular, point A should move only to
the right, point D should move only upward, and the FE model should not rotate at ei-
ther point. Thus we check that the intended support conditions have indeed been 1m-
posed. Upon examining a list of computed numerical values of nodal d.o.f., we should
see w = 8, = 6, = 0 at all nodes. (Note: Software typically plots only straight lines be-
tween nodes. Accordingly, a deformed beam element appears straight; its actual cubic
curve is not displayed.)

If displacement results appear satisfactory after the foregoing inspection and com-
parison with analytical approximation, we proceed to examine stresses. We should
find that the direct axial component of stress is tensile at A and compressive at D,
while the flexural component of stress is tensile on the inside at A and tensile on the
outside at D.

*Lumped loading omits this moment. The reader may wish to repeat this example. using lumped
loading, to see how results are changed.
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Fig. 2.7-3. (a) Quadrant modeled. (b) Coarse FE model with work-equivalent nodal loads. (c)
Support conditions.

A summary of computed results for the FE model of Fig. 2.7-3b is as follows.

t, =0.135 mm v,=0316 mm
(6.)4=0 (0,)p=-3.33 MPa (2.7-3)
(0,), =*166 MPa (0,)p=+117 MPa

where o, refers to the direct axial stress, ¢, = P/A, and o, refers to the bending compo-
nent of stress, o, = Mc/l. (Some software may report the algebraic sum of axial and bend-
ing stresses at top. middle, and bottom surfaces of an element.) The value of g, at A at
first looks wrong: why is it zero? Elementary statics, Fig. 2.7-4b, shows that member AB
carries a transverse shear force but no axial force because of its 45° orientation. Accord-
ingly, (c,), = 0 at A is correct for this particular FE model.

A finer mesh for the same problem is shown in Fig. 2.7-4c. Now arc AB is modeled by
two chords rather than one, which is the most significant improvement of this mesh.
Portion BC is not refined because doing so would make no difference: this part is straight
and no loads are applied between B and C. Computed results for the finer-mesh FE model
are

uy,=0.121 mm vp = 0.349 mm
(0,)4 = 1.80 MPa (0)p=-3.33 MPa (2.7-4)
(0,0 =163 MPa  (0,)p,=%116 MPa

These values are in reasonable agreement with results from the crude analytical approxi-
mation, Eqgs. 2.7-1 and 2.7-2. Also, there is good agreement between Egs. 2.7-3 and 2.7-4

C
o\ 150N 5 D
T /MD

\

\
p o
L X9

A
150N

(a) (b) (c)
Fig. 2.7-4. (a) Original centerline (solid) and deformed centerline (dashed) of the quadrant mod-
eled. Displacements are greatly exaggerated. (b) Free-body diagram, showing loads applied to the
quadrant modeled. (c) A refined FE model with work-equivalent nodal loads.
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except for o, at A, which is a small stress whose error has been satisfactorily explained.
We conclude that the FE results are probably reliable, although one more mesh refine-
ment and analysis would make us more comfortable with the results. Indeed, after analy-
ses based on three or more successive mesh refinements, one might plot a result such as
(0,)4 versus element size. Extrapolation to zero element size would yield a prediction of
(0,)4 for infinite mesh refinement (see Section 5.15). The value of (g,), obtained by ex-
trapolation could be used to estimate the percentage error of (0,), in each of the meshes
actually used.

Some questions about the correctness of the model remain. Truly concentrated
loads are not possible, therefore horizontal loads F are an idealization whose actual
manner of application may have to be represented more precisely. The ratio #/R is
probably small enough that transverse shear deformation is unimportant, but it does
no harm to use beam elements that include it. If 4 becomes comparable to R, beam el-
ements should be replaced by two-dimensional elements (Chapter 3). We have as-
sumed from the outset that the material is linearly elastic. Stresses are not high and
the elastic modulus suggests that the material is steel, so the assumption of linearity
appears reasonable. The problem would be much more complicated if there were
yielding.

The problem would also be much more complicated if R/h were so large that displace-
ments became large. A linear analysis uses equilibrium equations written with respect to
the initial (unloaded) geometry, while strictly they should be written with respect to the
final (loaded) geometry. Usually the distinction is negligible because displacements are
so small that the initial geometry is substantially unaltered by applied load. If displace-
ments are not small the problem is much more complicated because the final geometry is
not known in advance. Such a problem is called “nonlinear” because displacements and
stresses are not directly proportional to applied loads.

ANALYTICAL PROBLEMS

2.1 Consider a two-d.o.f. bar element, as in Fig. 2.2-1, but let the cross-sectional area
vary linearly with x from Ay at x =0 to 2Aat x = L.
(a) Use the direct method to generate the element stiffness matrix. Suggestion: first
compute the elongation produced by an axial force P.
(b) Use the formal procedure to generate the element stiffness matrix. Suggestion:
use Eq. 2.2-6.
(¢) The stiffness matrices of parts (a) and (b) do not agree. Why?

2.2 Consider a cable element of length L under constant tension 7, as shown. Assume
that lateral deflection v is linear in x and that v << L. Use the direct method to gen-
erate a 2 by 2 stiffness matrix that operates on d.o.f. v, and v,. Suggestions: k de-
pends only on T and L; consider v, = 1 and v, =0, then v; =0 and v, = 1, while T
maintains constant direction.

T I”l
-~ -
fe—— L ——> Problem 2.2
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Qe ket AR o generate the element stiffness matrix of a prismatic shaft
element under torque loading. The d.o.f. are 6, and 6,, where 8 is an angle of rota-
tion about the axis of the shaft.

generate column 1 of k for

&

2.4 (a) Complete the derivation begun in Egs. 2.3-1; that is,
a simple plane beam element.
(b,c,d) Similarly, generate columns 2, 3, and 4 of k.

2.5 Use Egs. 2.3-3 and 2.3-7 to generate the stiffness matrix of a simple plane beam el-
ement.

2.6 (a) In each of the simple plane beam elements shown, two d.o.f. are restrained and
only the two d.o.f. labeled remain unrestrained. In each case, generate the 2 by

2 stiffness matrix that operates on the unrestrained d.o.f. Use the direct method.

(b) Repeat part (a), but use the formal procedure (Eq. 2.3-3, with B a 1 by 2 row

matrix).

1253 0.1 )
9"2 k[\ j”

- ¢ []

1 3 Ve
‘ BT 2
1L/ L 1 r L >
Case 1 Case 2 Problem 2.6

2.7 Imagine that by experiment it is known that end force and end moment as shown in
the sketch are required in order to elevate the left end of the beam 1.0 mm without
rotating this end. Fill in as many numerical values as you can in an element stiffness
matrix that operates on nodal d.o.f. {v, 6., v, 6,]", where v, and v, are mea-
sured in millimeters. To do so, use the given data, physical argument, statics, and
symmetry considerations, but not beam deflection formulas or Eq. 2.3-2.

y, v
A00N+*m |
v /t2OO N
1 mm \\\\\\\
[ — —_x
|\ 1 21
f 4m : Problem 2.7

2.8 A simply supported beam of length L under a half sine wave of distributed trans-
verse loading, g = g, sin{(zx/L), has the deflected shape v = v, sin(zx/L), where vy,
is the center deflection. An approximate deflected shape is v = 4vg,x(L — x)/L2. If
Uge = Vg, What are the percentage errors associated with the approximation? Exam-
ine deflection at quarter points, rotation at supports, bending moment at midspan
and at supports, and transverse shear force at supports.

2.9 A uniformly distributed axial force g acts on a uniform bar, as shown. Let the FE
model consist of n two-node elements, each of length Ly/n. Forn=1,n=2,and n =
4, what are the percentage errors of displacement at the right end and axial stress at
the left end?

q
o~ 3 > |

i
|
oo
b< Lr

> Problem 2.9
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For the beam problem shown, what is the coarsest FE mesh that gives a nontrivial
result? What are the percentage errors in center deflection and end bending moment
of such a FE model? Obtain results needed to answer this question by use of

(a) elementary beam theory (applied to the FE model);

(b) matrices in Section 2.3.

g
% MMMWLQ
e Ly———1  problem 2.10

Activate d.o.f. of a simple plane beam element one at a time; that is, v, > 0 while
6., = vy, = 6, = 0, and so on. Thus there are four cases. In each case, show that
nodal loads in Fig. 2.5-2b are work-equivalent.

Distributed lateral force ¢ and the cantilever beam are both uniform (see sketch).
Compute the tip deflection and root bending moment using work-equivalent nodal
loading (Fig. 2.5-2b). Then repeat the calculation, this time with lumped loading
(i.e., omit the nodal moment portion of the work-equivalent loading). Compute per-
centage errors in each case. Suggestion: deflections of the FE model can be ob-
tained by use of standard beam formulas.

(a) Use a single element.

(b) Use two elements, each of length L;/2.

The bar shown is confined between rigid walls. Cross-sectional area A varies lin-
early from A, to 1.6A,. The bar is initially stress-free, then is uniformly heated an
amount AT. Compute stresses in a FE model that contains three elements, each of
length L;/3 and having the respective cross-sectional areas 1.14,, 1.3A,, and 1.5A,.
On axes x (abscissa) and aF AT (ordinate), plot the exact stress field and the FE
stress field.

. g Ag 1.64g

oy +

f Ly > f . Lr >
Problem 2.12 Problem 2.13

COMPUTATIONAL PROBLEMS

In the following problems compute peak values of displacement and stress or bending
moment. Exploit symmetry if possible. When mesh refinement is used, estimate the max-
imum percentage error of FE results in the finest mesh. Where material properties are
needed but not stated, use those of steel.

A FE analysis should be preceded by an alternative analysis, probably based on statics
and mechanics of materials, and oversimplified if necessary. If these results and FE re-
sults have substantial disagreement we are warned of trouble somewhere.

2.14

(a) Does the software you use include transverse shear deformation in its beam ele-
ments? Disregard the software documentation; instead, devise and run test cases
to find out directly.

(b) Similarly, use test cases to discover if nodal moments due to distributed load
are applied to beam elements. (These moments may appear in R and/or in stress
computation.)
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2.16

2.17

2.18

ues indicated:

(a) ¢ =d=0, others as in Fig. 2.7-1.

(b) a =d =70 mm, others as in Fig. 2.7-1.

(¢) b =c =0, others as in Fig. 2.7-1; also add a central vertical member of cross
section /1 by 1.

The beam shown is uniformly tapered in width. Let Poisson’s ratio be zero. Create
FE models by using elements of constant cross section, in the manner of Fig. 1.4-1,
but with beam elements. Use one, then two, then four, and so on, elements of equal
length. Choose convenient numbers for length L and force P. The problem may be
repeated using a tip moment rather than a tip force, or using a distributed load.

Members of the plane structure shown may be bars pinned together at joints to cre-
ate a truss or beams rigidly connected together at joints to create a frame. For the
frame model one may assume that rotations at the wall are either permitted or pro-
hibited. Investigate how much difference there is between the truss model and the
frame model. Assume that all members have a square cross section, b units on a
side. Let # = 120 mm, L = 160 mm, and P = 1.0 N. Consider the cases » = 5 mm,
b =15 mm, and b = 30 mm.

5 50 '
| 1
- T H
Ai } Side view P l
SOT L L { et ! L—>
Problem 2.16 Problem 2.17

The beam structure shown has unit thickness normal to the paper. Depth k& of the
cross section varies linearly in the axial direction. Confine displacements to the
plane of the paper.

(@ L =L,=5=200mm, h, =h,=40mm, h_=20mm.

b) Ly=L,=5=200mm, h;=h,=20mm, k=40 mm.

(¢) L;=200mm, L,=0, s=80mm, h,=40mm, h,=h_ =20 mm.

}_ P = 1N (unit load)

Problem 2.18

Problem 2.18 can be repeated with one end hinged.

0 Consider the problem of a beam on an elastic foundation. The foundation can be

modeled by bar elements that connect nodes of the beam to a fixed support and act
as linear springs of stiffness k = AE/L (see sketch). This is not the best foundation
model, but it is instructive to see how displacements and bending moments in the
beam converge toward exact results as the mesh is refined. Analytical solutions for
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various kinds of loading and support on a uniform beam are available [1.5, 2.1].
Beams of finite length or with step changes in cross section may also be considered.

/—— Typical beam element

4

2.21 The structure shown has unit thickness normal to the paper. Depth & of the cross
section varies linearly in the circumferential direction. Confine displacements to the
plane of the paper. Some possible choices of geometry are as follows:

(a) ¢,=45° ¢,=90°, R=500mm, h,=h,=30mm.
(b) ¢, =20° ¢,=40°, R=500mm, h,=h,=30mm.
(¢) ¢,=20° ¢,=90°, R=500mm, h,=h,=30mm.
(d) ¢, =20° ¢,=90°, R=500mm, #h,=30mm, h,=10mm

Problem 2.20

P = 1N {unit load)

Problem 2.21

2.22 Problem 2.21 can be repeated with one or both ends hinged. Also, uniform or
nonuniform heating can be applied. Yet another set of problems is generated by pre-
scribing nonzero values of translational and/or rotational d.o.f. at one end.

2.23 Use the geometry shown for Problem 2.21, but orient load P so that it acts normal
to the plane of the paper, and let k represent the diameter of a circular cross section.
Thus the structure becomes a balcony beam, which has both bending and twisting
deformations. The specific configurations in Problem 2.21 can be analyzed. Or, pre-
scribed nonzero d.o.f. may now include twist,

2.24 Idealize a bicycle wheel as a planar structure having 36 radial spokes. Properties are
as follows [2.3]. Spokes: diameter = 2.1 mm, E = 210 GPa, length = 309.4 mm from
the center of the wheel to the centroidal axis of the rim cross section. Rim: A =
138.4 mm> E = 70 GPa, v = 0.33, centroidal I of A = 1469 mm*, I/c = 176 mm’
(for stress calculation). Assume that initial tension in the spokes is sufficient to
maintain tension in every spoke when load is applied. Consider the following load-
ings.

(a) A vertical force of 490 N applied by the road.
(b) A force of 100 N applied tangentially by caliper brakes at the top of the wheel.
Neglect the mass of the wheel.
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CHAPTER 3

Plane Problems

Necessary preliminaries from solid mechanics theory are reviewed. Next, plane elements
of several tvpes are discussed. with particular attention to element displacement fields
and what they portend for element behavior. Treatment of loads and calculation of
stresses are discussed. An example application closes the chapter.

3.1 INTRODUCTION

Stress—Strain—-Temperature Relations. By definition, a plane body is flat and of con-
stant thickness. Let Cartesian coordinates xy lie in the plane of the body. As explained in
elementary mechanics of materials, the plane stress—strain relation (or constitutive rela-
tion) of a linearly elastic and isotropic material is

£, YVE —v/E 0 o, £
& ¢ = |—-vE 1E 0 o, t *+ & (3.1-1)
Ve 0 0 YG| |z, Y50

where E is the elastic modulus, v is Poisson’s ratio, and G is the shear modulus, G =
0.5 E/(1 + v). The last column vector in Eq. 3.1-1 contains initial strains (described be-
low). Abbreviated. Eq. 3.1-1 is written £ = E™'o + &,. If this equation is solved for the
stress vector ¢, we have

o=Eeg+ o, (3.1-2)
in which o, = -Eg, and
E 1 v 0
E = — v o1 0 for plane stress (3.1-3)
0 0 (1-w/2

Equations 3.1-1 and 3.1-3 pertain to a plane stress condition, in which ¢, = 7,, = 7., = 0.
Initial strains &, caused by temperature change AT are £, = £, = @ AT and ¥, = 0,
where o is the coefficient of thermal expansion. The thickness is free to increase or de-
crease in response to stresses in the xy plane. In a plane strain condition thickness change

a1
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is prevented. Equation 3.1-2 still states the stress—strain relation, but E is

(1-v) v 0
E= _1“———{51—-?—- (1-v) 0 for plane strain (3.1-4)
+W(1-2
(+v1=2v) 0 -2

and initial strains due to temperature change AT are £, = &,0= (1 + V)& AT and ¥,,o = 0.
As an example of plane strain, if a flat plate is bent so as to become a cylinder with z its
axis, cross sections in planes normal to the z axis are in a state of plane strain (except
very near ends of the cylinder). Stresses are independent of z in plane stress and in plane
strain conditions. As the thickness of a plane body increases, from much less to greater
than in-plane dimensions of the body, there is a transition of behavior from plane stress
toward plane strain.

If v = 0.5 the material is incompressible. If v approaches 0.5 and plane strain condi-
tions prevail, Eq. 3.1-4 shows that strains €, and €, are associated with very large stresses
o, and ©,. This circumstance may cause trouble in FE analyses because of numerical ill-
conditioﬁing.

Equation 3.1-2 need not be restricted to isotropy. In the most general case of
anisotropy, E is a full matrix, and for a plane problem it contains six independent elastic
constants. The theory and computational processes of FE are not made more complicated
by anisotropy. However, there is often practical difficulty in obtaining numerical values
of elastic constants. Also, it is harder to judge the validity of results because response to
loads is not as easily visualized and approximate calculations become more difficult.

Stresses in plane stress problems may be called membrane stresses. They are constant
through the z-direction thickness. In contrast, the bending stresses that appear in plates
and shells vary from tension to compression through the thickness and by definition are
absent if the problem is plane. One should bear in mind that all physical structures are
three-dimensional, so that regarding a problem as plane (or as a bar, beam, plate. or shell)
implies that at least a small amount of idealization has already taken place.

Strain-Displacement Relations. FE theory makes extensive use of strain—displacement
relations. They are used to obtain a strain field from a displacement field. Recall that nor-
mal strain is defined as change in length divided by original length and that shear strain 1s
defined as the amount of change in a right angle. Thus in Fig. 3.1-1 we have &, = Au/Ax,
g, = Av/Ay, and ¥, = Aulhy + Av/Ax. However, in general the x-direction displacement

it _________ Au —- }e—’,,,”’/f
) ~ I
A N Ax Ad
' ! T EUR ) !{
} av Ay / !
I
Ay : Ay II Ay Al
: I K;\ 'i
I
| I N

!

Fig. 3.1-1. A rectangle of incremental size,

A —:’{_l’é—

(a)

(b)

direction strain. and (c) shear strain.

(c)

subjected to (a) x-direction strain. (b) ¥-
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u and the y-direction displacement v are both functions of the coordinates, u = u(x, y) and

v = v(x, y) in a plane problem. Therefore we must use partial derivatives. Doing so, and
passing to the limit, we write

ou v

du v <
&= sy:by— yxy:@—Jrg (3.1-3)
or, in alternative matrix formats,
& dfox 0
gt =10 Joy {u} or £=du (3.1-6)
Vi dfdy dfox

These strain definitions are suitable if the material has small strains and small rotations.
Otherwise the strain definitions must be more extensive [3.1].

Displacements in a plane finite element are interpolated from nodal displacements 1,
and v; as follows:

Uy
N, O N, O .
7 5
= I - u, > or u=Nd (3.1-7)
v 0O N 0 N, -

where the N, are separate shape (or interpolation) polynomials and N is called the shape
function matrix. According to Eq. 3.1-7, u depends only on the u, v depends only on the
v,, and u and v use the same interpolation polynomials. This is a common arrangement
but it is not mandatory. An instance of Eq. 3.1-7, for a particular triangular element, ap-
pears in Eq. 1.2-3. From Eqs. 3.1-6 and 3.1-7 we obtain

e=0dNd or &=Bd where B=dN (3.1-8)
Matrix B is called the strain—displacement matrix.

A General Formula for k. Several texts on mechanics of materials derive an expression
for U, the strain energy per unit volume of an elastic material. In terms of strains and in
matrix format, this expression is U, = €’ E€2. Upon integrating over element volume V
and substituting from Eq. 3.1-8, we obtain element strain energy U as

U=4[e'Eeav =1d" [BEBaVd = Ld'kd (3.1-9)

One can interpret Eq. 3.1-9 as follows. Let any element d.o.f., say the ith d.o.f., be in-
creased from zero to the value d,. This is accomplished by applying to the d.o.f. a force
that increases from zero to F,. The work done is F;d,/2, just as it would be if stretching a
linear spring an amount d,. This work is stored as strain energy U. Equation 3.1-9 says
that work F,d,/2 is equal to strain energy in the element when the element displacement
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field is that produced by d; and the element shape functions. For example, if d; = u,, we
see from Eq. 3.1-7 that the element displacement field is u(x, y) = N,u, and v(x, y) = 0.
In Eq. 3.1-9, the expression

k:'[BTEB av (3.1-10)

is identified as an expression for the element stiffness matrix. Equation 3.1-10 is not re-
stricted to plane problems; it is applicable to all displacement-based finite elements. The
direct method of generating k, applied to bars and beams in Chapter 2, is not general be-
cause there are no formulas that relate nodal forces to nodal displacements for elements
of arbitrary shape.

We see from Eq. 3.1-10 that for a given E, the nature of k depends entirely on B,
which in turn is derived from N by prescribed differentiations. In other words. the behav-
ior of an element is governed by its shape functions. In subsequent sections we will ex-
amine the displacement and strain fields of several elements and use the field informa-
tion to predict how the element will behave and what its defects will be. There are practi-
cal reasons for this study. In FE modeling, one seeks a good match between behavior that
the actual structure is expected to display and behavior that elements are able to display,
and one chooses element types, shapes, and sizes accordingly. Also, an analyst who un-
derstands the limitations of element behavior will not have unrealistically high expecta-
tions of the capabilities and accuracy of the FE method.

Loads. Mechanical loads include surface tractions, body forces, and concentrated forces
and moments. Surface traction is a distributed load applied to a boundary of the structure,
that is to a boundary line in two-dimensional problems and to a boundary surface in
three-dimensional problems. Pressure loading is called a traction even though it pushes
rather than pulls on the boundary. Also, traction may act either normal or tangent to a
boundary (Fig. 3.1-2).

Body forces act throughout the volume of a structure rather than only on its surface.
Body forces are usually caused by acceleration and occasionally by a magnetic field.
Typical accelerations are the centripetal acceleration in rotating machinery and the accel-
eration of gravity, which produces self-weight loading. In one-dimensional elements
there is no distinction between body and surface loads because mathematically the ele-
ment is a line. Similarly, the self-weight of a horizontal plate can be replaced by pressure
acting normal to the plate midsurface, which represents the plate mathematically.

(Mesh not
shown)

Fig. 3.1-2. Plane body with nonzero traction along BCD.
zero traction along AB, and fixed support along DA. Axes
n and s are, respectively, normal and tangent to the
boundary.



3.1 Introduction 45

PDF Compegssor. Frgs Versio

L MM moments come from prescribed loads and from the reactions
of point supports. A concentrated load is a convenient substitute for a load of high inten-
sity distributed over a small area.

Thermal loads are treated within the software in the manner described in Section
2.6.

Boundary Conditions. Boundary conditions include prescribed displacements and pre-
scribed surface tractions. Usually both appear in a given problem because part of the
boundary is supported and another part is loaded. In Fig. 3.1-2, for example, displace-
ments are prescribed along DA and stresses are prescribed along ABCD. In a FE model,
nodes along AB would receive no loads, nodes along BCD would be loaded by forces
from the normal and tangential tractions, and all nodes along ABCD would be free to dis-
place. Nodes along DA would have their d.o.f. set to zero and would not be loaded by
prescribed forces. All boundary and internal nodes of the model except nodes along DA
might be loaded by forces associated with self-weight loading and would be free to dis-
place. In structural mechanics, the term “support condition” is used as a synonym for a
displacement boundary condition.

Nature of the FE Approximation. We must preface our brief discussion by writing
equilibrium equations and defining “compatibility.” Stresses are in general functions of
the coordinates, so that each stress has a rate of change with respect to x and y. In a plane
problem the rates of change satisfy the equilibrium equations [6.1]

d
i9—5;‘—+-C?;yi+F,:O and %—+%&+Fy=o (3.1-1D

where F, and F, are body forces per unit volume. If Egs. 3.1-11 are satisfied throughout a
plane body, every differential element and the body itself are in static equilibrium. As for
deformations, they are called compatible if displacement boundary conditions are met
and the material does not crack apart or overlap itself.

Elasticity theory shows that if displacement and stress fields simultaneously satisfy
equilibrium equations, compatibility, and boundary conditions on stress, then the solu-
tion obtained is exact. How is an exact solution approached by a FE approximation?
Let elements be based on polynomial displacement fields, as in this book and indeed
as for most elements in common use. Then the compatibility requirement is satisfied
exactly within elements. Equilibrium equations and boundary conditions on stress are
not satisfied: that is, Eqs. 3.1-11 are not satisfied at most points within the FE model,
and stress boundary conditions are not satisfied at most points on the boundary (e.g.,
in Fig. 3.1-2 the computed stresses o, and 7,, will not be precisely zero all along the
unloaded boundary AB). Stress boundary conditions and equilibrium equations are sat-
isfied in an average sense: it can be shown that integrals of the left-hand sides of Egs.
3.1-11 vanish over each element. As a mesh is repeatedly refined, pointwise satisfac-
tion of stress boundary conditions and equilibrium equations is approached more and
more closely.

The foregoing discussion also applies to three-dimensional elastic problems, for which
Egs. 3.1-11 must be expanded to include all six stresses. The nature of a FE solution is
further discussed in Section 4.8.
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3.2 CONSTANT STRAIN TRIANGLE (CST)

The CST element, Fig. 3.2-1, is perhaps the earliest and simplest finite element. In terms
of generalized coordinates f its displacement field is

w=fi+ Box+ Py

(3.2-1)
v =P+ Bsx + Boy
and, from Egs. 3.1-5 and 3.2-1, the resulting strain field is
=P £.= Bs Yo = Bs+ Bs (3.2-2)

We see that strains do not vary within the element; hence the name ““constant strain trian-
gle” (CST for short). The element may also be called a “linear triangle” because its dis-
placement field is linear in x and y. Element sides remain straight as the element deforms.
(Element sides have the appearance of bar elements discussed in Chapter 2, but a plane
'FE is not an assemblage of bars; a plane FE is the region bounded by its sides.)

We omit the algebra needed to recast Egs. 3.2-1 in the shape-function form of Eq. 3.1-7.
The algebra is tedious [2.2] and does not help us understand how the element behaves.
The strain field obtained from the shape functions, in the form € = Bd, 1s

u,
Uy
x ¥ 0 v 0 yo O
Lo 0 0 e (3.2-3)
£ = Y32 X3 Xy -
124 v,
Y X3, Yoz X3 ¥ Yo Y
Us
Us

where x, and y, are nodal coordinates (i = 1.2, 3), x; = x; — x; and ¥; = ¥; — ¥, (i,j=1,
2, 3), and 24 is twice the area of the triangle, 24 = Xx5;y3, — X3,Y21- Node numbers are
arbitrary except that the sequence 123 must go counterclockwise around the element if A
is to be positive. Again we see that strains do not vary within the element. Applying Eq.
3.1-10 we obtain the element stiffness matrix:

k = BEBA (3.2-4)
¥, U U3
u3
U2
v1
112
uy
Fig. 3.2-1. A constant strain triangle. [ts six nodal
v d.of. are shown.
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Fig. 3.2-2. (a) Stress o, along the x axis in a beam modeled by CSTs and loaded in pure
bending. (b) Deformation of the lower-left CST in the model.

\a

where ¢ is the element thickness, assumed constant, and E comes from Eq. 3.1-3 if plane
stress conditions prevail. Integration in Eq. 3.1-10 is trivial because B and E contain only
constants.

The CST gives good results in a region of the FE model where there is little strain gra-
dient. Otherwise the CST does not work well. This is evident if we ask the CST to model
pure bending (Fig. 3.2-2). The x axis should be stress-free because it is the neutral axis of
the beam. Instead, the FE model displays o, as a square wave pattern. Also, the FE model
predicts deflections and o, stresses that are only about one-quarter of the correct values.
The inability of the CST to represent an ¢, that varies linearly with y is partly to blame for
this poor result. But the CST also develops a spurious shear stress when bent. This is seen
in Fig. 3.2-2b. It is proper that u, and v, appear as shown, but v, creates a shear stress
that should not be present. An expression for the shear stress can be obtained by use of
Egs. 3.1-2, 3.1-3. and 3.2-3. Despite defects of the CST, correct results are approached as
a mesh of CST elements is repeatedly refined.

3.3 LINEAR STRAIN TRIANGLE (LST)

The LST element is shown in Fig. 3.3-1. It has midside nodes in addition to vertex nodes.
The d.of are w;and v, ateachnode i, i= 1, 2, . . ., 6, for a total of 12 d.o.f. In terms of
generalized coordinates f; its displacement field is

u=p + Bx+ By + ,64)52 + Bsxy + ﬁsyz

3.3-1)
v =05+ Bex + Boy + BroX + Brixy + Biay? (

and, from Eqs. 3.1-5 and 3.3-1, the resulting strain field is

£.= [, +2B.x+ Bsy
g_v:ﬁg + Bix+ 2B,y (3.3-2)
Yo = (Bs + Bo) + (Bs + 2B10)x + (26 + Br1)y



48 Plane Problems
PDF Compressor Free Version

(a) (b} (c}
Fig. 3.3-1. (a) A linear strain triangle and its six nodal d.o.f. (b) Displacement mode associated
with nodal d.o.f. v,. (¢) Displacement mode associated with nodal d.o.f. vs. (For visualization only,
imagine that displacement occurs normal to the plane of the element.) (b and ¢ reprinted from [2.2]
by permission of John Wiley & Sons, Inc.)

The strain field can vary linearly with x and y within the element; hence the name “linear
strain triangle” (LST for short). The element may also be called a “quadratic triangle” be-
cause its displacement field is quadratic in x and y. Element sides deform into quadratic
curves when a single d.o.f. is activated, as shown in Figs. 3.3-1b and 3.3-1c. The LST has
all the capabilities of the CST, few as they are, and more. For example, Eq. 3.3-2 shows
that strain £, can vary linearly with y. If the pure bending problem of Fig. 3.2-2a is solved
using LST elements, exact results for deflection and stress are obtained. Additional nu-
merical examples appear in Section 3.11.

The element stiffness matrix is most easily generated using “area coordinates.” The
procedure does not help in understanding how the element behaves. Details may be found
elsewhere [2.2]. We note only that the product B'EB is quadratic in the coordinates and
that integration required in Eq. 3.1-10 can be done either in closed form by special for-
mulas or numerically (Section 4.5). Numerical integration is necessary if element sides
are not straight but curved, that is, initially curved, when all nodal d.o f. are zero.

3.4 BILINEAR QUADRILATERAL (Q4)

The Q4 element is a quadrilateral that has four nodes. Its nodal d.o.f. are shown in Fig.
3.4-1. In terms of generalized coordinates f3,, its displacement field is
u=pf,+ Bx+ By +
By + Box + Bay + Boxy (3.4-1)
v =Ps+ Pox + By + Poxy

The name “bilinear” arises because the form of the expressions for # and v is the product
of two linear polynomials, that is, (¢, + ¢»x)(¢; + ¢,)), where the ¢, are constants. There
are four parameters in each displacement expansion: four B; for u and four f; for v in Eq.
3.4-1, or four shape functions N, in Eq. 3.4-3 below. From Egs. 3.1-5 and 3.4-1, the ele-
ment strain field is

E.\‘ = .BZ + ﬂ4)"
&= P+ fex (3.4-2)
Yoo = (B3 + Be) + Box + PBay
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Important aspects of element behavior can be deduced from Eqs. 3.4-] and 3.4-2.
The strain field shows that ¢, is independent of x, which means that the Q4 element
cannot exactly model a cantilever beam under transverse tip force (Fig. 3.4-2a), where
axial strain varies linearly with x. Moreover, the Q4 element cannot exactly model a
state of pure bending, despite its ability to represent an g, that varies linearly with y.
Consider Fig. 3.4-2b, which shows a block of material loaded in pure bending. We
know from beam theory that shear strain Y.y 15 absent, that plane sections remain
plane, and that top and bottom edges become arcs of practically the same radius of
curvature, as shown by dashed lines in Fig. 3.4-2b. A Q4 element loaded in pure bend-
ing is shown in Fig. 3.4-2c. Sides rotate, as shown by dashed lines, but top and bottom
edges remain straight. This result is dictated by Eqgs. 3.4-1: along edges y = constant,
displacement v is linear in x. Indeed all sides of a Q4 element deform as straight lines.
Therefore right angles in the element are not preserved under pure moment loading
and in consequence shear strain appears everywhere in the element except along the y
axis. The same result can also be seen from Eqs. 3.4-2: the displacement mode of Fig.
3.4-2¢ requires that 3, be nonzero so that g, will vary linearly with y, but B, also ap-
pears in the expression for 7,,; therefore a Q4 element that bends also develops shear
strain. (This trouble does not appear in the LST in pure bending: when f35 in Egs. 3.3-2
is nonzero, f3,, assumes a value such that 85 + 2f3,, is zero in the shear strain expres-
sion.)

Clearly, arguments of the preceding paragraph apply in similar fashion when bending
moments are applied to top and bottom edges of the element instead of to sides. The
physical consequence of these defects is that the Q4 element is too stiff in bending be-
cause an applied bending moment is resisted by spurious shear stress as well as by the ex-

fse?\
P ~———
/ ' My M 5 y N
Ml( | | 3 | 2( | | §M2
X X

/ ’ \

/ Y / \
P \ \
1 (o 12 R 21

(a) {b) ()

Fig. 3.4-2. (a) A one-element cantilever beam under transverse tip loading. (b) Correct deforma-
tion mode of a rectangular block in pure bending. (c) Deformation mode of the bilinear quadrilat-
eral under bending load.
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7
—— X
1 o Fig. 3.4-3. Shape function N, of the bilinear quadri-
1//1/ lateral. (For visualization only, imagine that dis-
placement occurs normal to the xy plane.)

pected flexural stresses. Further discussion of this problem, as well as a remedy for it, ap-
pears in Section 3.6.

If the B, in Eq. 3.4-1 are expressed in terms of nodal d.o.f., we obtain the displace-
ment field in the form of Eq. 3.1-7, where

=@y (ar0boy)
4ab 4ab
N, =@ty o (az0bry) (3.4-3)
3~ 4 =
4ab 4ab

A representative shape function (&, ) is plotted in Fig. 3.4-3. Note that N, = I at node 2
and N, = 0 at every other node. This is true of shape functions in general, for any element
type; that is, N, = 1 at node i and N; = 0 at node j where j # i. In the format of Eq. 3.1-8,
the element strain field is

I,
Uy
£, . —(b-y) 0 b-y) 0 y
el = — 0 ~(a-x) 0 (a+x) - . (3.4-4)
: 4ab (%3
Vv ~(a-x) —(b-y) -(a+x) (b-y) -~
Uy

We can again deduce that the deformation mode of Fig. 3.4-2¢ contains spurious shear
strain by substituting the nodal d.o.f. of this mode into Eq. 3.4-4.

Equilibrium (Egs. 3.1-11) is not satisfied at every point in the Q4 element unless B, =
Be = 0 in Egs. 3.4-1, in which case a state of constant strain prevails. Despite this and
other criticism of the Q4 element, it converges properly with mesh refinement and in
most problems it works better than the CST element (which always satisfies Eqgs. 3.1-11).
Examples of element behavior appear in Section 3.11.

Equations stated in this section restrict the Q4 element to rectangular shape, but this
restriction can be overcome; see Section 3.8.

3.5 QUADRATIC QUADRILATERAL (Q8)

The Q8 element is shown in Fig. 3.5-1. In terms of generalized coordinates f3; its dis-
placement field is

u= B+ Pox+ Pyy + B + Psxy + Bey” + X’y + Bexy*

N N . (3.5-1)
v=Py+ Biox+ By + Brox® + Bisxy + ﬁm}’z + By + Biey”
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Fig. 3.5-1. (a) A quadratic quadrilateral. (b,c) Shape functions N, and N . (For visualization only,
imagine that displacement occurs normal to the xy plane.)

In more compact form than Eq. 3.1-7, the displacement field in terms of shape functions
N, is

u=> Nou  v= N (3.5-2)

where index i runs from 1 to &, which explains the “8” in the name Q8. As examples, two
of the eight shape functions are

T+ A-mM-11-E)A-mM-F1+H 1-77)
$0+8) (-1

(3.5-3)

I

N,
Ne
where & = x/a and 1 = y/b. By looking at a typical edge, for example, the edge x = a, we
see from either Eqs. 3.5-1 or 3.5-3 that displacements are quadratic in y, which means

that the edge deforms into a parabola when any single d.o.f. on that edge is nonzero.
From Eqgs. 3.1-5 and 3.5-1, the element strain field is

€. = Py + 2Bux + Bsy + 2Bxy + Boy?
&= Py + Bisx + 2By + Bisx® + 2Bsxy (3.5-4)

Yo = (Bs + Bio) + (Bs + 2B )x + (2B + Bia)y
+ B + 2By + Bioxy + By’

Each of the three strains contains all linear terms and some quadratic terms (e.g., there is
no x> term in the &, expression). The Q8 element can represent exactly all states of con-
stant strain, and states of pure bending if it is rectangular. Nonrectangular shapes are per-
mitted; see Section 3.8. Examples of element behavior appear in Section 3.11.

3.6 IMPROVED BILINEAR QUADRILATERAL (Q6)

The principal defect of the Q4 element is its overstiffness in bending, which can be illus-
trated by comparison of the bending moments in Figs. 3.4-2b and 3.4-2¢. Let the rectan-
gular block and the element have the same dimensions, elastic modulus E, and Poisson
ratio v. Then apply whatever bending moments M, and M, are necessary to make vertical
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’ shear stress in a cantilever beam
modeled by rectangular Q4 ele-

ments.

sides of the block and the element include the same angle, 8, = 8,. Moment M, is the cor-
rect value. It can be shown that M, is

I+vil-v 2\b

where a and b are dimensions shown in Fig. 3.4-1. If aspect ratio a/b increases without
limit, so does M,, which means that the Q4 element becomes infinitely stiff in bending.
This phenomenon is called “locking” [3.2]. In practice we avoid elements of large aspect
ratio, and a FE mesh does not “lock” but rather is overly stiff when bent, as explained in
Section 3.4. Qualitative results appear in Fig. 3.6-1. Deflections and axial stress in the FE
model are smaller than the exact values, and transverse shear stress is greatly in error ex-
cept along the v-parallel centerline of each element.

A remedy for the trouble is fairly simple and produces an element sometimes called
the Q6 element [2.2, 3.3]. Its displacement expansions for « and v each contain six shape
functions; that is,

4
u=Y Nou, + (1=E% + (1-17)g
i=}]

(3.6-2)

4
Nyu, + (1_52)83 + (1_772)84

i=1

v

where & = x/a, 1 = y/b, and the N, in the summations are shape functions of the Q4 ele-
ment, Eq. 3.4-3. In Eq. 3.6-2 we have simply augmented the displacement field of the Q4
element by modes that describe a state of constant curvature. This is easy to see for
modes associated with d.o.f. g, and g5: as shown in Fig. 3.6-2a, they allow edges of the
element to become curved. Accordingly, the Q6 element can model bending with either
an x-parallel neutral axis or a y-parallel neutral axis; indeed g, and g5 can be nonzero si-
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Fig. 3.6-2. (a) Displacement modes u = (1 ~ 17%)g, and v = (1 — &%g; in the Q6 element.
(b) Incompatibility between adjacent Q6 elements. (¢) No incompatibility between adja-
cent Q4 elements.

multaneously. Modes associated with d.o.f. g, and g, allow the existence of strains nor-
mal to a beam axis that appear because of the Poisson effect. From Egs. 3.1-5 and 3.6-2,
shear strain in the Q6 element is

5 ON, N, 2y 2x Y
Yo = ) —u; + vai - =8 ~ & (3.6-3)
i=1 &y i=l ox b ar

In pure bending, the negative terms (2y/b%)g, and (2x/a”)g; are equal in magnitude to pos-
itive terms produced by the summations, thus permitting shear strain to vanish, as is
proper. The Q6 element can represent pure bending exactly, but only if the element is
rectangular. (This point is discussed further in connection with Fig. 3.8-2.) Qualitative re-
sults appear in Fig. 3.6-3. Axial stress is exact along the y-parallel centerline of each ele-
ment, and average transverse shear stress is exact everywhere. Further examples of ele-
ment behavior appear in Section 3.11. The Q6 element, or a differently formulated

F' Incompatible (Q6) elements F

e
|

o, on bottorn

Fig. 3.6-3. Qualitative variation of
*  axial stress and average transverse
shear stress 2F/A = 2F/Ht in a can-
Ty tilever beam modeled by rectangular
o T T T I, Q6elements.
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element of comparable behavior, is usually the default option for a four-node quadrilat-
eral in commercial software.

The d.o.f. g, through g, are internal d.o.f. Unlike nodal d.o.f. u; and v, , they are not
connected to corresponding d.o.f. in adjacent elements. Modes associated with d.o.f. g
are incompatible. That is, under some (but not all) loadings, an overlap or a gap may ap-
pear between adjacent elements. This point is made in Fig. 3.6-2b. No gap appears with
Q4 elements under similar loading (Fig. 3.6-2¢). Indeed no gaps or overlaps appear ina
physical continuum; why then is the Q6 element acceptable? It is because elements ap-
proach a state of constant strain as a mesh is repeatedly refined. In a state of constant
strain all initially straight lines, including element edges, remain straight after deforma-
tion. Then there is no incompatibility between elements. Thus mesh refinement produces
convergence toward correct results.

3.7 ELEMENTS WITH “DRILLING” D.O.F.

A “drilling” d.o.f. is a rotational d.o.f. whose vector is normal to the plane of an element.
Thus 6, is a drilling d.o.f. at node i for an element in the xy plane. Elements with drilling
d.o.f. are not yet in common use, so we discuss them only briefly.

An element edge that has a midside node can deform into either a straight or a para-
bolic shape. As shown below, translational d.o.f. at midside can be expressed in terms of
translational and drilling d.o.f. at corners. This permits an exchange: translational d.o.f. at
midsides are traded for drilling d.o.f. at corners. Consider the LST element in Fig. 3.7-1a.
Let u, represent displacement normal to side 2-3. Normal displacement at node 5 1s writ-
ten

Uys = %(unl + Mn}) + %(9:3 - 9:2)L23 (37_1)

where 6., and 8.5 are drilling d.o.f. at nodes 2 and 3 and L, is the length of side 2-3.
Tangential displacement at midside is written

Uys = 51 + Us) (3.7-2)

These equations mean, for example, that if u,, = u,; =0 and 65 =0, = 9, side 2-3 dis-
places into a parabola with end rotations 6 and center displacement u,;5 = BL+/4.1f 8., =

(a) (b) (c)

Fig. 3.7-1. (a) Displacements normal to one side of a LST element. (b) The d.o.f. in a LST ele-
ment. (¢) The d.o.f. in a triangular element with drilling d.o.f.
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Equaticns analogous to Eqgs. 3.7-1 and 3.7-2 are also written for the remaining two
sides. When these six equations are substituted into the shape functions of the LST ele-
ment, along with sine and cosine terms to relate directions # and s to directions x and vy,
midside nodes disappear and their d.o.f. are replaced by drilling d.o.f. at corner nodes.
Because the three edge strains g, are constrained to be constant, there is a reduction of
three d.o.f. in the process. Also, the drilling d.o.f. have a “do-nothing” aspect that makes
them less effective: if they are all equal, they have no effect on element strains. Thus we
do not have nine useful d.o.f. in Fig. 3.7-1c.

The Q8 element can be similarly treated. We then exchange a 16 d.o.f. element having
corner and midside nodes, each with translational d.o.f., for a 12 d.o.f. element having
only corner nodes, each with translational and drilling d.o.f. Again, if all drilling d.o.f. are
equal, the element displays no strain. The 12 d.o.f. element behaves rather like the Q6 ele-
ment but cannot model pure bending exactly if Poisson’s ratio v is nonzero. To see this,
consider a one-element beam that lies along the x axis. Under pure bending we should
have g, = —ve, = —v(My/El). But &, cannot be linear in y because constraints such as Eq.
3.7-2 make &, independent of y.

FE analysis of shells provides a motivation for the use of drilling d.o.f. A shell ele-
ment combines membrane and bending actions and thus is analogous to a 3D beam ele-
ment, which combines bar and beam actions. Three displacements and three rotations are
active at each node of a shell, in order to accommodate 3D beam elements that serve as
stiffeners, and also to allow shell elements to meet at an angle, as they do along a fold
line. If flat elements are used, they model a shell as a faceted surface and accordingly all
interelement boundaries become fold lines. Since three rotational d.o.f. per node are ac-
tive at the global level it would be wasteful to omit their element-normal (drilling) com-
ponent at the element level if its inclusion can provide an improved element.

3.8 ELEMENTS OF MORE GENERAL SHAPE

Equations in Sections 3.4, 3.5, and 3.6 have a form that limits quadrilateral elements to
rectangular shape. However, commercial software allows quadrilateral elements to be of
general shape. The limitation to rectangular shape is overcome by expressing displace-
ments and strains in an auxiliary coordinate system. The theory is explained in Sections
4.4 to0 4.7. For now the following brief description is sufficient.

Examples of nonrectangular elements appear in Fig. 3.8-1. Sides having side nodes
may be curved, which allows a better geometric approximation of a curved boundary. A
side node may also be shifted toward a corner. But these geometric distortions are usu-

(a) (b) (c)

Fig. 3.8-1. (a,b) Nonrectangular quadrilaterals. (¢) Triangular element
with a curved side. (Note: curved sides are neither necessary nor advocated.)
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S Fig. 3.8-2. Dashed lines show the displacement
F ’r F mode v = (1 — £?)g, in a Q6 element of trapezoidal
83 shape.

ally detrimental to accuracy. Of course we cannot model a structure of arbitrary shape
using only rectangles; we must be able to fit the actual geometry reasonably well and be
able to grade the mesh from coarse to fine near a region of interest. However, as a rule ele-
ments behave best when they are of a compact regular shape. Accordingly, it is usually
best to keep corner angles approximately equal and avoid elongated elements. LST and
Q8 elements should usually have straight sides and side nodes at midside. It is proper to
use a curved side to fit the shape of a hole or a fillet, but all element sides inrernal to the
mesh should be straight. Whether well shaped or badly shaped, all elements discussed
thus far can represent exactly any state of constant strain and will provide convergence
toward correct results as a mesh is repeatedly refined.

For one type of element in particular it is not hard to see that accuracy must decline
with increasing shape distortion. Under pure bending, top and bottom surfaces of a beam
have practically the same radius of curvature. Let a pure bending load be applied to the
distorted Q6 element shown in Fig. 3.8-2. Mode v = (1 — £)g5 is activated so that top and
bottom edges become arcs, as shown by dashed lines. However, the arcs have much dif-
ferent radii. The discrepancy increases as the amount of shape distortion increases.

Remember: quadrilaterals of general shape behave much like the rectangular elements
described in Sections 3.4, 3.5, and 3.6, provided that elements are well shaped as ex-
plained above.

3.9 LOADS

Mechanical loads consist of concentrated loads at nodes, surface traction. and body force.
Traction and body force loads cannot be applied directly to a FE model. Instead, they
must be converted to equivalent nodal loads in the manner now described. Here we con-
sider plane elements that have translational d.o.f. only.

In a plane problem, surface traction may act on internal and/or external boundaries of

//bl- B / B F, 2 11{q
’ T ’ { A} = £l 2]{ A}

o

(a) (b) (c)

Fig. 3.9-1. (a) Linearly varying distributed load on a linear-displacement edge. (b,c) Work-equiva-
lent nodal loads.
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Fig. 3.9-2. Allocation of a uniformly distributed load g as work-equivalent nodal forces on edges
having linear displacement variation.

a FE mesh. A traction has arbitrary orientation with respect to a boundary but usually is
expressed in terms of components normal and tangent to the boundary. A commonly used
traction is pressure p, which acts normal to a boundary in the compressive sense.
Boundary pressure p is equivalent to a line load ¢ = pz, where ¢ is the thickness of the
model. The dimensions of ¢ are [force/length].

In Fig. 3.9-1, traction ¢ and the edge displacement in the direction of g both vary lin-
early with the edge-tangent coordinate s. Nodal loads F, and Fp are applied to the FE
model instead of g. These loads are “work-equivalent,” meaning that an edge displace-
ment produced by displacements of nodes A and B causes distributed load g to do the
same work as is done by nodal loads F, and F, in moving through the nodal displace-
ments. That is, if v = v’(s) is the component of displacement normal to edge AB in Fig.
3.9-1, work-equivalency requires

L
Foug + Fpog = fv’(q ds) (3.9-1)

0

where v’ = (L — s)v4/L + svg/ L, for all values of v, and vj. The mesh layout and displace-
ment field within the element do not matter: if g and the edge displacement are linear,
then work-equivalent loads are as stated in Fig. 3.9-1c. Nodal loads combine at shared
nodes. This point is made in Fig. 3.9-2, where a uniform edge-tangent traction is shown
acting on elements whose edges are collinear and of the same length.

Similar results appear in Figs. 3.9-3 and 3.9-4. Traction g in Fig. 3.9-3 varies quadrati-
cally with s, as does edge displacement in the direction of ¢. If edge ABC is straight and
node B is at midedge, then work-equivalent nodal loads are as stated in Fig. 3.9-3c.

q Fg
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9 A
qc¢ Fc
A A
/ B /
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Fig. 3.9-3. (a) Quadratically varying distributed load on a quadratic-displacement edge. (b,c)
Work-equivalent nodal forces.
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Fig. 3.9-4. Allocation of a uniformly distributed load g as work-equivalent nodal forces on edges
having quadratic displacement variation and midside nodes. (See data in Fig. 3.9-3c.)

Accordingly, a uniform g produces the nodal loads shown in Fig. 3.9-4. Note that edge
nodes carry more force than corner nodes. Work-equivalent nodal loads usually provide
greater accuracy than a “lumping” in which all nodes carry the same force, although in ei-
ther case exact results will be approached as the mesh is repeatedly refined.

Figure 3.9-5 shows work-equivalent loads for a uniform body force in the negative y
direction. The total force is weight W of the element in each case. The orientation of an
element in the xy plane does not matter, but quadrilaterals must be rectangular if the
nodal loads shown are to be work-equivalent. In Fig. 3.9-5¢ and 3.9-5d we see some sur-
prises. Vertex nodes of the LST element are not loaded. Corner nodes of the Q8 element
carry upward loads, but the sum of all eight nodal loads is W, acting downward, as must
be the case.

Most software is capable of automatically calculating equivalent nodal loads of proper
magnitude and direction and combining them at shared nodes. The user need only pre-
scribe the direction and intensity of the distributed loading. Software does not require that
edges be collinear or of the same length.

A concentrated moment cannot be applied to a node of CST, LST, Q4, Q8, or Q6 ele-
ments because these elements use only translational d.o.f. This means that if a 2D beam
element is attached to plane elements in the manner shown in Fig. 3.9-6a there will be a
hinge connection at A, which transmits only force. This arrangement is a mechanism and
K will be singular. An ad-hoc arrangement that transmits both force and moment is
shown in Fig. 3.9-6b. The beam has been extended into the plane body by adding two
beam elements, AB and BC. (Adding only one beam element, AB, is an equally plausible
alternative [3.4]). Translational d.o.f. of beam elements and plane elements are connected
at nodes A, B, and C. Nodal d.o.f. 8, at these nodes are associated with only the beam ele-

12 W

W
12

(a) (b) (c) (d}

Fig. 3.9-5. Work-equivalent nodal forces associated with element weight W, for triangular and rec-
tangular quadrilateral elements.
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Fig. 3.9-6. Connecting a 2D beam element to plane elements. (a) No moment is trans-
ferred. (b) Moment is transferred.

ments. If plane elements have drilling d.o.f. (Section 3.7) the connection of Fig. 3.9-6a
transfers moment, although such a connection is not recommended. In any case one
should not expect that stresses in the plane body will be accurately calculated near node A.
An alternative way to connect beam elements and plane elements is noted in Section
4.13.

3.10 STRESS CALCULATION. OTHER REMARKS

Stresses. After nodal d.o.f. have been computed, conventional software calculates
stresses by means of Egs. 3.1-2 and 3.1-8, that is, & = EBd + o, This equation is applied
clement by element, not globally. In general, B is a function of the coordinates, so the
user (or the author of the software) must decide where in the element stresses should be
computed. Stresses tend to be more accurate within an element than on its boundary (see
Fig. 2.5-4). This is unfortunate because stresses are usually largest at boundaries of the
structure, which of course are also boundaries of some elements. Usually it is best to cal-
culate stresses at certain points within an element, then extrapolate from these values to
obtain element boundary stresses. This matter is discussed further in Section 4.7.

An alternative method of stress calculation has been devised [3.5], but at the present
writing it is not available in commercial software. The alternative method does not use
the conventional calculation € = Bd. Instead, it computes element nodal forces r = kd.
where element nodal d.o.f. d are available from D after solving the global equations
KD = R. Then a least-squares process is used to compute an element stress field that
equilibrates r. The alternative method is more complicated than the conventional method
but has three important benefits. First, there is better accuracy when loads (rather than
nonzero displacements) are prescribed. In contrast to the conventional method, stresses
may be at least as accurate as displacements. This happens because nodal forces equili-
brate loads applied to the structure and therefore may be exact or nearly so even when
displacements are underestimated due to overly stiff elements (e.g., as in Figs. 3.6-1 and
3.11-1c). Second, the method avoids difficulties associated with matching strain fields
and temperature fields [3.6], which is described in a simple context at the end of Section
2.6. Third, the method is relatively insensitive to element shape distortions.

Software may report stresses in either local or global coordinates. For example, flex-
ural stress in a beam is reported in local coordinates because by definition flexural stress
is a normal stress in the beam’s axial direction. As another example, if a plane element is
arbitrarily oriented in space its membrane stresses will be reported with reference to local
axes xy in the plane of the element. The user of software must study the documentation to
understand how stresses are presented and what options are available.
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Some useful stress quantities are invariant; that is, they have the same numerical value
in any coordinate system. One such quantity is the von Mises, or “effective,” or “equiva-
lent” stress

[(0'1 "0'2)2 + (0, “0'3)2 + (0o, —O’,)z]l/z (3.10-1)

1
0, =—=
2

where 0, 0,, and o are the three principal stresses at the point in question, with o the
algebraically largest and oy the algebraically smallest. Equation 3.10-1 reduces to 0, = 0,
if o, is uniaxial, that is, if 0, = 0 = 0. Note that o, may exceed the magnitude of o) as,
for example, when o, = —05. An alternative form of Eq. 3.10-1, which provides the same
value of @,, can be written in terms of all six nonprincipal stresses (three normal and
three shear). Another invariant stress is the “stress intensity” SI,

SI=0, - o, (3.10-2)

which is twice the maximum shear stress. Note that SI is nor the stress intensity factor
used in fracture mechanics. In general, one does not associate a direction with o,. The
planes on which SI acts can be determined, but one usually does not care what they are.
Both o, and SI are used in failure theories, which state that yielding begins when o, or ST
(depending on the theory) reaches a limiting value.

Because 0, represents the entire state of stress, contours of o, are often plotted and ex-
amined for their interelement continuity, as a way to visually estimate the discretization
error of computed stresses. Contours of (say) o, might be similarly informative in one
part of a FE model but not in another part because a stress other than o, is dominant
there. Symmetry of the FE model and its loads and supports provides symmetry of o,
contours but may not provide symmetry of contours of any particular stress that con-
tributes to ©,.

As an option in most software, stresses may be averaged at nodes. Thus if n elements
meet at a node, the n values of (say) o, are added and the sum divided by n. Sometimes
contributions to the sum are weighted, by element volume, proximity of the element cen-
troid to the node, or some other factor. At nodes interior to the mesh. the average stress
may be the most accurate stress that the current discretization can provide. At nodes on
the boundary of the mesh, greatest stress accuracy is usually provided by extrapolation,
using a polynomial field fitted to stress values at several nearby points, including interior
nodes and/or points within elements.

However, there are good reasons nof to average stresses at nodes. Two parts joined by
a shrink fit have different normal stresses in directions tangent to the interface. An aver-
age stress would not represent the actual stress on either side of the discontinuity. A dis-
continuity of thickness or modulus also causes a discontinuity in stress. As examples, in
Fig. 3.10-1a, 0, would be discontinuous at x = 0 because an x-direction force is applied to
different cross-sectional areas. In Fig. 3.10-1b, o, would be discontinuous at x = 0 be-
cause both parts have the same &, but E &, # E;£,. In Fig. 3.10-1c, different coordinate
systems are used for stress computation, and an average such as (0, +0,)/2 would make
no sense for a node on interelement boundary AB. Finally, stress contours based on nodal
average siresses are interelement-continuous and are thus deprived of error information.
Stress contours plotted from unaveraged stresses have discontinuities at interelement
boundaries. The amount of discontinuity is a qualitative measure of whether or not mesh
refinement is adequate (see Fig. 1.3-2).
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Fig. 3.10-1. Examples of situations in which stresses should not be averaged at a node. (a,b)
Plane elements seen in cross section, with Cartesian coordinates xyz. (c) Plane elements seen
in plan view, with interelement boundary AB.

Element Connections. Elements of different types can be connected to one another, but
not in completely arbitrary fashion. Some unacceptable connections appear in Fig.
3.10-2. The “connection” at A is in fact no connection at all because a CST element has
no side node. Connections between a two-node edge (CST and Q4 elements) and a three-
node edge (LST and Q8 elements) should be avoided, because the side node is left uncon-
nected, and clearly there is a mismatch in displaced shapes of adjacent edges: one is
straight, the other parabolic (line BC in Fig. 3.10-2). Two two-node edges should not be
connected to one three-node edge because two straight edges do not match a parabolic
edge (lines CD and EF). Also, three-node edges should not be connected so that side
nodes are joined to corner nodes: both edges deform as parabolas, but in general they are
different parabolas (along line GH). The Q6 element is by nature incompatible but be-
comes compatible with mesh refinement. Connections like those in Fig. 3.10-2 are not fa-
tal. They cause poor results locally but the effect dies away with distance, in accord with
Saint-Venant’s principle. Nevertheless, there is the danger that artificial local stress dis-
turbances will be mistaken for actual physical behavior. One could make most connec-
tions in Fig. 3.10-2 “legal” by constraining three-node edges to remain straight, but then
d.o.f. of the side node would be rendered useless. (Most software allows the user to im-
pose such constraints.)

Elements with side nodes can be formulated in a way that allows any number of side
nodes to be deleted. In Fig. 3.10-2, for example, the side node along BC could be deleted
from the LST formulation, so that adjacent element sides along BC would both be two-
node sides and would deform as straight lines. Accordingly, if done properly, elements of
many differing types can be connected (e.g., Fig. 1.2-1).

Supports. Plane elements have no resistance to forces normal to their plane and no resis-
tance to nodal moment loads (unless the elements have drilling d.o.f.). Accordingly, out-
of-plane translation and all rotations must be suppressed at all nedes of a plane FE model.
A moment load, if present, must be applied as equivalent couple-forces on a pair of

Q4 csT Q4 LST
Q8

LST Q6

b £ Fig. 3.10-2. Examples of how nor
Many poor connections! H to connect elements.
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nodes. Elements remain able to rotate in the analysis plane. Also, nodes lie in the analysis
plane and do nothing to inhibit transverse normal strain associated with the Poisson effect
in a plane stress problem.

Other Element Types. Thus far we have used as nodal d.o.f. only “low-order” quanti-
ties, such as displacement d.o.f. in bar, plane, and solid elements, and displacement and
rotation d.o.f. in beam, plate, and shell elements. Theory permits any number of d.o.f. per
node. For example, we could formulate a bar element that uses axial displacement u and
axial strain du/dx as d.o.f. at each node. Elements having such “extra” d.o.f. are not usu-
ally found in commercial software. Most current software is not structured to accommo-
date more than the essential number of d.o.f. per node. Also, interelement continuity of
derivatives is not always proper (consider dw/dx in Fig. 3.10-1a). Finally, stress boundary
conditions may dictate relations among the extra d.o.f. at a boundary node but not their
numerical values, which is awkward.

Elements discussed thus far, and indeed most elements in common use, are based on
displacement fields such as Eqs. 3.2-1 and 3.3-1. There are other formulation methods,
many based on simultaneous use of separate fields for displacement and stress. Such ele-
ments have displacement d.o.f. and the user may be unaware of the nature of the element.
In any case the user should study the software documentation and try some simple test
problems in order to understand how an element behaves before using it in applications.

3.11 COMPARATIVE EXAMPLES

Plane elements of different types can be compared by using them to solve a particular
problem. We caution that a single problem does not tell all: an element type best in one
problem may not be best in another. Also, different software may contain implementa-
tions of a given element that differ because of minor adjustments (that we have not dis-
cussed) whose purpose is to enhance element behavior. The reader is encouraged to try
additional meshes for the following problem, and to try other problems as well. A partic-
ular suggestion is that FE be used to solve stress concentration problems, for which al-
most-exact results are widely available. Such problems illustrate the effects of element
type, size, aspect ratio, and mesh layout.

The test problem chosen here is that of Fig. 3.11-1a, a cantilever beam of unit thick-
ness loaded by a transverse tip force. Loads, properties, and dimensions are assumed to
be in a consistent set of units. Plane stress conditions prevail. In the calculation of tip de-
flection, 6/5 is the standard transverse shear deformation factor for a rectangular cross
section. In Fig. 3.11-1b, nodal loads on the quadratic edge come from Fig. 3.9-3¢c with
g4 = qc = 0, in accordance with the parabolic distribution of transverse shear stress that
beam theory predicts. Support conditions are consistent with a fixed end but without re-
straint of y-direction deformations associated with the Poisson effect. Stresses are calcu-
lated in the conventional way, using Egs. 3.1-2 and 3.1-8.

With only two nonzero d.o.f., the simple plane beam element of Section 2.3 solves the
problem exactly when transverse shear deformation is included in its formulation. As ex-
pected, CST elements perform poorly. Q4 elements are better but not good. LST elements
give an accurate deflection but a disappointing stress. Q6 and Q8 elements are the best
performers. In the rectangular Q6 element, the stress ¢, at x = 1 (midway between nodes)
is exact, but since 0, is independent of x in this element, the same o, is reported at node
B. In most of these FE models, distortion and elongation of elements are seen to reduce
accuracy. In the latter Q8 example the amount of distortion is sufficient to provoke a
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Fig. 3.11-1. (a) Cantilever beam problem. (b) Supports and loads for FE analysis. (¢)
Results from models built of various types of plane elements.

warning from the software. Further distortion of elements may cause accuracy to decline
precipitously, not gradually as one might expect. Some arrangements of Q4 and Q6 ele-
ments are prone to locking [3.2, 3.7].

3.12 AN APPLICATION

A flat square plate contains a central circular hole, which is loaded by pressure p. The
geometry and elastic properties are depicted in Fig. 3.12-1a. Plane stress conditions pre-
vail. Magnitudes and locations of maximum principal stress are desired. The solution
strategy suggested in Section 1.3 is used in the following analysis.
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Fig. 3.12-1. (a) Flat plate with central hole loaded by internal pressure. (b) Forces that

act on one quadrant. (c) The anticipated displaced shape, greatly exaggerated, is shown
by dashed lines.

Preliminary Analysis. Before undertaking a FE analysis we examine the problem in a
physical way and make simple calculations, in order to anticipate where stresses will be
largest, prepare a good FE model, and obtain approximate results for subsequent compar-
ison with FE results.

Structure, geometry, and loading are all symmetric with respect to horizontal and ver-
tical centerlines. This means that deflections and stresses will have the same symmetries
and we can consider a single quadrant (symmetry is discussed in Section 4.12). Forces F
that act on a representative quadrant are shown in Fig. 3.12-1b. It is easy to calculate F
exactly by statics. The average normal stress on horizontal and vertical cross sections
then follows.

Fepri=7N and Oy =——=23MPa (3.12-1)
(a—r)

Deformations must be symmetric with respect to horizontal and vertical centerlines, and
we expect that pressure will push the slender parts further outward than the more massive
corners. Accordingly, we anticipate the deformed shape shown in Fig. 3.12-1c. We see
that the slender parts have acquired an inward curvature, which must be associated with
bending moments M in the directions shown. The associated flexural stresses will be ten-
sile on the outside, compressive on the inside, and will add algebraically to stress O,,. of
Eq. 3.12-1. Therefore it appears that the maximum stress may appear at B and D rather
than at A and C. But there is another possibility: because arc AEC bends outward there
will be tensile flexural stress at E. Therefore point E is another candidate for the location
of maximum stress.

FE Model and Analysis. We might choose to model only one octant, because there is
symmetry with respect to diagonals as well as centerlines. However, we choose instead to
model a quadrant because support conditions are more straightforward and computed re-
sults can be checked for anticipated symmetries about the diagonal. We arbitrarily elect
to use Q6 elements (Section 3.6), formulated in a way that permits nonrectangular shapes.
For the sake of illustration, we deliberately choose a very coarse mesh for the initial FE
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Fig. 3.12-2. (a) Coarse-mesh FE model, showing support conditions. (b) Contours of ¢,, from
nodal average values. Stress units are megapascals (MPa). (c) Contours of ¢,. without nodal aver-
aging. trom individual elements.

model. The model and its support conditions are shown in Fig. 3.12-2a. The mesh is sym-
metric about diagonal EF and is coarsest near corner # where stresses are certain to be
low because F is a free corner. With the software used, nodal loads associated with pres-
sure along AEC are calculated automatically, and the only support conditions that the user
need impose explicitly are u;, = 0 at nodes i along AB and v, = 0 at nodes / along CD.
Nodal translations w; and all nodal rotation d.o.f. are automatically suppressed by the
software used when it is told that the model is plane.

Critique of FE Results. Computed displacements are examined first, scaled up so as to
be easily visible, and animated. Thus, on the computer screen, we see that nodes along
AB have only y-direction displacement, nodes along CD have only x-direction displace-
ment, all displacements are symmetric about diagonal EF, and the anticipated displaced
shape indicated by dashed lines in Fig. 3.12-1c¢ is indeed obtained. These results are in ac-
cord with the model we intended to describe to the software, so no blunder is yet in evi-
dence. We postpone discussion of the maximum stress until after results from a finer
mesh have been obtained. We qualitatively examine contour plots of the von Mises stress
o, (defined in Eq. 3.10-1). Contours plotted from nodal average stresses and from ele-
ment-by-element (unaveraged) stresses are shown in Figs. 3.12-2b and 3.12-2c. As ex-
pected, contours of ¢, are symmetric about diagonal EF. Aside from reflecting the
coarseness of the mesh, averaged contours give little indication that results are unreliable.
But unaveraged contours show severe interelement discontinuities. Interelement changes
in stress are comparable in magnitude to the stresses themselves! It is now obvious that
the coarse-mesh FE results are not to be trusted.

The quadrant is now modeled by a finer mesh, again using Q6 elements. The same
support conditions as before are imposed on nodes along AB and CD. This time, just to
see what happens, the mesh is made unsymmetric about the diagonal. Note that elements
are smallest near points A, B, C, D, and E, where the largest stresses are expected, and ele-
ments are largest near F, where stresses are known to be low. Note also that elements
near E are “squashed” in the radial direction because Fig. 3.12-2 suggests that stress gra-
dients are much higher in the radial direction than in the circumferential direction. The
displaced shape on the computer screen again appears satisfactory. Numerical values of
nodal d.o.f. u, and v, are found to be not quite symmetric about the diagonal owing to
asymmetry of the mesh. Averaged and unaveraged plots of von Mises stress ¢, are shown
in Fig. 3.12-3. Results are greatly improved over the coarse mesh, but unaveraged con-
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Fig. 3.12-3. Contours of o, from a finer mesh. Stress units are megapascals (MPa). (a) From nodal
average values. (b) Without nodal averaging, from individual elements.

tours still have significant interelement discontinuity. Even averaged contours show ap-
preciable changes in direction where they cross interelement boundaries near AB and CD.
Also, contour lines lack symmetry about diagonal EF and do not intersect lines of sym-
metry AB, CD, and EF at 90° angles. All this suggests a need for even more mesh refine-
ment.

Numerical results from both meshes are listed in Table 3.12-1. These numbers are ob-
tained directly from output files, not by visual inspection of displacement plots and stress
plots. Displacement results are reasonable; they show that AB and CD have shortened, as
should be expected from the combination of compressive radial loading and the Poisson
effect with circumferential tension. Computed displacements also show that the finer
mesh is more flexible than the coarse mesh. Such is usually the case but cannot be guar-
anteed for the Q6 element because it is an incompatible element (see Section 4.8). At cor-
ner F, all stresses are zero according to theory. Computed values of o, at F are small and
decrease with mesh refinement, as expected. At a point such as A, g, (not shown in Table
3.12-1) is found to be almost equal to o at A. Theoretically, o, = o, at A. The discrep-
ancy is due to 7,,, which is small but not quite zero as theory says it should be on an axis

TABLE 3.12-1. Selected displacements and maximum principal stress o, in the FE
models of Fig. 3.12-2 (coarse mesh) and Fig. 3.12-3 (finer mesh). Displacements are in
mm. Stresses are in MPa.

Node Coarse Mesh Finer Mesh

i 10%; 108y, o, 108, 10%, g,

A 0 2.08 2.11 0 2.28 1.92
B 0 1.78 2.28 0 1.96 3.01
C 2.08 0 2.11 2.34 0 1.84
D 1.78 0 2.28 2.01 0 3.12
E 1.22 1.22 2.68 1.27 1.24 3.16
F 0.97 0.97 0.38 0.98 1.00 0.21
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agreement with Eq. 3.12-1. The largest o, anywhere in the structure is at A and C or at E
(we cannot be sure which without more refinement) and has a numerical value of about
3.1 MPa.

In summary, computed results are reasonable but as yet we cannot trust them. An er-
ror measure for the stress field, discussed in Section 5.16, gives 17 = 0.373 for the
coarse mesh and 1 = 0.183 for the finer mesh. These measures also indicate that results
are not yet to be trusted. Another mesh refinement is called for. The next mesh should
build on information in Fig. 3.12-3 by making elements smallest where stresses and
stress gradients are largest. By plotting a particular stress or a particular displacement
versus element size, as computed from three or more meshes, one could extrapolate to
zero element size, and thus obtain a predicted result for infinite mesh refinement (see
Section 5.15). Hence the percentage error of a result from a given mesh can be esti-
mated.

We may now admit that a FE analysis probably is not needed: a solution of the prob-
lem appears in [3.8], where we find the experimentally determined values o, = 2.9 MPa
at Band D and 0y = 2.7 MPa at E. It is wise to ask at the outset if a FE analysis is really
necessary, as it is not a trivial task.

Related Problems. If the problem is changed to one of plane strain rather than plane
stress, computations eventually fail as Poisson’s ratio v approaches 0.5. By trial, it was
found that coarse-mesh Q6 element results in plane strain were reasonable up to v =
0.499999990 but ridiculous when v = 0.499999999. In plane stress or plane strain, and for
any value of v, if ligament thickness a ~ r becomes much less than a, the problem be-
comes inherently nonlinear because then stresses in ligaments are strongly influenced by
the displaced shapes of ligaments, and the displaced shapes are not known in advance. A
linear solution, as used in the foregoing example, presumes that displacements do nothing
to alter the way load is carried.

ANALYTICAL PROBLEMS

3.1 (a) Over adistance dx, stress 0, changes by the amount (30,/0x)dx as shown in the
sketch. Stresses 0, and 7,, experience similar changes, over distances dx and dy.
Force is stress times area, and thickness is constant. Take these remarks as sug-
gestions and derive the plane equilibrium equations, Egs. 3.1-11.
(b) Repeat part (a) but work in three dimensions. Thus there are three normal
stresses and three shear stresses, and there are three equilibrium equations.

& 9o
o, + e dx
< \j dy ——D
Ox

o
Problem 3.1
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The cantilever beam shown is tip-loaded by a moment M. Assume that Poisson’s ra-
tio is zero. Use beam theory to compute the displacement components of points D,
E, and F. Regard these results as nodal displacements, and use them to compute
stresses in elements defined as follows.

(a) A CST element whose nodes are A, E, and C.

(b) A CST element whose nodes are B, D, and F.

(c) A Q4 element whose nodes are A, D, F, and C.

Express the stresses in terms of M, L, ¢, and thickness ¢.

»u
]\— C: F
¢
~X~ B E) M
Ao
_\Y_ A X, u

: D

< L ! Problem 3.2

Repeat Problem 3.2 but replace moment M by a tip force P in the y direction.
Neglect transverse shear deformation.

Evaluate the stresses in Fig. 3.2-2b, as suggested in the last sentence of Section 3.2.
Let Poisson’s ratio be zero. Suggestion: obtain u, and v, from beam theory. Will the
FE model actually provide these deformations?

Let the cantilever beam of Fig. 3.2-2a be modeled by LST elements rather than CST
elements. Apply a transverse tip force in the y direction. Will computed results be
exact? Why or why not?

(a) For the element shown, determine shape function N, in terms of y and b (see
Fig. 3.3-1 for a hint).

(b) Shape function N, for this element is N, = 1 — (y/b) — (x/a)* + (3/2b)*. Show that
N, is unity at node 4 and zero at the other five nodes.

(c) Let us, vs, us, and v, be the only nonzero d.o.f. In terms of these d.o.f, x. y, a,
and b. what are the element strains?

1 4 2
fe—a—sts—a—> Problem 3.6

Generalized coordinates f; can be expressed in terms of nodal d.o.f. by substitution:

for example, in Eq. 3.2-1 we obtain u, = 3, + fox; + B3y, where i = 1, 2, 3. Thus we

obtain a set of three equations that can be solved for f3,, ,, and f;.

(a) Write this set of equations in matrix format for the CST of Fig. 3.2-1. Do not
bother to solve.
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3.8

3.9

3.10

311

3.12

3.13

3.14

(c) By comparison of Egs. 3.4-1 and 3.4-3, write the f; in the first of Egs. 3.4-1 in
terms of nodal d.o.f. u;.

A uniform beam is modeled by Q4 elements, as shown. Qualitatively, and without
calculation, plot ¢, and 7, along the top edge from A to C, as predicted by the ele-
ments. Also plot the exact stresses according to beam theory. Consider each of the
following loadings.

(a) F,=0, F,=F,

(b) Fi =0, F,=-F,

(c) Fi,>0, F,=Fy=0.

(d) Repeat parts (a), (b), and (c) with Q6 elements.

Let axes x and y originate at node 1 of a Q4 element, as shown. For this choice of
axes write appropriate shape functions ¥, through N,, analogous to the shape func-
tions in Eq. 3.4-3.

i , i 3 T
25
Fl ! 2 _\l/___ xXou

Problem 3.8 Problem 3.9

Imagine that nodal d.o.f. in Fig. 3.4-2c are v, = uy = —¢, u, = u, = ¢, where c is a
constant, and all v; = 0. Use Eq. 3.4-4 to express element strains in terms of a, b, ¢,
x, and y.

Let a Q8 element be a 2 by 2 square, so that a = b = 1 in Fig. 3.5-1. According to
Eq. 3.5-3, what element strains are associated with nodal d.o.f. u,, v, us, and vg?
Imagine that nodal d.o.f. in a rectangular Q6 element are v, = vy =c¢, U, = U4 = —,
where ¢ is a constant, and all «; = 0. If the element is a Q6 element, what is g, in Eq.
3.6-27

For 0 £ x £ 2a in the sketch, lateral displacement v depends on v,, v,, and v,. Shape
functions for these d.o.f. are provided in the sketch. Obtain the four shape functions
associated with d.o.f. vy, vs, 6, and 6.;, where the two drilling d.o.f. replace v.,.
Note: this is an exercise in manipulation, not a physical problem.

v=2XNyy;
. Ny = (x2 - 3ax + 2a2)/2a2

YU
? : : No = x{2a - x)a?
vy v2 v3 Ny =xlx - a)2a?

< >

Problem 3.13

Let a plane element have three or more sides, side lengths L, , midside normal dis-
placements u,; , and all corner translational d.o.f. set to zero. Show that use of
drilling d.o.f. implies the constraint 2(u, /L;) = 0, where the summation includes all
sides.



70 Plane Problems
PDF Compressor Free Version

3.15 For rectangular elements, are Q4 and Q6 results in Fig. 3.11-1 in approximate
agreement with Eq. 3.6-1? Suggestion: the coefficient of M, in Eq. 3.6-1 can be re-
garded as a factor that relates displacements in Q4 and Q6 elements subjected to the
same bending moment.

3.16 Show that the nodal loads are work-equivalent in (a) Fig. 3.9-1, (b) Fig. 3.9-3, with
ga=qg=qc, (c) Fig. 3.9-5b, and (d) Fig. 3.9-5d.
3.17 Show that nodal forces calculated according to Fig. 3.9-3c are statically equivalent
to the following loadings on a plane body of unit thickness.
(@) g.= 0, gz =0, and g, = —0 (corresponding to a flexural stress distribution with
B on the neutral axis).
(b) g, =0, gz = 072, q- = 0 (corresponding to a flexural stress distribution with A
on the neutral axis).
(©) g4=¢qc=0, gz = T, where Tacts tangent to ABC (corresponding to a shear stress
distribution on a beam of rectangular cross section).

3.18 On a straight linear element edge, what ¢ = g(x) is equivalent to a concentrated
nodal force? For example, set F, = 0 in Fig. 3.9-1.

COMPUTATIONAL PROBLEMS

In the following plane problems compute significant values of stress and/or displace-
ment, as appropriate. Exploit symmetry if possible. Choose convenient numbers and
consistent units for material properties, dimensions, and loads. When mesh refinement
is used, estimate the maximum percentage error of FE results in the finest mesh. Unless
directed otherwise, assume unit thickness, plane stress conditions, and isotropic materi-
als.

A FE analysis should be preceded by an alternative analysis, probably based on stat-
ics and mechanics of materials, and oversimplified if necessary. If these results and FE
results have substantial disagreement we are warned of trouble somewhere.

3.19 The rectangular structure shown may be modeled by Q4, Q6, or Q8 elements. Use
elements of approximately the shape shown. Space nodes uniformly along the right
edge, where uniform pressure p is applied. Do computations twice: first represent p
by equal nodal forces, then represent p by forces computed from Fig. 3.9-1 or Fig.
3.9-3, as appropriate.

¥

Prrd

Problem 3.19

3.20 In Problem 3.19, let p = 0 and apply instead the temperature field AT = cx, where ¢
is a constant. Then repeat the calculations, using AT = cy. Are results reasonable? If
results differ for the two thermal loadings, explain why.
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PDF Conppiessardoree Vapsion work-equivalent nodal loads but revise the mesh so as to
include one or more of the “poor connections” of Fig. 3.10-2. Use additional el-
ements as necessary but maintain the rectangular shape of the body. (With a
fine mesh one can study the degree to which the effect of the connection is lo-
calized.)
3.22 One can undertake a systematic study of the effects of mesh distortion [3.7,
3.9]. For example, if the beams shown are modeled by Q4 or Q6 elements, one
could vary ¢ (or £/H) while keeping €/H (or ¢) constant. Using LST or Q8 ele-
ments, one could vary ¢ or s/H. Loading may be by tip moment or transverse tip
force.
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Problem 3.22

3.23 As a variant of Problem 3.22, use plane strain conditions, maintain a chosen mesh
distortion, and investigate what happens as Poisson’s ratio approaches 0.5.

3.24 Part (a) of the sketch shows a curved beam under pure bending load, as modeled by
a single Q8 element having two curved sides. Alternative Q8 element models can
have straight sides. The parallel sides may be tangent to arcs as in part (b), chords
of arcs as in part (c), or something in between. Also, angle € and the radius ratio
ry/r; may be varied. By calculation, examine the relative merits of these FE models.
For comparison, an analytical solution for circumferential and radial stresses is well
known [1.5, 2.1].

N
¥>/ N

(a) (b (¢}
Problem 3.24

3.25 The rectangular plate shown contains a hole and is securely bonded to a rigid base
on the bottom and to a rigid bar on the top. Peak values of o, (Eg. 3.10-1) in the
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neighborhood of the hole are desired. Load the model by translating the rigid bar,
an amount (a) i, in the x direction, or (b) v, in the y direction.

»v
< L 1 Rigig
_ < bar
H
R T+ T
h
—_ ; T T N L X, U
fe— (— Problem 3.25

3.26 (a) As a variant of Problem 3.25, reinforce the hole by doubling the z-direction
thickness of material from the edge of the hole out to a radius cR, where con-
stant ¢ might be 1.3 or so.

(b) As another variant of Problem 3.25, instead of doubling the thickness of mater-
ial out to radius cR, uniformly raise the temperature of this material. Do not
change the temperature of the remainder of the structure. but omit the rigid bar
on top.

3.27 A centrally loaded beam is supported at both ends, as shown. Compute flexural
stress o, at x = 0 on top and bottom surfaces. Compare FE results with the flexure
formula o, = My/I.

(a) Choose numerical values such as P = 1, L = 12, and various values of / in the
range 4 < H €36 [1.5]. Build the FE model using plane elements.

(b) Model the structure by a minimal number of 2D beam elements. Compare de-
flections with deflections obtained by use of plane elements in part (a).

(c) Repeat part (a) but make the right-hand support like the left, that is, impose
both x- and y-direction restraint at both supports.

3.28 (a) The “fixed support” of a cantilever beam must in reality be elastic. Assume that
the cantilever beam shown is attached to a very large plane body having the
same thickness and elastic properties as the beam. By what amount is the tip ro-
tation 8, = ML/EI of the beam increased by deformation of its suppert [1.5, 3.10]?

(b) Investigate the beam-to-plane connection shown in Fig. 3.9-6b. How well does
it model the elasticity of the beam’s support?

ro g
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b
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Problem 3.27 Problem 3.28
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3.30

material properties are identical except that their coefficients of thermal expansion
¢, and «, are different. Stresses due to uniform heating are desired. Supports (not
shown) apply no force. Suggestions for checking: If H, and H, are much smaller
than L, is it reasonable that stresses are independent of x except near ends? By in-
spection, whatis 7, atx =y =0 and at x = L, y = 07 What is a probable upper bound
for the magnitude of any normal stress, for example, with v = 0 to make it simpler?

N

¥
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o2 H,
¥
f L > Problem 3.29

A horizontal elastic medium (e.g., soil or rock) is loaded by its own weight. Assume
that the initial state of stress is hydrostatic, as in a fluid. Next, excavate a vertical cut
of height # and/or a tunnel of radius R, as shown. What is the change in the state of
stress and the final state of stress? Assume that plane strain conditions prevail. For an
alternative initial state of stress, consider uniform compression in the x direction only.

"

HEES

Problem 3.30

3.31 The structures shown consist of bars of square cross section (shown by double

lines) securely connected to flat sheets of the same material. Centerlines of bars and
midsurfaces of sheets lie in the same plane. Let FE models consist of plane ele-
ments of thickness ¢ and bar elements of cross-sectional area A. In sketch (a), H, +
H, = 3L, L =500¢, and A = (H, + H,)t are suggested. Is it reasonable to neglect the
bending stiffness of the bars? Find out by repeating the analysis with bending stiff-
ness included.

: L S = L ;
i ] _/r — P
Hl | |
P %‘ { M ////
Hy { ////
¥ ] ] -

(b)
Problem 3.31
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A thick-walled circular cylinder under internal or external pressure can be modeled
by a row of plane elements, with two boundaries of the mesh constrained to dis-
place only radially (see sketch). Should the mesh spacing be uniform in the radial
direction, as shown? What is the effect of changing r/r,? How many elements are
needed for (say) 95% accuracy? What should angle 8 be, and what happens if it is
too large?

-

he—s R ‘ Problem 3.32

Analyze the structure depicted in Fig. 1.3-1.

Problems related to the example problem in Section 3.12 are as follows.

(a) Refine the mesh yet again and obtain reliable values of ;.

(b) Model an octant of the structure rather than a quadrant.

(¢) Choose other values of /a, or let the outline be a rectangle rather than a square.

Any of the preceding computational problems can be modified by making the mate-
rial orthotropic. For a simple choice, with n and s orthogonal principal axes of the
material, let E, = 8E, and G = 2E,, with zero Poisson ratios. Thus E becomes a di-
agonal matrix. Axes n and s may be oriented arbitrarily with respect to global axes.

Many stress concentration factors have been tabulated [1.5, 3.8], especially for
plane bodies. Textbooks on mechanics of materials usually contain some of these
results for circular holes and fillets in bars loaded in tension and in bending. A FE
analysis can be undertaken, using progressive mesh refinement near the point of
peak stress, until error is reduced to less than (say) 5%.
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CHAPTER 4

[soparametric Elements and
Solution Techniques

The chapter first discusses matrix sparsity, equation solving, and transformations. The
associated manipulations are largely internal to software and typically the user has little
control over them. The next four sections consider the popular isoparametric approach to
FE formulation. The nature of the FE method and its convergence to correct results are
then summarized. Final sections discuss infinite media, substructures, symmetry, and
constraints. The latter topics are matters of element formulation and equation manipula-
tion that are largely under the control of the FE user.

4.1 NODE NUMBERING AND MATRIX SPARSITY

Demands on computer storage and the speed of program execution are strongly influ-
enced by the way in which global stiffness coefficients K; are stored. In turn, the storage
format depends largely on how nodes and/or elements are numbered. Commercial soft-
ware can be expected to contain an algorithm that chooses an effective numbering se-
quence for internal storage and processing, but the user may have to activate it by giving
an appropriate command. In this section we summarize these considerations by means of
simple examples.

Consider the five-element, six-node structure shown at the top of Fig. 4.1-1a. The na-
ture of the physical problem is unimportant. In this example we assume that each element
has two nodes and that there is only one d.o.f. per node. Element stiffness matrices have

the forms
a b d e g h
k_,= , k= , k= 1, etc. (4.1-1)
b ¢ e f h i

In the software, structure stiffness matrix K is formed by assembling element stiffness
matrices, taking care to place element stiffness coefficients in the proper rows and

75
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Structure: Structure:
3 5
1 2 4 5 6 1 6 2 4 3
K of the structure: K of the structure:
A B A | B
B C E / G H F E
Skyline
D F K 7
E F G H H J 1
H I J F D
J K B E C
L J L J
Good arrangement Poor arrangement
(a) (b}

Fig. 4.1-1. Structures built of two-node elements having one d.o.f. per node
and their symbolic stiffness matrices. Nonzero coefficients are represented
by letters.

columns in the K array. Thus, for the six-d.o.f. structure in Fig. 4.1-1a, K is formed as
the sum

1 23 456 123456 123456
o b 1T 1T 7
b ¢ d e

g h
+ + ) +--- (4.1-2)
h i

[o O, N RV S
[N
~

L 1L 4L i

in which zeros are represented by blanks. Row and column numbers of nonzero coeffi-
cients are also the numbers of nodes to which elements are connected, for example, terms
from element 2-4 appear in rows and columns 2 and 4. In Fig. 4.1-1a, the assembled K is
represented in the same format used in Eq. 4.1-2, sothat A=a, B=0,C=c+ d, and so
on. An alternative node numbering changes only the topology of K; that is, the same co-
efficients appear but in a different arrangement. An example is shown in Fig. 4.1-1b.

The assembly process illustrated by Eq. 4.1-2 can be explained as follows. From the
formula (Eq. 3.1-9), strain energy in element 1-2 is d7_, k,_»,d,_,/2, where d,_, contains
the d.o.f. of element 1-2. This is the same energy as DK, ,D/2, where D contains all
d.o.f. of the structure and K, _, contains only the stiffness coefficients of element 1-2 (in
appropriate locations). Writing the strain energies of other elements in similar fashion
and summing element energies to obtain total structure strain energy, we obtain D'(K,,+
K, + K, +-)D/2 =D'KD/2.

The global stiffness matrix K is sparse, meaning that it contains a great many zeros. A
FE model having many d.o.f. may produce a K in which over 99% of the K; are zero. It
would be wasteful to store and manipulate so many zeros. Accordingly, FE software uses
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mass matrix M used in dynamics). Examples of matrix topology appear in Fig. 4.1-1. In a
good arrangement. Fig. 4.1-1a, the “bandwidth” is small: nonzero coefficients cluster in a
narrow band along the diagonal. In general, there are some zero coefficients within the
band, but there are only zeros ouiside it. The “skyline” bounds the top of the band, as
shown in Fig. 4.1-1. Because K is symmetric and banded, we need store only its diagonal
and coefficients between the diagonal and the skyline. It is common practice to store
these K; in a one-dimensional array by working down columns of K from the skyline to
the diagonal. Thus in Fig. 4.1-1a we consecutively store A, B, C, D, E, F, G, H I1,J,K A
separate “index” array records which of these are diagonal coefficients K. In the “poor”
arrangement of Fig. 4.1-1b there are more coefficients to store one-dimensionally be-
cause of zeros below the skyline: A, G, K, H,J,I, F, 0,0, D, B, E, 0, 0, 0, C. Zeros below
the skyline become nonzero as K is processed by a direct equation solver such as Gauss
elimination. In a model with more nodes the differences between “good” and “poor”
arrangements would be more striking.

The foregoing remarks presume that storage is governed by node numbering. Similar
remarks can be made if information is stored and processed in a2 manner governed by ele-
ment numbering. Then one speaks of “wavefront” rather than bandwidth. Numerical defi-
nitions of wavefront and bandwidth are available [4.1], but most FE users need only
know that bandwidth and wavefront are similar measures of demands on storage space
and computational effort and that smaller is better. Smaller bandwidth or wavefront usu-
ally results when consecutive node or element numbers run across the smaller dimension
of the model. Fortunately, the user need not strive for small bandwidth or wavefront
when preparing input data. Software can automatically revise node and element number-
ing so that internal processing is carried out compactly and efficiently, then convert back
to the original numbering, so that results displayed by the postprocessor have the number-
ing used by the analyst in creating the model.

4.2 EQUATION SOLVING

Time-independent FE analysis requires that the global equations KD = R be solved for D.
This may be done by a direct method or an iterative method. In a direct method—usually
some form of Gauss elimination—the number of operations required is dictated by the
number of d.o.f. and the topology of K. An iterative method requires an uncertain number
of operations; calculations are halted when convergence criteria are satisfied or an itera-
tion limit is reached.

Solution methods have been extensively studied over several years. For full discus-
sion the reader is referred to [3.1], many numerical analysis textbooks, and current re-
search papers. The following summary should be adequate for most users of FE software.

If a Gauss elimination solution is driven by node numbering, forward reduction pro-
ceeds in node number order and back substitution in reverse order, so that numerical val-
ues of d.o.f. at the first-numbered node are determined last. If the solution is driven by ele-
ment numbering, assembly of element matrices may alternate with steps of forward re-
duction. Thus some eliminations are performed as soon as enough information has been
assembled, then more assembly is carried out, then more eliminations, and so on, until all
d.o.f. have been treated. Back substitution follows. The assembly-reduction process is
like a “wave” that moves over the structure. A solver that works this way is called a
“wavefront” or “frontal” equation solver. Wavefront is a measure of the number of coef-
ficients being manipulated in one of the reduction steps.
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The computation time of a direct solution is roughly proportional to nb*, where n is the
order of K and b is its bandwidth. For three-dimensional structures the computation time
becomes large because b becomes large. Large b indicates high connectivity among d.o.f.
Here an iterative solver may be faster because high connectivity speeds convergence. In
contrast, a long slender structure has low b and low connectivity; an iterative solver
would be slow to converge but a direct solver would be fast because b is small.

Frequently, a structure must be analyzed to determine the effects of several different
load vectors R. This is done very effectively by a direct solver because most of its com-
putational effort is expended on reduction of K. As long as the structure or FE model is
not changed this need be done only once, regardless of the number of load vectors. In
contrast, an iterative solver must treat each different load case as a new problem. Despite
this disadvantage, iterative solvers may be best on parallel-processing computers. They
may also be best for some nonlinear problems, in which K changes from load step i to
load step [ + 1, because solution D; may be an excellent starting approximation for solu-
tion D,,,. An iterative solver can be coded so that operations are performed on separate
elements and the results combined. Thus a global K need not be assembled, and storage
requirements are reduced.

A direct solver works well for most problems. In most current software it is the only solu-
tion algorithm available and is used as a “black box.” This situation is beginning to change.

4.3 TRANSFORMATIONS

Alternative Directions for D.O.F. The stiffness matrix of a finite element is most easily
written in a local coordinate system. As examples, it is convenient to place a bar or beam
element along the x axis and a plane element in the xy plane. But a FE model may require
an element to be arbitrarily oriented in global coordinates XYZ. Rather than formulate ele-
ment properties in global coordinates at the outset, it is easier to transform an element ini-
tially formulated in local coordinates. Transformation of this kind is carried out automati-
cally by the software; the user is not obliged to activate it. The procedure used by the
software is illustrated by the following example.

A two-node bar element is shown in Fig. 4.3-1a. Its stiffness matrix k” in local coordi-
nates xy operates on d.o.f. «} and i} directed along the x axis. If the x axis lies in the XY
plane, the relation between local d.o.f. and global d.o.f. is contained in the transformation

iy

Wyl _|es0O0 vl
up [ 7100 cs uz

k‘:’LE[l‘lJ
L{-11 ——— L U2 J

c=c050
s=sin¢

Fig. 4.3-1. (a) Stiffness matrix of a bar element in local coordinates xy. Local
d.o.f. are u} and u5. (b) Transformation from local to global d.o.f. in the same
plane.
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Fig. 4.3-2. Plane problem in which node i is allowed
to displace only in a direction tangent to a rigid
boundary.
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arbitrarily oriented with respect to XYZ axes, T

becomes a 6 by 2 matrix containing direction cosines of the x axis and k becomes a 6 by
6 matrix. It seems preferable to regard such transformations as a change in the representa-
tion of element d.o.f. rather than as a change in orientation of the element.

A similar transformation is convenien

t in the example of Fig. 4.3-2. The support con-

dition requires that d.o.f. at a typical node 7 have the relation v, = u, tan ¢,. Rather than
impose this condition as a constraint {Section 4.13), we can replace u; and v; by u}, and
uf,, which are d.o.f. in local coordinate directions, respectively, normal and tangent to the
support. The support condition then becomes simply i}, = 0. Other nodes along the sup-
port can be treated similarly, using the value of ¢ appropriate to each node. Indeed, the

directions of nodal d.o.f. can be different

at every node of the structure if the user wishes

to establish a different local coordinate system at every node.

Offsets. In FE modeling we must often connect elements whose axes are parallel but not
coincident. As an example, a floor slab is connected to a supporting beam on the lower

surface of the slab. A FE model consists

of plate elements and beam elements. We wish

to connect beam nodes to plate nodes, but they are separated by a vertical distance. We
can eliminate beam nodes by making them “slave” to plate nodes. The procedure, in-

voked by the user and carried out automa

vy

tically by the software, is as follows [2.2, 4.2].

6,;(i=1,23,4)
¥ . u; y
] ’ |
i a
'-L a Plate {edge view
3 —> g fe— ‘\Lss ate (edge view) 4i
=7 s Ly !
bl b2 ‘T 1 2 T‘.’J
. ‘l‘ & i T Reinforcing beam
1, L 2
3 1

(a)

(b)

Fig. 4.3-3. (a) Nodes | and 2 are connected to nodes 3 and 4 by rigid links (not merely

stiff, but rigid links). (b) An application.
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In Fig. 4.3-3, let the element between nodes 1 and 2 resist both bending and axial de-
formation, and let imaginary rigid links connect nodes 1 and 2 to nodes 3 and 4, respec-
tively. We allow arbitrary offsets @, and b, in x and y directions, but for simplicity omit
offsets ¢; in the z direction and displacements normal to the xy plane. Accordingly, the re-
lation between d.o.f. at nodes 1 and 2 and d.o.f. at nodes 3 and 4 is

78 1 b, Us
U 1 aq Us
6., 1 6.,
R > (4.3-2)
U, 1 b, Uy,
Uy 1 a U,
9:2 L 1 n 9:4
T

in which zeros are represented by blanks. In the special case of Fig. 4.3-3b, a, =a, =0
and b, = b, = b. Let the element stiffness matrix that operates on d.o.f. at nodes 1 and 2
be called k’. It is formulated in the usual way (see Eq. 2.3-9). To transform it to a matrix
k that operates on d.o.f. at nodes 3 and 4 we carry out the transformation k = T'K’T. If lo-
cal axes xy are not parallel to global axes, another transformation analogous to Eq. 4.3-1
is performed. After assembly of k into the global K, d.o.f. at nodes | and 2 do not appear
in the global vector of d.o.f. D, but these d.o.f. reappear during postprocessing to obtain
stresses in the beam element.

4.4 ISOPARAMETRIC ELEMENTS: FORMULATION

The isoparametric formulation makes it possible to have nonrectangular elements, ele-
ments with curved sides, “infinite” elements for unbounded media, and singularity ele-
ments for fracture mechanics. Here we discuss only the four-node plane quadrilateral.
Other isoparametric elements have more nodes and more shape functions but are very
similar in that they use the same concepts and computational procedures.

An auxiliary coordinate system must be introduced in order that a quadrilateral may be

Fig. 4.4-1. Four-node plane iso-
parametric element. (Reprinted
from [2.2] by permission of John
Wiley & Sons. Inc.)
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PDF Compressogularééh¥eysion called {7 in Fig. 4.4-1, is a “natural” coordinate system. Its
origin in global coordinates XY is at the average of the corner coordinates. In natural co-
ordinates &7, element sides are always defined by & = 21 and 7 = *1, regardless of the
shape or physical size of the element or its orientation in global coordinates XY. In gen-
eral, axes & and 7 are not orthogonal and they have no particular orientation with respect
to axes X and Y. Coordinates of a point within the element are defined by

X=YNX Y=>NFY, (4.4-1)

in which X; and ¥, are coordinates of the corner nodes and the shape (or interpolation)
functions N, are

N=x1-OU-m  N=i1+H1-n

(4.4-2)
Ny=3(1+5+1m Ny=31-HU+7m)

I

These N, are similar to the N, in Eq. 3.4-3. Given & and 77 coordinates of a point we can
use Eqs. 4.4-1 to calculate its X and Y coordinates. Displacements of a point are interpo-
lated from nodal d.o.f. by use of the same shape functions:

uzZN,- U U:ZN,- 1 (4.4-3)

Displacements u and v are parallel to X and Y axes, not £ and 77 axes. The name “isopara-
metric” derives from use of the same shape functions to interpolate both coordinates and
displacements. A plane isoparametric element does not require a transformation of the
type used in Fig. 4.3-1. (Global directions X and Y are used in the present section merely
to avoid confusion with the local element-related directions x and y used in Section 4.3.)

In order to write the strain—displacement matrix B (Eq. 3.1-8) we must establish the
relation between gradients in the two coordinate systems. Consider one of these gradi-
ents, the strain &, = du/dX. We cannot immediately write the result because u is defined
as a function of & and 7] rather than as a function of X and Y. We must start by differenti-
ating with respect to & and 7, and use the chain rule:

) [ ) (o
% % k| |

= (4.4-4)
ou oX oY ou

on)  Lom am] lor
J

where J is called the Jacobian matrix. Coefficients in J can be obtained from Eqs. 4.4-1,

K~ N, W N,

== ) ==X, — =) —Y, et 4.4-5
PR PR R
Equation 4.4-4 can be solved for the vector on the right-hand side. Hence strain £, be-
comes
ou h
g = o (4.4-6)
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where J¥, and J%, are coefficients in the first row of J™' and

o oN;

N o N,
9% %

and — = —u; (4.4-7)
an an

are obtained from Eqs. 4.4-3. The remaining strains €, and %, are formulated in similar
fashion, and at last the strain—displacement matrix B can be written.
The element stiffness matrix is

k:JBTEBdV:HBTEBz | J| d€ dn (4.4-8)

-1-1

where 7 is the element thickness and |J | is the determinant of J in Eq. 4.4-4. 17| can be
regarded as a scale factor between areas; that is, dX dY = |JI d& dn. In general, [JI 15 a
function of the coordinates, but for a rectangle or a parallelogram it is constant and has
the value A/4, where A is the area of the rectangle or parallelogram and the “4” is the area
in £17 coordinates, where the element is always a square two units on a side.

Other plane isoparametric elements have more nodes; hence there are more shape
functions N, and more columns in B, but J is still 2 by 2 and there are still three rows in
B. For 3D solid elements J is 3 by 3 and B has six rows.

4.5 GAUSS QUADRATURE AND ISOPARAMETRIC
ELEMENTS

Integration in Eqg. 4.4-8 may be done analytically by using closed-form formulas from a
table of integrals. Alternatively, integration may be done numerically. Gauss quadrature
is a commonly used form of numerical integration. It is better suited to numerical analy-
sis than closed-form formulas. To begin our explanation of Gauss quadrature, we con-
sider one-dimensional problems without particular reference to FE. Gauss quadrature
evaluates the integral of a function as the sum of a finite number of terms:

1 n
I= _[q; dE  becomes  [= Y W, (4.5-1)
% i=1

where W, is a “weight” and ¢, is the value of ¢ = ¢(&) at a particular location often called
a “Gauss point.” Figure 4.5-1 shows examples of this process for Gauss rules of orders
n=1,n=2 and n = 3. Gauss points are at £ = 0, { = £a, and £ = 0, £b respectively.
There exist tabulations of Gauss point locations and corresponding weights for values of
n much larger than needed for FE work [4.3].

If ¢ = ¢(&) is a polynomial, n-point Gauss quadrature yields the exact integral if ¢ is of
degree 2n — 1 or less. Thus the form ¢ = ¢; + ¢,& is exactly integrated by a one-point rule,
the form ¢ = ¢, + ¢,& + c,&% is exactly integrated by a two-point rule, and so on. Use of an
excessive number of points, for example, a two-point rule for ¢ = ¢, + ¢,&, still yields the
exact result. If ¢ is not a polynomial, but (say) the ratio of two polynomials, Gauss quad-
rature yields an approximate result. Accuracy improves as more Gauss points are used.
Convergence toward the exact result may not be monotonic.
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Fig. 4.5-1. Integration of a function ¢ = ¢(£) in one dimension by Gauss quadrature of
orders 1, 2, and 3. Gauss points are numbered.

In two dimensions, integration is over a quadrilateral and a Gauss rule of order n uses
n? points. The formula analogous to Eq. 4.5-1 is

11 "

IIHW’ m d& dn zZimWM(énn,) (4.5-2)

~1-1 i=l j=1

where W, W, is the product of one-dimensional weights. Usually m = n; that is, the same
number of points are used in each direction. If m = n = 1, ¢ is evaluated at £ = 17 =0 and
[ = 4¢,. Gauss points for four-point and nine-point rules are shown in Fig. 4.5-2, and the
corresponding integrals are

I=¢i+ ¢+ 05+ 0, (4.5-32)

(a) (b)

Fig. 4.5-2. Gauss point locations for integration of a function ¢ = &, 1) in two di-
rensions, using orders 2 and 3. (Reprinted from [2.2] by permission of John Wiley
& Sons, Inc.)
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25 40 64 _
I = gl‘(¢1+¢3+¢7+¢9) + ‘é‘l‘(‘pz +@,+¢s+ds) + ‘é‘l‘@s (4.5-3b)

In three dimensions, Gauss quadrature of order n over a hexahedron involves n® points.
three summations, and the product of three weight factors. Analogous numerical integra-
tion formulas are available for integration over triangles and tetrahedra [2.2].

Consider again the plane four-node element discussed in Section 4.4. Its stiffness ma-
trix integrand B’EB¢ | Jl is an 8 by 8 matrix. Because it is a symmerric matrix, only 36 of
its 64 coefficients are different from one another. Each of these coefficients has the form
¢ = @&, ) and each must be integrated over the element area. In computer programming,
a p-point integration rule requires p passes through an integration loop. Each pass re-
quires evaluation of B and | 7| at the coordinates of a Gauss point, computation of the
product B'EBt | ¥1, and multiplication by weight factors. Each pass makes a contribution
to k, which is fully formed when all p passes have been completed. Clearly, there is con-
siderable computation required in this process.

For an element of general shape, each coefficient in the matrix B’EB¢ |31 is the ratio
of two polynomials in & and 1. The polynomial in the denominator comes from J™': when
J of Eq. 4.4-4 is inverted, J!| becomes the denominator of every coefficient in J™' and
hence appears in the denominator of every coefficient in B. Analytical integration of k
would require the use of cumbersome formulas. Numerical integration is simpler but in
general it is not exact, so that k is only approximately integrated regardless of the number
of integration points. Should we use very few points for low computational expense or
very many points to improve the accuracy of integration? The answer is neither, for rea-
sons explained in the next section.

4.6 CHOICE OF QUADRATURE RULE. INSTABILITIES

A FE model is usually inexact, and usually it errs by being too stiff (see Section 4.8).
Overstiffness is usually made worse by using more Gauss points to integrate element
stiffness matrices because additional points capture more higher-order terms in k. These
terms resist some deformation modes that lower-order terms do not, and therefore act 1o
stiffen an element. Accordingly, grearer accuracy in the integration of k usually produces
less accuracy in the FE solution, in addition to requiring more computation.

On the other hand, use of too few Gauss points produces an even worse situation
known by various names: instability, spurious singular mode, mechanism, kinematic
mode, zero-energy mode, and hourglass mode. Instability (not of the buckling type) oc-
curs if one or more deformation modes happen to display zero strain at all Gauss points.
One must regard Gauss points as strain sensors. If Gauss points sense no strain under a
certain deformation mode, the resulting k will have no resistance to that deformation
mode.

A simple illustration of instabilities appears in Fig. 4.6-1. Four-node plane elements
are integrated by a one-point Gauss rule. In the lower left element, with ¢ a constant, the
three instabilities shown have the respective forms (b) u = cxy, v = 0; (¢) u = 0, v = —cxy;
and (d) u = (1 — x). v = cx(y — 1). We easily check that each of these displacement
fields produces strains ¢, = &, = ¥, = 0 at the Gauss point, x = y = 0. Nonrectangular ele-
ments behave in the same way. Even if the mesh had just enough supports to prevent
rigid-body motion it could still display these modes, without strain at the Gauss points,
and hence without strain energy. The FE model would have no resistance to loadings that
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Fig. 4.6-1. (a) Undeformed plane 2 by 2 four-node square elements. Gauss points are shown by
solid squares. (b,c.,d) “Instability” displacement modes. (Reprinted from [2.2] by permission of
John Wiley & Sons, Inc.)

would activate these modes. The global K would be singular regardless of how the struc-
ture is loaded. These spurious displacement modes rarely appear in isolation. Usually
they are superposed on “legitimate” displacement modes, which makes them hard to
identify.

When supports are adequate to make K nonsingular, there may yet be a near-instabil-
ity that is troublesome. Consider Fig. 4.6-2a. All d.o.f. are fixed at the support and each
element stiffness matrix is integrated with a single Gauss point. Restraint provided by the
support 1s felt less and less with increasing distance from it. If L is several times H, the
computed displacement of load P may be greater than the length of the bar! At the same
time displacements and stresses at the Gauss points will have good accuracy unless the
spurious displacements overwhelm the solution.

A plane eight-node element whose stiffness matrix is integrated with four Gauss
points has the “hourglass” instability shown in Fig. 4.6-2b. This mode is of no concern
because it is noncommunicable: there is no way that two adjacent elements can both dis-
play this mode while remaining connected, even if nodal d.o.f. are reversed from Fig.
4.6-2b in one of the two elements. Accordingly, a mesh of two or more such elements has
no such instability. However, a near-instability, roughly analogous to that in Fig. 4.6-2a,
is possible if adjacent elements have greatly different moduli and an edge-normal force is
applied to the stiffer element at a midside node. In this case hourglassing is only lightly
resisted by the softer element. Also, if a ninth node were added at the element center, two
additional instabilities would be possible under four-point quadrature, both of them com-
municable [2.2, 3.2].

The default option in commercial software usually calls for the smallest number of
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Fig. 4.6-2. (a) Mesh of four-node square elements with all nodes fixed at the sup-
port. Gauss points are shown by solid squares. (b) “Hourglass” instability displace-
ment mode in a single eight-node element integrated by four Gauss points.
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Gauss points that will make instability impossible. Occasionally, fewer points are used,
but then “stabilization™ devices are invoked that prevent instability. A user who chooses
other quadrature rules or overrides a stabilization device must be aware of the possible
difficulties and how to avoid them. ‘

4.7 STRESS CALCULATION AND GAUSS POINTS

Calculated stresses o = EBd are often most accurate at Gauss points. This statement can
be made plausible by returning to the problem of Fig. 4.6-2a. As shown in Fig. 4.7-1, a
large and spurious bending deformation, associated with rotation of y-parallel element
sides, is superposed on a constant strain state that is essentially correct. The spurious de-
formation has no effect on strains at the Gauss point. In more mundane situations, and
with various element types, it is not hard to realize that strains are likely to vary over an
element and are therefore likely to be more accurate at some locations than others. It hap-
pens that the locations of greatest accuracy are apt to be the same Gauss points that were
used for integration of the stiffness matrix [3.2, 4.4]. Consider Fig. 4.7-2, for example,
which shows a portion of a beam in which shear strain is % constant along the x axis.
The shear strain calculated by FE displays a quadratic variation that is most accurate at x
coordinates of the Gauss points.

In summary, it is common practice to use an order 2 Gauss rule (four points) to inte-
grate k of four- and eight-node plane elements, and common practice to compute strains
and stresses at these same points. Similarly, three-dimensional elements often use eight
Gauss points for stiffness integration and stress calculation. Stresses at nodes or at other
element locations are obtained by extrapolation or interpolation from Gauss point values,
Thus the element stress field is represented as bi- or trilinear in isoparametric coordi-
nates; for example, in a plane element o, is represented by the form C.=c+ e+ o+
c4&n. For eight-node elements this is a polynomial of lower degree than contained in the
B matrix and therefore some information has been discarded. Nevertheless, accuracy is
usually greatest when the element stress field is a polynomial fitted to Gauss point values.

4.8 NATURE OF FINITE ELEMENT SOLUTION

The FE method is a form of the Rayleigh-Ritz method, which is a classic approximation
technique originated by Lord Rayleigh in 1870 and generalized by W. Ritz in 1909. In the
classical Rayleigh-Ritz method one begins with a displacement assumption in terms of
generalized coordinates f3, for example, Egs. 3.2-1, 3.3-1, and 3.4-1. However, the as-
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Fig. 4.7-1. (a) Upper right-hand element in Fig. 4.6-2a. (b)
Possible displacement mode of this element.
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Fig. 4.7-2. (a) Portion of a beam modeled by a single layer of eight-node elements. (b) Shear
strain along the x axis.

sumed field applies to the entire body, not element by element in piecewise fashion; in-
deed, there are no elements and no nodes. The assumed field must satisfy compatibility
conditions within the body and displacement boundary conditions. For example, a lateral
displacement field v = v(x) for a cantilever beam without transverse shear deformation
must be single-valued and must display v = 0 and dv/dx = 0 at the support. One forms an
energy expression that includes strain energy of the body and work done by applied
loads. Minimization of the total energy with respect to the f3; yields simultaneous alge-
braic equations that can be solved for the 8. The FE method differs in that it uses a dis-
placement field defined in piecewise fashion and uses nodal d.o.f. instead of the 3. These
modifications make it much easier to write a computer program to carry out the calcula-
tions. The FE method can be regarded as a modern way of arranging procedural details of
the Rayleigh-Ritz method.

In the Rayleigh—Ritz method, the model can deform only into shapes contained in the
assumed displacement field. For example, if we assume the field v = f3,x* + B,x” for lateral
displacement of a uniform cantilever beam fixed at x = 0, the model is constrained to de-
form into only the modes v = x* and v = x°, with the respective amplitudes f3, and f,. If the
loading happens to be distributed rather than concentrated at the free end, the correct field
v = v(x) is more complicated than this. Then the assumed field has, in effect, applied con-
straints that prevent the correct displacement field from appearing. Constraints have a stiff-
ening effect. Accordingly, the Rayleigh~Ritz method yields “lower bound” displacements,
that is, displacements that are either exact or too small as compared with an exact solution
of the mathematical model (the mathematical model is beam theory in the foregoing exam-
ple). This does not mean that displacements are too small at every point; it means that
work done by applied loads is too small (recall that work is load times displacement incre-
ment, integrated over the structure volume). In other words, displacements are too small in
an average sense. If the load consists of a single force or moment, we can say with cer-
tainty that the Rayleigh-Ritz method predicts a load-parallel displacement of the loaded
point that is either exact or too small as compared with the mathematical model.

The foregoing remarks also apply to a FE solution using displacement-based elements
(like those in Chapter 3), provided that (a) nodal loads from distributed loading are ap-
plied in work-equivalent fashion , (b) elements are compatible, and (¢) elements are inte-
grated exactly. These restrictions mean that if we use load lumping (Section 2.5), incom-
patible elements (Section 3.6), or (say) four Gauss points to integrate k of an eight-node
plane rectangular element or k of a four-node nonrectangular plane element, then we can-
not guarantee that computed displacements are a lower bound. Nevertheless, even if we
violate these restrictions in solving a practical problem, it is more likely that the FE
model will be too stiff than too flexible.

Additional remarks about the nature of a FE approximation appear in Section 3.1.
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4.9 CONVERGENCE REQUIREMENTS. PATCH TEST

Imagine that a given problem is solved repeatedly, each time using a finer FE mesh. Will
the sequence of solutions converge toward exact displacements, strains, and stresses? The
answer is yes provided that the elements used pass a patch test [3.2].

To perform a patch test, one builds a simple FE model, that is, a “patch” of elements,
such that at least one node is internal to the patch (rather than on its boundary), and hav-
ing just enough supports to prevent rigid-body motion. Work-equivalent loads consistent
with a constant stress state are applied. In Fig. 4.9-1a, the rectangular outline of the patch
and uniform spacing of nodes along its left and right edges make it easy to assign loads F
and 2F, which are work-equivalent loads consistent with a uniform x-direction traction.
No load is applied to the internal node. The correct response to this loading is constant
stress 0, = 2F/Ht, where ¢ is the constant z-direction thickness. (We speak of stresses
rather than strains only because most software reports stresses rather than strains.) One
analyzes the “patch” model like any other FE model and examines the computed stresses.
If the stress results are exact, that is, if ¢, = 2F/Hr and all other stresses are zero at all
stress calculation points, then the patch test for o, is passed. Other states of stress, that is,
O, = constant and 7,, = constant for plane elements, should also be patch-tested. If an ele-
ment passes patch tests we can be sure that, when this type of element is used in the FE
model of a practical problem, exact results will be approached as the mesh is repeatedly
refined. Here “exact” means perfect agreement with the mathematical model on which
the element is based,; that is, beam theory. plate theory, or whatever. In other words, prior
to convergence the FE model disagrees with its mathematical model because of dis-
cretization error, which tends to zero with mesh refinement if elements pass patch tests.
Whether or not the mathematical model is a good representation of physical reality is an-
other matter.

A successful patch test indicates that when an element is used in a mesh, rather than in
isolation, it is able to display (a) a state of constant strain, (b) rigid-body motion without
strain, and (c) compatibility with adjacent elements when a state of constant strain pre-
vails. An element that meets these requirements may be called a valid element. It is not
hard to see that these requirements must be met if there is to be convergence toward cor-
rect results with mesh refinement. Consider Fig. 4.9-1b. From A to B the exact strain &,
varies linearly with x. This variation is approximated in stair-step fashion by constant
strain elements between A and B and can be approximated arbitrarily closely by using
more and more elements. As a counterexample, if we were to use an (invalid) element
that could display only a linear variation of €, such as €, = cx, where c is a constant, we
would see a sawtooth plot of &, that would remain inexact regardless of the number of ele-
ments used. As for rigid-body motion, from B to C in Fig. 4.9-1b elements must be able
to display rigid-body motion without strain. Finally, the theoretical need for interelement
compatibility was noted in Section 3.1. A valid incompatible element (e.g., element Q6 of
Section 3.6) displays its incompatible mode only when there is a strain gradient. Its dis-
placements are compatible when it is in a state of constant strain. With repeated mesh re-
finement, the change in a strain field over an element becomes negligible in comparison
with the constant part of the strain field. Accordingly, as a mesh is repeatedly refined. ele-
ments must become compatible if they were not so already.

The foregoing arguments make it plausible that patch tests check that all convergence
requirements are met in the limit of mesh refinement, when each element must approach
a state of constant strain. This is all that is required for convergence. Passing patch tests
says nothing about the speed of convergence; that is, passing patch tests shows that an ele-
ment works, not that it works well.
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Fig. 4.9-1. (a) A patch test for o, in plane four-node elements. (b) Six-element bar under uniformly
distributed load ¢ over portion AB.

Plate elements carry load by bending and must display constant curvature states in or-
der to pass patch tests. Applied loads must be consistent with constant states of 0?w/dx?,
0"w/9v?, and 0*w/dx dv, where w = w(x, y) is the displacement in the z direction, normal
to the plate midsurface z = 0. Constant-curvature states produce constant strain states in
z = constant layers of a plate.

One who uses FE rather than developing new elements will probably not use patch
tests to study the validity of elements. Nevertheless, patch tests can be helpful in learning
about FE and in learning how to use software because patch tests are simple, data are
easy to prepare, and exact results are known.

4.10 INFINITE MEDIA AND INFINITE ELEMENTS

Occasionally, a region of interest is embedded in a medium so large that it can be consid-
ered unbounded. For example, Fig 4.10-1a represents a thick slab supported by soil. For
the present discussion it does not matter whether the problem is two- or three-dimen-
sional. Stresses in and near the slab are desired. A coarse-mesh FE model is shown in
Fig. 4.10-1b. If arc CD is far enough from the slab, the FE model may be terminated

(a) (b)

Fig. 4.10-1. (a) Slab supported by an infinite medium, with symmetry about
the vertical centerline. (b) FE model of half the structure, with infinite elements
denoted by e.
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there by making CD a fixed support. But how far is far enough? Too close introduces er-
ror; too far produces a large and unwieldy FE model. And if the problem is dynamic, a
fixed support will reflect waves regardless of the size of the FE model. Some way of rep-
resenting the “far field” is desirable.

One way to treat the problem is by introducing “infinite” elements [4.5, 4.6]. Instead of
fixing d.o.f. along CD in Fig. 4.10-1b, these d.o.f. are connected to a single layer of infi-
nite elements. An infinite element is produced by using special shape functions in the
isoparametric formulation, so that nodes on one side of an element are made to move off
to infinity. In Fig. 4.10-1b these sides are downward and to the right of CD and do not ap-
pear. “Mapping to infinity” has the effect of making displacements decay toward zero with
increasing distance from CD. Infinite elements can be used for various problems of con-
tinua, stress analysis being only one, and for either time-independent or harmonic wave
problems. It appears that they cannot be used for transient problems such as shock waves.

Another way to treat the problem is by using boundary elements (BE) to model the
medium that supports the slab. We make no attempt here to explain the workings of the
BE method. Suffice it to say that FE and BE models can be connected, that BE models
can easily represent infinite media, and that a BE model has nodes only on its boundary.
Thus in Fig. 4.10-1b a BE model of the soil would contact the slab directly and would
have no nodes within the region ABCD, which simplifies the task of data preparation.
Despite the reduction in number of d.o.f., the computation time of BE may be greater
than that of FE because global BE matrices are full and unsymmetric.

4.11 SUBSTRUCTURES

Substructuring is a process of analyzing a large FE model as a collection of component
FE models. It will be easier to understand why this is done if we first describe how it is
done, which 1s as follows.

1. Divide the FE model into two or more parts (substructures) by cutting along lines
of nodes. Preferably, cuts are made across narrow parts of the model, so as to re-
duce both the number of d.o.f. on cutting lines and the interaction between sub-
structures. For example, we choose cuts along hatched lines in Fig. 4.11-1a rather
than cuts along the middle of wings or along the fuselage.

2a O
la A : B
3 4 5 ) O
16
C g : D
2b O
C D
() (b)

Fig. 4.11-1. (a) Possible substructures la, 15, ..., 5 of a hypothetical aircraft. (b) Castellated
beam, with typical repeating substructure ABCD. Elements of the substructures are not shown.



PDF CO‘“R"‘&%Q}; lgrlgg Vers

4.11 Substructures 01

mode}ool} each substructure and obtain a set of global equations
K.D, =R, for each substructure. Begin to solve these equation sets, for example,
by Gauss elimination, until all d.o.f. nor on cutting lines have been eliminated
and only “attachment” d.o.f. D, on the cutting lines remain. D, is a small subset
of D,. Symbolize the reduced equation set for a single substructure by K, D, =
R

at

3. Assemble the reduced equation sets of all substructures, to obtain global equa-
tions K,D, = R,, where D, contains all attachment d.o.f. D, of all substructures.
(This set of equations is the same reduced set that would result if al/ d.o.f. of the
entire structure had been assembled to form global equations KD = R, then
Gauss elimination applied until only attachment d.o.f. D, remain.) Note:
Attachment d.o.f. of mating substructures must match in number, placement,
type. and orientation.

4. Solve the equations K,D, = R, for D,. Thus attachment d.o.f. D, become known
for all substructures. Return to the substructure equations KD, = R; created and
partially solved in step 2: now solve for the remaining d.o.f. in D, by back substitu-
tion. Finally, postprocess to obtain stresses in elements.

The substructure assembly process, step 3, is the same process used to assemble individ-
ual elements of a standard FE model. In effect, a substructure is a large element that has
mternal d.o.f. as well as d.o.f. on its boundary. Indeed, substructures are sometimes called
“superelements.” Other terminology may refer to attachment d.o.f. as “masters” and other
d.o.f. as “slaves.” A capability for substructuring is included in large commercial soft-
ware packages.

A substructuring approach becomes appropriate when the structure is large and can
be cut into substructures that do not interact strongly. Then individual substructures
can be repeatedly revised, in design or in FE modeling, always using the same attach-
ment d.o.f. D, originally calculated from the assembled substructures. Different de-
sign groups, even different companies, can work on different substructures. Indeed,
the location of substructure boundaries may be dictated by binding agreements be-
tween subcontractors. Only occasionally, when it is felt necessary to update the values
of the attachment d.o.f., are substructures assembled and the resulting global equations
solved.

Another motivation for substructuring appears when nonlinearities such as plastic ac-
tion are confined to a single part of the structure. The linear part, whose reduced stiffness
matrix K, does not change as loading increases, can be represented by a substructure. Its
attachment d.o.f. D, are shared by the nonlinear part, whose properties and matrices must
be repeatedly revised as loading increases.

Finally, there is an advantage to substructuring if the FE model contains many repeti-
tions of the same geometry (Fig. 4.11-1b). Then the same set of reduced substructure
equations K D, = R, applies to each of the repeating substructures. Repeated assembly of
the same K, and R, arrays, with appropriate node numbers, yields the global arrays K,
and R, of the assembled substructures.

Substructuring in static stress analysis does not introduce any additional approxima-
tion. Nor does it reduce computational effort in the very rare situation of having no re-
peating parts, no nonlinearities, and no revisions in design or modeling. Substructuring
increases the number of computer files needed to do an analysis. Clearly, it is possible to
loose track of pieces of the puzzle. The analyst is advised to plan carefully and keep
records.
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4.12 SYMMETRY

Types of symmetry include reflective, skew, axial, and cyclic. If symmetry is recog-
nized and exploited, the size of the FE model 1s reduced. Thus there is less input data to
prepare and less computation to do.

A structure has reflective or mirror symmetry if there is symmetry of geomeltry, sup-
port conditions, and elastic properties with respect to a plane. Reflective symmetry of
structure and loads is shown in Fig. 4.12-1a: if reflected by the plane x = 0, the left half
yields the right half and vice versa. One could say that reflection brings the structure and
its loads into “self-coincidence.” Analysis of either half yields a complete solution be-
cause symmetric loading on a symmetric structure produces symmetric results.

If P,=P, inFig. 4.12-1a, the planes x =0, y = 0, x = y, and x = ~y are all planes of re-
flective symmetry, and we need analyze only one octant of the structure, using P,/2 as the
load. Supports on a symmetry plane in Fig. 4.12-1a must allow only motion radially from
the origin x = v = 0 (as in Fig. 3.12-2a). A similar example appears in Fig. 4.12-1b: analy-
sis of the right (or left) half of the beam, with rotation 6, prevented at x = 0, provides a
complete solution of the problem. These examples are very simple, but one can see that if
the structure were large and complicated it would be a waste of effort to ignore symmetry
and prepare a model of the entire structure.

Note that loads as well as structure may be cut by a plane of symmetry. In Fig.
4.12-1a, if only half the structure is retained because plane x = 0 is used as a plane of re-
flective symmetry, loads P, become P /2 on the half retained. Similarly, if a stiffening
beam (as might be used beneath a floor slab) is longitudinally bisected by a plane of re-
flective symmetry, only half its stiffness is retained.

The problem shown in Fig. 4.12-1c is antisymmetric because of the loading. Re-
flection about the plane x = 0, followed by reversal of all loads, results in self-coinci-
dence. Again, analysis of half the structure yields a complete solution. Note, however,
that support conditions differ in Figs. 4.12-1b and 4.12-1c.

Rules that help in setting the correct support conditions for reflective symmetry are as
follows. The conditions stated apply only to boundary nodes of the FE model that lie in a
plane of reflective symmetry of the entire structure. If the problem is symmetric:

1. Translations have no component normal to a plane of symmetry.
2. Rotation vectors have no component parallel to a plane of symmetry.

& b A b .

ol 4 b bt bt a = %al—eb»jeb»wre

e b

(a) (b) (c)

Fig. 4.12-1. (a) Plane structure having reflective symmetry about x = 0 and v = 0 planes. (b) Beam
under symmetric load. (¢) Beam under antisymmetric load.
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If the problem is antisymmetric, that is, symmetric except that loads must be reversed to
achieve self-coincidence:

1. Translations have no component parallel to a plane of antisymmetry.
2. Rotation vectors have no component normal to a plane of antisymmetry.

1

+.12-2 depicts these rules in terms of d.o.f. permitted rather than d.o.f. restrained.
The reader should verify that these rules hold for the special cases in Figs. 4.12-1b and
4.12-1c.

If one suspects the presence of symmetries but their nature is not clear, one may do a
coarse-mesh analysis, either of the entire structure or a part of it that is obviously treat-
able by symmetry considerations. Computed results may confirm or refute the existence
of the suspected symmetries.

Figure 4.12-3 is an example of how symmetry concepts might be applied even when
obvious symmetries are not present [5.4]. By regarding the load as the sum of symmetric
and antisymmetric parts, we obtain the cases in Figs. 4.12-3b and 4.12-3¢. By superpos-
ing solutions of these two cases, we solve the original problem. Thus bending moments in
Fig. 4.12-3a are M, = M, M, = M; + M, and M5 = M,. We have traded one solution of
the entire structure for two solutions of half the structure. The possible advantage is that

Figure
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Fig. 4.12-3. Modeling a plane frame problem as the sum of symmetric and antisymmetric cases.
(Reproduced from [5.4] by permission of the publisher.)
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Fig. 4.12-4. Skew symmetry of a plane frame, with loads that are (a) skew symmetric and (b) skew
antisymmetric.

the two solutions differ only in loads and support conditions. Such a trade may be advan-
tageous if the structure is geometrically complicated and considerable effort is needed to
prepare input data, or if the reduction in number of d.o.f. is important.

Skew or inversion symmetry is illustrated in Fig. 4.12-4. In Fig. 4.12-4a, a half-revolu-
tion of structure and loads about the z axis (normal to the paper) results in self-coinci-
dence. In Fig. 4.12-4b, a half-revolution followed by reversal of loads results in self-coin-
cidence. In both cases only half the structure need be analyzed, but support conditions at
point O are not so readily stated as are support conditions for cases of reflective symme-
try [4.7].

Axial symmetry prevails when a solid is generated by rotation of a plane shape about
an axis in the plane. Although the structure is three-dimensional, the FE model need be
only two-dimensional. Axially symmetric bodies are common and their analysis is dis-
cussed separately (Chapter 6).

A structure that is not axially symmetric may yet exhibit a rotational repetition of
geometry, material properties, supports, and loads. This circumstance is called cyclic
symmetry (or sectorial symmetry, or rotational periodicity). An example appears in Fig.
4.12-3a. A complete solution is obtainable by analysis of one repetitive portion, such as
that in Fig. 4.12-5b. Other choices of representative repetitive portion are possible.
Although only one such portion is needed, it is convenient to speak of “attachment”
d.o.f. along AB and CD. Attachment d.o.f. along AB and CD must match exactly—in
number, placement, type, and orientation—for the reason that d.o.f. along AB and CD
must be constrained to have identical displacements. Specifically, nodes A and C must
have the same displacement components in the respective n directions and the same dis-
placement components in the respective s directions. If attachment d.o.f. carry externally
applied loads, these loads must be applied on either AB or CD, but not both, as this
would apply twice the load intended. In order to exploit cyclic symmetry, it is not neces-
sary that the body be plane or that attachment d.o.f. lie on straight lines. In general, at-
tachment d.o.f. lie on congruent curved surfaces in space, match exactly in position, and
use d.o.f. that match in their orientations with respect to these surfaces. Concepts of
cyclic symmetry need not be restricted to problems in which repetitions of form and
loading appear with rotation about an axis. Similar repetitions may appear in a long
slender structure. With appropriate loading, this would be possible in Fig. 4.11-1b. for
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Fig. 4.12-5. (a) Plane structure that exhibits cyclic symmetry. Loads are P and Q. Supports
(not shown) exert no force. (b) Typical repeating portion. Nodes on AB and CD are shown but
the FE mesh is not shown.

example. This circumstance, less common than cyclic symmetry, may be called “repeti-
tive” symmetry.

Caution. Symmetry concepts should be used sparingly and carefully in problems of vi-
bration and buckling. For example, a uniform, simply supported beam has symmetry
about its center but has anrisymmetric vibration modes as well as symmetric vibration
modes. If half the beam were analyzed, the support conditions of Fig. 4.12-1b would per-
mit only symmetric vibration modes, while the support conditions of Fig. 4.12-1c would
permit only antisymmetric vibration modes. Similarly, an axisymmetric solid or shell will
have many vibration modes that are not axisymmetric. Caution is also needed in static
problems that involve nonlinearity because symmetries present when loading begins may
subsequently disappear.

4.13 CONSTRAINTS

A constraint may merely prescribe the numerical value of a d.o.f. and may then be called
a “single-point constraint.” The most common example is setting a d.o.f. to zero as a sup-
port condition. In the following discussion, “constraint” is used to mean a prescribed rela-
tion among d.o.f. (sometimes called a “multipoint constraint”). The problem of Fig. 4.3-3
is an example. In that problem, d.o.f. at nodes 1 and 2 are constrained to follow d.o.f. at
nodes 3 and 4 and are replaced by d.o.f. at nodes 3 and 4 prior to assembly of elements. A
constraint is roughly the opposite of a release (Section 2.3); however, d.o.f. in a con-
straint relation need not be physically adjacent.

One way to impose constraints is to use transformation, much as described below Eq.
4.3-2, to eliminate constrained d.o.f. prior to assembly of elements. For each equation of
constraint, one d.o.f. can be eliminated. In what follows we describe how constraints may
be applied to global equations KD = R, afrer assembly of elements, to override the elastic
relation among d.o.f. to be constrained. We will describe two methods that are used in
commercial software: the Lagrange multiplier method, which imposes constraints ex-
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actly, and the penalty method, which imposes constraints approximately. First, we illus-
trate constraint equations per se, as follows.

Constraint Equations. A constraint may be used in the plane problem of Fig. 4.13-1.
The beam element has rotational d.o.f. but the plane elements do not. We wish to intro-
duce moment communication at the left end of the beam element so that node 1 is not just
a hinge connection. We may elect to make node 1 and edge 1-2 have the same rotation,
that is, 6., = (u, — u,)/b. The equation of constraint is then

F 01 X 0 0 0 ~-}D=o (4.13-1)
b b

where D = [u, v, 6., u, v, u; Us--]" contains all d.o.f. active at the global
level (here we save space by listing only the d.o.f. needed in the present example). As
an alternative, we may elect to make node 1 and edge 3-1 have the same rotation, that is,
0., = (v, — v3)/a, for which the equation of constraint is

a a

{0 Lo 00 L ..}Dzo (4.13-2)

Clearly, there are many plausible alternatives, such as using the i, and v, at nodes 2 and 3

instead, or enforcing the additional constraint that edges 1-2 and 1-3 remain perpendicu-

lar, and so on. One should not expect that any alternative will provide accurate stresses

near node 1 in the plane body. (See Fig. 3.9-6 for a different treatment of this problem.)
An equation of constraint has the general form

CD-Q=0 (4.13-3)

where C is an m by n matrix, m is the number of constraint equations (m = 1 in Egs. 4.13-1
and 4.13-2), and n is the number of d.o.f. in the global vector D. Q is a vector of con-
stants. Often Q = 0, as is the case in Egs. 4.13-1 and 4.13-2. We will describe two ways
to impose Eq. 4.13-3 on the global equations KD = R.

Lagrange Multiplier Method. We introduce as additional variables the Lagrange multi-
pliers A=[4, A, - 4,]". Each equation of constraint is written in homogeneous form
and multiplied by the corresponding A;, which yields A*{CD — Q} = 0. Next, the left-
hand side of this equation is added to the usual energy terms, which produces the modi-
fied total energy expression

I1,=$D’KD -~ D'R + A"{CD - Q} (4.13-4)
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\_ - Fig. 4.13-1. A plane beam element joined to a plane
T~ quadrilateral element.
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The lower partition states the m constraint conditions, Eq. 4.13-3. If m = 0 we obtain the
usual result KD = R. Equation 4.13-5 is solved for both D and A. Despite the null subma-
trix, a Gauss elimination solution will not fail if eliminations are properly sequenced be-
cause eliminations introduce nonzero diagonal coefficients.

As an example, we impose the constraint u; = u, in Fig. 4.13-2a. After all support con-
ditions have been imposed, but not the constraint condition, global equations are as
shown in Fig. 4.13-2b. The equation of constraint is

c{“l} ~0 whee Co={ -1 (4.13-6)

Equation 4.13-5 becomes

kK -k 1 u, P
-k 2k 1| <u,; =40 (4.13-7)
1 -1 0 A 0

Solving, we obtain u, = u, = P/k, A = P. The sign of 4 is not significant, but its magni-

tude can be regarded as the force of constraint.

Penalty Method. Equation 4.13-3 is modified to read t = CD — Q, so that t = 0 implies
satisfaction of the constraints. An energy expression analogous to Eq. 4.13-4 is

I1,=3D'KD - DR + 7ot (4.13-8)

where =[] is a diagonal matrix of “penalty numbers,” chosen by the ana-
lyst and preferably dimensionless. Derivatives of [T, with respect to the D; are set to zero,
which yields

(K + C"aCID =R + CTaQ (4.13-9)

where CTaC is called a “penalty matrix.” If « = 0, the constraints are ignored. As a be-
comes large, the penalty of violating constraints becomes large, so that constraints are
very nearly satisfied. Penalty numbers that are too large produce numerical ill-condition-
ing, which may make computed results unreliable and may even “lock” the mesh (e.g., if
the material is incompressible; see below).
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Fig. 4.13-2. (a) Two-element uniform bar. A = cross-sectional area; E = elastic
modulus. (b) Global equations KD = R, with u, and u, the only nonzero d.o.f.
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As an example, consider again the constraint u, = u, in Fig 4.13-2. There is only one
constraint and therefore only one penalty number, which is dimensionless if we elect to
write the constraint matrix as C = [Vk —Vk]. Equation 4.13-9 becomes

[[—kk ;lzj + O{_kk —kkn{:} - {S} (4.13-10)

which has the solution

_2+a£
1+ k

u, u, = (4.13-11)

P
k
If o =0, then u; = 2P/k and u, = P/k, which is the unconstrained elastic solution. If ¢ be-
comes large, we approach the constrained solution u; = u, = P/k. Note that if o were infi-
nite, the coefficient matrix in Eq. 4.3-10 would be singular. Thus we see that penalty
numbers must be large enough to be effective but no so large as to cause numerical diffi-
culties.

Very Stiff Elements. A stiff region or element in a comparatively flexible structure con-
tributes a penalty stiffness matrix to K, as in the example of Eq. 4.13-10. Further exam-
ples appear in Section 5.10. A very stiff region may provoke serious ill-conditioning.
Rather than attempting to manage the difficulty it is better to avoid it altogether by using
(say) the Lagrange multiplier method to make the stiff region perfectly rigid. This is a
common practical application of multipoint constraints.

Incompressible Materials. As Poisson’s ratio approaches 0.5, a material approaches in-
compressibility. If an element is incompressible, its normal strains are constrained to sum
to zero, which is the condition of no volume change. Accordingly, the number of con-
straint conditions in a FE model of an incompressible material is equal to the number of
elements times the number of Gauss points used to integrate each element. These con-
straints are not imposed after K is formed; rather they arise naturally, are incorporated in
K., and can be shown to have the form of a penalty matrix. If the penalty matrix is nonsin-
gular the mesh “locks”; that is, computed d.o.f. may be orders of magnitude too small. A
useful solution can be obtained if the penalty matrix is singular. Arguments too lengthy to
repeat here [2.2] indicate that solutions are reliable if (a) penalty terms are integrated us-
ing fewer Gauss points than used for other terms in element stiffness matrices, (b) the ra-
tio of the number of d.o.f. to the number of penalty Gauss points is approximately 2:1 for
plane problems and 3:1 for solid problems, and (¢) v is such that the reciprocal of
3(1 — 2v) is between 10”7 and 107, where p is the number of digits used in computer
words.

The foregoing remarks about incompressibility do not apply to problems of plane
stress, plate bending, and shells, for which thickness changes are unrestrained and the in-
compressibility condition is therefore not enforced.

ANALYTICAL PROBLEMS

4.1 Let the structures shown have two-node elements and one d.o.f. per node. Number
the nodes so that there are as few coefficients as possible between the skyline and
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Imagine that the bar element in Fig. 4.3-1a is arbitrarily oriented in space, with its
orientation defined by direction cosines I, m, and »n of angles between the element
axis and global axes XYZ. Write the appropriate transformation matrix T and obtain
the resulting element stiffness matrix k that operates on nodal translation d.o.f. par-
allel to X. Y, and Z axes.

Imagine that the element in Fig. 4.3-1a is a beam element, having as nodal d.o.f.
translations w, and w, normal to the xy plane and rotations 6,; and 8,, whose vec-
tors are parallel to the y axis. Write the transformation matrix T that will convert the
matrix k” that operates on these d.o.f. to a matrix k that operates on d.o.f. wy, w,,
and rotations 8y; and 6,,(i = 1, 2) about X and Y axes.

(a) (b) (c) Problem 4.1

Generalize Fig. 4.3-3a so that there are the usual six d.o.f. per node and offsets a,,
b,.and ¢; (i = 1, 2). Write the appropriate transformation matrix T.

Obrain numerical values of the four coefficients in matrix J, Eq. 4.4-4, for each of
the elements shown. Also, compute |J| and explain its significance.

Y
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4.6

4.7

Problem 4.5

For the four-node plane element discussed in Section 4.4, write coefficients in the B
matrix in terms of coefficients J¥ in J™' and derivatives of the N, with respect to &
and 17. Assume that nodal d.o.f. have the order {«, v, u, - v,}.

The “natural” coordinate system &7 in Fig. 4.4-1 is not unique. Another possible
choice is the rs system shown in the sketch. Restate the N, of Eq. 4.4-2 in terms of
and s.

Problem 4.7
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4.11

4.12

4.13

4.14

4.15

4.16
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Gauss points and weights are symmetric with respect to the center of the integration
interval, and a two-point rule integrates the polynomial ¢ = ¢, + ;& + ;& + ¢,&
exactly. Use this information to derive the location and weight values of the two-
point Gauss rule for the integration interval ~1 to +1.

If we sum over all points of a Gauss quadrature rule, we obtain W, = 2 in one di-
mension and 22 W;W, = 4 in two dimensions, for any order of rule. Why?

Use one-, two-, and then three-point Gauss quadrature rules to integrate the follow-
ing functions over the interval £ = -1 to £ = +1. Compute the percentage error of
each result.

(@ ¢=5+&

(b) ¢=rcos 1.5

() ¢=(1-5/2+8)

Use Gauss quadrature to evaluate the integral

2

11
=[] 348 e an
Y 2+7°

-1

Use (a) one point, (b) four points, and (c) nine points. Compare each of the results
with the exact result obtained by use of a table of integrals.

(a) Let the element in Fig. 4.6-2b be a 2 by 2 square. The displacement mode
shown is then u = x(1 — 3y%), v = y(3x> — 1). Show that this mode produces zero
strains at the four Gauss points.

(b) Sketch an adjacent eight-node element whose nodal displacements are of oppo-
site sign to those in Fig. 4.6-2b. In what way are the two elements incompati-
ble?

Imagine the stiffness matrix of a simple plane beam element (four d.o.f.) is to be in-

tegrated by Gauss quadrature.

(a) Sketch the deflected shape of the beam for the instability that is possible if a
single Gauss point is used.

(b) How many Gauss points are needed to integrate k exactly? Why?

(c) Evaluate k using one-point quadrature. Show that it contains the correct bend-
ing stiffness, and explain its defects. Note: |3l =12

Consider a 24-d.o.f. solid element in the form of a cube. There are eight vertex
nodes. Each has translational d.o.f. in x, y, and z directions. If integrated by a single
Gauss point at the element center there are 12 instability modes. Using x-direction
displacements only, sketch deformed elements for four of these modes.

If a bar element is formulated in isoparametric fashion, it extends from £ = -1 to
£ = +1. Imagine that axial stresses are g, and 0, at the respective Gauss points of
an order 2 rule. Based on o, and 0,,, what is ¢, as a function of £ and what is the
extrapolated value of o, at each end of the element?

For the uniform cantilever beam shown, assume that the lateral displacement field is

given by v = X.Bx', where i =2, 3, ..., n. Compute strain energy U by integration
of 0.5EI(d’v/dx*)* over length L [2.1] and the total energy as I1, = U — Pv,, where
v, is v evaluated at x = L. From the equations ol1,/df;=0,i=2, 3, ..., n, compute

the f; and v, for (a) n =2 and (b) n = 3. Compare the computed v, and bending mo-
ment at x = 0 with predictions of beam theory.
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PDF COmpT%@Dﬂ'defﬁ@ﬂYﬂfﬁﬂ@ikd and uniformly loaded beam shown, assume that the lateral
displacement field is v = Bx(L — x). Compute strain energy U as described in
Problem 4.16 and the total energy as U minus the integral of v(g dx) over length L.
Compute f from di1,/df3 = 0. At the ends, middle, and quarter-points of the beam,
compare computed values of deflection, slope, and bending moment with values
predicted by beam theory.
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Problem 4.16 Problem 4.17

4.18 Repeat Problem 4.16 with load P replaced by a uniformly distributed load ¢. See
Problem 4.17 for advice on calculating work associated with the load.

4.19 Proceeding as in Problem 4.17, compute the center deflections v,, and v, in
Problem 2.8. (Contrary to the simple assumption made in Problem 2.8, the present
analysis will not yield vy, = vg,.)

4.20 Consider patch tests for constant ¢, and constant 7,, in the FE model of Fig. 4.9-1a.
Let the x-direction span be L. For convenience, place all side nodes of the patch at
midsides. What are appropriate nodal loads in each case?

4.21 As an alternative form of the patch test, one could impose all d.o.f. at all nodes, us-
ing values consistent with a constant strain state, then calculate nodal loads R =
KD. If the patch test is passed, what should be the calculated loads at the node in-
ternal to the mesh?

4.22 Let the equations that represent a substructure be

KHH K(IS Da Rﬂﬂ

K, K,|] D, IR,
By solving for D, from the lower partition and substituting into the upper partition,
determine expressions for K, and R, in the reduced equations K,D, =R,

4.23 (a) The beam shown is uniform and simply supported. Use elementary beam theory
and the type of superposition method suggested in Fig. 4.12-3 to determine the
deflection at the center point of the beam and at load P. Express answers in
terms of P, a, E, and [.

(b) The problem depicted in Fig. 4.12-5a can be solved by the method of Fig.
4.12-3 rather than by the method of cyclic symmetry. Describe how.

b
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3a a4 Problem 4.23

4.24 The sketch shows a plan view of a grillage, which is a planar arrangement of inter-
connected beams. Assume that all elements are identical and that nodal d.o.f. are w;,
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(in the z direction), 6,;, and 8,,. The grillage is square and supports impose w, = 0 at

all nodes i on the boundary of the square. A z-parallel force of magnitude P acts on

nodes as described below. Describe what portion of the grillage constitutes the

smallest acceptable model, and what its boundary conditions are, if:

(a) All loads P act in the same direction.

(b) Loads P act upward for y > 0, downward for y < 0, and are omitted on y = 0.

(c) Loads P act upward in the first and third quadrants, downward in the second
and fourth quadrants, and are omitted on x and y axes.

(d) Loads P alternate in direction by octants — for example, upward between y = 0
and x =y, and downward between x = y and x = 0 — and are omitted on x and v
axes and on the lines x = y and x = —y.

Problem 4.24

4.25 A uniform cantilever beam of constant thickness is tip-loaded by moment and/or
transverse force. It is to be analyzed using plane elements. One need model only
half the beam, using the portion on either side of the longitudinal axis through cen-
troids of beam cross sections. Describe appropriate FE boundary conditions for
such a model.

4.26 The sketch represents a uniform rectangular plate with force P applied normal
to the plate at one corner. Imagine that the plate is supported by a uniform elas-
tic foundation and that the FE mesh (not shown) is uniform. The d.o.f. at a typi-
cal node i are w,, 8,,, and 8,,. Describe how the entire plate can be analyzed for
lateral deflection w = w(x, y) by analyzing a single quadrant four times, each
time with appropriate loading and boundary conditions, then superposing re-
sults.

Problem 4.26

4.27 Write an equation in the form of Eq. 4.13-3 that states each of the following con-
straints.
(a) In Fig. 4.13-1, diagonal 2-3 has the rotation 6. The d.o.f. of the FE model are
stated below Eq. 4.13-1,
(b) Combine the constraint of part (a) with Eq. 4.13-2. so that CD = 0 has two
rows. Does CD = 0 imply Eq. 4.13-1?
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PDF Compre&sqn Fikgea.Yensim 2-1 rotates an amount e more than line 3-1, where e is a
small angle.
(d) The right-hand edge of the mesh in Fig. 4.9-1a displaces as a straight line.
4.28 The uniform beam shown is simply supported and is loaded by moment M,, at its
left end.
(a) Write an equation that constrains the two end rotations to be of equal magnitude
but opposite sign.
(b) Solve for the end rotation by means of a Lagrange multiplier.
(c) Solve for the end rotation by means of the penalty method.
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Problem 4.28

COMPUTATIONAL PROBLEMS

4.29 Model the T-section cantilever beam shown by using separate sets of beam ele-
ments, one set for the cross of the T and the other set for the stem. Use one, then
two, then four elements along the length in each set. Make nodes of the stem slave
to nodes of the cross. Let Poisson’s ratio be zero. Compare computed values of tip
displacement and rotation with values predicted by beam theory.

Cross

P /

Stemn

Problem 4.29

4.30 If software permits, reanalyze the beam problems of Fig. 3.11-1, using different or-
ders of Gauss quadrature to form element stiffness matrices. Do changes in quadra-
ture order have the expected effects?

4.31 If software permits, solve the problem depicted in Fig. 4.6-2a. For what value of
L/H is the displacement of P greater in magnitude than L7 Are stresses accurately
computed anywhere in the model?

4.32 The structure shown is modeled by eight-node plane elements and is loaded by a
force normal to one element side at B. Use four Gauss points to evaluate k of each
element. Let elements 1 and 2 have elastic modulus £, and element 3 have elastic
modulus E,. For what value of E,/E, is the relative displacement of nodes A and B
greater in magnitude than dimension a? When this happens, are stresses accurately
computed anywhere in the model? Use a small value for load P.

7 } a ! a ‘Jx a ‘! Problem 4.32
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Assume that plane stress conditions prevail in Fig. 4.10-1b. Let AB be rigid and
made to translate vertically downward a small amount. Compute stresses in the
elastic medium ABCD. Investigate the effect of placing a rigid boundary CD close
to AB and then further away. If the software includes infinite elements or boundary
elements, use them to repeat the analysis that has the “close” placement of bound-
ary CD.

The sketch shows a central crack of length 2a in a flat strip of material whose width
is 2¢. If side nodes of isoparametric elements are moved to quarter points in the
manner shown, stresses vary as 7 °> along certain radial lines [4.8]. The r™* varia-
tion accords with the theory of linear fracture mechanics. The mode I stress inten-
sity factor K; can be computed as

26 ( 7\
K = =21 2] [4Aq-A
: K‘+1(2Ej [48c =28

where G is the shear modulus, K= (3 — v)/(1 + v) for plane stress conditions or K =
3 — 4y for plane strain conditions, and A and A, are the amounts of crack opening
at C and D [4.9]. A handbook gives a formula for Ki:

K, = o =92 (alc)+0326(alc)’
[1—(61 C)]OAS

Assign convenient dimensions, complete the FE model, do computations. and com-
pare the computed and formula values of K;. Also, use alternative methods for cal-
culation of K; if the software provides them.

O-.\’ o—.\
< y . > °
A / A Portion of
| e | 71\’ Lol mesh that
2¢ 2a surrounds the
. J/‘ T c cr(ackl tip Z‘L A
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Problem 4.34
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CHAPTER 5

Modeling, Errors, and
Accuracy 1n Linear Analysis

This chapter is concerned with matching element behavior to anticipated structure be-
havior; treatment of loads, supports, and connections; planning the FE model; debug-
ging; checking results; and convergence of successive solutions. Some relevant advice is
discussed more fully in other chapters, especially for thermal analysis, dynamics, and
nonlinear problems. The present chapter deals mostly with linear static problems of struc-
tural mechanics. Matters discussed are under the direct discretion and control of the ana-
lyst and require considerable thought, in contrast to topics in Chapter 4, which are largely
internal to software and need only be properly invoked (such as a decision to usc sub-
structuring or to exploit symmetry).

Advice that follows does not fall neatly into categories. Accordingly, the division into
sections is somewhat arbitrary. Neither the sections nor their contents should be regarded
as checklists of procedural steps to be followed in every problem. Instead, the advice
should be learned well enough that appropriate parts of it come automatically to mind
when needed to deal with particular situations.

5.1 MODELING IN GENERAL

FE modeling is the simulation of physical behavior by a numerical process based on
piecewise polynomial interpolation. In order to obtain a reliable FE solution, the analyst
must first have a grasp of the problem area, be it stress analysis, thermal analysis, or
whatever. Only then can one address questions that must be answered: What physical ac-
tions are important? Is the problem time independent? Are there nonlinearities? What are
the boundary conditions? How will results be checked? And so on. If a FE analysis goes
astray it is usually because the analyst’s understanding of physical behavior, boundary
conditions, limitations of theory, FE behavior, or options in the program is insufficicnt to
prepare a satisfactory model. Clearly, FE modeling is more than preparing a mesh and
preprocessing.

Skill in FE modeling is based on an ability to visualize physical behavior and relate it
to element behavior. Skill is developed by practice and by critical evaluation of computed
results. The necessary knowledge base includes statics, structural theory, and FE theory.
Here the word “theory” does not imply something rarified and impractical; it means a
system of knowledge and assumptions, with rules of procedure and having predictive
value. Knowing the assumptions and limitations of a structural theory may keep us from
using it inappropriately. As an example, in elementary beam theory only axial normal

103
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stress is taken into account, so elementary beam theory should not be used for very wide
beams (use plate bending theory instead) or for short deep beams (use two-dimensional
analysis instead). One must undersiand the classic analysis tools, specifically including
the widely used (and widely misused) methods and formulas of elementary mechanics of
materials. Assumptions and restricrions that underlie analysis tools are also incorporated
in finite elements. For the practitioner, the main reason to study stress analysis theory is
that assumptions and restrictions are revealed and one then knows when not to use a the-
ory or a procedure. FE modeling is closely related to theory because FE is largely a way
of implementing theory. The piecewise-polynomial way in which FE modeling imple-
ments theory requires that the analyst have a sense of how various elements respond to
various loadings. A given element type might behave differently in different programs
because of special restrictions, special features, and even input data defaults. One must
also know how other aspects of the software behave. An assumption about how the soft-
ware should behave may lead to great confusion and frustration. Therefore it is necessary
to study the documentation, even though it is likely to be inscrutable in places. Increas-
ingly, documentation is part of the software and can immediately be called to the screen.

A difficult problem or a large model should not be treated all at once. It is better to
start with special cases and coarse meshes, then revise the model as necessary. If we re-
solve to start simply and expect to revise, we will have more confidence in the f{inal re-
sults and may also reduce the total time spent on the project. Each FE model discloses in-
formation that improves the next one; for example, we can learn where stress gradients
are large and refine the next model in that area.

Output cannot be accepted at face value. Six digits in numbers and pretty stress con-
tours do not imply accuracy. It is necessary to critically examine the computed resulis. If
checking is begun after FE computations are complete, there is a tendency to rationalize
FE results already obtained, often at considerable effort. This tendency is reduced by hav-
ing an approximate analysis in hand before FE analysis is begun. If this is done habitu-
ally, there will be an added benefit: skills in analysis and modeling will improve, because
of thinking more deeply about problems at the outset and subsequently seeing how well
approximate analyses agree with FE analyses.

5.2 STRUCTURE BEHAVIOR AND
ELEMENT BEHAVIOR

What type of elements should I use—beam, shell, solid, or what? Triangular or quadrilat-
eral? With or without side nodes? How many? How should the mesh be graded? Are
there nonlinearities? Such questions inevitably arise. Answers may not come easily, espe-
cially for the initial FE model, but will not come at all without some understanding of
how the structure is likely to behave and how elements are able to behave. In general, one
remembers that the essence of the FE method is piecewise polynomial interpolation and
tries to select elements of such a type and size that deformation of the structure over the
region spanned by an element is closely approximated by deformation modes that the ele-
ment can represent. Alternatively, but with similar intent, one could speak of trying to
match the strain or stress field capabilities of an element to the strain or stress field in the
region of the structure spanned by the element.

As a simple example, consider cases of pure bending, Fig. 5.2-1. We know that axial
strain &, varies linearly with y across a straight member. Consider FE models in which di-
mension & is spanned by a single layer of plane elements (as in Fig. 3.11-1). From the
discussion in Chapter 3 we know that this behavior would be modeled badly by CSTs but



PDF Compressor Free Version v

5.2 Structure Behavior and Element Behavior 107

(a)
(b)

Fig. 5.2-1. Bending moment M applied to (a) straight member and (b) curved member.

would be modeled exactly by Q6 and Q8 rectangles. If the member is curved (Fig.
5.2-1b). circumferential strain €, does not vary linearly with v [2.1]. Q6 elements would
not be exact and would be inferior to Q8 elements because €, can vary quadratically with
yin a Q8 element but only linearly with y in a Q6 element. We could not have reached all
these conclusions without understanding both structural behavior and element behavior.

In the remainder of this section we discuss aspects of structural behavior not usually
discussed in a first course in mechanics of materials, and note how structural behavior is
related to considerations in FE modeling. Similar behaviors and considerations may be
presented by objects less conveniently shaped than those in the following examples.

A standard rolled section such as an I beam. Fig, 5.2-2a, usually carries transverse
loads that cause bending. A beam is usually slender rather than short and deep. A proper
model of a slender beam is built of standard two-node beam elements, which are dis-
cussed in Section 2.3. However, if the flanges are quite wide (Fig. 5.2-2b), the flexure
formula o, = My/I becomes inaccurate. It predicts that o, is independent of z. Actually,
because of “shear lag,” o, varies appreciably across a wide flange [1.5]. The physicat ac-
tion can be understood as follows. Each flange is loaded along its centerline by shear
flow g applied by the web (Fig. 5.2-2¢). The resulting axial deformation is not uniform
across the flange, so neither is axial stress. A FE model that captures this behavior is built
of two-dimensional elements, Fig. 5.2-2d. These elements could be membrane elements
if the variation of o, through the thickness of a flange is negligible—but membrane ele-
ments have no y-direction stiffness, so plate elements would be more appropriate. Finally,
compressive stresses in the lower flange may reduce its stiffness, even without reaching a
local buckling condition. The effect is called “stress stiffening,” even when it decreases
stiffness rather than increasing it. Significant stress stiffening should be taken into ac-
count, but this will not happen automatically; the software must be rold to do so.

(a) (b) (c) (d)

Fig. 5.2-2. (a) Standard rolled section. (b) Beam with very wide flanges. (c) Axial deformation and
stress in upper flange. (d) FE model.
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Fig. 5.2-3. Curved beams of thin-walled section under bending load. Dashed lines show deforma-
tion in the plane of a cross section.

If a curved beam has an I section, its flanges deflect radially when bending moment is
applied (Fig. 5.2-3a). The physical action can be understood by considering a slice
spanned by arc d6: circumferential flexural stress o, has a radial component that pushes
the outer flange outward and pulls the inner flange inward. This action is reversed if mo-
ment M is reversed. For either direction of M, flanges develop flexural stress o. directed
normal to the web. Stress ¢, may be larger than the circumferential stress Op Also, radial
motion of the flanges reduces the stiffness of the beam as seen by moments M. Standard
beam elements do not account for these effects unless provided with correction factors
[2.1, 5.1]. A FE model similar to that in Fig. 5.2-2d will be satisfactory if built of shell el-
ements, that is, if each element has both membrane stiffness and bending stiffness.

Thin-walled pipe bends are subject to the same physical action as curved I beams.
Their cross sections “ovalize” in response to bending moment (Fig. 5.2-3b). The resulting
flexural stress in the ¢ direction may exceed stress in the 9 direction. A pipe bend could
be modeled by beam elements with correction factors [5.2]. Also, a FE model built of
shell elements would be satisfactory, although tedious to prepare and having many d.o.f.
However, piping systems are so often analyzed that special pipe-bend elements have been
devised [5.3] and are often available in FE software.

A cross section of a prismatic beam has a “shear center,” which is the point through
which a transverse load must pass if the beam is to bend without twisting [2.1]. In Fig.
5.2-4a, load P on the thin-walled channel does not pass through the shear center of the
cross section. In consequence, the channel twists as well as bends. Twisting produces
shear stress. It also produces warping of cross sections; that is, it produces axial displace-
ments such that initially plane cross sections do not remain plane. At end x = 0, warping
1s restrained by the support, which applies axial stresses proportional to the tendency to
warp (Fig. 5.2-4¢). If a beam formulation is to account for these effects, the usual six
d.o.f. per node must be supplemented by a “warping” d.o.f. The standard two-node beam
clements in most software cannot model warping effects. Instead, we must use a FE
model similar to that in Fig. 5.2-2d.

Figure 5.2-5 shows a thin-walled cylindrical water tank with a fixed base. Support re-
actions M, and V,, on the tank are uniformly distributed around its base. The tank can be
modeled satisfactorily by cylindrical shell elements. We see that the axial flexural stress
o is large, quite localized near the base, and has steep gradients. A coarse mesh is satis-
factory near the top of the tank, but the same coarseness near the bottom may portray the
state of stress so poorly as to give little indication that a finer mesh is needed. In general,
large flexural stresses and steep gradients are to be expected near “discontinuities’” of
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- Flexing restraint
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Fig. 5.2-4. (a) Thin-walled channel tip loaded by force P in the plane of the web. (b) Deflection of

the tip cross section is shown by dashed lines. (¢) Qualitative contributions to axial stress ¢, in the
upper flange at the fixed end. viewed normal to the upper flange.

stress in shells. Discontinuities are associated with line loads, supports, reinforcements,
and changes in curvature (e.g., where an ellipsoidal end cap is joined to a cylindrical
pressure vessel). The reader is urged to learn enough about shell behavior to be able to
anticipate where flexural stresses may be large [1.5, 2.1, 7.3].

Nonlinearity may appear in a variety of problems. In Fig. 5.2-6a, pressure p is carried
mostly by bending action in the plate and there is an almost linear relation between lateral
deflection and lateral pressure p until the center deflection is roughly half the thickness ¢
[7.3]. This much deflection is reached quickly if the plate is thin. With greater deflection,
membrane stresses support an increasing portion of the load. Thus the stiffness of the
plate appears to increase. The plate need not have fixed supports: the same physical ac-
tion arises whenever the deflected surface is nondevelopable, that is, cannot be unrolled
into a flat sheet without producing membrane strains (cylindrical and conical surfaces are
developable, spherical surfaces are not). To model large deflections of a plate we need
shell elements. which account for both membrane and bending strains, and a nonlinear
analysis procedure. (On the other hand, if the plate is thick, deflections will not be large
enough for the foregoing nonlinearity to arise, but transverse shear deformation may be-
come significant. One must then ask if plate elements in the software take transverse
shear deformation into account). Figure 5.2-6b is a simple buckling problem. But if there
is any imperfection, for example, an off-center load or a slight initial curvature of the col-
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Fig. 5.2-5. (a) Cylindrical tank filled with water to depth A. (b} Circumferential membrane stress.
(c) Longitudinal flexural stress.
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Fig. 5.2-6. (a) Rectangular plate loaded by lateral pressure p, seen in plan and edge views. (b)
Column loaded by axial force P.

umn, it does not buckle but instead exhibits a nonlinear load versus deflection response.
Most practical thin-walled structures are sufficiently complicated as to be “imperfect” in
the sense that a classical linear buckling analysis may give a poor estimate of the actual
collapse load. A nonlinear analysis is required instead.

In summary, one must both anticipate structure behavior and understand element be-
havior in order to make a suitable choice of elements, mesh, and analysis procedure. This
cannot be done without a physical grasp of how various structural forms respond to vari-
ous loads and support conditions, and a grasp of how elements behave and how they are
unable to behave because of limitations in their displacement fields, restrictions of the
structural theory on which they are based, or restrictions of analysis procedure (to linear-
ity and time-independence, perhaps). Because nature is three dimensional, a decision to
use bar, beam, plane, plate, or shell elements—in short any elements other than solid ele-
ments—constitutes an idealization, for which good judgment is needed.

5.3 ELEMENT TESTS AND ELEMENT SHAPES

How do elements of various shapes behave under various loads? A good way to find out
is by compurational testing, choosing problems for which the solution is already known.
By doing computational tests we may incidentally learn how to use the software more ef-
fectively, and also resolve uncertainties about input conventions, defaults, output capabil-
ities, coordinate systems used for stress output, symbols and abbreviations, and explana-
tions in the documentation.

Two types of test have more to do with checking the validity of an element than show-
ing how well it works. One is the patch test, described in Section 4.9. The other is the
eigenvalue test, which proceeds as follows [2.2]. One computes eigenvalues of the stff-
ness matrix of a single unsupported element. This can be done in a standard FE program
by assigning a unit mass to each d.o.f. in a vibration analysis (see Section 9.4). Squares of
the computed vibration frequencies are the desired eigenvalues. Each eigenvalue is twice
the strain energy of the element in the displacement mode corresponding to the eigen-
value. Accordingly, there should be exactly as many zero eigenvalues as there are possi-



5.3 Element Tests and Element Shapes 111

PDF Compressor Free Vi rFsion

(2) (b} (c)

Fig. 5.3-1. Possible single-element tests. Node patterns are not shown. (a) Plane element. (b) Plate
element in bending. (c) Plate element in twisting.

ble rigid-body motions (e.g., 3 and 6 zero eigenvalues in plane and three-dimensional
problems. respectively). Too few indicates that one or more motions that should be rigid-
body motions actually cause strain. Too many indicates that the element has one or more
instabilities (Section 4.6). Ideally, an element is free of locking and instability in all situa-
tions.

A single-element test is a FE analysis like any other, except that the model consists of
a single element. By varying the aspect ratio L/k in Fig. 5.3-1a, one can determine the
sensitivity of an element to elongation. In Fig. 5.3-1b, one can determine if the plate ele-
ment tends to “lock™ as L/¢ becomes large and if transverse shear is taken into account as
L/r becomes small. In Fig. 5.3-1c the effects of varying L/t and L/b can both be studied.
If the element stiffness matrix is numerically integrated, the effect of changing the quad-
rature rule can be studied (if the software permits a choice in the matter).

The effects of element distortions other than aspect ratio can be studied with a FE
model having two or more elements. Figure 3.11-1 contains the beginnings of such a
study for each of several element types. Few such studies have been published [5.5], so
the analyst must learn by means of trial computations.

Element shapes that are compact and regular usually give greatest accuracy. Accord-
ingly. the ideal triangle is equilateral, the ideal quadrilateral is square, and so on. Of
course other shapes must also be used in order to represent the structure geometry and
grade a mesh from coarse to fine. But usually one should try to avoid shapes like those in
Fig. 5.3-2. The elements shown are plane, but similar distortions of plate, solid, and shell
elements are similarly detrimental. Such distortions usually reduce accuracy by making
the element stiffer than it would be otherwise. More specifically, an element that has qua-
dratic terms in its displacement field can be reduced to behaving like an element that has
only linear terms if its shape is too greatly distorted [5.5]. The amount of degradation
caused by a given distortion varies with element type, mesh arrangement, and physical
problem. Distortion usually degrades stresses more than displacements, natural frequen-
cies, mode shapes, and temperature fields [9.3]. Distorted elements can still display states
of constant strain, but their ability to represent gradients declines. Therefore, distortion is
likely to be especially detrimental in regions of stress concentration. Elements having
side nodes in addition to corner nodes are usually less sensitive to shape distortion than
elements having only corner nodes. Elements having corner nodes, side nodes, and inter-
nal d.o.f. are still better.

Deliberate distortion can be harmless, or even beneficial if used appropriately and with
care: as examples, aspect ratio matters little if strain gradients are small, and a side node
can be moved to the quarter-point location to model stresses near a crack tip [4.8]. Also,
side curvature can be used to fit a curved boundary. As an example, consider Fig. 5.3-3.
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Fig. 5.3-2. Plane elements having shape distortions that usually reduce accu-
racy. (Reprinted from [2.2] by permission of John Wiley & Sons, Inc.)

Here the curved sides span 90°, a much larger angle than would ordinarily be considered
acceptable, yet computed results are surprisingly good. The reason is that the element
shape causes the isoparametric transformation to become singular at center of curvature
O, which is exactly the point where curved-beam theory predicts infinite stress [5.5]. A
similar match of transformation and stress field singularities occurs when quarter-point
elements are used next to a crack tip (see Problem 4.34). If the element of Fig. 5.3-3 were
used within a mesh where the stress field has no singularity at the center of curvature, or
quarter-point elements were used where there is no crack tip, accuracy would be de-
creased by element distortions.

In three dimensions a “warping” distortion is possible. The four nodes of a quadrilat-
eral shell element are usually not coplanar; that is, a typical quadrilateral shell element is
warped. Similarly, warped quadrilateral membrane elements may appear in three-dimen-
sional FE models of structures built of sheet metal and stiffeners. For shell and membrane
elements alike, accuracy declines as the amount of warping increases. Warping may not
be obvious during mesh generation, but software will probably check for warping and
warn the user if it is excessive.

In addition to being careful with element shapes, one should not use abrupt changes of
element size (Fig. 5.3-4). Even if element aspect ratios in Fig. 5.3-4 are satisfactory, the
“poor” arrangement will produce a local disturbance in the stress field. Changes in ele-
ment type (e.g., triangular to quadrilateral), abrupt changes in element size, poorly shaped
elements, and poor interelement connections (Fig. 3.10-2) produce “artificial” distur-
bances in the stress field that may mistakenly be accepted as physically realistic. Particular
care should be taken to avoid such changes, transitions, and distortions in regions where
stress gradients are large and where accuracy is important.

0 ~ 7 Fig. 5.3-3. Plane curved beam modeled by a single eight-node isopara-
M metric element.
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Fig. 5.3-4. Changes in element size are (a) too abrupt and (b) gradual (and much improved).

5.4 TEST CASES AND PILOT STUDIES

Test cases for which the answer is already known can be used to study convergence rate
as well as sensitivities to element shape distortion and mesh arrangement. For example,
consider a square plate with all four edges clamped, loaded in bending by uniform lateral
pressure. Analytical results for stress and deflection are well known [1.5, 7.3]. Figure
5.4-1 shows some coarse FE meshes for this problem. By comparing results from the first
two meshes and at least one additional refinement, one can determine the approximate
rate of convergence toward correct results of a certain element type—for one particular
test case. The rate may differ for other loadings and other support conditions. Results
from two meshes can be extrapolated to provide an improved result if the convergence
rate is known (see Section 5.15). Quite probably. stresses will converge more slowly than
displacements. Moving a node (Fig. 5.4-1c¢) provides a test of sensitivity to element shape
distortion. In the coarse meshes shown, changes in mesh arrangement can markedly
change computed results: in Fig. 5.4-1d, two symmetries of the actual problem are lost; in
Fig. 5.4-1e, the four corner elements do not deform because all of their d.o.f. are re-
strained by supports.

Different element types have different sensitivities to element distortions and mesh
arrangements. Even a single element type, such as a four-node quadrilateral, may behave
differently in different software packages because of differences in basic formulation or
different choices of “add-on” refinements [3.2]. Knowledge of element behavior, gained
from software documentation and computational testing, may enable us to use element
types and shapes most appropriate to the problem at hand.

Test cases are often used in FE research papers. Authors want to compare their new
formulations with existing methods. Accordingly, they calculate FE results for test cases
already used by other authors. In this way a set of test cases has arisen by default rather
than by design. This set of test cases has been criticized as reporting few if any bad re-
sults, perhaps because authors correct only bugs they happen to find, and because not
enough different conditions are tested [3.7]. A good set of test cases exercises all behav-
iors that an element purports to model. In a set of standard test cases proposed in 1985
[3.7], one finds that a typical test case gives results ranging from poor to good, depending
on the type of element used to solve it.

(a) (b) (c) (d) (e)

Fig. 5.4-1. Coarse meshes for a square plate that could be used in studies of convergence rate,
mesh distortion, or mesh arrangement.
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Software providers maintain extensive sets of test cases. They are used to “verify” a
new version of the software by making sure it can solve all the test cases, and solve them
at least as well as the previous version. Users can often purchase a manual that contains a
software provider’s test cases, perhaps without even purchasing the software, and use it to
learn how to use the software. Some test cases may be simple, even including patch tests,
but usually they involve more complicated geometry, loading, and support conditions.

An effort to establish a rational set of test cases has been undertaken in the United
Kingdom by NAFEMS (Nationa! Agency for Finite Element Methods and Standards).
Aims of the organization include setting FE standards and testing procedures and coordi-
nating evaluation of FE software. The numerous NAFEMS test cases are called “bench-
marks” and have the following characteristics: each uses a single element type; data prepa-
ration is straightforward; geometry, loading, and boundary conditions are unambiguous;
and each has a single well-defined result (e.g., deflection or stress at a single point, or a set
of natural vibration frequencies), known from theory or perhaps from soundly justified
computation [5.7]. Commercial software packages can be compared by applying them to a
given benchmark. Such comparisons occasionally appear in NAFEMS publications.

A pilot study is a simplified study of a larger problem, performed with a simplified
model and perhaps also with limited analysis goals. Software capabilities likely to be
used in the “real” problem can be tested. One might even insert intentional errors, to see
if software error traps will detect them [5.4]. Benefits of a pilot study are a reduction in
input and output data, a preview of structural behavior, a comparatively easy way to test
modeling idealizations such as joints and supports, detecting blunders such as incorrect
units for data, insight into what computational methods may be appropriate, and an indi-
cation of the type and amount of output to request. Pilot studies are particularly appropri-
ate with dynamic or nonlinear problems, where structural behavior may be especially
hard to foresee and the variety of computational options is large.

Simple test cases and pilot studies are highly recommended as a way to answer “what
if * questions about modeling, or to test the software and discover how it reallv behaves.
Software efficiency, accuracy, and ease of use for a certain type of problem can be tested.
One is likely to see some behavior at odds with expectations, and perhaps even at odds
with descriptions in the documentation.

5.5 MATERIAL PROPERTIES

Elastic constants for isotropic materials are usually easy to obtain and easy to convey
properly to the software. Constants for anisotropic materials are more difficult on both
counts. If x, y, and z are principal material directions, the stress—strain—temperature rela-
tion of an orthotropic material can be written

Vix Veox T"T
gx = + E— O_x - E O_" - G; + a,r AT }/.\’)' - G
X v < x
Vey 1 Ve, T- o
& = - 2 O, + — O, — —- o. + «, AT Yo = - (5.5-1)
’ Er E}' » < » . G‘:
V.. V.- 1 (=
£ = - = O, — p— O, + —/ O + O AT Yoo =
E© T E G.
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Fig. 5.5-1. (a) Portion of a plate with a regular pattern of holes. (b, ¢, d) A typical repeating geom-
etry, showing deformations used in computing effective elastic properties. The FE mesh is not
shown.

Not all constants in Eq. 5.5-1 are independent. Theory shows that the relations

Ev,=FEyv, Ev., =Ey,. Ev.,=Ev,_, (5.5-2)
must be satisfied by any real material. Nevertheless, there are still nine independent elas-
tic constants and three independent coefficients of thermal expansion. A general anisotropic
material has 21 independent elastic constants. It may not be easy to obtain all necessary
constants and state them properly as input, not getting them mixed up and with due re-
gard to principal material directions that may be differently oriented in different parts of
the structure.

As a minor point, incompatible and underintegrated elements may display a depen-
dence on Poisson’s ratio in problems that should be independent of Poisson’s ratio, such
as plane beam problems.

Corrugations, indentations, or perforations can have an appreciable effect upon the
stiffness of a plate or a shell. If geometric disturbances are numerous and have a regular
pattern, they can be “‘smeared” to produce a substitute plate or shell without geometric
disturbances but having modified elastic constants. The constants are readily available in
some cases [5.8]. If not, they can be calculated by the procedure now described by means
of an example [5.9].

Consider in-plane behavior of a perforated plate, Fig. 5.5-1a. Isolate a typical repeat-
ing portion such as ABCDE, and model it by an FE mesh (not shown in Fig. 5.5-1).
Consider three displacement states of the FE model, / = 1, 2, and 3, with each state i de-
scribed by a set of d.o.f. D, associated with a particular state of constant strain in the sub-
stitute plate. In what follows, we elect to use constant strain states of unity. Accordingly,
on boundary ABCDE of the FE model of the actual plate, some d.o.f. in each D, are pre-
scribed as follows (see Section 4.12 for a discussion of symmetry and antisymmetry con-

ditions):

Strain D.of OnAB On BC On CD On DE
g =1 D, v=0 u=0 v=0 u=a
g =1 D, v=0 u=0 v=>b 0
Yo =1 D u=0 v=0 u=>~b =0

w
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All d.o.f. not prescribed, whether internal to the mesh or on its boundary, are unre-
strained. Next solve three FE problems KD, = R;, i = 1,2,3, for d.o.f. in each D; that are
not prescribed and for nodal forces in each R, associated with prescribed d.o.f. For inter-
nal d.o.f. and for boundary d.o.f. that are not prescribed, nodal forces in R; are zero.
Therefore the nonzero entries in R, are the externally applied boundary forces associated
with prescribed boundary d.o.f. Fori=1,

R, =KD, (5.5-3)

When subjected to the same boundary displacements, nodal forces in the substitute (un-
perforated) plate are

R¥ =K*D,; thatis, R} = B'EBdV |D (5.5-4)
1 1

where K* is the stiffness matrix of the substitute plate, here formed as the sum of element
stiffness matrices (see Eq. 3.1-10). FE discretization of the substitute plate is used here
only as a conceptual convenience; no such FE model need actually be constructed to ob-
tain material properties of the substitute plate. Also, when writing K*D, we imagine that
D, contains d.o.f. on the sides of an a by b rectangle of the substitute plate. We require
that work done by D, be the same in actual and substitute plates. Thus D7R,/2 = D]R¥/2,
and since BD, =g,=[1 0 0]", Eq. 5.54 yields

D! R, :stfEa‘dV:E“V (5.5-5)

from which E,, = D'R,/V, where V is the volume of the substitute plate; ab times thick-
ness ¢ in the present example. In similar fashion we write DIR,/2 = DJR#2. and since
DIB"=¢gl=(0 1 0], Eq.5.5-4 yields

DI R, :ZJ.sf,Esde:EmV (5.5-6)

from which E,, = DJR,/V. Proceeding similarly for the remaining terms, we obtain

[P
E=—iDIt R, R, R] (5.5-7)
D;

as the material property matrix of the substitute plate that has no geometric disturbances.
Analogous arguments can be made if properties are referred to polar or cylindrical coordi-
nates [5.9]. Flexural stiffness coefficients of a substitute plate can be determined in simi-
lar fashion, by applying unit curvature states and calculating associated nodal moments.

5.6 LOADS

A concentrated load must be applied at a node. This is required by practice, not the-
ory. With the possible exception of beam elements, standard software is not structured
to accept non-nodal concentrated loads as input data. In practice, one merely arranges
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applied.
According to classical linear theories of beams, plates, and solids, at a point loaded by
concentrated normal force there is

- finite displacement and finite stress in a beam,
- finite displacement and infinite stress in a plate, and
- infinite displacement and infinite stress in a two- or three-dimensional solid.

These confusing assertions are consequences of differing premises about the nature of
stress fields in standard linear theories of beams, plates, and elasticity. Also, a truly con-
centrated force would cause material beneath it to yield, and a linear theory must rule out
vielding. Physically, a concentrated force does not exist; it is a mathematical convenience
that represents a distributed load of high intensity that acts on a small area. Moreover,
when a concentrated force 1s applied to a node of a FE model, infinite displacement or
stress will never be computed. Indeed, a concentrated force on a plane FE model has a
nonunique distributed equivalent (Fig. 5.6-1a), which one would certainly not expect to
produce infinite displacements or infinite stresses. Infinite values can only be approached
as the mesh is repeatedly refined.

If axisymmetric conditions prevail, what appears to be a concentrated load on a solid
or shell of revolution shown in cross section is really a line load on a nodal circle. Software
may require such a load to be input for a 1 radian slice or perhaps for the entire circum-
ference of the nodal circle. In the latter case a radially directed line load ¢, whose dimen-
sions are [force/length], is described as a force 27trg on a circle of radius r, even though
the net force is statically equivalent to zero.

A concentrated moment cannot be applied to a node that has only translational d.o.f.
The moment can be applied as couple forces (Fig. 5.6-1b) or, alternatively, can be distrib-
uted to a group of nodes by use of constraint techniques (Section 4.13).

Distributed loads are applied to nodes as concentrated nodal loads that are statically
equivalent or perhaps work-equivalent. This matter is discussed in Section 2.5 for bars
and beams and in Section 3.9 for plane elements. Usually software can generate equiva-
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(a) (b)
Fig. 5.6-1. (a) A concentrated force and a statically equivalent line load on a linear edge of a
plane FE model (see also Fig. 3.9-1). (b) Application of a couple when nodes have only trans-
lational d.o.f.
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lent nodal loads from input data that describe distributed loading. If rotational d.o.f. are
present, as in beam and plate elements, software may or may not include nodal moments
in 1ts vector of nodal equivalent loads. One can discover what the software does by run-
ning suitable one-element test problems, and comparing computed results with theoretical
results.

In linear problems, loads maintain their original orientations in space, regardless of the
magnitudes of the computed displacements. Sometimes a problem is nonlinear because of
loads called follower forces, whose directions change as the structure deforms. An exam-
ple is pressure on a membrane. Pressure always acts normal to the membrane. A nonlin-
ear analysis is required if deflection is appreciable.

In describing temperatures for a thermal-stress analysis, one may be concerned with
whether the software uses nodal temperatures or element temperatures. The distinction
becomes important if one wishes to describe a step change in temperature across an in-
terelement boundary, as might be done to simulate a shrink fit. Temperatures interpolated
from nodal values do not describe a step change.

5.7 CONNECTIONS

Connections between parts are made by bolting, welding, gluing, and so on. Realistic
modeling of connections is usually difficult, with FE or any other analysis method, be-
cause of geometric complexity and the possibilities of slippage, gap closure, and partial
loss of contacts. A fine-mesh FE model of a connection may capture its behavior accu-
rately, but such a model is not practical unless the connection itself is the object of study.
More often, connections are modeled only to the extent needed to represent their effect
on the rest of the structure. If data about connection stiffness are known, perhaps from
experiment, one might approximate a connection by using standard elements that have
modified elastic properties. For example, a bolted connection between two beams might
be modeled by a short beam clement of reduced flexural stiffness F/. The following re-
marks describe other connection problems and ways of modeling them.

Section 4.3 describes how rigid offsets may be used to attach a reinforcing beam to a
plate. Constraint equations can be used for the same purpose (Section 4.13). Either tech-
nique can be applied to connections depicted in Fig. 5.7-1. The approximate models can-
not represent bending action that develops because of axial loads. The improved models
can. They use rigid links AB to model offsets and transmit moment as well as force. The
rigid-link model is still approximate: in reality AB is an elastic path, although a compara-
tively stiff one [5.4].

If done properly, plane and solid elements having only translational d.o.f. can be con-
nected. In Fig. 5.7-2a, externally applied loads on the plane portion must act in the vz
plane because this portion has no bending stiffness. To support loads having an x compo-
nent, bending stiffness and rotational d.o.f. must be added to the plane portion, which can
then be attached to the solid portion by methods described in connection with Fig. 3.9-6
or4.13-1.

With rare exceptions, plane and axisymmetric solid elements cannot be connected. In
Fig. 5.7-2b the axisymmetric portion is seen in cross section. Thus plane and axisymmet-
ric meshes look similar, and both typically use two d.o.f. per node. But axisymmetric ele-
ments are rings, not plane quadrilaterals, and what appear to be node points are actually
nodal circles. In a formulation restricted to axial symmetry, displacements in the axisym-
metric portion are independent of the circumferential coordinate. Accordingly, if some-

o
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Fig. 5.7-1. Offset connections and possible models. (a) Joint in a plane frame. (b) Cylindrical tubes
of different thicknesses. #, # . (Reprinted from [2.2] by permission of John Wilev & Sons, Inc.)

thing is to be attached, it must also be axisymmetric in both geometry and loading. The
mismatch in Fig. 5.7-2b is roughly similar to the “poor connections” in Fig. 3.10-2.

However, an axisymmetric model can carry nonaxisymmetric loads if Fourier series
are used (see Chapter 6). By extending this procedure, axisymmetric and generally
shaped solids can be connected. The calculations are not simple and are not part of stan-
dard FE software, but they provide the only way of making a connection like that in Fig.
5.7-2b even approximately correct.

A bolted joint in a pipe, Fig. 5.7-3, is axisymmetric in geometry except for the bolts.
As an approximate representation of the bolts, one can “smear” them around the bolt cir-
cle. The trick is to replace the bolts by an axisymmetric solid of radius r and length L that
has the same stiffness in the axial direction as bolts it replaces but zero stiffness in the
circumferential direction 6 (because bolts provide no circumferential stiffness). Consider
axial loads on the pipe in Fig. 5.7-3. Let there be n bolts around the bolt circle, each of
elastic modulus E,. Their combined axial stiffness is k, = A,E,/L, where A, = n(md*/4).
The replacement solid has axial stiffness k; = A E,/L. The condition k, = k, yields A E, =
n(md*/4)E,. The replacement solid is connected only to nodes on flange surfaces (nodal
circles A and B in Fig. 5.7-3c). Accordingly, the replacement solid can be a single ele-
ment. Indeed, input data can describe it as a two-node bar element between nodes A and
B. having cross-sectional area A, and elastic modulus E,. This does not violate the rule
that bodies with and without axial symmetry cannot be connected because here we are
only using the description of a nonaxisymmetric element as a device to obtain the desired
type of axisymmetric element. Axial stress in a bolt is computed by multiplying its com-



120 Modeling, Errors, and Accuracy in Linear Analysis

PDF Compressor Free Version

Possibly workable Unworkable and physically meaningless

I}

]

Plane

- Solid Axisymmetric

X
(a) (b)
Fig. 5.7-2. (a) Plane elements can sometimes be connected to solid elements. (b) Plane and ax-
isymmetric FE models cannot be connected.

puted axial strain by its actual elastic modulus. In similar fashion one might smear the
bending stiffness of individual bolts and arrange to recover their flexural stresses from
computed displacements.

Bolt pretension can be simulated by reducing the temperature of the bolts an amount
AT. To compute AT we argue as follows, using notation of the preceding paragraph and o
as the coefficient of thermal expansion of the bolt material. Let P be the known tensile
force required in all bolt material, so that P/n is the pretension in one bolt. The tempera-
ture drop AT in the bolts produces force P in the bolt material and also a clamping force P
in the pipe flange spanned by bolts. Both parts must contract the same amount, that is,
with contraction positive

L L
orar - Lo L (5.7-1)
AE,  AE;

where A,E,/L is the stiffness of the flange as seen by the bolts. To calculate this stiffness
one can remove the bolts, apply an axisymmetric clamping force F to the flange alone,
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Fig. 5.7-3. (a) Bolted pipe connection. (b) Axial view. (c) Axisymmetric connector AB replaces the
bolts.
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Now that A.E;/L is known, Eq. 5.7-1 yields the required A7. Some rearrangements of
these calculations are possible [5.10].

The foregoing bolt representation can be useful in calculating the change in bolt stress
produced by loading. The elastic stiffness of the joint is produced more by flanges than
bolts because flanges are more massive. However, if there is a gasket between flanges,
tightening the bolts tends to rotate the flanges relative to the gasket, perhaps resulting in
partial loss of contact even before external load is applied. A load-dependent contact area
renders the problem nonlinear. If flanges are connected without the gasket, even with a
large clamping force the joint will not be as stiff as continuous material would be, owing
to the near impossibility of achieving a perfect fit and preventing slippage.

The behavior of connections can be quite important in dynamic analysis. Connections
(e.g., in a frame) are usually stiffest in deformation modes activated by the static load that
must be carried. Displacements in dynamic analysis can load connections in their more
flexible modes. If little is known about these lesser stiffnesses, so that they are carelessly
modeled, there may be appreciable disagreement between computed behavior and actual
behavior [5.9].

Structures may contain parts that can make or break contact. This situation renders the
problem nonlinear: stiffness is displacement dependent, loads are not directly propor-
tional to displacements, and an iterative solution is required. A nonlinear spring or “gap
element,” Fig. 5.7-4a, is one of many tools available for analysis of such problems. A
nonlinear spring can be used to connect nodes on adjacent parts that may come in contact.
A spring occupies the gap between parts. The gap may be zero, but this presents no obsta-
cle to modeling. A spring may span the gap anyway: if the gap is zero the spring has stiff-

k
F(or M) ky=kp=0
k3=k4=k
k 5

k3

ky

! , &or §) F
5
! 5,=6,=0
ki =k3=0
kp=kg =k
5
ko /‘
k
ks " k
e ml VYV o3
(a) (b)

Fig. 5.7-4. (a) Possible way to describe the stiffness of a nonlinear spring. In practice, a spring
may resist force F or moment M. (b) Two examples that model gaps and contact.



122 Modeling, Errors, and Accuracy in Linear Analysis

PDF Compressor Free Version

ness but no length, unless one wishes to imagine a length as a conceptual aid. The respec-
tive examples in Fig. 5.7-4b depict a gap element for elastic contact with initial slack and
a gap element for compression only with initial contact. Take care: a large spring stiff-
ness that appears when a gap closes constitutes a penalty method, which may provoke nu-
merical difficulties (Section 4.13). Gap conditions are discussed more fully in Section
10.6. Commercial software may allow different combinations of springs, gaps, sliders,
and dampers to produce a bewildering variety of nonlinear two-node elements.

5.8 BOUNDARY CONDITIONS

Boundary conditions are also called support conditions in structural mechanics. They are
often misrepresented or not described properly as input data. Care is needed because
changes in support conditions that appear minor can have a major effect on computed re-
sults. For example, in Fig. 5.8-1 the change from a roller to a hinge at B allows the sup-
ports to apply horizontal forces to the beam. The beam in Fig. 5.8-1a could be modeled
by standard two-node beam elements that lie on the line between A and B. The beam in
Fig. 5.8-1b must be modeled by plane elements, or by beam elements along the centerline
of the actual beam with vertical links to connect end nodes of the FE model to supports A
and B below them.

Some support conditions are dictated by FE technology rather than by physical consid-
erations. A restraint, such as a prescription of zero displacement or zero rotation, must
appear at a node rather than between nodes. The d.o.f. not active in the FE model must be
suppressed, whether or not they are on the boundary of the FE model. For example, typi-
cal plane elements resist two in-plane translational d.o.f. per node, but software makes six
global d.o.f. available at every node. To prevent singularity of the structure stiffness ma-
trix, rotational d.o.f. and out-of-plane translational d.o.f. must be suppressed, whether or
not loads are applied to these d.o.f. This matter is discussed more fully in Section 2.4.

Boundary conditions are often misrepresented because of carelessness or because the
physical situation does not present a clear choice. Input data as understood by the soft-
ware can be checked easily: graphic capabilities of preprocessors can depict boundary
conditions at each supported node, using symbols that show the direction of restraint and
its type (displacement or rotation). These plots should be inspected carefully for data in-
put blunders. When boundary conditions of the physical problem are unclear, it may be
possible to bound the correct solution by two analyses, each based on a different set of
boundary conditions. As a simple example, rotations at ends of a uniformly loaded beam
may be elastically restrained to an uncertain degree. Two analyses, one with simple sup-
ports and the other with fixed supports, will respectively overestimate and underestimate
the actual magnitude of bending moment at midspan.

On occasion a FE model is connected to another FE model or to a support by springs
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Fig. 5.8-1. A beam with (a) simple supports and (b) hinge supports.
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Fig. 5.8-2. (a,b) Spring supports at uniformly spaced nodes on plane elements. (¢) Two plane re-
gions with sliding contact along AB. FE meshes are not shown, but inset shows typical adjacent
nodes in parts 1 and 2.
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(Fig. 5.8-2a,b). It is reasonable to require that springs exert nodal loads consistent with
uniform stress in the FE model when edge AB is translated vertically downward. These
loads, discussed in Section 3.9, demand that stiffnesses of uniformly spaced springs have
the relative values shown in Fig. 5.8-2a,b. If springs are used to connect the face of a
solid FE model to a parallel plane support, the proper model may be counterintuitive.
Solid elements having side nodes require oppositely directed nodal loads to represent a
uniform pressure, as suggested by Fig. 3.9-5d. This means that springs attached to corner
nodes should have negative stiffness! Or, if all springs were assigned the same stiffness,
it means that computed tensile force in a spring would not necessarily imply tensile stress
in the solid at the spring location. Clearly, elements having side nodes present ample op-
portunity for confusion, so it is recommended that they not be used in association with
connecting springs.

The nature of a support or a contact between parts can sometimes be determined by
numerical trial. Imagine that parts 1 and 2 in Fig. 5.8-2c are modeled by plane elements
and that sliding is possible along AB. Should adjacent nodes in the two parts have inde-
pendent u but the same v along AB? Or does a gap appear, so that there is contact only at
A and B? One way to find out is to connect adjacent nodes in the two parts along AB by
springs or two-node bar elements, oriented vertically. The bar element that connects adja-
cent nodes at B should be very stiff so the two parts will not interpenetrate (but take note
of the cautionary remarks in Section 5.10 and remarks associated with Eq. 4.13-9). The
remaining vertical bar elements between A and B can be very soft. Thus, in effect, we
have placed a roller between the two parts at B and left the rest of AB unconnected. If
computed results show that the weak vertical bars between A and B carry (small) tensile
force, one concludes that a gap opens along AB and that the model is correct. If instead
the weak vertical bars carry compressive force, the model is incorrect; either these bars
must be made very stiff to prevent interpretation or, as a better alternative, pairs of adja-
cent nodes across AB should be constrained to have the same vertical displacement.

It is sometimes necessary to impose a nonzero displacement or rotation. In the event
that software accepts only zero values, the trick shown in Fig. 5.8-3 can be used with cau-
tion. In this example, point A is required to have the known displacement component 9,
in the s direction. The displacement component of A in the n direction is to be computed.
A spring of very large stiffness k,, say 10° times the largest diagonal coefficient in the
structure stiffness matrix, is added to the FE model. A large force, F, = k,6,,, is applied as
a load in the s direction. Force F, is resisted by the stiff spring and the comparatively
flimsy FE model. Point A will have a computed deflection component in the s direction
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Fig. 5.8-3. (a) Displacement component &, is to be imposed at A, (b) “Penalty method™
approximation. Caution: may introduce numerical errors.

very slightly less than 0, This trick is a penalty method (discussed in Section 4.13). It in-
vites numerical errors (see also Section 5.10).
Boundary conditions are VERY OFTEN misrepresented. Be careful with them.

5.9 PLANNING THE ANALYSIS

In order to plan an analysis project, the analyst must have a good grasp of the physical
problem, the behavior and limitations of finite clements, and the options and limitations

ably knows the burpose of the analysis project, which may range from analysis of a trial
design to analysis of an existing product that has failed. Accordingly, one probably has

more time than it takes, especially when g problem is complicated-—and it probably is
complicated if a FE analysis is being undertaken.

Major questions about behavior include the following. Is static analysis appropriate?
Or does the problem involve vibration or shock loading? If dynamic, can damping be ig-
nored? If not, how should it be represented? Might there be local or global buckling? If
material properties are temperature dependent or anisotropic, are material data available?
Are there nonlinearities, due to material yielding, gaps that may open or close, or dis-
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answer such questions one must have an ability to visualize physical behavior and struc-
tural interactions. The answers will decide the general nature of the analysis project.

More detailed questions follow, which influence the specifics of FE models. What are
the load cases? Do they involve concentrated or distributed loads, or body forces from
self-weight or spinning? Are loads fixed in direction or do their directions change as load
increases? Do “loads” include prescribed nonzero displacements? Can symmetry be ex-
ploited? Are there elastic supports or connections of uncertain stiffness? Are there cutouts
that act as stress raisers, perhaps on a scale below mesh size? How reliable are data about
geometry, loads, supports, and material properties?

Preliminary Analysis. Prior to FE analysis, some results should be anticipated, qualita-
tively or quantitatively and preferably both. An approximate preliminary analysis may be
based on statics. mechanics of materials, formulas from handbooks, or experimental re-
sults. In almost all situations there is some way to obtain approximate results that can be
compared with FE results subsequently obtained. Even a crude analysis should be ade-
quate to detect a strange displacement pattern or stress field, or a numerical result in error
by orders of magnitude because of a blunder in data preparation. There is a tendency to
trust the computed results because FE analysis requires considerable time and effort to
accomplish. There is also a tendency to regard existing results as correct until proved oth-
erwise. Therefore predictions should be in hand before doing FE analysis, to promote the
viewpoint that FE results are the results on trial. A preliminary solution serves the pur-
pose, even if it must be crude, and may have the added benefit of providing insight that
improves the FE model. Other benefits of preliminary analysis include a sharpening of
analytical skills and perhaps even discovering that a FE analysis is not needed after all.

Start with Simple FE Models and Improve Them. What types of elements should 1
use and how many of them? This may be the question suggested by a decision to use FE
analysis. A conclusive answer cannot be given at the outset, but based on anticipated
structure behavior and the known behavior and limitations of various finite elements, the
analyst can prepare a trial FE model. An adequate FE model develops from a sequence of
FE models, each of which guides development of the next, so that the last has enough ele-
ments of the proper type. The term “sequence of models” may suggest a great amount of
effort. However, the sequence may not be long and some models may differ little from
one another. The sequential approach builds confidence in the final result. It also takes
less time overall than an attempt to construct a very detailed FE model at the outset, only
to find that it is inappropriate or inadequate because some aspects of behavior were not
foreseen. As FE software becomes more widely available, pre- and postprocessors im-
prove, and computing costs decline, there is a tendency to use more and more elements in
FE models. This is unwise if done as a substitute for understanding.

There are exceptions to most rules for FE modeling. This said, the following rules are
usually helpful. Include all of the structure in the model; do not omit part of it on the as-
sumption that 1t is lightly stressed or does not influence the remainder of the structure.
Use a finer mesh to obtain stresses (or mode shapes of vibration) than to obtain displace-
ments (or natural frequencies of vibration). If the problem involves nonlinearity or
anisotropy, analyze a linear or isotropic version of the problem first. If there are dynamic
effects, do a static analysis first, using loads that approximate the major dynamic load. A
linear static analysis is easier to perform and interpret and may disclose flaws in the FE
model. A linear analysis may also disclose that local buckling is possible, or that stresses
are so large that plastic action will develop. Software will not automatically proceed to
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analyze for a buckling load or do an elastic—plastic analysis. The user must decide what
type of analysis is required, select appropriate options in the program, and launch the
analysis.

The foregoing suggestions lead naturally to a sequence of FE models. If a structure is
an assemblage of distinct parts, it is sometimes possible to begin with a “stick model.”
which is a model built of a few bar and beam elements. This does not mean that the initial
model should be as crude as possible, only that it should be comparatively simple. Very
likely, the analyst can foresee where stresses may be largest and use more elements in
these areas, even in the initial model. Each successive model serves to improve the next,
by showing more clearly where stresses and stress gradients are large. The sequence also
may show that there are appreciable changes from one FE model to the next, for example,
changes of stresses in a certain region or changes in statically indeterminate support reac-
tions. Such changes suggest that convergence is not yet adequate and that mesh refine-
ment is needed. The sequence of FE models may include two-dimensional models as
steps toward three-dimensional models. If possible, three-dimensional models should be
the latter models in the sequence because they are the most tedious and time consuming
to prepare and the most demanding of computer resources.

Check the Model and the Results. Modeling defects that prevent execution will proba-
bly be identified by error messages from the software. Defects that produce unreliable re-
sults must be detected by the user. Computed results must be critically examined. These
important matters are discussed in sections that follow.

Numerical Experiments for Design Purposes. In an effort to improve a structural de-
sign, one may wish to understand the effects of changes in certain design variables. For
example, one might ask how the largest stress in a trial design is related to changes in a
certain thickness 7, a certain hole radius r, and a certain length L. Analyses using various
choices for 1, r, and L can be undertaken after an acceptable FE model has been gener-
ated, provided that changes in the design variables are not so large as to invalidate the FE
model. Imagine that it has been decided to examine the peak stress using thicknesses 1,
and 1,, radii r, and r,, and lengths L, and L. There are eight possible combinations of
these design variables. An analysis (a “numerical experiment”) should be performed for
each of the eight, in order that the combined results may be used to predict the values of ¢,
r. and L most likely to reduce the peak stress. The procedures are part of the study called
design of experiments, which has been used for years in planning a productive set of
physical experiments. It can also be used for planning numerical experiments and inter-
preting the results. See [5.17] for an introduction.

Such numerical experiments are facilitated by software having the ability to revise the
FE mesh automatically when one of the design variables is changed. Automated mesh re-
vision facilitates automated optimization, in which software seeks the values of design
variables that minimize a function such as structural weight, subject to limits on stress,
deflection, or other quantities. Software with optimization capability is becoming com-
monplace.

5.10 NUMERICAL ERROR:
SOURCES AND DETECTION

We distinguish between errors inherent in the FE process and outright mistakes. The
“mistakes” category includes choosing the wrong data, forgetting loads or supports, and
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having bugs in the software. The “errors” category includes errors always present to some
degree: modeling error (because reality is replaced by mathematical theory), discretiza-
tion error (because mathematical theory is implemented in piecewise fashion by FE meth-
ods), and numerical error (because the computer does not use an infinite number of bits to
represent each number). The present section is concerned with numerical error and how it
is related to modeling choices.

I-Conditioning. A set of equations is ill-conditioned if small changes in the coefficient
matrix or the vector of constants produce large changes in the solution vector. Consider
the two-d.o.f. structure in Fig. 5.10-1. It is described by the equations

. k, -k, i, P
KD=R is = (5.10-1)
-k, ok kg | 0

Each equation plots as a straight line in a u,u, coordinate system. These are the solid lines
in Fig. 5.10-1. Shaded bands along the lines suggest inexactness associated with use of a
finite number of bits to represent each number in computer memory. The exact solution
of Eqgs. 5.10-1 is represented by the intersection of the solid lines. The numerical solution
is represented by a point somewhere in the region where the shaded bands overlap. This
region is large when k, >> k, but small when ky, >> k.

We can again conclude that the case k, >> k, may be troublesome by considering an
elimination solution of Eqs. 5.10-1. Addition of the first equation to the second eliminates
and converts the second equation to

[(ky + ko) —k)Jus =P (5.10-2)

which would be exactly k,u, = P if the computer used an infinite number of bits to repre-
sent k, and k,. But if k; = 1.000000 and k, = 4.444444(10)™® and the computer were to
carry (say) seven digits per word, the subtraction in Eq. 5.10-2 would yield 1.000004 -
1.000000 = 0.4(10)75; that is, only one significant digit would remain. If the computer
were to carry six digits per word, the result would be 1.00000 — 1.00000 = 0.00000, and
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Fig. 5.10-1. A two-d.o.f. structure. (a) Stiff part supported by flexible part. (b) Flexible part sup-
ported by stiff part.
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the software would probably complain that the stiffness matrix is singular. Note that this
trouble does not arise when k, >> k.

The foregoing example shows that the case k; >> k, in Fig. 5.10-1 produces ill-condi-
tioned equations, and that the solution may be inaccurate if computer words have too few
bits. This conclusion is true for FE models in a general way: numerical error becomes
more likely when elements or regions in a FE model have large differences in stiffness,
with the stiffer part supported by the more flexible part. In the present context, “support”
means elastic resistance. The conclusion is also plausible on physical grounds. If stiffness
differences were exaggerated without limit, the stiffer part would become unsupported,
so that a static equilibrium solution would not be possible. Analogous difficulties may oc-
cur in nonstructural problems. The main danger of ill-conditioning is not that equation-
solving may fail, but that it may succeed yet produce a solution whose errors are serious
but not large enough to make it obvious that something is wrong.

Problems Susceptible to Tll-Conditioning. Some modeling practices avoid numerical
trouble while others invite it. In Fig. 5.10-2a, node A is supported by a roller that allows
motion in only the y direction. This type of support can be treated without numerical
trouble by constraint transformations (Section 4.3) or Lagrange multipliers (Section
4.13). An approximate but physically reasonable alternative model is that of Fig. 5.10-2b:
by adding a very stiff spring along the x” axis, we allow motion in the y” direction but al-
most prevent motion in the x” direction. Thus we create a penalty constraint (Section
4.13), which creates ill-conditioning if spring stiffness & is large because there is then a
stiff part (the spring) supported by a flexible part (the three-bar truss). Figure 5.10-2c has
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Fig. 5.10-2. Three-bar plane truss with various support conditions.
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a difterent support condition at A, but this arrangement does nor create numerical trouble
even if k, and/or &, is large. The difference between Fig. 5.10-2b and Fig. 5.10-2c¢ is that
an inclined stiff spring to ground contributes large diagonal and off-diagonal coefficients
to K, while x- and y-parallel stiff springs to ground contribute only large diagonal coeffi-
cients (d.o.f. i, and v, are x-parallel and y-parallel in both cases). Large diagonal coeffi-
cients alone cause no trouble: this is the case for k, >> k; in Eq. 5.10-1. One can make
the inclined spring contribute to only the diagonal of K, and thus avoid numerical trouble,
by adopting x’-parallel and y'-parallel d.o.f. at node A (1, and v’y in Fig. 5.10-2d). In other
words, d.o.f. at node A are reoriented in going from Fig. 5.10-2b to Fig. 5.10-2d. If very
stiff elements appear within a model rather than only as boundary support elements, large
off-diagonal coefficients in K are inevitable and numerical trouble is likely. This is why
offsets in Fig. 4.3-3 are made rigid and are treated by constraint transformartions.

Thin-walled structures tend to produce ill-conditioned equations because their mem-
brane stiffness is much larger than their bending stiffness. The structure in Fig. 5.10-3 is
an example. It is an arch-like structure of uniform thickness that resembles a folded strip
of paper. It is modeled by four-node elements that resist both membrane and bending de-
formations. Forces of magnitudes 1 and 2 were applied to nodes of element A, as shown.
The x-parallel membrane stress in element A was computed for several values of thick-
ness 7, and the following results were obtained: for r = 0.6(10)7%, stress error was notice-
able (roughly 5%); for r = 0.2(10)7°, stress error was severe; for 7 = 0.1(10)7®, the stiffness
matrix was declared singular by the software. The value of ¢ for which trouble appears
depends on the software and computer used. Conventionally, computed stresses are more
seriously degraded by ill-conditioning than are displacements because stresses 0 = EBd
are computed from differences in displacements, and element A has small strains but
large rigid-body motion. In other words, with regard to horizontal displacements, element
A is almost rigid but is lightly supported by the rest of the structure. One can argue that
the foregoing thicknesses ¢ are ridiculously small. Nevertheless, one should be aware of
the nature of the problem, because numerical difficulty becomes more likely as the num-
ber of d.o.f. increases. This means that if a large FE model tends to produce ill-condi-
tioned equations, mesh refinement may make results worse rather than better.

Another possible cause of ill-conditioning is a Poisson ratio near 0.5 (Section 4.13).

Testing for Trouble. Before solving equations, one can look for the largest and smallest
diagonal coefficients of K and suspect ill-conditioning if the ratio of largest to smallest
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exceeds some large number. Some software packages do this automatically. However,
such a test may be pessimistic (e.g., k, >> k, in Fig. 5.10-1 and Fig. 5.10-2¢.d). The fol-
lowing test does not have this defect but is not an a priori test.

As coefficients of K are being processed by a direct (noniterative) equation solver, the
software may apply a diagonal decay test [5.11]. Processing an equation involves sub-
tractions that reduce the magnitudes of diagonal coefficients K;; in equations not yet
processed. This is seen in Egs. 5.10-1 and 5.10-2, where elimination of d.o.f. u, reduces
K,, from k, + k, to k,. The program can store the original value of each K, and divide it
by its reduced value just before the reduced value acts as a pivot in processing the ith
equation. If this ratio is 10", then about n digits of accuracy have been lost from K;, leav-
ing p — n accurate digits if computer words store p digits each. A small value of p — n can
either trigger a warning message or terminate execution. The test is simple and cheap.

Users occasionally examine computed support reactions to see if they are in static
equilibrium with applied loads. If they are, we have some evidence that results are not
contaminated by numerical error. However, if the structure is statically indeterminate, in-
correct reactions may still satisfy equilibrium. Satisfactory reactions may even give a
false sense of security by suggesting that everything is correct, while in fact the mesh
may be utterly inadequate (e.g., Fig. 3.2-2). '

There appears to be no single test for numerical error that is always reliable. Even the
diagonal decay test can fail to detect a significant loss of accuracy [2.2]. To avoid numer-
ical error, an analyst must understand the modeling practices that promote it and choose
alternatives where possible. In particular, it is usually best to change a very stiff region in
a model to a perfectly stiff region by exactly imposing constraint relations that make the
stiff region move as a rigid body.

5.11 COMMON MISTAKES

Mistakes include errors of judgment in FE modeling and blunders in data preparation.
Both are noted in the present section. Section 5.12 discusses more systematic searches for
errors in the model and the data. Corrections for errors are either obvious or are discussed
in other sections.

We remark (yet again) that a major mistake, which generates errors of omission and
commission, is insufficient familiarity with the physical problem, element behavior, and
analysis limitations. It is also a major mistake to ignore warning messages produced by
the software. Vigilance is needed in every step of an analysis.

Division by zero will occur as element k matrices are being generated if Poisson’s ra-
tio is 0.5 in a plane strain, axisymmetric, or three-dimensional solid problem, and if the
thickness of a plate or shell element is zero. If unspecified, the thickness of a plane ele-
ment may default to unity, depending on the software.

A singular global stiffness matrix K may be caused by any of the following:

- Material properties such as elastic moduli are zero.
« One or more nodes are not connected to any element.
- There are no supports, or supports are insufficient to prevent all rigid-body motions.

« A mechanism is created because part of the model is inadequately restrained (e.g..
the beam in Fig. 4.13-1 with no rotational connection at node 1, or no restraint of lat-
eral translation d.o.f. in a flat part of a structure modeled by plane elements having
only translational d.o.f.).

« A mechanism is created because too many releases are prescribed at a joint.
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« Part of the structure has buckled. (This is possible if the “stress stiffening” effect is
included and negative stiffening has reduced the net stiffness to zero or less.)
« In nonlinear analysis, supports or connections have reached zero stiffness, so that all
or part of the structure is inadequately supported.

A singular K usually triggers an error message and stops execution of the analysis. If exe-
cution stops, or if execution continues but the results are bizarre, it is clear that some-
thing is wrong and a search for the cause is needed. It is much more dangerous if there
are errors that lead to plausible but quite inaccurate results. Some errors in this category
are as follows.

- Elements are of the wrong type, for example, shell elements are used where solid el-
ements are needed, or axisymmetric elements are used where plane elements are
needed.

« Supports are wrong in location, type, or direction. (Supports can be too many as well
as too few; for example, complete fixity instead of a hinge, or too many d.o.f. con-
strained in an attempt to impose symmetry conditions.)

+ Loads are wrong in location, type, direction, or magnitude. If symmetry is exploited,
a load in a plane of symmetry may not have been divided by 2. Similarly, the stiff-
ness of a beam that straddles a plane of symmetry may not have been divided by 2.

+ Other data may be incorrect. It is easy to be off by a power of 10 or use inconsistent
units. For example, feet may not have been converted to inches, or angular velocity
may have been stated as revolutions per second instead of radians per second (or
vice versa).

« An element may have been defined twice. The duplication is hard to detect because
it cannot be seen when elements are plotted. The result is a “hard spot” in the model.

+ A connection may be physically meaningless (e.g., Fig. 5.7-2b).

A record of the status and progress of the analysis project should be maintained.
Records become important if work must be resumed after an interruption. Confusion is
the result of poor record keeping: Where did data used to prepare the model come from?
Did I remember to make changes X, ¥, and Z or not? Which data files correspond to
which model? Does the title line of the analysis refer to the current model or the previous
model?

5.12 CHECKING THE MODEL

A mode! should be checked prior to computation, both to make success more likely and
to avoid making the checking task more distasteful by postponing it. Indeed, the model
should be checked as it is being prepared, using graphical features of preprocessors. It is
easier to correct mistakes as soon as they appear than to locate and correct them later.
Mistakes can be made anywhere, even with simple data, so everything should be checked.
Undetected mistakes can prevent execution, or lead to bizarre results, or lead to results
that are plansible but wrong. Some checking is done by the analyst and some is done au-
tomatically by software.

Checking Done By the Analyst. Nodes and elements may be generated simultaneously.
However, if nodes are entered or generated separately, they usually appear on the screen,
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with or without numbers at the user’s option. Only when the node pattern appears satis-
factory should elements be entered; thus a misplaced node is less likely to be obscured by
elements. When the element layout appears satisfactory the boundary conditions can be
applied, and so on.

Many graphical devices are available, with of course some differences between soft-
ware packages. A shrink plot (Fig. 5.12-1), in which individual elements are reduced in
size about 20%, shows immediately if an element is missing. A missing element may not
be apparent in a standard mesh plot such as Fig. 3.12-3, especially for three-dimensional
models. Other graphical devices, no less useful, include slices (sectioning), hidden lines
present or removed, views from various directions, windowing, zoom, and perspective.
These options become particularly useful with three-dimensional models. One may also
be able to scale selectively, for example, to exaggerate the smaller dimension of a slender
model. Support conditions are usually identified by special symbols that convey location,
type (displacement or rotation), and direction of the support. Loads may be plotted in an
analogous way. One may be able to plot the boundary of the model. If part of it looks like
a crack in the material, then some nodes are adjacent or coincident but unconnected, per-
haps intentionally but perhaps not.

Some checking must be done by examining a list rather than graphically. For example,
it may be important to verify the location of some nodes more accurately than a plot will
show. Material properties must be listed and also cross-sectional properties used for
beams.

Checking Done By the Software. Commercial software does some checking automati-
cally. These checks involve computing a numerical value from the input data and com-
paring it with one or more stored values that define limits of acceptability. Data items
may be graded “pass” or “fail” or in some cases “pass with warning.” Anything but
“pass” produces a warning message. “Fail” also prevents execution. These “error traps”
complement but do not replace checking done by the analyst. Software often allows a
“check run” that stops short of solving global equations or even generating them. The
check run applies automatic data checks and may also estimate storage requirements and
solution time that will be required by actual analysis. Errors that may be detected by auto-
matic data checks include the following.

« A node is not connected to any element.

« Nodes are close together or coincident but not connected. The analyst must decide if
this is intentional or not.

. Elements share a node but do not use the same set of d.o.f. at the node.

« Poisson’s ratio is not in the range 0 < v < 0.5. An analogous test may detect impossi-
ble properties of an orthotropic material.

. Elements have too large an aspect ratio or corner angles that differ too greatly.

. A side node (of an element that has them) may curve the side too greatly or be too
far from midside.

« A four-node element in space is too greatly warped; that is, its nodes are too far
above and below the mean plane.

. The dihedral angle between three- or four-node elements in space is too far from
180°.
« A curved shell element spans too great an arc.

Tests for excessive element shape distortion are arbitrary. There are no universally appli-
cable criteria. What is acceptable in one situation may be unacceptable in another [9.8].
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An element is missing!
Fig. 5.12-1. A “shrink plot” of elements is but
one of many graphical tools that can be used
for checking. The mesh shown (without the
missing element) is used in Section 3.12.

Accordingly, the absence of a warning does not guarantee that shapes are satisfactory,
nor does the issuance of a warning necessarily mean that shapes are unacceptable. Never-
theless, all warning messages should be read, and action taken where needed.

Automatic checking cannot disclose whether elements are of the appropriate type and
size. whether units are consistent, whether loads and supports are properly located, and so
on. The analyst is responsible for these matters and for the quality of the work.

5.13 CRITIQUE OF FE RESULTS

With the help of graphical tools in the postprocessor, one first examines results qualita-
tively to see if they “look strange.” For this initial examination, displacement results may
be the most informative, as described in the following paragraph. If no flaws are obvious,
results are examined in more detail and quantitatively compared with expectations. Several
expectations should already be available from preanalysis planning (Section5.9). In com-
paring FE results with results obtained otherwise—from approximate solution, handbook
formulas, alternative software, existing similar structures, or experiment—one must be
sure that the physical situations that produce the results are substantially the same. In
comparisons between FE and experiment, for example, it is unfortunately common for
there to be differences in supports, loading, and even structure geometry, especially if an-
alysts and experimentalists do not communicate well. If FE resuits pass such comparisons
and also pass a critique as suggested in what follows, one must decide if further analysis
is required, and, if so, how it should be influenced by the current analysis.

Displacements should be examined first, plotted and scaled so as to be easily visible.
Typically, software plots only straight lines between nodes, so that curved shapes as-
sumed by deformed beam elements and deformed edges of plate and shell elements are
not visible. Animation of the plot makes the directions of nodal displacements apparent.
One should see that actual displacements agree with intended supports, for example, that
displacements are tangent to roller supports, have only rotation at a hinge, and are zero at
fixed boundaries. If symmetry is expected, it should be visible in the displacement field.
Usually it is obvious on physical grounds that some points will displace more than others;
this also should be visible. A gap should not “overclose” so that adjacent parts interpene-
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trate. Sectioning and views from different directions should be used as necessary. One
may also plot contours of displacements and rotations.

Deformations produced by temperature change are plotted by software as if the unde-
formed configuration exists at zero temperature. Accordingly, temperature changes should
be stated relative to a reference temperature at which the model is considered undeformed.
The reference temperature becomes the zero temperature as far as deformation plots are
concerned.

Support reactions can be examined to see if they satisfy statics, for example, to see if
the sum of computed x-direction reactions balances the intended x-direction load. If not,
it is more likely that the intended load was not applied correctly than that reactions have
been incorrectly computed. Software may automatically compute the sum of support re-
actions in each coordinate direction and the moment of the reactions about each coordi-
nate axis. Note that all reactions must be referred to the same coordinate system, and that
constraint equations (if used) may introduce fictitious forces.

It is well to recall that a linear solution is based on equilibrium equations written with
respect to the undeformed geometry. In Fig. 5.13-1, physically possible displacements
may be large enough that the spring must carry tension if static equilibrium is to prevail.
A standard linear analysis takes no notice of this possibility; it calculates a compressive
force F = Ph/b in the spring, even if computed displacements are very large, so that the
displaced configuration resembles Fig. 5.13-1b. If displacements are actually this large. a
correct solution corresponding to this configuration can only be obtained by doing a non-
linear analysis. However, if a linear (small displacement) analysis has been performed
and Fig. 5.13-1b is the result of great exaggeration of displacements solely for plotting
purposes, the linear solution may be quite accurate even though a plot such as Fig.
5.13-1b may confuse and mislead the analyst. Another example of how plots can mislead
appears in Fig. 5.13-2. The deformed shape suggests that the beam has gotten longer and
that depth h has increased toward the right end. This is only an impression that results
from great exaggeration of computed displacements. In the linear solution displacements
of the beam axis are entirely vertical; horizontal displacement components of the beam
axis are zero. In Fig. 5.13-2b the linear solution has merely been scaled up. In any cross
section, points on top and bottom surfaces (such as A and B) still have a vertical separa-
tion h. Figure 5.13-2b does not represent the deformed shape of a real beam whose de-
flections are truly large. A large-deformation shape can only be computed by an analysis
that uses the deformed shape in constructing the equations to be solved. This is nonlinear
analysis, in which displacements and stresses are not directly proportional to load. The
deformed shape produced by scaling up the usual /inear solution D = K 'R is not correct
if deflections are indeed large.

In standard software, stresses are computed from displacement differences. Accordingly,
stresses are usually less accurate than displacements, although sometimes they are as ac-
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Fig. 5.13-1. (a) Block supported by a hinge and a soft spring. (b) Possible displaced shape pro-
duced by load P. (c) Reaction F computed by linear analysis.
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Fig. 5.13-2. (a) Cantilever beam, loaded by tip moment. (b) Deformation from
linear analysis, greatly exaggerated, as may be plotted by FE software.

curate as displacements. In either case, stresses cannot be trusted if displacements are suspect.
In vibration analysis, mode shapes cannot be trusted if natural frequencies are suspect.

An array of graphical tools is available for viewing computed stresses. Tabulated re-
sults can also be useful. Before examining stresses one must ask how they are presented
by the software. Are they referred to global or to local axes? If the latter, how are these
axes oriented? Are stress resultants {e.g., bending moments) reported? They must not be
mustaken for stresses. In beam, plate, and shell elements, stresses may be available at up-
per. middle, and lower element surfaces. Which is desired, and which surface of an ele-
ment is called its upper surface by the software? Are stresses averaged at nodes? This is
incorrect if coordinate systems do not match or if there are discontinuities of thickness or
material properties (Fig. 3.10-1). One can plot contours or shades of any individual nor-
mal or shear stress, a principal stress, the “stress intensity,” or the von Mises stress (Egs.
3.10-1 and 3.10-2). Principal stress trajectories (lines tangent to a principal stress direc-
tion) can be plotted as dashed lines, with the length of each dash proportional to the mag-
nitude of the principal stress at that location. Trajectories show the “flow” of stress and
can be used to identify the primary load-carrying path in a FE model. (Note that a stress
trajectory is not a stress contour. A stress contour is the locus of points that have the same
stress. It says nothing about the stress direction.) Stresses can be viewed on user-defined
cross sections of solid models. Usually one can scale, window, and choose different
viewpoints.

Advice that bears repeating, even belaboring, is that stress plots should be based on
unaveraged nodal stresses, so as to retain interelement discontinuities in the plotted con-
tours or shades. Discontinuities are an obvious qualitative measure of discretization error.
Contours plotted from nodal average stresses are interelement-continuous. Their appear-
ance is pleasing, but they convey discretization error only by how much they change in
direction across interelement boundaries. Examples of averaged and unaveraged contours
appear in Figs. 3.12-2 and 3.12-3. Note that contours are interelement-continuous across
the line of symmetry x = y in Fig. 3.12-2¢c. Accordingly, a mesh may be too coarse even
when an unaveraged stress plot shows continuity. See also the last paragraph of Section
7.6.

Some characteristics of an accurate stress field are as follows. Stress contours should
be normal to a plane of reflective symmetry (of loads as well as geometry). At a free
boundary, one of the principal stresses should be zero. At a boundary loaded only by
pressure p, one of the principal stresses should be —p. Principal stress trajectories should
be normal or tangent to free boundaries, boundaries loaded only by pressure p, and planes
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of reflective symmetry. In an axially symmetric problem, radial and circumferential nor-
mal stresses should be equal on the axis of revolution. None of these conditions is likely
to be met perfectly. The amount of imperfection is a measure of discretization error, or is
perhaps a warning of an error in the FE model. One would also suspect a error in model-
ing if there are unexpected stress gradients or stress concentrations in unreasonable
places.

The foregoing inspection is largely qualitative. Quantitative inspection involves com-
paring computed displacements and stresses with preliminary analytical results (prepared
in advance!), experimental results, predictions from formulas in textbooks and hand-
books, and whatever else may be appropriate and reasonably available. Such checks are
likely to be most useful for the earliest models in a sequence, when blunders are most
likely and the appropriateness of some assumptions may still be in question. Inevitably,
there will be disagreements between FE results and other results used for comparison.
Reasons for any substantial disagreement must be sought. FE results are not necessarily
at fault when there is disagreement, but experience shows that most users are entirely 00
willing to accept computed results at face value [1.7].

Close inspection of results shows how the FE model can be improved. A need for
mesh refinement is indicated in regions where stress contours display considerable in-
terelement discontinuity. The closeness of stress contours is another guide: if plotied
stress contours have equal increments between them, elements that span several stress
contours should be refined more than elements that span few contours. In addition to re-
vising the FE model, it may be necessary to alter the scope of the analysis. This may hap-
pen if initial assumptions such as no buckling, no gap closure, or no plastic action are in-
consistent with the computed magnitudes of displacements and stresses.

5.14 STRESS CONCENTRATIONS. SUBMODELING

Stress Concentrations. The FE method is not very good at calculating peak stresses at
holes, fillets, and so on. Often a stress raiser is small, being roughly the size of an ele-
ment that would be used if the stress raiser were absent. Surrounding the stress raiser by a
greatly refined mesh would be a considerable chore. Sometimes a tabulated stress con-
centration factor (SCF) can be used instead, as follows. The stress raiser (e.g., a small
hole) is not modeled, but nominal stresses at its location are calculated by FE analysis.
Then, if a tabulated SCF for the local geometry and stress field is available, one need
only multiply the nominal stress by the SCF to obtain the peak stress.

If the needed SCF is not tabulated, the following alternative may be available [5.12}.
The discontinuity is modeled by a coarse “local” mesh and the peak stress is computed.
To compensate for the coarseness of the mesh, the peak stress must be scaled by a factor.
The factor is computed by using the same local mesh to solve a “secondary” problem for
which results are known. The factor is equal to the ratio of exact stress to computed stress
in the secondary problem. The success of the method depends on the availability of a sec-
ondary case that is “close” to the primary case, and the ability of the analyst to recognize
it.

As an example of this method, consider stress at point E in Fig. 5.14-1a. The mesh
used is very coarse. For the load P used, the computed stress at point £ is 221 (the units
do not matter here). The same local mesh is embedded in a tensile strip, Fig. 5.14-1b. as a
suitable secondary case for which the SCF is known. At point E, for the load applied. the
secondary case yields an exact stress of 130 by using the SCF and a computed stress of
92.8 from FE analysis. Hence the correction factor is 130/92.8 = 1.40. The final estimate
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Fig. 5.14-1. (a) A plane square region with a central hole. Siress at point £ is desired. (b)
“Secondary” case of locally similar geometry for which exact results are known.

of stress ar point £ in Fig. 5.14-1a is therefore 221(1.40) = 310. The exact stress in Fig.
5.14-1ais very nearly 337 (as computed from a highly refined mesh). To obtain the final
estimate of 310 without the correction factor, the 2 by 2 mesh in Fig. 5.14-1a must be re-
placed by an § by 8 mesh, with still greater refinement needed for greater accuracy.

Submodeling. A SCF is not tabulated for every kind of stress raiser. A hole or other dis-
continuity may be oddly shaped or so close to boundaries or loads that it does not lie in
the simple kind of stress field for which a SCF is tabulated. Then a refined-mesh study is
needed in order to determine the peak stresses. However, it is not necessary to revise and
reanalyze the entire FE model. Mesh refinement can be strictly local. This technique is
called submodeling.

As an example, consider the structure shown in Fig. 5.14-2a. Only a portion of the en-
tire FE mesh is shown. We assume that this mesh is too coarse to give accurate stresses

EERL

Remainder
of mesh
not shown

(a) (b)

Fig. 5.14-2. (a) A portion of the FE mesh in a coarse-mesh plane FE model. (b)
A submodel. Dots show nodes on the cut boundary that also appear in the coarse
mesh.
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(a) (b) (c)

Fig. 5.14-3. (a) Intersection of two plates, seen in cross section. (b) FE model of plate clements,
seen edge-on. (¢) FE model that combines plate and solid elements.

on the boundary of the cutout, but fine enough to give reasonably accurate displacements
near the cutout. A possible submodel is shown in Fig. 5.14-2b. It is loaded by prescribed
displacements at all nodes along BC, CD, and DA. The required displacements are ob-
tained from the coarser-mesh solution. Some of these nodal displacements must be inter-
polated, because not all nodes along BC, CD, and DA also appear in the coarser mesh.
The necessary interpolation capability is included in some commercial software. Displace-
ments are imposed only at nodes along the “cut boundary” BCDA. Thus d.o.f. are not im-
posed at any internal nodes of the submodel or at any nodes on the arc of radius r except
nodes A and B. The submodel may be refined repeatedly without ever changing the
coarser model.

Submodeling is reminiscent of substructuring, but submodeling does not require that
the coarse mesh and the submodel have identical node patterns along the cut boundary.
Submodeling also makes no provision for updating the “attachment” d.o.f. by connecting
the coarse mesh and the submodel together and solving the entire system.

A form of submodeling can be used for intersections. The intersecting plates of Fig.
5.14-3a can be regarded as part of a larger structure (not shown). A plate element model,
Fig. 5.14-3b, does not do well at resolving detail near corner C because plate elements lie
on midsurfaces of the actual plates. If bending dominates, one might apply a stress con-
centration factor to computed bending moment in the plate elements at C. Alternatively.
the submodel approach in Fig. 5.14-3c might be used. Plate and solid elements meet at A
and B and can be connected by methods discussed in Sections 3.9 and 4.13.

Clearly, submodeling requires skill in order to construct a coarse mesh that is not roo
coarse and to place boundaries of the submodel far enough from the stress raiser. In Fig.
5.14-2, “far enough” means that d.o.f. along arc CD would be almost unaffected by a de-
crease in radius r. As a partial check, stresses before and after submodeling can be com-
pared: if submodeling does little to change stresses on the cut boundary of the submodel,
we have some assurance that the cut boundary placement is acceptable. Even when skill-
fully done, stresses may be underestimated because the coarser-mesh model is likely to
err by being too stiff, which means that displacements imposed on the submodel will be
too small.

5.15 CONVERGENCE WITH MESH REFINEMENT

FE results should converge toward exact results as a mesh is repeatedly refined. This will
indeed happen if there are no blunders in FE modeling and if elements pass patch tests.
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ward results of beam theory if beam elements are used. Convergence will be “from be-
low”—meaning that each FE model errs by being too stiff—provided that conditions
noted in Section 4.8 are met. If, in addition, each refinement is by subdivision of existing
elements. with existing nodes retained and not repositioned, convergence will be monoto-
nic from below. The mesh in Fig. 5.15-1b is such a refinement of the mesh in Fig. 5.15-
la. Mathematically, one says that this kind of subdivision retains the old trial field as a
subset of the new one. None of this says anything about the rate of convergence. There is
little advantage to monotonic convergence with one type of element if a different type
provides nonmonotonic convergence but considerably greater accuracy for the same
number of d.o.f.

In order to say more about convergence some terms must be defined. Let / be an ap-
proximate linear size measure of an element; that is, the actual length of a bar or beam el-
ement, or A"” where A is the area of a plane or plate element, or V"> where V is the vol-
ume of a 3D solid element. Let p be the degree of the highest complete polynomial in the
clement displacement field. Thus p = 1 for the CST (Eq. 3.2-1), p = 1 for the basic four-
node quadrilateral (Eq. 3.4-1), and p = 2 for the eight-node quadrilateral (Eq. 3.5-1).

Common parlance refers to “h-refinement” and “p-refinement,” in which 4 or p is
changed in going from the old mesh to the new. An h-refinement changes element sizes
without changing element types (so p remains constant). A p-refinement changes element
types without changing element sizes (so & remains constant). In p-refinement, nodes may
be added to existing elements and/or d.o.f. may be added to existing nodes. Examples
appear in Fig. 5.15-1. These examples are uniform refinements, in which the positions of
existing nodes are not changed. Another possibility is * r-refinement,” Fig. 5.15-1d, in
which r means “rearrange”; that is, existing nodes are moved without changing the num-
ber of elements or the number of d.o.f. Because the number of d.o.f. is not increased, r-
refinement can provide only limited improvement in accuracy. Of course none of these
refinement methods need be used in isolation. Commonly, nodes are rearranged when do-
ing - or p-refinement, or when doing /- and p-refinement in combination. It appears that
for problems containing singularities, such as reentrant corners or cracks, p-refinement
converges much faster than A-refinement, especially if combined with r-refinement so
that mesh density is most greatly increased around singularities [5.13].

Some commercial programs are self-adaptive, which means that they are able to esti-
mate the error of a FE solution, revise the mesh, reanalyze, and repeat this cycle automar-
ically until a prescribed convergence tolerance is met. More is said about this in Section
5.16. A self-adaptive program may be based on k-refinement or on p-refinement.
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Fig. 5.15-1. Possible refinements of a plane mesh.
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Adaptive h-refinement capability has been obtained by additions to existing codes: error-
calculation and mesh-revision modules were added, and a driver was written to repeat the
entire analysis, error-checking, mesh-revision sequence until the convergence tolerance is
met. Refinement can continue until limits of computer capacity or numerical noise are
reached. Adaptive p-refinement requires more sophisticated programming because ele-
ment types are changed in successive mesh revisions and nodes may have more than the
usual number of d.o.f. Refinement can continue until the highest-order elements coded in
the program have been used.

Sometimes computed results from two analyses can be extrapolated to yield an im-
proved result. The argument is as follows, with reference to the 4 method. We assume
that convergence is monofonic and that the convergence rate is known; for example, if er-
ror in a certain quantity is quartered when size of elements is halved, then error is propor-
tional to A2 Figure 5.15-2a illustrates the general case of error proportional to k7, which
plots as a straight line when the abscissa is k9. The ordinate, ¢, represents the quantity of
interest, such as displacement or stress at a certain point. By simple linear extrapolation
of ¢ versus h“, we obtain

o = i —¢oh (5.15-1)

9 q
B —h

as the value of ¢ expected at infinite mesh refinement, when h = 0. Figure 5.15-2b shows
that for nonmonotonic convergence, extrapolation based on values of ¢ at points such as
C and D may produce a worse result rather than an improved result. Note also that at least
three analyses are required in order to determine g, and that all of them may have to be
based on at least moderate mesh refinement if ¢ is to be determined with certainty. If suc-
cessive mesh refinements are nonuniform, it is not clear how h,, /15, and so on are to be
measured. Perhaps the h; should then pertain to the element in each mesh nearest the
point of interest. Results from three or more analyses may fail to plot as a straight line for
any value of g. Then one might opt for linear extrapolation, by using a least-squares of a
straight line to the results of three or more analyses, but with no guarantee of an im-
proved result.

One sometimes examines results from two different meshes, notes that they are in sub-
stantial agreement, and concludes that convergence is almost complete. The conclusion is
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Fig. 5.15-2. (a) Extrapolation with error proportional to h?. (b) Error is NOMTIONOLONIC in
ABCD and proportional to h?in AE. AF would be a straight line if the abscissa were .
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5.16 ERROR MEASURES AND ADAPTIVITY

A FE solution contains enough information to estimate its own discretization error. An
error estimate can be calculated by the postprocessor and used to guide mesh revision, so
that the next analysis will be more accurate. Cycles of analysis and mesh revision can be
repeated until a convergence test is satisfied. These ideas can be implemented in different
ways. One method uses the Z? error estimator, named after its authors [5.14]. It pertains
to the error in computed stresses and is summarized as follows.

First, it is necessary to discuss stress fields. Consider the simple example of a uni-
formly loaded bar, Fig. 5.16-1. The element-by-element stress field is discontinuous be-
tween elements, but the stress field constructed from nodal average stresses is continuous.
Indeed, in this particular example (but not in general) the continuous field is exact, except
in elements at either end of the bar. There are other ways of constructing a continuous
stress field [5.15], but what matters for the error estimate is that the continuous field,
however constructed from discontinuous element stresses, is regarded as the most accurate
portrayal of the exact stress field that the current discretization can provide. Accordingly,
the difference between the element-by-element field and the continuous field can be re-
garded as an approximate error field. This error field is indicated by shading in Fig. 5.16-
1. Whatever the element type, when discontinuities of stress (or bending moment) appear
between elements, the amount of discontinuity is regarded as a measure of error. We
identify the various stresses as follows.

o = the element-by-element stress field (discontinuous)
o* = the averaged or smoothed stress field (continuous)

O = 00— 0¥, the “error” stress field

A strain energy can be associated with each stress.

n E_l
v=NU = where U = J———GZAdx (5.16-1a)
2 15
n L E—‘l 2
Ut = YUr  where UF = J'_(o—*) Adx (5.16-1b)
i=1 3 2
n L
U = YUy  where Uy = j———o—gAdx (5.16-1¢)
i=1 0 2

where A is the cross-sectional area, L is the element length, and summation signs indicate
that energy contributions of all »n elements of the mesh are added. With elements of arbi-
trary type, 0, 6*, and o, become stress vectors, elastic modulus £ becomes the matrix E
of elastic constants, and integration is over element volumes. Thus a typical integrand, in
Eq. 5.16-1a for example, becomes 30”7 E™' o dV. Element energy errors Up; do not indicate
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Fig. 5.16-1. A uniform bar modeled by two-node bar elements of equal length.
Stresses associated with uniform axial load g are shown.

the accuracy of stresses in individual elements; instead, they are used to guide mesh revi-
sion. A global quantity 7 is used to test for convergence, where 177 is the relative energy
error

U 172
n = (———5——) where  0<n<l1 (5.16-2)

The denominator uses U + Uy as an approximation of the exact strain energy. in recogni-
tion of the probable overstiffness of the FE model, which makes U smaller than the exact
strain energy. Apparently, U* could be used instead of U + Up. The square root serves to
associate 7 with the stress field, as strain energy is proportional to squares and products
of stresses. Note that 77 is a global quantity and does not measure error at any particular
point, Indeed, if an analogous quantity 7, were defined for each element it too would be
unreliable as an element error measure (e.g., it could be large just because U, is small).
As examples of relative energy error, (global) values of 7 are 0.373 in Fig. 3.12-2 and
0.183 in Fig. 3.12-3. Neither value of 1 is small enough to indicate that the solution is
satisfactory.

In practice, an adaptive solution proceeds as follows. An initial analysis is followed by
postprocessing that yields Uy, for every element and the global quantity 1. If 1 is less
than a prescribed value, say, 0.05, the procedure terminates. Otherwise the mesh is re-
vised, by A and/or p methods and possible repositioning of nodes, so that more elements
or more d.o.f. are placed in existing elements where Uy, is comparatively large. Another
cycle of the procedure is begun by analysis of the revised FE model. With seitable coding
all of this can proceed auromatically, beginning with a user-supplied FE model and termi-
nating after perhaps four cycles with a refined FE model and presumably accurate re-
sults—which the analyst must check, as usual. Figure 5.16-2 is an example of this
process. Note that there appear to be stress concentrations at A and B. It may be wise to
exclude such singularities from the region to be treated by self-adaptive analysis, as there
is little purpose in seeking improved accuracy at points where stress is known to be infi-
nite. Again, neither Ug; nor 17 works as an indicator of percentage error in a local stress
value.

The procedure by which element energy errors Uy, are used to revise the mesh [5.14]
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Fig. 5.16-2. Results of an adaptive solution in a plane region using linear strain triangles {5.16].
Poisson’s ratio is 0.3. All d.o.f. along AB are set to zero. Each revision aimed at 7 = 0.05.

tends to produce a mesh in which Uy, is the same in all elements. The first mesh revision
does not make all Uy, values exactly the same because the computed stress field is some-
what changed by mesh revision. The analyst can monitor error estimates in successive
mesh revisions by looking at plots of Uy, values, using different colors for different mag-
nitudes of Uy;. The postprocessor will color each element according to its Uy, value.
Accordingly, the plot will be multicolored after the first analysis, when Uy, values are
quite different. At full convergence all U, values would be equal and the plot would be
monochrome. Another way to monitor the iterative process is to inspect unaveraged
stress contours, as has been repeatedly advocated.

The foregoing arguments are built on the assumption that discontinuities in element-
by-element stress field are indicative of error. This is not necessarily so: stresses should
be discontinuous in some situations, such as at an abrupt change in thickness or modulus
or at a shrink fit interface. In such cases the region over which the stress error estimate is
computed should exclude the known discontinuities.

What if there are multiple load cases? The foregoing mesh revision procedure will
produce a different mesh for each load case. It would be more convenient to produce a
single mesh that constitutes an improvement for all load cases. A possible strategy is to
predict improved element sizes from each load case separately, using Ug; values appro-
priate to each load case, then generate a mesh in which element size at every location is
the smallest of the several sizes predicted.

Software having automatic adaptive capability does much to free the analyst from the
labor of preparing meshes and altering them to make the next analysis more accurate. The
analyst must still understand the physical problem and the FE method well enough to cre-
ate a correct and adequate initial FE model. Mistakes in loads, support conditions, and so
on will propagate through adaptive cycles and produce an improved solution to the wrong
problem. Also, poor choices of element types or an initial mesh that is too coarse may not
disclose enough detail to permit the revised mesh to be an improvement. Automatic adap-
tivity seems to guarantee that final results will be adequate, but of course there can be no
such guarantee, It remains the duty of the analyst to do the work properly and to critically
examine computed results.

Concluding Remarks. The analyst is not to blame for everything that may go wrong.
Software contains errors, despite the best efforts of software vendors to sweep them out.
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Errors exist even in software developed by vendors that meet the demanding quality con-
trol and verification procedures of the Nuclear Regulatory Commission (NRC). And for
every vendor that meets NRC requirements there are many that do not. One author [5.6]
puts it strongly: “Beware of computers. And, especially beware of developers of engi-
neering software.” Regardless of the source of trouble, the engineer who uses the soft-
ware is held responsible for the results.
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CHAPTER

3D Solids and Solids
of Revolution

This chapter considers solid elements, first for the general 3D case, then for the special
(but very common) case of axial symmetry. Each of these two cases is followed by an ex-
ample application. Axisymmetric geometry with nonaxisymmetric loading is described
last.

6.1 INTRODUCTION

The term “3D solid” is used to mean a three-dimensional solid that is unrestricted as to
shape, loading, material properties, and boundary conditions. A consequence of this gen-
erality is that all six possible stresses (three normal and three shear) must be taken into
account (Fig. 6.1-1). Also, the displacement field involves all three possible components,
u, v, and w. Typical finite elements for 3D solids are tetrahedra and hexahedra. with three
translational d.o.f. per node. Figure 6.1-1b shows a hexahedral element, about which
more will be said in Section 6.2.

Problems of beam bending, plane stress, plates, and so on, can all be regarded as spe-
cial cases of a 3D solid. Why then not simplify FE analysis by using 3D elements to
model everything? In fact, this would not be a simplification. 3D models are the hardest
to prepare, the most tedious to check for errors, and the most demanding of computer re-
sources. Also, some 3D elements would become quite elongated in modeling beams,
plates, and shells; this invites locking behavior and ill-conditioning (Sections 3.6 and
5.10).

A solid of revolution, also called an axisymmetric solid, is generated by revolving
a plane figure about an axis in the plane. Common examples include a hose nozzle
and a light bulb, although the light bulb has a very thin wall and would be properly
classed as a shell of revolution for stress analysis purposes. Loads and supports may
or may not have axial symmetry. Initially, we will consider the case where geometry,
elastic properties, loads, and supports are all axisymmetric. Consequently, nothing
varies with the circumferential coordinate 6, material points displace only radially
and axially, and shear stresses 7,5 and 7, are both zero. Thus the analysis problem is
marhematically two-dimensional. Axisymmetric finite elements are often pictured as
plane triangles or quadrilaterals, but these plane shapes are actually cross sections of
annular elements, and what appear to be nodal points are actually nodal circles (Fig.
6.1-2).

145
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Fig. 6.1-1. (a) 3D state of stress. (b) An eight-node hexahedron FE. (c) The d.o.f. at a typical node
(i=1,2,.,8).

Stress—Strain-Temperature Relations. As usual, the constitutive relation of a linearly
elastic material is written as

oc=Ee+ 0, 6.1-1)

For an isotropic material in three dimensions, with initial stress &' produced by tempera-
ture change, Eq. 6.1-1 symbolizes the relation

o, (I-v)e ve ve 0 0 01e 1
o, (1-v)c Ve 0 0 Ole 1
o | _ (1-v)e 0 0 0] ¢ _Eo AT 1 6.1-2)
Ty G 0 07y I-2v |0
T, symmetric G 07 0
To) L G 7= 0

dg 3 4 4 3
| Sntesl sl E
{ ! e
PSP RIS SRR
2 1 1 2

(a) (b)

Fig. 6.1-2. (a) Axisymmetric state of stress. (b) A four-node axisymmetric element and d.o.f. ata
typical node (i=1, 2, 3, 4).
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sion, AT is temperature change, and

E
c=—————— and G= E
(1+w)(1-2v) 2(1+v)

(6.1-3)

In the same notation, for axial symmetry and an isotropic material, Eq. 6.1-1 symbolizes
the relation

o, (I-v) Ve ve 011 e, 1
o) (1-v)c Ve 01f& Ea AT |1
o. (d-we 0ile [ 1-2v |1 (6.1-4)
7., symmetric Gil7., 0

The resemblance between Egs. 3.1-4, 6.1-2, and 6.1-4 is obvious. In particular, note that
if v approaches 0.5 a division by zero impends, inviting the troubles of locking and ill-
conditioning.

The FE method is not restricted to isotropic materials, but we will not discuss aniso-
tropic materials here. For a solid of revolution, software may require that material proper-
ties not depend on 6 and that € be a principal material direction of an orthotropic mater-
ial.

Strain-Displacement Relations. Let i = u(x, v, 2), v = v(x, y, 2), and w = w(x, v, z) be
displacement components of an arbitrary material point in the x, y, and z directions,
respectively. If strains and rotations are small. strains and displacement gradients in
Cartesian coordinates are related by the equations

L _

T T T

g—.g_v ¥y ~@_L@_V. (6.1-3)

v &y M &: &y .
ow M du

= Y=t

Tk Tk &

For a solid of revolution we switch from Cartesian coordinates to cylindrical coordinates.
If deformations are axially symmetric, the circumferential displacement component v is
zero, the radial displacement component is u = u(r, z), and the axial displacement
component is w = w(r, 7). Shear strains ¥,, and ¥,. are zero. Nonzero strains in the case of
axial symmetry are

(6.1-6)
ow Jdw  du
= -+

o T o o

The expression & = w/r is derived in Fig. 6.1-3. Note that zero circumferential displace-
ment does not imply zero circumferential strain. If desired, Egs. 6.1-5 and 6.1-6 can be
stated in matrix format, like Eq. 3.1-6.
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Displacements u within an element are interpolated from nodal d.of. d in the usual
way; that is, u = Nd, where N is the shape function matrix. If nodes have only transla-
tional d.o.f. and n is the number of nodes per element, N has 3» columns for a 3D ele-
ment and 2x columns for an axisymmetric element. Thus, for 3D solids, u = Nd is

Uy
Ui
u N 0 0 N, 0 0 W,
ve=[0 N, O O N, O U, (6.1-7)
w 0 0 N 0 0 N Uz
Wa
Similarly, for axisymmetric displacements in a solid of revolution, u = Nd is
U
u N, 0 N, 0 ™
= U, (6.1-8)
w 0O N 0 N, -

Formulas for k. Substitution of u = Nd into the strain—displacement relation yields the
strain—displacement matrix B, which in turn enters the integrand of the formula for ele-
ment stiffness matrix K, as explained in connection with Eqgs. 3.1-8 and 3.1-10. With n the
number of nodes per element, and translational d.o.f. only, these relations for 3D solids
and solids of revolution are as follows:

General solids: Solids of revolution with

axisymmetric stress field:

£ = 133 d =B d (6.1-9a)

6x1 6x3n 3nx1 4x1 4x2n 2nxi

3k1 :.UJ-BT E B dx dy dz k :JJIBTRBrdrde: (6.1-9b)

6x6 2nx2n

If nodal rotation d.o.f. are also present, additional columns appear in N and in B. and k is
of larger order.

Integration with respect to 8 in an axisymmetric problem produces a factor 2, which
is a common multiplier of both K and R in the global equation KD = R. In some software
the 27t multiplier is discarded. Then loads in R pertain to a 1-radian segment.
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axis is the only possible rigid-body motion. Accordingly, K will be nonsingular if w is
prescribed at only one node (or, stated more properly, around one nodal circle).

An axisymmetric radial component of load is statically equivalent to zero, but this
does not mean that it can be discarded from the load vector. It still produces deformation
and stress. Over the circumference, a radial line load of ¢ units of force per unit of (cir-
cumferential) length is regarded as contributing a radial force 2nrg of units to the load
vector, where r is the radius at which g acts. Likewise, a moment of M N-m per unit of
(circumferential) length is statically equivalent to zero but is regarded as applying a mo-
ment about the @ direction of 27zvM N-m. Similar remarks can be made for the radial body
force load associated with spinning about the z axis.

An unrestrained body that is homogeneous and either isotropic or rectilinearly or-
thotropic is unstressed by temperature change if the temperature field is either constant or
linear in Cartesian coordinates xyz. An unrestrained solid of revolution that is either
isotropic or cylindrically orthotropic is not unstressed by a temperature field that is linear
in radius » of cylindrical coordinates. The solid of revolution would remain stress-free if
the termperature field is either constant or a linear function of axial coordinate z only.

Although a plane FE model and the cross section of an axisymmetic FE model look
alike, and each uses the same pattern of nodal d.o.f., it is physically meaningless to cou-
ple them together (Fig. 5.7-2b). Physically, such a connection would not produce axisym-
metric deformations in the solid of revolution. If this kind of connection is actually in-
tended. it will usually be necessary to model the solid of revolution by 3D elements.

Some software allows the analysis of a solid of revolution under loading without axial
symmetry. The technique is summarized in Section 6.6. This is usually a “stand-alone”
analysis; attachment to a 3D solid or a plane structure is not allowed.

Caution. In problems of buckling or vibration, axial symmetry of geometry, material
properties, loading, and support conditions does not guarantee axial symmetry of dis-
placement.

6.2 ELEMENTS FOR 3D SOLIDS

Most solid elements are direct extensions of plane elements discussed in Chapter 3. The
extensions consist of adding another coordinate and another displacement component.
The behavior and the limitations of specific 3D elements largely parallel those of their 2D
counterparts.

Constant Strain Tetrahedron. This element (Fig. 6.2-1a) has three translational d.o.f.
at each of its four nodes, for a total of 12 d.o.f. In terms of generalized coordinates f3, its
displacement field is

u=py+pBx+By+ Bz
v=Ps+ Pex+ By + Pez (6.2-1)
w= o+ Biox + By + Biaz

Like the constant strain triangle (Eq. 3.2-1), the constant strain tetrahedron is accurate
only when strains are almost constant over the span of an element. The element is poor at
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Fig. 6.2-1. Common 3D elements. (a) Constant strain (four-node) tetrahedron. (b) Linear strain
(ten-node) tetrahedron. (c) Trilinear (eight-node) hexahedron. (d) Quadratic (20-node) hexahedron.

representing fields of bending or twisting if the axis of bending or twisting either inter-
sects the element or is close to it.

Linear Strain Tetrahedron. This element (Fig. 6.2-1b) has ten nodes, each with three
translational d.o.f., for a total of 30 d.o.f. Its displacement field in terms of generalized
coordinates can be obtained by adding the six quadratic modes x2,y*, 2% xy, yz, and =x to
each of the expressions for u, v, and w in Egs. 6.2-1. Like the six-node triangle (Eq.
3.3-1), the ten-node tetrahedron has a strain field that is linear in the coordinates. The el-
ement can therefore represent fields of pure bending exactly. Depending on the coordi-
nates assigned to edge nodes, edges of undeformed elements can be straight or curved.

Trilinear Hexahedron. This element is also called an eight-node brick. Its rectangular
form, shown in Fig. 6.1-1b, has the displacement field

u=P+ Bx+ fay+ Baz+ Bsxy + Beyz + Brzx + Bexyz
v= ﬂ9 + Biox + ﬁl 1yt .BIZZ + Biaxy + Biayz + ﬁlszx + .Blcﬂ’z (6.2-2)
w=Byg+ Bigx + Broy + Broz + Barxy + Baayz + Boszx + Boaxyz

Each of the three displacement expressions contains all modes in the expression (c; +
c,x)(cs + c,y)(cs + €62), Which is the product of three linear polynomials in which the ¢,
are constants. Each of Egs. 6.2-2 contains all linear modes, some of the quadratic modes

(%, y*, and 2 are missing), and one of the cubic modes (xyz). The resemblance of Egs.
3.4-1 and 6.2-2 is obvious.

The hexahedral element can be of arbitrary shape if it is formulated as an isoparamet-
ric elemnent (Section 4.4). The coordinates used are shown in Fig. 6.2-1c. The six faces of
the element are defined by &=*1, n=%1, and { = +1. Displacement expressions can be
written as

u:ZN,-ui UIEN,-U,- W=ZN,—W,- (6.2-3)

Index i runs from 1 to 8 in each summation. Shorthand for the shape functions is
N=21xEHAEMAEE) (6.2-4)

in which all signs are negative for N, all signs are positive for Ng, and so on. The formula
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As in Eq. 4.4-8, J!| can be regarded as a scale factor. Here it expresses the volume ratio
of the differential element dX dY dZ in global Cartesian coordinates to its representation
d& dn d{ in isoparametric coordinates. Equation 6.2-5 is integrated numerically, usually
by a2 by 2 by 2 Gauss quadrature rule.

Like the bilinear quadrilateral, the trilinear hexahedron cannot model beam action well
because its sides remain straight as the element deforms. If elongated, it suffers from
shear locking when bent. A remedy for locking, described for plane elements in Section
3.6, 1s also applicable in three dimensions. By extension of Eqgs. 3.6-2, we add to each of
the three displacement fields in Eqs. 6.2-3 the incompatible modes (1 — &%), (1 - 17°). and
(1 - &%), each multiplied by a generalized coordinate g:- Thus a total of nine internal d.o.f.
are introduced. Thus augmented, the element is incompatible, but it is valid in the same
way the element described in Section 3.6 is valid.

Quadratic Hexahedron. This element, shown in Fig. 6.2-1d, is a direct extension of the
quadratic quadrilateral described in Section 3.5. Like the linear strain tetrahedron, edges
of undeformed elements can be straight or curved. If the element is rectangular it can
model linear strain fields exactly. Equation 6.2-5 is the formula for its stiffness matrix in
isoparametric coordinates, where B is now a 6 by 60 rectangular matrix. If k is integrated
by a 2 by 2 by 2 Gauss quadrature rule, three “hourglass” instabilities of the type shown
in Fig. 4.6-2b are possible, one involving u, another v, and the third w displacements.
Three additional hourglass instabilities are also possible, in each of which displacements
on opposite faces of the element have opposite sign. In plane problems an hourglass in-
stability of a quadratic quadrilateral is noncommunicable and causes no difficulty. But in
3D problems, it is conceivable that elements will be strung end to end as in Fig. 6.2-2.
Even if one end of the model is restrained as shown, there may be a near-instability anal-
ogous to that in Fig. 4.6-2a, as shown in Fig. 6.2-2. This possibility is avoided in com-
mercial software by using a stabilization device, a special 14-point rule, or even a 3 by 3
by 3 rule (27 points) to integrate k.

/\\ //\
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{ }
/
\\ /
< ~
Cross section N . ~/
near A Cross saction
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X
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Fig. 6.2-2. (a) FE model composed of quadratic solid elements. (b) Near-instability is possible far
from the fixed end if elements are integrated by a 2 by 2 by 2 Gauss rule.
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Fig. 6.2-3. Nodal loads associated with uniform pressure p on a rec-
tangular face of a hexahedron with midedge nodes.

Remarks. Additional 3D elements are of course possible and are described in the docu-
mentation of commercial software. Some elements may have nodes at the middle of each
face, in addition to midedge nodes. The analyst should consult the documentation, in case
even the basic elements described above have special features or “add-ons.”

Software can be expected to compute automatically the nodal forces that represent
body force loading, or pressure loading on a face of a 3D element. This is fortunate, as
appropriate nodal forces are often not obvious. As an example, uniform pressure p on a
face of a linear strain tetrahedron with midedge nodes should be applied as forces pA/3 at
each midedge node on the face, where A is the area of the face. This distribution is work-
equivalent and is shown in Fig. 3.9-5c¢ for an analogous plane problem. Another example
appears in Fig. 6.2-3 (note the resemblance to Fig. 3.9-5d).

Typical 3D elements do not use rotational d.o.f. Accordingly, rotational d.o.f. must be
suppressed in the global equations. Software may or may not do so automatically.

Patch tests for 3D solid elements are entirely analogous to patch tests for plane ele-
ments. However, the requirement that at least one node be within the mesh means that at
Jeast one node must be within the volume, not just along an edge or on a surface of the
solid.

Surface views do not reveal the internal structure of a 3D mesh. The user should there-
fore make full use of preprocessor graphics to check the FE model prior to analysis. To
reduce storage requirements and execution time, bandwidth or wavefront reducers should
be applied if software does not do so automatically. In examining computed displace-
ments and stresses it is helpful to view results from different directions and on different
cross sections. Most often, peak stresses appear on the surface of a solid; therefore a plot
of surface stresses should be examined.

6.3 A 3D APPLICATION

A curved beam is bent in its own plane, as in Fig. 5.2-1b. More precisely, the structure 1S
a portion of a ring, symunetric about an axis of revolution, spanning an arbitrary number
of degrees about the axis, and loaded by a bending moment whose vector is parallel to the
axis. Stresses of greatest magnitude are sought. The analysis problem is not axisymmetric
because radial cross sections rotate with respect to one another and radial displacements
are not independent of 6. Accordingly, we use 3D solid elements but also use cylindrical
coordinates because they conveniently fit the geometry.

The particular shape of the cross section and the FE mesh chosen are shown in Fig.
6.3-1. Stresses do not vary with 6, so only a typical slice between radial planes need be
analyzed (Fig. 6.3-1Db). Bending moment M must be applied “indirectly” because we do



6.3 A 3D Application 153

>
PDF Compressor Fr E =200 GPa DB
v=03
M/2 M/2
M

e Face 2 \ ’/ Face 1

! ctHa

\,k
65 mm X Plane of 44 mm /\ i
[/symmetry ‘\L 6, v /ﬂ 5o
R S ___ Axisof
revolution
(a) (b)

Fig. 6.3-1. (a) Cross section of a curved beam. showing FE mesh in the left half. (b) The FE model
viewed parallel to the z axis.

not know what stresses it produces and therefore cannot impose appropriate nodal loads.
Instead, we will prescribe displacements, such that radial plane sections remain plane and
moment load is applied without a net force, then compute M as the moment produced by
computed circumferential stresses.

Preliminary Analysis. The straight beam flexure formula Mc// yields the stress
8.94(10) °M at the inside edge, in units MPa if M is in N-mm. A formula for circumferen-
tial stress in a curved beam is readily available [1.5, 2.1]. According to the formula, stress at
the inside edge is

curved beam theory, along r = 44mm: 0= 13.46(10) M (6.3-1)

in MPa if M is in N-mm. For comparison with FE results we must return to this formula
after M is known. Might Eq. 6.3-1 be adequate? It may be, but possibly a FE analysis will
show otherwise. In deriving the formula it is assumed that a cross section does not distort
in its own plane, so that stresses do not vary in the z direction. A FE analysis contains no
such restriction and may therefore yield different resulits.

FE Model and Analysis. There is symmetry about a z-constant plane that contains
points ABCD, so only half the cross section need be meshed. Curved beam theory tells us
that stress gradients will be highest on the edge nearest the center of curvature. Accord-
ingly, the mesh is graded so that elements near the inner edge span a smaller radial dis-
tance. In Fig. 6.3-1b, face 1 and its nodes are merely rotated 5° to generate face 2. The
wedge between the two faces contains a single layer of eight-node 3D elements. Each el-
ement contains nine internal d.o.f. associated with incompatible displacement modes.
Prescribed nodal displacements in the radial, circumferential, and axial directions are as
follows:

Face 1 Face 2

u=0atnode A
v =0 at all nodes v =0.0001(r, — r) at all nodes

w =0 at nodes along AB w = 0 at nodes along CD
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All remaining nodal d.o.f. are unrestrained. Setting u = 0 at A prevents rigid-body transla-
tion in the r direction, and setting w = 0 on ABCD imposes symmetry about the rf plane.
The expression v = 0.0001(r, — r) causes face 2 to remain plane as it rotates about a z-
parallel axis at r = r,.. The number 0.0001 is arbitrary and r, is a number such that node A
exerts no radial force on the FE model. At the outset the appropriate value of r. is un-
known. Therefore rwo preliminary FE analyses are performed, respectively using the ar-
bitrarily chosen values 7, = 60 mm and r. = 70 mm. The respective radial reactions at A
are computed by the software as 2001 N and 357 N. By linear extrapolation, the radial re-
action at A should be zero when r, = 72.2 mm. The value r. = 72.2 mm is used in a third
and final FE analysis, which provides a radial reaction of essentially zero at A, as ex-
pected. Circumferential support reactions on face 1 produce a moment about a z-parallel
axis, which is automatically calculated by the software. This moment is doubled to yield
moment M on the entire cross section. If stresses for a prescribed moment M, are re-
quired, one need only multiply computed stresses by the ratio M, /M.

Critique of FE Results. The deformed shape of the cross section is shown in Fig. 6.3-2a.
Animation shows that the intended boundary conditions have indeed been enforced. On
physical grounds we argue that the deformed shape is reasonable, as follows. Radial stress
O, is known to be tensile, so it is proper that the 88-mm dimension becomes larger.
Circumferential stress oy is, respectively, tensile and compressive on inner and outer por-
tions of the cross section, while axial stress o is small, so that the Poisson effect should
cause inner and outer portions, respectively, to contract and expand in the z direction, as is
indeed observed. Circumferential tensile stress on the inner portion pulls material toward
the center of curvature. Outer corners of a cross section are more flexible than the central
part, so it is proper that corner £ moves inward relative to central point A. This effect is
discussed in Section 5.2 with reference to thin-walled cross sections, whose radial deflec-
tions are of course much more significant.

Material that moves radially inward while bounded by faces 1 and 2 in Fig. 6.3-1 must
shorten circumferentially. Thus a compressive strain 1s superposed on the tensile strain
due to flexing. Radial deflection provides greatest “stress relief” to material that deflects
farthest. Accordingly, it is reasonable that Fig. 6.3-2a shows lower circumferential stress
at £ than at A. At A and E, respectively, FE analysis yields circumferential stresses of 146

-
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Deformation oy contours g, contours o, conteurs
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Fig. 6.3-2. Results computed by FE analysis: distortion of the cross section, exaggerated for plot-
ting, and unaveraged stress contours. Stress units are MPa. (Stresses shown in the right half were
actually computed by FE analysis in the left half.)
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the FE model in Fig. 6.3-1. Thus we obtain M = 8.804(10)° N-mm. Hence Eq. 6.3-1

yields o, = 119 MPa, in approximate agreement with the average of FE stresses at A and
E. which is (146 + 65)/2 = 106 MPa. As expected, 0, contours are more closely spaced at
smaller values of . The neutral axis is the locus of points where 6, = 0. We see from Fig.
6.3-2a that the neutral axis is curved, in contradiction of the assumption made in mechan-
ics of materials theory.

Figure 6.3-2a shows little or no interelement discontinuity of O, contours. This is not
surprising, because circumferential strain is g, = (u/r) + (dv/96)/r {6.1]. This means that
€g Is essentially a plot of the displacements of face 2, which are of course interelement-
continuous. Figure 6.3-2b shows that g, contours are badly discontinuous. But the largest
0, is about 25 MPa, much less than the largest 0, Accordingly, the plot of von Mises
stress o,. Fig. 6.3-2b, shows small to moderate discontinuities. The stress field yields the
relative energy error 17 = 0.050, an acceptably small value. We conclude that results are
reliable, at least for stress gy,

6.4 AXISYMMETRIC SOLID ELEMENTS

Except for having to account for circumferential strain &, axisymmetric elements are
very similar to plane elements. Available element shapes (in cross section) and nodal pat-
terns are as described in Chapter 3. Capabilities and shortcomings of a specific element
type are much the same as for the corresponding plane element. However. it is necessary
to discuss the effects of the additional strain term &, = u/r. Consider the very simplest ax-
isymmetric solid element, a three-node triangle. Its displacement field for axisymmetric
deformation is

u=pf+ Bor + Bsz

(6.4-1)
w=f,+ Bir+ Bz

which is identical to Eq. 3.2-1 except for r in place of x, z in place of v, and w in place of
v. From Egs. 6.1-6 and 6.4-1, the element strain field is

g =0, 59:ﬁ11+ﬁ2+:83
e = Y, =Bs+ B,

~ |

(6.4-2)

Unlike its plane relative, this element is not a constant strain element because the Ep €X-
pression contains r and z. The only possible rigid-body motion is axial translation, w = Ba.
Strain is present if any other f; is nonzero. Rotation of the element cross section in the rz
plane is resisted by the fB4(z/r) term in the &, expression. Such a “ring rolling” deforma-
tion is produced by moment M in Fig. 6.4-1a, where M is a moment uniformly distributed
around the circumference of the element. The dimensions of M are [force-length/length]
or simply [force]. Due to M, the cross section shown rotates counterclockwise a small
amount; circumferential strains appear that are tensile in the lower part of the element and
compressive in the upper part. A plane triangular element would not resist M because the
rotation would be a rigid-body motion.

An element of arbitrary quadrilateral shape, such as that in Fig. 6.4-1b, would be for-
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Fig. 6.4-1. (a) Three-node axisymmetric element loaded by circumferentially distributed
moment M. (b) Four-node axisymmetric element.

mulated as an isoparametric element. The formula for element stiffness matrix k is written

k:THBTEBruwzjdnde (6.4-3)

0-1-1

which is like Eq. 4.4-8 except for the presence of r in place of 7, integration with respect to
6, use of a 4 by 4 array E, and the addition of a row to B that states the relation &5 = ulr.
For an element with translational d.o.f. only, this relation is

1
£g =— (N + Nty + -+ N, ) (6.4-4)
-

where the N, are shape functions and # is the number of nodes per element. The multipli-
cation BTEBr produces terms that contain 1/r. This poses no difficulty for numerical inte-
gration provided that no integration points are placed on the z axis.

As for boundary conditions, prescription of w on a single nodal circle is sufficient to
prevent rigid-body motion of the FE structure and hence prevent singularity of K.
However, one should also set # = 0 at all nodes on the axis of revolution. Nonzero u at
r = 0 would mean that either a small hole appears or the material overlaps itself, both of
which are physically unreasonable. A “pinhole” would also provide a stress concentration
factor of 2.0 for circumferential stress oy.

Points on the axis of revolution have zero radial coordinate and zero radial displace-
ment. If stresses are computed at r = 0, instead of being extrapolated to r = 0 from Gauss
point values, we obtain the strain calculation &, = 0/0. This is an awkward situation that
can be avoided by calculating €, = du/dr instead, then equating &, to €. This trick exploits
the theoretical requirement that &, = &, for points at r = 0. (The requirement is met by
Egs. 6.4-2: with f3, = B, = 0 so that « = 0 for points on » = 0, we obtain £, = dulor = J,
and g,= u/r = f3,.) Stresses follow from Eq. 6.1-4. In commercial software these consider-
ations are hidden from the user. Nevertheless, it is of interest to run a simple test case to
discover if computed stresses o, and Oy are indeed equal at r = 0.

Axisymmetric four-node quadrilateral elements may contain incompatible modes.
which are described in Section 3.6 as a way to improve bending response. In an ax-
isymmetric element these modes may be activated even when there is no bending.
Thus there is a spurious radial bulge of each element, whose effect is to produce a
spurious shear strain y., everywhere in the element except at & =n = 0. The bulge
tends to disappear if the element has a small cross section far from the axis of revolu-
tion. If the effect remains troublesome, the analyst can tell the software to omit the in-
compatible modes.
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elements whose cross section is very small and very distant from the axis of revolution.
The stiffness of a slender cross section in resisting strains &, £, and ¥, is much greater
than the stiffness that resists circumferential strain &, An even larger stiffness difference
is possible when slender elements have the ability to bend circumferentially, as described
in Section 6.6. Thus very slender elements may present the error-prone case of large stiff-
nesses embedded in small stiffness.

From Eq. 6.4-2 we see that strains are constant in the three-node element only if 3, =
B, =0, in which case €, = &, Constant but independent strain states are therefore not pos-
sible. Similar tendencies appear in many other element types, so that commonly used ax-
isymmetric elements fail patch tests. This does not invalidate the elements because con-
stant strain conditions in an element are approached as the mesh is refined, that is, as
elements become slender.

6.5 AN AXISYMMETRIC APPLICATION

Figure 6.3-1 shows a cross section of an axisymmetric structure, already meshed with the
elements we propose to use. The structure consists of an outer disk BEFC of constant
thickness, attached to a tapered inner disk DABE of the same material by means of a
shrink fit. Physically, the shrink fit is accomplished by heating the outer disk, slipping it
over the inner disk, and allowing both disks to return to a uniform temperature.
Dimensions are such that when the outer disk is 100°C hotter than the inner disk, the in-
ner radius of the outer disk and the outer radius of the inner disk are both precisely 400
mm. We ask:

1. What contact stresses along BE are produced by the shrink fit?

2. If the assemblage is set spinning about the 7 axis, at what angular velocity will the
shrink fit loosen?

In seeking answers we will find that question 1 has aspects that are not anticipated unless
we think ahead very carefully, and that question 2 is not well posed and requires some
analytical thinking.

Preliminary Analysis. We first ask for the contact pressure p caused by the shrink fit
(Fig. 6.5-2). For a simple approximation we assume that the inner disk has no taper and
that the outer disk can be treated by formulas applicable to a ring that is thin in the radial

(axis of E =200 GPa v=03
revolution) p = 7860 kg/m3 o = 12(10)8/°C
[ 400 mm 300 mm ~—————————>]
A
. f
20 mm 20 mm 78 mm
7 c_ |
* 42 mm
! : : : ‘ ‘ : I g ,
D E F ,t

Fig. 6.5-1. Mesh of eight-node elements on the cross section of a solid of revolution.
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p

r;= 400 mm

R =550 mm

it =300 mm

h AT =-100°C
Inner disk Fig. 6..5-2. Analytl.czﬂ mod.el for
approximate analysis of shrink fit
Outer disk pressure p.

direction. Thus, in the inner disk, 0, = 0, = —p, circumferential strain is £, = (05— v0,)/E =
—p(1 ~ v)/E, and radial displacement of the outer edge is u; = r,€g = —pr{l —v)/E. In the
outer disk (ireated as a slender ring), Og = pR/h, 6, =0, g9 = (Gg — VO NE = pRIEh, and
u, = r,gg = pRr/Eh, where the mean radius R has been used in calculating &, In addition,
the shrink fit produces radial displacement u, = or,AT at r = r; in the outer disk. where AT
= —100°C in our case. Equating u; values at r =r, in inner and outer disks, we obtain

Py = PR AT (6.5-1)
E Eh .

Solving for p and using the data of Figs. 6.5-1 and 6.5-2, we obtain

FEo AT .
p= __real from which p =95MPa (6.5-2)

I—v)+—
(-w P

We elect to analyze spinning by using a ready-made formula rather than working from
first principles. The radial stress in a solid disk of constant thickness, outer radius a, mass
density p, and spinning at angular velocity wis [2.1]

3+vy a9 o
o, = 2 pow-(a —r) (6.5-3)

Using a = 0.700 m and setting o, = =95 MPa at » = 0.400 m, we obtain @ = 298 rad/s as
the approximate angular velocity at which the shrink fit should loosen.

Of course the inner disk is thicker and therefore stiffer than we have assumed, which
means that the actual p can be expected to be larger than stated in Eq. 6.5-2. Also. the
structure is not symmetric about a z = constant plane. Axial components of deflection will
respond accordingly: the outer part should bend dowmward due to the shrink fit and up-
ward due to spinning. These flexing actions will introduce bending stresses. which near
point E will increase the magnitude of (compressive) shrink fit contact stress and increase
the magnitude of (tensile) radial stress due to spinning.

FE Model and Analysis. The cross section is represented by eight-node elements, as
shown in Fig. 6.5-1. This kind of element is known to work well, so that the mesh may
appear overly refined for an initial model, but the geometry is so simple that the mesh is
easy to generate. There are two displacement d.o.f. per node. Both are set to zero at node
D. Only the radial displacement is set to zero at other nodes along AD. All nodes not on
the z axis are unrestrained. Shrink fit loading is produced by stating that portion BEFC is
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using @ = 298 rad/s as the prescribed angular velocity. Spinning creates inertia (body
force) loading, for which appropriate forces on individual nodes are computed automati-
cally by the software.

Critique of FE Results. By inspection, deflected shapes (not shown) are found to be
reasonable. Animation shows that nodes along AD move only axially, as intended. The
cross section deflects like a beam cantilevered from AD, downward for the shrink fit and
upward for spinning. In addition, tip CF moves radially a small amount, inward for the
shrink fit and outward for spinning.

Radial stresses o, produced by the shrink fit are shown in Fig. 6.5-3a. Near BE their
average magnitude is in approximate agreement with Eq. 6.5-2, but contours show severe
interelement discontinuities. What is wrong? It is that Egs. 6.5-1 and 6.5-2 have consid-
ered only radial stresses; they have ignored other stresses that interact with radial stresses.
Temperature decrease in the outer disk causes it to contract axially as well as radially.
Additionally, circumferential stresses in inner and outer disks are, respectively, compres-
sive and tensile. The associated Poisson-effect axial strains are, respectively, tensile and
compressive and therefore add to the axial thermal strains. To maintain identical z-direc-
tion lengths along BE, as the foregoing FE analysis requires, the disks must apply z-direc-
tion friction forces to one another along BE. These forces perturb the stress field and re-
quire more elements in the neighborhood of BE if details are to be resolved. It should be
noted that our analysis assumes that a bond is created as soon as the disks make contact,
and that the bond is thereafter unbroken.

Circumferential stresses o, produced by the shrink fit, Fig. 6.5-3b, appear much more
reliable. Interelement continuity of stress contours is fair to good near BE. Continuity
across BE is neither seen nor expected. However, the relative energy error is 7 = 0.28, an
alarmingly high value. But this is for the entire FE model, which represents a misapplica-
tion of the error estimate. It should not be applied across discontinuities such as the dis-
continuity of o, across BE. The error estimate can legitimately be applied to inner and
outer disks separately, for which the respective values are 77 = 0.17 and 1 = 0.09. If we
exclude from each disk the three elements nearest BE (six elements altogether), we obtain

‘-<‘20mm—>T620mm—>‘[ I—<720mm4>’~<—20mm4>1
+9

B -136

B

139
-56
178
Og
-95
139
-56
N
E
(a) ()

Fig. 6.5-3. Stresses due to shrink fit: unaveraged stress contours from FE analysis, in
units of MPa. (a) Radial stress g,. (b) Circumferential stress o,
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the respective values 17 = 0.04 and 1 = 0.02. Clearly, the mesh is too coarse for accurate
stress calculation near BE. For the case of spinning, discussed later, an error estimate for
the entire FE model is acceptable, as there is no discontinuity of stresses in this loading
case (the value calculated is 1 = 0.004).

Contours of stresses associated with spinning at @ = 298 rad/s are shown in Fig. 6.5-4.
Interelement continuity is good and these plots give no reason o doubt the validity of the
results. Radial stress near BE is about 100 MPa on the average, about what is needed to
cancel the compressive radial stress that FE analysis gives for the shrink fit. Does this
mean that 298 rad/s is indeed the  at which the shrink fit will loosen? Since o, is not
uniform along BE, we now see that we have not been clear about what is meant by
“loosen.” Is it when contact along BE is completely broken, or when the superposed re-
sults of shrink fit and spinning give zero o, at some point along BE? The speed for com-
plete separation along BE can be obtained by writing an equation analogous to Eq. 6.5-1
and solving for @:

0%, = 06, + ar, AT (6.5-4)

where 8, is the largest radial deflection along BE, to be computed by a FE analysis of the
inner disk alone spinning at @ = 1 rad/s, and & is the radial deflection along BE for w=1
rad/s in the outer disk, modeled alone by FE or preferably by use of a simple and readily
available analytical formula for a spinning disk of constant thickness with a central hole
[1.5, 2.1]. We see @*, not @, in Eq. 6.5-4 because stresses and displacements are propor-
tional to the square of angular velocity. As in Eq. 6.5-1, AT = —-100°C.

The other question, about the value of @ for which loosening begins, requires that ac-
curate values of o, along BE be known for the shrink fit loading. At a node j along BE, let
us symbolize these radial stress values by [(0)ar);- Also, let [(0,),]; represent radial
stress at node j along BE due to spinning (of the entire disk) at angular velocity w = 1
rad/s. This value is easily computed by dividing the o, stresses depicted in Fig. 6.5-4a by
the @ used to compute them. The @ at which loosening would appear at node j is ob-
tained by solving for @ in the equation

0*[(0)o]; + [(0)ar); =0 (6.5-5)

f—ZOmmﬁé‘ZOmmj i—eZOmmv\T&20mm—>~%
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Fig. 6.5-4. Stresses due to spinning about the z axis: unaveraged stress contours from
FE analysis, in units of MPa. (a) Radial stress o,. (b) Circumferential stress Oy
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PDF Compressodukiiee MestshoRone for all nodes j along BE and the lowest of the several o
values chosen as the desired result. Note that Eq. 6.5-5 is applicable only to the node of
first loosening. As soon as contact is broken, the continuity presumed by the FE model
is lost.

6.6 NONAXISYMMETRIC LOADS

If the body is axisymmetric but loads and/or boundary conditions are not, the problem is
three-dimensional in the sense that all three displacement components are in general
nonzero. Thus displacement components u (radial), v (circumferential), and w (axial) are
each functions of r, 6, and z. Similarly, all six possible stress components are in general
nonzero and are functions of r, 6, and z (Fig. 6.6-1). It what follows we summarize how
the loading can be broken into components, an analysis made for each component sepa-
rately, and results combined to produce the solution for the original loading [2.2]. The ad-
vantage of this approach over a fully three dimensional FE analysis is that no discretiza-
tion in the 6 direction is required; elements remain annular, as in Fig. 6.4-1. Thus the
problem is easier for the analyst and is less demanding of computer resources.

Loads. Any loading on a solid or shell of revolution can be described as a sum of its
Fourier series components. Figure 6.6-2 shows a particular example, in which a radial
load of intensity g, acts outward for 0 < 8 < 7 and inward for 77 < 8 < 27. For stress analy-
sis purposes, it may be possible to represent this load with sufficient accuracy by only the
first three terms of the infinite series. In general, an arbitrary load is represented by the
Fourier series

4= qucosnf+ g, sinnd (6.6-1)
n=0 n=1

where g, and ¢,, are amplitudes that depend on »n (but not on 6). Here n represents the
harmonic number, not the number of nodes per element. In Fig. 6.6-2, g, = 0 and ¢,, =
4q/nmis evaluated for n odd. Figure 6.6-3 depicts the first three terms of this series.
Additional examples appear in Fig. 6.6-4. Figure 6.6-4a is the axisymmetric radial
loading produced by n = 0 in the cosine series. Figure 6.6-4b is the n = | term of the co-
sine series, which might be used without any other series terms to approximate wind

Fig. 6.6-1. Stresses and displacements in a
%  solid of revolution with nonaxisymmetric
loads.

Gg
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q, outward

4,
q=z 90 sinn@ n=1,3 5.

nm

4 . .
q= Zo (sin 0+ sm338 N srn559 4 )

q, inward

Fig. 6.6-2. A uniform load, alternately outward and inward, and its
representation by Fourier series.

Joading. Figure 6.6-4c is again produced by n = 0 in the cosine series, but now associated
with the tangential direction rather than the radial direction.

In general, g in Eq. 6.6-1 represents Joad in any of the directions r, 6, or z and can be
used as a line load on a nodal circle. A distributed surface loading on the body is repre-
sented by Eq. 6.6-1 on each of several nodal circles; a concentrated load is represented
by Eq. 6.6-1 on a single nodal circle. The software user can either provide series terms
themselves as input data or can ask the software to calculate series terms from a de-
scription of the loading. Boundary conditions can also be described by Fourier series.
Thus, for example, one might load a solid of revolution by prescribing axial displace-
ment w = 3, w,, cos n6 on one or more nodal circles. Usually the loading is such that
one or the other series in Eq. 6.6-1 will suffice; both will not be needed in a single
problem.

Displacements. Like loads, displacement fields can be expanded in Fourier series. For
radial, circumferential, and axial displacement field components, respectively,

u= Zum cosnf+ z u,, sinnf

0 n=1

v= va sin 719+sz,, cosn@ (6.6-2)
n=l n=0

w= 2 w,, cosnf + z w,, sinn@
n=0 n=]

w,_.,and w

sn? cn? sn

where U, Usys Ugp U are displacement field amplitudes that depend on r, Z,
and n but are independent of &. Displacements (and loads) that vary as cos nfor as sin nf
are called “symmetric” or “antisymmetric,” respectively, with reference to the plane 6 =
0. In an axisymmetric problem, n = 0 and all terms with subscript s are zero, so thatv =0
and the displacement field is described by u(r, ) = 1 and w(r, 2) = w,o. In pure torsion. 71
= 0 and all terms with subscript ¢ are zero, so that u = w = 0 and the displacement field is
described by v(r, 2) = Uy.

An element displacement field is obtained by interpolation from nodal values of dis-
placement field amplitudes. For example, taking only the first series terms on the right-

cns
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Fig. 6.6-3. The first three series terms used in Fig. 6.6-2.

hand sides of Egs. 6.6-2, and using them as amplitudes at an element node i, displace-
ment field amplitudes within an element are

U, = ZNI-L{C,”» V., = zN,-Um,- W, = Z Nw,,; (6.6-3)

where the », are shape functions, for example, Eqs. 4.4-2 for a four-node element. Equa-
tions 6.6-3 resemble Egs. 6.1-7, but to obtain displacements u, v, and w themselves we
must substitute Eqs. 6.6-3 into Egs. 6.6-2. The next step in formulating an element is to
substitute u, v, and w into the 3D strain-displacement relations in cylindrical coordinates
(which we do not bother to write out). The result, for a typical harmonic n, is a strain—dis-
placement matrix B that contains six rows and whose coefficients B, are functions of r, z,
n, and 8. Finally, integration of B'EB over the element volume yields an element stiffness
matrix Kk that contains either # or #? in several of its terms. Assembly of elements yields
the global equations for the nth harmonic

K.D,=R, (6.6-4)

in which the arrays are of order 3N for a FE model that has ¥ nodes and translational
d.o.f. only. As for boundary conditions, a prescribed displacement of zero on a nodal cir-
cle dictates that the nodal displacement amplitudes be zero in every harmonic. Also,

g = constant q=Ccos8 q = constant

(a) (b) (c)
Fig. 6.6-4. Examples of loads described by individual terms of Fourier series.
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when n = 0 the nodal d.o.f. v, ., and w,,, have no stiffness associated with them and
must therefore be suppressed.

The important feature of representing loads and displacements by their Fourier series
components is this: a single harmonic of load produces only the corresponding harmonic
of displacement. For example, the load harmonic ¢ = g5 c0s 30 in Eq. 6.6-1 produces the
displacement amplitudes ., U, and wes but no other displacement amplitudes in Egs.
6.6-2. Thus the response to nonaxisymmetric load “decouples” into as many separate
analyses as there are terms in the load series. Each separate analysis uses the same size
K, and three d.o.f. per node, namely. the nodal displacement amplitudes q,;, Ucpis and
w,,; in Egs. 6.6-3.

Remarks. In summary, an axisymmetric solid under nonaxisymmetric loads can be ana-
lyzed by breaking the load into terms of an infinite series, calculating the response to
each term, and superposing results during postprocessing. Typically, only the first few
terms of a series are sufficient for the required accuracy. Computational demands are
greatly reduced as compared with the requirements of a 3D discretization.

The Fourier series approach can also be applied to other problems, most notably to
plate bending, where it is known as the finite strip method. In effect, division into finite
clements in one direction is replaced by separate analyses corresponding to terms of a
Fourier series. The method seems best suited to analysis of box beams and folded plates.

ANALYTICAL PROBLEMS

6.1  State Egs. 6.1-5 and 6.1-6 in the matrix product format of Eq. 3.1-6.

6.2 Imagine that an isotropic cylinder of solid circular cross section is loaded by
torque about its axis and is modeled by linear strain tetrahedra. Is the correct strain
field represented exactly? Explain.

6.3  Write the eight shape functions N separately for the element of Fig. 6.2-1c. Thus
assign the proper algebraic signs to each N; in Eq. 6.2-4.

6.4 A four-node axisymmetric element has the rectangular cross section shown. No in-
compatible displacement modes are used. Write the B matrix. Express the B, in
terms of a, b, R, r, and z.

< R Problem 6.4

6.5 Dashed lines in the sketch show independent displacement modes of a four-node
rectangular element having two displacement d.o.f. per node. Which of these
modes are associated with strain energy in the element and which are not? Answer
for each of the following situations. (Sketch reprinted from [2.2] by permission of
John Wiley & Sons. Inc.)

(a) The element is plane and k is integrated by one Gauss point.
(b) The element is plane and k is integrated by four Gauss points.
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6.7

6.8

6.9

(d) The element is axisymmetric and k is integrated by four Gauss points.
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Problem 6.5

At r=0in an axisymmetric problem, strains £, and &, must be equal. Why?

Devise an argument or an example that explains the large difference in stiffness
noted for slender elements near the end of Section 6.4.

(a) In Fig. 6.6-2, rotate the r axis 90° counterclockwise, so that the 8 = 0 plane is
vertical on the page. Do not reposition the load. Write the Fourier series for
load that applies to this arrangement.

(b) Hence write a load series that describes the following radial load: ¢ = g, out-
ward over 0 < 8 < 72, g = q, inward over T < 8 < 37/2, and g = 0 over the re-
maining two quadrants, where g, is a constant.

It can be shown that a sinusoidal loading g,, = g,, sin(n7x/L) on the uniform simply
supported beam shown produces a lateral deflection v that is also sinusoidal and is
given by

gL . onmx

"“Enr L

A Fourier series for a load g is ¢ = g, and the associated beam deflection is v =

2v,. For each of the following loadings, evaluate the lateral deflection and bend-

ing moment at x = L/2. Use one, then two, then three series terms. Compute the

percentage error of each result.

(a) Uniformly distributed load ¢,, for which q,, =4g /nwrandn=1,3,5, .. ..

(b) Concentrated center force P, for which g, = (2P/L)sin(nm/2) and n = 1, 2,
3,

»u (n = 3 is shown)

< L ! Problem 6.9
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Write the special form of Eq. 6.6-2 that describes each of the following rigid-body
motions:

(a) Translation in the z direction.

(b) Translation in a radial direction and parallel to the plane 6= 0.

(¢) Translation in a radial direction and parallel to the plane 8= 7/2.

(d) Small rotation about an r axis in the plane z = 0. (The r axis isat 6=0.)

(a) A flat plate of uniform thickness ¢ contains a small circular hole of radius R. The
plate is loaded by uniaxial tensile stress o,, as shown. Imagine that stresses in
the neighborhood of the hole are to be analyzed using an axisymmetric FE
model of outer radius ¢, with nonaxisymmetric loads applied at » = ¢. For the
full thickness 7, what should these loads be, in terms of 7, 0, and &7 Suggestion:
Consider stress transformation equations or Mohr’s circle.

(b) Repeat part (a), but replace o, by the linearly varying normal stress associated
with pure bending in which moment vectors are directed normal to the r8
plane.
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Problem 6.11

COMPUTATIONAL PROBLEMS

In the following problems compute significant values of stress and/or displacement, as
appropriate. Exploit symmetry if possible. Choose convenient numbers and consistent
units for material properties, dimensions, and loads. When mesh refinement is used. esti-
mate the maximum percentage error of FE results in the finest mesh. Unless directed oth-
erwise, assume that the material is isotropic.

A FE analysis should be preceded by an alternative analysis, probably based on statics
and mechanics of materials, and oversimplified if necessary. If these results and FE re-
sults have substantial disagreement, we are warned of trouble somewhere.

6.12

The cantilevered rectangular block of material shown is loaded by a uniformly dis-
tributed z-direction load g along line AA. As support conditions in the plane y = 0.
apply ¢ in the negative z direction along the line z=//2, setu = v = = Qatx =
v=z=0,w=0atx=bon the x axis, and v = 0 at all nodes. Include the case
b >> I as one of the configurations analyzed, and be sure to examine results near
x=0orx=0>.
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Problem 6.12

6.13 Consider the application of a torque to the rectangular block sketched for Problem
© 6.12. Let the torque act about the y-parallel centroidal axis. As support conditions
in the plane y = 0, set v = 0 at the midpoint of each edge, and set u = w = 0 at all
nodes. Devise a simple (if approximate) way to apply the torque to the end y = L.
6.14 Consider a small circular hole in a plate, such that radius R may be considerably
less than the plate thickness 7 (see sketch). Well away from the hole, the plate is in
a state of pure shear. Investigate the stress concentration factor. Take note of the
effect of Poisson’s ratio.

1ol N
R

fe— 1 ] Problem 6.14

6.15 The sketch shows a prismatic beam whose cross section is a right triangle. The
beam is cantilevered from end z = 0. Apply x-direction force to the plane z = L.
Place the force at y =0, then at y = b. In addition to stress analysis, determine the y
location of the force for which cross sections have no rotation about the z axis.

¥
& .
\ i
- Problem 6.15

6.16 Replace the trapezoidal cross section of Fig. 6.3-1 by a solid circular cross section.

6.17 The sketch shows a massive coil spring, formed by bending a bar of rectangular
cross section into a helix. Loading is by axial forces F at the ends (ends are not
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shown). Assume that the spring is closely coiled, which means that angle « is
small. Then one may isolate a wedge of one coil spanning a small angle A8 and
assume that # = O on the cross sections thus exposed [6.1]. Also, w=0on 6=10
and w = ¢ AB on 0 = A6, where ¢ is a constant. Circumferential displacement is
v = v(r, z). Impose u and w displacement boundary conditions, solve for stresses,
and compute F from computed reactions at nodes.

ru

A2 o e,u<7¢

AA _—I%g Mf

e —>———i————>:,w A6 +

F f i £ Cross Axial
v v section view
Problem 6.17

6.18 (a) The sketch shows an axisymmetric FE model of a circular disk. The outer edge
is prevented from rotating in the rz plane and is loaded by total axial force 2P,
uniformly distributed around the circumference. The mesh is poor in that the
element size change is abrupt. Compare results given by the mesh shown with
results given by a more gradual size change, as in Fig. 5.3-4b.

(b) Are stresses o, and G, equal at r = 07 They should be.

| ,
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A@27 = 108
Problem 6.18

\

6.19 The sketch shows the cross section of a truncated cone built of two different mate-
rials. The cone becomes a cylinder if R, = R,, and a disk if Ry — R, =L, + L, with
a central hole of radius R,. Loading is by temperature change.
(a) Let the temperature change be uniform.
(b) Let the temperature change vary linearly with s.
(c) Let the temperature change vary linearly in the direction of thickness 1.

Probiem 6.19
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PDF Com@ressmrlontanMersiothere be a single material. Also, omit the thermal load. Instead,
apply the mechanical load shown in the sketch (F|R, = F,R,, where each F; is a
uniform circumferential line load with dimensions [force/length]).

£

L
Ry \/ Fo T
Ry

Y Axsof revolutior *-A;L, Problem 6.20

6.21 The sketch shows the cross section of a long circular cylinder capped by a hemi-
sphere. The juncture at A contains quarter-circle fillets of radius r. Loading is by
internal pressure. To approximate peak stresses at the juncture, use stress concen-
tration factors rather than great mesh refinement.

A Fillet radius r

Problem 6.21

6.22 (a) A thick-walled cylinder is loaded by internal pressure p. The sketch shows a
cross section, viewed axially. Calculate the largest stresses. Also, examine the
axial stress and strain, and from them draw a conclusion about the necessary
length of the FE model in the axial direction.

(b) Consider a compound cylinder, built by shrink-fitting a jacket of inner radius ¢
on an inner cylinder of outer radius ¢ + Ac, where Ac <<C c. Internal pressure
p is subsequently applied. For given values of p, a, b, and ¢, what Ac is needed
to produce the same maximum von Mises stress in the inner cylinder and in
the jacket? [2.1] (Model Ac by a uniform temperature change in the inner

cylinder or in the jacket.)

(a) (b) Problem 6.22
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6.26

6.27

3D Solids and Solids of Revolution
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Let the sketch for Problem 6.22a represent the cross section of a thick-walled
sphere under internal pressure. Investigate the state of stress.

A spherical vessel has a radially directed cylindrical outlet, as shown in cross sec-

tion. The inside and/or outside may be reinforced by the enlargements shown: on

the inside by AB perpendicular to the axis of the cylindrical part; on the outside by

CD tangent to the outer surface of the spherical part. Let 7, = 2¢,r./r,. Apply inter-

nal pressure p. Compute the largest tensile stress as a percentage of p. Consider the

following configurations.

(a) r, =400 mm, ¢, = 100 mm, r, = 200 mm, /2, = 80 mm, /1, = 0.

(b) r,=400mm, ¢, = 100 mm, r, = 200 mm, s, = 0, 4, = 80 mm.

(c) ry=400mm, ¢, = 100 mm, r, = 200 mm, %, = 80 mm, h, = 80 mm.

(d) r, =400 mm, ¢, =40 mm, . = 100 mm, %, = 40 mm, &, = 0.

(e) r,=400 mm, f, =40 mm, r. = 100 mm, i, = 0, 4, = 40 mm.

() ry=400mm, ¢, = 40 mm, r. = 100 mm, %, = 40 mm, &, = 40 mm.

(a) A flywheel of the cross section shown spins with constant angular velocity
about the z axis. Investigate the state of stress.

(b) Similarly, investigate stresses due to spinning the cone of Problem 6.19 about
its axis of revolution.

Problem 6.24 Problem 6.25

Consider the problem depicted in Fig. 5.7-3a and the approximate axisymmetric

idealization suggested in Fig. 5.7-3c. Devise reasonable dimensions, number of

bolts, and bolt pretension forces.

(a) Solve for stresses due to axial load on the pipe.

(b) If the software you use can treat nonaxisymmetric loads, solve for stresses due
to bending load on the pipe.

Numerically solve for the maximum stress in Problem 6.11, using the Fourier se-
ries approach.
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CHAPTER 7

Plates and Shells

Elementary concepts of plate behavior are discussed, followed by remarks about plate
elements, FE modeling for plates, and an example application. This is followed by a simi-
larly organized discussion of shells, with example applications for axisymmetric geometry
and for more general geometry.

7.1 PLATE DISPLACEMENTS, STRAINS, AND
STRESSES

A plate can be regarded as the two-dimensional analogue of a beam. Beams and plates
both carry transverse loads by bending action, but they have significant differences. A
beam can be straight or curved; a plate is flat (a curved geometry would make it a shell).
A beam typically has a single bending moment; a plate has two bending moments and a
twisting moment. Deflection of a beam need not stretch its axis; with few exceptions, de-
flection of a plate will strain its midsurface, and this may have important consequences.
A more detailed summary of plate behavior is presented in what follows. We exclude
anisotropic, composite, and layered plates from our discussion, although FE formulations
for them are available.

Thin-Plate Theory. Consider a plate of thickness ¢ that straddles the xy plane. Plate sur-
faces are at = £#/2 and the plate “midsurface” is at z = 0. A differential slice cut from the
plate by planes perpendicular to the x axis is shown in Fig. 7.1-1. Loading causes the
plate to have lateral displacement w = w(x, y) in the z direction. The differential slice
moves to the position shown in Fig. 7.1-1b, with right angles preserved in cross sections
because transverse shear deformation is neglected. Thus ¥, = 0 and %, = 0. In general
Y # 0; right angles in the plane of the plate are nor preserved. An arbitrary point P has
displacement u = —z(dw/dx) in the x direction. An analogous argument with a differential
slice cut from the plate by parallel planes normal to the y axis yields v = —z(dw/dy) as the
y-direction displacement of point P. Hence Eqgs. 3.1-5 yield the strains

£ __ZQ_ZX £, =—z Iw =-2z oW
X ax?‘ v >~ &yz ’y,r)' axay

(7.1-1)

The first of these equations is used in beam theory, where it is usually written in the form
£, = —ylp for a beam lying along the x axis and bent to radius of curvature p in the xy
plane. The second and third of Egs. 7.1-1 are not used in beam theory.

Normal stress o, is considered negligible in a thin plate. Accordingly, we may substi-

171
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Fig. 7.1-1. Differential slice of a plate of thickness . (a) Before loading. (b) Dis-
placements after loading, according to Kirchhoff theory. Transverse shear deformation is
neglected, so right angles in the cross section are preserved. Displacements in a vz-parallel
plane are similar. (Reprinted from [2.2] by permission of John Wiley & Sons, Inc.)

Midsurface

Eﬂ
dx

Ot

tute Egs. 7.1-1 into the plane stress equations, which are Egs. 3.1-2 and 3.1-3 for an
isotropic material. The resulting stresses are

. 1 2,792 2.,
(e} :—z—é—; Vv Qﬁu/(%c 1 =25 dhw (7.1-2)
o, 1—viiv 1] d*w/ady? B ox v

These stresses are depicted in Fig. 7.1-2. Like flexural stress in a beam, they vary linearly
with distance from the midsurface. Transverse shear stresses 7,. and 7., are also present.
even though transverse shear deformation is neglected. Transverse shear stresses vary
quadratically through the thickness. The stresses of Eq. 7.1-2 give rise to bending mo-
ments M, and M, and twisting moment M, as shown in Fig. 7.1-2b. Moments are func-
tions of x and y and are computed per unit length in the plane of the plate. For example,
an increment of M, is dM, = z(0, dA), where dA is dA = (1) dz. Accordingly,

/2 12 12
M, = o,zdz M, = 0,zdz M, = T 2dl (7.1-3)

—1/2 ! -1/2 ) -1/2
Stresses in Eq. 7.1-3 vary linearly with z. Thus, for example, if o, is the magnitude of o,
at z = /2, then o, = 20,z/t, and Eq. 7.1-3 yields &, = 6M /t*. This formula can be
regarded as the flexure formula G, = M. c/I, applied to a unit width of the plate and with
¢ = /2. Similarly, maximum magnitudes of o, and 1, are 6M,/t> and 6M,,/1* respec-
tively.

We can now see how moments and stresses in a plate differ from their counterparts in
a beam. One difference is the presence of M,, in plate theory. M,, is the only moment
present if the plate has deflection w = cxy, where ¢ is a constant. This is called a state of
pure twist. It can be realized by applying upward forces to two diagonally opposite cor-
ners of a rectangular plate and downward forces to the two remaining corners.

Another difference between beam and plate stresses appears if we apply a moment
such as M, to a beam and also to a plate. Let the beam lie along the x axis and be bent so
that it deforms in the xz plane (e.g., Fig. 6.2-2). The beam has a narrow cross section, so
that stress o, is zero on its sides and almost zero in between. Due to the Poisson effect,
top and bottom edges of a cross section become curved, that is, they become arcs in the vz
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Fig. 7.1-2. Differential element of a plate. (a) Stresses on cross sections and distributed lateral load
q = g(x, ¥). (b) Differential forces and moments. Arrows that represent forces normal to the plate
midsurface are viewed end-on. (Reprinted from [2.2] by permission of John Wiley & Sons, Inc.)

plane. In contrast, a plate has a wide cross section, and top and bottom edges of a cross
section remain straight y-parallel lines when M is applied. This difference between beam
and plate behavior is easily seen by bending a rubber eraser, which behaves like a beam,
and then a sheet of paper, which behaves like a plate. We conclude that 9*w/dy* = 0 when
a plate is bent to a cylindrical surface 0*w/dx” # 0 by M_ alone. Hence Eqs. 7.1-2 show
that flexural stress ¢, is accompanied by stress o, = vo,. Stress o, constrains the plate
against the deformation d*w/dy” the beam would have, thereby stiffening the plate. The
amount of stiffening is proportional to 1/(1 — v*), so that a unit width of plate has “flex-
ural rigidity” D = E£/[12(1 — v®)]. A beam of unit width has flexural stiffness EI = E£3/12.
Thus D = EI/(1 = v*) for a unit width.

The theory outlined above is classical thin-plate theory. It is also called “Kirchhoff”
plate theory after its principal developer. It neglects transverse shear deformation, which
can be significant if the plate is thick, that is, if 7 is more than roughly one-tenth the span
of the plate. An alternative to thin-plate theory, called “Mindlin” plate theory, not only
accounts for transverse shear deformation but produces finite elements for plates more
easily.

Mindlin Plate Theory. To account for transverse shear deformation, the assumption that
right angles in a cross section are preserved must be abandoned. This means that planes
initially normal to the midsurface may experience rotations different from rotations of the
midsurface itself. Thus the differential element in Fig. 7.1-1a has the deformations de-
picted in Fig. 7.1-3, where 6, and 6, are rotation components of a line initially normal to
the midsurface. Combining these displacements with Eqgs. 3.1-5, we obtain

. _(89). 30, j
26, TNy o
u= 39). E, = Lg .
Yo = > -6, (7.1-4)
v=-z8, -Zai Y
v %}
Ve = @— 0\
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Fig. 7.1-3. (a) Displacements and positive directions for rotations 8, and 6,, viewed normal to

the xy plane. (b) Mindlin theory displacements in an xz-parallel cross section. (c) Mindlin theory
displacements in a yz-parallel cross section.

instead of Eqs. 7.1-1. Equations 7.1-4 are the main equations of Mindlin plate theory. If
6, = dw/dy and 6, = —dw/dx, transverse shear deformation vanishes and Eqgs. 7.1-4 reduce
to Egs. 7.1-1.

Loads and Supports. Loads in the z direction, either distributed or concentrated, may be
applied to lateral surfaces z = +#/2 or to edges of a plate. Such loads are called “lateral”
loads. Distributed load has dimensions [force/length?] on a lateral surface or [force/length]
on an edge. A plate edge may also be loaded by a bending moment whose vector is tan-
gent to the edge. The same kinds of edge loads may be applied to the plate by supports.
Support conditions for FE plate models are discussed in Section 7.2.

At the point where a concentrated lateral ( z direction) force is applied, Kirchhoff the-
ory predicts infinite bending moments. Mindlin theory predicts infinite bending moments
and infinite displacement. In reality no force can be truly concentrated, and in plate the-
ory the infinities disappear if the “concentrated” load is applied over a small area instead.
In FE work no infinite quantities will be computed, nor will they even be approached by
any practical amount of mesh refinement.

Large Displacements and Membrane Forces. Internal force resultants in the plane of
the plate have been omitted from the foregoing discussion, as is customary in standard
plate theories. These “membrane forces” can develop as a consequence of the deflection
and can significantly influence the response of the plate to load. By using the following
beam example we can explain the effect of membrane forces in a simple way.

The beam in Fig. 7.1-4 is assumed to have hinge supports that remain exactly a dis-
tance L apart, regardless of how much load is applied. When the beam is loaded it devel-
ops the usual flexural stresses, and because the supports are immovable it also develops
membrane force N that supports part of the applied load by “string action.” This action is
seen in Fig. 7.1-4b: forces N are not collinear and therefore develop a z-direction compo-
nent. Let us assume that the deflected shape is a parabola with center deflection w.., where
w, << L. Then it can be shown that the uniformly distributed load supported by string
action is

4

4 ;N
LG8 Eb (‘_‘_j (7.1-5)
3L\t
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Fig. 7.1-4. (a) Beam of length L with immovable hinge supports. (b) Differential element, showing
“string action” axial force &. (¢) Cross section.

From a table. the center deflection of a simply supported beam under uniformly distrib-
uted load g, is w, = 5¢,L*/384EI, from which we can solve for g, in terms of w.. We now
state that the total load g supported by string and beam actions occurring simultaneously
is the sum of ¢, and g,.

bt ? .
g=q,+q, ~ EL: [21.3 (WT] +6.40(M;‘ H (7.1-6)

This argument is not exact because the actual deflected shape is a single function of x, not
the different shapes assumed above for separate string and beam actions. Nevertheless,
Eq. 7.1-6 is a useful approximation. It shows that string and beam actions each support
about half the total load when w_/r = 0.5, which is not a large deflection if 7 is small in
comparison with L.

The foregoing argument is of little value for beams because immovable supports are
not found in practice. The value of the argument is its implication for problems of thin
plates. The counterpart of string action in a beam is strain of the midsurface in a plate.
Deflection w = w(x, y) of a plate produces no strain of the midsurface only if w describes
a “developable” surface, such as a cylinder or a cone. In general, loading produces a de-
flected shape w = w(x, y) that is not developable. Accordingly, in general there are strains
at the midsurface, and membrane forces appear that carry part of the load. The linear
plate theories outlined earlier in this section are not valid if w/t is “large,” that is if w/t ex-
ceeds a few tenths. The practical limit of w/t is case dependent. Large w/t makes the prob-
lem nonlinear, necessitating an iterative solution, and yielding deflections and stresses
significantly different than those predicted by linear theory.

Membrane forces may arise because of deflection, as described earlier. or may be pre-
sent at the outset because of load components tangent to the midsurface. Either way,
membrane forces have a “stress stiffening” effect: if tensile they effectively increase the
flexural stiffness; if compressive they decrease it. Compressive membrane forces may be-
come large enough to produce buckling.

7.2 FINITE ELEMENTS FOR PLATES

A plate is a thin solid and might be modeled by 3D solid elements (Fig. 7.2-1a). But a
solid element is wasteful of d.o.f., as it computes transverse normal stress and transverse
shear stresses, all of which are considered negligible in a thin plate. Also, thin 3D ele-
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(a) (b) (c)

Fig. 7.2-1. (a) A 3D solid element. (b) The comparable plate element. (c) Plate d.o.f. at a typi-
cal node 7, viewed normal to the xy plane.

ments invite troubles produced by ill-conditioning because stiffness associated with
thickness-direction strain &, is very much larger than other stiffnesses. The plate element
in Fig. 7.2-1b has half as many d.o.f. as the comparable solid element and omits €. from
its formulation. In sketches, thickness 7 may appear to be zero, as in Fig. 7.2-1b, but the
physically correct value is of course used in formulating element stiffness matrices.

A plane element must be able to display states of constant 0, 0,, and 7, if it is to pass
patch tests. A plate element must be able to display these states in each z = constant layer,
which means that a valid plate element must pass patch tests for states of constant M. M.
and M,,. Figure 7.2-2 depicts a patch test for constant M,, which requires constant
3%w/3x2 in Kirchhoff theory and constant d6,/9x in Mindlin theory if the test is to be
passed. If v # 0, rotations about the x axis must be prevented at nodes 1. 3. 4. 6. and 7 in
Fig. 7.2-2.

Although Cartesian coordinates are used 1n our discussion, this is not a limitation of
plate theory or of FE theory. Classical plate theory uses polar coordinates for circular
plates. In FE analysis, a circular plate can be modeled by shell of revolution elements.
simply by making shell elements flat rather than (say) cylindrical or conical. Each such
element is thus a flat annular ring, joined to adjacent annular elements at its inner and
outer radii.

Kirchhoff Plate Elements. The stiffness matrix of a Kirchhoff plate element can be cal-
culated from an expression analogous to Eq. 3.1-10, in which E is replaced by a matrix of
flexural rigidities and B is contrived to produce curvatures when it operates on nodal
d.o.f. that describe a lateral displacement field w = w(x, y). Thus the behavior of a
Kirchhoff element depends entirely on the assumed w field, which is a polynomial in x
and y whose d.o.f. are nodal values of w, dw/dx, and dw/dy.

¥
M7
3 71
2 T
5 L}‘
1 4 6 l
RY
Mg Fig. 7.2-2. A patch test for constant curvature (or for
constant M,). Nodal moment loads are M = A~ = M L.J2.
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PDF Cme}Ir&_é{)?fFﬁeégw&ilmthﬁ element (Fig. 7.2-1b) can be formulated rather eas-

illy. It 18 an incompatible element; that is, if n is a direction normal to an element edge,
dw/dn is not continuous between elements for some loading conditions. Accordingly, the
element cannot guarantee a lower bound on computed displacements, so results may con-
verge “from above” rather than “from below.” A compatible rectangular element with
corner nodes only requires that twist azw/axt)y also be used as a nodal d.o.f., which is un-
desirable.

A restriction to rectangular shapes is unacceptable, so many triangular elements have
been devised. It is surprisingly difficult to obtain a triangular Kirchhoff plate element that
can represent states of constant curvature and twist, has no preferred directions, and gives
good results when applied to a variety of test cases [3.2]. Experience in formulating plate
clements has shown that Egs. 7.1-4 are more productive than Eqs. 7.1-1. Accordingly,
Mindlin plate elements are in common use, as are “discrete Kirchhoff” elements, which
also use Egs. 7.1-4 as the starting point.

Mindlin Plate Elements. A Mindlin element is based on three fields: w = w(x, y), 6, =
0.(x, ¥), and 6, = 6,(x, y). Each is interpolated from nodal values. If all interpolations use
the same polynomial, then for an element of # nodes,

0 0
N, 0|46, =Nd (7.2-1)
0 N

N,
O,p=> 0"
0

From Egs. 7.1-4 and 7.2-1 we can form a strain—displacement matrix B. In the stiffness
matrix formula, Eq. 3.1-10, E is a 5 by 5 matrix that includes the 3 by 3 E of plane stress
and also shear moduli associated with the two transverse shear strains. Integration of
B'EB with respect to z is done explicitly. Integration in the plane of the element is done
numerically if the element is isoparametric.

The N; are given by Egs. 4.4-2 for a four-node quadrilateral element. An eight-node
quadrilateral is also popular, based on the same N, used for a plane eight-node element. In
any z = constant layer, strains vary in the same way as in the corresponding plane ele-
ment. Accordingly, the behavior of a Mindlin plate element can be deduced from the be-
havior of the corresponding plane element provided that all terms of the integrand are in-
tegrated by the same quadrature rule. But this is usually not done, for reasons now
discussed.

Consider the bending mode shown in Fig. 7.2-3. Element strains €, are independent of
x. Therefore any order of quadrature will report the same strain energy of pure bending.
However, this element is like the element of Fig. 3.4-2c¢ in that it displays spurious shear
strain. If a/t is large, transverse shear strain 7, becomes large and the element is much too
stiff in bending, unless ¥, is evaluated at x = 0, where y., vanishes. But one-point quadra-
ture for all strains would introduce four instability modes. This observation suggests “se-
lective” integration, in which one-point quadrature is applied to transverse shear terms
and four-point quadrature is applied to bending terms. Then two instability modes re-
main. They may be controlled by “stabilization” matrices. Other Mindlin elements, such
as the eight-node element, have analogous shortcomings and may also be treated by se-
lective integration and other fix-ups. Calculated stresses are usually most accurate at
Gauss points.

With so many options available in element formulation, element behavior cannot be
deduced solely from the element displacement field. One expects that all elements in
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Fig. 7.2-3. A bending deformation in a four-node Mindlin plate element. (a) Four-point inte-
gration rule. (b) One-point integration rule.

commercial software will be free of instabilities and will be able to represent constant-
moment states, as this is merely the minimum capability that a reliable element must
have. The eight-node element can also represent linearly varying bending momenits if its
shape is rectangular. The analyst should learn how a plate element behaves by using it in
test cases. In particular, one may wish to know if accuracy is lost when the element be-
comes very thin, and how accuracy declines as aspect ratio increases and as quadrilateral
shapes become distorted from a rectangle.

Discrete Kirchhoff Elements. The essential feature of a discrete Kirchhoff element is
that transverse shear strain is set to zero at a finite number of points in the element, rather
than at every point as in the classical theory of thin plates. The result is a thin-plate ele-
ment, usually triangular in shape, without side nodes, and incompatible in displacements,
which usually converges rapidly with mesh refinement {7.1]. A reason for the coarse-
mesh accuracy of discrete Kirchhoff elements is that lateral displacement w along each
element edge is cubic in the edge-tangent coordinate. This is a more competent interpola-
tion than prevails in Mindlin elements having corner nodes only, where w along an edge
is only linear in the edge-tangent coordinate.

For a triangular element, one starts the formulation process by interpolating rotation
components of a midsurface-normal line from nodal values at vertices and midsides:

9, = 21\@ 6, and 6, = ZN, 6, (7.2-2)

where i =1, 2, ..., 6. For a triangular element, the N, can be shape functions of the six-
node plane triangle discussed in Section 3.3. Thus far 12 nodal rotation d.o.f. have been
introduced. Lateral displacement w along each edge can be interpolated in terms of nodal
values w,, (dw/0x),, and (dw/dy); at vertices i, where i = 1, 2, 3. A total of 21 nodal d.o.f.
have now been introduced. We seek a nine-d.o.f. element having vertex nodes only and
three d.o.f. per node. Accordingly, 12 d.o.f. must be eliminated. For a particular triangu-
lar element known as the DKT element [7.1], this is done by using Eqgs. 7.1-4 to set ¥%.
and ¥, to zero at the vertices, setting the edge-tangent transverse shear strain to zero at
midsides, and constraining edge-normal rotations to vary linearly along each edge. The
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Fig. 7.2-4. A triangular discrete Kirchhoff plate element and its nodal
d.o.f.

ness matrix then follows in standard fashion.

In some software, an element that the user perceives as quadrilateral is in fact built o
triangles. The software may use two triangles that share the diagonal of the quadrilater; ],
then overlay this construction with two more triangles that share the other diagonal, an
finally divide the resulting stiffness matrix by 2. This “overlapping triangle” arrangemeny
avoids a small directional bias associated with using only two triangles and having 1,
choose one diagonal or the other to divide the quadrilateral.

After so many manipulations it is not apparent how a discrete Kirchhoff plate elemeny
will behave. As with Mindlin plate elements, the analyst should use numerical experi
ments to learn about element behavior.

surface pressure are usually omitted, for reasons discussed in Section 2.5. A distribute
moment along an edge produces nodal moments, as shown in Fig. 7.2-2. These momenty
must be retained. Most software is capable of computing appropriate nodal loads from in.
put data that define a distributed loading.

Support conditions are classed as clamped, simple, or free (no support), in direct anal-
0gy to the possible support conditions of a beam. Nodal d.o.f. that must be prescribed for
these support conditions are as follows, with reference to the notation in Fig. 7.2-3:

Edge condition Prescribed d.o.f. Natural condition
Clamped w=8,=6=0 None

(7.2-3)
Simply supported w=0 M, =0
Free None Q=M,=M, =0

“Natural” boundary conditions are stress boundary conditions. The user does not pre-
scribe them to FE software. They will not be computed exactly by FE but will be ap-
proached as a mesh is repeatedly refined,
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(2) (b)
Fig. 7.2-5. (a) The d.o.f. along an arbitrarily oriented edge of a plate.
Rotation vectors 6, and 6, describe rotational motion, in nz and sz planes,
respectively, of a midsurface-normal line. (b) Transverse shear force O,
bending moment M,, and twisting moment M,,,, each per unit length.

In classical plate theory, the simply supported condition requires 8, = O as well as
w = 0. If used with Mindlin plate elements, this “hard” support condition has been found
to be very detrimental to accuracy if a simply supported boundary includes a corner
where edges meet at an angle other than 90° [7.2]. The “soft” simple support condition of
Egs. 7.2-3, in which 8, is unrestrained, is much better for such cases and does no harm
when edges intersect at right angles.

Test Cases. Some commonly used test cases for thin-plate bending are depicted in Fig.
7.2-6. The square plate in Fig. 7.2-6a has side length L and all edges are either simply
supported or clamped. The plate is laterally loaded by either a uniformly distributed load
g or a concentrated center force P. Center deflections can be stated as either agL*/D
or aPLYD, where ¢ is a case-dependent constant [7.3]. With D = EF/[12(1 - )] and
v = 0.3, ais 0.00406 (simply supported, uniform g), 0.0116 (simply supported, concen-
trated P), 0.00126 (clamped, uniform g), or 0.00560 (clamped, concentrated P). Bending
moments for these cases are reported in [7.3]. For FE analysis, only one quadrant (or
even only one octant) need be modeled. Typically, a uniform mesh is used and one exam-
ines the convergence of solutions as the mesh is refined.

In a rhombic plate with simply supported edges, Fig. 7.2-6b, theory predicts that bend-
ing moments M, and M, are infinite but of opposite sign at an obtuse corner such as the
one at x = y = 0 [7.2]. Considerable mesh refinement may be needed to approximate this

y ¥

e 1y

v=0.3

(a) (b) {c) (d)

Fig. 7.2-6. Common test cases for plates. (a) Square, clamped or simply supported edges, uni-
formly distributed load or concentrated center lateral load. (b) Rhombic, simply supported edges.
uniformly distributed lateral load. (c,d) Twisting of a flat strip of unit width, with nominally equiv-
alent loadings. (c and d reprinted from {2.2] by permission of John Wiley & Sons. Inc.)
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mended), even center deflections of the rhombic plate may display considerable error de-
spite a fine mesh.

The twisting test case, Fig. 7.2-6¢,d, has alternative loads that produce the same
torque, as shown. With £ = 107, v = 0.25, and t = 0.05, “benchmark” results give ws =
0.0029L as the displacement of one corner [7.1]. Usually the structure is modeled by one
rectangular or two triangular elements, to test the effect of element aspect ratio. Some of
the many proposed plate elements do badly in this test.

7.3 A PLATE APPLICATION

A large flat plate of constant thickness is Joaded by a concentrated force. The plate is sup-
ported entirely by a “Winkler” elastic foundation that lies between the plate and a flat
base that is assumed to be perfectly rigid (Fig. 7.3-1a). A Winkler foundation exerts a
pressure ko MPa on the plate for each millimeter of z-direction deflection. Data are as fol-

lows:
E =200 GPa L = 1650 mm
v=0.3 t =30 mm
ko= 0.2 MPa/mm P=10N

The deflection and state of stress in the plate are required. The unit load is convenient be-
cause results need only be multiplied by the actual load if it is not unity. The choice
I = 1650 mm is somewhat arbitrary and is explained in what follows.

Preliminary Analysis. It is stated that the plate is “large,” implying that its edges are far
distant from the load at x = v = 0. Analysis can be confined to the neighborhood of the
load. Thus there is no need for an extensive FE model whose outer portion would be es-
sentially undeflected and unstressed. But how large should the model be? Textbooks and
handbooks provide useful formulas for beams on an elastic foundation but not for plates
on an elastic foundation. Accordingly, to plan the initial FE analysis, we assume that a
cross section of the plate has the same extent of downward deflection as an infinitely long
beam on elastic foundation loaded by a concentrated force. A beam whose cross section

< < L |
. Plate (E, ) y
" I
T T T T o I —x
! L
- 4 I
,;m.;‘..,;:«//f »/ar\ heiiia
Elastic layer Rigid base \
dulus k S
(modulus kg) pia
(a) (b)

Fig. 7.3-1. (a) Cross section of a plate on an elastic foundation. (b) FE mesh on a quad-
rant, with z-direction force P/4 at x = y=0.
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is of width b and depth 30 mum has moment of inertia / = 2250b mm* and a beam founda-
tion modulus k = bk,. Pursuing this analysis in its usual terminology [2.1], we obtain =
0.00325/mm and x = 37/4 = 726 mm as the distance from the load at which the deflec-
tion of the beam changes from downward to upward. For an initial FE analysis of the
plate we guess that the mesh need span no more than roughly twice this distance. We
choose L = 1650 mm as a convenient side length for the FE model.

To obtain an estimate of maximum deflection for comparison with subsequent FE re-
sults, we will approximate the deflected shape of the plate, then write an equation requir-
ing that load P be equal to the force provided by foundation pressure on the plate. A sim-
ple assumption for displaced shape, in terms of radial distance r from load P, appears in
Fig. 7.3-2a. It is here assumed that w =0 for r > R. The foundation pressure is p = —kgw.
The negative sign is needed so that negative (downward) w will produce positive (up-
ward) p. For equilibrium of vertical forces,

2nP

ey e (7.3-1)

2n R
P:J J-prdrde hence w,
0 0

With R = 726 mm, as calculated above, we obtain w, = 10.2¢(10)® mm as the approxi-
mate deflection of load P. It seems pointless to also estimate stresses because to do so the
second derivative of w = w(x) is required and w = w(x) itself is already approximate (see
remarks under “Stresses” in Section 2.5). For example, the assumed shape in Fig. 7.3-2a
has the same magnitude of second derivative at r = 0 and at r = R, but in reality bending
moments certainly will not be equal at these two locations.

FE Model and Analysis. The problem has axial symmetry, so it would be fitting to use
polar coordinates and axisymmetric elements. For illustrative purposes we elect instead to
use Cartesian coordinates and quadrilateral elements. Figure 7.3-1b shows an 11 by 11
mesh of four-node plate elements, each a 150-mm square built of four overlapping dis-
crete Kirchhoff triangular elements. The software used allows an elastic foundation to be
included as an option for this type of plate element. We use a uniform mesh because it is
very easy to prepare and at this stage we are unsure about the appearance of an improved
mesh, although we can safely predict that a graded mesh should have greatest refinement
near x = y = 0. A load P/4 is applied at x = y = 0 on the quadrant modeled. Symmetry is
imposed about x and y axes; that Is, 6. = 0 along the x axis and 6, = 0 along the y axis.
Displacement w is unrestrained at all nodes.

If available software does not include an elastic foundation option, the user might in-
stead connect each node of the plate to the rigid base by a linear spring. This would be an

} 825 mm >

12.7(10)=6 mm

(a) (b)

Fig. 7.3-2. (a) Deflected shape assumed in preliminary analysis. (b) Deflection
along v = 0 computed by FE with the mesh of Fig. 7.3-1b.
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nesses might all differ from one another. A better option would be to place the plate on a
layer of 3D solid elements, whose material is anisotropic with only E_nonzero if a
Winkler elastic foundation is to be simulated.

Critique of FE Results. The deflected shape is shown in Fig. 7.3-2b as software plots it,
with straight lines between nodes rather than the curved shapes that element edges actu-
ally have. The computed deflection at x = y = 0 is w = 12.7(10)® mm downward, in re-
markably good agreement with the deflection 10.2(10)® mm from preliminary analysis.
The computed w = w(x) passes through zero at about x = 825 mm, also in good agreement
with the preliminary guess of 726 mm. The largest upward deflection is 0.2(10)S mm and
occurs far from x = y = 0, but within the quadrant modeled rather than at its boundaries.

Stress contours appear in Fig. 7.3-3. As expected, contours of von Mises stress o, are
symmetric about the line x = y, which implies only that we have not blundered in impos-
Ing boundary conditions. Contours of ¢, should be concentric circles, which is not the
case near x = y = 0. Interelement continuity of the contours is fair. Were we to model the
entire plate by a mesh symmetric with respect to both x and y axes, we would see perfect
interelement continuity across the x and y axes, but this continuity would have nothing to
do with whether results are accurate or not. Similar remarks can be made with reference
to &, contours in Fig. 7.3-3b, although symmetry with respect to the line x = y is neither
seen nor expected. The relative energy error of the stress field is 1 = 0.20, too large for
comfort. (Note that if we had chosen to use axisymmetric annular plate elements, visual
inspection of computed stress fields would not provide such clear indications of an overly
coarse mesh.)

We conclude that results are reasonable for the initial coarse-mesh analysis. Another
analysis is required, with greater mesh refinement near x = y = 0. Span L could be re-
duced, say to 1200 mm or 1000 mm, with little loss of accuracy. Theory says that bend-
ing moments and flexural stresses are infinite at a concentrated load; accordingly, we
should determine how £ is actually applied. Perhaps it should be represented by a distrib-
uted foad of large intensity acting on a small area.

Note that the foundation is assumed to pull down on the plate where it deflects up-
ward. A plate that lifts off its foundation demands a nonlinear analysis because the zone
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Fig. 7.3-3. Contours of stresses 0, and o, on the top surface of the plate near x = y = 0 in
Fig. 7.3-1b. Stress units are Pa.
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of lift-off is unknown at the outset. In the foregoing problem, lift-off might make little
difference, judging by the relatively small magnitude of upward deflection.

7.4 SHELLS AND SHELL THEORY

The geometry of a shell is defined by its thickness and its midsurface, which is a curved
surface in space. Load is carried by a combination of membrane action and bending ac-
tion. A thin shell can be very strong if membrane action dominates, in the same way that
a wire can carry great load in tension but only small load in bending. A wire must have a
different shape for every different distribution of lateral load if there is to be no bending;
in contrast, a shell of a given shape can carry a variety of distributed loadings by mem-
brane action alone.

However, no shell is completely free of bending stresses. They appear at or near point
loads, line loads, reinforcements, junctures, changes of curvature, and supports. In short,
any concentration of load or geometric discontinuity can be expected to produce bending
stresses, often much larger than membrane stresses, but usually quite localized in a
“boundary layer” near the load or discontinuity. Figure 7.4-1 shows examples of loads
and geometries that produce bending. Axial force G must be transferred through the
structure to the support at the left. Consequently the simple support around the base AA
applies axially directed line load, which has a shell-normal component that causes bend-
ing. Similarly, around BB, the cylindrical and conical parts exert shell-normal load com-
ponents on one another. Shell-normal load is also transferred across FF because the
cylindrical and spherical shells try to expand different amounts under internal pressure
(unless they are suitably matched, say, by appropriate choice of thicknesses). Line load
EE is obviously shell-normal, as is the restraint provided by reinforcing ring DD. Internal
forces and moments are shown in more detail in Fig. 7.4-2, where their action—reaction
nature is displayed. The dimensions of V, are [force/length]; the dimensions of M, are
[force-length/length]. All lettered regions in Fig. 7.4-1 are regions where bending is im-
portant. Another example appears in Fig. 5.2-5. The foregoing examples are axisymmet-
ric, but similar remarks apply also to shells of general shape.

Flexural stress and bending moment in a shell are related in the same way as for a
plate (see Eq. 7.1-3 and below). Thus, for the cylindrical shell in Fig. 7.4-2b. meridional
flexural stress o, has magnitude 6M,/> on the shell surfaces at x = 0, compressive on the
outside of the shell for the direction of M, shown. Circumferential stress o, = V0, is also
present. If M, were zero, meridional flexural stress 6M/t? would be present because M =

D |
- |
Internal pressure
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Fig. 7.4-1. Cross section of a shell of revolution, with axisymmetric loads and
supports. The construction consists of a cylindrical vessel with hemispherical
end caps, supported by a cylindrical shell BBCC and a conical shell AABB.
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Fig. 7.4-2. (a) Forces and moments associated with bending at a discontinuity such as CC in
Fig. 7.4-1. (b) Isometric view of the cylinder at CC.

M(x) is created by V;,. This M would be zero at x = 0 and would reach its greatest magni-
tude for x > 0 but within the boundary layer. Again, circumferential stress ¢, = va, would
be present. Membrane stresses, constant through the thickness, would be superposed on
the flexural stresses. In Fig. 7.4-2b, both M, and V,, contribute to circumferential mem-
brane stress gy at x = 0. The contribution is tensile due to M, but compressive due to V,,
because M, tends to enlarge the end while V, tends to shrink it (for the directions of M,
and V, shown in Fig. 7.4-2b).

How large is the boundary layer in which bending may be important? A simple ap-
proximation can be obtained from the theory of a shell of revolution. If a radial line
load or a bending moment is uniformly distributed around one end of a circular cylin-
drical shell (as in Fig. 5.2-5 or 7.4-2), analytical solutions for radial displacement and
bending moment as functions of axial distance x from the end contain terms of the forms
e cos Ax and e*sin Ax, where

" 2 174
A= [Ja__vl} (7.4-1)
Rr-

and R and 7 are, respectively, the radius and thickness of the shell [7.3]. For Ax = 3°25,
e* cos Ax = 0.07. That is, if we regard e™™ cos Ax as the dominant term in the solution,
we conclude that the end displacement or bending moment declines to-7% of its peak
value when Ax = 3%%°. For this Ax and with v = 0, Eq. 7.4-1 yields x = VRr. Analysis of a
spherical shell yields a similar result. As a convenient approximate guideline for any
shell, useful for mesh layout in an initial FE analysis, one may estimate that VRt is the
span of the boundary layer. As an example, approximate dimensions of an aluminum
beverage can are R = 33 mm and ¢ = 0.10 mm, hence VRt = 1.8 mm, measured axially
along the cylinder. In FE analysis, a coarse initial mesh might use at least two shell ele-
menis to span the boundary layer. Much larger elements can probably be used outside the
boundary layer, where displacements and stresses have smaller gradients.

A shell has two principal radii of curvature at every point. Each is measured normal to
the shell and each is the radius of a small arc drawn in the shell midsurface. The small
arcs intersect at right angles. One radius is the largest, the other the smallest, of the radii
of all possible arcs in the midsurface at the point where arcs intersect. In Fig. 7.4-1, the
cylinder has principal radii R and infinity. Both principal radii are R, in the sphere. In the
cone, principal radius R, is a function of x; the other principal radius is infinite. In the ap-
proximation that VRtis the span of the boundary layer, R should be taken as the radius of
curvature, measured normal to the shell, of a small arc that lies in the shell midsurface
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Fig. 7.4-3. Thin-walled cylindrical shell with self-equilibrating, axially directed line
loads applied to one end.

and is tangent to a line load or a geometric discontinuity. In a shell of revolution this ra-
dius may be larger than the distance from the discontinuity to the axis of revolution.

Shell-rangent edge loads produce actions that are not confined to a boundary layer. In
Fig. 7.4-3, axial loads act on end A of the unsupported cylindrical shell, but the largest
displacements appear at end B, in apparent contradiction of Saint-Venant’s principle.
Another case in point is an I beam under torsional load with all displacements prohibited
at one end: at a distance of several times the beam depth from the fixed end, the effects of
end restraint are still important. One should remember that Saint-Venant's principle is ap-
plicable to relatively massive isotropic bodies. Thin-walled structures and highly aniso-
tropic structures may behave quite differently.

Equations that describe the behavior of a circular cylindrical shell under axisymmetric
loading have the same form as equations that describe the behavior of a beam on an elas-
tic foundation. Accordingly, an understanding of either problem is almost immediately
transferable to the other. Equations that describe the behavior of shells of other shapes are
considerably more complicated, so that shell solutions for engineering purposes must
usually be obtained by FE analysis.

7.5 FINITE ELEMENTS FOR SHELLS

Shell Elements. The most direct way to obtain a shell element is to combine a mem-
brane element and a bending element. Thus a simple triangular shell element can be ob-
tained by combining the plane stress triangle of Fig. 3.2-1 or Fig. 3.7-1c with the plate
bending triangle of Fig. 7.2-4. The resulting element is flat and has five or six d.o.f. per
node, depending on whether or not the shell-normal rotation 6,; at node i is present in the
plane stress element. Regardless of how a shell element is formulated, if 8., is present as a
global d.o.f. but omitted from the element formulation, the global stiffness matrix will be
singular if all elements that share node i happen to be flat and coplanar at node i. This dif-
ficulty can be avoided by including a simple “stabilization matrix,” and one expects that
commercial software will do so.

A quadrilateral shell element can be produced in similar fashion, by combining quadrilat-
eral plane and plate elements. Remarks of the preceding paragraph again apply. However, a
four-node “flat” quadrilateral is in general a warped element because its nodes are not all
coplanar. A modest amount of warping can seriously degrade the performance of an element.
Commercial software may allow only a very small amount of warping. Much greater warp-
ing is allowable if a simple “fix” is included in the element formulation [3.2, 7.4], but not all
software does so.

Advantages of a flat element include simplicity of element formulation, simplicity in
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motion without strain. Disadvantages include the representation of a smoothly curved
shell surface by flat or slightly warped facets, so that there are fold lines where elements
meet. There is discretization error associated with the lack of coupling between mem-
brane and bending actions within individual elements. Membrane-bending coupling
arises globally because adjacent elements are not coplanar: membrane force in one ele-
ment is transferred to a neighboring element with an element-normal component, which
produces bending. Discretization error can of course be reduced by using smaller ele-
ments. Common advice is that a flat shell element should span no more than roughly 10°
of the arc of the actual shell.

Curved elements based on shell theory avoid some shortcomings of flat elements but
introduce other difficulties. More data are needed to describe the geometry of a curved ele-
ment. Formulation is complicated, as it invokes a shell theory (of which there are many).
Membrane and bending actions are coupled within the element, so it is harder to avoid
membrane locking, that is, harder to avoid great overstiffness in bending because details of
the element formulation cause membrane strains to appear in association with bending ac-
tion, and membrane stiffness is far greater than bending stiffness if the shell is thin.

Isoparametric shell elements occupy a middle ground between flat elements and curved
elements based on shell theory. One begins with a 3D solid element such as that shown in
Fig. 7.5-1a. The element can model a shell if thickness ¢ is small in comparison with other
dimensions. However, such an element has the defects noted at the outset of Section 7.2 in
connection with plate bending. Accordingly, we transform the element, reducing the num-
ber of nodes from 20 to 8, by expressing translational d.o.f. of the 20-node element in
terms of translational and rotational d.o.f. at the midsurface of an 8-node element (Fig. 7.5-
1b). Figure 7.3-1c shows these d.o.f. in local coordinates at a typical midsurface node b.
Nodes a and ¢ appear in the solid element but not in the shell element. A local z axis is di-
rected through a, b, and c. Displacements at ¢ and ¢ in terms of d.o.f. at & are

! t
U, = U, — ‘2‘9_\-1; U, =uy + 5 B
t I3
U, :Ub+_9,rb U = Uy __e.rb (75_1)
2 2
W, =w, W, =W,
2~ 7% i
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Fig. 7.5-1. (a) A 20-node isoparametric solid element. (b) Reduction to an 8-node shell element.
(c) The d.o.f. at a typical node b.
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With relations like these for all thickness-direction lines of nodes, shape functions of the
20-node solid are transformed so as to operate on the three translations and two rotations
at each node of the 8-node element. Thus we obtain a Mindlin shell element. Thickness-
direction normal stress is taken as zero, and the stress—strain relation E is written in a way
that reflects this condition. The element stiffness matrix is integrated numerically. A re-
duced or selective integration scheme may be used to avoid transverse shear locking and
membrane locking. A less palatable remedy for locking is to arbitrarily reduce the trans-
verse shear and/or membrane stiffness, on the grounds that shell behavior will still be
dominated by the comparatively small bending stiffness.

Test Cases. Shell elements are perhaps the most difficult elements to formulate, and
shell behavior is often difficult to anticipate. One may wish to test shell elements in the
software to be sure of their validity, sensitivity to shape distortion, and behavior in exam-
ple problems for which results are known in advance. If the geometry is flat, a shell ele-
ment should be able to model both plane stress and plate bending and should pass tests
used to evaluate plane and plate elements. Next, one might use shell elements to solve
plane arch problems. Many arch solutions are tabulated [1.5].

Commonly used test cases for shell elements are shown in Fig. 7.5-2. Details appear in
{7.5, 7.6]. The shell roof is loaded by its own weight ¢ = 90 per unit area. Straight edges
are free and curved edges have “diaphragm” support, meaning that translational d.o.f.
parallel to the plane containing the curve are prohibited but translational d.o.f. normal to
this plane and all rotational d.o.f. are unrestrained. Ends of the pinched cylinder have di-
aphragm support. The load is F = 1.0. The hemisphere has a free edge and is restrained
only against rigid-body motion. Loads are F = 2.0. The twisted strip is cantilevered and
there are two load cases, F, = 107° and F, = 107°, Commonly used numerical data, and
accepted displacements of point A in the direction of the load (A,), are as follows:

Problem Rorb L t E v A,
Roof 25 50 0.25 432(10)° 0.0 0.3024
Cylinder 300 600 3.00 3(10)° 0.30 0.1825(10)*
Hemisphere 10 - 0.04 68.25(10)° 0.30 0.0924
Strip 1.1 12 0.0032 29¢10)° 0.22 5256(10)°
1294(10)°
F

%

(2) (b) (c) (d)

Fig. 7.5-2. (a) Cylindrical shell roof loaded by its own weight. (b) Pinched cylinder. (c)
Hemisphere with four uniformly spaced radial forces in the equatorial plane. (d) Strip with a 90°
twist from end to end.
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ator, and twisted about its axis {7.5]. Displacements and stresses may be calculated by
mechanics of materials theory.

The foregoing cases test different aspects of element behavior. Membrane action dom-
inates in the shell roof, bending action dominates in the hemisphere, and both actions are
active in the pinched cylinder. Sensitivity to warping is tested if quadrilateral elements
are used to model the twisted strip. The slit cylindrical tube tests ability to model pure
twisting moment. Experience has shown that it is possible for a particular element to do
very well in most test cases but quite poorly in one or two others.

Shells of Revolution. In cross section, an element for a shell of revolution resembles a
beam element. Like an element for a solid of revolution (Section 6.4), an element for a
shell of revolution has nodal circles rather than nodal points. Typically there are two
nodal circles per element. A shell of revolution element may be “flat” (conical) or curved.
The simplest formulation resembles the 2D beam element discussed in Section 2.3, in
that it uses a cubic lateral displacement field, a linear meridional displacement field, and
each nodal circle has two translations (one radial, the other axial) and one rotation as
d.o.f. However, the strain—displacement relation (Eq. 6.1-6 for axial symmetry) and inte-
gration (the second of Eqgs. 6.1-9b) produce a stiffness matrix rather different from Eq.
2.3-9. In most software higher-order terms are added to the element displacement field by
means of internal d.o.f.

Conical shell elements have advantages and disadvantages like those of other flat shell
elements. Consider a special case (Fig. 7.5-3). The spherical shell is modeled by axisym-
metric conical shell elements, which are “flat” in the sense that one principal radius of
curvature is infinite. Internal pressure loading applies outwardly directed force to each
nodal circle. Nodal moment loads are omitted for reasons discussed in Section 2.5. The
FE response depends on the nature of the element formulation and stress recovery proce-
dures, but a coarse mesh may display spurious bending moments, namely, the moment
distribution seen in Fig. 7.5-3, which of course is not present in a pressurized sphere. If
the structure were indeed a stack of conical frusta, bending action would be expected and
would indeed be computed if each frustum in Fig. 7.5-3 were modeled by more than one
conical shell element. Postprocessing devices that avoid spurious bending moments in-
clude evaluating moments only at Gauss point locations and calculating moments from
expressions written for curved shell elements. Software can be expected to include one or
more of these devices.

Zero bending
moment

Passible bending moment
in conical elements

|
|
|
|
|

Internal pressure

Fig. 7.5-3. Spherical shell loaded by internal pressure and modeled by
a coarse mesh of conical frusta shell elements.
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Like axisymmetric solids, axisymmetric shells under nonaxisymmetric loading can be
analyzed by use of Fourier series. Thus the load is represented as the sum of its series
components, an analysis is performed for each component, and results are superposed.
This procedure is useful for wind loading on axisymmetric tanks and towers and could
also be applied to the pinched cylinder and hemisphere problems in Fig. 7.5-2.

Remarks. A shell may be reinforced by stiffeners attached to one side of the shell. Then
the shell midsurface and the stiffener axis are not coincident. Rigid offsets can be used to
couple stiffener nodes to shell nodes, as described in Section 4.3.

Normal stress at a point on the surface of a shell is the sum of a membrane component
O,, and a bending component ¢,, for example,

N oM

o=0,+0, where lo} and O,=%t— (7.5-2)
2

m T

where NV is a membrane force (dimensions [force/length]) and M is a bending moment
(dimensions [force-length/length]). The expression 6M/t? is the flexure formula Mc/I, ap-
plied to a unit width and thickness 2¢ = 1. Software may report o, ©,,, 0,, N, M, or any
one of these at the user’s option, most probably in local coordinates xy tangent to the
shell midsurface. Software documentation must be consulted for details, such as the
global orientation of local coordinates, and the algebraic sign in Eq. 7.5-2 (i.e., which sur-
face of the shell is understood by the software as being the top surface).

7.6 AN AXISYMMETRIC SHELL APPLICATION

The structure we consider is a segment of a spherical shell, Fig. 7.6-1a. It is fixed to a
rigid horizontal foundation at the equator and is loaded by a uniformly distributed vertical
line load around the top, which is unrestrained. The state of stress is to be investigated.

Preliminary Analysis. Membrane forces exist throughout the structure. Bending mo-
ments also exist, but if this shell behaves like the water tank in Fig. 5.2-5, we expect that

Scale = 200 C Scale = 2000

Y A
E =200 GPa R =800 mm
v =03 t=1.0mm
g =5 N/mm ¢ = 30° \
\
‘L (Open at top)

(a) (b) (c)

N

Fig. 7.6-1. (a) Geometry, loading, and properties of a shell of revolution. (b) Computed dis-
placements along AB, multiplied by 200. (c) Computed displacements along lower quarter of
AB, multiplied by 2000.
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B are easy to calculate. By summation of vertical forees,

2nRNg = 27(R cos 30%)g hence Ny =0.866q (7.6-1)

Hence Ng = 4.33 N/mm, and membrane stress N,/t = 4.33 MPa (compressive) should be
found on the shell midsurface at B. A simple equilibrium equation of membrane shell the-
ory [2.1] tells us that if the support at B were a frictionless surface, the circumferential
stress at B would also be 4.33 MPa but tensile. Accordingly, in our problem the equator
tries to expand but is restrained by the support, which applies an inward shear force V,
distributed around the equator. But V,, also acts to rotate the bottom of the shell inward,
and 1o prevent rotation the support applies distributed meridional moment M. Computed
results should produce Vg and M, in the directions shown in Fig. 7.6-1a. Around the top,
load ¢ has a midsurface-normal component that bends the shell inward. There is no sup-
port near A 1o oppose this action, so displacements of the shell should be large and in-
ward at A. Also, bending moment at A should be zero, because the top is neither loaded
by externally applied moment nor restrained against rotation.

FE Model and Analysis. The axisymmetric shell elements chosen are truncated cones
with a nodal circle at each end. Each node has two translations and one rotation as d.o.f,
Four additional d.o.f. are added internally for purposes of stiffness matrix formulation.
According to the argument associated with Eq. 7.4-1, boundary layers near A and B each
span roughly ¥800(1) = 28 mm, or about 2.0° of arc. This distance should be spanned by
two elements at least, even in an initial analysis. For our analysis, the software is in-
structed to mesh the arc from A to B automatically, using element lengths of 4 mm at A
and B and 20 mm at the middle of the arc. The result is 65 nodes and 64 elements with
graduated element lengths along the arc. All d.o.f. at node B are restrained. All other
d.o.f. are unrestrained.

Critique of FE Results. Computed displacements are found to have the qualitative be-
havior expected (Fig. 7.6-1b,c), and reactions Ny, V,, and M are found to have the direc-
tions expected. Computed meridional membrane stress at B is —4.33 MPa, exactly as pre-
dicted. Meridional bending moment M near the top and bottom is shown in Fig. 7.6-2,
with the sign convention that positive M creates tensile flexural stress on the inside of the
shell. As expected, M = 0 at the very top. The largest flexural stress is +6M/f2 =
16(17.7)/12 = £106 MPa. Around the top of the shell, the downward force 2mR cos 30%q
is resisted by the upward force 27(R cos 30°) (N, cos 30°) from the membrane force N, at
A. Hence Ny = g/cos 30° = 5.77 N/mm in compression, and the associated membrane
stress is N/t = —5.77 MPa. Combining membrane and bending components, we conclude
that the meridional stress of largest magnitude in the shell is about 106 + 6 = 112 MPa
compressive, on the inside about 17 mm from the top. The meridional flexural stress at B,
£6M/F, is only £10 MPa. At the top of the shell, the large radial displacement creates a
large circumferential membrane strain &g (see Eq. 6.1-6). The associated circumferential
membrane stress is 0, = —175 MPa. So large a compressive stress suggests that buckling
is possible, for which a separate analysis would be required.

The software does not provide a relative energy error based on interelement stress dis-
continuities for this type of element. If it were available, it might not be able to alert us to
trouble if we were to use elements spanning so large an arc that the localized behavior
near A and B would not be captured. However, judging by Fig. 7.6-2, the mesh used is
adequate. What we see is a variation of the form ¢ *sin Ax, as noted above Eq. 74-1.
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Fig. 7.6-2. Meridional bending moments computed by FE. (a) Near the top. (b)
Near the base.

Displacements and stresses in a shell do not vary with steeper gradients than this. Since
this variation is portrayed with reasonable smoothness in Fig. 7.6-2, it does not appear
that mesh refinement is necessary.

Remarks. It happens that there are tabulated formulas applicable to this problem, al-
though they are tedious to apply by hand [1.5, 2.1]. The formulas give values of Vj, Mp,
and largest M less than 1% different from the values computed by FE.

Imagine that a small circular hole must be drilled in the shell midway between A and B.
Wil it be necessary to abandon axisymmetric analysis, use general shell elements instead,
and greatly refine the mesh around the hole? No: none of these. At the location of the hole,
only membrane stresses are present. Elementary membrane shell theory shows that merid-
ional and circumferential membrane stresses are, respectively, —4.64 MPa and 4.64 MPa.
Standard formulas for stress concentration [1.5] yield a peak stress of 3(4.64) —
(—4.64) = 18.6 MPa at the hole. FE analysis is not needed.

Plots of bending moment, such as Fig. 7.6-2, show no interelement discontinuity re-
gardless of the coarseness of the mesh. Thus, when using shell of revolution elements, we
must do without this helpful warning of a need for mesh refinement. The same is occa-
sionally true of plate bending: in Fig. 7.3-1b, if a uniform line load were applied along
the left edge of the plate, contours of flexural stress on the upper surface would be lines
parallel to the y axis, and interelement discontinuity in the x direction would not be
apparent.

7.7 A GENERAL SHELL APPLICATION

A thin-walled tube of circular cross section is fixed at one end and is loaded by transverse
force P at the other end (Fig. 7.7-1a). In order to distribute load around the end of the
tube at z = L, a thin flat disk of radius R is attached to the end. The tube is slit open
lengthwise along one side. Deflection at the loaded end and significant stresses are re-
quired, using P = 1.0 N for the load.

Preliminary Analysis. At first glance the structure appears to be nothing more than a
cantilever beam. Thus for comparison with FE results, values of tip deflection and root
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Fig. 7.7-1. (a) Cantilever beam in the form of a slit cylindrical tube. (b) FE mesh on the upper half
of the tube (sketch not to scale).

flexural stress should suffice. With I = aR%t the centroidal moment of inertia of the annu-
lar cross-sectional area, elementary beam deflection and flexure formulas yield

PL’ PLR
v=—~——=-373(10)"mm and o, =——=00713MPa  (7.7-1)
3ET 1

z

An analyst who next obtains FE results is in for a surprise. Equations 7.7-1 do not tell the
whole story or even the major part of it because the slit strongly influences behavior,

Further Preliminary Analysis. Because of the slit, the tube will twist as well as bend,
Cross sections will rotate because there is a moment about the axis of shear centers,
which according to theory is the line defined by x = —2R, y = 0. Looking along the z axis
toward the origin, the z = L end of the tube will rotate clockwise. Material just above and
just below the slit tends to move in —z and +z directions, respectively. This “warping”
tendency is easily demonstrated by twisting a rolled-up sheet of paper. Warping is pre-
vented at the support by axial stresses, compressive just above the slit and tensile just be-
low, which are superposed on flexural stresses o.. This discussion is qualitative, but with
Eq. 7.7-1 it may be sufficient for checking purposes. Readers who seek further pre-FE
analysis may proceed as follows.

In the present problem an analytical solution is reasonably simple, although an expla-
nation of it is beyond the scope of our treatment. Results from beam theory, Egs. 7.7-1,
are augmented by results from restrained-warping torsion theory of thin-walled cross sec-
tions [2.1]. The theory presumes that cross sections do not warp at £ = 0 and warp freely
at z = L. Results are as follows. Shear centers of each cross section lie on the line defined
by x = 2R, y = 0. Therefore the torque of the load about the shear center is 7 = -2RP,
represented by a vector in the negative z direction. Properties of the cross section are Jy, =
2nRP13, J, = 2n(n? — 6)R%t/3, and k¥ = GJ/EJ,,, where G and E are, respectively, the
shear and elastic moduli. In the notation of [1.5], Jg is called X, J,, is called C,, (the
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“warping constant”), and k is called . Rotation of the loaded end is

9=

_TL (1_ tanh kL

GI ) = —418(10)° P(0.0268) = —11.2(10)"® rad (7.7-2)
R

in which TL/GJ is what the rotation would be if warping were unrestrained by the sup-
port. Rotation 6 is about the shear center, so that at x = y = 0 on the loaded end a displace-
ment v = 2R6 = —560(10)° mm is algebraically added to the displacement v of Eq. 7.7-1,
for a total of v = —933(10)® mm. Axial stress due to restraint of warping at x = R, y =z
=0, is

.. Tk
o.=%E(nR")

tanh kL = £0.169 MPa (7.7-3)

R

negative above the slit and positive below. This stress is more than double the flexural
stress on top of the tube predicted by Eg. 7.7-1.

FE Model and Analysis. For an initial FE analysis we choose a uniform mesh because
of its simplicity. The mesh is coarse. The problem displays antisymmetry with respect to
the plane y = 0, so only half the tube need be modeled. Figure 7.7-1b shows a 10 by 14
mesh of four-node shell elements, each formed by combining the quadrilateral membrane
element of Section 3.6 with four overlapping discrete Kirchhoff plate-bending triangular
elements. Combination is carried out automatically by the software. All d.o.f. at nodes on
the plane z = 0 are restrained. Along the line of nodes at x = —R, y = 0 we set u = w = 0,
= 0 and leave v, 6,, and 6, unrestrained (see Fig. 4.12-2). The load applied to the FE
model is 0.5 N. The half-circular area at z = L is filled with ten triangular elements that
share a common vertex at the load point (Fig. 7.7-2a). These elements maintain the circu-
lar shape of the end but do very little to restrain warping of the tube cross section.

Critique of FE Results. The expected directions of axial warping displacement were
visible in an animation of the displaced shape. Vertical tip displacements at x = =R are
shown in Fig. 7.7-2a. The average of these two values is 967(10)® mm, not far from the
predicted magnitude of 933(10)® mm. The difference of the two values. divided by 2R.
yields the rotation 8 = —11.4(10)° rad (clockwise), which agrees well with Eq. 7.7-2.
Axial membrane stresses are shown in Fig. 7.7-2b. The largest magnitude of stress agrees

| Side view

1\ ——— +0.118
R
T h +0.021
! i x
§ I R -0.044
|
967(10)6 mm | 0.5N : 0.109
. 682(10)6 mm |
3 T ! : i——‘—f//’ ~0.174
~. Stit
\\y 40 mm >
1252(10)-6 mm ' \
(a) (b)

Fig. 7.7-2. (a) Computed vertical deflections at the loaded end. (b) Side view, showing contours of
axial stress ¢, on the outside surface near the supported end. Stress units are MPa.
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1. Note that stresses produced by restraint of warping, Fig. 7.7-2b, are not localized; in-
stead, they decay slowly with distance from the supported end, in seeming contradiction
of Saint-Venant’s principle. Stress contours show fair interelement continuity. The rela-
tive energy error of the stress field is 7 = 0.11. Another analysis with a finer mesh should
be undertaken.

Remarks. The foregoing critique is not very demanding if the analyst can anticipate the
results, as in the “further preliminary analysis” subsection. Otherwise FE results may be
puzzling and even alarming. This example shows the value of a good understanding of
how structures respond to load. Such knowledge suggests that a thorough critique should
include examination of shear stresses, which may also have significant magnitudes.

We have not mentioned flexural stresses o, of Eq. 7.5-2. Their contribution may be
small, but the mesh used is too coarse to model them properly. According to the argu-
ment associated with Eq. 7.4-1, the width of the boundary layer is roughly VRt =7 min,
about one-third the axial span of the elements used. Also, if stresses ¢, were to be almost
independent of the circumferential coordinate, their contours would be circumferential
rings whether the mesh is coarse or fine. In such a situation a plot of unaveraged stress
contours would not convey information that the mesh is too coarse.

Through what point should load P act if the end is not to rotate? In other words, where
is the shear center? Because the amount of twist @ is directly proportional to applied
torque, s linearly related to P and to the x coordinate of the point through which load P
passes. Thus, with x, the x coordinate of P,

B={(a, + a.xp)P (7.7-4)

where a; and a, are constants to be determined. One condition that can be used to deter-
mine them is 6 = —11.4(10)® rad when x, = 0, from the foregoing FE analysis. Another
condition is supplied by analyzing the same FE model under the alternative loading
shown in Fig. 7.7-3a, which is statically equivalent to a single downward force of 0.5 N
at the theoretical shear center, x, = —2R = —~50 mm. This loading yields 6 =1.1(10)® rad.
Solving for a, and a,, then setting 6 = 0 in Eq. 7.7-4, we obtain Xp = —a,/a, = —45.6 mm
as the x coordinate of the shear center of the FE model. Why does this value differ from

Top view
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Y
I ive loadi
Alternative loading 40 mim
X
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Fig. 7.7-3. (a) Computed vertical deflections at the loaded end, for the alternative load-
ing shown. (b) Top view, showing contours of axial stress o, on the outside surface near
the supported end, for the alternative loading. Stress units are MPa.
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the theoretical value? The theoretical value is based on beam theory that omits transverse
shear deformation; FE analysis includes it except at the fixed end, where it is prevented.
Also, the theoretical value is unrelated to the support conditions. (Figure 7.7-3b shows
axial stresses produced by the alternative loading. Because the twist is not quite zero,
contours are not quite symmetric about the plane x = 0, but the largest stress is on top and
is in reasonable agreement with Eq. 7.7-1.)

ANALYTICAL PROBLEMS

7.1 Determine coefficients in the matrix that operates on the curvature vector {d%w/dx>
d*wldy®  20°w/dx dy]” to produce the vector of moments [M, M, M_]". Express
these coefficients in terms of v and the flexural rigidity D = E£/[12(1 — v)].

7.2 Sketch the deflected shape and describe the state of stress if the rectangular plate in
Fig. 7.2-1b has each of the following lateral deflections, where the ¢, are constants:
(@) w=c,(®+y?)
(b) w=cy(x* -y
(¢) w=csxy

7.3 Derive Eq. 7.1-5. Suggestions: Let w = 4w x(L — x)/L?, assume that tensile force is
independent of x, and note that for w, << L the change in length is the integral of
0.5(dwldx)*dx fromx=0tox= L.

7.4 (a) For each of the following displacement modes, sketch the deformed shape of a
rectangular four-node plate element. The ¢, are constants. Use expressions for u
and v shown in Fig. 7.1-3.

(1) w=0,6,=cx, 8, =cy
(2) w=c,1y,6,=0, 6,=0
(3) w=0,6,=0,6,=cyxy
(4) w=0,06,=cuxy, 6,=0

(b) Verify that these modes are zero-energy modes if all terms of k are integrated
by one-point Gauss quadrature.

(c) Some other displacement modes of the element are not zero-energy modes un-
der one-point Gauss quadrature. For each of these, write an expression like one
of the four listed under part (a).

(d) Which modes cited in part (a) cease to be zero-energy modes if terms associ-
ated with transverse shear strain are integrated by one-point quadrature while
the remaining terms are integrated by four-point quadrature?

7.5 Let an eight-node Mindlin plate element be square and have the deformation mode
w=c(38*n* - &~ 1), 6,= 6, =0, where c is a constant, £ = x/a and 1] = y/b (see
sketch). Sketch the deformed shape, and show that strains are zero at the Gauss
points of a 2 by 2 imtegration rule.

e

Problem 7.5




Analytical Problems 197

PDF CompressasidérencVersioonstraints used in formulating a discrete Kirchhoff plate ele-

7.7

7.8

7.9

7.10

ment, as follows. In Fig. 7.2-4, let side 1-2 have length L. Assume that 6, along this
side depends on 8,; and 6,, and is linear in x. Also assume that w is cubic in x along
this side and depends on nodal values of w and its first derivative at nodes 1 and 2.
If .. = 0 at the midpoint of the side, what equation relates the six nodal d.o.f. men-
tioned here?

For the strip under twisting load in Fig. 7.2-6, what corner deflection w; is predicted
by mechanics of materials theory for the twisting of a strip having a narrow rectan-
gular cross section? Use data provided at the end of Section 7.2.

It can be shown that the radial (outward) displacement produced by moment and
shear at the base of the thin-walled cylindrical tank in Fig. 5.2-5 has the form w =
Ae*cos hx +Be™*sin Ax, where A and B are constants and A is given by Eq. 7.4-1.
At x = 0, this “bending” w nullifies the “membrane” w produced by the fluid con-
tained. Also dw/dx = 0 at x = 0 (neglecting a small membrane rotation term).
Evaluate A and B. Hence, obtain the axially directed flexural stress o, = +[E/{12(1
—v)}1(d*wldx?), and determine an expression for the ratio 6,/0,,, where G, = pR/t
is the circumferential membrane stress that would exist at x = 0 in the absence of
bending. Numerically evaluate ¢,/0,, for the case R= 16 m, t=0.02 m, v = 0.3, and
water to a depth 4 = 10 m.

(a) Consider internal pressure loading on the shell shown in Fig. 7.4-1. (Omit the
other loads shown.) If no bending stresses are to arise at or near juncture FF,
what equation relates the elastic moduli, thicknesses, and Poisson ratios in the
cylindrical and hemispherical portions?

(b) In Fig. 7.4-1, increase radius R of the spherical end cap FGF so that it becomes
“flatter”, that is, so that R, > R and the cap subtends an arc less than 180°. If £
and ¢ are the same for cylinder and cap, and only membrane stresses are consid-
ered, how should R and R, be related so that displacements normal to the axis of
revolution will be the same when internal pressure is applied? (Other loads
shown in Fig. 7.4-1 are absent.)

(¢) In part (b), will bending action nevertheless be present at or near FF? Explain.

(d) Express the shell-normal component of line load around AA in terms of the
force at G, the radius of circle AA, and the inclination of AB with respect to the
axis of revolution.

The sketch represents the cross section of a Dewar flask, that is, inner and outer axi-

symmetric shells connected at one end and with vacuum in the small space be-

tween.

(a) In terms of atmospheric pressure p and the dimensions shown, what are the
membrane stresses in the cylindrical and hemispherical portions?

(b) Identify the locations where bending stresses will arise.

Problem 7.10
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COMPUTATIONAL PROBLEMS

When specific instructions are not stated in the following problems, compute significant
values of moment, stress, or displacement, as appropriate. Exploit symmetry if possible.
Choose convenient numbers and consistent units for material properties, dimensions, and
loads. When mesh refinement is used, estimate the maximum percentage error of FE re-
sults in the finest mesh. Unless directed otherwise, assume that thicknesses are uniform
and the material is isotropic.

A FE analysis should be preceded by an alternative analysis, probably based on statics
and mechanics of materials, and oversimplified if necessary. If these results and FE re-
sults have substantial disagreement we are warned of trouble somewhere.

7.11 (a) Patch-test the plate elements in the software you use. You may wish to adapt
Fig. 7.2-2 to cases of pure bending and pure twist.

(b) Do plate elements in your software take transverse shear defornmation into ac-
count? Find out by computational testing of a cantilever. Plan carefully the
loading, support conditions, number of elements required, material properties,
and how numerical results will be interpreted in order to answer the question.

7.12 The sketch is a plan view of a cantilever plate of thickness . Apply equal forces in
the z direction to nodes 2 and 3. Compare computed moments and tip deflection
with cantilever beam (or plate) theory. Use one quadrilateral element, then two tri-
angular elements. Also use elements having side nodes, if available. Does accuracy
decline as thickness r becomes extremely small, or as L/b becomes large? Do the
element formulations appear to take transverse shear deformation into account?

4 3
0t
o b
-7 4.
1 2 Problem 7.12

7.13 Analyze the twisting problems in Fig. 7.2-6¢ and Fig. 7.2-6d using each of the load-
ings shown. Otherwise, follow the instructions of Problem 7.12.

7.14 (a) Construct plots of w, M,, and M, along the x axis in Fig. 7.2-6b. Use “soft” sim-
ple supports.
(b) Repeat part (a), but use “hard” simple supports.

7.15 For the square plate of Fig. 7.2-6a, compute the center deflection, center bending
moments, and bending moment of largest magnitude at the middle of one edge. Use
four uniform meshes, starting with the coarsest possible mesh on one quadrant, then
increasing the number of elements by a factor of 4 in each successive mesh refine-
ment. Consider the following cases.

(a) Simply supported edges, uniformly distributed load.
(b) Simply supported edges, concentrated center force.
(c) Clamped edges, uniformly distributed load.
(d) Clamped edges, concentrated center force.
7.16 Explore the effect of thickness ¢ in Problem 7.15 as follows.

(a) Decrease ¢ in successive analyses by a factor of (say) 100 each time. How many
of the computed results can be trusted?
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7.17

7.18

7.19

7.22

Increase ¢ in successive analyses. Do results from the finer meshes continue to
agree with theory? Why or why not? How large do you think ¢ can be, as a frac-
tion of side length L, if plate elements are used for analysis?

(c) In part (a), choose a case for which r is small but results are reliable. Replace
the plate elements by 3D solid elements, and repeat the calculation.

Repeat Problem 7.15 with the addition of four reinforcing beams to the lower sur-
face of the plate. Let the beams each have length L/2, meet at right angles at the
center of the plate, and be oriented parallel to x and y axes. A possible choice for
beam cross sections is width b = 2¢ and depth & = 5¢, where ¢ is the plate thickness.

The plate shown has two supported edges, which are clamped and include angle 2¢),
and two free edges. A uniform line load in the z direction is applied along span 2¢
of the longer free edge.

Problem 7.18

Problems 7.15 and 7.18 can be repeated, using thermal load instead of mechanical
load. A simple thermal load is AT = (2z/1)T,, where 7, is the surface temperature
relative to the initial stress-free temperature.

{a) Alter the plate problem discussed in Section 7.3 by letting the load act on an
edge. For example, apply P at x = y = 0 and let the plate extend to infinity in
only the positive y direction.

(b) Similarly, apply P to one corner. For example, apply P at x = y = 0 and let the
plate extend to infinity in the first quadrant only.

Add reinforcing beams of cross section b by A to edges of the plates in Problem
7.20. Attach the beams to the lower surfaces of the plates. One might prescribe the
ratio b/h, then seek values of b and 4 that make the largest stresses in the beams
equal to the largest stresses in the plates.

Two circular plates, one having a central hole, are shown in cross section, with
some possible cases of axisymmetric mechanical load. The temperature field AT =
(2z/9T,, where T, is the surface temperature relative to the initial stress-free tem-
perature, is another possible load case. The outer edge r = a may be simply sup-
ported or clamped. Additional problems result if an elastic foundation is added,
with support at r = g either retained or removed. Most of these problems can serve
as test cases; many analytical solutions are tabulated 1.5, 7.3].

(a) Perform the analysis using shell of revolution elements, flattened into annular

disks.
(b) Perform the analysis using general plate elements.
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7.23 Circular plates (e.g., those in Problem 7.22) may be stiffened by the addition of
radially oriented stiffening beams, each of cross section b by &, either straddling
the plate midsurface or attached to either lateral surface, and separated by equal an-
gles in the circumferential direction.

(a) Analyze with “smeared” stiffeners, that is, with individual stiffeners replaced
by an increase in plate thickness to a value that accounts for beam and plate
stiffnesses together. (The revised 7 depends on both » and radial position.)

(b) Analyze Wwith stiffeners maintained as discrete elements.

7.24 Remove the concentrated force loading from the plate discussed in Section 7.3.
Instead, apply loading over a circular region of radius R as follows.
(a) A uniformly distributed lateral pressure p.
(b) A uniform line load ¢ around the circle of radius R.
(c) The temperature gradient AT = (2z/1)T, over the region within the circle, where
T, is the surface temperature relative to the initial stress-free temperature.

7.25 A thin shell of revolution in the shape of a truncated cone is simply supported
around its base, as shown. A uniformly distributed line load ¢ is applied to the top.
Note: If the cone is rather flat, it is called a “Belleville spring” and has a nonlinear
load versus deflection relation.

S
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I Ry >/ Problem 7.25

7.26 Possible modifications of Problem 7.25 include the following:
(a) Add areinforcing ring (like that in Problem 7.29) to the top and/or the bottom.
(b) Uniformly heat the upper half or the lower half.
(c) Apply load g around only half of the top circumference.
(d) Uniformly heat only half of the circumference.

7.27 (a) Analyze the water tank depicted in Fig. 5.2-5.
(b) As an alternative load on the tank, let the temperature vary linearly through the
wall thickness 1.
7.28 (a) Analyze the Dewar flask described in Problem 7.10.
(b) As an alternative load on the Dewar flask, uniformly heat the inner shell only.
Assume that temperature varies linearly around the toroidal knuckle that con-
nects inner and outer shells.
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7.30

7.31

7.32

7.33

7.34

7.35

S aNCESH of revolution consist of a cylindrical portion of radius R,
capped by a closure whose meridian is a circular arc of radius R,, as shown. The
juncture may be reinforced by a ring of rectangular cross section. Let the cylinder
and the end cap intersect the ring (if present) at midwidth, a distance /2 from each
side. The base of the cylindrical shell (not shown) may be considered fixed. Internal
pressure p is applied. Some special cases of possible interest are as follows:

(a) a;=a,=0, R,=R,_(hemispherical end cap).
(b) a,=V3 R, a,=0,R,=2R, (end cap subtends a 60° angle).
(¢) a,=—3R.,a,=0,R, = 2R, (like part (b), but with the end cap “dished in™).

Problem 7.29

Repeat Problem 7.29, but load the shell by its own weight. Let the axis of the shell
be vertical.

Repeat Problem 7.29, but load the shell by its own weight. Let the axis of the shell
be horizontal.

Consider a uniform circular ring under diametral loads, as in Fig. 2.7-2. Model the

ring with shell elements, using » uniform elements around a quadrant and one ele-

ment to span the dimension normal to the plane of the ring. Questions such as the

following may be studied:

(@) If n=1,2,4,..., how quickly do displacements converge toward correct re-
sults?

(b) Does it matter whether the arcs of individual elements are straight or curved?

(¢) Is there evidence that the bending moment has the possible behavior shown in
Fig. 7.5-37

(d) Does a reduction in ¢ reduce accuracy? How small can ¢ be in relation to #?

(e) If ¢t becomes comparable to r, is transverse shear deformation taken into ac-
count, and how reliable are these results?

Solve the ring problem of Fig. 2.7-2 using shell of revolution elements and Fourier
series to represent the loads.

Solve the problem depicted in Fig. 7.4-3. Use only enough support conditions to
prevent rigid-body motion. Consider various values of L/R and R/z.

Consider a curved beam loaded by bending moment (as in Fig. 5.2-3). Some possi-
ble cross sections are shown in the sketch for the present problem. These cross sec-
tions are thin-walled, so that the effect of distortion of the cross section may be ap-
preciable (as in Fig. 5.2-3).
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(a) (b} (c) {d)
Problem 7.35

Analyze a straight thin-walled member, having cross section (b), (c), or (d) of
Problem 7.35, under loads similar to those in Fig. 7.4-3. For example, apply z-direc-
tion forces P, =P, P, and —P to points A, B, C, and D, respectively. Use supports
that prevent rigid-body motion but apply no reactions to the member.

Analyze a straight thin-walled member, having cross section (b), (c), or (d) of
Problem 7.35, under torsional load. Fix all d.o.f. at one end of a member of length
L. At the other end apply x-direction forces P, P, —P, and ~P to points A4, B, C, and
D, respectively.

Consider cantilever beams that are slender, thin-walled, and tip-loaded by trans-
verse force F. There are many possibilities for shape of cross section and placement
of force F, three of which are shown in (a), (b), and (¢) of the sketch.

_K.‘

7.39

7.40

7.41

Problem 7.38

In Problem 7.38, determine the x coordinate of the shear center of cross sections b)
and (c).

Consider a cantilever beam of I section, as in Problem 7.38a. Apply a tip force,
transverse to the beam axis and in the plane of the web. Study the effect on stresses
of making the flange width b significantly larger than the depth 4 of the cross sec-
tion.

Thin-walled pipes of circular cross section intersect at a right angle. as shown. The
ellipse formed by the intersection may or may not be reinforced by a stiffening
member on the outside of the shell. Stresses at and near the intersection are of inter-
est. Obtain a separate solution for each loading. Six load cases are shown in the
sketch. For convenience, loads may be applied to a circular disk on the end of the
structure.
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Problem 7.41

7.42 (a) Use shell of revolution elements to analyze a spherical shell under internal pres-
sure. Make the elements conical and start with a coarse mesh (such as that in
Fig. 7.5-3).
(b) Imagine that Fig. 7.5-3 is not a coarse-mesh model of a spherical shell, but in-
stead depicts the actual shape of the vessel. Model each conical frustum by sev-
eral shell of revolution elements, and apply internal pressure.

7.43 Apply the shell element (or elements) in the software you use to the test cases de-
picted in Fig. 7.5-2. Conduct convergence studies, using 1, 4, 16, and so on quadri-
lateral subdivisions per quadrant (or per octant) of the structure. (For triangular ele-
ments this means using 2, 8, 32, and so on elements per quadrant or per octant.)

7.44 1If the software you use allows nonaxisymmetric loads on a shell of revolution, ana-
lyze cases (b) and (c) of Fig. 7.5-2 using this approach.

7.45 Apply torque about the axis to the slit tube depicted in Fig. 7.7-1. However, use
support conditions sufficient only to prevent rigid-body motion.

7.46 Let the cylindrical shell of Fig. 7.5-2b be loaded by its own weight as it rests on a
rigid horizontal surface parallel to the axis of revolution.

7.47 Apply a torque about the longitudinal axis to the twisted strip in Fig. 7.5-2d.

7.48 (a) Attach a reinforcing beam to each straight edge of the shell roof in Fig. 7.5-2a.
Let each beam have length L, width b, and depth A.
(b) Let the shell roof be cantilevered from one end. Fix all d.o.f. on the supported
curved edge. Leave all other d.o.f. free.

7.49 A square tube and a circular tube are connected by a conical transition section, as
shown. Possible loads include internal pressure p, temperature gradient, bending,
axial force, and torque about the longitudinal axis.

Square Conical Circular
#\ 9
2R 1
Side view End view
Problem 7.49

7.50 A segment of a circular cylindrical shell is fixed on two straight edges, as shown.
Uniform line load g acts on one of the curved edges and is radially directed.



204 Plates and Shells

PDF Compressor Free Version

7.51 The sketch shows an end closure on a cylindrical pressure vessel of radius R,.. The
closure consists of a toroidal “knuckle” of meridional radius R, and a spherical cap
of radius R,. Investigate stresses produced by (a) internal pressure, and (b) tempera-
ture that varies linearly through the wall thickness.

b L —
(Top)
(End)
(Side} R

i +
Problem 7.50 Problem 7.51
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CHAPTER 8

Thermal Analysis

This chapter considers analysis tools for calculation of temperature distribution in a solid
body. Concepts of heat transfer are saummarized first, followed by a discussion of thermal
loads and boundary conditions, nonlinear effects, thermal transients, and modeling con-
siderations. Finally, an example FE analysis addresses the temperature field and the ther-
mal stresses it produces.

8.1 INTRODUCTION. SOME BASIC EQUATIONS

Overview. This book is primarily concerned with stress analysis. Temperature and tem-
perature gradients are an important cause of stress. Accordingly, for our purposes, “ther-
mal analysis” means primarily the calculation of temperatures within a solid body. A by-
product of temperature calculation is information about the magnitude and direction of
heat flow in the body. This information may be useful in its own right.

Heat is transferred t0 or from a body by convection and radiation (Fig. 8.1-1). Heat
flow across a boundary is analogous to surface load in stress analysis. In addition, there
may be internal heat generation, produced by electric current, dielectric heating, or other
sources. A distributed internal heat source is analogous to body force in stress analysis.
At some points on the boundary or within, temperatures may be prescribed. Prescribed
temperatures are analogous to prescribed displacements. Heat moves within the body by
conduction. For a steady-state (time-independent) problem, the mathematics of aj] this
leads to the global FE equation

K,T=Q (8.1-1)

where matrix K, depends on the conductivity of the material, T is a vector of node point
temperatures of the solid body, and Q is a vector of thermal loads, If present, convection
and radiation boundary conditions contribute terms to both Krand Q. We wish to solve
for the unknown nodal temperatures in T. There is obvious resemblance between Egq.
8.1-1 and global equation KD = R of stress analysis. Indeed, the same element types,
even the same FE mesh, can be used for both thermal analysis and stress analysis.
Therefore, having determined noda] temperatures by FE, one can immediately use these
temperatures for stress analysis without the trouble of preparing a new FE model.
Thermal conductivity and other properties may depend on temperature strongly
enough that K, in Eq. 8.1-1 must be regarded as a function of temperature rather than a
matrix of constants. Thus the problem becomes nonlinear. The problem is inherently non-
linear if there is radiation heat transfer, because then heat flux across the boundary de-
pends on differences of fourth powers of absolute temperatures rather than on simple

205
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Prescribed rate of heat
flow across boundary

Heat flow across boundary (in or out)

due to convection

(to or from a surrounding fluid) Heat generated internally

(e.g. due to electric current)

: Insulated {(no heat flow
across boundary)

Heat flow across boundary
due to radiation (in or out)
Temperature prescribed

Fig. 8.1-1. An arbitrary solid, showing various thermal loads and thermal
boundary conditions.

temperature differences. If steady-state conditions do not prevail, Eq. 8.1-1 is augmented
by a “thermal mass” matrix and a vector of nodal rates of change of temperature. The re-
sulting equation is analogous to the equation that describes structural dynamics.

Equations of Heat Flow. Consider an isotropic material and imagine that there is a tem-
perature gradient in the x direction (Fig. 8.1-2a). According to the Fourier heat conduc-
tion equation,

a7
o=k 8.1-2
% dx ( )

where f, is heat flux per unit area and k is the thermal conductivity. The negative sign
means that heat flows in a direction opposite to the direction of temperature increase.

If the material is anisotropic and x is not a principal material direction, the direction of
heat flow is in general not parallel to the temperature gradient (Fig. 8.1-2b). A more gen-
eral form of Eq. 8§.1-2 1s

h aT/ox
fip=—K33T/dy (8.1-3)
f. oT10z

where x, y, and z are mutually perpendicular axes (not necessarily Cartesian) and X is in
general a full 3 by 3 matrix of thermal conductivities. If x, y, and z are principal axes of

Isotropic material Anijsotropic material
o7 / ar
% 3x S 3x
‘ Fig. 8.1-2. Plane heat flow with 07/0x > 0
¥ and 97/dy = 0. Fluxes f, and f, are shown in
S the negative sense (but in the correct direc-

tion if 97/dx > 0). Hatching in (b) suggests a
(a) (b principal material direction.
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PDF Con{ﬂ}?ﬁéﬂmme ¥exsibiagonal matrix. In the special case of isotropy, xreduces to a di-
agonal matrix with x, = Ky, = k3, = k.
By considering a differential element of volurne and writing the energy balance equa-
tion (rate in) — (rate out) = (rate of increase within), we obtain [2.2,8.1]

I
Jd dJ 4 aT
- SR D P SN 2 8.1-4
I:&x dy 32:} Sp+a.=cp ot ( )

where g, is the rate of internal heat generation per unit volume, c is the specific heat, pis
the mass density, and ¢ is time. If the body is plane and there is convection and/or radia-
tion heat transfer across its flat lateral surfaces, Eq. 8.1-4 must be augmented by flux
terms (Eqs. 8.2-5 and 8.3-4). The problem becomes steady-state if 0779 = 0. Heat fluxes
Jw fiv and f. can be removed from Eqs. 8.1-4 by substitution from Eq. 8.1-3. Thus, for the
special case of material isotropy and steady-state conditions, Eq. 8.1-4 reduces to

Ve(k VT)=—g, (8.1-5)
where V is the gradient operator; in two dimensions, for example, V = i(9/0x) + j(d/ay),

where i and j are unit vectors in x and y directions, respectively. If, in addition, k is inde-
pendent of the coordinates, Eq. 8.1-5 reduces to

(8.1-6)

kV:T=—g, or k(ﬂ+a’T+O—)—TJ:~qU

dxt Iyt 9z°

A steady-state problem is solved by determining a function 7 = T(x, y, 7) that satisfies
Eqs. 8.1-3 and 8.1-4 and also meets prescribed boundary conditions.

Nomenclature and Units. Quantities used in this chapter are as follows. The unit of heat
is the same as the unit of energy, namely, the joule; 1 J = 1 N-m. The unit of power is the
watt; 1 W=11/s =1 N-mJs.

A = cross-sectional area (m?)

¢ = specific heat (J/kg-°C)

/= heat flux per unit area (W/m?)

h = heat transfer coefficient; also called film coefficient (W/m?-°C)

k = thermal conductivity (W/m - °C)

4, = rate of internal heat generation per unit volume (W/m?)

g = rate of heat flow; ¢ = Afor g = SF (W)

S = surface area (m?)

Il

T = temperature (°C, or °K when used with radiation)

Ty = temperature of adjacent fluid outside the boundary layer (°C)
T = 3T/3: (°Cls)

t = time (s)

p = mass density (kg/m?)

¢ = Stefan-Boltzmann constant (¢ = 5.670(107%) W/m?- °K*



208 Thermal Analysis

PDF Compressor Free Version

In the foregoing units, actual fluids and solids display numerical values in the approxi-
mate ranges 10° < ¢ < 10%, 10 < h < 10%, and 1072 < k < 500 [8.1]. In Eq. 8.1-1, terms in
K, have units W/°C, terms in T have units °C, and terms in Q have units W. Absolute
temperature is measured in °K, where °K = °C + 273.

8.2 FINITE ELEMENTS IN THERMAL ANALYSIS

The development of finite elements and matrix equations in thermal analysis paraliels
what is done in stress analysis. An element conductivity matrix k, can be generated by a
direct method for very simple elements. Otherwise a formal procedure is required. The
formal procedure makes use of shape functions, whose properties govern the capability of
the element. In the present section we summarize the thermal FE method but postpone ra-
diation heat transfer to Section 8.3.

Bar Element, Direct Method. An equation like Eq. 8.1-1, but pertaining to a single ele-
ment, can be written directly for very simple elements. Consider a uniform bar whose lat-
eral surface is insulated, Fig. 8.2-1. The rate of heat flow is ¢ = Af. It is constant in this
element because cross-sectional area A is constant and heat can flow only axially. Nodal
heat flow rates g, and ¢, are considered positive when directed inro the element. Hence
q, = —q, whether the temperature gradient is positive or negative. Nodal temperatures are
T, and T,. Equation 8.1-2 yields g, and g, first for T, # 0 and then for T, # 0. Results are
shown in Fig. 8.2-1. In matrix format, these results are

AKIL  —-AK/IL T |4
[—Ak/L Ak/LHTQ}‘{qZ} (8.2-1)

where the square matrix is k,, the element conductivity matrix. Clearly, Eq. 8.2-1 resem-
bles the stiffness equation for a bar element, Eq. 2.2-2. In common software there is no
thermal analogue of a beam element because temperature gradients are not used as nodal
d.o.f.

An actual bar could be modeled by several of these elements if temperatures at several
locations between its ends were required. A tapered bar could be analyzed conveniently
in this way.

{ L | ' L |
| | | |
1 2 1 2
91 =4 e }e— a2
b 5 -0
41 = —qp = A| —k 91 =—q2= Al -k
(@ )

Fig. 8.2-1. Nodal heat flows in a bar having insulated sides and constant cross-sectional area A.
@7,>0,7,=0.(b)7,=0,7,>0.
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PDF Conguess9FIEERE Y QXM Procedure. The formal procedure parallels that used to ob-
tain the stiffness matrix of a displacement-based finite element. One begins by interpolat-
Ing temperature over an element from element nodal temperatures T,.

T=[N,Ny---N,J{ 7% or T=NT, (8.2-2)

Individual shape functions in N are suited to the element type and can be exactly those
used also to interpolate a displacement field: Egs. 3.4-3 for a four-node rectangle, Egs.
4.4-2 for an arbitrarily shaped four-node quadrilateral, and so on. The form of interpola-
tion determines the complexity of the temperature field that an element can represent. In
Cartesian coordinates, temperature gradients in a plane element are

T,
dT/dx| [IN,/dx ON,1dx .- IN,Idx || Th $.2.34)
OTIdy |~ IN/Dy IN,Idv - IN,Idy (8.2-3a
]_;1
| | dlox )
or T,=BT, where B= {a/ay}N (8.2-3b)

For solids, a third row expressing 97/9z is added. Analogous forms can be written in
other coordinate systems, such as the cylindrical system used for solids of revolution.
Regardless of the coordinate system, the expression for an element conductivity matrix
can be shown to be

k, :jBTdev (8.2-4)

where Kis the array of thermal conductivities from Eq. 8.1-3 and integration is over the
element volume. For a bar element, N is given by Eq. 2.2-5, x becomes the scalar &, and
Eq. 8.2-4 yields the conductivity matrix in Eq. 8.2-1.

Remarks. Thermal finite elements are assembled in the same way as structural finite ele-
ments (e.g., Eq. 2.6-2; also Section 4.1). In contrast to stress analysis, thermal analysis is
a scalar field problem because T has no direction associated with it. A thermal FE formu-
lation has but one d.o.f. per node, namely, nodal temperature. A FE temperature field is
continuous within elements and across interelement boundaries. Temperature gradients,
like strains in stress analysis, are typically not interelement-continuous. The troublesome
shear-locking phenomenon discussed in Section 3.6 does not appear in thermal analysis
because the product BT, is not required to yield a quantity analogous to shear strain.

Excepting when there is heat transfer by radiation, the rate of heat flow is proportional
to temperature differences. Accordingly, nodal temperatures need not be absolute temper-
atures. Instead, they can be measured relative to any convenient reference level at which
the body has a uniform temperature.

Upon assembly of elements, nodal rates of heat flow g; from separate elements are
combined at shared nodes and become Q,, the net flow into node i of the structure. Thus
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Q; = 0, except at nodes where T; is prescribed, nodes on a structure boundary across
which heat is transferred, or at internal nodes where Q, may arise from ¢,. Usually Q; is
determined from convection or radiation boundary conditions, just as equivalent nodal
forces are determined from applied surface pressure in stress analysis. A user-prescribed
nodal @, is a point source or a sink and is analogous to a concentrated nodal force.

On an insulated boundary, nodal temperatures are unknown and the corresponding
nodal flows Q, are zero (as described in the foregoing paragraph). Prescribed nonzero
nodal temperatures are treated like prescribed nonzero nodal displacements in stress
analysis. Thus if a nodal temperature 7, in T of Eq. 8.1-1 is prescribed, in every row 7 the
known quantity K7} is transferred to the right-hand side, that is, subtracted from Q,, so
that T continues to contain only unknown nodal temperatures. In this way equation j is ef-
fectively discarded, so that the number of “active” equations is reduced by one. Note that
in Eq. 8.1-1 one can prescribe either T; or Q; but not both at once. Thus if 7} is prescribed
and Q, is needed, O, must be calculated by postprocessing.

The work of assembly, construction of appropriate O, terms, and imposition of nodal
temperatures is carried out automatically by the software after the physical problem has
been described by appropriate input data. It is likely that mesh layout will be governed by
what is needed in subsequent stress analysis, as stress gradients are typically larger than
thermal gradients and therefore demand more detail in the FE model.

Convection Boundary Conditions. The equation used to treat convection heat transfer
was proposed by Newton:

f=rT,-T) (8.2-3)

where fis flux normal to the surface and positive inward, 7 is the temperature of the sur-
face of the solid, and 7 is the temperature of the surrounding fluid. Temperature in the
fluid varies from 7 to T, through the thickness of a boundary layer adjacent to the solid.
Unfortunately, the heat transfer coefficient h depends on many factors, some of which are
temperature dependent: velocity of the fluid stream, roughness and geometry of the sur-
face, and density, viscosity, conductivity, and specific heat of the fluid. Accordingly, tab-
ulated data of h for a specific fluid may state only a typical range of values.

The formal procedures that yield Eq. 8.2-4 [2.2] also show that Eq. 8.2-5 leads to both
an element matrix and an element vector:

matrix: [N'NkdS  vector: [NhT,ds (8.2-6)

where dS is an increment of the element surface subject to convection. The matrix com-
bines with the element conductivity matrix and hence contributes to K, in Eq. 8.1-1. The
vector contributes to Q. In a plane problem with insulated lateral surfaces, integration in
Eq. 8.2-6 spans only element edges that are also boundaries of the structure and subject t©
convection. In such a case there will be few contributions to the global equations from
Egs. 8.2-6. However, in general, convection may occur on lateral surfaces of plates as well
as on plate edges, so that Egs. 8.2-6 may contribute extensively to the global equations.

It happens that the second of Egs. 8.2-6 has the same form as the equation that yields
nodal forces from surface pressure in stress analysis. Therefore, for constant and linear
flux distributions, nodal heat flows Q; have the same relative magnitudes as do nodal
forces in Figs. 3.9-1, 3.9-3, 3.9-5, and 6.2-3. In particular, note Fig. 6.2-3: in thermal
analysis, its counterpart is a uniform flux directed into a rectangular element face, result-
ing in some nodal heat flows that are inward and some that are outward.
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Radiation Boundary Conditions. To introduce concepts and equations, consider two
parallel planes, of infinite extent so that edge effects can be neglected. Imagine that the
planes are ideal blackbodies: each is both a perfect absorber and a perfect radiator. Let
one plane have temperature 7 and the other temperature 7,. The plane of temperature T
receives heat flux o7, and radiates heat flux 7%, where o is the Stefan-Boltzmann con-
stant and temperatures are absolute; that is, °K. Thus the ner heat flux received by the
surface of temperature 7T is

f=0(-T" (8.3-1)

Departing from the ideal, let the planes no longer be blackbodies, which means that they
are now characterized by “emissivities” & and €. Emissivity is defined as the ratio of total
emissive power to that of a blackbody at the same temperature, so that 0 < £ < 1. The
value of € depends on the roughness, degree of oxidation (if metal), and temperature of a
surface. As examples, €= 0.1 for polished aluminum, and &= 0.9 for black paint on metal
and for paper at room temperature. For infinite parallel planes, Eq. 8.3-1 is replaced by
[8.1]

T T (A ) (8.3-2)
/&) + (e, ) -1

The next complication is that practical surfaces may not be parallel, are often not flat, and
are certainly not infinite. These geometric complications are accounted for by a shape
factor (also called a view, angle, configuration, or interception factor). For two flat areas
S and S,, the shape factor depends on the distance between them, their magnitudes, and
the angle between their normals. Putting all this together, for two surfaces of absolute
temperatures 7" and 7,, the net average heat flux received by the surface of temperature 7
can be written in the form

f=Fo(T?-T%) (8.3-3)

where F is a factor that accounts for the geometries of the radiating surfaces and their
emissivities. The calculation of F is sufficiently complicated that it may be done by a sep-
arate computer program. Flux fin Eq. 8.3-3 is an average value; clearly, the pointwise
flux would not be constant around the perimeters of parallel pipes of temperatures 7 and
T,. For some surfaces an average value may be adequate, as, for example, when S is the
area of one face of one finite element in a mesh that is not extremely coarse. Equation
8.3-3 can be written as many times as there are surfaces that exchange radiant heat with
the face of temperature 7. Finally, by factoring 7'~ T* in Eq. 8.3-3, we can write

f=h{(T,-T)  whete  h, =Fo(T2+T*T +7) (8.3-4)

Comparing this equation with Egs. 8.2-5, we see that the flux expressions have the same
form. Accordingly, a radiation boundary condition leads to matrix and vector expressions
having the same form as for convection, Eq. 8.2-6, but with 4 and T replaced by A, and
T,, respectively. Note that 4, is a temperature-dependent heat transfer coefficient. This
makes the problem nonlinear and requires an iterative solution, as summarized in what
follows.
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The foregoing brief summary has omitted much, including any mention of radiation
from flames and hot gases. Remember that for radiation heat transfer 7" and 7, must be
absolute temperatures (measured in °K rather than °C). Some software, at the analyst’s
request, will add 273 to nodal temperatures expressed in °C. Thus, absolute temperatures
are used for internal processing where needed but input and output temperatures will be
in °C.

Solution of Nonlinear Problems. If temperatures at some locations in the body are ap-
preciably higher or lower than the mean temperature, it may be necessary to regard con-
ductivity k as temperature dependent. Thus K in Eq. 8.1-1 becomes a function of 7. The
problem is nonlinear because T is not directly proportional to thermal load Q. If there is
convection heat transfer with a temperature-dependent coefficient i1, K, and Q become
functions of 7. If there is radiation heat transfer, K, and Q are certain to be functions of
T. Equation 8.8-1 assumes the form

[KA(DKT} = {Q(D)} (8.3-5)

in which we wish to solve for T. Solution methods for nonlinear structural problems, dis-
cussed in Chapter 10, are also applicable to nonlinear thermal problems. Here we explain
only the very straightforward method of direct substitution, which is as follows. Assume
an initial temperature field 7,,, which might be a uniform temperature throughout the
body. Generate K, and Q based on this temperature and solve Eq. 8.3-5 for T. Use the
newly computed temperatures to obtain new values of &, /1, and h,, generate a new K, and

o

a new Q. and solve for a new T. Thus we generate the sequence of solutions

(KATONT,} = {QTo)}),  [KATHHT,) = {Q(T)}. . .. (8.3-6)

Iteration is stopped when an iteration limit is reached or when a convergence test is satis-
fied. A possible convergence test involves the calculation

| T =T

i

| T (8.3-7)

where the “norm” symbol usually indicates Euclidean norm, that is, the square root of the
sum of the squares. The ith iteration is deemed converged when e, is less than a user-pre-
scribed value or a default value coded in the software.

Equations 8.3-6 describe only one of many possible algorithms for solution of nonlin-
ear problems. Algorithms may differ greatly in efficiency and propensity to become nu-
merically unstable. Convergence is sometimes slow and may even fail if radiation effects
are dominant because these effects contribute strong nonlinearities.

8.4 THERMAL TRANSIENTS

When steady-state conditions do not prevail, temperature change in a unit volume of ma-
terial is resisted by “thermal mass™ that depends on the mass density p of the material and
its specific heat c. Equation 8.1-1 is augmented to become

K,T+CT=Q  where Q=0Q@ (8.4-1)
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1 general, thermal loads Q are time dependent. Matrix C may be
called a “heat capacity” matrix. It is built by assembling element heat capacity matrices c.

C= ¢ where c:jNTNpcdv (8.4-2)

{assemble)

Integration is over the element volume. Shape functions N are as described in connection
with Eq. 8.2-2. Matrix ¢ has the same form as mass matrix m of structural dynamics, Eq.
9.3-4. With ¢, as with m, the integral formulation can be replaced by an ad hoc “lumped”
formulation. This matter is discussed in Sections 9.3 and 9.11.

For now we restrict attention to linear problems. We wish to calculate T as a function
of time, when initial temperatures are prescribed, Q is a known function of time, and K,
and C are time independent. The calculation is usually done by direct integration in time.
For this purpoese. Eq. 8.4-1 is written in the form

K,T,+CT,=Q, (8.4-3)

where #n is the nth instant of time. For times ¢ = Ar, r = 2At, and so on, where At is an in-
crement of time, we seek the corresponding nodal temperatures T,, T,, and so on. Initial
nodal temperatures T, are presumed known and Q,, is presumed known for all n. Direct
integration can be based on the formula [3.2]

T =T, +A{(1 =T, + 7T} (8.4-4)

which resembles Eq. 9.9-6b of structural dynamics. The quantity v is a number that can
be chosen by the analyst. By manipulation [2.2], Eqs. 8.4-3 and 8.4-4 yield

1 1
[V K, v C}T,m =(1-7)Q, +7Q,. —{(l -V)K; v C} T, (8.4-5)

If ¥ =4 the algorithm is called either the Crank—Nicolson method or the trapezoidal rule.
For 3 < y< 1 the algorithm is unconditionally stable in linear problems. This means that the
numerical process will not “blow up” even if At is large. Results will not necessarily be
accurate for large values of Az because important changes may take place on a small time
scale. For y= 3 the method is second-order accurate, which means that numerical error in
T produced by the algorithm is approximately quartered when At is halved. This is a
global estimate; at some locations there may be only first-order accuracy. If Q represents a
thermal shock, the solation displays some spurious oscillation, which can be reduced by
using a value of y greater than § so as to introduce “algorithmic damping.” Spurious oscil-
lation can be avoided entirely by a slightly more complicated form of the algorithm [8.3].

In a nonlinear problem, K, C, and Q may all depend on temperature, and the forego-
ing algorithm may become unstable when y= 3. A larger value of ¥ may preserve stabil-
ity. However, accuracy suffers as yincreases. Unconditional stability in a nonlinear prob-
lem is guaranteed only if y= 1. Iterations within each time step may be needed to keep a
nonlinear analysis “on track.”

8.5 MODELING CONSIDERATIONS

Element types, sizes, and shapes for a thermal FE model may be dictated less by thermal
considerations than by an anticipated stress analysis based on the same mesh. The mesh
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demands of stress analysis are usually more severe. For example, a modest temperature
gradient may create forces of constraint that produce large strain gradients, especially
near holes, grooves, and other stress raisers. Accordingly, one should avoid three-node
triangles and elements markedly elongated in a direction of little temperature change,
even though such elements may work well for thermal analysis.

A temperature field that is linear in Cartesian coordinates produces deformation but no
stress in an unrestrained body that is homogeneous and either isotropic or rectilinearly or-
thotropic. A temperature field that is linear in cylindrical coordinates does produce stress.
This is the common situation in a pipe of standard dimensions with different temperatures
inside and outside: temperature varies almost linearly with the radial coordinate.

In some software, convection and radiation conditions can be handled by use of “sur-
face” elements that overlay the boundary surfaces of conducting elements. Surface ele-
ments serve to supply the necessary terms to K, and Q. They can also serve in the calcu-
lation of factor F in Eq. 8.3-4. Factor F is a function of position, so if it is taken as
constant over each surface element, accuracy will be improved by mesh refinement.

As with any FE analysis, details must be treated with care if blunders are to be
~avoided. Dimensions, constants, and thermal loads must be stated in a consistent system
of units. Orthotropic properties must not be confused as to direction, and local axes are
needed if principal material directions are not parallel to global axes. Some boundary
conditions on a solid or shell of revolution must be stated for the entire circumference or
on a per radian basis, as the software requires. Absolute temperatures are needed when
there is radiation heat transfer. Therefore, if a nonabsolute temperature scale is used, the
software requires input of an “offset” that states the absolute temperature of the zero-de-
gree mark in the scale used. Computed fluxes may be reported in a local coordinate sys-
tem for some elements. Surface fluxes may be defined as positive inward or positive out-
ward, depending on the software.

For time-independent analysis with neither convection nor radiation boundary condi-
tions, at least one nodal temperature must be prescribed in order to avoid a singular ma-
trix K;. Convection and radiation conditions contribute terms to K, that make it nonsin-
gular; then none of the nodal temperatures need be prescribed. In transient analysis a
singular K is acceptable, but @il nodal temperatures must be prescribed as initial condi-
tions at time r = 0. Typically, these temperatures are not all zero (unlike structural me-
chanics, where initial displacements and velocities are often all zero).

Only half (or less) of the structure need be modeled by FE if there is symmetry of
geometry, material properties, boundary conditions, and thermal loads with respect to one
(or more) planes. Heat does not flow across a plane of symmetry, so nodes in a plane of
symmetry of the structure become nodes on an insulated boundary of the FE model.

Boundary conditions are temperature dependent if heat transfer coefficients are tem-
perature dependent. Similarly, in a transient problem, boundary conditions may be both
temperature and time dependent. Sometimes boundary conditions are unclear [8.4].
Consider a rectangular plate, with two opposite edges at 0°C and the other two opposite
edges at 500°C. Should corner temperatures be assigned as 0°C, 500°C, 250°C. or some-
thing else? This problem is ill-posed and probably results from overidealization of the
physical situation. A similar difficulty arises if temperature is prescribed along one edge
and flux is prescribed along an adjacent edge. At the corner where edges meet, which
condition should be used? One can prescribe T or Q at the corner node but not both.

A critique of computed results should begin by comparing computed results with a
previously obtained approximation. Computed temperatures and fluxes at boundaries
should be checked to see that there are no disagreements with the boundary conditions in-
tended. Temperature contours (isotherms) should be parallel to a boundary of constant
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Fig. 8.5-1. (a) Temperature contours and (b) heat flux in a two-dimensional bimaterial block with
two isothermal boundaries and two insulated boundaries. Each material is isotropic.

temperature and normal to a plane of symmetry. Heat flux (Eq. 8.1-2) can be plotted in
vector fashion, so that one sees several arrows. each pointing in the local direction of heat
flow. with each arrow length proportional to the local magnitude of flux. Heat flux should
be parallel to an insulated boundary and parallel to a plane of symmetry. These remarks
are illustrated by Fig. 8.5-1. Note that although the horizontal centerline is a line of geo-
metric symmetry, the thermal problem is not symmetric with respect to this line because
prescribed boundary temperatures are unequal. Significant disagreement between condi-
tions expected and conditions obtained suggests an error in understanding, an error in
modeling, or a need for mesh refinement. The reader may wish o review Chapter 5: al-
though it is devoted to stress analysis, there are thermal counterparts for most items dis-
cussed.

Temperatures are interelement-continuous: fluxes are not. In this way temperatures re-
semble displacements and fluxes resemble stresses. Accordingly, concepts about dis-
cretization error in stress analysis can be transferred directly to thermal analysis. Flux
contours should be plotted element by element. that is. without nodal averaging.
Significant interelement discontinuities warn of a need for mesh refinement. The differ-
ence between the element by element flux field and the flux field based on nodal average
fluxes can be regarded as an error measure and can be used to drive adaptive meshing as
described in Section 5.16. In a good mesh, each element spans about the same number of
flux contours.

Various physical phenomena are described by an equation having the form of Eq.
8.1-2 or 8.1-3. Accordingly, by appropriate definition of variables and physical constants,
these phenomena can be analyzed by FE software intended for thermal analysis. The phe-
nomena include deflection of an elastic membrane under lateral pressure, diffusion of
moisture, electrostatic fields, fluid flow through a porous medium, incompressible and ir-
rotational flow of an ideal fluid, and pure torsion of a prismatic shaft.

This brief chapter omits a great deal. Study of it alone cannot confer competence in
thermal analysis. Like any other FE analysis, FE thermal analysis is likely to be unsuc-
cessful if performed by someone who lacks a physical grasp of the problem area.

8.6 AN APPLICATION

Sections of a pipe are connected by a flanged joint (Fig. 8.6-1). Each flange has been
slipped onto its section of the pipe and connected to it by two circumferential welds.
Bolts draw the flanges together and compress a gasket between them. In the neighbor-
hood of the joint, fluid in the pipe has temperature 0°C, and vapor condensing on the out-
side of the pipe has temperature 100°C. Heat transfer coefficients /4 are 5000 W/m?-°C
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Fig. 8.6-1. A flanged joint in a pipe. Flanges are welded to the pipe. Welds
are shown dark in the figure.

inside the pipe and 20,000 W/m*-°C outside. Material of the pipe and flange has thermal
conductivity k = 20 W/m-°C. The steady-state temperature field is required in the pipe
and in the flange, for use in a subsequent stress analysis with £ = 200 GPa, v = 0.5. and
a=12(107%)/°C.

Preliminary Analysis. The inside of the pipe must be warmer than 0°C and the outside
must be cooler than 100°C. In Fig. 8.6-2, locations where these limits are most closely
approached should be along AB and along CD, respectively. Away from the relatively
massive connection, where the wall is thin, we should see the warmest inside surface
temperature and the coolest outside surface temperature. Nevertheless, heat flux should
be large here because the wall is thin. The maximum possible value of flux through the
pipe wall is easily approximated by regarding the wall as plane and using the limiting
surface temperatures in Eq. 8.1-2.

AT 100~0

fim = =k == = = 20— = — 286,000 W/m" (8.6-1)
Ar 0.084 —0.077
D C D \
Insulated: AH. BC, IJ
Convection: AB. CDEFGH Radial
Axial ~<——m
FE
G G
1 J H
[ [ [TY¥f—r-
B
K L M A

(a) (b)

Fig. 8.6-2. (a) Identification of surfaces for the left half of Fig. 8.6-1. (b) FE mesh.
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PDF COW%WﬂE@?ﬁF\/yﬁgﬁiﬁ@ans that heat flows inward. In the flange, flux should be small
because temperature gradients shouid be small, but flux should have a component di-
rected toward BC.

Between the welds, along // in Fig. 8.6-2a, pipe and flange touch only at random and
isolated points, if at all. Conductivity across this cylindrical interface is very low as com-
pared with solid metal. We will assume that the conductivity is zero, and mode] 17 as an
insulator. This is a pessimistic assumption for eventual stress analysis because it will in-
crease temperature differences in the joint and therefore increase stresses. In thermal
analysis we would expect to see large temperature gradients, and therefore large flux,
near / and J.

FE Model and Analysis. The FE model is shown in Fig. 8.6-2b. The mesh shown was
generated automatically by the software, based on data that locate boundary lines and state
the desired element size near lettered points in Fig. 8.6-2a. Element sizes are smallest
where greatest temperature gradients are expected. This is a rather coarse mesh, especially
if it is also to be used for subsequent stress analysis. Elements are axisymmetric solids of
revolution, seen in cross section in Fig. 8.6-2b. All are either six-node triangles or eight-
node quadrilaterals. The apparent discontinuity along /J is intentional. Sets of nodes on
cither side of 77 are left unconnected to model an interface that transfers no heat. Bolts and
bolt holes are ignored because temperature gradients are expected to be low at bolt loca-
tions. The gap between adjacent flanges is also ignored because convection there is ex-
pected to be very low. Thus BC is taken as a symmetry plane of the structure, across which
no heat flows. Temperatures are not prescribed at any node. Convection boundary condi-
tions are prescribed along AB (inside) and CDEFGH (outside).

Critique of FE Results. Computed temperature contours are shown in Fig. 8.6-3. The
lowest temperature is 3.59°C along the right half of inside boundary AB. The highest tem-
perature is 99.99°C along the outer surface CDEFG. Temperature contours are interele-
ment-continuous except along 1J, where discontinuity is expected. In the left portion of
the model, temperature contours are parallel to the pipe axis, which indicates that this
portion of the model is sufficiently long for thermal analysis. Abrupt changes in contour
directions near / and J (as seen in Fig. 8.6-3b) suggest a need for mesh refinement in
these areas. Also, contours are not quite normal to symmetry plane BC.

D C
Detail 89
Temperatures
(in°C) 89
79
79
89
F E
68 79
57 68
46 57
) 7/ N—% 36
36 25 14 B 25 14
(a) (b)

Fig. 8.6-3. (a) Computed temperature contours. (b) Detail near point /.
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A vector plot of computed flux appears in Fig. 8.6-4a. Flux arrows are perpendicular
to ternperature contours because the material is isotropic. Arrows point in the direction of
heat flow and arrow lengths are proportional to flux magnitude. Each arrow emanates
from the center of an element. In the outer portion of the flange, some arrows are so short
that they appear as dots. Radial flux near AH is 170,000 W/m?, which, as expected, is less
than the approximate limiting value in Eq. 8.6-1. Flux directions agree with expectations
of preliminary analysis. Flux contours near I, Fig. 8.6-4b, show strong interelement dis-
continuities, again suggesting a need for local mesh refinement. Similar behavior appears
near J and to a lesser extent near G. Nevertheless, the relative error (Section 5.16), ap-
plied to the heat flux field in the present application, is only 77=0.03.

The thermal results appear reliable except for a need for more detail near G, /, and J.
Precisely ar these locations there can never be enough detail because flux is theoretically
infinite at sharp reentrant corners. We will ignore these difficulties and proceed, mainly
in order to show how the same mesh behaves when used for stress analysis.

Subsequent Stress Analysis. The mesh shown in Fig. 8.6-2b is used again, now with
computed nodal temperatures used to load the model. Load from bolt tensions could also
be applied, as described in Section 5.7, but we will not do so here. Two significant ques-
tions about boundary conditions arise. First, should nodes along BC be fixed against axial
motion or not? Allowing movement gives no credit to resistance offered by the gasket
and the bolts, while fixity gives too much credit. Second, is it proper to let nedes along 1J
move independently? If sides of the interface pull apart, the answer is yes. But if sides
tend to overlap, the model should allow relative axial motion but not relative radial mo-
tion for element edges that abut one another across the interface.

We elect to run the stress analysis twice, first allowing axial motion along BC and sec-
ond preventing it. Thus we expect to bracket the correct results. Before running the FE
analysis we make the following displacement and stress predictions, which are applicable
to either set of boundary conditions. The cooler inside surface tends to contract relative to
the warmer material, thus pulling material toward the inside and opening a gap along IJ.
As seen in Fig. 8.6-3a, material between 1J and the inner surface is significantly cooler
than most of the remaining material. This implies that contraction of this region is largely

D C

Flux Flux
(vector plot) {contour plot)

27
27

52 27

(a) (b}

Fig. 8.6-4. (a) Vector plot of the computed flux field. (b) Detail of computed flux con-
tours near point /. Flux units are thousands of watts per square meter (10° W/m?).
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Fig. 8.6-5. (a) Displaced shape with axial displacement prevented only at B. Magnification factor

300. (b) Detail of computed contours of von Mises stress o, near point /. (The mesh is much too
coarse.)

restrained by its comparatively massive surroundings. Material fully restrained, uniaxially
stressed, and cooled 100°C relative to its supports would have the tensile stress ¢
AT = 12(107%)200(10%)(100) = 240 MPa. We expect that the maximum computed stress
will be approximately this large. Similarly, temperatures at A and H are about 30°C and
90°C respectively, that is, each is 30°C different from the average temperature of about
60°C at the pipe midsurface. Therefore we expect to see circumferential and axial stresses
of about £ AT = 12(107)200(10°)(30) = 72 MPa, tensile inside and compressive outside.

In the first analysis, axial motion is prevented only at B. The deformed shape, exagger-
ated for plotting, is shown dashed in Fig. 8.6-5a, superposed on the undeformed shape.
The undeformed shape is assumed to prevail when all material is at the zero—degree ref-
erence, which is 0°C in this example application. Point C moves less than 0.1 mm to the
right, which is probably not enough to meet its neighboring point on the other flange and
create a gap closure problem. In the first analysis and in the second, in which axial mo-
tion is prevented along BC, a gap opens along /J, as expected (which incidentaily con-
firms the assumption made in thermal analysis that there is no conduction across 7). The
left portion of the deformed FE model is not parallel to the pipe axis, which indicates that
this portion is too short for accurate stress analysis. Circumferential and axial stresses at
A and H are found to have approximately the values predicted. Other computed stresses
appear in Table 8.6-1. Again the maximum stresses have approximately the values
predicted. Unfortunately, siress contours have gross interelement discontinuities (Fig.

TABLE 8.6-1. Maximum and minimum stresses (in MPa) for different axial restraint
along BC. Stresses are o (radial), g,(circumferential), o.(axial), and o,(von Mises).
Locations are identified in Fig. 8.6-2.

Only node B axially restrained All nodes on BC axially restrained
o, o . o, c, Cg o, .,
Maximum stress 113 216 244 222 105 229 257 242
Location LJ L-N LJ J LJ M-B LJLK G,J
Minimum stress -68 -142 -199 8 -107 -225 -279 18
Location G G G P G G G C
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8.6-5b). Similar results (not plotted) appear in the second analysis, when there is axial
fixity of all nodes along BC. From the stress field, relative energy errors of the first and
second stress analyses are both 1 = 0.28, far larger than the value 17 = 0.03 obtained in
thermal analysis. We conclude that considerable mesh refinement is needed.
Generalizing, we also conclude that a mesh adequate for thermal analysis may be quite
inadequate for stress analysis.

ANALYTICAL PROBLEMS

8.1 Derive Eq. 8.1-4. Suggestions: If flux f, enters the x-normal face of a differential
volume dV = dx dy dz, flux f, + (df/0x)dx exits the opposite face, and similarly for
y-normal and z-normal faces.

8.2 Determine the 2 by 2 conductivity matrix k of a thin, flat, solid of revolution ele-
ment, which is shown in cross section in the sketch. Lateral surfaces are insulated.
The material is homogeneous and isotropic.
(a) Apply the direct method. Assume that the rate of heat flow has magnitude

g = 27 lf = (@ + DUTK(T, — Tl ~ b))

for all r in the range b <r < a.
(b) Apply the formal procedure, Eq. 8.2-4.

8.3 Lateral surfaces of the uniform bar shown are insulated. The bar is modeled by two
elements, each of length L. Node 3 is maintained at temperature 7. Constant heat
flow ¢, is imposed at node 1. In terms of g,, dimensions, and constants, what are 7,
and T, relative to T5? Also, do T, and T, yield the expected value of ¢ at node 37
Make use of the conductivity matrix in your solution.

I

IS

N
w

1
¢ 7 ZA—r 1

T a 1 b L t L )
Problem 8.2 Problem 8.3

8.4 Repeat Problem 8.3, but use a stepped bar rather than a uniform bar. Let elements
1-2 and 2-3 have the respective cross-sectional areas A, and 24,

8.5 Lateral surfaces of the uniform bar shown are insulated. The bar is modeled by
three identical elements. Nodes 1 and 4 are maintained at the respective tempera-
tures 0°C and 300°C. What are the temperatures at nodes 2 and 37 Make use of the
conductivity matrix in your solution.

1 2 3 4
0°C ¢ ¢ ¢ $300°C
fe— L e L —p— L — Problem 8.5

8.6 Repeat Problem 8.5, but use a stepped bar rather than a uniform bar. Let elements
1-2, 2-3, and 3-4 have the respective cross-sectional areas A, 24 .. and 34,

8.7 A uniform bar is modeled by two identical two-node elements, as shown. Node 1 is
maintained at temperature 7,= 0°C. The bar is surrounded by fluid of temperature
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8.8

8.9

8.10

which transfers heat to the bar across its cylindrical surface of area S. In

the units listed at the end of Section 8.1, data are: A = 300(107°), & = 600, & = 200,

and § = 0.020.

(a) Interms of i and S, (the lateral surface area of one element), formulate the 2 by
2 element matrix and the 2 by | element vector whose general forms appear in
Egs. 8.2-6.

{(b) Use the results of part (a) to form structure matrices, and use them to determine
nodal temperatures 7, and 75,

(c) Repeat part (b), but alter the model so that the left element is half as long as the
right element. The overall length of the model remains 0.300 m.

(d) Upon comparing results from parts (b) and (c), what conclusion do you draw?

1 2 3
t [ '

| 0.150 m i 0.150m {  Problem 8.7

A pipe of outer radius b is covered by insulation of outer radius a, as shown in cross
section. Convection heat transfer takes place at the outer surface of the insulation. It
can be shown [8.1] that radial heat flow in a cylinder of length L is ¢ = 27kI(7, —
T )Mn(a/b). Assume that k and / are temperature independent and that 7, and 1T are
independent of @ and b. Show that g becomes maximum when a = &/ (provided, of
course, that & < k/h).

Problem 8.8

Over the range 0°C < T < 500°C, the thermal conductivity of a certain metal in W/m
- °C may be taken as k = 73 — 0.067. Consider that lateral surfaces of the uniform
bar shown are insulated and that ends are maintained at the respective temperatures
0°C and 500°C. Calculate the temperatures of nodes 2 and 3 and the heat flux per
unit of cross-sectional area of the bar. Assume that conductivity & throughout an el-
ement is determined by the average of the element’s two nodal temperatures. Carry
out three iterations: assume that 7 = T = 0°C throughout the bar to start, and use
Eq. 8.3-6 to solve successively for T,, T,, and T.

1 2 3 4
o°Ce [] [} $ 500°C

< L f L f L {

A=25(10"% m2 L=0.040m Problem 8.9

A 10-mm thick flat sheet of material ab is shown in cross section by the sketch. The
sheet is parallel to a flat wall ¢ that radiates. Assume that k = 0.70 W/m-°C and that
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&, = £.= 0.6, all independent of temperature. If surface temperatures are maintained at T,
=20°C and T, = 600°C, what is the temperature of surface 4? Use the direct substitution
method, even though there is but one unknown, namely, 7,. Assume 7, = 100°C to start
the process.

100mm—- |
7

20°C 600°C

N N

a b c Problem 8.10

8.11 Imagine that a single-d.o.f. problem yields the differential equation 27 + 67 = 8.
The initial condition is T = 0 at t = 0. Compute T as a function of time by the fol-
lowing methods.

(a) Obtain the exact solution.
(b) Use Eq. 8.4-5 with y= 3. Take eight steps with Ar = 1.0.
(¢) Use Eq. 8.4-5 with y= 3. Take eight steps with Ar = 10.0.

COMPUTATIONAL PROBLEMS

In the following problems compute temperature and heat flux in the plane or solid bodies.
Exploit symmetry if possible. Examine temperature contours, flux contours (unaver-
aged!), and vector plots of the flux field. If mesh refinement is undertaken, estimate the
percentage error of FE results in the finest mesh. Unless otherwise stated, assume that
plane models are homogeneous, isotropic, have unit thickness, and insulated lateral sur-
faces. Also assume that steady-state conditions prevail unless otherwise stated. Any of
the steady-state problems can be converted to a transient problem by assuming that all
nodal temperatures are initially uniform and change over time to a steady-state condition.
Each thermal analysis can be followed by stress analysis if so desired.

Choose convenient numbers for quantities indicated by symbols. It is desirable to con-
sult texts and handbooks for information about constants and coefficients and their tem-
perature dependence. But for convenience the following approximate data are provided,
in units used in the latter part of Section 8.1: ¢ = 460 (steel), ¢ = 4200 (water), & = 10
(air), 1 = 1000 (water), k& = 20 (steel), p = 7800 (steel), p = 1000 (water). These values lie
in wide ranges actually observed. The observed range of / is particularly large (two or-
ders of magnitude for air; more for water if condensing steam is included).

A FE analysis should be preceded by an analytical approximation that is oversimpli-
fied if necessary. If these results and FE results have substantial disagreement we are
warned of trouble somewhere.

8.12 Let the plane annular sector shown be homogeneous (k; = k,); that is, ignore k., ¢,
B. ¢, and d in this problem.
(a) Let boundaries AB and CD be insulated. Impose temperature 7, along AD and
temperature T, along BC.
(b) Let boundaries AD and AB be insulated. Impose heat flow ¢ along BC and tem-
perature 7 along CD except at corner C.
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8.13 Repeat Problem 8.12, but let the sector be inhomogeneous (k, # k,).

Problem 8.12

8.14 The plane annular sector shown is orthotropic. Principal material axes ns have con-
stant orientation ¢ with respect to global Cartesian axes XY. Principal conductivities
are k, and &, = ck,, where ¢ is a number greater than zero. Follow the instructions of
parts (a) and (b) of Problem 8.12.

8.15 The plane annular sector shown has prescribed temperature 7, along BC, CD, and
DA, and prescribed temperature 7, along AB. (This is the “undefined corner” prob-
lem noted in the text.) Evaluate the temperature field and, in particular, the tempera-
ture at point £, whose radial coordinate is (2b + @)/3. Use more than one mesh,
starting with a coarse mesh. Choose 7, and T} as follows.

(a) Prescribe T, =T, =T,.

(b) Prescribe 7, =T, =T.

(¢) Prescribe T, = T = (T, + T)/2.

(d) Let 7, and Ty be undefined. What temperature does the solution provide at A

and B?
D c D c
n< 0 b 0 9
“ 2 7/
-+ +
Probiem 8.14 Problem 8.15

8.16 Repeat Problem 8.15, but prescribe T, along AB, BC, and CD, and T, along DA.
Parts (a) through (d) now refer to corners A and D.
8.17 Consider a chimney of square cross section and uniform wall thickness. Gas inside

has temperature 7, and air outside has temperature 7,. Assume that conditions are
the same from one cross section to the next.

8.18 A long pipe is covered by a layer of insulation (see the sketch for Problem 8.8). For
the insulation one might use £ = 0.1 W/m - °C.
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(a) Impose temperatures 7; on the inside surface of the pipe and 7, on the outside
surface of the insulation.

(b) Let the pipe carry water at temperature 7, and let the insulation be surrounded
by air at temperature 7, Assume that conditions are axisymrmetric.

A spherical vessel has a radially directed cylindrical outlet (see the sketch for
Problem 6.24). Water at temperature 7, fills the vessel and the outlet. The outside is
surrounded by air at temperature 75

A glass cooking pot is filled with water at temperature 7, and placed over a gas
flame. Assume a reasonable shape and dimensions for the pot. Make a reasonable
approximation for the value (or the variation) of T along sides of the pot. For glass,
one might use ¢ = 800 J/kg - °C, k = 1 W/m-°C, and p = 2400 kg/m”.

A cylindrical shaft having a flat end is suddenly pushed against a flat surface and
rotated with constant angular velocity, as shown. Let P = 80 kN, R = 0.05m, and Q
correspond to 180 rpm. Assume that contact pressure is uniform, with a coefficient
of friction of 0.2, and that the cylindrical surface of the shaft is surrounded by air at
temperature 7. Also assume that the flat surface is a perfect insulator.

(a) Compute the transient solution.

(b) Compute the steady-state solution.

Problem 8.21

Repeat Problem 8.21, but now assume the flat surface is part of a very large 3D
solid body, of the same material as the shaft and also exposed to air at temperature
T;on its surface.

A rectangular flat plate has dimensions a by b, as shown. Initially the plate is at
temperature T,. At time 7 = 0, a second closely spaced parallel plate. adjacent to
portion ABCD of the first plate but not shown, assumes and then maintains tempera-
ture T,, and thus begins to exchange radiation with area ABCD on one lateral sur-
face of the first plate. On the remainder of this lateral surface and on the other lat-
eral surface of the first plate, there is convection to air at temperature 7, Assume
that the emissivity of both plates is 0.3.

(a) Compute the transient solution.

(b) Compute the steady-state solution.
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8.24 The sketch represents the cross section of a pipe. Initially the pipe and fluid flowing
through it are at temperature 7). At time ¢ = 0, a closely spaced cylindrical surface
spanning angle ¢ assumes and then maintains temperature 7, and thus begins to ex-
change radiation with the adjacent outer surface of the pipe. Assume that conditions
are the same from one cross section to the next.

(a) Compute the transient solution.
(b) Compute the steady-state solution.

8.25 The sketch represents a cross-sectional view of a large 3D solid body. Its flat sur-
face AA, seen in edge view, is exposed to air at temperature 7. Initially the solid
body is at temperature T,. At time ¢ = 0, heat commences to be generated at a con-
stant rate per unit volume in a cylindrical region of diameter D and height H.

(a) Compute the transient solution.
(b) Compute the steady-state solution.

Problem 8.24 ~ Problem 8.25
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CHAPTER 9

Vibration and Dynamics

This chapter discusses how the FE method is used in problems of structural dynamics
and vibrations. The more important aspects of theory and computational procedure are
summarized. Application examples at the end of the chapter illustrate natural frequencies
of vibration, harmonic response, the modal method for dynamic response, and response
spectrum analysis.

9.1 INTRODUCTION

A structure moves as load is applied. If the load is cyclic, but with a frequency less than
about one-third the structure’s lowest natural frequency of vibration, the problem can
probably be classed as static and analyzed by methods discussed in preceding chapters. If
the load has a higher frequency, or varies randomly, or is applied suddenly, then a dy-
namic analysis is required. One may be interested in the largest acceleration in some part
of a structure, the largest stresses, whether a structure will resonate with rotating machin-
ery it supports, or other questions. Like static analysis, dynamic analysis uses a stiffness
matrix, but it also uses a mass matrix and a damping matrix. Accordingly, FE modeling
in dynamics includes most aspects of FE modeling in statics, and many additional con-
cepts and options as well.

This chapter does not present a comprehensive treatment of structural dynamics, its
underlying theory, and computational algorithms. For detailed development of these mat-
ters the reader is urged to consult specialty textbooks, of which there are many. Here we
discuss in a nonrigorous way some types of dynamic analysis commonly performed by
users of FE software. Specifically, we discuss natural frequencies of vibration, steady
forced vibration, and transient response analysis. Included is a discussion of some tools
needed to carry out these analyses, such as the use of vibration modes, reduction in the
number of d.o.f., and integration in time. All tools discussed appear in one or more large-
scale FE codes.

The reader who consults other books will find that there is little agreement on termi-
nology. A given concept or procedure may be known by several names, some of which
are noted in what follows.

9.2 BASIC EQUATIONS. VIBRATION

Single d.o.f. Figure 9.2-1a shows a single mass mn and a single linear spring k. Motion is
described by the single d.o.f. u = u(¢) and is governed by Newton’s law f = ma.

227
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Fig. 9.2-1. Single d.o.f. systems, with displaced configurations shown by dashed lines. (a)
Undamped system. (b) Damped system. (c) Support excitation u, = u(?).

Acceleration is @ = ii (in common notation, a dot indicates differentiation with respect to
time, so that &= du/dt and ii = d*u/dt?). Accordingly, in Fig. 9.2-1a,

f=ma hence r—kw=mi -or ku+mi=r (9.2-1)

where r = () is an externally applied load or “forcing function” that varies with time in a
known fashion.

In Fig. 9.2-1b, a viscous damper is added, using the standard “dashpot” symbol for it.
A viscous damper resists velocity & with force ciz. Newton’s law now yields

r—ku —cu=mu or ku+cu+mi=r (9.2-2)

In Fig. 9.2-1c, the body that supports mass m is subjected to a prescribed motion u, =
u,(1). Displacement of the mass is u relative to the support and 1s s = u + 1, relative toa
fixed reference frame. Elastic and damping forces depend on the relative motion, but the
inertia force depends on the absolute acceleration § = d%s/dt?. Accordingly. f= ma vields

~

—ku —cit=m(ii + i) or ku + ci+ mi = —mid,, (9.2-3)

The known forcing function is therefore r = —mii,. This form of the equation of motion is
convenient when measurements are made relative to the support, as, for example, when
the support is the earth and u, is the known motion of an earthquake.

Multiple d.o.f. If we deal with a FE structure, for which there is more than one d.o.f., u
is replaced by a vector D of nodal d.o.f. and r is replaced by a load vector R, which may
contain moments as well as forces and which is a known function of time. Also, k. ¢, and
m are, respectively, replaced by a stiffness matrix K, a damping matrix C, and a mass
matrix M. Thus the equation analogous to Eq. 9.2-2 for a multi-d.o.f. structure is

multi-dof: KD+CD+MD=R  where R=R(r) (9.2-1)

This is the governing equation of structural dynamics, written in its most common form.
It states that externally applied forces R are resisted by the sum of three internal forces:
stiffness forces KD, damping forces CD, and inertia forces M. All these forces are time
dependent in a dynamics problem. If there are no nonlinearities, K. C., and M contain
only constants: they are not functions of time or of displacement. In general. given K. C.
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one seeks to compute displacements D, velocities D, and accelerations D as
functions of time. The goal may be more restricted, as, for example, when one seeks only
the frequencies and modes of vibration. These computations, as well as mass and damp-
ing matrices, are considered in subsequent sections.

Single-d.o.f. Free Vibration. Vibration analysis is one of the most commonly per-
formed dynamic analyses. Vibration of multi-d.o.f. systems is considered in Section 9.4.
Here we consider a single d.o.f. The motion is called “free” vibration if the forcing func-
tion is omitted. Thus » = 0 in Egs. 9.2-1 and 9.2-2.

If there is no damping, we use Eq. 9.2-1. After motion begins, as the result of initial
conditions that do not concern us here, the mass vibrates with simple harmonic motion,

u=usin wr (9.2-5)

where u is the amplitude of motion and  is the natural frequency of vibration. Another
name for @ is circular frequency. Its units are radians per second. The cyclic frequency is
f= /27, whose units are hertz (abbreviated Hz; the number of cycles per second). The
period is T = 1/f. The motion is shown in Fig. 9.2-2a. Different initial conditions would
shift the sine wave along the r axis. The value of w is obtained by substitution of Eq.
9.2-5 into Eq. 9.2-1. Thus

. . . k
kusinwt—miu@-sinwt =0 from which = |— (9.2-6)
m

Frequency w is independent of whether amplitude u is large or small, provided that there
are no nonlinearities. Nonlinearity could be introduced by yielding of the spring or by
collision of the mass with a support.

If damping is present, free vibration is described by Eq. 9.2-2 with » = 0. It can be
shown that if damping c is less than a “critical” value c, the motion is oscillatory, but the
amplitude of motion decays with time as shown in Fig. 9.2-2b. The damped natural fre-
quency @, is less than the undamped natural frequency = Vk/m and is given by

@4 = m41-&? where = £ and ¢, =2mw (9.2-7)
¢
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Fig. 9.2-2. (a) Undamped free vibration. (b) Damped free vibration (¢ < Co).
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where &, the fraction of critical damping, is called the damping ratio. Structural damping
is usually small-—typically & is less than 0.15—so that @, = @. For small damping, the ra-
tio of any two consecutive displacement peaks, u./i; in Fig. 9.2-2b, is related to & by the
equation In(u./u,) = —2x&. Thus, if £ = 0.1, the amplitude of motion is reduced by about
half in one cycle of vibration.

9.3 MASS MATRICES

The physical meaning of a mass matrix is analogous to the physical meaning of a stiff-
ness matrix. The jth column of an element stiffness matrix is the vector of nodal loads
that must be applied to the element in order to maintain the displacement field created by
a unit value of the jth d.o.f. The jth column of an element mass matrix is the vector of
nodal loads that must be applied to the element in order to maintain the acceleration field
created by a unit value of the second time derivative of the jth d.o.f.

The simplest and historically earliest way of representing mass is by mass particles.
The process is called “mass lumping” and results in a diagonal or “lumped” mass matrix.
For example, consider lateral displacements of a two-node bar element of cross-sectional
area A, length L, and mass density p. The element mass is therefore pAL. As shown in
Fig. 9.3-1a, mass lumping implies a discontinuous displacement field in which the two
halves of the element translate separately. Accelerations v, and U, of the respective
halves are associated with forces F; and F;, each in accordance with Newton’s law
f = ma. Thus the lumped element mass matrix m is

AL/2 0 5
m=|" sothat  mi! :{F‘} (9.3-1)
0 PAL/I2 Uy F

If general plane motion were allowed, so that element nodal d.o.f. became d = [, v,
u, v,)7, m would be a 4 by 4 diagonal matrix whose nonzero terms are m, = pAL/2, i =
1,2,3, 4.

It is more reasonable to assume a linear variation for the lateral displacement v = v(x)
of a two-node bar element. This results in a linear distribution of inertia force, Fig. 9.3-
1b, whose intensity is pAU, and pAv, at the respective ends. Treating inertia force as a

df = qdx = (pAU)dx

vy o~ — == T ,
o N .

Fl L F2 F] L F2

(a) (b)
Fig. 9.3-1. Conceptual lateral displacements of a bar element and inertia forces for mass idealiza-
tions. (a) Provides diagonal mass matrix. (b) Provides nondiagonal mass matrix. g, = pAU,. g, =
PAU.
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F=pAL(SU, ++0,) B = pAL(LD, +4,) (9.3-2)

Thus the element mass matrix m is

m= [Zﬁé;é ’gii;g:! so that m{l.].l } = {? } (9.3-3)

For general plane motion, the m, in m of Eq. 9.3-3 would also apply to axial d.o.f. u, and
it,. The resulting m would be 4 by 4 and would contain eight nonzero coefficients.

For a plane beam element we must add rotational d.o.f. 6, and 8, to Fig. 9.3-1b; m
then becomes a 4 by 4 matrix. Mass particles have no rotational inertia, so particle-lump-
ing for a four-d.o.f. beam element produces a diagonal mass matrix whose only nonzero
lerms are 1,y = m3 = PAL/2, associated with ¥ and U,. If mass is also associated with
rotational d.o.f., m,, and m,, become nonzero. Somewhat arbitrarily, we could say that
My = my, = PAL/24, which is the moment required to create unit angular acceleration of
a bar of length /2 pivoted at one end.

For elements in general the foregoing process is inadequate, in the same way that ele-
mentary direct methods fail to provide the stiffness matrix of an arbitrary element. By us-
ing inertia forces in virtual work arguments, it can be shown that a general formula for an
element mass matrix is

m= JNTNp dv (9.3-4)

where p is mass density, V is the element volume, and N is the element shape function
matrix. Equation 9.3-4 provides the “consistent” element mass matrix, so called because
it uses the same shape functions as are used to produce the element stiffness matrix (Eq.
3.1-10). If applied to a two-node bar element with a linear lateral displacement field, Eq.
9.3-4 yields Eq. 9.3-3. If applied to a plane beam element (Fig. 2.3-1), whose lateral dis-
placement field is cubic in x, Eq. 9.3-4 yields

156 22L 54 -13L
pAL| 22L 4L* 13L =3[
T40| 54 130 156 —221
~13L -3} -22L 412

(9.3-5)

which operates on the accelerations d = [#, 6'?;,_1 U, ézz]T.

All of the foregoing element mass matrices correctly represent resistance to transla-
tional acceleration. They differ in how resistance to angular acceleration is modeled.
Whether a mass matrix is diagonal or full, and whether or not rotary inertia is associated
with rotational d.o.f., proper convergence with mesh refinement is assured if element
mass matrices provide the correct inertia force in response to all possible translational ac-
celerations of the element. If elements are compatible and fully integrated and mass ma-
trices are consistent, computed natural frequencies @, of the FE model are guaranteed to
be upper bounds on natural frequencies of the mathematical model, that is, guaranteed to
converge from above with mesh refinement. In other words, subject to the restrictions
noted, discretization error raises computed natural frequencies.
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The structure mass matrix M is formed by assembly of element mass matrices m, in
the same way that the structure stiffness matrix is formed by assembly of element stiff-
ness matrices. A consistent mass matrix M has the same pattern of zero and nonzero co-
efficients as the corresponding stiffness matrix K.

One must be careful with units. If lengths are in meters, f = ma yields a force in new-
tons if m is in kilograms and a is in meters per second squared. If lengths are in millime-
ters, m (kilograms) must be divided by 1000 to obtain the force in newtons. Or, in terms
of mass density, a p expressed as kg/m® must be divided by 10'2 if length units are to be
millimeters and force is still to be in newtons.

9.4 UNDAMPED FREE VIBRATION

We begin with Eq. 9.2-4. With no damping, C = 0. Vibration is “free” if loads R are ei-
ther zero or constant. Constant massless loads affect natural frequencies only if the loads
create significant prestress, which modifies stiffness. Actual loads are usually associated
with mass, which must be included in M. In vibration analysis we ask for the natural fre-
quencies and modes of a structure without regard to which of them may be important in
an application and without regard to how vibration is initiated. All d.o.f. move in phase
with one another, and at the same frequency. Accordingly, all of the time-dependent dis-
placements reach their maximum magnitudes at the same instant of time. Vibrational mo-
tion, calculated as described below, consists of displacements that vary sinusoidally with
time relative to the mean configuration D,, created by constant loads R,. If R, = 0. the
mean configuration is the unstressed configuration. Symbolically,

D=D, +Dsinw  where D,=K'R, (9.4-1)

m

in which D is the vector of nodal displacement amplitudes in vibration and @ is a natural

frequency in radians per second. Hence D = —?D sin or. Substituting all this informa-
tion and C = 0 into Eq. 9.2-4, we obtain

K- o'MD=0 (9.4-2)

as the governing equation of undamped free vibration. Mathematically, Eq. 9.4-2 is called
an eigenvalue problem. It has the trivial solution D = 0. We are interested in nontrivial
solutions, of which there are as many as the number of d.o.f. The ith nontrivial solution
consists of a natural frequency of vibration and its associated mode D,. A natural fre-
quency may also be called a resonant frequency, and w? is variously called an eigenvalue,
latent root, or characteristic number. A mode may also be called an eigenvector, mode
shape, normal mode, natural mode, characteristic mode, or principal mode. The smallest
nonzero @, is called the fundamental frequency of vibration. Various algorithms are
available for solving Eq. 9.4-2.

Some characteristics of a structural eigenvalue problem and the resulting frequencies
and modes are as follows.

. Unlike a static problem, no support is necessary. A structure that is unsupported or
partly supported has rigid-body modes: that Is. displacement modes 1n which all
strains are zero. For each rigid-body mode the natural frequency is zero. (Some solu-
tion algorithms fail if there are zero eigenvalues, unless an “eigenvalue shift” is in-
voked, either by the user or automatically by the software.)
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interpretation that a vibration mode is a configuration in which elastic loads are in
balance with inertia loads.

» The relation among d.o.f. in D, defines the shape of mode i, but otherwise the mag-
nitudes of the d.o.f. have no meaning. Thus, if ¢ is an arbitrary number (including
¢=-1), D, and ¢D; are the same mode. For output, software may “normalize” each
mode by scaling it so that its largest d.o.f. is unity. A more common normalization,
at least for theory and internal processing, scales each mode D, so that

DIMD, =1 (9.4-3)

If stresses were computed directly from a displacement mode they would probably
be unrealistically high because of scaling.

+ Eigenvectors are orthogonal with respect to stiffness and mass matrices; that is, for
i#j,D]KD,=0and D' MD, = 0.

» Usually, unless there is shock loading, only the modes of lowest frequency are im-
portant in the structural response. Accordingly, even if the model has a great many
d.o.f., usually only the lowest frequencies and modes are extracted from Eq. 9.4-2.

+ Lower modes exhibit fewer “waves” than higher modes. Accordingly, in lower
modes there are more elements per wave and there is less discretization error.

Example. A uniform slender cantilever beam is modeled by a single element (Fig.
9.4-1a). Only flexural motion in the plane of the paper is to be considered. We will calcu-
late frequencies and modes provided by two forms of the mass matrix. The calculation
methods used in this example are suitable only for very small matrices and hand calcula-
tion.

Only the d.o.f. at node 2 are nonzero; therefore we use only terms from the lower
right-hand corners of the element stiffness and mass matrices. Beginning with the consis-
tent mass matrix, we use terms from Eqs. 2.3-2 and 9.3-5. Equation 9.4-2 becomes

~6L+22La 41 —4[%g

El] 12 -6L , PAL] 156 =22L N\, 0
. , |-t —= , " = (9.4-4)
L1-6L 417 420 | -22L 417 6., 0
For a nontrivial solution, the determinant of the complete matrix in Eq. 9.4-4 must van-
ish; that is,
12-156a  -6L+22La w?pALt
=0 where a=—"— (9.4-5)

420E1

Solving the determinant for a and then solving for @2, we obtain the frequencies of mode
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Fig. 9.4-1. (a) One-clement model of a uniform cantilever beam and displacement amplitudes at
node 2. (b,c) Shapes of the two modes of lowest frequency.
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1 and mode 2:

12 172

7

®, =3.533 E - w, =34.81 E]4 (9.4-6)
pAL PAL

The shape of the ith mode can be obtained by substituting «; into either equation in Eq.
9.4-4, setting U, = 1, and solving for @;2. In this way we obtain the mode shapes v, = 1,
5:3 = 1.38/L for the first mode and v, = 1, 522 = 7.62/L for the second mode. The dis-
placed shape between nodes 1 and 2 is cubic, defined by the usual interpolation (Eq.
2.3-4). The two mode shapes are shown in Fig. 9.4-1b,c. Dashed lines show only one ex-
treme position; the other is obtained by reversing the algebraic signs of all d.o.f. (Typical
FE software plots only straight lines between nodes. Thus, in the present one-element ex-
ample, software would plot each mode shape as a single straight line, even though the de-
formed beam centerline is actually a cubic curve.) »

If we use instead lumped masses without rotary inertia, the only nonzero mass term in
Eq. 9.4-4 becomes pAL/2, associated with v,. Computed frequencies are then

EI
pAL'

172
W, = 2.449[ J @, not obtainable (9.4-7)

The only mode shape obtainable is associated with v, = 1 and a value of 8_, consistent
with a static transverse tip force sufficient to produce v, = 1, namely, E_):z =1.50/L.

Vibration theory shows that the exact multipliers of (EI/pAL*)""* are 3.516 for mode
and 22.03 for mode 2. FE results are inexact because the assumed cubic deflection on
which k and m are based cannot represent a mode shape exactly. As expected. FE results
are more accurate for o, than for w,, and the consistent mass matrix has overestimated
the frequencies. In this example (but not in all problems), the consistent mass matrix out-
performs a lumped mass matrix.

Only two modes and frequencies can be obtained in the foregoing example because it
uses only two d.o.f. If length L were divided into (say) five elements, we would increase
the number of d.o.f. to 10. Then 10 modes and frequencies would be obtainable. Also, we
would obtain more accurate frequencies and mode shapes for the lower modes.

9.5 DAMPING

Damping dissipates energy and causes the amplitude of free vibration to decay with time
(Fig. 9.2-2b). Viscous damping applies forces to the structure proportional to velocity but
oppositely directed. Unfortunately, common sources of damping are not viscous and are
neither easy to measure nor as easy to represent mathematically as viscous damping.
These sources include “internal friction” in the material and Coulomb friction in connec-
tions. neither of which exerts forces proportional to velocity. Fortunately. damping in
structural problems is usually small enough that it can be idealized as viscous, regardless
of the actual damping mechanism, and represented by a form chosen for its mathematical
convenience. “Small enough” usually means that damping forces CD are less than
roughly 10% of forces KD, MD, and R in Eq. 9.2-4. Typical values of damping ratio <
range from about 0.02 for piping systems to about 0.07 for bolted structures and rein-
forced concrete. There are two common devices for including viscous damping in FE
analysis: proportional damping and modal damping.
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Fig. 9.5-1. Fraction of critical damping for the proportional damping
scheme.

Proportional damping, also called Rayleigh damping, refers to the following arbitrary
and nonphysical definition of the damping matrix:

C=aM+BK {9.5-1)
The meaning of this definition, in terms of the damping ratio &, is shown in Fig. 9.5-1.

Values of ;. w,. &, and &, are chosen by the analyst. By simultaneous solution of the
two equations

g % PO o @ | o 9.5-2)

2w, 2 2w, 2
for ¢ and 5, matrix C of Eq. 9.5-1 is established. With this definition of C, one must ac-
cept the curve between points 1 and 2 as a satisfactory representation of damping over the
frequency range of interest, @, < w < @,. While this representation may be acceptable, it
cannot be physically correct because it demands infinite damping at w = 0. The form
C = «M damps lower modes more heavily; the form C = SK damps higher modes more
heavily.

Modal damping is another way of incorporating viscous damping. Like Eq. 9.5-1, it is
an approximate representation, whose form yields equations that are comparatively easy
to solve. It is discussed following Eq. 9.7-5.

Some software is capable of calculating damped natural frequencies. As shown by Eq.
9.2-7, these frequencies are only slightly smaller than undamped natural frequencies for
common structures, for which £ < 0.15.

9.6 REDUCTION

“Reduction™ may also be called “condensation.” It is a way of making a few d.o.f. repre-
sent all d.o.f. of the model. Thus the size of matrices is reduced and in some problems an
analysis can be performed more cheaply and more quickly. The disadvantage of reduc-
tion is the introduction of some error and uncertainty into the analysis. Modeling guide-
lines that reduce error and uncertainty are presented in Section 9.11.

Theory. In reduction, some d.o.f., called slaves, have their motion dictated by other
d.o.f., called masters. Slaves are discarded and masters are retained. The order of matri-
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ces in the reduced problem is equal to the number of masters. A commonly used method
of reduction is called Guyan reduction {9.1]. Its principal assumption is that inertia forces
on slaves are negligible in comparison with elastic forces transmitted to slaves by the mo-
tion of masters. For a mathematical statement of this assumption, we begin with the equa-
tion of free vibration, Eq. 9.4-2, partitioned according to masters 5,,, and slaves ES‘

Kmm Km: 2 Mmm M"U ﬁ/n O
" —w : M= (9.6-1)

Km.r Ks: Mm: M:S D_y 0
The principal assumption is that the relation between D,, and D, is dictated entirely by
stiffness coefficients. Accordingly, we temporarily ignore all mass coefficients in the

lower partition of Eq. 9.6-1 and obtain from it

D.Y = —K;j‘KIYY-‘ISDIH (96—2)
Overbars have now been omitted from D,, and D, because the master—slave transforma-

tion can be applied generally; its use need not be restricted to eigenvalue problems. The
entire set of d.o.f. D is expressed in terms of masters by the equation

Dm _ — I
D= {D } =TD,  where T= LK;‘KT } (9.6-3)

s ms

where I is a unit matrix. Physically, the jth column of T represents the static displacement
of the structure when the jth master has unit displacement and all other masters have zero
displacement. This displacement state is sometimes called a constraint mode.

Substitution of Eq. 9.6-3 into Eq. 9.4-2, followed by premultiplication by T, yields
the reduced eigenproblem.

K, = T'KT

; (9.6-4)
M, =T'MT

(K, —»*M,]D, =0 where {

Similarly, the basic statement of matrix structural dynamics, Eq. 9.2-4, has the reduced
form

C,=T'CT

9.6-5
R, =T'R ©.6-3)

K,D, +C,D,,, +M,bm =R, where {

After computing masters, as amplitudes by use of Eq. 9.6-4 or as functions of time by use
of Eq. 9.6-5, the full set of d.o.f. may be needed for stress calculation. Slaves may be re-
covered from Eq. 9.6-2 or, for better accuracy in eigenvalue probiems, from the lower
partition of Eq. 9.6-1 with all mass coefficients retained.

Modeling guidelines for how masters and slaves should be chosen appear in Section
9.11. For now we simply state that d.o.f. having large mass to stiffness ratio are likely
candidates for masters. Alternative methods of reduction are available; see the closing
paragraph of Section 9.7.

Example. Consider a cantilever beam modeled by a single beam element (Fig. 9.4-1a).
We will reduce the FE model to a single d.o.f., then calculate the fundamental frequency
of vibration.
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PDF Compressar dines Nexsion, Eq. 9.4-4. The d.o.f. U has the largest mass to stiffness ra-
tio M;/K; and is therefore chosen as master. Equations 9.6-2 and 9.6-3 yield

— 3 _ 1
6., :Zb: and T_{B/Q.L} (9.6-6)
The equation of the reduced system, Eq. 9.6-4. becomes
(3E1 o’ 339’“)52 =0 9.6-7)
r 140

in which 3E//L’ is recognized as the transverse stiffness of a tip-loaded cantilever beam
when the tip is unrestrained. Equation 9.6-7 yields

172
o, —3568( f;] (9.6-8)
p

This is the only frequency obtainable from the reduced system. It is larger than the fre-
quency obtained from the full system, Eq. 9.4-6, because reduction has the effect of ap-
plying a constraint, which stiffens the system.

9.7 MODAL EQUATIONS

In Section 9.6, reduction is accomplished by expressing displacements of the full system
in terms of static displacement modes associated with displacements of master d.o.f. In
the present section, reduction is accomplished by expressing displacements of the full
system in terms of a limited number of its vibration modes, specifically the modes of
lowest frequency. The result is a set of uncoupled equations. The number of these equa-
tions is equal to the number of vibration modes retained in the transformation. Modal
equations are useful in the analysis of harmonic response (Section 9.8) and dynamic re-
sponse (Sections 9.9 and 9.10).

Theory. Some properties of vibration modes must be stated at the outset. First, we re-
quire that each mode be scaled according to Eq. 9.4-3. Now let Eq. 9.4-2 be written for
mode i, then premultiplied by D7, and finally solved for w2 Thus

D/[K-»M]D,=0  yields ?=D/KD, ©.7-1)

It can be shown that vibration modes are orthogonal with respect to K and M. That is, for
[ #], DTKD 0 and DTMD 0. Columns of the modal matrix ¢ are modes D, of the full
system:

¢:[51 52 - D,] (9.7-2)

nxn

where 7 is the number of d.o.f. in the full system. With this definition, Eq. 9.4-3, and the
aforementioned orthogonality properties of the modes, we conclude that

$'Kp=w> and ¢'Mp=1 (9.7-3)
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where @° is a diagonal matrix of squared natural frequencies, @ = [@] @3 -~ @;].
which is called the spectral matrix, and 1 is a unit matrix.

An arbitrary displacement vector D can be expressed as a linear combination of the vi-
bration modes, that is, as D = Dz, + D,z, + - + D, z,, where z, is the fraction of mode i
that contributes to D. For the time being we include all » modes in the transformation.

Symbolically, the transformations for displacement, velocity, and acceleration are
D=¢z hence D=¢z and D=¢z (9.7-4)

where z is the column vector z = [z, 2  2,)°. The z; may be called “principal coordi-
nates” or “modal coordinates” to distinguish them from physical coordinates, which are
the d.o.f. D, themselves. Next, we substitute Egs. 9.7-4 into Eq. 9.2-4, premultiply by ¢7,
and take note of Eq. 9.7-3. Thus

w'z+Cyz+Z=¢'R (9.7-5)

where, if the proportional damping defined by Eq. 9.5-1 is used, C, is the diagonal ma-
trix C, = ol + f@’. More often, modal equations make use of modal damping, which is a
damping representation that has as much (or as little) justification as proportional damp-
ing, but works well for problems in which damping is small. Modal damping has a math-
ematically convenient form. To obtain it, we arbitrarily state that C, is to be replaced by
an alternative diagonal matrix whose ith diagonal coefficient is C,; = 2&m,. where &, is
the damping ratio for mode i. Because @ and the damping matrix are both diagonal, Egs.
9.7-5 are uncoupled. With modal damping, the representative single-d.o.f. equation for
any mode i is usually written in the form

Wiz, +2E w5 +7 =p; where  p;=¢7’R (9.7-6)

where ¢, is the ith column of ¢; that is, ¢, = D,, scaled according to Eq. 9.4-3. As justifi-
cation for Eq. 9.7-6, note that Eq. 9.2-2 assumes the same form if it is divided by m and
the substitutions @ = Vk/m from Eq. 9.2-6 and ¢/m = 2£w from Eq. 9.2-7 are made.

One may use the same & for all i if so desired. Frequencies ®; and time-dependent
modal loads p, are in general different for each i. The z, are computed as functions of time
by solving Eq. 9.7-6 for each mode i. Hence Eqgs. 9.7-4 yield displacements. velocities,
and accelerations of the structural d.o.f. as functions of time.

Remarks. An important merit of modal equations is that, for many practical problems,
we need not use all n modes of the system: only the lowest few modes need be retained in
the transformation. In other words, if the lowest m modes are used, D = ¢z is replaced by

D:zﬁizi where  Disnxl and  m<n (9.7-7)
i=1 ’

In effect, ¢ becomes an 1 by m matrix rather than an » by n matrix, where m << n 1s usu-
ally adequate to provide the required accuracy. Therefore an eigensolver need extract only
a few frequencies and the corresponding modes, and Eqgs. 9.7-6 are few in number.
Conversely stated, modal equations are best suited to problems in which higher modes are
unimportant; for example, they are better suited to earthquake loading than to shock load-
ing. For shock loading, so many modes may be needed (especially to compute accelera-
tions) that it may be better to compute response by a method other than modal equations.
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with Eq. 9.7-5. The two forms are both approximate but they are not equivalent. However,
since structural damping is usually small, we expect that results will be similar and that ei-
ther method will be adequate.

From Egs. 9.6-3 and 9.7-4 we see that T and ¢ play similar roles in transforming equa-
tions of the full system. Indeed, ¢ can be regarded merely as a transformation matrix.
Equation 9.6-3 leads to a fully coupled set of equations. Equation 9.7-4 leads to uncou-
pled equations but requires that an eigenproblem be solved. As an alternative to @, a set
of “Ritz vectors” can be generated without solving an eigenproblem. Several generaliza-
tions of these transformations are useful [2.2,9.2] but we will not pursue them here.

9.8 HARMONIC RESPONSE ANALYSIS

Harmonic response analysis seeks the amplitude of response when prescribed loads vary
sinusoidally with time. Several loads may be simultaneously applied and they may or
may not be in phase with one another. However, all loads must have the same frequency
if methods discussed in the present section are to be applicable. Loads of different fre-
quency require dynamic response analysis (Sections 9.9 and 9.10). Alternative names at-
tached to harmonic response analysis include harmonic loading, frequency response
analysis, and forced vibration.

When first applied, harmonic loading does not produce harmonic response. There is an
initial transient that decays to zero over time because of damping. What then remains is
steady-state motion of the same frequency as the loading. Harmonic response analysis ad-
dresses the steady-state response. An application is calculating the response of a building
frame to machinery that runs at constant speed.

Single d.o.f. System. To introduce the subject, consider the spring-mass—damper system
of Fig. 9.2-1b. Let it be loaded by the harmonic forcing function

r=Fysin Qr (Fg = constant) (9.8-1)

which has circular frequency Q. It can be shown [9.2,9.3] that the steady-state displace-
ment response is

u =u sin(Qr ~ ) (9.8-2)

in which

7= o awew 2B 52 sy
-5+ 229] tF ©

where @ = Vk/m and damping ratio & is defined by Eq. 9.2-7. We see that response u lags
force r by the phase angle . Steady-state displacement amplitude u is proportional to sta-
tic displacement Fy/k, modified by a divisor that depends on ¢ and B. These results are
plotted in Fig. 9.8-1. Peaks of the curves occur slightly to the left of an ordinate at = 1.0
because @, < w, as shown by Eq. 9.2-7.

Static deflection Fy/k is greatly amplified if frequency Q of the forcing function is near
natural frequency @ of the system. If Q = @, a condition called resonance, the amplitude
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Fig. 9.8-1. Ratio of dynamic displacement amplitude i to static displacement
Fy/k, and phase angle @, for a single-d.o.f. system (Eg. 9.8-3).

of displacement is limited only by damping and would be infinite if damping were zero.
The displacement approaches zero as 3 becomes large: the force varies so rapidly that
there is almost no time for the mass to respond.

Multi-d.o.f. structures behave qualitatively as described above for a single-d.o.f. sys-
tem, but there are as many natural frequencies as d.o.f. There is a possibility of large-am-
plitude oscillations when the forcing function frequency coincides with any of the natural
frequencies. Two methods of analysis for multi-d.o.f. structures are now described.

FE Structures: Modal Method. The first step is to solve the free vibration problem, Eq.
0.4-2, to obtain frequencies @; and modes D, of the system. Usually only the lower fre-
quencies and modes are needed. Next, we must establish the z of Section 9.7 for each
mode i retained in the analysis. For harmonic loading, each such equation has a solution
of the form seen in Egs. 9.8-2 and 9.8-3, namely,

.= 2IOLin(Qr-a,) (9.8-4)
[(-p2) + 228,
in which
o, = arctan—2§’£7’ B;=—  Qsameforalli (9.8-5)
1-B; @,

The next step is to convert back to physical coordinates D by applying Eq. 9.7-7 to the
computed D and z,. Since phase angles ¢ are different for different modes, the software
must scan a cycle in order to determine the greatest magnitude (i.e.. the amplitude) of dis-
placement, velocity, or acceleration in the cycle. The amplitude may appear at a different
time in the cycle for different d.o.f. Note, however, that ¢, is a phase angle relative to p;.
Accordingly, if two or more forcing functions are applied and they are not in phase, an
additional phase angle must enter into the calculations for each forcing function not in



9.9 Dynamic Response Analysis 241

PDF Compq@sg/(iﬁi Feeet¥ersibmanalyst must consult the software documentation in order to
state input data properly.

FE Structures: Direct Method. Some harmonic response calculations are simplified by
the use of complex numbers. The following is a summary of results rather than an exposi-
tion of theory. The harmonic response equation can be written in the form

[K+iQC-Q'M]D=R (9.8-6)

where i = V=1 and D and R are complex amplitudes, respectively, of displacement and
forcing function, both having circular frequency . The coefficient of D may be called a
“dynamic stiffness matrix.” If damping is zero and M is diagonal, the dynamic stiffness
matrix can be regarded as K augmented by a spring of negative stiffness Q*M,, attached
to each d.o.f. i. If damping is zero, Q must not coincide with any natural frequency of the
structure. lest the dynamic stiffness become zero. A disadvantage of Eq. 9.8-6 is that if O
1s close to a natural frequency, the dynamic stiffness matrix becomes ill conditioned.
Another disadvantage is the expense of solving Eq. 9.8-6 several times if forcing func-
tions of several different frequencies  must be investigated, as is common.

Both disadvantages are overcome if Eq. 9.8-6 is recast by use of the modal matrix ¢
defined in Section 9.7 [9.4]. By substitution of Eq. 9.7-4 into Eq. 9.8-6 and premultiplica-
tion by ¢, Eq. 9.8-6 becomes

[0 +iQC,— 1)z = ¢"R (9.8-7)

where C, is diagonal if proportional damping or modal damping is used. Solving for Z
and using Eq. 9.7-4 to recover D, we obtain

D = ¢[@” +iQC, - O*I['¢"R (9.8-8)

As is usual in modal analysis, only the several lowest modes are used in the transforma-
tion. The bracketed matrix in Eq. 9.8-8 is diagonal, so it is easy to avoid trouble if  is
close to or equal to a natural frequency , and the inversion is trivial.

9.9 DYNAMIC RESPONSE ANALYSIS

Dynamic response analysis is the calculation of how a structure responds to arbitrary
time-dependent loading. Alternative names include zransient response analysis and time-
history analysis. Available methods include modal analysis and direct integration. The
term “direct” means that no transformation to a special form is required, in contrast to the
principal mode form of modal analysis. For dynamic response analysis, Eq. 9.2-4 is writ-
ten in the form

KD, +CD,+MD, =R, (9.9-1)

where R, is the known time-dependent forcing function at the nth instant. We seek D,,
D,. and D, at particular instants of time. Thus 7 = 0, 1, 2, ... corresponds to times ¢ = 0,
t=Ar,t=2A1 ..., where Ar is a time increment. After calculating response at instant 7,
time is advanced by Az, and response is calculated at instant 7 + 1. Subsequently, a plot of
displacement, velocity, or acceleration of any d.o.f. can be constructed by connecting
computed points.



242 Vibration and Dynamics

PDF Compressor Free Version

We will discuss two methods of direct integration and also discuss the mode superpo-
sition method. Each method has a different combination of advantages and disadvan-
tages. Direct integration methods produce an equation of the form

AD., =F@# or D, =A"F(@ (9.9-2)

in which A is nonsingular, and independent of time in linear problems, while F depends
on quantities at instant » and perhaps also at instant n — 1. The specific forms of A and F
depend on the algorithm chosen. Of the many direct integration algorithms available we
will summarize two: the central difference method and the Newmark method.

Direct Integration: Central Difference Method. The basis of the method is a set of fi-
nite difference formulas for first and second time derivatives, centered at instant n. For a
single d.o.f. u, velocity & is approximated as (u,,, — ,_,)/2 At and acceleration i is ap-
proximated as Aw/At, where Ai comes from velocities evaluated at instants n — 3 and
n + %, a time interval Ar apart. For a vector of d.o.f. rather than a single d.o.f., these for-
mulas are

1 o 1
Dn = Dn+ _Dn—- and Dn = 2 Dn+ —2Dn +Dn— 99'3
2Af{ 1 l} (A[)h { ] 1} ( )
From Egs. 9.9-1, 9.9-2, and 9.9-3 we obtain
1 1
A=—0C+ =M (9.9-4a)
24t (Ar)
2 1 1

F)=R-|K—-——-5M D, - ~M-—CD,_, (9.9-4b)

(An) (Ar)” 2 At

Thus, for any n, D, ., is calculated from known values of D, and D,,_,. Velocities and ac-
celerations, if desired, are then available from Egs. 9.9-3. Initial displacements D, and
velocities DO are known. To calculate D, we need to know D_. It may be determined
from a Taylor series expansion about instant n, which for n = 0 and a backward Ar yields
D_ =Dy-At DO + (A1)*Dy/2, in which D, is determined from Eq. 9.9-1 at instant n = 0.

The central difference method is conditionally stable: if At is too large, computed dis-
placements become wildly inaccurate and grow without limit. To guarantee numerical
stability, we must use

2 ; .
At < At where At = = Toin (9.9-5)
0] T

max

where @,,,, is the largest undamped natural frequency of the system. This frequency can

be calculated from Eg. 9.4-2 or by use of more efficient alternatives [2.2].

Direct Integration: Newmark Method. The basis of the method is the following set of
equations:

b

n+l

=D, +AtD, + (Az’) {1-28)D, +2D,., | (9.9-6a)
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where [ and y are numbers that can be chosen by the analyst. Substitution of Egs. 9.9-6
into 9.9-1 yields

A=K+t Co—1 M (9.9-7a)
BAt B(Ar)*
Fo)=f(B, f, A, R, C,M, D, D, D,) (9.9-7b)

The expression for F(z) has not been written out because it is lengthy [2.2] and not essen-
tial to our discussion. Using Eqs. 9.9-2 and 9.9-7, D, ., is calculated from known values
of D, D,. and D,. Hence Eq. 9.9-6a yields D, ,, Eq. 9.9-6b yields D, ,, and we are ready
to calculate D,,,,. To start the process we need to know I‘jo‘ It may be determined from
Eq. 9.9-1 atinstant n = 0.

Certain choices of f and y make the Newmark method unconditionally stable: the nu-
merical process will not “blow up” no matter how large the value of Az. This does NOT
mean that results are guaranteed accurare if At is large! It can be shown [9.5] that 28 =
¥ % guarantees stability. A slightly more stringent criterion for unconditional stability is
[9.5]

0<&<l, vy, Bai(y+d) (9.9-8)

which for y> 3 and f = (y+ $)*/4 provides algorithmic or “artificial” damping in the
higher modes. A popular choice is y= and 8 = % This choice is called the “trapezoidal
rule” or the “constant average acceleration method.”

Mode Superposition Method. Equations of the modal method appear in Section 9.7. In
review and summary, the dynamic response calculation procedure is this: solve a vibra-
tion problem to determine the lower frequencies and modes of the structure, evaluate the
modal time-dependent loads p, from the physical time-dependent loads R, solve the un-
coupled modal equations to determine z; = z(r) for each 7, and finally recover the physical
d.o.f. D by using Eq. 9.7-7. Most of the computational effort in the mode superposition
method occurs in solving for frequencies and modes of the system.

The uncoupled equations, Egs. 9.7-6, can be integrated exactly for certain loadings,
such as a suddenly applied constant load, a ramp load, and a sinusoidal variation. More
generally, one of the direct integration methods can be used. Thus, for each mode I, one
might use the Newmark method to calculate z, for time instants n = L, 2, 3, separated by
tire intervals Ar. For numerical integration, initial values of z and its time derivatives can
be obtained from initial values of D and its time derivatives as follows: premultiply each
of Egs. 9.7-4 by ¢ "M and take note of the second of Eqgs. 9.7-3. Thus

,b=¢"MD,  io=¢’MD, i,=¢"MD, (9.9-9)

Useful variants of the mode superposition method include the mode acceleration
method and the use of Ritz vectors {2.2, 9.2].

Brief Comparison of the Methods. It is important to consider how many natural fre-
quencies of the structure may be excited by the loading and how many of these modes
may be needed to calculate the desired response. In structural dynamics problems, such
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as loading by an earthquake, only the lower frequencies and modes are significantly ex-
cited. Only the ten lowest modes may be important in some problems [3.1]. In wave
propagation problems, such as shock or blast loading, higher modes and frequencies are
also excited. The number of significant modes may be large; perhaps two-thirds the num-
ber of d.o.f., or more, if we wish to calculate accelerations as functions of time [3.1].

The central difference method is best suited to wave propagation problems: the small
time step required for stability is not so great a disadvantage, because a small time step is
needed anyway to capture the behavior of all the important modes, and the response
probably needs to be calculated for only a short time span. The Newmark and modal
methods are best suited to structural dynamics problems: contributions of higher modes
are not represented, but these modes have almost no effect on the structural response.
Additional remarks related to modeling appear in Section 9.11.

9.10 RESPONSE SPECTRUM ANALYSIS

Dynamic response analysis often seeks the maximum displacement, acceleration, or stress
at a certain location in the structure, without regard to the time at which the maximum oc-
curs. This is particularly true in early stages of design. To obtain the maximum one could
calculate response as a function of time by one of the methods described in Section 9.9,
then discard all results except the single largest value. As an alternative procedure, FE
software often supports response spectrum analysis, by which a maximum can be calcu-
lated more cheaply, although usually not as accurately. When used for analysis of an im-
pulse load, a response spectrum may be called a “shock response spectrum’ or simply a
“shock spectrum.” In brief, response spectrum analysis first computes the maximum re-
sponse of each separate vibration mode, then combines the modal maxima in a way that
produces an estimate of the maximum response of the structure itself. In more detail, the
calculation of maximum displacement response proceeds as follows.

Time-varying loads R on the structure are arbitrary, but must be known. A different R
produces different results. A modal analysis is performed, and Eq. 9.7-6 is integrated for
each mode retained in the analysis. The result is as many data sets as there are modes re-
tained. The ith data set pertains to the mode of frequency o, and lists z; as a function of
time. Each data set is scanned to find the numerically largest z in the entire response his-
tory of mode i, Z;n.. For a multi-d.o.f. structure, let A;, represent the physical value of
d.o.f. j associated with z;,,,,. From Eq. 9.7-4,

Aji = ¢ji Zimax (9 10- l)

in which all three quantities are scalars. For example, Ay = ¢35 Zomay 1S the physical value
of the third d.o.f. produced by the maximum modal response in the second mode. It is not
d.o.f. D, itself, because we have not formed D, = 2@, z;, as would be done in the mode
superposition method. Indeed, such a summation with z,,,,, values would not make physi-
cal sense because in general the maximum gz, values appear at different instants of time.
The method by which A;; values from several modes / are combined to produce an actual
maximum displacement D; is in general only an approximation of the actual maximum.
One method of combination is to form the sum of absolute magnitudes:

(D). SZ[A,.,.[ (9.10-2)
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This method,vields, the Jargest magnitude D, could possibly have, because it presumes
A l(ﬁ‘f N ’ . . .
PDF COIHBF&SeSPnEE%S%f zﬁrrsno ©s appear at the same instant of time. It is usually more accu-

rate to use the SRSS method (square root of the sum of the squares):

(D)), = /Z A, (9.10-3)

Additional combination methods have been proposed. They are usually more reliable but
are more complicated.

We have described the calculation of estimated maximum displacement (D)),,,,, for a
single d.o.f. j, but of course any number of additional d.o.f. can also be treated, and at
very little additional cost.

More About Response Spectra. In general, a response spectrum is a plot of the maxi-
mum value of some response (displacement, velocity, or acceleration) versus frequency @
(or versus period T), for a single-d.o.f. system. Here @ refers to the undamped natural fre-
quency of the single-d.o.f. system, @ = Vk/m. Often the ordinate of a displacement re-
sponse spectrum plot is in the form of an amplification factor, S = S(w), which multiplies
the static response. Thus, for displacement response,

S, = Hmx frequency o, (9.10-4)

' Uy

Displacement u,,,, is a function of w. It is computed by integrating Eq. 9.2-2 for many
different values of @ = Vk/m , each time using the same prescribed forcing function
r = nr), and selecting the u,,, of each such solution. Static displacement u, is indepen-
dent of @. It is computed from Eq. 9.2-2 with &= 0 and # = 0 and using the maximum
value of r over the time span of the forcing function. Thus u,, = r,.,,/k. With the ordinate
of the displacement response spectrum plot defined as an amplification factor, the magni-
tude of r in Eq. 9.2-2 does not matter; only its variation with time is of importance.

The foregoing calculation process may be repeated for other values of the damping ra-
tio, thus providing response spectra (Fig. 9.10-1). The generation of response spectra may
require hundreds of integrations of Eq. 9.2-2, but this equation contains only one d.o.f.
Once response spectra have been calculated for a certain forcing function, they need
never be recalculated, regardless of the number or variety of multi-d.o.f. structures to
which the forcing function may be applied. Indeed, response spectra for a “‘standard”
earthquake have already been calculated and are readily available.
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Fig. 9.10-1. Hypothetical displacement response spectra for a known (but here unspeci-
fied) forcing function r = r(z).
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Response spectra (of a single-d.o.f. system) are applicable to a multi-d.o.f. system
loaded by the same forcing function, based on the proposition that each mode of the
structure behaves like a single-d.o.f. system [9.6]. That is, with z; for the mode and u for
the single-d.o.f. system,

Zimax — Umax or ” — Y Zia (910'5)

<imax

Zist ust Ug

Substituting from Eg. 9.10-4, and obtaining z, from Eq. 9.7-6 with = 0 and Z =0, we
obtain

Pima (9.10-6)

Zimax = Sz

i

where S, = S(w,) is obtained by reading the response spectrum plot at the frequency of
mode i of the multi-d.o.f. structure. We then use Eq. 9.10-1 to compute Ay, These calcula-
tions are performed for all modes of importance. Finally, we use Eq. 9.10-2 or 9.10-3. An
application of this method appears in Section 9.13. )

Similar response spectrum‘calculations serve to estimate a maximum velocity Diga,
and a maximum acceleration D,,,. Velocity and acceleration equations analogous to Eq.
9.10-6 are

iimux = Sui h}\_ and i.-.ima,\ = Safpimux (9 10'7)
-

where S,; and S, are multipliers that depend on @;. They are obtainable from the same
data that yields S, of Eq. 9.10-6. Then Eg. 9.10-1 yields

Aji = i Zimax and Ajr’ = @i Zimax (9.10-8)

Finally, velocity and acceleration equations analogous to Egs. 9.10-2 and 9.10-3 can be
written.

9.11 REMARKS. MODELING CONSIDERATIONS

Dynamic analysis is more complicated than static stress analysis. Loadings have the addi-
tional dimension of time, there is greater variety in the possible goals of analysis, and
there are a greater number of available procedures that may lead to each goal. Dynamic
analysis is also more expensive in terms of the analyst’s time and demands on computer
resources. It is more difficult to anticipate structural response; hence it is more difficult to
do a preliminary analysis, plan the numerical analysis, and judge the quality of computed
results.

Nevertheless, general advice given in Chapter 5 remains applicable. Understand the
physical problem and the concepts of analysis procedures. Study the software documenta-
tion. Start simply, with test cases, coarse-mesh models, and analyses of individual fea-
tures of the problem. Expect to revise and improve models. Critically examine computed
results. Keep records of the sources of data, assumptions made, and the status of the pro-
ject. The reader may wish to review Chapter 5 for other detailed advice that may apply to
dynamics as well as to statics.
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atic and dynamic lga%glmay create quite different responses in a given structure. In
Fig. 9.11-1a, the right-hand part of the beam contributes nothing to the response due to a
static load P. Dynamically, the right-hand part has great influence on the response. Also,
for a given magnitude of P, dynamic displacements and stresses may exceed their static
counterparts, and their distribution will probably not be obvious even when it is known
how P varies with time. In Fig. 9.11-1b, static analysis may emphasize resistance to verti-
cal loads. Yet the frame is more flexible horizontally than vertically, so earthquake load-
ing may excite primarily horizontal motion. Similarly, a structure may have flat panels
that carry static loads by membrane action, but under dynamic loading these panels may
vibrate laterally with bending deformations.

One might first ask if dynamic analysis is necessary. A cyclic forcing function whose
frequency is less than one-third the lowest natural frequency of the structure produces an
undamped maximum response only about 10% greater than the static response to the am-
plitude of the load, so a static analysis may be adequate.

If a dynamic solution is elected, many questions must be posed and answered [5.4].
What is the goal of the analysis? How much accuracy is required? What simplifications
are possible? Is damping important? If so, how should it be represented? Are there mater-
ial or geometric nonlinearities? What frequencies are contained in the loads, and what
frequencies are important in the structure? What computational procedures are appropri-
ate? What are the capabilities of the software? How will the large volume of computed
results be sorted, displayed, and checked?

Regardless of what else may also be done, an early computation in dynamic analysis is
usually the extraction of natural frequencies and their associated modes. This computa-
tion is easily done, provides data used in other procedures, and provides physical insight
into how the structure behaves.

Many of the following subsections bear on more than one aspect of dynamic analysis
and therefore should not be studied in isolation. The subsections expand on the analytical
procedures previously described and add modeling advice.

Mass Representation. The mass matrix for any kind of finite element can be written in
various ways, such as lumped (diagonal), consistent, or some combination of the two.
Which way is best? Some considerations that influence the choice are as follows.

If displacement fields are compatible, stiffness matrices are not softened by low-order
integration rules, and mass matrices are consistent, then the FE model will yield un-
damped natural frequencies of vibration that are upper bounds on the exact frequencies of
the mathematical model. Lumped mass matrices often (but not always) produce natural
frequencies that are lower than exact. This observation suggests that accuracy might be
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Fig. 9.11-1. (a) Cantilever beams under static and dynamic loads. (b) Building frame
under static load ¢.



248 Vibration and Dynamics

PDF Compressor Free Version

improved by forming both a consistent mass matrix m, and a lumped mass matrix m, for
a given element, then combining them to prodice the mass matrix m; = Bm,+ (1 — Bm,
where 0 < < 1. While m,, may yield more accurate natural frequencies than either m, or
m,, it offers neither the upper bound property of m, nor the economy of storage (and per-
haps also of execution time) offered by m,.

Some computational algorithms have trouble with a diagonal mass matrix that con-
tains zeros on the diagonal, as will happen if there are rotational d.o.f. to which no rotary
inertia has been assigned. One can preclude this possibility by always assigning rotary in-
ertia to rotational d.o.f. The rule for choosing values of rotary inertia can be somewhat ar-
bitrary because these inertias are relatively unimportant in the lower modes represented
by the FE model.

These considerations are confusing to the less experienced, but may not be of great
concern to the typical analyst because FE software may offer few choices. The choice
may be between lumped masses and whatever other mass representation is automatically
calculated by the software, whether it is a consistent mass matrix or not. At times it is
quite proper to combine lumped masses with another mass representation as, for example,
when a heavy machine rests on an elastic supporting structure. If elastic properties of the
machine are unimportant, it is a “nonstructural” mass, and a FE model may use consistent
mass matrices for the structure, augmented by mass lumps to account for the translational
and rotary inertia of the nonstructural mass. A nonstructural mass that is offset from the
axis of a structural element can be attached to an adjacent structural node i by a rigid
massless link (Fig. 9.11-2). The transformation is described in Section 4.3. The resulting
FE model has no node at the mass center of the machine and a mass matrix that is inher-
ently nondiagonal. An ad hoc algorithm that diagonalizes it will place the mass at the
structure node. This is a misrepresentation because it does not model the interaction be-
tween lateral translation and rotation [9.4].

Vibration Calculations. The eigenvalue problem, Eq. 9.4-2, can be solved by various
algorithms. They differ in applicability and efficiency according to matrix sparsity, ma-
trix topology, the number of frequencies to be calculated, and other factors. Commercial
software usually offers more than one choice of algorithm. Commonly, one computes
only the lowest m frequencies and modes, where m is chosen by the analyst. Often m in-
cludes only about 10% of all modes of the FE model, as no more are needed for many
analyses. For details about eigensolvers, textbooks and software user information should
be consulted.

If a structure is not fully supported or has mechanisms, K is singular and there will be
a zero frequency for each possible rigid-body mode or mechanism. In such a case the user

m

Rigid Poor
Q ’f/ Hgk model

il 11 14 s

~ @3

(a) (b) (c)

Fig. 9.11-2. (a) Machine of mass m attached to a building frame. (b) Acceptable model. {¢) Poor
model.
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singular because it is diagonal and has some zero coefficients M, which is not recom-
mended, there will be an infinite frequency for each zero mass coefficient.

Different modes may have the same frequency. A case in point is a straight cantilever
beam of circular cross section lying along the x axis. For a displacement mode in (say)
the xy plane there is a mode of identical shape in any other plane that contains the x axis.
The modes have the same frequency, but because they are in different planes they are dif-
ferent modes. This may make the modes hard to interpret, and it is possible that the
eigensolver will miss one of the repeated frequencies. Simple problems of this type may
be used as test cases. Software may contain a “Sturm sequence” check that can discover
if the eigensolver has missed any frequencies in the range for which the user seeks solu-
tions, that is, in the range from zero frequency to a user-prescribed frequency. If so, the
solution might be repeated, this time asking for a greater range of frequencies. The
mussed frequencies and modes may now appear [9.4].

Stabilization devices may be used to prevent mechanisms in certain elements (Section
4.6). These devices prevent zero frequencies but may introduce low frequencies instead,
which contaminate vibration response in the frequency range that is usually of greatest
interest.

Again, computation and critical inspection of frequencies and modes are desirable
early steps in dynamic analysis. These steps can provide useful insight into structural be-
havior and can offer information needed in making decisions demanded by harmonic, dy-
namic, and response spectrum analyses.

Qualitative Prediction of Frequencies. An undamped natural frequency can be com-
puted from the Rayleigh quotient, which can be obtained by premultiplying Eq. 9.4-2 by
D and solving for ®?.
., D’KD
O === (9.11-1)
D"MD
where D is the vibration mode. This is the same equation as Eq. 9.7-1 except for not iden-
tifying a mode by subscript i and not requiring the scaling described by Eq. 9.4-3. The
numerator of Eq. 9.11-1 is twice the maximum strain energy U,..x (see Eq. 3.1-9, which,
however, is for a single element). The denominator (if multiplied by w?) is twice the
maximum *inetic energy V... It serves the following qualitative argument to regard the
numerator and denominator of Eq. 9.11-1 as U,,, and V,__, respectively. In Fig. 9.11-3,
Upnax OCcurs in a dashed-line configuration, when the beam is instantaneously motionless,
and V., occurs in a solid-line configuration, when the beam is instantaneously unde-
formed.

The Rayleigh quotient can sometimes be used to rank the frequencies of possible vi-
bration modes [9.4]. Since the magnitude of D does not matter, it is convenient to imag-
ine that the maximum displacement is the same in each mode. Thus, if we compare
modes 1 and 2 in Fig. 9.11-3, we see that curvatures are greater for mode 2, hence the nu-

Mode 1 Mode 2 , " Mode 3

Fig, 9.11-3. The first three vibration modes of a simply supported beam. Displacements are exag-
gerated.
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merator of Eq. 9.11-1 is greater for mode 2. Also, mode 2 has a point of zero displace-
ment that mode 1 does not, so that the denominator of Eq. 9.11-1 is smaller in mode 2
than in mode 1. Hence Eq. 9.11-1 shows that @, > @,. Similar comparisons involving
mode 3 can also be made.

Quantitative Prediction of Frequencies. The frequency of a given mode, often the fun-
damental mode, can often be estimated from Eq. 9.2-6, 0 = Vk/m. To use this equation we
must conceptually reduce the structure to a system having a single d.o.f. and estimate k
and m. An estimate of k can be obtained if the vibration mode is similar to the deflection
produced by a static force. As an example, consider mode 1 in Fig. 9.1 1-3. Its shape re-
sembles the deflected shape that would be produced by a transverse static load P at
midspan, for which the midspan deflection is v = PLY48EI Hence k = Plv = 48EI/L’.
Ends of the beam are at rest, so not all mass of the beam has displacement v. Let us guess
that for a beam of mass m, mass m/2 participates in a vibration mode of amplitude v.

Hence
48FE1 1 7
w = ——8—;—~—:9.80 E (9.11-2)
L ml/2 ml?

The exact multiplier for a slender simply supported beam is 9.87 rather than 9.80. The ap-
proximate frequency of mode 2 in Fig. 9.11-3 can be obtained similarly, by treating the
left or right half in the same way the entire beam is treated in obtaining Eq. 9.11-2.

The fundamental frequency of a cantilever beam, Fig. 9.4-1b, can be estimated as fol-
lows. Apply a transverse tip load P, whose deflection is v = PL*3EL Hence k = P/v =
AEI/L>. Guess that m/2 is the effective mass. Hence @, = W3EI/L)/(m/2) = 2.45NEl/mL’.
This happens to be the lumped mass approximation, Eq. 9.4-7, which is 30% low.

If stiffness k cannot be obtained by hand calculation, it can be computed from the FE
model itself, by applying a static force P. The static force must be located and directed so
as to produce a deflected shape that resembles the anticipated mode shape (if possible). It
A is the computed deflection of the loaded point in the direction of P, the desired k is k =
P/A. There appears to be no such simple way to estimate the effective mass by use of
standard FE software.

Reducing the Number of d.o.f. It may seem strange 1o create a large FE model and then
reduce it rather than building a smaller model at the outset. However, a coarse-mesh
model lacks the information content of a reduced model having an equal number of d.o.f.
The reduced stiffness matrix K, of Eqs. 9.6-4 and 9.6-5 is identical to the result of elimi-
nating slave d.o.f. by steps of Gauss elimination in solving static equations KD = R for
unknowns D. Thus, if the problem were static rather than dynamic, reduction would in-
troduce no error.

Matrices produced by Guyan reduction are full, not sparse. Accordingly, if the antici-
pated computational economy is to be realized, the number of masters must be very much
smaller than the total number of d.o.f. However, the smaller the number of masters, the
greater the error introduced by reduction. Reduction has the effect of imposing displace-
ment constraints on the full system, so that the frequency of a given mode is increased by
reduction. An example appears in Fig. 9.11-4. We see that the lowest frequencies are
least affected by reduction.

Any mode computed from the reduced system is a linear combination of the shapes de-
scribed by columns of T in Eq. 9.6-3. Each column represents the displaced shape when a
master d.o.f. is activated. Accordingly, if masters are too few in number or are badly cho-
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Full system, 90 d.o.f. wy = 3.469
(lateral transtation wy = 8.535
and two rotations w3 =21.450

at each node) wy = 27.059
Reduced system, 6 d.o.f. ) =3.473
(masters are lateral w, =8.604

translations at nodes w3 = 22.690

indicated by squares) wy = 29.490

Fig. 9.11-4. A thin square cantilever plate that vibrates laterally, with the
four lowest natural frequencies [9.7]. The reduced system is obtained by
Guyan reduction.

sen, T is deficient in shape information, so that some modes computed from the reduced
system will be inaccurate, and some modes of the full system may be skipped entirely.
Deficiencies are usually greater in the higher modes. Accordingly, reduction should not be
used when there is shock loading, for which higher frequency information in the model
should be retained.

The d.o.f. chosen as masters for Guyan reduction should have large mass, large deflec-
tions in the modes of interest, or both. Rotational d.o.f. are rarely chosen as masters.
Masters should be adequate in number and location to describe the modes of interest, es-
pecially the lower modes. Masters may be selected manually by the user, automatically
by the software, or the two selection methods may be used in combination. One motiva-
tion for combined selection is to preserve as masters certain d.o.f. that might be classed as
slaves by automatic selection. The choice of masters should be guided by the following
rules {9.8]:

Masters should have a large mass-to-stiffness ratio. A possible algorithm for auto-

matic selection is to seek the d.o.f. having the smallest M /K ratio and eliminate it

as first slave. Thus the system is reduced by one order. The next slave is the d.o.f. in
the reduced system having smallest M,,/K,,. The process repeats until a prescribed
number of masters remain.

* Masters should not be clustered in any one portion of the structure. If they are, some
modes may be represented poorly and others not at all. Automatically chosen mas-
ters that form a tightly clustered set should be replaced or at least augmented by
manually chosen masters.

» The d.o.f. at which time-varying forces or displacements are to be prescribed, or
d.o.f. at which there are gap conditions in nonlinear problems, should be retained as
masters.

* Masters should be d.o.f. in the direction of expected motion, for example, normal to

the surface of a plate rather than tangent to its surface.

How many masters are enough? Opinions vary. Using one-tenth to one-half the total
number of d.o.f. as masters has been recommended [3.1]. Another recommendation is
that the number of masters should be at least twice the number of modes of interest [9.8].
The implication is that only the lower half of the computed modes and frequencies of the
reduced systemn may be reliable. A way of deciding whether the number of masters is ad-
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equate is to redo the problem with (say) twice or half the number of masters and see if re-
sults for modes of interest are substantially the same.

Harmonic Response. The speed Q of rotating machinery should pass quickly through a
resonant frequency w of the supporting structure, as sustained operation at Q = @ may
produce destructive vibrations. Harmonic response is very sensitive to a forcing function
near resonance. For this situation it is important that natural frequencies be calculated ac-
curately. It is prudent to include damping so that harmonic response computations will
not “blow up” should it happen that Q = .

It is usual to calculate harmonic response for each of several frequencies £2 of forcing
function. In each such analysis, calculations should include all modes up to and including
the first mode whose frequency exceeds Q. A plot of response amplitude versus €2 can be
prepared for each location of interest on the structure. For such a series of analyses, the
method of Eq. 9.8-8 would be much cheaper than the method of Eq. 9.8-6.

A forcing function having components of different frequencies must be resolved into
component loading cases, each having a single frequency. Results produced by the sepa-
rate components can be combined during postprocessing. Similarly, a forcing function
that is periodic but not sinusoidal can be represented as the sum of its Fourier series com-
ponents. An analysis can be performed for each component and the results combined.

Direct integration is an alternative way to calculate harmonic response. However, it is
likely to be an expensive way because it automatically includes the transient response,
which will usually not be damped out until the motion has been computed over several
cycles.

Dynamic Response: Central Difference Method. The critical time step, Eq. 9.9-5, can
be computed without the expense of solving an eigenproblem. Alternatives to eigensolu-
tion include estimating @,,,, by a Gerschgorin bound and calculating Af, as the time re-
quired for a sound wave to travel across the smallest element of the mesh [2.2]. For econ-
omy, one may use a Ar between 0.95 and 0.98 times Ar.,. The very highest modes may
not be computed accurately, but this usually does not matter. Nonlinearities, if present,
may alter the critical time step.

The central difference method is most efficient if A of Eq. 9.9-2 is diagonal. This is
easily achieved if M is lumped and without zero entries and C is either diagonal or zero.
Additionally, the term KD, in Eq. 9.9-4b can be efficiently computed by summing ele-
ment contributions. Then the arrays that must be stored are all vectors, not matrices, and
computational cost per time step in Eg. 9.9-2 is very low. Nevertheless, because Ar, is
quite small, the method may be uneconomical for all but wave propagation problems.

A uniform mesh allows waves to propagate equally in all directions. Abrupt element
size changes create numerical noise and artificial wave reflections. Low-order elements
are better than higher-order elements at modeling shock wavefronts. A lumped M creates
fewer spurious oscillations than a consistent M and also produces a larger Af,.. The trick
of using a very stiff element as a support (Section 5.8) has the effect of raising @,,.., thus
decreasing At.,, and should therefore be avoided. Reduction (Section 9.6) should also be
avoided because it discards higher-frequency information that is needed for wave propa-
gation problems. (See also the “Cautionary remarks” at the end of Section 9.11.)

Dynamic Response: Newmark Method. In comparison with the central difference
method, the Newmark method has the advantage that Ar can be large without collapse of
the numerical process. This is a very great advantage for structural dynamics problems,
for which the response may be needed over a considerable time period. A large At has the
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0es not matter in a structural dynamics problem. If Ar becomes foo large, too little infor-
mation remains, and even low-frequency contributions to the results become inaccurate.
In Eq. 9.9-2, A is not a diagonal matrix. For this reason the cost per time step is much
greater than with the central difference method. Use of a consistent M is beneficial to ac-
curacy and only slightly detrimental to economy. If there are nonlinearities A must be re-
peatedly revised, which is a considerable expense.

Dynamic Response: Modal Method. Like the Newmark method, the modal method is
best suited to structural dynamics problems. For example, with earthquake loading, modes
of frequency greater than 33 Hz are usually unimportant, and half the response may be as-
sociated with the first mode. Accordingly, few modes are needed in Eq. 9.7-7. In a wave
propagation problem, the number of modes needed may be so large that the modal method
would not be practical for such a problem. Further remarks on the number of modes needed
appear in the next subsection.

The greatest computational expense is solving for the necessary modes and frequen-
cies. This information is probably already available from a previous phase of the investi-
gation. The uncoupled equations are cheaply integrated. Mode superposition is often the
cheapest way of solving a structural dynamics problem. This is especially true if the ef-
fects of several loadings must be studied, because the same modes and frequencies are
used for each different loading. In contrast, direct Integration requires complete re-solu-
tion for each different loading. -

Loading and Time Step. How many modes should be retained in modal analysis? What
time step is appropriate for integration of the equations of motion, be they the modal
equations (Egs. 9.7-6) or the structural equations (Eqgs. 9.9-7)? Opinions differ and reli-
able a priori rules are unavailable. Some considerations that may be helpful are as fol-
lows.

Consider first the applied loading. In Fig. 9.11-5, the spacing of points used to numeri-
cally represent the forcing function is Aty, so that T, is the approximate period of the
shortest wave represented by the loading. Structure modes whose cyclic frequencies are
higher than 2/7,, Hz are not likely to be significantly excited [5.4]. Thus the circular fre-
quency £, of the highest mode of loading that need be retained in the analysis can be
taken as Q, = 4w/7T,

In mode superposition analysis, the FE mesh should be able to represent modes up to
frequency @,, where w, = 1.5 Q, (at least) to @, =4 Q_ (at the very most [3.1]). Another
way to estimate @, is to examine response spectra produced by the loading [9.4].

At:* Arg Aty
Tg ‘i

(a) (b)

Fig. 9.11-5. (a) An arbitrary forcing function, represented by discrete data
points. (b) Detail showing contribution of highest frequency.
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Consider Fig. 9.10-1 with & = 0.04, for example. If S, = 0.1 S,, one might say that fre-
quencies larger than g can be ignored, and therefore one may choose @, = g as the
highest structural frequency that need be retained. In applying this procedure, one of
course uses the response spectrum appropriate to the quantity of interest, be it displace-
ment, velocity, or acceleration. However, the foregoing estimates of @, say nothing about
the spatial nature of the loading. The number of modes required depends not only on the
frequency content of the loads but also on how they are distributed over the structure. A
concentrated load requires more modes than a uniform load distribution. A better esti-
mate of @, that accounts for how the loading is distributed can be obtained from a full re-
sponse spectrum analysis. For this the modes and frequencies must be available, so it
does not provide an a priori estimate of @,. An example of the procedure appears in
Section 9.13.

A mesh adequate to represent @, is one in which the actual physical mode shape asso-
ciated with @, can be closely approximated by the FE mesh. This requires a few elements
per wave of the mode, with “few” being a number that depends on the type of element. In
general, the span and orientation of waves are not known in advance. Therefore it is
likely that initial analyses will disclose that the mesh needs to be revised.

In a direct integration analysis of dynamic response by the Newmark method, time
step At should be at least Az, (the load representation interval in Fig. 9.11-5 [5.4]), or
from 7,/10 to T,/30, where T, = 27/®,. The time step in the central difference method is
limited by the critical value, Eq. 9.9-5, and there is no merit in using a much smaller
value. Similar remarks apply to direct integration of the uncoupled equations of the
modal method, Eqs. 9.7-6. Here @, = @, and therefore Az can be different for each equa-
tion, with At being largest for the mode 1 equation. The practical range of At is enormous,
from roughly 107° seconds for a wave propagation problem to roughly 10° years for a ge-
ologic problem involving viscous action and diffusion.

The appropriateness of values chosen for @, and Ar can be judged by repeating the
analysis using other values. If results are little changed, the choices made are probably
adequate.

Rotating Machinery. Rotation causes prestress that modifies stiffness. For example,
centrifugal inertia force in a turbine blade produces a “stress-stiffening” effect that in-
creases natural frequencies and whose influence may be comparable to that of the con-
ventional stiffness matrix K. Stress stiffening is discussed in Section 10.3.

Another consequence of rotation is called “spin softening” [9.8]. Its nature can be ex-
plained with the aid of Fig. 9.11-6. A disk, which rotates in the plane of the paper at con-
stant angular velocity 2 about point O, carries a rigid weightless bar ABC pivoted at B.
Particle masses m are attached to the bar at A and C and to the disk via springs of stiff-
ness k. Let ABC be rotated through a small angle 6 relative to the disk, Fig. 9.11-6b.
Together, inertia force and spring deformation produce net forces F, and F,. which are
essentially radial if @ << R.

F,=m(R — a0)¥* + kab Fy=m(R + af)Q)” — kab (9.11-3)

Net torque about B equals the moment of inertia about B times angular acceleration 6 of
ABC.

F.a—F,a=2ma*6 (9.11-4)



9.11 Remarks. Modeling Considerations 255

PDF Compressor Free Versfono! disk

32 R+ af
af —> )-e

(a) (b)
Fig. 9.11-6. (a) A spinning disk with attached bar ABC that illustrates spin softening. (b) Spring
forces and inertia forces are represented together in F and F,. It is assumed that ¢ << R and
6<<l.

If ABC oscillates about B with simple harmonic motion of amplitude 6 and circular fre-
quency o, then 9= 9 sin wtand 6 =—-w?0 sin wr. Combining this with Eqs. 9.11-3 and
9.11-4, we obtain

k-mQ2 )"

W= —— (9.11-5)
m

If Q were zero, the frequency of vibration would be @ = Vkim, as in Eq. 9.2-6. We see

that the effect of Q is to reduce w. It is not hard to imagine that springs and mass particles

in Fig. 9.11-6 have counterparts in an elastic body such as a fan blade, whose vibration

frequency would be similarly affected by rotation.

Substructuring. Substructuring in dynamics has the same advantages and disadvantages
as substructuring in statics (Section 4.11). It has the additional disadvantages of introduc-
ing an approximation, which static substructuring does not, and being more difficult to
explain. Here, only the following very brief explanation is offered.

In dynamics, substructuring is known as component mode synthesis or simply modal
synthesis [9.2]. Each component (substructure) is isolated and its natural modes and fre-
quencies are calculated. Modes of the components do not combine to provide modes of
the complete structure but, instead, lead to a transformation matrix analogous to T in Eq.
9.6-3. Condensed matrices analogous to those in Egs. 9.6-4 and 9.6-5 are produced, so
that the complete structure is represented by a smaller system of equations than would be
present if all d.o.f. of the complete structure were retained.

Symmetry. In static analysis, symmetry of geometry, material properties, boundary con-
ditions, and loads makes it possible to analyze part of a structure as representative of the
whole (Section 4.12). Symmetry can also be exploited in vibration analysis, but it is easy
to overlook some of the modes. For example, a FE model of the left half of a simply sup-
ported beam captures only antisymmetric vibration modes of the beam if the right end of
the FE model is simply supported. Or, a shell of revolution might be modeled as axisym-
metric in static analysis, but its fundamental frequency of vibration is almost certain to
display waves around the circumference.
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Stress Recovery. Stresses are computed from nodal d.o.f. in D by the same manipula-
tions used in static stress analysis. However, if D is recovered from a condensed dynamic
model there will be an accuracy loss, whether reduction was accomplished by Guyan re-
duction (Section 9.6) or by using the lower vibration modes (Section 9.7). The reason for
the loss is that peak stresses are usually associated with large but isolated displacement
gradients. Such displacement states require more than just the lowest displacement modes
for their description, yet only the lowest modes are available because of reduction.
Computed stresses will probably be underestimated. Note, however, that very large
stresses might be computed by direct use of a vibration mode D, because of the way D is
scaled. Stresses computed in this way are not meaningful.

Test Cases. Test problems are useful in learning about structural dynamics, learning
how to use software, and perhaps even validating the software. Problems for which an-
swers are known can be found in textbooks, handbooks, and manuals that accompany
software.

A cantilever beam of circular cross section is a test for the ability of an eigensolver to
resolve different modes that have the same frequency. Properties of the beam can be per-
turbed slightly to provide a model with nearly equal frequencies. An unsupported struc-
wure tests the calculation of zero frequencies and rigid-body modes. It is instructive to
solve a problem in different ways and compare results (e.g., vibration with and without
reduction, or dynamic response by modal and by Newmark methods).

Pilot studies, described in Section 5.4, are particularly appropriate for dvnamic re-
sponse problems because appropriate computational choices may be difficult to make and
structural behavior hard to foresee.

Modeling. Advice given in Chapter 5 regarding modeling and project planning in a sta-
tic problem is largely applicable to a dynamics problem as well. In dynamics the mesh
should be adequate to represent the highest mode of interest. What mesh is appropriate
near a stress raiser? Stress concentrations create local disturbances but have little effect
on the total strain energy in the structure. Hence, according to the argument made in con-
nection with Eq. 9.11-1, stress concentrations have little effect on natural frequencies.
Also, locations of high stress may differ from one mode to another. These considerations
suggest that mesh refinement near probable stress raisers may sometimes be omitted, at
least in initial analyses.

It can be shown that an approximate D in Eq. 9.11-1 produces an @ that has much less
error than D. Hence a finer mesh is needed to obtain an accurate mode shape than is
needed to obtain an accurate frequency for that mode. (Note that stresses are calculated
from the mode shape.) A consistent mass representation is better than a lumped mass rep-
resentation in representing mode shapes. However, lumped masses tend to overestimate
kinetic energy, and compatible and fully integrated elements overestimate strain energy,
so that the overestimates tend to cancel in Eq. 9.11-1 and provide accurate frequencies as
a result. If natural frequencies are computed twice, using consistent masses and then
lumped masses, good agreement suggests that there is little discretization error in the
computed frequencies.

For some structures the mass of the surrounding medium is significant. Fluid that sur-
rounds a structure moves with it to some extent, adding nonstructural mass and also pro-
viding some damping. The added-mass effect can usually be ignored for a structure vi-
brating in air, but not for the aeroelastic problem of flutter in an airstream. Nor can it be
ignored in ocean engineering, where a structure moves because of wave forces, but be-
cause it moves, the forces change. This is a fluid—structure interaction problem. The
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an elastic foundation. If the contact surface between a structure and the foundation that
supports it can be idealized as a rigid circular disk, effective constants for mass, stiffness,
and damping can be used [9.3]. A soil foundation has properties that are frequency and
amplitude dependent, which can introduce significant nonlinearities [5.4].

In planning an analysis project the amount of output should be anticipated. In dynamic
response analysis, 100 time steps produce as much output as 100 static analyses. It helps
to anticipate what output may be required, and to know what sorting and plotting capabil-
ities the software contains to help with the task of inspecting results.

Checking for Errors. Errors and blunders of static analysis, and more, are possible in
dynamic analysis. As in statics one can check that nodes are suitably placed, that supports
are of the proper type and properly located, and so on. Data blunders are more likely in
dynamics because more data are needed. Mass must be specified. in consistent units. and
p may mean mass density or weight density, depending on the software. Damping ratios
must be provided, as fractions or percentages, as the software requires. Computed natural
frequencies must not be interpreted as circular frequency if they are presented as cyclic
frequency.

One can begin with a static analysis, using loads that seem likely to produce an ap-
proximation of the lowest vibration mode. Static analysis is comparatively cheap and
easy and may disclose blunders or flaws in the model. One can also ask the software to
compute total structure mass and the mass center location, and compare these results with
expectations. As the first dynamic analysis, natural frequencies and modes of vibration
can be computed. Zero frequencies indicate a lack of support (which may be intentional)
or the presence of a mechanism. Absurdly high or low frequencies suggest an error in
data. Modes should bé plotted, animated, and viewed from different directions. Are they
compatible with intended support conditions, and are they physically realistic?

In dynamics, it may be difficult for even an experienced analyst to predict the nature
of the response. Modeling may therefore be difficult and it may even be hard to foresee
what sort of response should be studied. This strongly suggests that analysis begin with
pilot studies. One may also make use of a restart option in the software, so that results of
a dynamic response analysis can be examined after a short time and computation resumed
only if it seems to be working properly.

Error Estimation. Some static problems, such as a cantilever beam under tip load, can
be modeled exactly by a single element. Such is not the case in dynamics. Polynomials,
which form the shape functions of most elements in common use, cannot represent vibra-
tion mode shapes exactly. Thus there is always discretization error in stiffness representa-
tion. Mass representation also has discretization error, and the two errors may tend to ei-
ther cancel or reinforce one another. Discretization error of stresses can be conveniently
estimated from the difference between averaged and unaveraged stress fields (Section
5.16). Software does not as yet provide such convenient error measures for mass dis-
cretization error, natural frequencies [9.9], reduction, or time step At.

Comparison With Experiment. Experimentalists and analysts must work together to
ensure that both groups address the same problem. The two groups must agree on geome-
try, elastic properties, damping, structural mass, nonstructural mass (magnitude, location,
method of attachment), supports (hinged, elastic, or other), excitation (type, magnitude,
location, direction), response to be measured (type, location, direction), and perhaps other
considerations {9.4]. The structure is no doubt more complicated than its FE model, so
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that some vibration modes of the structure may be local and not obtainable from the FE
model. Nodes of the FE model must be at the exact locations where measurements are to
be taken. The FE model is quite probably linear, but the structure may not be. To find
out, the structure could be excited at two or more levels of excitation at a given frequency
and the measured response amplitude plotted to see if it is directly proportional to excita-

tion level.

Cautionary Remarks. Remarks in a paper devoted to numerical modeling of impact

phenomena [9.10] can also be applied, with slight modification, to numerical modeling in
general. The paper advises that the primary requirement is a thorough understanding of

the physics and mechanics of the problem, and that another requirement is a thorough
knowledge of numerical modeling techniques. Otherwise the numerical problem may dif-
fer significantly from the physical problem. “In no way can today’s computer programs
for wave propagation and impact be treated as ‘black boxes.” A minimum of 6 months to
2 years of experience is needed to be able to use such programs successfully. There is no
shortcut, no royal road, to this process.” The paper also warns against use of material
properties inappropriate to the strain rate in the problem addressed, use of a mesh more
suited to computational economy than to physics of the problem, and ascribing a physical
cause to numerical instabilities that are not recognized as such.

9.12 AN APPLICATION: VIBRATION AND
HARMONIC RESPONSE

The structure we consider is the right-angle frame ABC shown in Fig. 9.12-1a. The frame
is uniform, pinned at A, and roller-supported at C. It is modeled by 50 beam elements,
each of length 0.1 m. Selected nodes are numbered in Fig. 9.12-1a. Displacements are

U
l<—1.0m~—>1<—~1.0m—>é (3 2a > uc[.é,
tj . $ 51 B ¢ 35:;
YU T e e —— T
31 41 £ }
|
I
E = 200(10%) Pa !
1.5m v =0.29 !
G =77.5(109) Pa ,’
p = 7860 kg/m3 |
;o014 /
X __ia]l6 12 'I
/
7 i
/ EO.I m ]‘
1.56m |
0.1m ,l
Cross section ,l

A_Lg_l — X Ad —x
_A_ X, u

(a)
Fig. 9.12-1. (2) Plane frame structure and its properties. The numbers 1, 16, 31, 41. and 31 are node
numbers used in the FE model. (b) Static loading used in preliminary analysis. Here a = 1.0 m.
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PDF CO“H?JHQ%%Q‘EQEE@%IYSJ%W{“@ paper. The simplicity of this structure allows us to concen-
trate on dynamics rather than geometric modeling and to display computed results easily.
We will compute undamped natural frequencies of vibration, then the harmonic response
for a range of forcing function frequencies with & = 0.02 as the damping ratio for all
modes. Lumped masses with rotary inertia are used by the software, but the documenta-
tion offers no details about the formulation.

Preliminary Analysis. It is easy to estimate the lowest natural frequency of vibration by
reducing the problem to a single degree of freedom, then calculating the frequency
w, = Vk/m. To obtain k we assume that the shape of the lowest vibration mode resembles
the static deflected shape of the frame when a horizontal force F is applied at node C
(Fig. 9.12-1b). Deflection u can be computed by applying static force F to the FE model.
Or, with @ = 1.0 m, simple methods of either energy or beam theory yield

15Fa° FOE
204 hence  k=——= — 111,100 N/m 9.12-1)
El uc 15a°

Ue =

All the mass of BC has horizontal displacement i, but only some of the mass of AB. An
accurate evaluation based on deflected shape can be made but it is not worth the trouble.
Let us assume that Aalf the mass of AB has displacement te. Thus, multiplying mass den-
sity by volume, we obtain the effective mass m = 7860(2.0 + 1.5)(0.1)(0.1) = 275 kg.
Therefore

k
w = |—=201/s and f=20~320Hz (9.12-2)
m 2n

Frequencies and shapes of higher modes become increasingly difficult to anticipate. As
for harmonic response, we know that there will be peaks of response when the frequency
of the forcing function coincides with a natural frequency of vibration. Magnitudes of the
peaks can be computed by hand when frequency data are known (see Eq. 9.12-3).

Critique of FE Vibration Analysis. Computed results for the five lowest frequencies
and modes are shown in Fig. 9.12-2. There is excellent agreement between the computed
/1 and the estimated £, in Eq. 9.12-2. Displacement amplitudes are exaggerated for plot-
ting and have no significance. Recalling the argument that follows Eq. 9.11-1, mode
shapes in Fig. 9.12-2 imply an ordering of frequencies that agrees with the ordering actu-
ally computed. Each wave of these modes is spanned by several elements, which implies

_ T T Ve ~N
;T T T T - ~ - T /I~
{ / ;/ T / [
] / \ / \
| / |
/ ! \ A\
! Mode 1 i Mode 2 \ Mode 3 Mode 4 I Mode 5
{ [ \ \ /
/ ‘ | ! /
/ \\ / / f
/ \ / / \
3.315Hz 35.08 Hz 70.77 Hz 122.7 Hz 226.0 Hz

Fig. 9.12-2. Computed mode shapes and cyclic frequencies f= w/2x.
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TABLE 9.12-1. Vibration of the frame in Fig. 9.12-1: selected terms of the mass-nor-

malized eigenvector D; (i.e., the nodal amplitudes in mode i) for selected nodes, each
multiplied by 1000.

D.of. Node Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
u 16 38.6 -81.5 23.8 -27.7 62.7
0, 41 1.0 7.0 -19.4 52.6 248.9
u 51 62.3 33.1 -3.4 21.6 9.2

that the FE mesh is adequate. All in all, there is no apparent reason to disbelieve the com-
puted frequencies. Additional computed frequencies in hertz (Hz) are f; = 269.4,
£ =396.6, f, = 420.8, f, = 552.3, and f;, = 649.6. The FE model has a total of 150 fre-
quencies. Amplitudes of selected d.o.f. from the lowest modes appear in Table 9.12-1.
Each mode (eigenvector) D, is scaled so that DTMD, = 1. Note that algebraic signs in
Table 9.12-1 agree with what is seen in Fig. 9.12-2.

Harmonic Response Analysis. Let node 51 be loaded by a horizontal force of 3000 sin
Qt, measured in newtons. Harmonic response is computed by the modal method for each
of several frequencies Q. The damping ratio is § = 0.02 for all modes. Figure 9.12-3a
shows the forced vibration mode for Q = 122 Hz, which is almost the natural frequency
of mode 4. As might be expected, the shape is very similar to that of mode 4, but not
quite the same. Computed response data can also be used to plot the maximum response
of any quantity versus frequency of the forcing function; that is, to plot a form of Fig.
9.8-1. Figure 9.12-3b is such a plot. It shows the amplitude of horizontal displacement at
node 16 versus forcing function frequency in the arbitrarily chosen range 48 1o 180 Hz.
Much larger peaks may appear at lower resonant frequencies. The expected peaks are ob-
served at Q, = , and at Q, = @,. Only five modes were retained in the analysis, so that
results for Q > Q, are questionable. However, a reanalysis with only four modes retained
produced almost identical results in the range plotted.

i ___Q__ 1716 (m x 10"6)

/ 75 “
]
i F = 3000 sin Q¢
\ Q= 21(122)s
\ 50

\016 \ /

\

\

| \J \\

!
/ ! o

Fig. 9.12-3. Harmonic response. (a) Vibration shape for forcing function frequency f= 122 Hz. (b)
Horizontal displacement amplitude at node 16 versus frequency of the forcing function.
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PDF Compressay He@g dex $ioh Table 9.12-1, peak amplitudes in Fig. 9.12-3b can be checked.
Consider the peak that corresponds to Q,. The only nonzero entry in the load amplitude
vector R is 3000 N rightward at node 51. Therefore, from Eq. 9.7-6, the modal load in
mode 4 is p, = 0.0216(3000) = 64.8. Also Q, = w, = 27(122.7) = 770.9/s, £,=10.02, and
B, =1.0. Equation 9.8-4 yields

G = D210 SABITIOONT oo (9.12-3)
28, 2(0.02)

Hence u,s = 0.0277z,,... = 75.5(10%) m, which agrees with the value plotted in Fig.
9.12-3b. Static deflection under the 3000-N load is over 300 times greater. However, the
amplitude of horizontal reaction at node 1 was found to be about 4800 N when Q= w,;
that is, 1.6 times the amplitude of the forcing function.

Note: Data in this section and the next come from three different computer programs
because no one program provided all the results needed. All three programs provided
modes and frequencies, but they did not quite agree. For this reason there are slight in-
consistencies in some of the numerical results. Such difficulties are commonplace.

9.13 AN APPLICATION: DYNAMIC RESPONSE

The frame whose data appear in Fig. 9.12-1 is now subjected to an impulse loading. As
shown in Fig. 9.13-1, a horizontal force of 100,000 N is applied at node 51 for 0.01 sec-
onds. The frame is initially undeformed and at rest. We will calculate selected displace-
ments, velocities, and accelerations as functions of time, and also seek maximum values
of these quantities. Because load is suddenly applied it is a shock loading, for which
modal analysis is not well suited. But we will use modal analysis anyway in order to
show how it fares when applied to such a problem.

Preliminary Analysis. Let us continue the approximate analysis begun with Eq. 9.12-1,
and now estimate the maximum horizontal acceleration, velocity, and displacement of
node 51. Over the very short period of loading, displacements are so small that elastic
forces have almost zero effect on the horizontal acceleration of portion BC. Therefore we
use simple equations of particle dynamics. From Newton’s law J = ma, acceleration at

yu
Cc F
B o > F, newtons
a2
51
105
1= 0.01s
¢®16
Al 0 1, seconds .
|| QE—_ 0 1 Fig. 9.13-1. (a) Frame

7 loaded at point C by force
F. (b) Prescribed variation
(a) (b) of force F with time.
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time r = 0 should be approximately

Us, :£:M=364 m/s? (9.13-1)
m 275

The impulse F, is equal to the change of linear momentum, which we take to be mus,.
Hence atr =1,

Fr,  100,0000.01)
Us) = = =

=364 m/s (9.13-2)
m 275
To estimate maximum displacement, we assume that maximum kinetic energy 1s equal to

maximum strain energy in mode 1, whose approximate stiffness & is available from Eq.
9.12-1. Hence

Ym(ies))? = 5k(us,)” (9.13-3a)

12
} =0.181m (9.13-3b)

[2753.64)°
> 111,100

FE Model and Analysis. The FE model and its computed modes and frequencies are ex-
actly those also used for the calculations of Section 9.12. To study the effect of retaining
different numbers of modes in the analysis, dynamic response is analyzed several times
by the mode superposition method, each time retaining one more mode in the analysis, up
to a total of 15 modes used. The frequency of mode 15 is fis = 1268 Hz. In each analysis
the time step for integration of Eq. 9.7-6 is At = 0.0001 seconds, starting at time 7 = 0 and
continuing to at least time ¢ = 0.40 seconds.

Critique of FE Results. With 15 modes retained, computed maxima of horizontal accel-
eration, velocity, and displacement at node 51 are, respectively, 173 m/s?, 4.27 m/s, and
0.181 m. The agreement of velocity and displacement with Eqs. 9.13-2 and 9.13-3b is
good to excellent. The agreement of acceleration with Eq. 9.13-1 is not good and reflects
the inappropriateness of the mode superposition method for acceleration calculation when
there is shock loading.

We arbitrarily decide to present graphical results for displacement, velocity, and accel-
eration of the rotational d.o.f. at node 41. Figure 9.13-2a shows the variation of 6_,, with
time when only two modes are retained in the analysis. We see that the effect of damping
is to make mode 2 decay quickly, leaving mode 1 to decay over a larger time span. This
is reasonable in view of the argument that follows Eq. 9.2-7: modes decay at a certain
rate per cycle, and over a given time mode 2 executes more cycles that modz 1. The ini-
tial portion of the response is shown in Fig. 9.13-2b, but with 15 modes used in the analy-
sis. The contribution of modes higher than the second is evident, but it is also clear that
almost all of the maximum displacement response is represented by the first two modes.
Similar results, now for velocity 6.,, and acceleration é:41 early in the response, appear
in Fig. 9.13-3. Here we see that two modes yield only about one-third the angular veloc-
ity predicted by 15 modes. The maximum angular acceleration may not be represented
accurately by even 15 modes; we can say only that two modes are utterly inadequate.

For the horizontal d.o.f. at node 16 and the rotational d.o.f. at node 41, Table 9.13-1
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.41 6.41
2 Modes used 15 Modes used
0.0034 — 0.0034
0 ! | A ' 0 | I !
0.1 0.4 0.7 0.05 0.10
(Expanded scale)
-0.0034 —
(a) (b)

Fig. 9.13-2. Rotation 6. (radians) at node 41 versus time (seconds) for the loading of Fig. 9.13-1.
(a) Results when two modes are included in the analysis. (b) Results when 15 modes are included
in the analysis; initial portion of the plot.

lists maximum values that appear in the entire response history, using various numbers of
modes in the analysis. Again it appears that two modes are adequate for displacement
analysis. However, we cannot be sure that 15 modes are adequate for velocity analysis,
and the data suggest that 15 modes are inadequate for acceleration analysis. We empha-
size that the mode superposition method is not Jaulty; the difficulty is thar the modal
method and shock loading are not well suited to one another.

Response Spectrum Analysis. If we require only estimates of maximum magnitudes of
response, response spectrum analysis can be used as an alternative to dynamic response
analysis. As will be seen, response spectrum analysis can also be used to indicate the num-
ber of modes that will be needed if a dynamic response analysis by the mode superposition
method is to be undertaken subsequent to computation of modes and frequencies.

Response spectrum analysis is supported by some software, but we will carry out the
following calculations by hand for the sake of illustration. In contrast to the spectra in
Fig. 9.10-1, the undamped spectrum for the loading shown in Fig. 9.13-1 does not decay
with increasing w. This in itself suggests that higher modes will be important. For un-
damped displacement response, with f the cyclic frequency of the single-d.o.f. system,
factor § (defined in Fig. 9.10-1) is § = 2sinzt, ffor 1,f < 0.5 and § = 2 for 1,f> 0.5 [9.3].
In Eq. 9.10-7, for velocity, S, = §; for acceleration, S, =1 for all ¢,. Consider the mode 1
contribution to maximum horizontal displacement at node 16 in Fig. 9.13-1. As explained
above Eq. 9.12-3, but considering mode 1 and a force of 10° N, P = 0.0623(100,000) =
6230. Also S, =2sin(0.01)(3.315) = 0.208. Next, Eq. 9.10-6 becomes

6230
(273315)°

Zimax =

(9.13-4)

Finally, with mode 1 data for u,4 from Table 9.12-1, Eq. 9.10-1 gives A4 ; = 0.0386(2.99)
= 0.115, which is the first entry in Table 9.13-2. The remaining entries can be similarly
calculated from data in Table 9.12-1 and equations in Section 9.10. The first row in Table
9.13-2 does not quite agree with the first row in Table 9.13-1 because our system is
damped but the S factors used pertain to undamped motion, and because of software dif-
ferences (see the Note that concludes Section 9.12).
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Fig. 9.13-3. Angular velocity 9~ (rad/s) and angular acceleration éz (rad/s?) at node 41 versus time
1 (s) for the loading of Fig. 9.13-1.

With data from Table 9.13-2, it is clear that Eq. 9.10-2 gives an upper bound on maxi-
mum displacement response reported in Table 9.13-1. The number of modes required to
compute (say) i, and its time derivatives, by either the response spectrum method or a
dynamic response method, can be estimated from Table 9.13-2: two to five modes for
displacements, two to perhaps ten modes for velocities, but perhaps almost all modes for

TABLE 9.13-1. Selected results of greatest magnitude for the problem of Fig. 9.13-1,
computed by the modal method using different numbers of modes.

Modes 10%u,6 Uy e 10°0.,, 8.4 6.,

used (m) (m/s) (m/s?) (rad) (rad/s) (rad/s?)
1 112 2.38 242 2.80 0.060 6

2 119 4.33 —-463 3.37 0.211 —-40

3 119 4.31 —-464 3.36 0.230 —44

4 119 4.31 529 3.44 0.349 —174

5 119 431 553 3.47 0.368 —441

10 119 4.37 830 3.47 0.539 —-862

119 4.39 1341 3.47 -0.603 —1524

s
W
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d.o.f. A; of Eq. 9.10-1 in each of several modes. Signs are omitted because they are not
used in Egs. 9.10-2 and 9.10-3.

10°A A A Co10a A A
Mode for uye for iz, for ii for 8., for 9:4x for 9:41
number (m) (m/s) (m/s?) (rad) (rad/s) (rad/s?)
1 113¢ 2.39¢ 241 293 0.061¢ 6°
2 10 2.17 269 0.84 0.186 23
3 0 0.04 8 0.07 0.030 7
4 0 0.15 60 0.38 0.293 113
5 0 0.08 57 0.22 0.318 226
10 0 0.06 129 0.03 0.128 261
15 0 0.09 375 0.01 0.089 352
Estunated maximum from Eq. 9.10-3 using all modes up 10 15
1-15 116 3.25 719 3.09 0.780 1489

“Line 1 of this table does not quite agree with line 1 of Table 9.13-1: see the text.

accelerations. The latter conclusion is also evident from the second of Egs. 9.10-7, which
contains no «; divisor and for which Sa =1 for the shock loading used in the present ex-
ample.

ANALYTICAL PROBLEMS

9.1

9.3

9.4

9.6

(a) InFig. 9.2-1a, let r be a constant force F. What is the effect of F on the time-de-
pendent displacement and the natural frequency of vibration?

(b) A weight whose mass is m is placed at the middle of a uniform beam of length L
that is clamped at each end. The mass of the beam may be neglected. Estimate
the natural frequency of vibration in terms of m, L, E, and . Suggestion: First
determine an effective .

Use Eq. 9.3-4 to derive the following elermnent mass matrices:

(a) Equation 9.3-3.

(b) The mass matrix of a two-d.o.f., linear-displacement-field element, as in Fig.
9.3-1b, but with a cross-sectional area that varies linearly from to A, to A,.

If a differential element has mass dm and velocity v, its kinetic energy is v2dm/2.
Show that the kinetic energy of a finite element is therefore d"md/2, where m is the
consistent element mass matrix and d is the vector of element nodal d.o.f.

Consider a uniform plane beam element of length L, whose nodal d.o.f. are a lateral
translation and a rotation at each end (four d.o.f. altogether). If the element is to
have the correct kinetic energies in the rigid-body motions of lateral translation and
rotation about the mass center, what should be the terms in a diagonal element mass
matrix? Does this matrix provide the correct kinetic energy of rotation about one
end?

A uniform two-node bar element is allowed to displace three-dimensionally. The
nodes have only translational d.o.f. What is the diagonal mass matrix of the ele-
ment?

Consider the kinetic energies of a straight, two-node element in these three rigid-
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9.7

9.8

9.9

9.10

9.11
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body motions in the plane of the paper: lateral translation, rotation about the mass
center, and rotation about the left end. Do the following mass matrices provide the
correct kinetic energy or not?

(a) Bar element, lumped mass matrix (Eq. 9.3-1).

(b) Bar element, consistent mass matrix (Eq. 9.3-3).

(c) Beam element, consistent mass matrix (Eq. 9.3-5).

Rigid and massless link AB in the sketch connects a particle mass m at A to node B,
which is a node of a FE structure. In terms of the three d.o.f. shown at node B. what
is the 3 by 3 mass matrix associated with mass m? Suggestion: Review Section 4.3.
Physically and qualitatively, what sort of error would be produced by somehow di-
agonalizing this matrix?

Problem 9.7

Using the diagonal mass matrix suggested below Eq. 9.3-3, in which all four m;, are
nonzero, solve for the natural frequencies and mode shapes of the cantilever beam
in Fig. 9.4-1.

The sketch shows an unsupported uniform bar, modeled by one two-node element.
Solve for the frequencies and modes of axial vibration using mass matrices as fol-
lows:

(a) Lumped mass matrix (Eq. 9.3-1).

(b) Consistent mass matrix (Eq. 9.3-3).

(c) A mass matrix that is the average of the lumped and consistent forms.

The exact fundamental frequency is @, = (7r/L)\/E—/pA

The sketch shows a uniform bar, fixed at one end and modeled by two two-node el-
ements of equal length. Solve for the frequencies and modes of axial vibration using
mass matrices as follows:

(a) Lumped mass matrix (Eq. 9.3-1).

(b) Consistent mass matrix (Eq. 9.3-3).

(c) A mass matrix that is the average of the lumped and consistent forms.

The exact fundamental frequency is @, = (7r/2L)\/E—/p.

1 2
i pAE j > @ % pAE
! L | L |
! L \J1 ! 2 ' 2 '
Problem 9.9 Problem 9.10

(a) For the example problem in Section 9.4, obtain the natural frequencies by using
a mass matrix that is the average of the consistent mass matrix and the parti-
cle-lumped mass matrix (no rotary inertia in the lumped mass matrix).

(b) Obtain the associated mode shapes.
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9.12

9.13

9.14

9.15

9.16

9.17

9.18

9.19

(a) Express the reduced stiffness matrix K, = T’KT in terms of K,,,,, K., and K_,
(see Eq. 9.6-1).

(b) Similarly, express the reduced mass matrix M, = T’MT in terms of stiffness
and mass submatrices in Eq. 9.6-1.

Recornsider the example problem in Section 9.6. This time use 512 as master and v,
as slave, and compute the fundamental frequency of vibration.

Apply reduction to Problem 9.11, and obtain the resulting fundamental frequency of
vibration.

Apply reduction to Problem 9.10b. Obtain the fundamental frequency of vibration
as follows:

(a) Use u, as master, u, as slave.

(b) Use u, as master, «, as slave.

For the example problem in Section 9.4, unscaled nodal displacements of mode 1
can be shown to be 0, = 1.0 and 6., = 1.378/L.

(a) Scale mode 1 so as to satisfy Eq. 9.4-3.

(b) Show that then D7KD, = ®?, as required by Eq. 9.7-3.

Determine the damping matrix C in Eq. 9.2-4 that is implied by the modal damping
in Eq. 9.7-6. (The resulting C is full, and depends on ¢ and a diagonal matrix whose
ith diagonal term is 2&,m,.)

The sketch shows three equal particle masses connected by three identical springs.
Only axial motion is permitted. The vibration modes, scaled so that the largest d.o.f.
in each is unity, are D, = [1.000 0.802 0.445]", D, = [-0.802 0.445 1.000]7, and
D, = [-0.445 1.000 -0.802]".

(a) Sketch these modes, and show by multiplication that they are mass-matrix or-
thogonal. Ate they also stiffness-matrix orthogonal?

(b) Let D, and D, be used in Eq. 9.7-7 (omit D;). Also let m = 1 for each particle
mass. What must be z, if z; = 1 and the displacement of node 1 is zero? Sketch
the displaced shape of the structure thus obtained.

(¢) For comparison, use u, and u, as masters in Eq. 9.6-3. For u;, =0 and u, = 1,
sketch the displaced shape of the structure.

s © " Problem9.18

A single-d.o.f. system without damping has natural frequency @ and is loaded by
the force r = Fy sin Q. For what ratio /e is the static displacement F/k amplified
by no more than 10%?

(a) The finite difference expression for accelerations D can be written D = AD/As,
where D= AD/A¢. Derive the second of Egs. 9.9-3 by applying this information
to two successive intervals.

(b) Show that Egs. 9.2-4,9.9-2, and 9.9-3 yield Egs. 9.9-4.

(c) Whyis y=4and =4 in the Newmark method known as the “trapezoidal rule”?
Suggestion: Sketch acceleration versus 7 and use Eq. 9.9-6b.

A particle of unit mass is supported by a spring of unit stiffness. There is no damp-
ing. At time 7 = 0, when the particle has zero displacement and is at rest, a constant
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unit force is applied. Use the central difference method, Eq. 9.9-4, to compute the dis-
placement at successive time steps as follows:
(a) Use Ar=0.5and gotor=7.0.
(b) UseAr=1.0and gotot=7.0.
(¢) Use Ar=2.0 and go to = 10.0.
(d) Use Ar=3.0and gotor=15.0.
(e) Obtain the exact solution and compare the results of part (a) with it.
9.22 For the example problem in Section 9.4, approximate @, and o, by use of Eq. 9.11-1.
In each case, do so by guessing a reasonable but probably inexact displacement vector
D.

9.23 Use Eq. 9.11-1 to obtain the natural frequencies of the spring—mass system whose
vibration modes are stated in Problem 9.18.

9.24 Check the ordinate of the first peak in Fig. 9.12-3b (for which f= 70.77 Hz) by use
of the method described in connection with Eq. 9.12-3.

9.25 Calculation of the first entry in Table 9.13-2 is explained in connection with Eq.

9.13-4. Proceeding in similar fashion, verify the following entries in Table 9.13-2:
(a) A terms for modes 2 through 5 in the ;¢ column.

(b) Aterms for modes 1 through 5 in the i, column.

(¢) A terms for modes 1 through 5 in the i, column.

(d) A terms for modes 1 through 5 in the 6,4, column.

(e) Aterms for modes 1 through 5 in the 8 4, column.

(f) A terms for modes 1 through 5 in the ém column.

COMPUTATIONAL PROBLEMS

When specific data are not stated in the following problems, choose convenient numbers
and consistent units for material properties, dimensions, and loads. Unless directed other-
wise, assume that thicknesses are uniform and the material is isotropic. Where possible
without considerable effort and advanced knowledge, obtain preliminary analytical esti-
mates of significant quantities to be computed.

9.26 Let displacements of the structure shown be confined to the plane of the paper. The
structure may be regarded as a truss (bar elements and pinned member connections)
or a frame (beam elements and welded member connections). For simplicity, as-
sume that member cross sections are square, each % units on a side. One might, for
example, use steel as the material. with H = L = 6.0 m and # = 50 mm. Using a sin-
gle element to model each member, investigate the natural frequencies and modes
under the following conditions:

(a) Truss structure, lumped mass formulation.
(b) Truss structure, consistent mass formulation.
(c) Frame structure, lumped mass formulation.
(d) Frame structure, consistent mass formulation.

H
A 2
» e 3@L=3L —-——>{ Problem 9.26
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9.28

9.31

9.32

i - .
epeat Problem 5?31 this time using two or more elements of equal length to model
each member.

The structure shown consists of six identical slender rods of circular cross section.
The rods are welded together with equal angles between them to form a plane struc-
ture. Investigate the first eight nonzero natural frequencies and their associated
modes. Confine displacements to the plane of the paper, and consider that center C
is:

{a) Unsupported.

(b) Allowed to rotate but not translate.

Problem 9.28

(a) Repeat Problem 9.28 with three-dimensional motion allowed.
(b) Repeat Problem 9.28 but with one of the rods doubled in mass.

Repeat Problem 9.28, but with different support conditions. Now provide simple
support at the outer end of each rod and let center C be unsupported. Let displace-
ments be:

(a) Confined to the plane of the paper.

(b) Allowed in any direction.

The uniform cantilever beam shown has total mass »1, and a solid circular cross sec-
tion. A uniform rigid crossbar of total mass m1_ is attached to the end of the beam,
with its mass center offset a distance s from the end of the beam. Investigate the nat-
ural frequencies and modes for the following special cases:

(a) m.=0. :

(b) m,=0,s=0.

() my=m,s=0.

(d) m,=m., h=0.6L,s=05h

The sketch shows a building frame of » stories, each 4 units high. Investigate the
natural frequencies and modes.
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The spiral clock gong shown has centerline radius (in millimeters) r = 26.65 + 0.6846,
where @ (in radians) is zero at A and 97 at B. Portion BC is straight and C is fixed. The
material is steel and the cross section is a 1.69 mm by 2.80 mm rectangle with the
smaller dimension in the plane of the paper. Let £ = 209 GPa, v = 0.3, and p = 7800
kg/m®. Investigate the first eight natural frequencies and modes (adapted from [9.11]).

Problem 9.33

Investigate the natural frequencies and modes of a flat square membrane. Let dis-
placements be confined to the plane of the membrane. As boundary conditions, con-
sider that edges are:

(a) All free.

(b) All free but one.

{c) All fixed.

Investigate the natural frequencies and modes of lateral vibration of a flat square
plate.

(a) Let the plate be unsupported.

(b) Let the plate be simply supported on all edges.

(¢) Let the plate be clamped on one edge.

(d) Let the plate be clamped on all edges.

The sketch depicts two channel sections, welded together to create an angle ¢ be-
tween them. The structure is unsupported. Investigate the natural frequencies and
modes.

Cross section

Problem 9.36

The sketch shows a portion of a cylindrical shell with fixed support along one
straight edge. The shell becomes a cantilevered plate of length L if radius R is infi-
nite. Investigate the natural frequencies and modes.

Repeat Problem 9.37, but free the plate/shell on the straight edge of length «, and
instead provide fixed support along an adjacent edge.

Investigate the natural frequencies and modes of the conical shell shown.
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9.40

9.41

9.42

9.43

9.44

: Side view

; Y
Edge view L Ji ’)/RL

Problem 9.37 Problem 9.39

The following structures, described in preceding chapters, may be examined for
their natural frequencies and modes. In cases where supports are not indicated, the
structure may be left unsupported, provided with support just adequate to prevent
rigid-body motion, or various other alternatives.

(a) Figure 5.2-3 (thin-walled curved beams).

(b) Figure 7.4-3 (cylindrical shell; as shown or slit open as in Fig. 7.7-1a).

(c) Figure 7.5-2a (shell roof).

(d) Figure 7.5-2c (hemispherical shell).

(e) Figure 7.5-2d (twisted strip).

(f) Problem 7.18 (trapezoidal plate, parallel edges free).

(g) Problem 7.41 (intersecting cylindrical shells).

(h) Problem 7.50 (cylindrical shell segment).

Investigate the fundamental frequency and vibration mode of a plate on an elastic

foundation (e.g., the problem of Fig. 7.3-1).

(a) Ignore the mass of the foundation.

(b) Include the mass of the foundation. Assume, for example, that the elastic layer is
ten times the thickness of the plate and one-quarter of its mass density. Approx-
imate as necessary.

(c) Examine the effect of making other choices for the mass density of the founda-
tion.

Let the left end of the beam in Problem 9.31 be connected to a rigid shaft by means
of a ball and socket joint. The shaft has small diameter, rigid bearings and rotates at
constant angular velocity about its axis, which is normal to the plane of the paper.
Neglect the influence of gravity. Investigate the effects of stress stiffening and spin
softening on the natural frequencies and modes of the beam. The crossbar may be
rigid or flexible, as desired.

Reduction can be applied to most of the preceding problems in which natural fre-
quencies are to be computed. One might examine the percentage change in com-
puted frequencies as the number of masters is successively reduced. Also, a poor set
of masters may be deliberately chosen and the results compared with those pro-
duced by a good choice and by the full set of d.o.f.

Harmonic response analysis can be applied to any of the preceding problems in
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which natural frequencies are to be computed. Great variety is afforded by options
in the number of forcing functions, their directions and points of application, their
frequency, and their phase angles.

9.45 The uniform straight bar shown has elastic modulus E, cross-sectional area A, mass

density p, and is initially unloaded and at rest. At time ¢ = 0 a tensile load of magni-
tude P, = OuA is suddenly applied and thereafter maintained. The plot shows the
theoretical solution for the variation with time of axial displacement (dashed line)
and axial stress (solid line) at the midpoint of the bar, with damping ignored. Time
risr. = (L/2)/\fb—/f. Construct a FE model using two-node bar elements, and solve
this problem numerically.

(a) Use the central difference method.

(b) Use the Newmark method.

(c) Use the mode superposition method.

Axial Axial
displacement u, Stress o,
ok 200
AE / \ /uc
{ L | / \
T
. | Py / v g,
> _P.Oi / A / —0p

9.46
9.47

9.48

1 me| [ \

N[~

Problem 9.45

Repeat Problem 9.45 but with both ends of the bar free.

Repeat Problem 9.45 but with the cross-sectional area increased to 24 in the right-
most 40% of the bar.

The uniform beam shown is initially at rest. The sketch includes a formula for the
period of vibration 7, of mode n, in which b, = 3.52. b, = 22.0. and b, =
(2n — 1)’7m?/4 for n > 2. Starting at time 7 = 0, load P increases linearly to P;and
then drops suddenly to zero. Construct a FE model of two-node beam elements
and compute the deflection versus time plot for the right-hand end of the beam.
Consider:

(a) 1,=T,/4.
(b) 1o=T,/4.
(c) to=T44.
P
b 0.6L P
Lo}
]
: L J‘
1
lis]
4
T, = 2n Eﬁl‘_ p = mass density
by, 2 A = cross-sectional area

Problem 9.48
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uniform simply supported beam is loaded by two forcing functions at the loca-
tions shown. The functions are F, = sin 2@t and F, = sin 6,7, where @, is the fun-
damental vibration frequency of the beam. Compute, as a function of time, the
center deflection, center acceleration, and support reactions.

L
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N |~

f L Jw Problem 9.49

9.50 The cross-shaped structure shown supports heavy particles of slightly differing mass
at A, B, C, and D. The structure consists of lightweight beams AE, BE, CE, DE, and
FE. The beams are mutually orthogonal and are welded together at E. The beams are
of equal length except for FE, which is comparatively short and is rigidly supported
at F. Investigate the dynamic response of the structure after an initial velocity is im-
parted to the particle at A. Let this initial velocity be in (a) the y direction, and (b) the
z direction.

~
¥ Problem 9.50

9.51 Dynamic response analysis can be applied to any of the preceding problems in
which natural frequencies are to be computed. Great variety is afforded by options
in the number of forcing functions, their directions and points of application, and
their manner of time variation. Some possible load histories are shown in the sketch.

Load Load Load Load

(Continues) (Continues)
¢

- h I

Problem 9.51

9.52 Response spectrum analysis can be applied to problems for which dynamic response
analysis is requested, for example, Problems 9.48 and 9.49. Computed maxima can
be compared if a problem has been solved by both methods.
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CHAPTER Z 0

Nonlinearity in
Stress Analysis

Concepts of nonlinearity are introduced by explaining simple solution algorithms. Stress
stiffening is discussed, and its use in linear buckling analysis and nonlinear analysis is
summarized. Geometric nonlinearity, material nonlinearity, and gap closure are explained
as common sources of nonlinearity in stress analysis and are illustrated by simple exam-
ple analyses.

10.1 INTRODUCTION

In linear analysis, response is directly proportional to load. Linearity may be a good
representation of reality or may only be the inevitable result of assumptions made for
analysis purposes. In linear analysis we assume that displacements and rotations are
small, supports do not settle, stress is directly proportional to strain, and loads maintain
their original directions as the structure deforms. Equilibrium equations KD = R are
written for the original support conditions, elastic stress—strain relations, load-free con-
figuration, and load directions. Displacements D = K™'R are obtained in a single step
of equation-solving. We are fortunate that so many practical problems can be solved by
so simple an approximation. However, any of the convenient assumptions that lead to a
linear analysis may be at odds with reality. Adjacent parts may make or break contact.
A contact area may change as load changes. Elastic material may become plastic, or the
material may not have a linear stress—strain relation at any stress level. Part of the
structure may lose stiffness because of buckling or failure of the material. Displace-
ments and rotations may become large enough that equilibrium equations must be writ-
ten for the deformed configuration rather than the original configuration. Large rota-
tions cause pressure loads to change in direction, and also to change in magnitude if
there is a change in the area to which they are applied. Thus, for various reasons, a
problem may become nonlinear; for example, a plot of load versus displacement ceases
to be a straight line.

Simple examples of nonlinear problems appear in Fig. 10.1-1. A slender beam, Fig.
10.1-1a, is loaded by a force P that acts normal to the beam axis at all times. This is an
instance of a “follower force.” The displacement shown is intended to represent actual
displacement, not the scaling up of a linear small-displacement solution. In this case
nonlinearity is geometric, meaning that nonlinearity arises because of significant
changes in the geometry of the structure. Material nonlinearity causes the behavior in
Fig. 10.1-1b: material of which the beam is made has a nonlinear stress—strain relation.

275
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(a) (b) (c)

Fig. 10.1-1. (a) Slender elastic beam loaded by a follower force P. (b) Elastic—plastic beam loaded
by a fixed-direction force P. (¢) Contact stress in & roller bearing.

The construction in Fig. 10.1-1c exhibits “contact nonlinearity” because the area of con-
tact between the two bodies grows as load P increases, whether the material yields or
not. This is an instance of geometric nonlinearity in which displacements and strains are
small.

Nonlinearity makes a problem more complicated because equations that describe the
solution must incorporate conditions not fully known until the solution is known—the ac-
tual configuration, loading condition, state of stress, and support condition. The solution
cannot be obtained in a single step of analysis. We must take several steps, update the
tentative solution after each step, and repeat until a convergence test is satisfied. The
usual linear analysis is only the first step in this sequence. Nonlinear analysis can treat a
great variety of problems, but in a sense it is more restrictive than linear analysis because
the principle of superposition does not apply; we cannot scale results in proportion to
load or combine results from different load cases as in linear analysis. Accordingly, each
different load case requires a separate analysis. Also, if a loading consists of component
loads that are sequentially applied, results may not be independent of the order in which
loads are applied.

In this chapter we discuss stress stiffening, large deflections, buckling, and how they
are interrelated; time-independent material nonlinearity; and contact problems in which
contact areas may change and gaps may open or close. In order to keep the discussion
short and comparatively simple, we omit the subjects listed below, despite their practical
importance. Our list of omitted subjects is not comprehensive but nevertheless suggests
the broad range of nonlinear phenomena:

« Materials in which deformation depends on load rate as well as load level (creep,
viscoelasticity, viscoplasticity).

. Problems in which strains are large, as in metal-forming processes (large strain
analysis requires that terms be added to strain~displacement relations such as Egs.
3.1-5).

« Linkages, mechanisms, and other problems that involve large rigid-body motion.

« Coupled problems, such as fluid-structure interaction, in which fluid forces cause a
structure to move, but by moving it alters the fluid forces.

. Nonlinear dynamic problems, such as nonlinear vibrations and projectile impact.

« Nonlinearity in problems other than stress analysis.
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How does software solve a nonlinear problem? It is important to understand the rudi-
ments of solution algorithms because the analyst must make initial choices and know
what to try next if a procedure fails. Many aspects of nonlinear solution methods can be
discussed independently of the source of nonlinearity. So that simple 2D plots can be
used for explanation, the following summary of solution methods considers a nonlinear
equation having a single d.o.f. Methods discussed can also be applied to multi-d.o.f. non-
linear structures.

Consider a nonlinear spring loaded by a force P, Fig. 10.2-1a. In general, as stretch
increases, stiffness & of the spring may either increase (hardening structure) or decrease
(softening structure). Multi-d.o.f. examples of these respective behaviors are a cable net-
work that deflects laterally and a steel structure with spreading yield zones. Figure
10.2-1b depicts softening behavior. Let us say that the purpose of analysis is to determine
the stretch of the spring for any value of load, that is, to construct a plot of P versus u.
Stiffness k is a function of u and can be calculated for any value of 1. However, we as-
sume that the equation ku = P cannot be solved explicitly for u as a function of P. This
restriction is made so that the single-d.o.f. example resembles multi-d.o.f. equations
KD = R that are nonlinear because K is a function of D. Numerical methods are unable to
solve nonlinear equations explicitly for D as a function of R. Instead, a nonlinear prob-
lem is solved by taking a sequence of linear steps.

Solution Algorithms. A simple way to solve nonlinear equations is called direct substi-
tution. It is described for thermal analysis in Section 8.3. The method is slow unless non-
linearities are mild, and it is not often used for stress analysis. More often, various incre-
mental methods are used. They use the tangent stiffness, which for a single-d.o.f. problem
is the slope of the P versus u plot, k, = dP/du in Fig. 10.2-1. In a single-d.o.f. problem we
could obtain the “correct” curve in Fig. 10.2-1b by calculating P for each of several val-
ues of u. The analogous procedure in a multi-d.o.f. problem would be to calculate load
vectors R for each of several displacement vectors D. However, this option is not avail-

P
Calculated

kiy Correct

APZ

ku = P where k = ku)
n dP
kpAu = AP where k, = E APy
k = k(u) is the tangent stiffness

u

(a) ()

Fig. 10.2-1. (a) A nonlinear spring. Displacement u is not directly proportional to
load P. (b) Load versus displacement relation of softening spring. Purely incremental
solution, showing drift from the correct solution.
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able because the proper relation among d.o.f. in D cannot be prescribed; it must be calcu-
lated. Only when the relation is known can we obtain from D the associated R and tan-
gent stiffness matrix K.,.

An incremental solution is the same as Euler’s method of solving a first-order differ-
ential equation. Starting at 4 = 0, we obtain the initial tangent stiffness k,,. Applying load
increment AP, and solving a linear equation, we arrive at point A in Fig. 10.2-1b, for
which the displacement is u, = u,. The tangent stiffness corresponding to this displace-
ment is k,,. Applying the next load increment, AP,, we take another linear step at slope k,,
and arrive at point B. Symbolically, the process is

koAu, =P, -0, solveforAu,, then u,=0+ Ay, (10.2-1a)
k,, Au,=P,— P, solveforAu,, then wugz=u,+ Ay, (10.2-1b)

and so on. The computed set of points A, B, and so on, can be connected by line segments
to provide the calculated relation between P and u. The correct relation is unknown in
practice, but we show it in Fig. 10.2-1b to illustrate that the calculated curve has progres-
sive drift from the correct curve. Calculated displacements u,, u,, and so on are in error
by the amounts e, 4, €., and so on. A correction for this error is described next.

Atpoint A in Fig. 10.2-1b, the applied force P, is greater than the resisting force of the
spring, which is r, = ku, when the stretch of the spring is u,. The difference, P, — r, =
€p4. 15 a force imbalance that can be used to drive the displacement toward the correct
value i, by doing an “equilibrium iteration” while applied force P, is held constant. In
Fig. 10.2-2a, equilibrium iterations are performed by the Newton-Raphson method,
which is explained in calculus books as a way to solve a nonlinear equation. In the first
equilibrium iteration we use tangent stiffness &, solve the equation k,, Au = ¢p, for Au,
then add it to u,, thus arriving at point A”. At point A" we have a new force imbalance,
specifically the small vertical distance between points A” and @', and a new tangent stiff-
ness corresponding to displacement at A”. A step tangent to the curve from point @’ now
places us so close to the correct point 1 that we cannot see the difference on the plot.
Each equilibrium iteration reduces the force imbalance. When it is considered small
enough by some convergence test we are ready to increase the force to P, thus arriving at

P P
c | ¢ C cc
Py 5 — Py : -
ka ke
¢ AP ¢ AP,
ki €rc A’
A /A'l A / 1 g
P /T‘ P /}
ko a'| epa ko €PA
J‘ APy J APy
a a
0 u 0 u
Uy uy up uy uy 1y
(a) (b)

Fig. 10.2-2. Softening structure: incremental solutions with equilibrium iterations after each load
step. (a) Newton—Raphson iterations. (b) Modified Newton—Raphson iterations.
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commerice equilibrium iterations with the load maintained at P,. Thus we
establish several points on the plot of P versus u and by connecting them we approximate
the actual curve.

The foregoing method may be expensive in a multi-d.o.f. problem because tangent
stiffness matrix K, must be constructed and reduced for equation-solving in every itera-
tion. An alternative, called modified Newton—Raphson iteration, is illustrated in Fig.
10.2-2b. Here iterations at each load level are all performed using the stiffness that pre-
vails at the outset of the load step. Thus tangent stiffness matrix K, needs to be con-
structed and reduced only once for all iterations at a given load level. However, as seen in
Fig. 10.2-2b, the number of equilibrium iterations needed is considerably greater.

The same procedures may also be applied to a hardening structure, Fig. 10.2-3, but the
convergence behaviors are different. The initial step from a tangent at 0 now yields too
large a displacement u,. Newton—Raphson equilibrium iterations yield negative correction
increments Au and converge to point 1. The initial step of modified Newton-Raphson iter-
ations, from point @ in Fig. 10.2-3b, either overcorrects so that subsequent convergence is
slow, or misses the curve entirely so that convergence fails. Such troubles may be over-
come or avoided by changing strategy (to Newton—-Raphson iterations perhaps), reducing
the magnitude of correction when hardening is detected, or dividing load increments AP,,
AP,, and so on into subincrements. Software may be coded to monitor the solution and au-
tomatically take some of these actions when necessary, but the analyst must remain watch-
ful.

The foregoing summary of solution procedures is far from exhaustive [10.1]. There
exist “quasi-Newton” methods, which in effect update the inverse of the tangent stiffness
matrix in each iteration rather than reconstructing the matrix itself. This can greatly re-
duce computation effort. In one dimension, a quasi-Newton step is a secant of the curve.
In a rather different algorithm, called “dynamic relaxation,” the structure is endowed with
fictitious mass and damping, ideally such that the structure is critically damped. Dynamic
response is computed. When the structure stops moving, the static solution has been ob-
tained. Regardless of the solution method, one seeks a configuration D such that applied
loads are in balance with resistance of the structure. Resistance depends on deformation
and can be computed by summing element contributions, so that stiffness matrix K of the
deformed structure need not be explicitly formed.

P P
a a
ko
€PA €PA
(negative) {negative)
km
1 A 1 A
" A ! " _— !
/ ko APy / kg APy
0 \L u 0 ¢ u
ul “.{ lll L(A
(a) (b)

Fig. 10.2-3. Hardening structure: incremental solution with equilibrium iteration af-
ter the load step. (a) Newton—Raphson iteration. (b) Modified Newton—-Raphson iter-
ation.
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In summary, nonlinear response is constructed by taking a number of linear steps.
Each step represents a load level. The step from one load level to the next is broken into
substeps if software is so instructed. Equilibrium is established by iteration at each step
and each substep. Each step, substep, and equilibrium iteration requires solution of a set
of linear equations. An iterative equation solver may be effective in a nonlinear problem
because the solution at one substep is usually a very good approximation of the solution
at the next substep.

Convergence Criteria. Equilibrium iterations at a given load level can be stopped when
the solution is “close enough,” as defined by the analyst. Assuming now that we deal
with a multi-d.o.f. FE model, a possible definition of error is

_leedl (10.2-2)

where norm symbols usually indicate the Euclidean norm. Thus the numerator 1s the
square root of the sum of the squares (SRSS) of current load imbalances for all d.o.f. of
the model; the denominator is SRSS for current loads applied to all d.o.f. Other kinds of
norm are sometimes used. Iteration may be terminated when err is reduced to (say)
0.001. Too small a tolerance wastes time in gaining unnecessary accuracy: too large a tol-
erance may not provide enough accuracy. In general, Eq. 10.2-2 contains both force and
moment terms. Thus there is an awkward mix of units. For a given configuration. mo-
ment terms may dominate if length units are millimeters but not if length units are meters.
This concern does not arise if the error measure algorithm incorporates length scaling.
Alternatively, one may choose to monitor only force errors.

An error measure like Eq. 10.2-2 but based on displacements can be written. Thus the
numerator involves displacement increments computed in the most recent iteration and the
denominator involves current displacements. As with Eq. 10.2-2, there is a mixture of
units (length units for displacements and radians for rotations), with similar awkwardness
and similar remedy. A displacement error measure may cause premature termination of it-
eration merely because convergence is slow. On the other hand, it is possible that displace-
ments have essentially converged while significant load imbalances remain. Probably one
should always require that load error not exceed a tolerance limit. One may additionally
require that displacement error not exceed a tolerance limit. Other error measures have
also been proposed [10.2].

One may place a limit on the number of iterations allowed at each load level. Reaching
the limit before achieving convergence is called a “convergence failure.” When this hap-
pens, a software option may call for automatic restart from the previous load level but with
a smaller load step. Otherwise the analyst must decide whether or not 1o proceed.

10.3 STRESS STIFFENING

The term “stress stiffening” refers to a coupling between membrane stress and lateral dis-
placements associated with bending. The bending stiffness of a beam. arch. plate. or shell
is increased by tensile membrane stress and is decreased by compressive membrane
stress. Some of the stress may be produced by applied load and some may be residual
stress from manufacturing or assembly processes. Sufficiently large compressive mem-
brane stress reduces the tending stiffness to zero: that is, the structure buckles. Stress
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for thin-walled construction. A problem need not be nonlinear for stress stiffening to play
a role: the effect is essential in linear buckling analysis and can strongly atfect the vibra-
tion frequencies of a flexible rotating structure.
The rigid bar in Fig. 10.3-1a,b provides a simple analytical representation of stress
stiffening. Lateral force F produces lateral displacement Uy If v, << L, summation of
moments about the left end yields the equilibrium equation

(ktkg)u, =F  where k, =

i

(10.3-1)

The effect of &, is to increase the net stiffness (k + k,) when P is tensile and decrease it
when P is compressive. Thus deflection v, produced by force F is decreased when P > )
and increased when P < 0. If  + ks = 0. the net stiffness is zero. This happens when
P =—LL, which is the buckling load according to linear theory in which P is independent
of v, and v, << L.

For a multi-d.o.f. structure, the equation analogous to Eq. 10.3-1 is

[K+K_JD=R (10.3-2)

where K is the conventional stiffness mairix, D is the vector of nodal d.o.f, R is the vec-
tor of applied loads, and K, is the stress stiffness matrix. Alternative names for K, in-
clude initial stress stiffness matrix, geometric stiffness matrix, differential stiffness ma-
trix, and stability coefficient matrix. K, depends on membrane stresses and may either
Increase or decrease resistance of the structure to loads R. Matrix K, is constructed by
assembly of element matrices k., in the same way that K is constructed by assembly of
element matrices k. As an example of k,, the stress stiffness matrix of a uniform simple
plane beam element (Fig. 10.3-1¢) is [2.2]

36 3L =36 3L

P | 3L 412 3L —_p2
=300 |36 a1 36 3L
3L L' 3L 42

(10.3-3)

which operates on d.o.f. d = (v, 6, v, 6.,]" Force P is considered positive in ten-
sion. This form of k, is called “consistent” because it is based on the same shape func-
tions as the conventional stiffness matrix k, Eq. 2.3-2. Alternative forms of kg are avail-
able, even a form that is diagonal [10.3].

(a) (b) (c)

Fig. 10.3-1. (a) Rigid bar supported by a linear spring at one end and carrying axial force P. (b)
The rigid bar displaced by lateral force F. (c) Simple plane beam element carrying axial force P.
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Membrane stresses may be known at the outset and imposed like loads, or they may be
initially unknown and develop as a result of deformation. In Fig. 10.3-2a. axial (mem-
brane) force in the beam is zero before loading and remains almost zero after load g is ap-
plied if deflections are small. In Fig. 10.3-2b, a known axial force P is applied prior to
application of load g and remains essentially constant if deflections are small. In Fig.
10.3-2¢, immovable hinge supports make the beam stretch slightly even for small lateral
deflection. Axial force is initially zero but grows as lateral deflection grows. How it
grows must be calculated by nonlinear analysis, because it is.a function of lateral deflec-
tion and in turn influences lateral deflection. Figure 10.3-2d is similar to Fig. 10.3-2c, but
now the axial force is compressive and the possibility of buckling exists.

As another example, a turbine blade has tensile membrane stress proportional to the
square of the angular velocity of the turbine. Tensile membrane stress increases the bend-
ing stiffness of the blade and is almost independent of bending deformation. Vibration
frequencies of the blade are increased by stress stiffening, probably more than they are
decreased by spin softening (Section 9.11).

Linear Buckling Analysis. The matrix equation for linear buckling analysis of a multi-
d.o.f. structure is [2.2]

[K+AK,}{dD}=0 (10.3-4)

where K, is calculated from an arbitrarily chosen level of membrane stress. and A is the
factor by which this level must be increased or decreased in order to produce buckling. At
the critical (buckling) condition, there is a “bifurcation” in a load versus displacement
plot: two infinitesimally close equilibrium states are possible—the unbuckled state and
the buckled state—without any change in applied loads R. Displacement increments
{dD) are departures from the configuration D that exists just before buckling. The right-
hand side of Eq. 10.3-4 is the corresponding change in applied loads and is therefore a
null vector. Equation 10.3-4 is an eigenproblem, like Eq. 9.4-2 but with " replaced by A.
The computed value of A may be positive or negative, depending on the state of mem-
brane stress used to construct K.

As an example, imagine that a uniform one-element cantilever beam of length L is
fixed at node 1. free at node 2. and loaded by a unit axial tensile force at node 2. With
terms from Eqs. 2.3-2 and 10.3-3, Eq. 10.3-4 becomes

Erl 12 6L 1 |36 -=3L dv, 0
£ T+ A R = (10.3-5)
D |-6L 4L 307 3L 4L | |d0., 0
This equation has only two d.o.f. and may therefore be solved by the same hand-calcula-
tion method used for Eq. 9.4-4. The smallest eigenvalue is A = ~2.486 EI/L*. Multiplying

the eigenvalue by the reference load (unity in the present example), we obtain the critical
axial load P, = —2.486 EI/L?, where the negative sign means that the critical load is re-
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Fig. 10.3-2. Plane beams that differ in loading, support condition. or geometry.
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om the direction used in writing Eq. 10.3-5. The exact value according to col-
umn theory is P, = ~2.467 EI/L*.

Membrane stresses may be known at the outset, as in the foregoing example, or they
may have to be computed. As an instance of the latter, imagine that a flat plate is sub-
jected to a temperature field that is constant through the thickness and of known distribu-
tion in the plane of the plate. We wish to know how much the temperature field must be
scaled (up or down) in order to reach the critical condition. Based on an arbitrary level of
the temperature field, a plane stress analysis provides membrane stresses needed to con-
struct K. after which Eq. 10.3-4 (which includes bending stiffness) can be solved for A.
The critical temperature field, according to linear buckling analysis, is obtained by multi-
plying the original temperature at all points by A.

Linear buckling analysis uses K and K based on the original, undeformed geometry
of the structure. Membrane stresses do not change in distribution; the membrane stress
field is merely scaled by 4 to predict the critical condition. Linear analysis often overesti-
mates the actual buckling load. It works well for straight columns and flat plates, which
are assumed to remain free of bending until buckling occurs. In most thin-walled struc-
tures, membrane and bending stresses develop simultaneously and may interact before
buckling occurs. Interaction may alter the distribution of membrane stresses and may
cause them to vary nonlinearly with load. Additionally, K becomes a function of dis-
placements if displacements are large or if there is yielding. Accordingly, most practical
buckling problems are nonlinear, and buckling analysis should be based on the tangent
stiffness that prevails at the instant of buckling. These considerations are automatically
incorporated in the large-deflection analysis discussed next.

10.4 GEOMETRIC NONLINEARITY AND BUCKLING

Geometric nonlinearity (as opposed to material nonlinearity) arises when deformations
are large enough to significantly alter the way load is applied or the way load is resisted
by the structure. In a contact problem, such as steel rollers in contact (Fig. 10.1-1c¢), de-
formations are small, yet large enough to increase the contact area and hence make con-
tact pressure on a roller a nonlinear function of applied load. A vaulter’s pole experiences
large deformations: load is resisted by little bending or a great deal, depending on the
configuration. The general goal of analysis is to construct the nonlinear relation between
applied load and the resulting deformation. The prominence given to buckling in the fol-
lowing remarks is mainly intended to illustrate the difference between linear and nonlin-
ear buckling. In the remainder of this section we assume that structures are sufficiently
thin that large displacements are possible without ylelding of the material, although such
need not be the case in practice. Also, we postpone nonlinearity of the contact type to
Section 10.6.

We begin with a simple example of geometric nonlinearity. It illustrates aspects
of nonlinear behavior that may appear in other structures as well. The beam of length L
in Fig. 10.4-1a has flexural stiffness £/ and axial stiffness AE/L. A frictionless roller at
the right end is constrained to remain always in contact with a vertical wall. The linear
spring has stiffness k4. Displacements are confined to the plane of the paper. Bar and
spring are unstressed when F = 0. For the case ¢ <<CL, it can be shown that [10.1]

AE
F:[E(ZC'U)(C'U)'*'IC}U (10.4-1)
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Fig. 10.4-1. (a) A slender beam, hinged at one end and confined without friction by a vertical wall
at the other. (b,c) Possible load versus displacement behavior. In (b), & is such that k, > 0 for all v.
In(c), k=0.

where v is the vertical displacement produced by applied force F. The bracketed expres-
sion is the stiffness k of the structure and is clearly displacement dependent. The tangent
stiffness is

dF  AE
k — —

—d—U—?E(2cz—6cv+302)+k (10.4-2)

7

By summing vertical forces and using small angle approximations, we obtain axial com-
pressive force P in the beam.

AE

Y7 (2c—-v)v (10.4-3)

L
P=—"(F—kv)=
c—U

Force P is zero when v = 0, grows to a maximum (in compression) at v = ¢, becomes zero
again at v = 2c, then grows in tension for v > 2¢.

In Fig. 10.4-1, a linear analysis is based on the undeformed configuration (v = 0) and
yields a straight line whose slope is the initial tangent modulus, k. The actual nonlinear
response is curve ON in Fig. 10.4-1b. Linear analysis indicates that P is directly propor-
tional to F. When and if the beam buckles as a column, it carries the axial force P = P,, =
T*EI/L*. Let B be the bifurcation point, at which buckling occurs according to linear the-
ory. Actually, as v increases from v = 0, each additional increment dv produces less in-
crease in P than the preceding increment. Accordingly, nonlinear theory shows that a v
greater than that at B is required to produce P,. Therefore buckling may actually occur at
a point such as b. Because F is smaller at b than at B, we conclude that linear buckling
theory is unconservative in this problem. The postbuckling paths have positive slope be-
cause the linear spring is still active. A positive slope characterizes a structure that has
postbuckling stability. In some structures the postbuckling path has negative slope, which
means that the postbuckling configuration is unstable. (If equations of this example are to
account for buckling of the beam, rotational d.o..f. must be added in order to describe
bending of the beam. Thus the tangent stiffness &, would become a tangent stiffness ma-
trix K,.)

In Fig. 10.4-1c, the spring is absent (k = (). As described above, linear theory may in-
dicate bifurcation at B, while nonlinear theory indicates bifurcation at b. But buckling
may not occur at either of these points: instead, displacement v may suddenly “snap
through™ from A to D. Point A is called a limit point, which is a point where the tangent



[\
o0
n

104 Geometric Nonlinearity and Buckling

PDF Compyessor Eree Yersion adjacent equilibrium configuration. A solution algorithm
that cannot follow snap-through will display convergence failure at a limit point.

A thin cylindrical shell under axial compression displays an axial load versus axial de-
formation relation roughly similar to the ¥ versus v relation in Fig. 10.4-1, but with %
sufficiently large to prevent F from becoming negative. Because of imperfections of
loading and geometry, perhaps too small to be seen by the unaided eye, a thin shell usu-
ally buckles at a load lower than predicted by linear theory: the shell often snaps through
to a buckled configuration at a much lower load. Imperfections can be simulated in a FE
model by deliberately making small alterations in geometry, loading, or support condi-
tions. A nonlinear analysis can then be undertaken that provides a more realistic estimate
of the actual collapse load than is provided by linear theory with ideal structure geometry.

Nonlinear solution methods summarized in Section 10.2 are able to check for bifurca-
tion points and limit points as they track the load versus deformation response of a struc-
ture. The tangent stiffness matrix is repeatedly updated as the solution progresses. At a
bifurcation point or a limit point, the stiffness becomes zero for the buckling displace-
ment mode. This is signaled by the determinant of the tangent stiffness matrix becoming
zero. At a load greater than a bifurcation or limit load the determinant is negative.
Accordingly, software can be expected to alert the analyst whenever the determinant
ceases to be positive. Also, if a solution approaches a limit point, computed displacement
increments become very large or there may be convergence difficulties.

Additional structures that have geometric nonlinearity are sketched in Fig. 10.4-2.
They illustrate aspects of geometric nonlinearity and considerations needed in order to
obtain a numerical solution. Solutions are available for all of them, so they may be used
as learning aids for program users or as test cases for software verification. Material non-
linearity is excluded from these examples.

+ The rigid bar in Fig. 10.4-2a is supported at its lower end by a frictionless hinge and
a rotational spring that exerts a moment proportional to rotation 6. Small-deflection
theory yields the buckling load P, = k,/L. When 6 becomes large a load greater than
P, can be supported, specifically P =k, 0/(L sin 6).

The elastic beam in Fig. 10.4-2b may carry tip loads F, P, and/or M. For F = P = (),
lateral tip displacement u is given by i = (1 ~ cos a)(L/e), where a = ML/EI and M
can be arbitrarily large. Solutions for nonzero F, P, and M appear in {10.4], includ-
ing cases of a follower force, for example, a force F that always acts normal to the
beam rather than maintaining its orientation in space. The “elastica” problem is that
of only P nonzero and with P always vertically directed [10.5]. It was published by
Euler in 1744. In solving the elastica problem numerically, a small M or F is needed
to initiate lateral deflection as P becomes greater than the column buckling load P,,.
When deflections of the elastica have become large the effect of stress stiffening is
minor, although it does no harm to include it in calculations.

+ Large deflections of plane frames are shown in Figs. 10.4-2¢ and 10.4-2d [10.2,
10.6, 10.7]. Buckling is not a possibility in the frame of Fig. 10.4-2c because mem-
brane stresses are tensile. They are compressive in the frame of Fig. 10.4-2d, whose
load versus deflection plot is of the type shown in Fig. 10.4-1c. There is a limit point
and buckling of the snap-through type. Some solution algorithms have difficulty
with behavior such as this.

» Figure 10.4-2¢ represents a flat rectangular membrane under distributed lateral load
g. Solutions for uniform ¢ appear in {10.8]. For example, the center deflection w, of
a square membrane of thickness ¢, side lengths a = b, Poisson ratio 0.3, and without
initial membrane stress is w, = ct[(g/E)(b/1)*]*>, where ¢ = 0.2866. If side lengths are
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b and a = 5b or greater, ¢ = 0.3458. Despite the inclusion of membrane stresses and
a nonlinear solution, these results are limited to “small” lateral deflection, that is,
slopes Ow/dx and dw/dy must be much smaller than unity. If deflections are truly
large, the problem resembles blowing up a balloon, for which load g would be re-
garded as a pressure that acts as a follower force. Thus load on an element changes
direction as the element rotates and becomes larger as the element grows in size. The
initial flatness and lack of stress in the membrane means that it has no initial stiff-
ness with which to resist . To prevent a failure of the solution algorithm some lat-
eral stiffness must be provided, if only for the initial step, in the form of an elastic
foundation or a fictitious membrane stress. Similar considerations apply to an ini-
tially flat cable network.

» Figure 10.4-2e may also represent a flat plate under distributed lateral load g. Unlike
a membrane, a plate has initial lateral stiffness because it resists bending. Nonlinear
solutions, again limited to small lateral deflections, appear in [7.3].

FE analysis of large-deflection problems does not require the introduction of a new set
of elements. The shape functions and element library used for linear small-deflection
analysis can still be used in nonlinear analysis. Software with nonlinear capability 1s able
to keep track of the deformations and rigid-body motions of elements, so that stiffnesses
used in the solution process correspond to the deformed configuration rather than the
original configuration.

10.5 MATERIAL NONLINEARITY

This section summarizes time-independent material nonlinearity, with emphasis on plas-
tic action. Material behavior shown in Fig. 10.5-1 is characterized by a straight line,
whose slope is elastic modulus E. and a curve, whose slope is tangent modulus E,. where
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(a) (b)
Fig. 10.5-1. Uniaxial stress-strain relations. (a) Nonlinear elastic material. (b) Elastic—plastic
material.

E, = dolde. Figure 10.5-1a shows nonlinear elastic behavior, which means that unloading
from any stress level follows the same path as loading. In contrast, Fig. 10.5-1b displays
elastic—plastic action: behavior is elastic only up to point A in tension and point B in
compression. For higher stress levels there is plastic action, and unloading from points at
which | o] > Oy, such as C or D, follows a different path than loading, specifically a path
of slope £, and results in permanent deformation when load has been removed. Stress &,
is the yield strength of the material. Usually oy and the deformation-dependent tangent
modulus E, are determined from a tensile test. As input data to software, the curve can be
described by data points that define a piecewise-linear stress—strain relation. The essential
difference between nonlinear elastic and clastic—plastic materials is their behavior on un-
loading, so an input data switch can dictate which behavior the software is to use.

A structure in which there is yielding displays softening behavior (Figs. 10.2-1 and
10.2-2) rather than hardening behavior (Fig. 10.2-3). When part of a structure yields there
is a transfer of load to other parts of the structure, so a plot of externally applied load ver-
sus displacement will continue to rise even if the material has a zero tangent modulus.
However, if a collapse condition is approached, successive load increments will produce
larger and larger displacement increments. If a final load state is reached by applying two
or more different loads, the final state of stress and deformation may depend on the order
in which loads are applied. Removal of all loads leaves the structure with a state of per-
manent deformation and residual stress.

The nature of an incremental solution is suggested by the one-dimensional example in
Fig. 10.5-2, for which tangent stiffness , is seen to be stress dependent. One can concep-

k,Au=AP

k,:A—LE ifo <oy
AE, |
k,:—Ll ifo >0y

k= ﬁL—E— if o decreases

(a) (b) (c)

Fig. 10.5-2. (a) Uniaxial stress—strain relation, idealized as bilinear. (b) Bar in ten-
sion. (c) Incremental equation and stiffness for tensile load P.
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tually extrapolate this example to a multi-d.o.f. FE formulation, in which matrix E of
elastic constants is modified to incorporate a tangent modulus of the material and a way
to detect unloading. Thus an elastic—plastic stiffness matrix emerges from Eg. 3.1-10.

For FE analysis one must have an understanding of the following three concepts from
the theory of plasticity. First is the yield criterion. It relates the onset of yielding to the
state of stress. For metals the von Mises criterion is most commonly used. Thus, when o,
of Eq. 3.10-1 reaches oy as determined from a uniaxial tensile test of the material, yield-
ing is assumed to begin. The second concept is the flow rule. It relates stress increments,
strain increments, and the state of stress in the plastic range. A flow rule known as the
Prandtl-Reuss relation is commonly used for metals. The third concept is the hardening
rule. Tt describes how the “yield surface” grows and moves as plastic strains accumulate.
Various hardening rules are possible. The choice must be suited to the material. Metals
are usually described well by “kinematic hardening,” which is illustrated in Fig. 10.5-1b
for a uniaxial state of stress: an elastic range 20, exists prior to yielding and is preserved
after yielding. Further details of these concepts, and plasticity in general, may be found in
[10.1, 10.2, 10.9] and many additional references.

A software user may find that the von Mises yield criterion and the Prandtl-Reuss
flow rule are built into the plasticity algorithm and that any of various hardening rules
may be chosen. Element stiffness matrices are formulated using the element geometries,
nodal patterns, and shape functions that are also used in linear elastic analysis. An elas-
tic—plastic algorithm must keep a record of the state of stress at each of many “sampling
points” in the FE structure. These points may be element centroids or Gauss points of
isoparametric elements. Load is applied in increments until the final load level is
reached. The solution algorithm tracks the spread of yielding and reports the state of
stress and deformation at each load level. An elastic-plastic solution may be deemed
converged by the software when, in each element, the plastic strain increment in the
most recent iteration is no more than a few percent of the elastic component of the total
strain.

Plastic analysis may require a finer FE mesh than does linear elastic analysis. Consider
Fig. 10.5-3. If the plane block is linearly elastic, a single four-node element can model
exactly the relation between moment M and curvature 1/p of the block (see Section 3.6).
As M becomes greater than M), zones of yielding begin to move inward from top and
bottom surfaces. Yielding will be detected only when it has spread as far as sampling
points A and B in Fig. 10.5-3c. Clearly, an accurate representation of a plastic moment—
curvature relation will require several sampling points. Therefore dimension f will proba-

o M

» ; T 4 T g7
h
ki v Myt AN
E C
h h
1 1
— E —_— —
£ ? 7 D
E B#
E — My ! B
1 S S S -
One Two
element elements
-G -~
(a) (b) (c)

Fig. 10.5-3. (a) Idealized uniaxial stress—strain relation. (b) Moment—curvature relation for a block
made of this material. (¢) Locations of Gauss points of an order two rule if height h is spanned by
one or two elements.
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Fig. 10.5-4, Some plane problems for which elastic—plastic solutions are available. (a) Hole in a
tensile strip. (b) Edge notches in a tensile strip. (¢) Crack in an infinite plane under uniaxial stress.
(d) Rigid, frictionless punch pressed against a semi-infinite plane.

bly be spanned by more than one element, and even then the representation will not be
exact. _

Solved problems that can be used as test cases and learning aids may be found in sev-
eral books. Many solutions are for an elastic—perfectly plastic material (£, = 0 in Fig.
10.5-3a), some are for a strain hardening material (E, > 0), and a few are for a rigid-per-
fectly plastic material (infinite £, but E, = 0). Some of these problems are as follows.

Elementary textbooks discuss pure bending of beams and pure twisting of bars of
circular cross section, including residual stresses on unloading. Fully plastic twisting
of bars of noncircular cross section can be treated analytically by the sand-hill anal-
ogy, and some solutions are easily obtained [2.1, 10.9]. The material is elastic—per-
fectly plastic.

A thick-walled cylinder under internal pressure is widely discussed: for example, in
[2.1, 10.9, 10.10] for an elastic—perfectly plastic material and in [10.9] for a strain
hardening material. The yield criterion used is Tresca, which states that yielding be-
gins when SI of Eq. 3.10-2 becomes equal to oy, where oy is the yield strength in a
tension test. For test-case purposes it is convenient to use plane stress conditions
with a zero Poisson ratio in the elastic range. A thick-walled sphere is discussed in
[10.9], with and without strain hardening.

» Plane bodies with cracks, holes, and notches (Fig. 10.5-4) have been analyzed with
and without strain hardening. Plane stress conditions prevail for the hole and notch
problems [10.11]. The solution of the crack problem allows either plane stress or
plane strain conditions [10.9]. The solutions are numerical but are considered reli-
able.

The rigid frictionless punch problem, Fig. 10.5-4d, uses the Tresca yield criterion,
plane strain conditions, and a rigid—-perfectly plastic material [10.9, 10.10].

10.6 PROBLEMS OF GAPS AND CONTACT

In some practical problems, two structures (or two parts of the same structure) may make
contact when a gap closes, may separate after being in contact, or may slide on one an-
other with friction. These problems are further explained with the aid of Fig. 10.6-1. In



290 Nonlinearity in Stress Analysis
PDF Compressor Free Version

Part 1 Part 1

/“-—/‘\/—\_/
(Mesh not shown)

Ty (T |
N é_L\/W,j T

Part 2 Part 2

%

o
[o -l Al

(a) (b) (c)

Fig. 10.6-1. Two parts of a FE model that may (a) come into contact, (b) slide on one another or
come apart, and (c) lose contact near A and B.

Fig. 10.6-1a, parts 1 and 2 may make contact but because of relative motion between
them it may not be known at the outset exactly where on parts 1 and 2 contact will occur.
A solution algorithm must discover the contact location, then prevent the parts from inter-
penetrating. In Fig. 10.6-1b, it is known that parts 1 and 2 are in contact, but it is not
known to what extent they will slide relative to one another or whether they will come
apart. A solution algorithm must prevent sliding until friction is overcome, thereafter ap-
ply shear force proportional to the product of normal force and coefficient of friction, and
allow no tensile contact force. In Fig. 10.6-1c, forces P press two elastic blocks together.
To solve the problem a solution algorithm must compute the state of contact stress while
allowing for possible separation near A and B.

Computationally, such problems are problems of constraints: a node may have one of
its d.o.f. constrained against motion when it contacts a fixed support, or a node may be
constrained to have the same motion as an adjacent node with which it comes in contact.
Constraint conditions can be imposed exactly, by elimination or the Lagrange multiplier
method, or approximately, by the penalty method (see Section 4.13). Current software is
not unanimous in its choice of method, but the penalty method is a common choice: addi-
tional elements are introduced, whose stiffness is either zero or very small when a gap is
open but large when a gap closes. A simple example will explain the computational
process. The structure in Fig. 10.6-2a consists of two springs. The wall at B applies a sup-
port reaction only if gap g closes. The model used for computation is that of Fig. 10.6-2b.
A third spring of comparatively large stiffness k4 has been added. With u, and u; the dis-
placement d.o.f. of the structure, the tangent stiffness matrix is

ky =k, if wup<g

: . 10.6-1
ky=k,+ky if uy>g ( )

{kl +ky —k,

= where
—k, kB J

Matrix K, is used to compute displacement increments: those associated with an incre-

ky A 8> fe , ky 4 ks B k3
—AAY AM—| —_AY AN ——F— AN~ |
Béé 2 _ﬂjb g g e
P P
'~}_~>NA
(a) (b)

Fig. 10.6-2. (a) Simple structure with a gap g that may close. (b) Arrangement of the problem for
numerical solution.
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ment AP of externally applied load, and those associated with equilibrium iterations by

the Newton—-Raphson method while load P is maintained at its current level.

Applied load step: Equilibrium iterations at load P:
K Au, AP K Au, P ry
“1Au, lo " Auy o g (10.6-2)
in which the resisting forces of the structure are given by

ra =k, +k)uy — kotig for all ug
rg = —kyti, + kolig if uz<g (10.6-3)

rg=—kotty + kotiy + ki(ug — g) if ug>g

The foregoing formulation can be obtained by defining the rightmost spring in Fig. 10.6-
2b as nonlinear, as shown in Fig. 10.6-3a. The nonlinear spring is always attached to the
structure but never has stiffness in tension and has no stiffness in compression until it
shortens an amount g. For other applications, by defining an F versus e relation in piece-
wise-linear fashion, Fig. 10.6-3b, a software user can fashion a great variety of nonlinear
springs. It is even possible to call for elastic unloading, as suggested by the dashed line in
Fig. 10.6-3b.

The foregoing concepts have been elaborated into a variety of elements and algo-
rithms. Some are as follows. For the situation in Fig. 10.6-1a, one can arrange for sur-
faces AB and BC to detect contact with any of the nodes a, b, ¢, or 4, and then exert a re-
sisting force normal to the contact surface. The resisting force is f, = k,u,,, where &, is a
large stiffness and u,, is the (small) amount of interpenetration. Contact friction, Fig. 10.6-
1b, can be treated by a gap element that has large stiffnesses k,, for normal force and &;
for shear force. No forces are exerted when there is a gap between parts. When there is no
gap, normal and shear forces are f, = k,u, and f, = k., except that f; has the maximum
magnitude Ui f, |, where L is the coefficient of friction. Friction capability can also be in-
cluded in the contact algorithm described for Fig. 10.6-1a.

Presently, spring stiffnesses used in gap and contact elements must be chosen by the
analyst rather than by software defaults. If spring stiffnesses are too small the intended
constraint will be poorly enforced. If they are too large, equations may become ill condi-
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Fig. 10.6-3. (a) Relation between force F and elongation e for the right-
most spring in Fig. 10.6-2b. (b) An arbitrary, user-defined relation be-
tween F and e.
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tioned and accuracy may be lost, as explained in Sections 4.13 and 5.10. Also, too large a
stiffness may provoke a “bouncing” convergence failure, in which gap elements change
status in each iteration (open, closed, open, closed,...). In many cases an appropriate
spring stiffness is roughly 100 times the stiffness of an adjacent element, where the ele-
ment stiffness may be approximated according to its type and how it is loaded by the
force of constraint.

Classical solutions for contact stress may be used as test cases [1.5, 2.1, 6.1]. These
solutions are for static elastic contact of two cylinders or two spheres of the same or dif-
ferent radii.

10.7 REMARKS. MODELING CONSIDERATIONS

Nonlinear analysis is more demanding than linear analysis, in terms of computer re-
sources and the analyst’s time and expertise. The goals of analysis may be more varied,
and there are more computational paths that may lead to each goal. It is harder to foresee
structural response. A good understanding of the response may develop only after per-
forming several trial analyses. General advice given for linear problems remains applica-
ble: try to understand the physical problem and the concepts that underlie analysis proce-
dures; study software documentation; expect to use a sequence of models: critically
examine computed results; and keep records of what is done in each analysis and what is
Jearned from it. Before undertaking a nonlinear analysis one should be satisfied that it is
really necessary. If it is, an initial linear analysis is usually appropriate, to better under-
stand structural behavior and to test the FE model. These remarks should seem familiar.
They resemble remarks in the first several paragraphs of Section 9.11. If “‘static” and “dy-
namic” in those paragraphs are replaced by “linear” and “nonlinear,” the remarks are
largely applicable to nonlinear problems.

Recall that the principle of superposition is not applicable to nonlinear problems.
Double the load produces more, or less, than double the response. Results of separate
load cases cannot be combined (e.g., in the manner of Fig. 4.12-3). The final state of
stress and deformation may depend on the order in which loads are applied.

Strategy. Much more than in linear analysis. the nature of a problem may become clear
only after solving it. At the outset the types and extent of nonlinearities may not be appar-
ent. Even if they are, the appropriate elements, mesh layout, solution algorithms. and load
steps may not be. Accordingly, an attempt to solve a nonlinear FE problem in “one go™ is
likely to fail, producing only confusion and frustration. As always, it is desirable to antic-
ipate FE results by doing a simplified preliminary analysis. This may be particularly diffi-
cult when the problem is nonlinear, and some of it may be more qualitative than quantita-
tive. A nonlinear analysis should make liberal use of test cases and pilot studies. Linear
analysis should precede nonlinear analysis. For a given load, linear analysis can suggest
the location and extent of yielding, or what gaps are likely to open or close. A linear
buckling analysis may approximate the load and deformation state of the actual collapse.
If different sources produce nonlinearity, it may be possible to add them one at a time
[3.1], so as to better understand their effects and how to treat them. Initial models in a se-
quence may use a relatively coarse mesh, large load steps, and a liberal convergence tol-
erance. Subsequently, all of these can be refined. Usually it is necessary to achieve the fi-
nal load in several steps, for computational reasons rather than physical reasons. Too
large a load step may produce convergence failure. It may also produce an abrupt change
in a load versus displacement plot that can be mistaken for actual physical behavior.
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be done in each stage and why. Each load step can produce as much output as a linear
static analysis, so one should anticipate what output to request and how it will be exam-
ined. Computed results should be examined after each load step. Status reports and warn-
ings produced by the software should be taken seriously and understood. One may wish
to examine results at each load level and go on to the next only if things appear to be go-
ing satisfactorily. Accordingly, sufficient data should be stored to allow a restart from the
current load level. At a restart, the analyst may call for a change in load increment, con-
vergence tolerance, or other aspects of the solution algorithm.

Modeling. Modeling considerations stated in Chapter 5 apply also to nonlinear prob-
lems. Preceding sections of the present chapter also contain some useful modeling infor-
mation. Miscellaneous remarks are as follows. If there are follower forces (Fig. 10.1-1a),
they must be identified as such so that they will be oriented with respect to the model as it
deforms, rather than with respect to fixed global coordinates, as is more common.
Probably software will always treat pressure loads as follower loads, but it is best to
know for sure what software will do rather than make an assumption. Stress stiffening
should be invoked if it is possible that its effect will be important. Stress stiffening can be
produced by accumulated deformations under load, or by initial or residual stresses pre-
sent before external load is applied. Residual stresses can be significant in standard steel
beams. Similarly, initial stresses can be introduced by assembly before external load is
applied. If a structure can be divided into linear and nonlinear parts, the linear parts can
be represented by one or more substructures. Matrices that represent linear parts need not
change from one iteration to the next. As compared with a full model, fewer d.o.f. are
needed, and most of the d.o.f. retained can be in the nonlinear part, whose matrices must
change from one iteration to the next.

Symmetry and antisymmetry conditions must be used with caution or avoided alto-
gether. As an example, the structure in Fig. 10.7-1a has initial symmetry of geometry,
supports, elastic properties, and loads. Any of these symmetries may disappear as load in-
creases, depending on what details are prescribed for the model and its subsequent load-
ing. Despite initial symmetry, the linear bifurcation buckling load will be unsymmetric,
Fig. 10.7-1c. An unsymmetric shape may describe the actual large-deformation behavior
of this structure under {initially) symmetric load, although in computation a small asym-
metry of loading or geometry may be needed to make the numerical solution depart from
a symmetric mode. Thereafter, a follower-force load will have asymmetry associated
with the asymmetric displaced shape. Antisymmetry conditions should not be imposed
when deformations are greater than infinitesimal. A case in point is the arch of Fig. 10.7-
1b. The deformed shape is that of Fig. 10.7-1c. When deformations are greater than infin-
itesimal, midpoint A has nonzero vertical displacement, which violates a small-displace-
ment antisymmetry condition (see Section 4.12).

Large strains may sufficiently deform a mesh that an initially adequate mesh becomes

q q :
m,f ; % , m
: = A ' #

q
) () ©

(a c

Fig. 10.7-1. Shallow arch whose initial geometry is symmetric about center point A. (a) Symmetric
load. (b) Antisymmetric load. (¢) A buckled shape for symmetric load or the deflected shape for an-
tisymmetric load.
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too coarse or element shapes become too distorted (as in Fig. 5.3-2). In the latter situation
one can start with element shapes that are perhaps poor but deform into shapes that are
good when the load of interest is reached. For large-strain analysis, software may require
that material properties be defined in terms of true stress and true strain. If rotations
and/or strains are indeed large, output stresses and strains may be defined differently
from what one is accustomed to in conventional linear analysis. Software documentation
and theoretical discussions must be consulted to discover what output is presented and
what it means. Matters can get complicated and the analyst should not forego expert ad-
vice.

In elastic~plastic analysis the initial load step can be large if it takes the structure to
the initiation of yield but not beyond. Detecting the onset of yield and tracking its spread
demand an adequate distribution of sampling points and accordingly an adequately re-
fined mesh. The plastic strain increment should not exceed about 5% in any substep of
loading [9.8]. In examining results it is usually informative to plot the deformed structure
and also plot the spread of plastic action as load increases.

In contact stress problems (e.g., Fig. 10.1-1c), a very refined mesh in the region of
contact is usually needed in order to determine the extent of contact and especially to de-
termine contact stresses. When using nonlinear springs, one should recall that spring stiff-
nesses should be related to element edge lengths and node patterns (see Fig. 5.8-2).
Accordingly, as a rule nonlinear springs should not be attached to elements that have side
nodes. In a structure having large displacements, the orientation of a spring or a bar that
links nodes is defined by positions of the nodes to which it is connected (Fig. 10.7-2).
Thus if it is intended that the link exert a force normal to the surfaces in contact, such
may no longer be the case after significant deformation. The difficulty can be avoided by
using a type of contact element that resists penetration of a surface by a node regardless
of the orientation of the surface. (Note that a linear analysis is based on the initial vertical
orientation of the link in Fig. 10.7-2, even when the result of this analysis shows that the
link has rotated.)

Elements can “die” or be “born” [9.8]. An element can be made to “die.” that is, have
its stiffness set to almost zero, if it is overstressed. The element still has mass unless mass
is also set to zero, as might be done if part of the structure melts and flows away.
Conversely, one might call for elements to be “born” when a structure grows. due to so-
lidification, spray deposition, filament winding. and so on.

Nonlinear dynamic analysis is performed by direct integration, because most software
does not incorporate devices needed to enable modal methods to deal with nonlinearity.
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Fig. 10.7-2. A spring or a link connects nodes across a small gap. (a) Before loading: link nor-
mal to model surfaces. (b) After large deformation: link not normal to model surfaces.
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ysis olt]a contact problem by the central difference method, the critical
time step is substantially reduced if large spring stiffnesses are present, because they pro-
duce high natural frequencies. Regardless of the method of direct integration, perhaps 30
time steps per period of the highest frequency may be needed in order to prevent the algo-
rithm from dissipating energy in a collision [9.8].
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Convergence. The analyst sets the number of equilibrium iterations allowed at a given
load level. The number may be roughly 20, or perhaps over 80 for a contact problem. A
convergence failure occurs if the iteration limit is reached before the convergence toler-
ance is met. An unconverged solution violates equilibrium conditions. Convergence fail-
ure may indicate numerical troubles, such as the “bouncing” noted near the end of
Section 10.6. Or convergence failure may indicate that the structure has collapsed be-
cause it has reached its load-carrying capacity, perhaps due to buckling, the absence or
exhaustion of strain hardening capacity in plasticity, or a gap that opens permanently so
that part of the structure “floats away.” In the case of buckling, the structure may or may
not have postbuckling strength, and the solution algorithm may or may not be able to
“jump,” as from A to D in Fig. 10.4-1c. As a limit point or a collapse condition is ap-
proached, computed displacement increments become large. A a limit point or a collapse
condition, the tangent stiffness matrix K, ceases to be positive definite, and an error mes-
sage such as “singular stiffness matrix” or “the stiffness matrix has a zero or negative de-
terminant” may be expected from the software. After a convergence failure, analysis can
be restarted from the previous converged solution using a smaller load increment. Some
software will do so automatically.

A converged solution may not be a physically correct solution. For a given load there
may be two or more equilibrium configurations, and a computed equilibrium configura-
tion may not be physically realistic because it is unstable. For example, let F = M = 0 in
Fig. 10.4-2b. If P exceeds P, the vertical position is physically unstable but may be com-
putationally stable unless lateral displacement is prompted by a geometric imperfection
or a small lateral force. An equilibrium configuration for P > P, shown dashed in Fig.
10.4-2b, may lie on either side of the vertical.

10.8 APPLICATIONS

The following examples are chosen mainly for their simplicity. They emphasize aspects
of physical behavior more than the multitude of computational and modeling choices that
may be invoked. These problems, and problems cited previously as possible test cases,
may be used as computational exercises in which the effects of changes in structure
geometry, mesh layout, algorithm, load levels, substeps, and convergence tolerance are
explored.

Geometric Nonlinearity in a Frame. Bars of frame ABCD in Fig. 10.8-1a all have a
square Cross section 8 mm on a side. The material is assumed to remain linearly elastic at
all times, with E = 200 GPa. Beam elements are used for the FE model: 5 along AB, 2
along BC, and 12 along CD. Node A is pinned, node D may displace horizontally, and
displacements are confined to the xy plane. The behavior produced by a horizontal load P
at node C is to be investigated.

Because the frame is slender, buckling appears possible. An approximate preliminary
analysis might regard CD as an inverted column of length L = 480 mm, fixed at C and
free at D. In the original configuration, summation of moments about A shows that the
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Fig. 10.8-1. (a) Plane frame. (b) Displaced shape when P = P, by linear analysis. (c) Load versus
displacement relations computed by nonlinear analysis.

vertical force at D is 5P. Thus, using a column buckling formula, we obtain 5P_ =
mEI4L* and P, = 146 N. In FE computation, linear static analysis yields axial forces
that prestress members of the frame; then the state of prestress is used in a linear eigen-
value analysis, which yields P., = 137 N. The eigenmode that corresponds to P, = 137 N
is shown in Fig. 10.8-1b. Results of a norlinear analysis, in which the geometry is up-
dated as load increases, are shown in Fig. 10.8-1c. We see that the frame does not buckle
at all. Instead, displacements simply continue to increase as load increases.

To illustrate the effect of a geometric imperfection on a slender structure such as this,
the initial (unloaded) geometry is slightly altered (Fig. 10.8-2a). The lowermost element
along CD is now slightly inclined, so that node D is placed 2 mm to the left of its previ-
ous location. Linear static and buckling analyses now yield P = 114 N and a buckling
mode in which node D is displaced leftward (Fig. 10.8-2b). A nonlinear analysis, Fig.
10.8-2¢, shows that node D moves to the right at first, but then reverses direction as load

; Pep=114 N (linear)

- P, N Nonlinear analysis
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Fig. 10.8-2. (a) Detail of altered initial geometry for the frame of Fig. 10.8-1a. (b) Displaced shape
when P = P_ by linear analysis. (¢) Load versus displacement relations computed by nonlinear
analysis.
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Fig. 10.8-3. (a) Geometry, loading, and mesh of four-node elements for a plane stress problem. (b)
Unaveraged contours of axially directed stress o, (in MPa) at full load, ¢ = 8 N/mm.

P increases. Collapse occurs at P = 86 N, when node D suddenly jumps leftward. With
the software used, there is a convergence failure of the iterative solution process at the
limit point, where P = 86 N.

Plastic Action In a Beam. A plane beam of unit thickness is uniformly loaded, as shown
in Fig. 10.8-3a. A bilinear stress—strain relation is used, as in Fig. 10.5-2a, with gy =70
MPa, E = 50 GPa, and E, = 7 GPa. Displacements of nodes are confined to the xy plane,
with x-direction motion prevented along AB and all motion prevented at A. We seek
stresses and displacements as load ¢ is increased from zero to 8 N/mm and then removed.

A preliminary analysis based on the flexure formula o, = Mc/l indicates that o, = Oy
when ¢ = 5.83 N/mm. Clearly, the full load ¢ = 8 N/mm will produce yielding, and there-
fore residual stresses will remain after unloading. It is also obvious there will be severe
concentrations of stress and strain near A, so the present analysis must be regarded as an
initial approximation.

Element-by-element contours of axial stress o, under full load are shown in Fig. 10.8-
3b. As expected, near A stresses are high and contours are confused. At B, o, = 71 MPa
and o, = —8 MPa; hence Eq. 3.10-1 yields 0, = 75 MPa. Since 0, > o, we see that there
has been yielding near B, and of course near A as well. Residual o, stresses, which re-
main after unloading, are shown in Fig. 10.8-4a. The stress pattern along AB—tension,
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Fig. 10.8-4. (a) Residual stress o, (in MPa) after unloading to ¢ = 0 in Fig. 10.8-3. (b) Vertical dis-
placements of points B and C for loading (solid lines) and unloading (dashed lines). Inset shows de-
formation near A.
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compression, tension, compression—agrees with residual stress calculations that may be
found in books about elementary mechanics of materials. Contours of residual stress are
confused because the mesh is coarse and the residual stress pattern is more complicated
than the stress pattern under full load. Computed displacements, Fig. 10.8-4b, vary lin-
early with load up to about g = 2 N/mm, then vary nonlinearly. Unloading is elastic, but
because of previous yielding there are permanent deformations.

Beam With Contact Nonlinearity. The beam in Fig. 10.8-5a has a square cross section
4 mm on a side. The material is assumed to remain linearly elastic at all times, with E =
200 GPa. The beam is modeled by 15 beam elements, each 20 mm long. Supports at C
and D can apply only upward force to the beam. Initially, there is contact at D and a 0.5-
mimn gap between the beam and the support at C. The behavior produced by a load P that
increases from zero to 20 N is to be investigated.

The entire problem can be solved by elementary beam theory. However. let us apply
beam theory to only the final condition, at load P = 20 N. At this load, as subsequent FE
results will show, there is support at A and C and lift-off at D. The midspan displacement
of a simply supported beam 200 mm long is PL*/48F] = 0.78 mm. There is an additional
midspan displacement of 0.25 mm due to the 0.50 mm displacement at C, for a total of
1.03 mm. Additional results can be computed by beam theory, and all are found to be in
agreement with results subsequently computed by FE.

In planning the FE model we consider the possible gap and contact conditions at C and
D. It is apparent that the beam will be simply supported at A and D until contact is made
at C; then be statically indeterminate while there is contact at A, C, and D: then be stati-
cally determinate again with supports at A and C after contact is lost at D. This behavior
is accommodated in the FE model by inserting gap elements between the beam and rigid
supports at C and D. The gap elements are both compression-only springs of stiffness
5000 N/mm. The initial gap at C is 0.5 mimn, so that the spring exerts no force on the beam
until the spring has shortened 0.5 mm. The initial gap at D is zero.

The dashed line in Fig. 10.8-5a shows the displaced shape under the full load P = 20
N. Load versus deflection relationships for points B, C, and D are shown in Fig. 10.8-5b.
Apparently the stiffness seen by load P changes very little when contact is lost at D. As
expected, point C moves 0.5 mm downward. Numerical output shows that actually v =
—0.502 mm when P = 20 N. The extra 0.002 mm is the deflection of the gap element at C
after contact is made.

»v PN
}(—100 mm —>}<—100 mm—)](-loo mmj 20—
UB UC UD
[ \L ‘J/ . 16—
AT N moll
, T : 12f-
4 mm
0.5 mm gl
0.42 mm
P=20N -
i Y g
AT e L aon A | | Ly mm
T B : b -1.0 -0.5 0 0.5
1.03 mm c
(a) (b)

Fig. 10.8-5. (a) Beam with initial gap at C and loss of contact possible at D. (b) Vertical displace-
ments at B, C, and D versus load P.
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10.1

10.3

10.4

10.5

Frame ABC is loaded by moment M, at B, as shown. Assume that there is no
yielding. Make the following sketches with sufficient care that they look different
(if you think they are different).

(a) Sketch the deflected shape you would expect to see after directing the software
to scale up a linear solution by a large amount, so that corner B appears 1o ro-
tate about 60°.

(b) Sketch the deflected shape you would expect to see if My is large enough to
produce an actual rotation of about 60° at corner 5.

(¢c) Repeat parts (a) and (b), now assuming that a frictionless vertical wall pre-
vents horizontal displacement at B.

MB(N
B C

Problem 10.1

Let the nonlinear spring in Fig. 10.2-1a have stiffness k = 5/(2 + ). Assume that

physical constants and loads are in consistent units.

(a) Sketch the P versus u curve for positive P.

(b) Show that the tangent stiffness is &, = 10/(2 + 1)

{¢) Use the purely incremental method. as in Fig. 10.2-1b, to calculate the dis-
placements that correspond to P =2.0 and to P = 4.5.

(d) What is the correct displacement at each of these two loads?

(e) Calculate the displacements that correspond to P = 2.0 and to P = 4.5 by carry-
ing out two Newton—Raphson equilibrium iterations after reaching each of the
two load levels (follow the calculation scheme in Fig. 10.2-2a).

(f) Repeat part (e), but use modified Newton—Raphson iterations (follow the cal-
culation scheme in Fig. 10.2-2b).

Repeat Problem 10.2, but let the nonlinear spring have stiffness k = 2 + 2, for
which k, = 2 + 3u®. However, in part (f), carry out five iterations at load P = 2
only, and show what is happening on the sketch of part (a).

Use Eq. 10.3-3 to calculate linear buckling loads for uniform columns under the
conditions described below. Compare results with buckling loads obtained from
elementary column theory.

(a) Both ends are simply supported. Use one element.

(b) Both ends are fixed. Use two elements of equal length.

(c) One end is fixed and the other is simply supported. Use one element.

Do the following for the device shown in Fig. 10.4-1a:

{a) Show that Eq. 10.4-2 follows from Eq. 10.4-1.

(b) Show that support reaction P is as stated in Eq. 10.4-3.

(¢) Show that the tangent stiffness is always positive if & is as stated in Fig. 10.4-
1b.

(d) Show that limit point A in Fig. 10.4-1c has the displacement coordinate

v=(1-v3/3).
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(e) Let F be increased in a single step from zero to a value slightly greater than the
ordinate at point A in Fig. 10.4-1c. On this plot, without calculations, sketch
the behavior of a few Newton-Raphson equilibrium iterations (as is done for a
different curve in Fig. 10.2-2a).

(f) Repeat part (e), but consider the modified Newton-Raphson method (as in Fig.
10.2-2b).

When load F is absent, displacement v in the sketch is zero and the springs are

collinear and unstressed. In this problem, assume that displacements are small

(v << L).

(a) Determine F as a function of v, k, and L.

(b) Obtain an expression for the tangent stiffness.

(¢) Qualitatively sketch the relation between F (ordinate) and v (abscissa).

(d) Let F=1N, L=10mm, and k = 800 N/mm. Then v = 0.5 mm. Now increase
F by AF =7 N and apply three Newton—Raphson equilibrium iterations to ap-
proximate the resulting v.
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Problem 10.6

A formula for tip deflection of a beam caused by tip moment M in Fig. 10.4-2b is
stated in the text. Derive this formula, and show that for small M it reduces to the
familiar linear formula u = ML*/2EI

(a) A cable of weight ¢ per unit length is stretched between two supports at the
same elevation and a distance L apart. The center sag relative to the supports is
w,_, where w,_ << L. Assume that the deflected shape is parabolic, w =
(4w /LH(Lx — x*), where 0 < x < L. As can be shown, the arc length L, of the
cable is then L, = L + 8w?/3L. Use this information to derive Eq. 7.1-5.

(b) Compare the center deflection given by Eq. 7.1-5 with the center deflection
stated in the text of the present chapter for a rectangular membrane. Fig. 10.4-
2e, when the aspect ratio a/b of the membrane is large.

(¢) Let tension in the cable be T, which can be expressed in terms of g, L, and w,.
The stretching stiffness of the cable is partly due to elasticity (i.e., AE/L) and
partly due to its sag (i.e., dT/dL) with L, constant. Note that 47 and dL, can
each be expressed in terms of both dL and dw,_. Derive the net (nonlinear)
stretching stiffness, in terms of A, E, L, w,, and g.

Apply the method of Problem 10.8a to a uniformly loaded, initially flat circular
membrane. Thus derive an expression for its center deflection, analogous to Eq.
7.1-5. Letv=0.3.

Let the block of material in Fig. 10.5-3b have a rectangular cross section. Draw the
curve in Fig. 10.5-3b to scale for the case E, = 0.

The rigid block shown is constrained to translate horizontally. It is connected to a

rigid wall by three identical uniform bars that carry only axial load. Each bar has

cross-sectional area A, elastic modulus E, yield point ¢y, and does not strain

harden.

(a) Plot to scale the relation between load P and its horizontal displacement, as P
increases from zero to P = 3A 0.
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(¢) If load P is then reapplied, but in the opposite sense, for what value of P wil]
yielding begin again?

(d) What is the initial range of P (tension to compression) for which there is no
yielding? What is this range after unloading from the maximum load in part
(a)?

10.12 In Fig. 10.6-2, let &k, = k, = 1 N/mm, k3 = 100 N/mm, and g = 1 mm. Apply load
P =3 Nin a single step, then carry out as many Newton-Raphson equilibrium iter-
ations as seem necessary to solve for the displacement at A.

10.13 The rigid block shown is constrained to translate horizontally.
(a) For this structure, write equations analogous to Egs. 10.6-1 and 10.6-3.
(b) Let ky = 8 N/mm, &, = 10 N/mm, ky = 12 N/mm, g, = 0.2 mm, and 8, =04
mm. Apply a load P = 4 N in a single step, then carry out equilibrium itera-
tions to obtain the corresponding horizontal displacement u of the block.
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COMPUTATIONAL PROBLEMS

In the following problems, choose convenient numbers and consistent units for physical
properties, dimensions, and loads. Exploit symmetry if possible. Unless directed other-
wise, assume that thicknesses are uniform and the material is isotropic. Assume that pres-
sure acts as a follower force but that other loads are fixed in direction. Assume that there
is no yielding unless elastic—plastic behavior is mentioned. When additional assumptions
are required, clearly state what they are.

Although not noted in what follows, problems previously cited in this chapter as possi-
ble test cases and the preceding analytical problems may also be posed as computational
problems. Similarly, many problems cited in preceding chapters and problem sets may be
reexamined with attention to geometric and/or material nonlinearity.

For comparison purposes, a FE analysis should be preceded by an alternative analysis,
probably based on statics and mechanics of materials, and oversimplified if necessary. In
a nonlinear problem such analysis may be feasible for only one or two stages of the re-
sponse.

10.14 Determine the relation between load ¢ and the center deflection of the beam in Fig.
10.3-2c (see also Eq. 7.1-6).

10.15 In Fig. 10.7-1a, determine the value of P for buckling or collapse. Include a linear
buckling analysis as part of the study. Consider that the structure is (a) a shallow
circular arch or (b) a shallow spherical dome. The problem may be repeated with
other support conditions.

10.16 The conical shell shown in the sketch for Problem 7.25 is called a “Belleville
spring” if the cone is rather flat. Determine the relation between load q and its ver-
tical deflection. If the cone is so nearly flat that “snapping” is possible, how well
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does the actual collapse load agree with the critical load predicted by linear buck-
ling analysis?

The cross section of a steel carpenter’s tape is a shallow arc of small thickness.
Imagine that an arbitrary length of the tape is subjected to a bending moment M
whose vector representation is parallel to the span of the arc. What value of M
causes buckling or collapse?

(a) Consider a beam loaded by force P, as shown. The beam rests on an elastic

foundation that can push against the beam but cannot pull on it. Determine the
extent and the intensity of the contact pressure between the beam and the foun-

dation.
(b) Repeat part (a) but consider a plate, as shown, that rests on an elastic founda-
tion.
I P i
[(—a — b———)—‘ /— J/ d7
P , -

(a) (b)
Problem 10.18

(a) Buckling loads for rectangular flat plates and circular cylindrical shells under
various loadings have been obtained by classical linear analysis [10.5]. These
problems may be used as test cases.

(b) Any of the cases of part (a) may be perturbed by imperfections and addressed
by nonlinear analysis methods. Imperfections may take the form of small lat-
eral loads or small lateral misplacements of one or more nodal coordinates.

A thin, flat, circular plate rests on a soft elastic foundation. A central force P

presses the plate against the foundation. Will the plate ever buckle? If so, is the

calculated linear buckling load a good estimate of the actual buckling load?

The sketch shows a large circular hole in a flat plate under tension. The “ligament”
dimension # may become very small in comparison with width A. What is the
stress concentration factor? Does it depend on the magnitude of the load?
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h Problem 10.21

Repeat Problem 10.21, now regarding the sketch as representing a spherical cavity
in an otherwise solid cylinder of circular cross section.

Reverse the direction of the load in Problem 10.21, and investigate the magnitude
of load required to produce buckling or collapse. Consider the following support
conditions:
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PDF Compressqvﬁ)FSF@ﬁ)é!&@aQ&hate to keep the horizontal centerline of the left side collinear
with the horizontal centerline of the right side.
(b) Supports on the left side just adequate to prevent rigid-body motion, with no
supports on the right side.

10.24 Apply the instructions of Problem 10.23 to Problem 10.22.

10.25 (a) Examine stresses and deformations for the geometry of Problem 10.21 if axial
load is absent but uniform pressure is applied to the boundary of the hole.
(b) Repeat part (a) but apply pressure to the outside lateral boundaries of the strip.

10.26 The sketch shows a thin, flat piece of metal fixed to a rigid support at x = 0.
Initially, the structure midsurface and force P lie in the xy plane. Displacements
are not confined to the xy plane. Investigate large-deflection behavior and possible
buckling.
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Problem 10.26

10.27 The sketch shows a flat piece of metal in a vertical plane. Its thickness ¢
is small and the vertical slots are very narrow. Lower ends of the outer
legs are fixed and a vertical distributed load g is applied to the bottom of
the center leg. Allow out-of-plane deformations, and investigate the
buckling and collapse behavior. Load g may act either downward, as
shown, or upward.

WYYy Problem 10.27

10.28 (a) The sketch represents the cross section of a horizontal cylindrical tank, partly
full of water, and having supports that run lengthwise. Assume that the tank is
long, so that end effects can be neglected in the analysis of a cross section near
the middle of the tank. Analyze for the deflected shape, stresses, and possible
buckling. Use E = 200 GPa and R/ = 600.
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(b) The analysis may be repeated with supports that apply only vertical forces to
the tank.

Problem 10.28

Determine the force versus deflection relation of an archery bow.

A chain is built of many identical links and hangs under its own weight. Investigate

the natural frequencies and modes of vibration.

(a) Let the chain hang from a fixed support at one end.

(b) Let the chain hang from fixed supports at both ends. Choices are possible for
the elevation of one end with respect to the other and the vertical sag relative
to the higher support.

A thin, flat circular disk spins with angular velocity Q about a central axis normal

to the plane of the disk. Investigate the effect of {2 on:

(a) the fundamental frequency of vibration.

(b) the temperature 7, that causes buckling, if temperature T varies linearly with
the radial coordinate, from zero at the center to 7, at the outside edge.

Straight elastic bars are welded together to form the T-shaped bar shown. It rotates
at angular velocity Q about an axis normal to the plane of the paper at A. Investi-
gate the effects of angular velocity, stress stiffening, and spin softening on the nat-
ural frequencies of vibration. Clearly specify the support conditions you decide to
use at A.

3
Q/ A i
< I
H
Y
< L > Problem 10.32

(a) Consider a long straight bar of narrow rectangular cross section, loaded by
torque about the longitudinal axis of the bar. If the angle of twist may become
Jarge, how is the torque related to the angle of twist per unit length? Also, is
buckling a possibility?

(b) The problem may be repeated using one of the cross sections depicted for
Problem 7.38.

Each of the plane bodies shown may be loaded by force F and/or moment M. Use
a stress—strain relation like that in Fig. 10.5-2a. Apply a load sufficient to produce
yielding. Determine the extent of yielding and the residual stresses upon unload-
ing.
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(a) (b) (c)
Problem 10.34

10.35 In Fig. 10.4-2b, let M = 0 and F = 0.001P. Choose dimensions such that P /A is
slightly greater in magnitude than o,. Here P, = n’El/4L2, from elastic column
buckling theory. Choose a specific stress—strain relation for which E, > 0, and
solve for the plastic buckling load [2.1, 10.5].

10.36 Consider plane beams or plane arches made of an elastic—perfectly plastic material
(ie., E>0, E,=0). Let cross sections be rectangular. For each of the cases shown,
calculate and plot load versus displacement relations. Also determine the maxi-
mum value of P and/or ¢ that the structure can carry.

b b
¢
L 1
(a) (b}
a 92
N e e A
. 24 >\<a
+ +
© (d) Problem 10.36

10.37 Consider tip-loaded cantilever beams having the cross sections shown for Problem
7.35. Let the material have a bilinear stress—strain relation, as in Fig. 10.5-2a.
Compute the maximum x- or y-direction tip load that can be sustained if E, = 0.

10.38 Reconsider the Belleville spring problem posed as Problem 10.16. Now let the
spring rest directly on a flat horizontal surface whose coefficient of friction is i

10.39 The upper beam shown in the sketch has an initial curvature, so that a small gap g
exists between the two beams when no load is applied. The lower beam is simply
supported and initially straight. Examine the relation between load P and its dis-
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placement. Additional exercises result if other support conditions are prescribed at
A and B.

10.40 Two plane, elastic blocks of material are pressed together, as shown. Examine the
intensity and extent of the contact stress between the blocks. Assume that the coef-
ficient of friction between blocks is zero.

Ez, V2

2
~
S S nty

Problem 10.39 Problem 10.40

10.41 The sketch represents a thin-walled tube around a solid circular cylinder. The coef-
ficient of friction is £

(a) Imagine that the inside diameter of the tube is slightly smaller than the diame-
ter of the cylinder when both are unstressed and at the same temperature. The
tube is heated, slipped over the cylinder, and allowed to cool. If heat transfer
between tube and cylinder is neglected, what is the final state of stress in the
tube?

(b) A force g is uniformly distributed around the end of the tube and is gradually
increased from zero. What is the relation between g and axial displacement at
each end of the tube? The starting condition is the result of part (a) or, as an
option, a shrink fit without tangential interface traction.

(c) Repeat part (b) with the direction of load g reversed.

10.42 The sketch represents a simplified drum brake problem. A curved elastic bar AB
spans an angle @, is pivoted at A, and is pressed against a rigid brake drum by
force F. The drum rotates with angular velocity . Investigate how the torque re-
quired to rotate the drum is related to the coefficient of friction and other variables
of the problem. The problem may be repeated with the direction of rotation re-

versed.
] h

v Eevi q
3 f
ER

w» W\

} L > L
Problem 10.41 Problem 10.42

10.43 Before loading, the slender elastic cantilever beam shown is horizontal and just in
contact with the rigid wall at C. The wall is inclined to the vertical at a small angle
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10.44

10.45

10.46

%rsion o . -
coetticient of friction for the contact at C is y. Plot the relation between
load P and the vertical deflection components of B and C. Also determine the
maximum load that can be sustained.

A slender, elastic, circular ring is to be pulled through a smaller opening, as shown.
The coefficient or friction between the ring and the opening is 4. Determine the re-
lation between force P and its displacement. The problem may be repeated with P
applied at A rather than at B.

Problem 10.43 Problem 10.44

The sketch represents a centrally loaded, simply supported beam. built by nailing
together two boards for which £ = 10 GPa. Nails are uniformly spaced, 80 mm
apart, and are each 3 mm in diameter. Assume that the shear force F in a nail is re-
lated to the relative slip A between boards at the nail location by the equation
F = (710 — 11A)A%?, where F is in newtons and A is in millimeters. Investigate
nail forces F, beam deflection, and beam stresses as load P increases. (This prob-
lem is a simplification of work reported in [10.12])

I'/ 360 mm 360 mm T —>’ 839 mm ﬁ

Y

? PN
S (( ) 38mm

)
"‘i)xso mml(_ i 1

Problem 10.45

A long, flat strip of metal is placed on a smooth, rigid, horizontal surface. What
compressive force, directed parallel to the long edges and uniformly distributed
across the short edges, will produce buckling? (The problem is easily demon-
strated by placing a sheet of paper on a desk and pushing the shorter edges towards
one another.)



PDF Compressor Free Version



PDF Compressor Free Version

REFERENCES

Chapter 1

1.1

R. Courant, “Variational Methods for the Solution of Problems of Equilibrium and
Vibrations,” Bulletin of the American Mathematical Society, Vol. 49, 1943, pp. 1-23.

1.2 M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp, “Stiffness and Deflection
Analysis of Complex Structures,” Journal of the Aeronautical Sciences, Vol. 23, No. 9,
1956, pp. 805-823.

1.3 R. W. Clough, “The Finite Element Method After Twenty-Five Years: A Personal View,”
Computers & Structures, Vol. 12, No. 4, 1980, pp. 361-370.

1.4 J. Robinson, Early FEM Pioneers, Robinson & Associates, Dorset, UK, 1985.

1.5 W. C. Young, Roark’s Formulas for Stress and Strain, 6th ed., McGraw-Hill, New York.
1989.

1.6 P. S. Symonds and T. X. Yu, “Counterintuitive Behavior in a Problem of Elastic—Plastic
Beam Dynamics,” ASME Journal of Applied Mechanics, Vol. 52, No. 3, 1985, pp. 517-522.

1.7 G. E. Smith, “The Dangers of CAD,” Mechanical Engineering, Vol. 108, No. 2, February
1986, pp. 58-64.

Chapter 2

2.1 R. D. Cook and W. C. Young, Advanced Mechanics of Materials, Macmillan, New York,
1985.

2.2 R.D. Cook, D. S. Malkus, and M. E. Plesha, Concepts and Applications of Finite Element
Analysis, 31d ed., John Wiley & Sons, New York, 1989.

2.3 C. J. Burgoyne and R. Dilmaghanian, “Bicycle Wheel as Prestressed Structure,” ASCE
Journal of Engineering Mechanics, Vol. 119, No. 3, 1993, pp. 439-455.

Chapter 3

3.1 K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood
Cliffs, NJ, 1982.

3.2 R. H. MacNeal, Finite Elements: Their Design and Performance, Marce]l Dekker, New
York, 1994.

3.3 R. L. Taylor, P. I. Beresford, and E. L. Wilson, “A Non-Conforming Element for Stress
Analysis,” International Journal for Numerical Methods in Engineering, Vol. 10, No. 6,
1976, pp. 1211-1219.

34 R.D. Cook, “Beam Cantilevered from Elastic Support: Finite Element Modeling,”
Communications in Applied Numerical Methods, Vol. 7, No. 8, 1991, pp. 621-623.

3.5 E. L. Wilson and A. Ibrahimbegovic, “Use of Incompatible Displacement Modes for the

Calculation of Element Stiffness or Stress,” Finite Elements in Analysis and Design, Vol. 7,
No. 3, 1990, pp. 229--241.

309



310

References
PDF Compressor Free Version

3.6 J. Pittr and H. Hartl, “Improved Stress Evaluation Under Thermal Load for Simple Finite
Elements,” Inzernational Journal for Numerical Methods in Engineering, Vol. 15, No. 10,
1980, pp. 1507-1515.

3.7 R. H. MacNeal and R. L. Harder, “A Proposed Standard Set of Problems to Test Finite
Element Accuracy,” Finite Elements in Analysis and Design, Vol. 1, No. 1, 1985, pp.
3-20.

3.8 R.E. Peterson, Stress Concentration Factors, John Wiley & Sons, New York, 1974, p. 174.

3.9 R. H. MacNeal, “On the Limits of Finite Element Perfectibility,” Inrernational Journal for
Numerical Methods in Engineering, Vol. 35, No. 8§, 1992, pp. 1589-1601.

3.10 W. J. O’Donnell, “The Additional Deflection of a Cantilever Due to the Elasticity of the
Support,” ASME Journal of Applied Mechanics, Vol. 27, No. 3, 1960, pp. 461-464.

Chapter 4

4.1 H. Kardestuncer, ed., Finite Element Handbook, McGraw-Hill, New York, 1987.

4.2 R. E. Miller, “Reduction of the Error in Eccentric Beam Modeling,” International Journal
for Numerical Methods in Engineering, Vol. 15, No. 4, 1980, pp. 575-582.

4.3 A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood
Cliffs, NJ, 1966.

4.4 . Barlow, “Optimal Stress Locations in Finite Element Models,” International Journal for
Numerical Methods in Engineering, Vol. 10, No. 2, 1976, pp. 243-251 (discussion: Vol. 11,
No. 3, 1977, p. 604).

4.5 J. M. M. C. Marques and D. R. J. Owen, “Infinite Elements in Quasi-Static Materially
Nonlinear Problems,” Computers & Structures, Vol. 18, No. 4, 1984, pp. 739~751.

4.6 P. Bettess, Infinite Elements, Penshaw Press, Sunderland, UK, 1992,

4.7 P. D. Mangalgiri, B. Dattaguru, and T. S. Ramamurthy, “Specification of Skew Conditions
in Finite Element Formulation,” International Journal for Numerical Methods in
Engineering, Vol. 12, No. 6, 1978, pp. 1037-1041.

4.8 R. S. Barsoum, “On the Use of Isoparametric Finite Elements in Linear Fracture
Mechanics,” International Journal for Numerical Methods in Engineering, Vol. 10, No. 1,
1976, pp. 25-37.

4.9 N. A. B. Yahia and M. S. Shephard, “On the Effect of Quarter-Point Element Size on
Fracture Criteria,” International Journal for Numerical Methods in Engineering, Vol. 21,
No. 10, 1985, pp. 1911-1924.

Chapter 5

5.1 H. Bleich, “Die Spannungsverteilung in den Gurtungen gekriimmter Stabe mit T- und I- for-
migem Querschnitt,” Der Stahibau (appendix to Die Bautechnik), Vol. 6, No. 1, 1933, pp.
3-6.

5.2 W. G. Dodge and S. E. Moore, “Stress Indices and Flexibility Factors for Moment
Loadings on Elbows and Curved Pipes,” Welding Research Council Bulletin 179,
December 1972,

5.3 K. J. Bathe and C. A. Almeida, “A Simple and Effective Pipe Elbow Element—Linear
Analysis,” ASME Journal of Applied Mechanics, Vol. 47, No. 1, 1980, pp. 93-100.

54 C. Meyer, ed., Finite Element Idealization, American Society of Civil Engineers, New
York, 1987.

5.5 R. D. Henshell, D. Walters, and G. B. Warburton, “A New Family of Curvilinear Plate
Bending Elements for Vibration and Stability,” Journal of Sound and Vibrarion. Vol. 20,
No. 3, 1972, pp. 381-387 (discussion and authors’ closure: Vol. 23. No. 4, 1972, pp.
507-513).

5.6 L. Z. Emkin, “Computers in Structural Engineering Practice: The Issue of Quality,”

Computers & Structures, Vol. 30, No. 3, 1988, pp. 439-446.



Chaprer 7 311

PDF COmpgeﬁs%eFSl;gz?dX%Iﬁ}\%MS Benchmarks (Revision), National Agency for Finite Element

Methods and Standards, Glasgow, UK. 1989,

5.8 T. Slot and W. J. O’Donnell, “Effective Elastic Constants for Thick Perforated Plates with
Square and Triangular Penetration Patterns.” ASME Journal of Engineering for Industrv,
Vol. 93, No. 4, 1971, pp. 935-942.

5.9 Anonymous, A Finite Element Primer, National Agency for Finite Element Methods and
Standards, Glasgow, UK, 1986.

5.10 J. M. Stallings and D. Y. Huang, “Modeling Pretensions in Bolted Connections,” Computers
& Structures, Vol. 45, No. 4, 1992, pp. 801--803.

5.11 B. M. Irons, “Roundoff Criteria in Direct Stiffness Solutions.” AIAA Journal, Vol. 6, No. 7,
1968, pp. 1308-1312.

5.12 1. Taig, “Finite Element Analysis in Industry—Expertise or Proficiency?,” in Accuracy,
Reliability, and Training in FEM Technology (Proceedings of Fourth World Congress and
Exhibition on Finite Element Methods), J. Robinson. ed., Robinson and Associates,
Wimborne, UK. 1984, pp. 56-70.

5.13 B. Szabo, “Estimation and Control of Error Based on p Convergence,” in Accuracy
Estimates and Adaptive Refinements in Finite Element Computations, 1. Babuska et al., eds.,
John Wiley & Sons, Chichester, UK, 1986, pp. 61-78.

5.14 O. C. Zienkiewicz and J. Z. Zhu, “A Simple Error Estimator and Adaptive Procedure for
Practical Engineering Analysis,” Internarional Journal for Numerical Methods in
Engineering, Vol. 24, No. 2, 1987, pp. 337-357.

5.15 O. C. Zienkiewicz and J. Z. Zhu, “The Superconvergent Paich Recovery and a posteriori
Error Estimates. Part 1: The Recovery Technique,” International Journal for Numerical
Methods in Engineering, Vol. 33, No. 7, 1992, pp. 1331-1364.

5.16 J. Z. Zhu and O. C. Zienkiewicz, “Adaptive Techniques in the Finite Element Method,”
Communications in Applied Numerical Methods, Vol. 4, No. 2, 1988, pp. 197-204.

5.17 A. R. Rizzo, “Quality Engineering with FEA and DOE,” Mechanical Engineering, Vol,
116, No. 5, 1994, pp. 76-78.

Chapter 6

6.1 S.P. Timoshenko and J. N. Goodier, Theory of Elasticiry, 3rd ed., McGraw-Hill, New York,

1970. p. 429.
Chapter 7

7.1 J. L. Batoz, “An Explicit Formulation for an Efficient Triangular Plate Bending Element,”
International Journal for Numerical Methods in Engineering, Vol. 18, No. 7, 1982, pp.
1077-1089.

7.2 M. P. Rossow, “Efficient C° Finite-Element Solutions of Simply-Supported Plates of
Polygonal Shape,” ASME Journal of Applied Mechanics, Vol. 44, No. 2, 1977, pp-
347-349.

7.3 S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed.,
McGraw-Hill, New York, 1959.

7.4 B.P. Naganarayana and G. Prathap, “Force and Moment Corrections for the Warped Four-
Node Quadrilateral Plane Shell Element,” Computers & Structures, Vol. 33, No. 4, 1989,
pp. 1107-1115.

7.5 N. Carpenter, H. Stolarski, and T. Belytschko, “Improvements in 3-Node Triangular Shell
Elements,” International Journal for Numerical Methods in Engineering, Vol. 23, No. 9,
1986, pp. 1643-1667.

7.6 T. Belytschko, B. K. Wong, and H. Stolarski, “Assumed Strain Stabilization Procedure for

the 9-Node Lagrange Shell Element,” International Journal Sfor Numerical Methods in
Engineering, Vol. 28, No. 2, 1989, pp- 385-414.



312 References
PDF Compressor Free Version

Chapter 8

8.1 A.Chapman, Heat Transfer, 4th ed., Macmillan, New York, 1984.

8.2 T.J.R.Hughes, The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1987.

8.3 R. E. Comwell and D. S. Malkus, “Improved Numerical Dissipation for Time Integration
Algorithms in Conduction Heat Transfer,” Computer Methods in Applied Mechanics and
Engineering, Vol. 97, No. 2, 1992, pp. 149-156.

8.4 K. E. Barrett, D. M. Butterfield, J. H. Tabor, and S. Ellis, “Quadratic Elements for Heat
Transfer—a Cautionary Tale,” International Journal of Mechanical Engineering Education,
Vol. 18, No. 1, 1990, pp. 59-74.

Chapter 9

9.1 R. I. Guyan, “Reduction of Stiffness and Mass Matrices,” AIAA Journal, Vol. 3, No. 2.
1965, p. 380.

9.2 R.R.Craig, Jr,, Structural Dynamics, John Wiley & Sons, New York, 1981.

9.3 R. W. Clough and J. Penzien, Dynamics of Structures, McGraw-Hill, New York, 1975.

9.4 D. Hitchings, ed., A Finite Element Dynamics Primer, National Agency for Finite Elenent
Methods and Standards, Glasgow, UK, 1986.

9.5 T. Belytschko and T. J. R. Hughes, eds., Computarional Methods for Transient Analysis,
North-Holland, Amsterdam, 1983.

9.6 M. L. James et al., Vibration of Mechanical and Structural Systems, Harper & Row, New
York, 1989.

9.7 R. G. Anderson, B. M. Irons, and O. C. Zienkiewicz, “Vibration and Stability of Plates
Using Finite Elements,” International Journal of Solids & Struciures. Vol. 4, No. 10, 1968.
pp. 1031-1055.

9.8 Anonymous., ANSYS User’s Manual for Revision 5.0: Volume 1. Swanson Analysis
Systems Inc., Houston, PA, 1992.

9.9 J. Avrashi and R. D. Cook, “New Error Estimation for C° Eigenproblems in Finite Element
Analysis,” Engineering Computations, Vol. 10, No. 3, 1993, pp. 243-256.

9.10 J. A. Zukas, “Some Common Problems in the Numerical Modeling of Impact Phenomena.”
Computing Systems in Engineering, Vol. 4, No. 1, 1993, pp. 43-58.

9.11 R. Perrin, T. Charnley, and G. M. Swallowe, “Modes of the Spiral Clock Gong,” Journal of
Sound and Vibration, Vol. 162, No. 1, 1993, pp. 1-12.

Chapter 10

10.1 M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures, Vol. I:
Essentials, John Wiley & Sons, Chichester, UK, 1991.

10.2 E. Hinton, ed., NAFEMS Introduction to Nonlinear Finite Element Analysis. National
Agency for Finite Element Methods and Standards, Glasgow, UK, 1992.

10.3 S.J. Shah and W. D. Pilkey, “Lumped Parameter Approach to Stability Analysis,” ASCE
Journal of Engineering Mechanics, Vol. 119, No. 10, 1993, pp. 2109-2129.

104 J. H. Lau, “Large Deflections of Beams with Combined Loads.” ASCE Journal of the
Engineering Mechanics Division, Vol. 108, No. EM1, 1982, pp. 180-185.

105 S.P. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed.. McGraw-Hill. New
York, 1961.

10.6 K. Matiiasson, “Numerical Results for Large Deflection Beam and Frame Problems
Analyzed by Means of Elliptic Integrals,” /nternational Journal for Numerical Methods in
Engineering, Vol. 17, No. 1, 1981, pp. 145-153.

10.7  S.-L. Lee, F. S. Manuel, and E. C. Rossow, “Large Deflections and Stability of Elastic

Frames.” ASCE Journal of the Engineering Mechanics Division. Vol. 94, No. EM2. 1968,
pp. 521-347.



Chapter 10 313

PDF Compressor Free Version ‘
0.8 P. Seide, “Large Deflections of Rectangular Membranes under Uniform Pressure.”

International Journal of Non-Linear Mechanics, Vol. 12, No. 6, 1977, pp. 397-<406.
10.9  A. Mendelson, Plasticity: Theory and Application, Macmillan, New York, 1968.
10.10 1. P. Den Hartog, Advanced Mechanics of Materials, McGraw-Hill, New York, 1952,
10.11 0. C. Zienkiewicz, The Finite Element Method, McGraw-Hill, London, 1977.

10.12 D. R. Bohnhoff, “Modeling Horizontally Laminated Beams,” ASCE Journal of Structural
Engineering, Vol. 118, No. 5, 1992, pp. 1393-1406.



PDF Compressor Free Version



PDF Compressor Free Version

INDEX

A
Accuracy, as related to:
element shapes, 55-56, 62-63, 111, 293-294
incompressibility. 98
numerical integration, 84-86, 288-289
penalty constraints, 98
Poisson’s ratio, 42, 67, 115
warped element, 112
see also Convergence; Errors; Stress contours;
Stresses
Adaptivity, 139-140, 143
Analogies, 215
Angle factor. 211
Animation, 7, 133
Assembly of elements, 31, 76
Arttachment d.o.f.,, 91, 138
Axisymmetric solid, see Solid of revolution

B
Bandwidth, 77
Bifurcation, buckling, 282, 284
Body force, 27, 44, 45, 58, 159
Bolt pretension, 120
Bouncing, convergence failure, 292
Boundary conditions:
discussed, 45, 122-124
natural, 179
nonzero displacement, 123
solid of revolution, 156
thermal, 205-206, 210, 211, 214-215
see also Supports
Boundary elements, 90
Boundary layer, 184-185, 210
Bounds:
Gerschgorin, 252
on displacements, 87
on vibration frequency, 231, 247
that straddle answer, 122,218
Buckling:
bifurcation, 282, 284
linear, 282-283
nonhinear, 110, 283-285
symmetry considerations, 95, 293

C
Check run, 132
Checking for mistakes, 130-133

Compatibility, defined, 45
Condensation:
in dynamics, 235-239, 250-251, 253, 256
static, 90-91
Conductivity:
matrix, 205, 208, 209
thermal, 206-207
Configuration factor, 211
Connections:
beam to plane, 58-59, 96
bolted, 118-121
dynarnic analysis, 121
hinge. 25, 58-59, 96
improper, 61, 118, 120
partial, at nodes, 25, 58-59
plane to solid, 118, 120
restraints needed, 26
sliding contact, 123, 290-291
supporting springs, 123, 294
Constitutive matrix, 19
Constraint mode, 236
Constraints:
discussed, 95-98
gap problems, 290
numerical error, 128
rigid offsets, 79-80
skew supports, 78-79
Contact problems, see Nonlinear problems
Contours:
stress, 8, 60, 135, 183
temperature or flux, 214-215, 217-219
Convection, 210
Convergence requirements, 88
Convergence:
adaptive, 139-140
“bouncing” failure, 292
equilibrium iterations, 278-279
extrapolation, 140
failure, 280, 292
h-refinement, 139
nonlinear problems, 212, 280, 292, 295
p-refinement, 139
requiremnents for, 88
tests for, 142, 212, 280, 295
vibrations, 231, 247
with mesh refinement, 138-140
see also Accuracy; Errors

215
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Coordinate systems, 25

Coordinate transformation, 24, 78-79, 81, 235-239
Crack, stress intensity, 112

Crank-Nicolson method, 213

Curved beams and pipes, 106-108, 152-155

Cut boundary, 138

D
D.o.f., see Degrees of freedom
Damping:
algorithmie, 213, 243
critical, 229
mechanisms of, 234
modal, 235, 238
proportional, 235
ratio, 230
Rayleigh, 235
viscous, 228, 234
Deformations:
display of, 7, 34, 134-135, 234
zero-deformation temperature, 219
Degrees of freedom:
attachment, 91, 94, 138
defined, 5
drilling, 54-55
internal, 54
Design of experiments, 126
Developable surface, 109, 175
Diagonal decay test, 130
Diaphragm support, 188
Diffusion, 215
Direct solution, 77
Direct substitution, 212, 277
Discontinuity; shell stresses, 108-109, 184
Discrete Kirchhoff elements, 178
Discretization error:
defined, 10
measure of, 141-142
mesh refinement, 88, 139
vibrations, 231, 234, 247, 257
‘Disk, spinning, 157-160
Dynamic relaxation, 279
Dynamic response analysis:
central difference method, 242, 252-253
choice of method, 243-244, 252-254
contact problems, 294-295
direct integration, 241-243, 252-254
example application, 261-265
loading considerations, 253-254
modal method, 243-244, 253-254
multiple load cases, 253
Newmark method, 242-243, 252-254
response spectrum method, 244-246, 263-265
time step for, 254
Dynamic stiffness matrix, 241
Dynamics, equations of, 227-228

E
Eigenproblem:
buckling, 282

eigenvalue shift, 232, 249
vibration, 232
Elastica, 285
Electrostatic fields, 215
Element, types of:
bar, 18-20
beam and frame, 20-25
bilinear, 48-50
birth and death, 294
brick, 150-151
discrete Kirchhoff plate, 178-179
drilling d.o.f., 54-55
“extra” d.o.f.,, 62
hexahedra, 150-151
incompatible, 51-54, 56, 151, 177
isoparametric, 80-86
Mindlin plate, 177
piping, 108
plane quadrilaterals, 48-56, 80-82
plane triangles, 4-5, 46-48
plate bending, 175-179
shell, of revolution, 189-190
shell, general, 186-189
solid of revolution, 155-156
surface, 214
tetrahedra, 149-150
thermal, 208-210
trilinear, 150-151
warped quadrilateral, 112, 186
Elements, behavior of, 44, 106
Elements, well shaped, 56, 111-112, 187, 293-294
Emissivity, 211
Equilibrium iteration, 278-279
Equilibrium, differential equations of, 45
Error traps, 132
Errors:
bounds, in vibration, 231, 247
checking for, 6-9, 131-133, 257
common mistakes, 130-131
dynamic response, 244-245, 253-254
estimate of, 141-143, 215, 257
modeling, 9
nonlinear problems, 278, 293-295
reduction, 250-251, 256
software, 10, 143-144
support conditions, 122
see also Accuracy; Convergence; Discretization
error; Numerical error
Example applications:
beam, 33-36
buckling, 295-296
contact and gap, 298
dynamic response, 261-265
geometric nonlinearity, 295-296
harmonic response, 260-261
material nonlinearity, 297
plane, 62-67
plate bending, 181-183
response spectrum, 263
shell, axisymmetric, 190-192
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solid, of revolution, 157-160
solid, general, 152-155
temperature calculation, 215-218
thermal stress, 218-220
vibration, 258-260

Experiments:
comparison with, 133, 257
numerical, 126

Extrapolation, 60, 140

F
Far field, 90
Field quantity, 1, 6
Film coefficient, 207
Finite element method:
convergence of, 88
history of, 3
how to use, 2, 6-9, 105-106, 124-126
nature of, 1-2, 45, 86-87, 106
procedural steps, 17
Finite strip method, 164
Flexural rigidity, 173
Flow rule, 288
Fluid flow, 215
Fluid-structure interaction, 256, 276
Flux, thermal:
behavior of, 214-215
equations for, 206, 210-211
error measure, 215
vector plot, 215
Follower force, 118, 275, 286, 293
Forced vibration, see Harmonic response
Forces, see Loads
Forcing function, 228
Foundation, elastic, 89-90, 181-183
Fourier series, 161-164, 190
Frame, defined. 18
Frequency response, see Harmonic response
Frequency, terminology, 229, 232
Friction, contact, 291-292
Frontal solution, 77

G

Gap closure, see Nonlinear problems
Gauss points, 82-86, 288
Generalized coordinates, 4
Gerschgorin bound, 252

Graphical devices, 7-8, 131-135, 215

H
Hardening behavior, 277
Hardening rule, 288
Harmonic response:
equations for, 239-241
discussed, 252
example application, 261-262
Heat capacity matrix, 213
Heat transfer coefficient, 207, 210, 211
Heat transfer, 205-218

Hinge, 25, 58-59, 96
Hourglass mode, 84, 151

1
1Nl conditioning, 97-98, 127-130, 157, 241
Impact, see Shock Loading
Incompatible elements, 51-34, 56, 151, 177
Incompressible material, 42, 67, 98
Incremental solution, 277-278
Indeterminacy, static, 26
Inertia, rotary, 231, 248
Infinite elements and media, 89-90
Initial strains, 41-42
Initial stress, 30, 120, 146
see also Residual stress
Instability mode, 84, 151
Interception factor, 211
[soparametric:
defined, 81
elements, 80-86, 151, 156, 187
Tterative solution, 77-78, 212, 278-279, 280

J

Jacobian matrix, 81

K
Kinematic mode, 84, 151

L
Lagrange multipliers, 96-97
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Large vs. small displacements, 26, 134, 174-175,

275-276, 294
Limit point, 284, 285, 295
Loads:
axisymmetric, 117, 149
body force, 27, 44, 45, 58, 159
concentrated, 7, 116-117
distributed, 26-28, 56-58, 117, 152
follower force, 118, 275, 286, 293
Fourier series for, 161-163, 190
from temperature change, 30-32, 118
in thermal analysis, 205, 209-211
lumped, 28, 58
moment, 58, 117
multiple load cases. 78, 143, 253, 276
nonaxisymmetric, 161-163, 190
on plates, 174, 179
traction, 44
work-equivalent, 28, 57-58, 152
Local coordinates, 24, 78-79
Locking, 52, 97-98, 147, 151, 187, 188

M
Mass matrices:
bar, 230-231
beam, 231
choice of, 247-248, 252, 233, 256
consistent, 231
lumped, 230-231
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meaning of, 230 element proportions, 129, 157, 187-188

singular, 249 penalty methods, 97-98
Mass, nonstructural, 248, 256-237 tests for, 126-130
Master d.o.f., 91, 235, 251 Numerical experiments, 126
Mathematical model, 9-10 Numerical integration:
Matrices: locking, 98

conductivity, 209 plane elements, 82-86

convection, 210 selective, 98, 177, 188

damping, 235, 238 shell elements, 188

definitions and properties, 12-13 solid elements, 151, 156

dynarmnic stiffness, 241

exploiting sparsity, 76-77 0

heat capacity, 213 Offsets, 79, 118

mass, see Mass matrices Orthogonality, of modes, 233

modal, 237

radiation, 211 P

spectral, 238 Patch test, 88-89, 152. 157, 176

stiffness, see Stiffness matnces ' Penalty constraints, 97-98, 122, 124, 127-129. 290
Mechanism, 26, 58, 84, 151 Period, defined, 229
Membrane forces, plates, 174 Phase angle, 239, 240
Mistakes, 130-133 Pilot study, 114

Modal matrix, 237
Modal methods:

Plane strain condition, 42
Plane stress condition, 41

dynamic response, 238, 243, 253 Plastic action, 286-289, 297

harmonic response, 240 Plate, bending action, 109, 171-175

modal synthesis, 255 Plotting, see Graphical devices

number of modes needed, 253-254 Postprocessingv 2,7-8,133-136. 215

orthogonality of modes, 233 Prandil-Reuss rule, 288

theory of, 237-239 Preprocessing, 2, 131-133
Modeling:

Principal coordinates, 238
boundary layer in shells, 184-185

defined, 6, 105

dynamics, 246-258 Q

Quadrature, see Numerical integration

error of, 9
general stress analysis, 105-144
nonlinear problems, 292-295 R
skills required, 105-106 Radiation, 211
thermal analysis, 213-215 Rayleigh quotient, 249
Modes, in vibration, 232 Rayleigh-Ritz method, 86-87
Reactions, support, 27, 134
N Recordkeeping, 91, 131
NAFEMS. 114 Reduction, in dynamics, 235-237, 250-251, 252,
Natural coordinates, 80 255,256
Newton-Raphson methods, 278-279 Release, 25
Nonlinear problems: Renumbering of nodes, 75, 76, 77
algorithms for, 212, 277-280 Repetitive symmetry, 95
buckling, 110, 283-286 Residual stress, 280, 293
contact and gaps, 121-122, 276, 289-292 see also Initial sress
geometric, 174-175, 275, 283-286, 293-294 Resonance, 239, 252, 260
limit point, 284, 285 Resonant frequency, 232
material, 275, 286-289, 297 Response spectrum, 244-246, 254, 263
plate bending, 109, 174-175 Results, critique of, 7-9, 133-136
plotted displacements, 134-135 R%g%d bpdy motion, 25, 125, 149
snap through, 284, 285 R1.g1d links, 79, 118
symmetry considerations, 95, 293 Ritz vectors, 239, 243
thermal analysis. 212, 213 Rotating machinery, 254-235
types of, 275-276
versus linear problems, 275-276 S
Numerical error: Saint-Venant's principle, 61, 186, 193
defined, 10 Sampling points, see Gauss points

discussed, 126-130 Shape factor, 211
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hape functions:
bar, 19-20
beamn, 21
hexahedron, 150
matrix, 19, 23, 43
nature of, 19, 50
plane quadrilaterals, 30, 52, 81
Shear center, 108, 193, 195
Shear lag. 107
Shell. behavior of, 108-109, 184-186
Shells of revolution, 189-192
Shock loading, 238, 244, 251-254, 258, 261-265
Shock spectrum, see Response spectrum
Shrink fit, 60, 143, 157-160
Singularity of K, causes of, 13, 25-26, 58, 85, 122,
128, 130-131, 149, 186, 285, 295
Singular mode, 84, 151
Singularity, of stress field, 112, 142
Sink, 210
Skyline, 76-77
Slave d.o.f., 79, 91, 235, 251
Snap through, 284, 285, 297
Softening behavior, 277-278, 287
Solid of revolution:
defined, 145
nonaxisymmetric loads, 161-164
Solution of equations, 13, 77-78, 212, 279, 280
Source, point, 210
Sparse matrix, 76-77
Spectral matrix, 238
Spin softening, 254-255

Stability, algorithmic, 212, 242-243, 279, 285, 292,

295
Stefan-Boltzman constant, 207, 211
Stiff region, see Il conditioning
Stiffness matrices:
assembly of, 76
differential stiffness, 281
exploiting sparsity, 76-77
formula for, 19, 22, 44, 148
geometric stiffness, 281
meaning of, 19
numerically integrated, 82, 151, 156
properties of, 25
stability coefficient, 281
stress stiffness, 281
tangent stiffness, 277-279, 285, 290-291
see also Element, types of; Singularity of K,
causes of
Strain-displacement relation:
bar, 20
beam, 23
plane problems, 43
plate bending, 171, 173
solid of revolution, 147
three dimensional, 147
Stress contours:
as error indicator, 8, 60, 135, 183
averaged, 8, 60
defined, 8, 135
Stress stiffening, 107, 175, 254, 280-282, 293

319

Stress-strain relation:
anisotropic, 114-115
planc, 4142
plate theory, 172
solid of revolution, 147
substitute, 113-116
three dimensional. 146
Stresses:
accuracy attributes, 28-29, 134-136
alternative method. 59
bar, 28, 31-32
beam, 23, 29-30
bending, defined, 42
best locations for, 29, 60, 86
concentrations, 136-138, 192, 256
conventional method, 28-30, 59
discontinuities in, 28-29, 60. 108-109, 141, 143,
159, 184
dynamic problems, 256
effective stress, 60
error measure, 136, 141-143
membrane, defined, 42
numerical errors, 129
shells, 108-109, 184, 190
shrink fit. 157-160
singularities, 112, 142
solid of revolution, 156
spurious, 32,49, 52, 61, 112, 156, 177, 189
stress intensity, 60
thermal, 30-32, 118, 149, 218-220
trajectories, 135
von Mises stress, 60
Sturm sequence, 249
Submodeling, 137-138
Substitute properties, 115-116
Substructuring, 90-91, 255, 293
Superelements, 91
Superposition, 30, 164, 238, 276
Supports:
adequacy of, 25-26
diaphragm, 188
numerical error, 128
plane elements, 61
plate bending, 179
reactions, 27, 130, 134
springs used as, 123
see also Singularity of K, causes of
Symmetry:
axial, 145, 155-164
cautions, 95, 149, 253, 293
discussed, 92-95
exploited, 7, 34, 64-65, 153, 182, 194, 217
nonlinear problems, 293
stress contours, 60, 135
thermal analysis, 214, 215

T
Tangent stiffness, 277-279, 285, 290-291
Temperature calculation, 205-218
Test cases:
buckling, 285
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contact and gap, 292

convergence rate, 113

dynamic, 256

eigenvalue, 110

geometric nonlinearity, 285-286

patch test, 88-89, 152, 157, 176

plane, 62-63

plastic action, 289

plate bending, 180

shells, 188-189

single element, 111

variety available, 113-114
Thermal mass, 212
Thermal stress, 30-32, 118, 149, 218-220
Time-history analysis, see Dynamic response
Transformation, see Constraints; Coordinate trans-

formation; Isoparametric; Substructuring

Transient response, see Dynamic response analysis
Transients, thermal, 212-213, 214
Trapezoidal rule, 213, 243
Truss, defined, 18

U
Unsupported structure, 25-26, 232
see also Singularity of K, causes of

\%
Verification of software, 114
Vibration:

amplitude of, 229, 239

bounds on frequencies, 231, 247
discussed, 248-250
estimating frequencies, 249-250
infinite frequencies, 249
multiple d.o.f., 232-234
plotiing of modes, 234
reduction of d.o.f, 235-237, 250-251
repeated frequencies, 249
scaling of modes, 233
single d.o.f., 229
spin softening, 255
stress stiffening, 254, 282
symmetry considerations, 95, 255
terminology, 229, 232
zero frequencies, 248

View factor, 211

“7

Warped element, 112, 186

Warping, in torsion, 108, 193

Wave propagation, see Shock loading
Wavefront, 77

Weight, see Body force

Y
Yield criterion, 288
Yielding. see Plastic action

Z
Zero energy mode, 84, 151
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