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CHAPTER 1

1.B.1 Since y > z implies y > z, the transitivity implies that x > z.
Suppose that z » x. Since y » 2z, the transitivity then implies that y > x.

But this contradicts x » y. Thus we cannot have z > x. Hence x > z.

1.B.2 By the completeness, x > x for every x € X. Hence there isno x € X
such that x » x. Suppose that x » y and y » 2, then x > y » z. By (iii) of
Proposition 1.B.1, which was proved in Exercise 1.B.1, we have x » z. Hence >
is transitive. Property (i) is now proved.

As for (ii), since x > x for every x € X, x ~ x for every x € X as well.
Thus ~ is reflexive. Suppose that x ~y and y ~z. Then X >y, ¥y > 2z ¥y > X,
and z > y. By the transitivity, this implies that x > z and‘z > x. Thus x ~
z. Hence ~ is transitive. Suppose x that ~y. Then x » y and y » Xx. Thusy
>»x and X > y. Hence y ~ x. Thus ~ is symmetric Property (ii) is now

proved.

1.B.3 Let x € X and y € X. Since u(-) represents », x > y if and only if
u(x) = ul(y). Since f(-) is strictly increasing, u(x) = u(y) if and only if
v(x) = v(y). Hence x >y if and only if v(x) = v(y). Therefore v(-)

represents ».

1.B.4 Suppose first that x » y. If, furthermore, y > X, then x ~ y and hence
u(x) = uly). If, on the contrary, we do not have y » X, then x > y. Hence

u(x) > uly). Thus, if x > y, then u(x) = uly).

Suppose conversely that u(x) = u(y). If, furthermore, u(x) = u(y), then
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X ~ y and hence x » y. If, on the contrary, u(x) > u(y), then x > y, and

hence x > y. Thus, if u(x) = uly), then x %> ¥. So u(-) represents ».

1.B.5 First, we shall prove by induction on the number N of the elements of X
that, if there is no indifference between any two different elements of X,
then there exists a utility function. If N = 1, there is nothing to prove:

Just assign any number to the unique element. So let N > 1 and suppose that
the above assertion is true for N - 1. We will show that it is still true for

N. Write X = (xl,...,xN_l,xN}. By the induction hypothesis, > can be

represented by a utility function u(-) on the subset (xl,...,xN_l) . Without
loss of generality we can assume that u(xl) > u(xz) > .. > u(xN_l).
Consider the following three cases:
Case 1: For every i < N, xN > xi.
Case 2: For every i < N, X, > xN.
Case 3: There exist i < N and j < N such that X, > Xy > xj.

Since there is no indifference between two different elements, these three
cases are are exhaustive and mutually exclusive. We shall now show how the
value of u(xN) should be determined, in each of the three cases, for u(-) to
represent > on the whole X.

If Case bl applies, then take u(xN) to be larger than u(xl). If Case 2

applies, take u(xN) to be smaller than u(x,, .). Suppose now that Case 3

N-1"
applies. Let I = {i € {1,..., N - 1} X, > xN+1} and J = {j € {1,..., N - 1}
XN+ > xj}. Completeness and the assumption that there is no indifference
implies that I v J = {1,..., N - 1}. The transitivity implies that both I and
J are "intervals," in the sense that if i € I and i’ < i, then i’ € I, and if

JeJand j7 > j, then j’ € J. Let i* = max I, then i* + 1 = min J. Take
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u(xN) to lie in the open interval (u(xi,ﬂ),u(xi,)). Then it is easy to see
‘ that u(-) represents > on the whole X.
Suppose next that there may be indifference between some two elements of

X ={x x.}. For each n = 1,...,N, define Xn = (xm e X: X_ ~ xn). Then,

) R m

by the reflexivity of ~ (Proposition 1.B.1(ii)), ur;':lxn = X. Also, by the

transitivity of ~ (Proposition 1.B.1(ii)), if Xn #* Xm, then Xn n Xrn + 2. So

let M be a subset of {1,...,N} such that X =y X and X # X_ for any m € M
meM m m n

and any n € M with m # n. Define an relation »* on (Xm: m € M)} by letting Xm

>* Xn if and only if X X X - In fact, by the definition of M, there is no

indifference between two different elements of (Xm: m € M}. Thus, by the

preceding result, there exists a utility function u*(+) that represents >*.

Then define u: X - R by u(x ) = u*(X )if me Mand x_e X . Itiseasyto
n m n m

show that, by the transitivity, u(-) represents >.

‘ 1.C.1 If y € C({x,y,2}), then the WA would imply that y € C({x,y}). But
contradicts the equality C({x,y}) = {x}. Hence y ¢ c({x,y,z}). Thus

c{x,y,2z})) € {{x},{z},{x,2)}.

1.C.2 The property in the question are equivalent to the following property:
If Be B, B e‘:’B,xeB,yeB,xeB’,yeB’,xeC(B), and y € C(B’), then
% € C(B’) and y € C(B). We shall thus prove the equivalence between this
property and the' Weak Axiom.

Suppose first that the Weak Axiom is satisfied. Assume that Be B, B €
B, xeB yeB, xeB,y¢€ B’, x € C(B), and y € c(B’). If we apply the
Weak Axiom twice, we obtain x € c(B’) and y € C(B). Hence the above property

is also satisfied.
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Suppose conversely that the above property is satisfied. Let B € B, X €
B, y € B, x € B", and x € C(B). Furthermore, let B € B, x € B’, y € B’, and
y € C(B’). Then the above condition implies that x € C(B’) (and y € C(B)).

Thus the Weak Axiom is satisfied.

1.C.3 (a) Suppose that x »* y, then there is some B € B such that x € B, y €
B, x € C(B), and y ¢ C(B). Thus x »* y. Suppose that y >* x, then there
exists B € B such that x € B, y € B and x € C(B). But the Weak Axiom implies
that y € C(B), which is a contradiction. Hence if X »* y, then we cannot have
y >* X. Hence x >** y.

Conversely, suppose that x »** y, then x »>* y but not y »* x. Hence
there is some B € B such that x € B, y € B, x € C(B) and if x € B’ and y € B’
for any B’ € B, then y ¢ C(B’). In particular, x € C(B) and y ¢ €(B). Thus i
X >* y.

The equality of the two relation is not guaranteed without the WA. As
can be seen from the above proof, the WA is not necessary to guarantee that if i
x >** y, then x »* y. But the converse need not be true, as shown by the
following example. Define X = {x,y,z}, B = {{x,y},{x,y,2}}, C({x,y}) = {x},

and C({x,y,z}) = {y}. Then x »* y and y »* x. But neither x >* y nor y »* x.

(b) The relation >* need not be transitive, as shown by the following example.
Define X = {x,y,z}, B = {{x,y},{y,z}}, C{x,y}) = {x} and C({y,z}) = {y}.
Then x >* y and y >* z. But we do not have x >* z (because neither of the two

sets in B includes {x,z}) and hence we do not have x >* z either.

(c) According to the proof of Proposition 1.D.2, if B includes all three-

element subset of X, then »* is transitive. By Proposition 1.B.1(i), »** is
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transitive. Since »* is equal to >»**, >* is also transitive.

An alternative proof is as follows: Let x € X, y € X, z € X, x »* y, and
y >* z. Then {x,y,z} € B and, by (a), x >** y, and y >** z. Hence we have
neither y »* x nor z »* y. Since >* rationalizes (B,C(-)), this implies that
y ¢ C({x,y,z}) and z ¢ C({x,y,z}). Since C({x,y,2}) # &, C({x,y,2}) = {x).

Thus x »* z.

1.D.1 The simplest example is X = {x,y}, B = {{x},{y}}), C{x}) = {x}, C({y})

= {y}. Then any rational preference relation of X rationalizes C(-).

1.D.2 By Exercise 1.B.5, let u(-) be a utility representation of ». Since X

is finite, for any B ¢ X with B # @, there exists x € B such that u(x) = u(y)
for all y € B. Then x € C*(B,>) and hence C*(B,>) # @. . (A direct proof with
no use of utility representation is possible, but it is essentially the same

as the proof of Exercise 1.B.5.)

1.D.3 Suppose that the Weak Axiom holds. If x € C(X), then x € C({x,z}),
which contradicts the equality C({x,z}) = {(z}. If y € C(X), then y €
C({x,y}), which contradicts C({x,y}) = {x}. If z € C(X), then z € C({y,z}),

which contradicts C({x,z}) = {y}. Thus (8B,C(-)) must violate the Weak Axiom.

1.D.4 Let > rationalize C(-) relative to B. Let x € C(Bl v BZ) and y € C(Bl)
v C(Bz), then x > y because B1 v B2 > C(Bl) v C(BZ)' Thus x € C(C(Bl) v
C(BZ)).
Let x € C(C(Bl) V) C(Bz)) and y € Bl V) Bz, then there are four cases:
Case 1. x € C(Bl)’ y € Bl‘



Case 2. x € C(Bl)’ y € BZ‘
Case 3. x € C(Bz), y € Bl'
Case 4. x € C(Bz), y € BZ'
If either Case 1 or 4 is true, then x > y follows directly from
rationalizability. If Case 2 is true, then pick any z € C(BZ)' Then z > y.
Since x € C(C(Bl) v C(Bz)), X > z. Hence, by the transitivity, x > y. If

Case 3 is true, then pick any z € C(Bl) and do the same argument as for Case

2.

1.D.S (a) Assign probability 1/6 to each of the six possible preferences,
which are X » y >z, X >z >y, y>X>2, y>Z>X,2>x>y,and z >y >

X.

(b) If the given stochastic choice function were rationalizable, thén the
probability that at least one of X » y, ¥y » 2, and z » x holds would be at
most 3 x (1/4) = 3/4. But, in fact, at least one of the three relations
always holds, because, if the first two do not hold, then y » x and z > y.
Hence the transitivity implies the third. Thus, the given stochastic choice

function is not rationalizable.

(c) The same argument as in (b) can be used to show that « = 1/3. Since

C{x,y}) = C({y,z})) = C({z,x}) = (&, 1 - &) is equivalent to C({y,x}) =

C({z,y}) = C({x,z})

(1 - &, 'a), if we apply the same argument as in (b) to y
> X, Z>Y, and x > z, then we can establish 1 - « = 1/3, that is, o« = 2/3.
Thus, in order for the given stochastic choice function is rationalizable, it

is necessary that a € [1/3,2/3]. Moreover, this condition is actually

sufficient: For any o e [1/3,2/3], assign probability « - 1/3 to each of x >
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Yy >2, ¥y>2>X, and z > X > y; assign probability 2/3 - « to each of x » z »
‘ ¥, ¥y >x >z and z > y » x. Then we obtain the given stochastic choice

function.



CHAPTER 2

2.D.1 Let P, be the price of the consumption good in period 2, measured in
units of the consumption good in period 1. Let X, X, be the consumption
levels in periods 1 and 2, respectively. Then his lifetime Walrasian budget

w).

A

. 2
set is equal to {x € IR+. X + PoX,
2.D.2 {(x,h) e IR_%: h = 24, px + h = 24},

2.D.3 (a) No. In fact, the budget set consists of the two points, each of

which is the intersection of the budget line and an axis.

(b) Let x e B, _, X’ € B__, and A € [0,1). Write x" = Ax + (1 - A)x’. Since
p,w P,w
X is convex, x" € X. Moreover, p-x" = Alp-x) + (1 - A)p-x’) = Aaw + (1 - A)w
= w. Thus x" € B_ .

p,w
2.D.4 It follows from a direct calculation that consumption level M can be
attained by (8 + (M - 8s)/s’) hours of labor. It follows from the definition

that (24,0) and (16 - (M - 8s)/s’, M) are in the budget set. But their convex

combination of these two consumption vectors with ratio

M -’85 8
s 5
8 + M -,Ss 8 + M —,85
s s

is not in the budget set: the amount of leisure of this combination equals to

16 (so the labor is eight hours), but the amount of the consumption good is

8 g .8
M M-85 M M-85 - My <8
8+ ——— 8+ ——




2.E.1 The homogeneity can be checked as follows:

p, aw P, w
x, (ap,aw) = = = x (p,w),
1 ap, *+ ap, + apy ap, Py * Py * P3 P L
ap, aw P, w
x,(ap,aw) = = = x,(p,w),
2 @p; + &p, + @py &P, Pp* Py *P3 Py 2
ap, aw Py w
x. lap,ow) = = = x,.(p,w).
3 @p; + ap, + apz OPg Pj + P, *P3 Py 3

To see if the demand function satisfies Walras’ law, note that
BPI + Py + P53 "
Pyt P * Py

p:x(p,w) =

Hence p-x(p,w) = w if and only if B = 1. Therefore the demand function

satisfies Walras’ law if and only if 8 = 1.

2.E.2 Multiply by pk/w both sides of (2.E.4), then we obtain
Z‘E___I(pexe(p,w)/W)(6xe(p.w)/apk)(pk/xe(p,w)) + pkxk(p,w)/w = 0.

Hence £=1b£(p’W)€£k(p'W) + bk(p,w) = 0.

S

By (2.E.6), E‘E=l(p£xe(p,w)/w)(axe(p,w)/aw)(w/xz(p,w)) = 1. Hence

ZIE=1b2(p’W)€£w(p'W) = 1.

2.E.3. There are two ways to verify that p-Dpx(p,w)p = - W.
One way is to post-multiply (2.E.5) by p, then p-Dpx(p,w) p+w=0 by
Walras’ law.
The other way is to pre-multiply (2.E.1) by pT, then p-Dpx(p.w)p +
p-Dwx(p,w)w = 0. By Proposition 2.E.3, this is equal to p-Dpx(p,w)p +w
An interpretation is that, when all prices are doubled, in order for the
consumer to stay at the same consumption, it is necessary to increase his

wealth by w.
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2.E.4 By differentiating the equation x(p,aw) = ax(p,w) with respect to « and
evaluating at « = 1, we obtain wax(p,w) = x(p,w). Hence Dwx(p,w) =
(1/w)x(p,w). Hence €pw = (axe(p,w)/aw)(w/xe(p,w)) = 1. Tﬁis means that an
one-percent increase in wealth will increase the consumption level for all
goods by one percent.

Since (1/w)x(p,w) = x(p,1) by the homogeneity assumption, Dwx(p,w) is a
function of p only. The assumption also implies that the wealth expansion

path, Ep = {x(p,w): w > 0}, is a ray going through x(p,1).

2.E.5 Since x(p,w) is homogeneous of degree one with respect to w, x(p,aw) =
ax(p,w) for every o > 0. Thus xe(p,w) = xe(p,l)w. Since axz(p,l)/apk =
agoz(p)/apk = 0 whenever k = &, xe(p,l) is actually a function of Py alone. So
we can write xe(p,w) = xe(pz). Since x(p,w) is homogeneous of degree zero,
xe(pe) must be homogeneous of degree - 1 (in pe). Hence there exists @, > o]
such that xe(pe) = al/pl' By Walras’ law, Zepe(ocz/pe)w = wzeoce = w. We must

thus have Egae =1

2.E.6 When « = 1, Walras’ law and homogeneity hold. Hence the conclusions of

Propositions 2.E.1 - 2.E.3 hold.

2.E.7 By Walras’ law,
X, = (w - plx'l)/p2 = w/p2 - (pl/pz)(ocw/pl) = (1 - oc)w/pz.

This demand function is thus homogeneous of degree zero.
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2.E.8 For the first part, note that
In xe(p,w) = In xz(exp(ln pl),...,exp(ln pL),exp(ln w)l},

Thus, by the chain rule,

ox dx
——(p,w)-explin p,) LW
d(In xz(p,w)) apk P pUn Py apk P, Py
d(In pk) = xe(p,w) = xe(p,w) = ckk(p’W)'
Similarly,
6x£ ax
d(In xe(p,w)) _ W(p,w)-exp(ln w) _ W(p,w)w ) o)
d(Tn w) - x,(p,w) - x,(p,w) = Egw' PV
Since o = d(ln'xe(p,w))/d(ln pl), @, = d(In xe(p,w))/d(ln p2), and xy =

d(ln xe(p,w))/d(ln w), the assertion is established.

2.F.1 We proved in Exercise 1.C.2 that Definition 1.C.1 and the property in

the exercise is equivalent. It is easy to see that the latter is equivalent

to the following property: For every B € B and B’ € B, if C(B) n B’ # # and B

n C(B’) # @, then C(B) n B’ ¢ C(B’) and B n C(B’) c C(B). If C(:) is

single-valued, then this property is equivalent to the following one: For
every B € B and B’ € B, if C(B) ¢ B’ and B ¢ C(B’), then C(B) = C(B’). In the
context of Walrasian demand functions, this can be restated as follows: For
any (p,w) and (p’,w’), if p-x(p’,w’) = w and p’-x(p,w) = w’, then x(p,w) =
x(p’,w’). But this is the contraposition of the property stated in Definition

2.F.1. Hence Definitions 1.C.1 and 2.F.1 are equivélent.

2.F.2 It is straightforward to check that the Weak Axiom holds. In fact, if
pl-x‘] =< 8 and i # j, then p‘l-xl = 9. Since pz-x1 = 8, xz is revealed

preferred to xl. Similarly, since pl-x3 = 8, x1 is revealed preferred to x3.



But, since p3-x2 = 8, x3 is revealed preferred to x2.

2.F.3 [First printing errata: Add the sentence "Assume that the weak axiom is

satisfied.” in (b) and (c).] Denote the demand for good 2 in year 2 by y.

(a) His behavior violates the weak axiom if

100-120 + 100y = 100-100 + 100-100
and

100-100 + 80-100 = 100-120 + 80y.

That is, the Weak Axiom is violated if y e [75,80].

{b) The bundle in year 1 is revealed preferred if

100-120 + 100y = 100-100 + 100-100
and

100-100 + 80-100 > 100-120 + 80y,

that is, y < 75.

(c) The bundle in year 2 is revealed preferred if

100-100 + 80-100 = 100-120 + 80y
and

100-120 + 100y > 100-100 + 100-100,

that is, y > 80.

(d) For any value of y, we have sufficient information to justify exactly one

of (a), (b), and (c).

(e) We shall prove that if y < 75, then good 1 is an inferior good. So

suppose that y < 75. Then
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100-120 + 100y = 100-100 + 100-100
and

100-100 + 80-100 > 100:120 + 80y.
Hence the real wealth decreases from year 1 to 2. Also the relative price of
good 1 increases. But the demand for good 2, y, decreases because y < 75 <
100. This means that the wealth effect on good 1 must be negative. Hence it

is an inferior good.

(f) We shall prove that if 80 < y < 100, then good 2 is an inferior good. So
suppose that 80 < y < 100. Then

100-100 + 80-100 = 100120 + B8Oy
and

100-120 + 100y > 100-100 + 100-100.
Hence the real wealth increases from year 1 to 2. Also the relative price of
good 2 decreases. But the demand for good 2, y, decreases because y < 100.
This means that the wealth effect on good 2 must be negative. Hence it is an

inferior good.

2.F.4 (a) If LQ < 1, then (po-xl)/(p()'xo) < 1 and hence Py'X; < Py Xq: Thus

the consumer has a revealed preference for Xy over X,.

(b) If PQ > 1, then (pl-xl)/(pl-xo) > 1 and hence P,'X, > P;"Xy Thus the

consumer has a revealed preference for X, OVer X.

(c) If P, = Apl and w, = ?\wl, and X, = X, then EQ = A. Hence, by taking A
larger or smaller than one, we can make E’Q larger or smaller than one. But

this obviously does not have any revealed preference relationship.
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2.F.5 We shall first prove the discrete version. By the homogeneity of

degree one with respect to wealth, it is enough to show that

(p’ - p)-(x(p’,1) - x(p,1)) = O for every p and p’. T
Since
x(p',1) = x(p,1) = g (x(pp" - x(p, 1)) = x(p,1)
+ (x(p, —m) - x(p,1)),
it is sufficient to show that
(p’ - p)-(x(p’,p’ - x(p,1)) - x(p,1)) = O,
and
p’ - p)'(x(p,m) - x(p,1)) = 0.
For the first inequality, note that
(p’ - p)-(x(p’,p’ - x(p,1)) - x(p,1)) = - p-x(p’,p’-x(p,l)‘) + 1.
If x(p’,p’*x(p,1)) = x(p,1), then the value is equal to zero. If
x(p’,p’-x(p,1)) # x(p,1), then the weak axiom implies that p-x(p’,p’ - x(p,1)) >
1. Hence the above value is negative.
<
As for the second inequality,
(0" - p) Gelp, =y ) - x(p,1)
= p'-x(p,m) - p’-x(p,1) - p'_x}.p:ﬁ + 1.
=2 - (p’-x(p,) + ?T:p,l_))

1A

z-z%ywmmuphl )

x(p,1)

2-2=0.
The infinitesimal version goes as follows. By differentiating x(p,aw) =
ax(p,w) with respect to o and evaluating at a = 1, we obtain Dwx(p,w)w =

x(p,w). Hence
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S(p,w) = Dpx(p,w) + Dwx(p,w)x(p,w)T = Dpx(p,w) + (1/w)x(p,w)x(p,w)T.
Thus
T
Dpx(p,w) = S(p,w) - (I/w)x(p,w)x(p,w)".
By Proposition 2.F.2, S(p,w) is negative semidefinite. Moreover, since
v- Gelp,w)x(p,w) v = - (v-x(p,w))?, the matrix - (1/w)x(p,w)x(p,w) is also

negative semidefinite. Thus Dpx(p,w) is negative semidefinite.

2.F.6 Clearly the weak axiom implies that there exists w > O such that for
every p, p’, and w’, if p-x(p’,w’) = w and x(p’,w’) # x(p,w), then p’-x(p,w) >
w.

Conversely, suppose that such a w > O exists and that p-x(p’,w’) = w and
x(p’,w') # x(p,w). Let « = w'/w. Then x(p’,w’) = x(p’,aw) = x(oc_lp’,w) by
the homogeneity assumption, and p-x(oc-lp’,w) = w and x(oc-lp',w) # x(p,w). But

this implies that (oc—lp’)-x(p,w) > w, or, equivalently, p’-x(p,w) > aw = w’.

Thus the weak axiom holds.

2.F.7 By Propositions 2.E.2 and 2.E.3,
p-Slp,w) = p-Dpx(p,w) + p-DWx(p,w)x(p,w)T = p-Dpx(p,w) + x(p,w)T =0
By Proposition 2.E.1 and Walras’ law,

S(p,wlp = Dpx(p,w)p + Dwx(p,w)x(p,w)Tp = Dpx(p,W)p + Dwx(p,w)w = 0.

e - i

e

S —

s

- . Py
2.F.8 Sek(p,W) = Wsek(p,w)
Py axe Py 8x
xe(p,w) apk (p,w) + xe(p,w) aw (p,w)xk(p,w)
dx p,.x, (p,w)
_ w 4 ) k™ k
=Pt T aw PV T e

= eek(p,w) + eew(p,w)bk(p,w).
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2.F.9 (a) Since xTATx = (xTAx)T = xTAx, a matrix A is negative definite if
and only if xTAx + xTATx < O for every x € IRn\{O). Since xTAx + xTATx =
xT(A + AT)x, this is equivalent to the negative definiteness of A + AT. Thus
A is negative definite if and only if so is A + AT. The case of negative
definiteness can be proved similarly.

The following examples shows that the determinant condition is not

sufficient for the nonsymmetric case. Let A = [ _31 _01 ], then A11 = -1

_ -1 0 1] _ . .
and A22 = 1. But (1, 1)[ 3 - ][ 1 ] = 1. Hence A is not negative

semidefinite.

(b) Let S(p,w) be a substitution matrix. By Proposition 2.F.3, Slp,wl)p = O
and hence slz(p,w) = (- pl/pz)su(p,w). Also p-S(p,w) = O and hence s21(p,w)

- (- = (nZ /02 -
= ( pl/pz)su(p,w). Thus szz(p,w) = (pl/pz)su(p,w). Thus, for every v =

2 2,2, 2
* . = -
(*) v-S(p,wlv su(p,W)(v1 (Zpl/pz)vlv2 + (pl/pz)vz) <

= 2

= su(p,w)(vl (pl/pz)vz) .
Now, suppose that S(p,w) is negative semidefinite and of rank one. According
to (*), the negative semidefiniteness implies that su(p,w) = 0. Being of

rank one implies that su(p,w) # 0. Hence su(p,w) < 0. Thus s w) < 0.

2P
Conversely, let su(p,w) < 0, then, by (*), v-S(p,w)v = O for every v.

2.F.10 (a) If p = (1,1,1) and w = 1, then, by a straightforward calculation,

we obtain
-1 1 0
S(p,w) = (1/3)] 0 -1 1
1 o -1
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Hence S(p,w) is not symmetric. Note that
2

-1 1 v
1 2 2 _ _ 2
(vl, vz)[ 0o -1 ][vz] = - FVV, m Y, = (v1 v2/2) 3v2/4.

Hence [ _01 ] is negative definite. Thus, by Proposition 2.F.3 and

-1

Theorem M.D.4(iii), S(p,w) is negative semidefinite.

(b) Let p = (1,1,e) and w = 1. Let S(p,w) be the 2 x 2 submatrix of S(p,w)
obtained by deleting the last row and column. By a straightforward

calculation, we obtain

g(p,w)=(2+e)_2[_2—€ 1+28].

0 - 3¢
Thus,
1 2 1 -2
(1, 4, O)s(p,w)| 4 | = (1, 4)S(p,w)[ 4 ] =(2 +¢€) (2 - 41e) > O,
0

if € > 0 is sufficiently small. Then S(p,w) is not negative semidefinite and

hence the demand function in Exercise 2.E.l does not satisfy the Weak Axiom.

2.F.11 By Proposition 2.F.3, S(p,w)p = O and hence slz(p,w) =
(- pl/pz)su(p,w). Also p-S{p,w) = O and hence SZI(p’W) = (- pl/pz)su(p,w).
(We saw this in the answer for Exercise 2.F.9 as well.) Thus slz(p,w) =

521(p,w).

2.F.12 By applying Proposition 1.D.1 to the Walrasian choice structure, we
know that x(p,w) sétisf ies the weak axiom in the sense of Definition 1.C.1. By
Exercise 2.F.1, this implies that x(p,w) satisfies the weak axiom in the sense

of Definition 2.F.1l.
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2.F.13 [First printing errata: In the last part of condition (*) of (b), the

inequality p-x > w should be p’-x > w’. Also, in the last part of (c), the

e
relation x' € x(p,w) should be x’ ¢ x(p,w).]
(a) We say that a Walrasian demand correspondence satisfies the weak axiom if
the following condition is satisfied: For any (p,w) and (p’,w’), if x €
x(p,w), x’ € x(p’,w’), p'*x = w’, and p'x’ = w, then X’ € x(p,w). Or
equivalently, for any (p,w) and (p’,w’), if x € x(p,w), X’ € x(p’,w’), p-X’ =
w, and x’ ¢ x(p,w), then p’-x > w’.
(b) If x € x(p,w), X’ € x(p’,w’), and p-x’ < w, then x’ ¢ x(p,w) by Walras’
law. Thus p’-x > w’.
(c) If x € x(p,w), x’ € x(p’,w’), and p’*x = w’, then (p’ - p)- (X’ - x) = w -
p'x’. If, furthermore, x’ € x(p,w), then Walras' law implies that p:-x’ = w.
Hence (p’ - p)-(x’ - x) = 0. If, on the contrary, x’ ¢ x(p,w), then the
generalized weak axiom implies that p:x’ > w. Hence (p’ - p)-(x’ - x) < O. <

(d) It can be shown in the same way as in the small-type discussion of the
proof of Proposition 2.F.1 that, in order to verify the assertion, it is
sufficient to show that the generalized weak axiom holds for all compensated
price changes. So suppose that x € x(p,w), x’ € x(p’,w’), p’*x = w’, and p-x’

= w. Then (p’ - p):(x’ - x) = w - p'x’ 2 0. Hence, by the generalized

compensated law of Demand, we must have (p’ - p):(x’ - x) = 0 and x’ € x(p,w).

2F.14 Letp> 0, w=0, and a > 0. Since p-x(p,w) = w and (ap)-x(ap,aw) =

aw, we have ap-x(p,w) = aow and p-x(ap,aw) = w. The weak axiom now implies
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that x{p,w) = x{ap,aw).

2.F.15 Since axe(p,w)/aw = 0 for both £ = 1,2, we have sek(p,w) =
axll(p,w)/apk for both £ = 1,2 and k = 1,2. Hence, let S(p,w) be the 2 x 2
submatrix of S(p,w) obtained by deleting the last row and column, then S(p,w)

= [ _01 _1 1 ] This matrix is negative definite because

-1 Vo 1 12 2

(We saw this in the answer to Exercise 2.F.10(a).) Hence, by Theorem

-1 1 \
1|2 2 _ 2 .2
(vl, vz)[ 0 ][ ] = -V, + VvV v, = (vl v2/2) 3v2/4.

M.D.4(iii), v-S(p,w)v < O for all v not proportional to p. Since S(p,w) is

not symmetric, S(p,w) is not symmetric either.

2.F.16 (a) The homogeneity can be checked as follows:
xl(ocp,ocw) = ocpz/ocp3 = p2/p3 = xl(p,w),

xz(ocp,ocw) = - ocpl/ocp3 = - pl/p3 = xz(p,w),

x3(ocp,aw) ocw/ocp3 = w/p3 = x3(p,w).

As for Walras' law,

p,x,(p,w) + pyx,(p,w) + P3X4(p,w) = (p;p, - PP * PsW)/py = W.

(b) Let p = (1,2,1), w = 1, p’ = (L1,1), and w’ = 2, then x(p,w) =
(2, - 1, 1) and x(p’,w’) = (1, - 1, 2). Thus p’-x(p,w) =2 = w’ and

p-x(p’,w') =1 = w. Hence the Weak Axiom is violated.

(c) Denote by Dx(p,w) the 2 x 2 submatrix of the Jacobian matrix Dx(p,w)
obtained by deleting the last row and column, then
9 -1 1
Dx(p,w) = (1/p3)[ 0o -1 ]

Let S(p,w) be the 2 x 2 submatrix of S(p,w) obtained by deleting the last row



-1

and column, then S(p,w) = Dx(p,w)} = (1/p3)[ 0

_11 ], because 6x1(p,w)/aw =

-

axz(p,w)/aw = 0. Note that v-S(p,w)v = O for every v € IRZ. Now let v € [R3.

Note that v = (v - (v3/p3)p) + (v3/p3)p and the third coordinate of v -

(v3/p3)p is equal to zero. So denote its first two coordinates by v € IRZ.

Then, by Proposition 2.F.3, v-S(p,w)v = v-é(p,w);' = 0.
2.F.17 (a) Yes. In fact, xk(ap,aw) = aw/(zeozpz) = w/(zepz) = xk(p,w).
(b) Yes. In fact, p-x(p,w) = kakxk(p,w) = kakW/(zlpz) = w.

(c) Suppose that p’-x(p,w) = w’ and p-x(p’,w’) = w. The first inequality

implies that (ZEPE)W/(ZPPZ) = w’, that is, w/(Zzpz) = W’/(Zzpé)‘ The second
inequality implies similarly that (Zepe)w’/():epk) s w, that is, w’/(zepé) =
w/(Zepz). Therefore W/(ZZPE) = w’/(Zepé). Hence x(p,w) = x(b’,w’). Thus the

weak axiom holds.

(d) By calculation, we obtain

1 .1
= (- 21 :
Dpx(p,w) = ( w/(Zepe)) : - 1
I ... 1
1
D, x(p.w) = (I/Ep,)| | = x(p,w).
1

Hence S(p,w) = 0. It is symmetric, negative semidefinite, but not negative

definite.

2-13



e

CHAPTER 3

3.B.1 (a) Assume that > is strongly monotone and x > y. Then x = y and x #

y. Hence x » y. Thus > is monotone.

(b) Assume that > is monotone, X € X, and € > 0. Let e = (1,...,1) € [RL and

y = x + (e/VL)e. Then lly - xll = ¢ and y » x. Thus » is locally nonsatiated.

3.B.2 Suppose that x > y. Define € = Min (x1 S Vo X - yL) > 0, then,
for every z € X, if lly - zll < g, then x > z. By the local nonsatiation,
there exists z* € X such that lly - z*Il < ¢ and z* » y. By x > z* and the
weak monotonicity, x > z*. By Proposition 1.B.1(iii) (which is implied by the

transitivity), x » y. Thus > is monotone.

3.B.3 Following is an example of a convex, locally nonsatiated preference

relation that is not monotone in IRE. For example, x >> y but y » x.

Figure 3.B.3
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3.C.1 Let > be a lexicographic ordering. To prove the completeness, suppose

that we do not have x > y. Then "yl =z x " and "x1 # yyor y, > xz". Hence

1

either "y1 > xl" or “y1 = X, and Y, > xz". Thus y > x.

To prove the transitivity, suppose that x > y and y » z. Then X, = A

and Y = z;. Hence X z 2. If X > 2

¥y =2 Thus X, = Y, and Yy = 22. Hence X, z z,. Thus x > z.

then x » z. If xl = zl, then x1 =

To show that the strong monotonicity, suppose that x =z y and y # x. This

implies either that x. >y, and x, 2z y,, or that x =y and x, >y . In
1 2 1 2 2

1 2 1

either case x > y.
To show the strict convexity, suppose that y » X, z > X, y # 2z, and a €
(0,1). Without loss of generality, assume that x # y. By the definition of

the lexicographic ordering, we have either "y1 > x." or "y1 = x__ and Y, > x

i 1 2"

On the other hand, since z » x, we have either "z1 > xl" or "z1 =X and X, z

¥y

Hence, we have either "ocy1 + (1 - oc)z1 > X" or "ocy1 + (1 - oc)z1 =X

1

andocy2+(l—oc)z > x,." Thus ay + (I - a)z > X.

2 2
3.C.2 Take a sequence of pairs (" yn)):=1 such that x" > yn for all n, x" =
X, and yn » y. Then ux™ = u(yn) for all n, and the continuity of u(-)

implies that u(x) = u(y). Hence x > y. Thus » is continuous.

3.C.3 One way to prove the assertion is to assume that > is monotone and
notice that the proof acfually make use only of the closedness of upper and
lower contour sets. Then the proposition is applicable to », implying that it
has a continuous utility function. Thus, by Exercise 3.C.2, > is continuous.
A more direct proof (without assuming monotonicity or using a utility

function) goes as follows. Suppose that there exist two sequences (xn) and
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(yn) in X such that x" > yn for every n, "5 x e X, yn >y € X and y » X.
Since {z: y > z} is open, there exists a positive integer N1 such that y » x"

for every n > Nl' Since {z: z » X} is open there exists a positive integer N2

such that yrl > X for every n > N Conceivably, there are two cases on the

o
n
sequence {y }:

Case 1: There exists a positive integer N3 such that yn >y for every n > N

k(n)) such that y > yk(n) for every n.

3
Case 2: There exists a subsequence (y

If Case 1 applies, then, by Proposition 1.B.1(iii), we have yn > x" for every

n > Max (NI,N3). This is a contradiction. If Case 2 applies, then there

k(m)

exists a positive integer m such that k(m} > N Since {z: z > ¥y }is

such that yn > yk(m; for every n >

o

open, there exists a positive integer N

4
N4. By X" > yn and Proposition 1.B.1(iii), x> yk(m) for every n > N4.
Since {z: z » yk(m)) is closed, x > yk(m). But, since k(m) > NZ’ this is a

contradiction.

3.C.4 We provide two examples. The first one is simpler, but the second one

satisfies monotonicity, which the first does not.

Example 1. Let X = R, and define u(-): R, >R by letting u(x) = 0 for x < 1,
u(x) =1 for x > 1, and u(l) be any number in [0,1). Denote by > the
preference relation represented by u(-). We shall now prove that > is not
continuous. In fact, if u(l) > O, then consider a sequence M with X" =1 -
1/n for every n. Although x" ~ 0 for every n and x> 1, we have 1 » 0. If
u(1) < 1, then consider a a sequence {x"} with x® =1+ 1/n for every n
Although x" ~ 2 for every n and " o 1, we have 2 » 1. Note that if u(x) = 0,

then all lower contour sets are closed. If u(l) = 1, then all upper contour

sets are closed.
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Example 2. Take X = lRf and define a utility function u(-): IRE > R by the
following rule:
Case 1. If X X, = 2 and x # (1,1), then u(x) = X+ X,
Case 2. If min(xl,xz) z 1 and x # (1,1), then u(x) = min{xl,xz) + 2.
Case 3. If X) + Xy > 2, min(xl,xz) <1, and X, > X, then
u(x) = 3 - (1 - xz)/(x1 - 1).
Case 4. If X+ Xy > 2, min(xl,xz) < 1, and X, < Xy, then
u(x) =3 - (I - xl)/(x2 - 1).
Case 5. uf(l,1) € [2,3].

The indifference curves of the preference relation > represented by u(-) are

described in the following picture:

0 1 2 X1
Figure 3.C.4

It follows from this con;struction that u(-) is continuous at every x = (1,1).
The preference > is convex and monotone. But, whatever the choice of the
value of u(l,1) is, it cannot be continuous at (1,1). In fact,
(1-1n,1-1/n) > (,1) and (1 + I/n, 1 + 1/n) » (1,1) as n 5 », and

u(l - 1/n, 1 - 1/n) = 2 - 2/n » 2;



u(l+1/n, 1 +1/n) =1+ 1/n + 2> 3.
Hence, if 2 < u(L,1), then (2,0) » (1 - I/n, 1 - I/n) but (1,1) > (2,0); if
u(l,1) < 3, then (1 + 1/n, 1 + I/n) » (2,1) but (2,1) > (L. If u(l,1) = 3,
then all upper contour sets of > are closed; if u(l,1) = 2, then all lower

contour sets of > are closed.

3.C.5 (a) Suppose first that u(-) is homogeneous of degree one and let « = O,
X € IR]:, y € IRI;, and x ~ y. Then u(x) = uly) and hence au(x) = au(y). By the
homogeneity, u(ax) = u(ay). Thus ax ~ ay.

Suppose conversely that > is homothetic. We shall prove that the utility
function constructed in the proof of Proposition 3.C.1 is homogeneous of
degree one. Let x € R]; and o > O, then u(x)e ~ x and ulax)e ~ ax. Since » is

homothetic, au(x)e ~ ax. By the transitivity of ~ (Proposition 1.B.1(ii)),

ulax)e ~ au(x)e. Thus ulax) = au(x).

(b) Suppose first that > is represented by a utility function of the form u(x)

= X, + ¢(x2,...,x ). LetaeR x e IRI;', y € IR];‘, and x ~ y. Then u{x) = uly)

1 L

and hence u(x) + a = u(y) + a. By the functional form,

ulx) + «

(o + xl) + ¢(x2,...,xL)

u(x + ael),

uly) + o« = (ax + yl) + ¢(y2,..‘.,yL) = uly + ael),

where e = (1,0,...,0) € IR[;. Hence u(x + ael) = uly + ael), or X + ae, ~y +

ae,.
Suppose conversely that > is quasilinear with respect to the first

commodity. The idea of the proof of this direction is the same as in (a) or

Proposition 3.C.1, in that we reduce comparison of commodity bundles on a line

by fining out indifferent bundles and then assigning utility levels along the

line. But this proof turns out to exhibit more intricacies, partly because it



depends crucially on the connectedness of IRI_:_I, which appears in X = (- o, «)
X IRI_:—I. (Connectedness was mentioned in the first small-type discussion in
the proof of Proposition 3.C.1.) The proof will be done in a series of steps.
First, we show that comparison of bundles can be reduced to a line parallel to
e Then we show that the quasilinearity of > implies the given functional
form.

Let » be a quasilinear preference and a utility function ul(+) represent
>. The existence of such a u(-) is guaranteed by Proposition 3.C.1, but, of
course, it need not be of the quasilinear form. For each ;( € IRI;-l, define

I(x) = {u(xl,x) € R: x, € R}, then I(x) is a nonempty open interval, by the

1
continuity and the strong monotonicity of > along e
Step 1: For every ; € IRI_:_1 and ; € IRI;_I, if I(;:) # I(;'), then I(;() n I(;')

= 2.

Proof: Suppose that I(;() # 1(;7), Without loss of generality, we can assume
that there exists u € I(;() such that u ¢ I(;'). Then either u = sup I(;') or
u =< inf I(;f). Suppose that u = supI(;'). (The other case can be treated
similarly.) Then let x*i‘ € R satisfy u = a(x*i‘,;), then, for every y, € R,
(x’f,;c) > (yl,;). In particular, for every X, € R and y, € R, (x*i‘,;() >

(y1 - Xt x’f, ;). By the quasilinearity, this implies that (xl,;() >

(y,.%). Thus Glx %) > ily ,y). Hence I(x) n I(y) = o.

For each x € lRI;_l, define E(x) = {y € [R]_:-I: I(x) = I(y).
Step 2: For every X € IRI:-I, E(x) is open in IRE-I.
Proof: Let x € IR‘_:_I, X, € R, and u = ﬂ(xl,x) € I(x). Let £ > O satisfy

(u~-¢€, u+e)cllx). Since u(-) is continuous, there exists 8 > O such that

if y € IRI_;-1 and Hx - yll < &, then Ia(xl,x) - E(xl,y)l < £. Hence



I(::c) n 1(3;) >u-g u+e)n I(;r) * 2.

Thus, by Step 1, I(x) = I{y), or y € E(x). Hence {y € [R]:_I: Ix - yll < &)
¢ E(x). Thus E(x) is open.
Step 3: For every X € [RI_:_I, E(x) = IRI_:-I.

~ L-1 - L-1

Proof: It is sufficient to show that for every x € IR+_ and y € lR+ , we
have E(x) = E(y). Suppose not, then there exist x € IRI_;_1 and y € IRI_;_1 such

that E(x) # E(y), then the complement lRI;-l\E(x) is nonempty. By Step I,

[RL_l L-1

+ . \E(x). By

\E(;:) is equal to the union of those E(;') for which ;' € R
Step 2, this implies that IR]_:-I\E(;) is open. Hence we have obtained a
partition (E(;),IRI;-I\E(;:)) of IRI_:_I, both of whose elements are nonempty and
open. This contradicts the connectedness of IRE_“-I. Hence E(;) = E(;') for

every x € [RI_"_'-1 and y € RI_:-I.

By Step 3, I{x) = I{0) for every x € IRI_:—I. Thus for every x € lRI_:_l , there

exists a unique a € R such that ae, ~ (0,x). Define .¢: IR‘_;_1 > R by gb(x)e1 ~

-~

(0,x) for every x € lRl_;—l.

Define u: X - R by u(x) = X+ ¢(x2,...,xL) for
every x € X.
Step 4: The function u(-) represents »-.
Proof: Suppose that x € X, y € X, and X > y. By the quasilinearity, this is
equivalent to (xl = Yp Xy xL) > (O,yz,...,yL). By the definition of
¢(-), this is equivalent to (xl =Y Kpeeens xL) > ¢(y2,...,yL)e1. Again by
the quasilinearity, this is equivalent to

(0,x2,..., XL) > (¢(y2,...,yL) *y - xl)el.
Again by the definition of ¢(-), this is equivalent to

¢(x2,..., xL)e1 > (¢(y2,...,yL) *y - xl)el.

Hence ¢(x2,..., xL) = ¢(y2,...,yL) ty T X that is, u(x) =z u(y).
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These properties of u(-) are cardinal, because they are not preserved

under some monotone transformation, such as f(u(x)) = u(x)3.

\ %
3.C.6 (a) For p = 1, we have u(x) = o, X, + anX,- Thus the indifference
curves are linear.
(b) Since every monotonic transformations of a utility function represents the
same preference, we shall consider
~ — — P P
u(x) = Inu(x) = (l/p)ln(oclx1 + azxz).
By L’Hopital’s rule,
lim u(x)
p-0
= 13 P p P P
= lim (oclxllnx1 + ctzlenxz)/(oclx1 + azxz)
p~0
= (ocllnx1 + oczlnxz)/(ct1 + az).
N @ o,
Since exp((ocl + ocz)u(x)) = X,'%,", we have obtained a Cobb-Douglas utility
{
function. “«

There is an alternative proof to this proposition: Since both the CES and
the Cobb-Douglas utility functions are continuously diff erentiable and
homothetic, it is sufficient to check the convergence of the marginal rate of
substitution at every point. The marginal rate of substitution at (xl,xz)

with respect to the CES utility function is equal to ale_l/azxg—l. The

marginal rate of substitution at (xl,xz) with respect to the Cobb-Douglas

g3 . . p-1 p-1
vutlhty function is equal to oclxl/oczxz. Note that o, X /cczx2 1

p-1 p-1
as p > 1. (In fact, o, X /cczx2

cclxl/oczx2 when p = 1.) The proof is thus completed.

Strictly speaking, there is a missing point in both proofs: We proved the

> a xl/oczx2

is well defined for every p and is equal to

convergence of preferences on the strictly positive orthant {x € RZ: x > 0},
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but we did not prove the convergence on the horizontal and vertical axes. In
fact, the convergence on the axes are obtained in such a way that all vectors
there tend to be indifferent. To be more specific, compare, for example, x =
(xl,O) and y = (yl,O) with x >y, > 0. According to the CES utility

function, x is preferred to y, regardless of the values of p. But, according
to the Cobb-Douglas utility function, x and y are indifferent. Futhermore,
the following is true: If x is in the strictly positive orthant and y is on an

axis, then x is preferred to y for every p sufficiently close to 0. To see

this, simply note that if x = (xl,O) with X, > 0 and y > 0, then alx’l) > @
and ocly’l) + oczyg > o + . The implication of this fact is that, as p > O,

every vector in the strictly positive orthant becomes preferred to all vectors
on the axes. That is, unconditional preference towards strictly positive

vectors tends to hold, as it is true for the Cobb-Douglas utility function.

(c) Suppose that x, = x,,. We want to show that

1 2
- 1i P p\\/p
X, = lim (nclx1 + azxz) .
pr-o
: P P P
Let p < 0. Since X z 0 and X, z 0, we have @, X = alxl + UpXo- Thus
1/p p p\l/p L.
@, Tx z (czlx1 + oczxz) . On the other hand, since X, = Xy
P P P p _ P
@ X X, S 00X X = (oc1 + ocz)xl.
P P\/p Vp
Hence (cclx1 + oczxz) = (oc1 + ocz) X, Therefore,
1/p P p\l/p 1/p
0(.1 x1 = (u,lx1 + oczxz) = (oc1 + ocz) xl.
Letting p » - o, we.obtain lim (alxll) + oczxg)l/p =X, ‘because lim all/pxl
pr-w p? -

. Vp, _
lim (cc1 + ocz) X, = X,
p-w

3.D.1 To check condition (i),

xl(kp,kw) = a(Aw)/(Apl) = ocw/p1 = xl(p,w),
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xz(?\p,lw) =(1 - oc)(?tw)/(?tpz) =(1 - oc)w/p2 = xz(p,w).
To check condition (ii),
plxl(p,w) + pzxz(p,w) = plozw/p1 + pz(l - oc)w/p2 = w.

Condition (iii) is obvious.

3.D.2 To check condition (i),

v{Ap,Aw)

alna + (1 - a)in(l - &) + InAw - ocln)\pl -1 - oc)ln?\p2

= alnae + (1 - «)In(l - «) + lnA + Inw

1

alnA - oclnp1 - {1l - a)lna - (1 - oc)lnp2
= alna + (1 - a)in(l - a) + lInw - oclnp1 - {1 - oc)lnp2
= v(p,w).
To check condition (ii),
avip,w)/8w = 1/w > 0O,
éiv(p,w)/apl = - oc/p1 <0,
av(p,w)/ap2 =-0 - oc)/p:Z < 0.
Condition (iv) follows the functional form of v(-).

In order to verify (iii), by property (i), it is sufficient to prove
that, for any v €e R and w > O, the set {p € IRI:+: v(p,w) = v} is convex. Since
the logarithmic function is concave, the set

{(pl,pz) € IRi_: - oclnp1 - (1 - oc)lnp2 = v)
is convex for every v € R. Since the other terms,
alne + (1 - a)in(l - ) + Inw,

do not depend on p, this implies that the set {p € IRI_;'+: v(p,w) = v} is convex.

3.D.3 (a) We shall prove that for every p € lRI;+, w0, az0, and x € IRI_:, if
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x = x(p,w), then ax = x(p,aw). Note first that p-(ax) = aw, that is, ax is
affordable at (p,aw). Let y € [RI; and p'y = aw. Then p-(a—ly) = w. Hence
u(oc_ly) = u(x). Thus, by the homogeneity, ul(y) = u(ax). Hence ax = x(p,aw).

By this result,

vip,aw) = ulx(p,aw)) = ulox(p,w)) = aulx(p,w)) = avip,w).

Thus the indirect utility function is homogeneous of degree one in w.

Given the above results, we can write x(p,w) = wx(p,1) = wx(p) and v(p,w)
= wv(p,1l) = w;(p). Exercise 2.E.4 showed that the wealth expansion path
{3x(p,w): w > 0} is a ray going through x(p). The wealth elasticity of demand

€y 1S equal to 1.

{b) We first prove that for every p € IRI_;_'_, w 2z 0, and o« = 0, we have x(p,ocw)
ax(p,w). In fact, since v(-,-) is homogeneous of degree one in w, va(p,ocw) =
avpv(p,w) and va(p,ocw) = va(p,w). Thus, by Roy’s identity, x(p,aw) =
ax(p,w).

Now let x € IRI_:, X' € [RI:, u(x) = u(x’), and a« = 0. Since u(-) is strictly
quasiconcave, by the supporting hyperplane theorem (Theorem M.G.3), there
exist p € IRI;+, p € lRI_:+, w z 0, and w’ = O such that x = x(p,w) and X’ =
x(p’,w’). Then u(x) = v(p,w) and u(x’) = v(p’,w’). Hence v(p,w) = v(p’,w’).
Thus, by the homogeneity, v(p,aw) = v(p’,aw’). But as we saw above, x(p,aw) =

ax and x(p’,aw’) = ax’. Hence v(p,ow) = u(ax) and vip',aw’) = ulax’). Thus

ulax) = ulax’). Therefore u(x) is homogeneous of degree one.

3.D.4 (a) Let e = (1,0,...,0) € lRL. We shall prove that for every p € IRI_:+,

weR ae€R, and X € (- o, o} x IRI;—I, if x = x(p,w), then x + e, =

x(p, w + a). Note first that, by P, = 1, prlox + el) = aw, that is, x + ae,

is affordable at (p, w + ael). Let y € IRI_; and p'y = w + « Then p-(y - ocel)
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= w. Hence x > y - ae;. Thus, by the quasilinearity, x + ae > y. Hence

X + ae, = x(p, w + a).
Therefore, for every ¢ €.{2,...,L}, w € R, and w’ € R, xe(p,w) =
xe(p,w’). That is, the Walrasian demand functions for goods 2,...,L are

independent of wealth. As for good 1, we have 3x(p,w)/8w = 1 for every (p,w).

That is, any additional amount of money is spent on good 1.

(b) Define ¢(p) = u(x(p,0)). Since x(p,w) = x(p,0) + we, and the preference
relation can be represented by a utility function of the quasilinear form u(x)
=X + u(xz,...,xL) (Exercise 3.C.5), we have

vip,w) = u(x(p,w))

xl(p,W) + ﬂ(xz(p,w),...,xL(p,w)).

w + x,(p,0) + E(xz(p,o),...,xL(p,O))

w + ulx(p,0)) = w + ¢(p).

(c) The non-negativity constraint is binding if and only if pzxz(p,O) > w, {
Note that xz(p,O) = (‘n’)-l(pz), because P, = 1. Hence the constraint is

binding if and only if pz(n’)-l(pz) > w. If so, the Walrasian demand is given
by x(p,w) = (O,W/pz). Thus, as w changes, the consumption level of the first
good is unchanged and the consumption of the second good changes at rate l/p2

with w until the non-negativity constraint no longer binds.

3.D.5 (a) Since any monotone transformation of a utility function represents
the same preference relation, we may as well choose
u(x) = pu(x)p = p(x‘; + xg).

By the first-order condition of the UMP with u(-),

3-1 &-1

x(p,w) = (w/(pf + pg))(p1 Py

),
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where 8 = p/(p - 1) € (- », 1). Plug this into u(-), then we obtain

vip,w) = w/(p? + pg)l/a.

(b) To check the homogeneity of the demand function,

6-1)

x(ap,aw) (aw/((ocpl)6 + (ocpz)a)((ocpl)a-l.(ocpz)

- (o] 5-1 5-1
= (o /oc )(w/(p1 + pz))(p1 Py )

= x(p,w).
To check Walras’ law,
o-1 8-1
p-x(p,w) = (w/(p1 + pz))(p1 P, *P,P, ) = w.
The uniqueness is obvious.

To check the homogeneity of the indirect utility function,

viap,aw)
= aw/{(ap ) + (ap )6)1/6 ccw/oca'l/a(p6 + p(‘s)l/6 = w/( 5, pall/a
1 2 1 2 1 2
= v(p,w)

To check the monotonicity,

dv(p,w)/d8w = 1/(p? + pg)l/a 0,
6v(p,w)/_6pe = - wpi-l/(p? + pg)l/éﬂ < 0.

The continuity follows immediately from the derived functional form.

In order to prove the quasiconvexity, by property the homogeneity, it is
sufficient to prove that, for any v € R and w > 0O, the set {p € le: vip,w) =<
v} is convex. If 8 = O, then the utility function is a Cobb-Douglas one, and
the quasiconcavity was already established in Exercise 3.D.2. So we consider

two cases, & € (0,1) and 8 < 0. In either case, define f(p) = (p1 + pg)l/a.

If 8 € (0,1), then f(p)(s = p? + pg is a concave function. Hence {p € IRZ:

flp) = (f(p)és)l/6 = v} is convex for every v. Since v(p,w) = w/f(p), this

implies that {p € [Rz: v(p,w) = v} is convex for every v and w.
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If 8§ < 0, then f(p)cs = p? * P, is a convex function. Hence {p € |R2:
17f(p) = (f(p)a)l/(_a) = v} is convex for every v. Since v(p,w) = w/f(p), i
this implies that {p € [RZ: v(p,w) = v} is convex for every v and w.

(c) For the linear indifference curves, we have
(w/pl, 0) if p, < Py
x(p,w} =4{ (0, w/pz) if P, > Py
{(w/pl)(h, 1 -2a): ael0,1]) if P; = Pyi
vip,w) = max{w/pl,w/pz).
For the Leontief preference,
x,(p,w) = (w/(p,+ p,))(1,1);
vip,w) = w/(p1+ p2).

As for the limit argument with respect to p. First consider the case
with p<land p>1 Thend=p/lp-1>-wasp->1
Case 1. P < pZ'

. 3
Since p,/p; > 1, we have (p,/p;)” » 0. Thus ‘%
w/p
. é-1 3 3 . 1
lim p., "w/(p, + p.,) =lim = w/p,.
1 1 2 3 1
&>~ S>-w 1 + (pz/pl)
Since pl/p2 < 1, we have (pl/pz)6 > o. Thus
- w/p
1im p2twp® + pd) = lim 2 = 0.
2 1 2 3
8>-o - (pl/pz) + 1

Thus the CES Walrasian demands converge to the Walrasian demand of the linear
indifference curves. As for the indirect utility functions, we showed in the

8.1/8
2) > P, for P; = P, Hence the

answer to Exercise 3.C.6(c) that (p? +p
CES indirect utilities converge to the indirect utility of the linear
indifference curves.

Case 2. p1 > P,

Do the same argument as in the Case 1.
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Case 3. P; = P,

5-1 5-1
1 P2

-1

)=

In this case, (W/(p(f + Pg))(P ) = (w/(p?? pf))(p?—l,p

(W/Zpl)(l,l). This consumption bundle belongs to the set of the Walrasian

demands of the linear indifference curves when P, =P As for the indirect

>
utility functions, we showed in the answer to Exercise 3.C.6(c) that

1) 8,1/8
(p1 + pz) > P, for P, =P,

Let’s next consider the case p - - . Note that s = p/{p - 1) > 1 as p >
1. So just plug 8 = 1 into the CES Walrasian demand functions and the
indirect utility functions. We then get the Walrasian demand function and the

indirect utility function of the Leontief preference.

(d) From the calculation of the Walrasian demand functions in (a) we get

_ 3-1
xl(p,w)/xz(p,w) = (pl/pz) ,

_ 5-2
(xl(p,w)/xz(p,w))/(pl/pz) = (pl/pz) ,

8-2
d[xl(p,w)/xz(p,w)}/d[pl/pzl = (8 - l)(pl/pz)

Thus Elz(p,w) =- (8 ~-1) =1/(1 - p). Hence, Elz(p,w) = o for the linear,
Elz(p,w) = 0 for the Leontief, and Elz(p,w) = 1 for the Cobb-Douglas utility

functions.

1/(a+B+7y) _

L~ _ e _ B’ _ 7
3.D.6 (a) Define u(x) = u(x) (x1 bl) (x2 bz) (x3 b3) ,

with o’ = a/(c + B+ %), B =B/ + B + %), ¥’ =9/(a + B+ %). Then & + B’

1

=1 and E(-) represents the same preferences as u(-), because the
1/(a+B+y)

+ 7
function u > u is a monotone transformation. Thus we can assume

without loss of generality that ¢ + 8 + ¥ = 1.

(b) Use another monotone transformation of the given utility function,

Inu(x) = ocln(x1 - bl) + Bln(x2 - bz) + -a(ln(x:3 - b3).
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The first-order condition of the UMP yields the demand function
x(p,w) = (bl’bZ’bS) + (w - p-b)(oc/pl,B/pZ,ar/p:;),
where p*b = plb1 + p2b2 + p3b3. Plug this demand function to u(:), then we
obtain the indirect utility function
vipw) = (w = p-b)a/p)*(8/p)Pla/p ).

(c) To check the homogeneity of the demand function,

x(Ap,Aw) = (bl,bz,b3) + (Aw - Ap-b)(a/)\pl,B/Apz,'y/Apa)
= (bl’bz’bS) + (w - p-b)(oc/pl,B/pz,ar/p3) = x(p,w).

To check Walras law,

p-x(p,w) = p-b + (w - p-b)(p,a/p, + p,B/p, + P37/P5)
=p'b+(w-p-blla+B+7y)=w
The uniqueness is obvious.

To check the homogeneity of the indirect utility function,

v(Ap,Aw) = (Aw - Ap-b)(a/Apl)a(B/Apz)B(W/Ap3)7

= A BNy - pobiarp )X P

(w - p-b)asp)*(B/p,)Pa/p )7 = vip,w).
To check the monotonicity,

avip,w)/dw = (a/pl)a(B/pz)B(r/p3)7 >0,

6v(p,w)/ap1 vip,w)- (- oc/pl) <0,

av(p,w)/ap2 vip,w)- (- B/pz) <0,

é)v(p,w)/ap3

-1

vip,w)- (- 7/p3) < 0.
The continuity follows directly from the given functional form. In order to
prove the quasiconvexity, it is sufficient to prove that, for any v € R and w
> 0, the set {p € IR3: v(p,w) = v} is convex. Consider

Inv(p,w) = alna + BInB + yIny + In(w - p-b) -~ oclnp1 - {31np2 - wlnp3.

Since the logarithmic function is concave, the set
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pe—

s

{p e |R3: Infw - p-b) - odnpl - Blnp2 - 7;rlnp3 = v)
is convex for every v € R. Since the other terms, alnx + Bing + ¥iny, do not
depend on p, this implies that the set {p € |R3: Inv(p,w) = v} is convex.

Hence so is {p € IR3: vip,w) = v}

3.D.7 (a) Since pl-xO < w1 and xl # xo, the weak axiom implies po-xl > wo.

Thus x1 has to be on the bold line in the following figure.

0 2 4 8 X1
Figure 3.D.7(a)

In the following four question, we assume the given preference can be a

differentiable utility function u(-).

(b) If the preference is quasilinear with respect to the first good, then we
can take a utility function u(-) so that c‘iu(x)/ax1 = ] for every x (Exercise

3.C.5(b)). Hence the first-order condition implies au(xt)/ax; = p;/p'; for

each t = 0,1. Since pg/pcl) < pé/pi and u(-) is concave, xg > x;. Thus x1 has

to be on the bold line in the following figure.
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Y

0 2 4 8 10 X1
Figure 3.D.7(b)

(c) If the preference is quasilinear with respect to the second good, then
then we can take a utility function u(-) so that 61.t(x)/ax2 = 1 for every x
(Exercise 3.C.5(b)). Hence the first-order condition implies au(xt)/ax; =
t, t _ . 0,0 1
pl/p2 for each t = 0,1. Since pl/p2 > P
0 1

X, < X Thus xl has to be on the bold line in the f ollowing figure.

/pé and u(-) is concave, we must have

Y

0 2 4 8 X1
Figure 3.D.7(c)

(d) Since pl-x0 < w1 and the relative price of good 1 decreased, x; has to




o e g <

increase if good 1 is normal. If good 2 is normal, then the wealth effect
(positive) and the substitution effect (negative) go in opposite direction
which gives us no additional information about X, Thus x1 has to be on the

bold line in the following figure.

Figure 3.D.7(d)

(e) If the preference is homothetic, the the marginal rates of substitution at

all vectors on a ray are the same, and they becomes less steep as the ray

0
1

to be on the right side of the ray that goes through xo. Thus x1 has to be on

becomes flatter. By the first-order conditions and p /pg > pi/pé, x1 has

the bold line in the following figure.
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Figure 3.D.7(e)

3.D.8 By Proposition 3.D.3(i), v(ap,aw) = v(p,w) for all o > 0. By
differentiating this equality with respect to « and evaluating at a = 1, we

obtain va(p,w)-p + wav(p,w)/8w = 0. Thus wdv(p,w)/8w = - va(p,w)-p.

3.E.1 The EMP is equivalent to the following maximization problem:

Max - p'x s.t. u(x)=zuand x 2 0.
The Kuhn-Tucker condition (Theorem M.K.2) implies that the first-order
conditions are that there exists A > 0 and u € RI; such that p = AVu(x*) + u
and pu-x* = 0. That is, for some A > O, p = AVu(x*) and x*:(p - AVu(x*)) = O.

This is the same as that of the UMP.

3.E.2 To check the homogeneity of the expenditure function,

e(Ap,u) = o X1 - oz)c‘_l(hpl)o‘(?\pz)l_cC

_a(

u

1 - a)a-lhaﬂ_apapl—“u = e(p,u).

=« 1P2

To check the monotonicity,
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delp,u)/8u = o %1 - oc)a—lpapl-a > 0,
172
a-1 -1 1-o
Py Py

o o o -0
de(p,u)/8p, = o« (1 - @) p;p, > O.

l—a(

ae(p,u)/é’fp1 =« 1 - «a) > 0,

To check the concavity, it is easy to actually calculate D;zje(p,u) and then
apply the condition in Exercise 2.F.9 to show that Die(p,u) is negative

semidefinite. An alternative way is to only calculate

2 al_a(l _ a)apoc—zpl-a <o.

2
3 e(p,u)/c’ip1 = - 1 Py

Then note that the homogeneity implies that Die(p,u)p = 0. Hence we can apply
Theorem M.D.4(iii) to conclude that Di’e(p,u) is negative semidefinite. The

continuity follows from the functional form.
To check the homogeneity of the Hicksian demand function,
(

- l-a
AP, *P2
hl(AP:U) = -(l—_—a—)is'l— u= m u= hl(P,U)»

\
( (1 - @)Ap, 1* (1 - oc)p1
—wp. | YT | e,

P, P,

\ J
To check the no excess utility,

r o \1-o & (1 - o) o\ l-a
_ Py *'Py
U(h(p,ll)) = m— u T— u
1] 2

\

hZ(Ap,u)

«
} u = hz(p,u).

( 3 (1-o)oc-a(1-cx)

*Py a+(l-a) _ u

T - o] " -
7

\

The uniqueness is obvious.

3.E3 Let x € lRE: and u(x) = u. Define A = {x € IRI_;: p'x = p-x and u(x) = u)
Then A # @ by X € A. Furthermore, A is compact: The closedness follows from
that of {x € lRL: u(x) = u)} and of lRE; the boundedness follows from the
inclusion

Ac{xe IRL: 0= X, = p-i/pe for every £ = 1,...,L}.
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Now consider the truncated EMP:

Min p-x s.t. x € A.
Since p-x is a continuous function and A is a compact set, this problem has a
solution, denoted by x* € A. We shall show that this is also a solution to
the original EMP. Let x € IRI; and u{x) =z u. If x € A, then p-x = p-x* because
Xx* is a solution to the truncated EMP. If x ¢ A, then p‘x > prx and hence p-x

> p-x*. Thus x* is a solution of the original EMP.

3.E.4 Suppose first that » is convex and that x € h(p,u) and x’ € h(p,u).
Then p-x = p-x’ and u(x) = u, u(x’) 2 u. Let « € [0,1] and define x" = ax +
(1 - a)x’. Then px" = ap*x + (1 - a)p-xX’ = p-x = p-x’ and, by the convexity
of >, u(x") =z u. Thus x" € h(p,u).
Suppose next that ) is strictly convex and that x € h(p,u), x’ € h(p,u),
X # x’, and u(x) = u(x’) z u. By the argument above, x" = ax + (1 - «)x’ with
o € (0,1) satisfies p-x" = p-x = p-x’ and, by the strict convexity of », we ‘%
have x" > x’. Since > is continuous, Bx" > x' for any B € (0,1) close enough
to 1. But this implies that p-(Bx") < p-x and u(Bx") > u(x’) = u, which
contradicts the fact that x is a solution of the EMP. Hence h(p,u) must be a

singleton.

3.E.5 [First printing errata: The equality h(p,u) = h(p)u should be h(p,u) =
uﬂ'(p), because u is a sc¢alar and H(p) is a vector.] We shall first prove
that, for every p >> 0, u 2 0, @« 2 0, and x = 0, if x = h(p,u), then ax =
h(p,au). In fact, note that u(ax) = au(x) = au, that is, ax satisfies the
constraint of the EMP for au. Let y € IR]_: and u(y) =z au. Then u(oc_ly) = u,

Hence p-(oc—ly) z p-x. Thus p*y = p*(ax). Hence ax = h(p,au). Therefore
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h(p,u) is homogeneous of degree one in u.
By this result,
e(p,au) = p-h(p,au) = p-(ah(p,u)) = al(p-h(p,u)) = aelp,u).
Thus the expenditure function is homogeneous of degree one in u.
Now define Fz(p) = h(p,1) and e(p) = e(p,1), then h(p,u) = uh(p) and

e(p,u) = uelp).

3.E.6 Define 8 = p/(p - 1), then the expenditure function and the Hicksian
demand function are derived from the first-order conditions of the EMP and

they are as follows:

h(P»U) = U(pf + pg )(1"6)/5(p?—1,pg_1),

elp,u) = u(p‘f + pg y178,

To check the homogeneity of the expenditure function,

)6 8,1/8 _ 8-1/8 & 8,1/8

e(ap,u) = ul(ap,)” + (ap,) =« u(p, + p,) = ae(p,u).
1 2 _ 17 P2

To check the monotonicity,

5,1/8
2) >0,

de(p,u)/dp, = upi-l(p? + pg)l/(‘;_1 >

delp,u)/8u = (p? +p
0.

To check the concavity, it is a bit lengthy but easy to actually calculate
Dlz)e(p,u) and then apply the condition in Exercise 2.F.9 to show that Dlzje(p,u)

is negative semidefinite. An alternative way is to only calculate

2
1
ulé - l)p?_zfp? + p(;')l/a-1 + up?—l(p? + pg)l/a—z(l/a - 1)6p?-1

u(l - S)p?_z(p? + pg)l/a_z(p? - (p? + pg)) <0,

8%e(p,u)/8p

by 8 < 1. Then note that the homogeneity implies that Die(p,u)p = 0. Hence
we can apply Theorem M.D.4(iii) to conclude that Die(p,u) is negative

semidefinite. The continuity follows from the functional form.
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To check the homogeneity of the Hicksian demand function,

8,(1- 6)/6((ocp1)6—1,(o¢p2)5_1)

- a(6(1-6)/6)+(6-1)u(p? + Pg)(l_a)/a(pf—l.pg_l)

h(ap,u) = u((ocpl) + (ocpz) )

h(p,u).

To check no excess utility,

(1- 6)/6(p§6-1)p + péa—l)p)l/p.

Since (3 - 1)/8 = - 1/p, we obtain u(h(p,u)) = u. The uniqueness is obvious.

u(h(p,u)) = u(p1 + p2 )

3.E.7 In Exercise 3.C.5(b), we showed that every quasilinear preference with
respect to good 1 can be represented by a utility function of the form u(x) =
X, + E(xz,...,xL). Let e = (1,0,...,0) e (RL. We shall prove that for every
p >> 0 with P, = l, ueR, a€R, and x € (- o, ) x (Rl_:_l, if . x = h(p,u), then
X +oe = h(p, u + @). Note first that u(x + ocel) = u + a, that is, x + ae,
satisfies the constraint of the EMP for (p, u + «). Let y e [RI; and u(y) =z u +
a. Then uly - ael) z u. Hence p-(y - ocel) z p'x. Thus p'y2p-(x+ ael). 4
Hence x + ae, = hip, u + a).

Therefore, for every £ € {2,...,L}, u € R, and v’ € R, hz(p,u) =
he(p,u’). That is, the Hicksian demand functions for goods 2,...,L are

independent of utility levels. Thus, if we define h(p) h(p,0), then h(p,u)

= h(p) + ue,.

Since h(p, u + «) = h(p,u) + ae, we have e(p, u + &) = e(p,u) + a.

1,
Thus, if ‘we define E(p)'= e(p,0), then e(p,u) = E(p) + u.

3.E.8 We use the utility function u(x) = T él a). To prove (3.E.1),
elp,v(p,w)) = a %1 - a)*” lpT ; %1 - ayl” “plapg L) = w,
vip,e(p,u)) = a *a - oc)1 * lapg 1(oc_m(l - ) lpré %) = u.
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To prove (3.E.3),

a-]l o l1-a
1 - «) P,P, u)(oc/pl, {1 - a)/pz)

ap,, e (1 - oc)p1 \*
= B w——— u, —— u = h(pyu))

x(p,e(p,u) = (X

Y T
( 3 1-a _ o
(e, v(p,w) = a1 - T | [ 2 ey
* ’ 1 2 (1 - a)pl b apz
\ /

= w(oc/pl, (1 - a)/pz) = x(p,w).

3.E.9 First, we shall prove that Proposition 3.D.3 implies Proposition 3.E.2
via (3.E.1). Letp> 0, p">> 0,ueR u €R, and a = 0.
(i) Homogeneity of degree one in p: Let « > 0. Define w = e(p,u), then u =
v(p,w) by the second relation of (3.E.1). Hence

elap,u) = elap,v(p,w)) = elap,viap,aw)) = aw = ae(p,u),
where the second equality follows from the homogeneity of v(-,:) and the third
from the first relation of (3.E.1).
(ii) Monotonicity: Let u’ > u. Define w = e(p,u) and w’ = e(p,u’), then u =
vip,w) and u’ = v(p,w’). By the monotonicity of v(-,:) in w, we must have w’
> w, that is, e(p’,u) > e(p,u).

Next let p’ = p. Define w = e(p,u) and w’ = e(p’,u), then, by the second
relation of (3.E.1), u = v(p,w) = v(p’,w’). By the monotonicity of v(-,-), we
must have w’ = w, that is, e(p’,u) = e(p,u).

(iii) Concavity: Let « € [0,1). Define w = e(p,u) and w’ = e(p’,u), then u =
vip,w) = v(p’,w). Define p" = ap + (1 - o)p" and w" = aw + (1 - a)w’. Then,
by the quasiconvexity of v(-,-), v(p",w") = u. Hence, by the monotonicity of
v(+,+) in w and the second relation of (3.E.1), w" = e(p",u). that is,

elap + (1 - a)p’, u) =z aelp,u) + (1 - a)e(p’,u).



(iv) Continuity: It is sufficient to prove the following statement: For any
sequence ((pn,un))::=1 with (pn,un) - (p,u) and any w, if e(pn,un) s w for
every n, then e(p,u) = w; if e(pn,un) =z w for every n, then e(p,u) = w.
Suppose that e(pn,un) = w for every n. Then, by the monotonicity of v(-,-) in
w, and the second relation of (3.E.1), we have u" = v(pn,w) for every n. By
the continuity of v(-,-), u = v(p,w). By the second relation of (3.E.1) and

the monotonicity of v(-,-) in w, we must have e(p,u) = w. The same argument

can be applied for the case with e(pn,un) =z w for every n.

Let’s next prove that Proposition 3.E.2 implies Proposition 3.D.3 via
(3.E1). Letp>> 0,p >0, weR, W €R, and « = O.
(i) Homogeneity: Let a > 0. Define u = v(p,w). Then, by the first relation
of (3.E.1), e(p,u) = w. Hence

vlap,aw) = v(ap,ae(p,w)) = v(ap,elap,u)) = u = v(p,w),

where the second equality follows from the homogeneity of e(-,-) and the third
from the second relation of (3.E.1). %«(
(ii) Monotonicity: Let w’ > w. Define u = v(p,w) and u’ = v(p,w’), then
e(p,u) = w and e(p,v’) = w’. By the monotonicity of e(-,-) and w’ > w, we
must have u’ > u, that is, v(p,w’) > v(p,w).

Next, assume that p’ = p. Define u = v(p,w) and u’ = v(p’,w), then
e(p,u) = e(p’,u’) = w. By the monotonicity of e(:,+) and p’ = p, we must have

u’ = uy, that is, vip,w) = v(p’,w).

(iii) Quasiconvexity: Let « € [0,1]. Define u = v(p,w) and v’ = v(p’,w’).
Then e(p,u) = w and e(p,u’) = w’. Without loss of generality, assume that u’
z u. Define p" = ap + (1 - a)p’ and w = aw + (1 - a)w’. Then

e(p",u’)

z ae(p,u’) + (1 - a)e(p’,u’)
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i}

ae(p,u) + (1 - ale(p’,u’)

aw + (1 - )W’ = w",

where the first inequality follows from the concavity of e(-,u), the second

from the monotonicity of e(-,+) in u and v’ = u. We must thus have v(p",w")

1A

u.

(iv) Continuity: It is sufficient to prove the following statement. For any

IA

sequence ((pn,wn)):___1 with (pn,wn) > (p,w) and any u, if v(pn,wn) u for

u.

v

every n, then v(p,w) = u; if v(pn,wn) = u for every n, then v(p,w)
Suppose that v(pn,wn) < u for every n. Then, by the monotonicity of e(-,-) in
u and the first relation of (3.E.1), we have wh = e(pn,u) for every n. By the
continuity of e(:,+), w = e(p,u). We must thus have v(p,w) = u. The same

argument can be applied for the case with v(pn,wn) z u for every n.

An alternative, simpler way to show the equivalence on the concavity/
quasiconvexity and the continuity uses what is sometimes called the
epigraph.

For the concavity/quasiconvexity, the concavity of e(-,u) is equivalent
to the convexity of the set {(p,w): e(p,u) = w} and the quasi-convexity of
v(-) is equivalent to the convexity of the set {(p,w): v(p,w) = u} for every
u. But (3.E.1) and the monotonicity imply that v(p,w) = u if and only if
e(p,u) = w. Hence the two sets coincide and the quasiconvexity of v(+) is
equivalent to the concavity of e(-,u).

As for the continuity, the function e(-) is continuous if and only if
both {(p,w,u): e(p,u) = w} and {(p,w,u): e(p,u) = w} are closed sets. The
function v(-) is continuous if and only if both {(p,w,u): v(p,w) = u} and
{(p,w,u): v(p,w) = u} are closed sets. But, again by (3.E.1) and the

monotonicity,
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v

{lp,w,u): v(p,w) = u);

{(p,w,u): e(p,u} = w}

v
]

1A

{(p,w,u): elp,u) = w} = {(p,w,u): vip,w) = u).

Hence the continuity of e(-) is equivalent to that of v(-).

3.E.10 [Eirst printing errata: Proposition 3.E.4 should be Proposition

3.E.3.]
Let’s first prove that Proposition 3.D.2 implies Proposition 3.E.3 via the
relations of (3.E.1) and (3.E.4). Let p € RI;+ and u € R.
(i) Homogeneity: Let o > 0. Define w = e(p,u), then u = v(p,w) by the second
relation of (3.E.1). Hence

hlap,u) = x(ap,e(ap,u)) = x(ap,ae(p,u)) = x(p,e(p,u)) = h(p,u),
where the first equality follows from by the first relation of (3.E.4), the
second from the homogeneity of e(-,u), the third from the homogeneity of
x(+,-), and the last from by the first relation of (3.E.4).
(ii) No excess utility: Let (p,u) be given and x € h(p,u). Then x €
x(p,e(p,u)) by the first relation of (3.E.4). Thus u(x) = v(p,e(p,u)) = u by
the second relation of (3.E.1).

(iii) Convexity/Uniqueness: Obvious.

Let's first prove that Proposition 3.E.3 implies Proposition 3.D.2. via
the relations of (3.E.1) and (3.E.4). Let p € IRI_:_'_ and w € R.
(i) Homogeneity: Let « > O and define w = e(p,u), then v(p,w) = u. Hence
x(ap,aw) = h(ap,viap,aw)) = h(ocp,v(p,w)) = h(p,v(p,w)) = x(p,w),
where the first equality follows from the second relation of (3.E.4), the
second from the homogeneity of v(-), the third from the homogeneity of h(-) in
p, and the last from the first relation of (3.E.4).

(ii) Walras’ law: Let (p,w) be given and x € x(p,w). Then x € h(p,v(p,w)) by
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the second relation of (3.E.4). Thus p-x = e(p,v(p,w)) = w by the definition
of the Hicksian demand and the first relation of (3.E.1).

(iii) Convexity/Uniqueness: Obvious.

3.F.1 Denote by A the intersection of the half spaces that includes K, then
clearly A > K. To show the inverse inclusion, let x ¢ K, then, since K is a
closed convex set, the separating hyperplane theorem (Theorem M.G.2) implies
that there exists a p # 0 and c, such that p~)-< < c < p'x for every x € K.
Then (z € IRI": p'z = c} is a half space that includes K but does not contain x.

Hence x ¢ A. Thus K > A.

3.F.2 If K is not a convex set, then there exists x € K and y € K such that
(172)x + (1/2)y ¢ K, as depicted in the figure below. The intersection of all
the half-spaces containing K (which also means containing X and y) will
contain the point (1/2)x + (1/2)y, since half-spaces are convex and the
intersection of convex sets is convex. Therefore, the point (1/2)x + (172)y

cannot be separated from K.

(1/2)x + (1/2)y

Figure 3.F.2
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As for the second statement, if K is not convex, then there exist x € K,

y € K, and « € [0,1] such that ax + (1 - a)y ¢ K. Since every half space that

W
“
includes K also contains ax + (1 - a)y, it cannot be separated from K.
3.G.1 Since the identity v(p,e(p,u)) = u holds for all p, differentiation
with respect to p yields
va(p,e(p,u)) + (6v(p,e(p,u))/6w)Vpe(p,u) = Q.
By Roy’'s identity,
(8v(p,e(p,u))/aw)(- x(p,e(p,u)) + Vpe(p,u)) = 0.
By av(p,e(p,u))/8w > O and h(p,u) = x(p,e(p,u)), we obtain h(p,u) = Vpe(p,u).
3.G.2 From Examples 3.D.1 and 3.E.], for the utility function. u(x) = xTxé-a,
we obtain
oc/p1
D_x(p,w) = {1 - a)/p, |
- .xw/pf 0 “w
D _x(p,w) = 2 |
P 0 - (1 - adw/p
2
o/p
o 1-o 1
Ve(p,u) = u(pl/oc) (pz/(l - a)) l (1 - a)ép ],
D _e(p,u) = D_h(p,u)
por prP ’
o l-a | - all - oc)/p1 all - oc)/plp2
= u(p,/a) (p,/(1 - a))
1 2 a(l ~ a)/p.p, - «ll - a)/pz
172 2
The indirect utility function for u(x) = xTxé—“ is

vip,w) = (p /) (p,/(1 - a))! ™.
(Note here that the indirect utility function obtained in Example 3.D.2 is for
the utility function u(x) = oclnx1 + (1 - oc)lnxz.) Thus
VpV(p,W) = v(p,w)(- oc/pl, - (1 - oc)/pz),
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va(p,w) = v(p,w)/w.
Hence:
h(p,u) = Vpe(p,u).
Die(p,u) = Dph(p,u), which is negative semidefinite and symmetric,
Dph(p,u)p = 0,
Dph(p,u) = Dpx(p,w) + Dwx(p,w)x(p,w)T.

xl(p,w) = - (av(p,u)/ape)/(av(p,u)/aw).

3.G.3 (a) Suppose that « + B + ¥ = 1. Note that
Inu(x) = ozln(xl - bl) + Bln(x2 - bz) + 71n(x3 - b3).
By the first-order condition of the EMP,
= o B 4
hip,u) = (bl’bZ’b3) + u(pl/oc) (pz/B) (p3/7) (oc/pl,B/pZ,'af/P3)-
Plug this into p-h(p,u), then we obtain the expenditure function
e(p,u) = pb + u(pl/oc)a(pz/B)B(p3/7)7,
where p*b = plb1 + pzb2 + p3b3.
To check the homogeneity of the expenditure function,
= o B 7
e(Ap,u) = Ap-b + u(?\pl/oc) (Apz/B) (?\ps/w)
= Ap'b + Au(pl/a)a(pz/B)B(p:;/ar)w = Ael(p,u).
To check the monotonicity, assume b1 =z 0, b2 z 0, and b3 = 0. Then

Belp,u)/du = (pl/oz)a(pz/B)B(p3/7)7 >0,

ae(p,u)/apl = b1 + u(pl/oc)a(pz/B)B(p3/7)7(a/pl) >0,

selp,u)/op, = b, + u(plxa)“(pzxs)B(pa/zr)”us/pz) >0,

]

de(p,u)/8p., = b., + ulp,/)*(p,/B(p./7)(a/p.) > ©.
3 3 1 2 3 3

To check the concavity, we can show that Dlz)e(p,u) is equal to

3-31



2
-al(l - oc)/p1 ocB/plp2 067/P1133
ulp,/0)%p, /88 0?|  apspp - B(1 - B)/p° BY/p,p
1 2 3 172 2 2°3
2
@y/p Py BY/P,P4 - (1 - 7)/B,
and then apply the condition in Exercise 2.F.9 to show that Die(p,u) is
negative semidefinite. An alternative way is to only calculate the 2 x 2
submatrix obtained from D}z)e(p,u) by deleting the last row and the last column
and apply the condition in Exercise 2.F.9 to show that it is negative
definite. Then note that the homogeneity implies that Dlz)e(p,u)p = 0. Hence
we can apply Theorem M.D.4(iii) to conclude that Drz)e(p,u) is negative
semidefinite. The continuity follows from the functional form.
To check the homogeneity of the Hicksian demand function,

ROP,W) = (b,b,,b5) + ulrp /@) (Ap,/BIP(Ap /)% (a/Ap B/ AP, 5/2p)

l)bz’
- a+B+y-1 o B s
= (bl’bZ’bB) + uA (pl/oc) (pz/B) (p3/7) (a/pl,B/pz,‘af/P3)

h(p,u).

To check no excess utility,
ulh(p,u)) = u(plxa)“(pzxs)B(p3/7)7(a/pl)“(B/pz)ﬁ(y/p3)7’ =

The uniqueness is obvious.

(b) We calculated the derivatives Be(p,u)/ape in (a). If we compare them with

he(p,u), then we can immediately see ae(p,u)/ape = hz(p,u).

{c) By (b), Dph(p,u) = Die(p,u). In (a), we calculated Die(p,u). In Exercise
3.D.6, we showed

x(p,w) = (bl,bz,b3) + (w - P'b)(“/PI»B/PZ»'J/P3)
and hence Dwx(p,w) = (a/Pl,B/pz,'X/P3) and
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a/p; O 0 a/p,

F — - . 2 -

‘ Dx(pw) = = (w - p®)| O B O B/p, | (bb,.b,).
0 0 ¥/Pq ¥/Py

Using these results, we can verify the Slutsky equation.

(d) Use Dph(p,u) =~D12)e(p.u) and the explicit expression of Dlz)e(p,u) in (a).

(e) This follows from S(p,u) = Dph(p,u) = Die(p,u) and (a), in which we showed

that Die(p,u) is negative semidefinite and has rank 2.

3.G.4 (a) Let a > 0 and b € R. Define u: [Rl_: > R by u(x) = au(x) + b and, for
each ¢, up: IR+ > R by ue(xz) = aue(xe) + b/L. Then

u(x) = azeue(xe) +b= ZE(aul(xl) + b/L) = Zeae(xe).

Thus any linear (to be exact, affine) transformation of a separable utility
‘ function is again separable.
Next, we prove that if a monotone transformation of a separable utility
function is again separable, then the monotone transformation must be linear
(affine). To do this, let's assume that each ue(-) is continuous and strongly
monotone. Then, for each £, the range ue(lR +) is a half-open interval. So let

ue(lR+) = [a ’bl)’ where b, may be + . Define ¢, =b, ~a, >0, a= Zeae, b =

Zebe' and ¢ = ZZCZ' (If some b, is equal to + w, then b and c are + = as
well.) Then u(IRI_:) = [a,b). Suppose that f: [a,b) » R is strongly monotone
and the utility function u(-) defined by u(x) = f(u(x)) is separable. To
simplify the proof, let’s assume that f(-) is differentiable. Define g: [0,c)
> R by

gv) = flv + a) - f(a),
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then g(0) = 0, g(-) is differentiable, and
glu(x) - u(0)) = flulx)) - f(ul0))
for every x € IRI;. Thus, in order to prove that f(:) is linear (affine), it is
sufficient to prove that g(-) is linear. For this, it is sufficient to show
that the first-order derivatives g’(v) do not depend on the choice of
v € [0,c).
To this end, we shall first prove that if vy € [0,ce) for each £, then
g(zevz) = Zeg(ve). For this, it is sufficient to prove that
glu(x) - u(0)) = Zzg(ue(xe) - uZ(O))
for every x € RI;. In fact, by the separability assumption, for each £, there
exists a monotone utility function Ez(-) such that u(x) = Ezae(xe) for every x
€ IRI;. Fix an x € IRL and, for each ¢, define ye € IRL by yﬁ =X, and yﬁ 0 for
any k # £. Since u(y ) = f(u(y ),
u o(xp) + Zkﬂu (0) = fluylx,) + T, _,u, (0)).
Subtracting le; u (0) = u(0) = f(u(0)) from both sides and noticing that % o
up(xy) + Ty g, (0) = uy(x,) = uy(0) + le;=luk(0), we obtain
uy(x,) = uy0) = gluy(x,) - u,(0).
Summing over £, we obtain
Eeae‘xe’ - Tyu,(0) = T,gluylx,) - u,(0)).
Since
Zeﬂe(x 22 Z(O) u(x) - u(0) = flu(x)) - F(u(0) = glulx) - ulo)),
we have
glulx) - u(0)) = Zzg(ue(xz) - u(0)).
We have thus proved that g(Zeve) = Eeg(ve).
To prove that the g'(v) do not depend on the choice of v € [0,c), note

first that if v, € [0,c)) for each £ and v = Zeve € [0,c), then g'(v) = g'(v,)

2

3-34




for each &. This can be established by differentiating both sides of g():zvzl
= Zeg(ve) with respect to vy

So let v € [0,c) and v' € [0,c), then, for each ¢, there exist vy €
[O,Ce) and v, € [O’CZ) such that v = ZP,VZ and V' = ZZVZ' Then g'(v) = g (vl)
and g’'(v’) = g’(vi). Now, for some 32 € [O,cz), consider v, + v_ € [0,c) and

1 2

vi + vy, € [0,c). Then

g’(vl) g’(vl+v2) g’(vz),

g’(vi) g’(v’1+v2) g’(vz).

Thus g’(vl) = g’(v’l) and hence g'(v) = g’'(v').

Note that the above proof by means of derivatives is underiain by the
cardinal property of additively separable utility function, which is that,
when moving from one commodity vector to another, if the loss in utility from
some commodity is exactly compensated by the gain in utility from another,
then this must be the case for any of its monotone transformations resulting
in another additively separable utility function. (This fact is often much

more shortly put into as: utility differences matter.) For example, consider

’

L ’ I-' ) —_ » - C—
X € IR+ and X’ € IR+ such that ul(xl) ul(xl) = uz(xz) uz(xz) > 0 and Xy = X

for every £ =z 3. Since ul(xl) + uz(xz) = ul(xl) + uz(xz), the separability
implies that u(x) = u(x’). By the equality g():evz) = Zzg(ve),

g(ul(xl) - ul(O)) + g(uz(xz) - u2(0)) = g(ul(xi) - ul(O)) + g(uz(xz) - u2(0)).
Hence

g(ul(xl) - ul(O)) - g(ul(xi) - ul(O)) = g(uz(x’z) - uZ(O)) - g(uz(xz) - uz(O)).
We have shown that, under the differentiability assumption, if this holds for

and x.!

every X > then g(-) must be linear.

1) le Xl’

(b) Define S = {1,...,L)} and let T be a subset of S. The commodity vectors

3-35




IRT:-r an’c‘iv the like, and the

. . L-#T
commodity vectors for those outside S are represented by z, = {22)2 eT € R, %

for those in S are represented by 2, = (ZE)IZGT €

T c IRL-#T,

and the like. We shall prove that for every z € [Rfr, z € lRf ' 2, N

1
e RE ¥ (2.2) > (2,2) if and only if (z,,z)) » (z!,z)). In fact
2 + PTrTeT A trTe 1’727 ~ “f1re2e” ’

and z
since u(-) represents », (zl,zz) > (zi,zz) if and only if
zéeTul(zl) + ZZQTUZ(ZZ) z Zee,rue(zé) + ZeeTul(zl)’
Likewise, (zl,zé) > (zi,zé) if and only if
Lpe22) * Lyertp(%) = Tper¥s'%p) * Lperts(%p):
But both of these two inequalities are equivalent to
Loete(Zp) = Lyerty(2p):

Hence they are equivalent to each other.

(c) Suppose that the wealth level w increases and all prices remain unchanged.

Then the demand for at least one good (say, good £) has to increase by the

Walras’ law. From (3.D.4) we know that up(, (p,w)) = (p, /P, luylx,(p,w)) for. %«/
every k = 1,...,L. Since xe(p,w) increased and ug(') is strictly concave, the

right hand side will decrease. Hence, again since uk(-) is strictly concave,

xk(p,w) will have to increase. Thus all goods are normal.

(d) The first-order condition of the UMP can be written as
A(p,w)pe = :t’(xe(p,w)),
where the Lagrange multiplier A(p,w) is a differentiable function of (p,w):
This can be easily seen in the proof of the differentiability of Walrasian
demand functions, which is contained in the Appendix.
By differentiating the above first-order condition with respect to Py we

obtain
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(aA(p,w)/ape)pe + Alp,w) = u"(xz(p,w))(axz(p,w)/ape).
By differentiating the above first-order condition with respect to Py (k = ¢},
we obtain
»* - Au
*) (67\(p,w)/apk)p2 u (xl(p,w))(axe(p,w)/apk).
Thus

d[p-x(p.w)]/dpk

d[Zepexe(p,w)]/dpk

xk(p,w) + pk(axk(p,w)/apk) + Zﬂ:kpe(axl(p’vak)'

(aA(p,w)/apk)pi + J\(p,w)pk (ak(p,w)/apk)pi
= +Y =
u"(xk(p,w)) tk u"(xz(p,w))

2
Jt(p,w)pk P,

xk(p,w) + — + (ah(p,w)/apk)ze—;———————.
u"(xk(p,w)) u"(xe(p.W))

xk(p,w) +

By the first-order condition, Jt(p,w)pk = u’(xk(p.w)) and hence this equals

@ (e, (p, W) x, (p, WII’ 0, (p,w)) Py
= ( = +1) + (ak(p,w)/apk)ze-A—————.
u"(xk(p,w)) u" (xk(p,w)) u"(xz(p,w))

By Walras’ law, this equals zero. By the strong monotonicity and the strict
A’ 2
u (xk(p,W)) P ]

concavity, ————— < O and ZZ_”_—_— < 0. By the assumption on
u"(xk(p,w)) u"(xe(p,w))

R xk(p,w);'(xk(p,w))
ul-), - + 1 > 0. Hence
u"(xk(p.w))

u(x, (p,w))  x. (p,w)u’(x, (p,w))
- k ( k - k +1) <0.
u"(xk(p,W)) u"(xk(p.w))

We must thus have 87\(p,w)/6pk < 0. Hence, by (*), Eixe(p,w)/apk > 0.

3.G.5 (a) We shall show the following two statements: First, if (x*,z*) is a

solution to
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Max(x’z) u(x,z) s.t. prx + az = w,
then there exists y* such that q-y* = z* and (x*,y*) is a solution to
Max(x’y) u(x,y) s.t. p-x + (ocqo)-y = w;
second, if (x*,y*) is a solution to

Max(x,y) ulx,y) s.t. p'x + (ocqo)-y =

I
ks

then (x*‘,qo- y*) is a solution to
Max(x’z) u(x,z) s.t. pP'X + 0z = w.
Suppose first that (x*,z*) is a solution to Max(x’z) ulx,z) s.t. p X +
oz = w. Then, by the definition of u(:), there exists y* such that qo-y* =
z* and u(x*,y*) = u(x*z*). Let (x,y) satisfy p-x + (ocqo)-y =< w. Then
u(x,y) = a(x,qo-y) = u(x*,z*) = u(x*,y*),
where the first inequality follows from the definition of u(-) and the second
inequality follows from p'x + oc(qo-y) = p'X + (ocqo)-y = w and the definition
of (x*,z*). The first statement is thus established.
As for the second one, suppose that (x*,y*) is a soiution to Max

(x,y)
u(x,y} s.t. p'x+ (aqo)-y = w. For every y, if qy°y = qo-y*, then

p-x* + (aqy)-y = p-x* + alqy-y) = p-x* +alqyy*) = w.
Hence u(x*,y) = u(x*,y*). Thus u(x*,y*) = ﬁ(x*,qo-y*). Now let (x,z) satisfy
p'Xx + az = w. Then there exists y such that 4’y = 2 and u(x,y) = u(x,z).

Thus p-x + (aqo)-y =p-x + a(qo'y) S p'x + az = w. Hence

u(x,z) = ulx,y) = ulx*,y*) = E(X*,QO'Y*)-

(b) (c) These are immediate consequences of the fact that the Walrasian demand
functions and the Hicksian demand functions are derived in the standard way,

by taking u(-) to be the (primitive) direct utility function.

3.G.6 (a) By applying Walras’ law, we obtain Xy = (w - Xp; - xzpz)/ps.
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(b) Yes. In fact, for every A > O,

100 - SApl/Ap3 + B?\pz/hp3 + 67\W/7\p3 100 - Spl/p3 + sz/p3 + aw/p3,

i

o + BApI/Ap3 + 7Ap2/7\p3 + ahw/)tp3 o + [3p1/p3 + zrpz/p3 + 6w/p3.

(c) By Proposition 3.G.2 and 3.G.3, the Slutsky substitution matrix is
symmetric. Thus
[3/p:3 + (6/p3)(oc + [‘;’pl/p3 + 3‘p2/p3 + Bw/p3)
= B/p3 + (6/p3)(100 - Spl/p3 + sz/p3 + 6w/p3).
Hence by putting Py = 1 and rearranging terms, we obtain
(B + ad) + Bapl + ;yapz + 62w = (B + 1008) - 56pl + Bap2 + 52w.
Since this equality must hold for all Py P, and w, we have
B+ ad =B + 1005, B8 = - 58, ¥d = B4.
Hence a = 100, 8 = - 5, and ¥y = - 5. Therefore,
X, =X, = 100 - 5p1/p3 + sz/p3 + 6w/p3.
Recall also that all diagonal entries of the Slutsky matrix must be
nonpositive. We shall now derive from this fact that § = 0. Let Py = 1, then
the first diagonal element is equal to
-5 + 8(100 - Sp, + 5p,) * 52w,
If 8 # 0, then 62 > 0 and hence we can always find (pl,pz,w) such that the

above value is positive. We must thus have 8 = 0. In conclusion,

X, =%, = 100 - Spl/p3 + sz/p3.

(d) Since X, =X, for all prices, the consumer’s indifference curves in the
(xl,xz)-plane must be L-shaped ones, with kinks on the diagonal. (So the
restricted preference is the Leontief one.) They are depicted in the

following figure.
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Figure 3.G.6(d)

(e) By (d), for a fixed x,, the preference for goods 1 and 2 can be

represented by min{xl,xz). Moreover, there is no wealth effect on the demands

for goods 1 and 2. We must thus have
u(xl,xz,x3) = mm(xl,xz) *+ X

or a monotone transformation of this.

3.G.7 By the first-order condition of the UMP, there exists A > O such that
Ag(x) = Vu(x). Premultiply both sides by x, then Ax-:-g(x) = x-Vu(x). By

Walras’ law, x-g(x) = 1 and hence A = x-Vu(x). Thus

1

— -1 —
glx) = A "Vulx) = mVU(X)
By Exercise 3.D.8, we have dv(p,1)/dw = - p-va(p,l). By Proposition
N S = 1
3.G.4, x(p) = v (p.1)/5w va(p,l) = p-va(p,l) va(p.l).

3.G.8 Differentiate the equality v(p,aw) = v(p,w) + lne with respect to o and

evaluate at o = 1, then we obtain (8v(p,w)/dw)w = 1. Hence 8v(p,1)/8w = 1.

By Proposition 3.G.4, x(p,1) = - va(p,l).
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.3.G.9 Let p > 0 and w > 0. All the functions and derivatives below are
evaluated at (p,w).
By differentiating Roy’s identity with respect to Py, we obtain

(azv/apeapk)(av/aw) - (8v/6p2) (62v/3p£6w)

8x,/dp, =
&£k (av/aw)?
Or, in the matrix notation,
D x =— —l———(V VDZV -V vD/V v) € lRLXL.
2 w'p P P W
(Vv v)
w
L

(Recall that V_v is a column vector of R, and Dpv and Dprv are row vectors
of [RL (Section M.A).) By differentiating Roy’s identity with respect to w, we
obtain

(azv/apeaw)(av/aw) - (av/ape)(azv/awz)

dx,/aw =
] ¢ (av/ow)2
] Or, in matrix notation,
f D x=- — _(VWwWV v-v%¥y) eR
3 w 2 W pw w p
. (V. v)
{ w
' Hence
i 1 2 1 2 1
S=e —————(VVWDv -V VWDV v - (V VWV v Dv)+ VvV v D v))
2 W p P PW W pw Vv p w p V. v p
(V. v) w w
w
2
1 2 va
=— —— —(VvDv -(VVvDV v+VV vDv)+ V vD v).
2 w'p P pW pw p Vv pp
(va) w

It is noteworthy that we can know directly from Roy’s identity and this
equality that the Slutsky matrix S has all the properties stated in
Proposition 3.G.2. To see this, note first that both va(p,w) and va(p,w)
are homogeneous of degree - 1 (in (p,w)) by Theorem M.B.l1. Hence x(p,w) is
homogeneous of degree O (where we are regarding Roy’s identity as defining
x(p,w) from va(p,w) and va(p,w)). Thus (2.E.2) follows, as proved in

Proposition 2.E.l1. On the other hand, by Exercise 3.D.8, p-x(p,w) = w.
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Hence, as proved in Propositions 2.E.2 and 2.E.3, this implies (2.E.5) and
(2.E.7). Now, as proved in Exercise 2.F.7, (2.E.2), (2.E.5), and (2.E.7)
together imply that S(p,w)p = O and p-S(p,w) = 0. %@’
The matrix S(p,w) is symmetric because Dzv, VvDV v +VV vD v, and
p P pPW pw p
vaDpv are symmetric. The negative semidefiniteness can be shown in the
following way. Since v(-) is quasiconvex, for every price-wealth pair (q,b),
if Dpvq + vab = 0, then (q,b)-Dzv (q,b) 2 O (Theorem M.C.4). But Dpvq + vab

= 0 if and only if b = - Dpvq/va. Plug this into (q,b)-Dzv(q,b), then

2 2 2
q Dpvq + 2b(Dprvq) + va b
2
2D V_vq (D_vq)
= q-Dzvq - —S—‘:——D vq + szvv—-p——-z-—
P w P (V_v)
v 2
1 2 > (Dpvq)
= -V—T((va)(q-Dpvq) - 2(Dprvq)(Dpvq) + va———f)'
w (va)

Hence the quasiconvexity of v(:) implies that the above expression is

nonnegative for every q. On the other hand, 1

-D3vq) - S
((va)(q Dpvq) 2(Dprvq)(Dpvq) + va v v)2 ).
w

_r
v v)2
w

q-S(p,w)q = -

Thus q-S(p,w)q = 0. Therefore S(p,w) is negative semidefinite.

3.G.10 We shall prove that a(p) is a constant function and b(p) is
homogeneous of degree - 1, quasiconvex, and satisfies b(p) = O and Vb(p) = O
for every p >> O.

We shall first prove that a(p) must be homogeneous of degree zero. Since
v(p,w) is homogeneity of degree zero, we must have a(Ap) + b(Ap)Aw = a(p) +
b(p)w for all p > 0, w 2 0, and A > 0. If there are p and A for which a(Ap)

# a(p), then this constitutes an immediate contradiction with w = 0. Thus
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a(p) is homogeneous of degree zero.

Next, we show by contradiction that Va(p) = O for every p > 0. Since
v(p,w) is nonincreasing in p, we must have Va(p) + Vb(p)w = O for every p > O
and w = 0. If there are p >> 0 and £ for which aa(p)/ape > 0, then this
constitutes an immediate contradiction with w = 0. Thus a(p) = O for every p
>> 0.

We shall now prove that the only function a(p) that is homogeneous of
degree zero and satisfies Va(p) = O for every p >> O is a constant function.

In fact, by differentiating both sides of a(Ap) = a(p) with respect to A and
evaluating them at A = 1, we obtain Va(p)p = 0. Since p >> 0 and Va(p) = O,
we must have Va(p) = 0. Hence a(p) must be constant.

Given this result, the homogeneity of v(p,w) implies that b(p) is
homogeneous of degree - 1. Since v(p,w) is quasiconvex, so is a(p) as a
function of p. Finally, since va(p,w) = Ub(p)w = 0 and va(p,w) = b(p), we
must have b(p) =z 0 and Vb(p) = O for every p > O.

This result implies that, up to a constant, v(p,w) = b(p)w and hence, if
the underlying utility function is quasiconcave, then it must be homogeneous
of degree one. On the other hand, according to Exercise 3.D.4(b), if the
underlying utility function is quasilinear with respect to good 1, then, for
all w and p > O with p, = 1, v(p,w) can be written in the form ¢(p2,...,pL) +
w. You will thus wonder why we have ended up excluding this quasilinear case.
The reason is that, ;avhen we derived v(p,w) = ¢(p) + w, we assumed that the

consumption set is (- «, ©) x IR&'—I.

Thus xl(p,w) can be negative and, if so,
then 6v(p,w)/6pl is positive, which we excluded at the beginning of our
analysis, following Proposition 3.D.3. (Note that, when we established

c'iv(p,w)/ap2 = 0 in Proposition 3.D.3, we assumed that the consumption set is
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[R!:.) As xl(p,w) is positive for sufficiently large w > 0, the quasilinear

case could be accommodated in our analysis if we assume that the inequality
6v(p,w)/6p£ = O applies only for sufficiently large w > 0. (In this case, we
can show that a(p) is homogeneous of degree zero, and b(p) is homogeneous of

degree - 1, quasiconvex, and satisfies b(p) = O and Vb(p) = O for every p >>

0.)

3.G.11 Suppose that v(p,w) = a(p) + b(p)w. By Roy’s identity,
x(p,w) = - (l/b(p))Vpa(p) - (w/b(p))Vpb(p).
Thus the wealth expansion path is linear in the direction of Vpb(p) and

intercept (- l/b(p))Vpa(p).

3.G.12 Note first that, according to Exercise 3.G.1l, the wealth expansion
path is linear in the direction of Vpb(p) and intercept (- l/b(p))Vpa(p).

If the underlying preference is homothetic, then (- l/b(p))Vpa(p) = 0.
Hence a(p) must be a constant function. If the underlying utility function is
homogeneous of degree one in w, then v(p,w) must be homogeneous of degree one
in w by Exercise 3.D.3(a). Hence a(p) = O for every p > O.

If the preference is quasilinear in good 1, then please first go back to
the proviso given at the end of the answer to Exercise 3.G.10. After doing
so, note that, since the demand for goods 2,...,L do not depend on w,

(- l/b(p))Vpb(p) = (~ l/pl,O,...,O),
or (ab(p)/apl)/b(p) = 1/p1 and 6b(p)/ape = 0 for every £ > 1. Hence b(p) =
Bp? + y for some 8 # 0, p # 0, and ¥ € R. But, by Exercise 3.G.10, b(p) must
be homogeneous of degree - 1, positive, and nonincreasing. Hence p = - 1, ¥ =

0, and B8 > 0. That is, b(p) = [3/p1 with B8 > 0. If the underlying utility
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function is in the quasilinear form x1 + a(xz,...,xL), then, by Exercise
3.D.4(b), v(p,w) must be written in the form ¢(p2,...,pL) + w for all p > O

with p1 =1 Thus B8 = L.

3.G.13 For each i € {0,1,...,n}, let ai be a differentiable function defined
on the strictly positive orthant {p € |RL: p > 0}. Let vip,w) = Z“i1=0.a1i(p)w1
be an indirect utility function. Denoting the corresponding Walrasian demand

function by x(p,w). By Roy’s identity,

1

x(p,w) = - v, v(p,w)

va(p,w)

1 . i

- ZI.]_ w'Va.(p) = Zr.]_ il —— Va.(p).
n . i-1 ~#i=0 1 i=0 Zn . j-1 i
Zi=11ai(p)w j___lJaj(p)w

Hence, for any fixed p, the wealth expansion path is contained the linear
subspace of IRL that is spanned by Vao(p),...,Van(p).

As for the interpretation, recall from Exercise 3.G.1l that, an indirect
utility function in the Gorman form exhibits linear wealth expansion curves.
But the Gorman form is a polynomial of degree one on w and a linear wealth
expansion curve is contained in a linear subspace of dimension two. Hence
the above result implies that the indirect utility functions that are

polynomials on w is a natural extension of the Gorman form.

3.G.14 Define a, b,\ c, d, e, and f so that

- 10 a b
c - 4 d
3 e ,f

Since the substitution matrix is symmetric, we know b = 3, a = ¢, and e = d.
By Propositions 2.F.3, p-S(p,w) = 0. Hence pl(- 10) + p,C + p33 = 0. Thus ¢

=-4and a = c = - 4. For the second column, pl(— 4) + pz(- 4) + pge = 0.
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Hence e = 2 and d = e = 2. Finally, for the third column, we have p13 + p22 +

p3f = 0. Thus f = - 7/6. Hence we have
-10 -4 3
- 4 -4 2

3 2 -1/6

The matrix has all the properties of a substitution matrix, which are
symmetry, negative semidefiniteness, S(p,w)p = 0, and p-S{p,w) = 0. (For
negative semidefiniteness, apply the determinant test of Exercise 2.F.10 and
Theorem M.D.4{iii).)

pzw 4plw

3.G.15 (a) x(pl,pz,w) = 5 5
PP, + 4P, 4pP, * P,

P,u 2 P,u 2
®) heppp) = | Bp ey | 0 | B8, | |

2
p1p2“ .
(c) e(pl,pz,u) = 3 4p1+ pz) . It is then easy to show that Vpe(pl,pz,u) =
h(pl,pz,u).
172 . . s .
(d) v(pl,pz,w) = 2(w/p1 + 4w/p2) . To verify Roy’s identity, use

2

1)’
2
2

av(pl,Pz,W)/aw = (w/p1 + 4w/p2)-1/2(1/p1 + 4/p2).

c.‘-)v(pl,pz,w)/c’:'p1 = (w/p1 + 4w/p2)-1/2(— w/p

¢‘3v(p1,p2,w)/ap2 = (w/pl + 4w/p2)-1/2(- 4w/p.),

3.G.16 (a) It is easy to check that

. B
ae(p,u)/apk = e(p,u)(ozk + uBk(l'Iep2 Z))/pk.

Since e(p,u) is nondecreasing in p, this must be nonnegative for all (p,u).
But, if o < 0 and liplt is sufficiently small, then this becomes negative.
Also, if Bk < 0 and lipll is sufficiently big, then this becomes negative.
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Therefore

(1) @ = 0 and Bk z 0 for all k.
It is a little bit manipulation to show that
) By By
e(Ap,u) = A exp((Xeazlnpe) + A u(TIepe ),

B
2
Aexp((IIeaelnpg) + u(Hepe ).

Ae(p,u)

Since e(p,u) is homogeneous of degree one with respect to p, they must be
equal for every (p,u) and A > 0. Take, for example, p = (1,...,1) and u = L
Then

18y
log e(p,u) = (Zeoce)logh + A,

log Ae(p,u) = logA + 1.
They must be equal for every A > 0. Therefore
(2) Z:eoc2 =1, ZZBZ = 0.
Thus

ZZ“Z =1, o, z 0, Be = 0.
Hence the expenditure function now takes the simplified form:
o
= L. =
(3) e(p,u) = (expu)(Hepe ); Zzoce =1, @, = 0.

This is increasing with respect to u and concave in p.

o
(b) By equation (3.E.1), w = (exp v(p,w))(ﬂepe e). Hence

(4) vip,w) = logw - Zeccelogpe.

(c) By differentiating e(p,u) with respect to p, we obtain
h(p,u) = e(p,u)(al/pl,...,ocL/pL).

Since x(p,w) = h(p,v(p,w)) and e(p,v(p,w)) = w,

(5) x(p,w) = w(ocl/pl,...,ocL/pL).

Use equations (3), (4), and (5) and follows the same method as in the answer
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to Exercise 3.G.2 to verify Roy’s identity and the Slutsky equation.

3.G.17 [First printing errata: The minus sign at the beginning of the right-

hand side of the indirect utility function should be deleted. That is, it
should be
- -1 -

v(p,w) = (w/p2 +b (apl/p2 + a/b + c))exp( bpl/pz).
Also, in (b), the minus sign in front of the first term of the right-hand side
of the expenditure function should be deleted. That is, it should be

elp,u) = pzuexp(bpl/pz) - (l/b)(ap1 + apz/b + pzc).

Finally, in (c), the minus sign in front of the first term of the right-hand
side of the Hicksian function should be deleted. That is, it should be

hip,u) = ubexp(bpl/pz) - a/b.

(a) Use

éiv(p,w)/ap1 = - p;(apl/p2 + bw/p2 + clexp(- bpl/pz),

T i
avip,w)/aw p-lexp(- bp,/p.,), %/
2 172 .

and apply Roy’s formula.

(b) According to (3.E.1), we can obtain the expenditure function by solving

u = (elp,u)/p, + b"l(apl/p2 + a/b + c)lexp(- bp /p,).

(c) Apply Proposition 3.G.1 to obtain the given Hicksian demand function for

the first good.

3.G.18 We prove the assertion by contradiction. Suppose that there exist £ €
{1,...,L} and k € {1,...,L} such that there is no chain of substitutes
connecting £ and k. Define J = {&} v {j € {1,...,L): there is a chain of

substitutes connecting £ and j}. Since £ € J and k ¢ J, both J and its
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complement {l,...,L}\J are nonempty. Moreover, for any j € J and any j’ ¢ J,
ahj(p,u)/apj, < 0, because, otherwise, j' € J.
Let u: IRI: > R be the underlying utility function. Following the hint, as
in Exercise 3.G.5, define u: [Rf > R by
~ L
u(yl,yz) = Max{u(x): x € R, Zjelpjxj =y Zje.lpjxj = y2).

2
+

Let h: !RE ;X a(lRf) 5 R® be the Hicksian demand function derived from u(-).

That is, f{(ocl,ocz,u) € IRE is the solution to
Mm(y 7. ocly1 + azyz
172
s.t. u(yl,yz) z u.

Define p(ocl,az) >> 0 by pj(ocl,ocz) = oclpj if j € J and pj(ocl,ocz) = oczpj if je
J.  We shall prove that
h(ocl,ocz,u) = (Ejejpjhj(p(al,az),u), Zjelpjhj(p(“l’az)’un'

: * o *
Write x h(p(ccl,az),u). Then u(zjejpjxj’zjes.lpj

x:"f) z u(x*) = u. Hence the
constraint of the cost minimization problem is satisfied. Suppose that
(yl,yz) € IRE and ﬂ(yl,yz) z u, then (assuming strong monotonicity) there

. L
exists x € R such that Zje.lpjxj =¥ Zjelpjxj

=¥, and u(x) = u(yl,yz).
Thus u(x) = u and hence, by the cost minimization of x¥, p(ocl,ocz)-x ¥
p(al,ocz)-x*. This is equivalent to saying that
* »*
0¥y ¥y = B P XY+ #p(Le P XY

3 = * *
Thus h(al,ocz,u) (Zje.lpjxj’ zje.lpjxj)'

By this equality and the chain rule (M.A.1),

oh, (e e, u)/80, = T

ooy Jerj(ZkeJ(ahj(p(“l'“z)’uvapk)pk)

= Zjejzkerjpk(ahj(p(“l’“z)'uvapk)‘
We now derive a contradiction from this equality evaluated at (ocl,ocz) =

(1,1). On the one hand, since ¢'3hj(p,u)/<'3pk < O for every j € J and every k ¢

J, we must have 6%1(1,1,u)/ao¢2 < 0. On the other hand, note that h(+) is the
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Hicksian demand function of u(-) for two (composite) goods. Since

ah. (« ,0,,u)/80, = O by the negative semidefiniteness, and
1r%2 1 "

(6h1(oc1,a2,u)/aoc1)pl + (3h1(a1,¢x2,u)/3a2)p2 =0,

we must have ¢'351(1,1,u)/6¢x2 z 0. We have thus obtained a contradiction.
3.H.1 By Proposition 3.H.1, e(p,u) = Min{p'x: X € Vu}. Thus, to complete the
proof, it is sufficient to show that Vu = {x: u(x) = u}. That is, X € Vu if
and only if Sup {t: x € Vt) z u

Clearly, if x € Vt then Sup {t: X € Vt) z u,

Assume that Sup {t: x € Vt) z u. Define u* = Sup {t: x € Vt). If u*
> u, then there exists t € (u,u*] such that x € V.. Since e(-) is
increasing in utility levels, Vu ) Vt and hence x € Vu' If u* = u, then, for

every n € N, there exists u € (u - 1/n, u) such that x € Vu , that is, p'x =
n

e(p,un) for all p. Let n » o, then u > u and, by continuity of e(p,u), px =

e(p,u) for all p. Thus x € Vu'

3.H.2 We show the contrapositive of the assertion. If a preference is not
convex, then there exists at least one nonconvex upper contour set. Let u € R
be its corresponding utility level. We can choose a price vector p so that
h(p,u) consists of more than one elements, as the following figure shows.

According to Proposition 3.F.1, e(-) is not differential at (p,u).
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Y

0 X1
Figure 3.H.2

3.H.3 By (3.E.1), for each p, take the inverse of e(p,u) with respect to u.

3.H.4 The following method is analogous to that of "Recovering the
Expenditure Function from Demand" for L = 2.

Pick an arbitrary consumption vector xo and assign a utility value uo to

xo. We will now recover the indifference curve {x: u(x) = uo) going through

x . Assuming strong mono tonicity, this is equivalent to finding a function

E(-,uo): (0, ©) » (0, =) such that u(xl.E(xl)) = uo for every X, > 0.
Differentiate
both sides of u()—tl,i()—(l)) = uo with respect to ;{1’ then we obtain

0.

6u(;<l,§()-<l))/axl + (au(il,g(il))/axz)e'(il)

Hence
E)u(xl,.";'(xl))/ax1

£(x) = - —
au(xl,E(xl))/ax

c’ju(xl,E(xl))/ax1 gl(xl,E(xl))

2 - -
gl(xl,&'(xl))

Since — — = — — , we have E'(;zl)
au(xl,-i(xl))/ax2 gz(xl,E(xl))

gz(xl,i(xl))
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or, by replacing x by x,, we obtain

b= (x,,&(x,))
2 R
gz(xl,i(xl))

E’(xl) = -

By solving this differential equation, we obtain the indifference curve going

through xo.

3.H.5 By (3.E.1), we can recover the expenditure function by simply inverting
the indirect utility function.

To recover the direct utility function, define u: IRI; > R by u(x) =
Min{v(p,w): p-x = w). We shall prove that u(x) is the direct utility function
that generates v(p,w). So let x*(p,w) be the demand function and v*(p,w) be
the indirect utility function generated by u(x). It is sufficient to show

that v*(p,w) = v(p,w) for all p >> 0 and w = 0.

Let p >> 0 and w = O, then p-x*(p,w) = w and hence v*(p,w) = ulx*(p,w)) =

v(p,w). It thus remains to show that v*(p,w) = v(p,w). Define

1

x = e —————
va(p,w)

va(p,w).

Then x € IRI; by the monotonicity. Since va(p,w)- p‘ + va(p,w)w = 0 by the
homogeneity, p-x = w. It is thus sufficient to show that u(x) = v(p,w). So

let p’ >> 0 and W’ = O satisfy p’*x = w’.

Then (p’ - p)'x = w' - w, or, by
the definition of x, va(p,w)-(p’ - p)+ va(p,w)(w’ - w) = 0. Hence, by the

quasiconvexity of v(p,w), v(p’,w’) = v(p,w). Thus u(x) = v(p,w).

3.H.6 Let’s first prove that the symmetry condition on S(p,w) is satisfied.
By equation (3.H.2), 6e(p,u)/6p£ = ocee(p,u)/pe for every ¢ By
differentiating both sides with respect to P we obtain

2 = -

3 e(p,u)/c’ﬂpec'ipk = (oce/pe)(ae(p,u)/apk) = (oceock/pepk)e(p,u).

On the other hand, by differentiating both sides of ae(p,u)/apk = ccke(p,u)/pk
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with respect to Py we obtain

2

) e(p,u)/apkape = (ock/pk)(ae(p,u)/apz) = (oceock/pepk)e(p,u).
Hence the symmetry condition is satisfied.

We can thus apply the iterative method explained in the small-type
discussion at the end of Section 3.H to derive the expenditure function.
First, we shall prove by induction that, for every £, there exists a function
fe(p2+1""’pL’U) such that

Ine(p,u) = steaklnpk + fz(peﬂ,...,pL,u).
Suppose first that £ = 1. Since (ae(p,u)/apl)/e(p,u) = al/pl. Hence, by
integrating both sides with respect to P, we obtain
Ine(p,u) = ocllnp1 + fl(pz.-.-.PL,U)-
Thus the equality is verified for £ = 1. Suppose next that £ > 1 and the
equality holds for ¢ - 1. By differentiating both sides of
Ine(p,u) = szE—laklnpk + fll—l(pl""’pL'U)
with respect to Py We obtain
<'3e(p,u)/¢?3pz = afe_l(pe,...,pL,u)/ape.
Since ae(p.u)lape = oce/pe, this is equivalent to
ocl,'/pz = afe_l(pe,...,pL,u)/apz.
Hence, by integrating both sides with respect to Py We know that there exists
fe(p£+1""’pL’u) such that
aelnpz = fe_l(pe,...,pL,u) - fe(pe_'_l’---’pL)u)
By plugging this into '
Ine(p,u) = stl—laklnpk + fﬂ—l(pl!""’pL’u)’
we obtain
lne(p,u) = steaklnpk + fe(pe_'_lv--"pL'u)'

If £ = L, then this equality becomes Ine(p,u) = Zk sL“klnpk + fL(u). Or,
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o
equivalently, e(p,u) = (I'Iepe z)expr(u).

In what follows, for every increasing function fL(u), we shall find the

‘% )

utility function that generates the expenditure function e(p,u) =
% %p
(ITep2 )expr(u). To start, consider the utility function u*(x) = HZXP. ,

which appeared in Example 3.E.1 for the case of L = 2. Denote its expenditure

function by e*(p,u), then
) «,
e*(p,u*) = (l'Illm2 )(Tlgp2 Ju*.

(We considered a similar expenditure function in Exercise 3.G.16. Note that,

these similarities incidentally show that, for every increasing function
%
fL(u), the expenditure function e(p,u) = (nge )expr(u) has all the

properties of expenditure functions in Proposition 3.E.2, because it
o
corresponds one of the monotone transformations of u*(x) = HZXP, e.) Let g(u*)

be an monotone transformation and denote by eg(p,u) the expenditure function

of the utility function (gou*)(x). Then W /)4
-0 [+ 4

e P = e*(p.g” (W) = (Mg, ‘)mepe PRI

a
By comparing this with e(p,u) = (Il,p e)expf (u), we know that (gou*)(x) =
&L L

u(x) if
-a « a
2 L, -1 2
(Heae )(Hzpe Jg (u) = (Hepe )expr(u).
-1 % -1
This equality is equivalent to g (u) = (l'Il,’ocz )expr(u). Letting u* = g “(u)

and solving this with respect to u*, we obtain
-1
*) — * _
g(u*) fL (Inu Zeocelnoce).
Thus

u(x) = gu(x)) = £ (Inur(x) - Tyeina) = £7 (Fa,(inx, - Inay).

a
Of course, two possible utility functions are u(x) = HRXE ¢ (corresponding to

fL(u) = Inu - Zeaelnae) and u(x) = Zeocelnxg (corresponding to fL(u) =u -
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Zzaelnag) .

3.H.7 (a) Let p = (1,...,1). Since x(p,L) = (1,...,1) and u(l,...,1) = 1,
according to Propositions 3.E.1 and 3.G.1, Dpe(f),l) = h(p,1) = (1,...,1).
Hence e(p,1) = L.
On the other hand, S(q,w) = Dlzje(q,w) = O for every q > O by Exercise
2.F.17(d). Hence
e(lp,u) - elq,u) = Dpe(q,u)(p - q.
for every q >> 0 and p > 0. Now take q = p, then e(p,1) - L = p-(p - p).

Thus e(p,1) = e=1Pe

(b) The upper contour set is equal to

{x € iRI_:: prx = ZIE=1p£ for every p > 0} = {x € IRI_:: x = (1,...,1)}

| ‘ 3.I1.1 By the same method as deriving equation (3.1.3), we obtain

EV(pO,pl,w) = e(po,ul) - e(pl,ul)

_ 0 1 1 00 01 1 00 0.1 11
= e(p ,u’) - e(pl,pz,p3,...,pL,u ) + e(pl,pz,p3,...,pL.u ) - e(p,u)
1 1
p . P
RS 00 0.1 2. .10 01 . |
= J'po h(pl,pz,p3,...,pL,u ) dp1 + J‘po h(pl,pz,pa,...,pL,u ) dpz,
1 2

CV(pO,pl,w) = e(po,uo) - e(pl,uo)

0 0 1 00 00 1 00 0.0 1 0
= e(P U ) - e(Plypz»Py---,PL,u ) + e(Pl»Pz»P3»--an’U ) - e(p U )
1 1
p P
P 00 0.0 2.1 0 0.0
| = Ipo h(pl,pz,ps,---,pL,u ) dp, + Ipo h(pl,pz,p3,...,pL,u ) dp,,.
1 2

If there is no wealth effect for either good, then, by the first relation of

(3.E.4),

0 0 0 1 00 00
h(pl,pz,ps,...,pL,u ) = h(pl,pz,p3,...,pL,u ) for every P >0,

1 0 0.1 1 0 00
h(pl,pz,p3,...,pL.u ) h(pl,pz.py.-.,pL,u ) for every P, > 0.
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Thus EV(p°,plw) = cv(p®,pl,w).

3.1.2 Denote the deadweight loss given in equation (3.1.5) by DWl(t) and that

in equation (3.1.6) by DWO(t). Then

+

. 0 - 1 0 - 1 a0 - 1
le(t) h(p1 + 1, P_p u) (h(p1 +t, P_p» u)+t c’)h(p1 t, P_»u )/apl)

- t-ah(p(l) + t, ;_)_1, ul)/apl.

Thus DWi(O) = 0 and, if ah(pl,f)_l,ul)/c‘:)pl > 0 for every Py > 0, then DWi(t) >

O for every t > 0. It can be similarly shown that DW(’)(O) 0 and, if
éJh(pl,;-)_l,uO)/c'ipl > 0 for every P, > 0, then DW(’)(t) > O for every t > O.

A possible interpretation of this result is that the first-order
derivatives of the deadweight loss at t = O may be a bit misleading
approximation. In fact, their being zero means that, approximately, there is
no deadweight loss. On the other hand, since those derivatives are positive

at every t > 0, DW,(1) = J‘é DW}(z) dt > 0 and DW(t) = .rg DW (%) dt > 0.

Hence the deadweight losses are in fact positive.

3.1.3 Write uo = v(po,w) and u1 = v(pl,w), then u0 < u1 because p0 z p1 and
po #® p{ Thus
o 0 0 1
elppp_pu’) < hy(py.p_pu’)
for every P, > 0. Since good ¢ is inferior,
0 0O 0 0 o 1
xe(pe,.p_z,e(pe,p_e,u )) > Xp(ppp_p€(pyp_pu)).
By the first relation of (3.E.4), this is equivalent to
0 0 o 1
hy(PpP_pu7) > hylpy,p_pu).

Hence, by (3.1.3), (3.1,4), and p(Z) < pé, we have CV(pO,pl,w) > EV(pO,pl,w).

3.1.4 We shall give two examples, both of which have two commodities. The
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first one is simpler, while the second one is more illustrative.

In the first example, we consider a preference with "L-shaped"
indifference curves such that the vectors (1,1), (4,2), and (5,3) are kinks
of indifference curves. Let u(l,1) = 1. Note that if one of the two prices
is equal to zero, then the demand is not a singleton. We thus need to
consider a demand correspondence x(p,w). But this does not essentially change
our argument because we are working on expenditure f unctions, which is
single-valued by its definition.

0 1 2 0
Let p = (1,1), p = (1/2,0), p~ = (0,2/3), and w = 2. Then x{p ,w) 3
1 2 2 1 1.,
(1,1), x(p’,w) > (4,2), x(p=,w) > (5,3), and v(p~,w) > v(p,w). But elp,1) =
1/2 and e(pz,l) = 2/3. Thus

CV(pO,pl,w)

2 - 1/2 =372,

CV(pO,pZ,W) 2 - 2/3 = 4/3.

Hence CV(pO,pl,w) > CV(po,pz,w).

It is worthwhile to remark that, although the given preference is neither
smooth, strongly monotone, nor strictly convex, it can be approximated by such
one.

In the second example, we consider a utility function u{x) which is
quasilinear with respect to the first commodity. Let v(p,w) be the
corresponding indirect utility function. Starting from p0 = (1,1) and w > O,

2

we consider two other price vectors pl = (p]i,l) and p~ = (l,pg) such that O <

pi <1, 0< pg < 1,l and v(pl,w) = v(pz,w). Write u0 = v(po,w) and u1 =
v(pl,w) = v(pz,w). Then EV(pO,pl,w) = EV(po,pz,w).

We shall now show that CV(pO,pl,w) < CV(pO,pz,w). By pi < 1, CV(po,pl,w)
< EV(pO,pl,w). Also, by the quasilinearity, CV(pO,pZ,w) = EV(pO,pz,w)

(Exercise 3.1.5). Hence CV(pO,pl,w) < CV(pO,pz,w).
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It is worthwhile to remark that, although EV(po,pl,w) = EV(pO,pz,w), we
can obtain the strict reverse inequality EV(pO,pl,w) > EV(pO,pz,w), while %

4

preserving CV(pO,pl,w) < CV(pO,pz,w), by decreasing pg only slightly.

3.1.5 According to Exercise 3.E.7, we can write the expenditure function
e(p,u) = e(pz,...,pL) + u for P, = 1. Hence
EV(pO,pl,w) = e(po,ul) - e(po,uo)
~ 0 0 1 ~ 0 0 0
(E(pzv'--rpL) +u’) - (e(pz,...,pL) +u)

1 0
=u -u.

CV(pO,pl,w) = e(pl,ul) - e(pl,uo)

(E(pé,...,pi) +ul) - (E(pé,...,pi) + 19

1 o
=u -u.

Hence EV(pO,pl,w) CV(pO,pl.W)-

"

o_ .0 0.1 1.0
3.1.6 Let u, = vi(p ,wi). If ZiCVi(p P ,wi) =z 0, then Ziwi z Ziei(p ,ui).

: v _ 1 0 , 1_,,_.0_ 0
So define wi = ei(p ,ui), then Eiwi s Ziwi and vi(p ’Wi) =u, = vi(p ,wi).

3.1.7 (a) By applying Walras’ law and the homogeneity of degree zero, we can
obtain the demand functions for all three good defined over the whole domain
{lp,w) € IR3 x R: p > 0). Thus we can obtain the whole 3 x 3 Slutsky matrix
as well from the demandl function. The 2 x 2 submatrix of the Slutsky matrix
that is obtained by deleting the last row and the last column is equal to
(1/p3)[ : Z ] By the homogeneity and Walras’ law, the 3 x 3 Slutsky matrix
is symmetric if and only if this 2 x 2 matrix is symmetric. Moreover, just as

in the proof of Theorem M.D.4(iii), we can show that the 3 x 3 Slutsky matrix

is negative semidefinite (on Tp’ and hence on the whole lR3) if and only if the
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2 x 2 matrix is negative semidefinite. Hence, utility maximization implies

‘ thatc=e,b50,gSO,andbg-czzo.

(b) First, we verify that the corresponding Hicksian demand functions for the

first two commodities are independent of utility levels and, as functions of
the prices of the first two commodities alone, they are equal to the given
Walrasian demand functions. Let p be any price vector and u, u’ be any two
utility levels. By (3.E.4), he(p,u) = xe(p,e(p,u)) and he(p,u’) =
xe(p,e(p,u')) for £ = 1,2. Since the xe(-) do not depend on wealth,
xe(p,e(p,u)) = xe(p,e(p,u‘)). Hence he(p,u) = he(p,u’). Thus the he(p,u) do
not depend on utility level and they are the same as the xz(p,w).

If the prices change following the path (1,1) » (2,1) » (2,2), then the
equivalent variation is

2 et Ludp’ + i h%(2,p%,u)dp®

J‘% xl(pl,l,w)dp1 + J‘f x2(2,p2,w)dp2

(a + (3/2)b + c) + (d + 2e + (3/2)g).

If the prices change following the path (1,1) » (1,2) » (2,2), then the
equivalent variation is

2 n'p!,2,udp’

J ? hz(l,pz.u)dp2 +J

(d + e + (3/72)g) + (a + (3/72)b + 2c).

These two equivalent variations are the same if and only if c = e.

(c) As we saw above,
EV, = /2 xphLwiap! = a + G200 + o,

EV2

EV

J'? xz(l,pz,w)dp2 =d+e+ (372)g=d + c + (3/2)g,

l

(a + (3/72)b + ¢) + (d + 2e + (3/2)g)
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=a + (3/2)b + 3c + d + (3/2)g.
Hence EV - (E‘.V1 + EVZ) = c.
The sum EV1 + EZV2 does not contain the effect on equivalent variation due M
to the shift of the graph of the demand function for the seéond commodity when
pl goes up to 2 (or equivalently, the shift of the graph of the demand
function for the first commodity when p2 goes up to 2). Graphically,

letting ¢ = e > 0, EV contains the shaded area below but EV1 + EV2 does not:

Y

d+e d+2e X1 R
Figure 3.1.7(c)

(d) Since xl(Z,l,w) a + 2b + ¢, the tax revenue from the first good is equal

to this. Thus DW1 (@ + (372 +¢) - (a + 2b + ¢) = - br2.
Since x2(1,2,w) =d + e + 2g, the tax revenue from the second good is
equal to this. Thus DW2 =(d+e+(3/2)g) - (d+e+2g) =- gr2.
Since x1(2,2,w)'= a + 2b + 2c and x2(2,2,w) =d + 2e + 2g, the tax
revenue from both commodities is
(a+2b+2c)+(d+2e+2g)=a+2b+4c+d+2g.
Thus

DW = (a + (3/2)b + 3c + d + (3/2)g) - (a + 2b + 4c + d + 2g).
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= - b/2 - c - g/2.

Hence DW - (DWl + DW2) = -

(e) Our problem is

Min DW(t ity )

(t ,t )
2=1h2(1 + tl, 1 + t2, u)tl =

Here,
DW(tl,tZ) = EV(tl,tz) - TR(tl,tz)

=e(1+t,1+t2,u)—e(1,1,u)-Z% h(1+t ult

1 =1 1+ 1, ult,

Set up the Lagrangean by L(tl’ 2,7\) DW(tl,tz) + AR - TR(tl,tz)). Then the

first-order condition with respect to tg is BDW(tl,tz)/ate - AaTR(tl,tz)/ate

= 0. But,

6DW(t1,t2)/at = de(l +1t,1 )/8t (1+1t,1 u)

) p L+t Wty - hy p 1ty

- 22k=1(6hk(1 tt, 1+, “)/ate’tk

sz ah (1 + t, 1+ t u)/ate)tk
by ae(l + tl, 1+ tz, u)/at2 = he(l + tl' 1+ t2,

BTR(t,t))/8t, = hy(l + £, 1 + t,, u) + ):Zk=l(ahk(1 g, 1+, WALt

u), and

Hence the first-order condition is written as

28R (1 + 1, 1+ ty, W/t + Q)

| +Ah2(1+t1,1+ o u) =0
for both £ = 1,2. From this and R = 2= 1h‘,‘(l + t 1+ tz, u)te, we obtain
Ca e bt1 + ctz _ ct1 + gt2
T @+ b(l + 2t,) + c(l + 2t,) T arclle2t) 4 gl +2t,) "

(a + b(l + tl) +cll + )t + (d +cll+1t)+ gl + t,)t, =
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3.1.8 (a) Quasilinear utility functions: u(xl,xz,x3) = u(xl,xz) * Xy

(b) As in Exercise 3.1.7(a), the symmetry implies %
c + dlpl = b2 + dzp2 for all P > 0 and P, > 0.
Thus ¢ = b2’ dl = d2 = 0. Then the negative semidefiniteness implies that

blso,c

1A

=0, blc 0.

2 279

(c) Since the Walrasian demand functions and Hicksian demand functions are the

same as we saw in Exercise 3.1.7(b), we can define

» ?

Py Py
CV =" x(q,p,,wldq + J “ x (p},q,w)dq,
P 1 2 P, 171

or, equivalently,
) Py ,
Cv = J‘pz xz(pl,q,w)dq + J"p1 xl(q,pz,w)dq.

(d) By the same calculation as in Exercise 3.1.7(c), we obtain

EV. = 1/2, EZV2 =172, EV_, = 3/2.

1 3

In this case, EV = I:'lV1 + EVZ' In the general case in which the conditions in- W
(b) hold,

EV1 =a, + (3/2)b1 + cps

EV2 a, + bz + (3/2)02,

EV3

a + (3/2)b1 +Cc, +a. + 2b2 +(3/2)cz.

1 2

Hence EV1 + EZV2 = EV3 if and only if b2 =c = 0. This condition is

equivalent to saying that any change in the price of one good does not have

any (cross) effect on the demand for the other.

3.1.9 Let e, € IRL be the vector of which the £-th component is one and all

the other components are zero. For each t, define p(t) = p + te Then the

v
after-rebate income w(t) with tax t satisfies w(t) = w + xe(p(t),w(t))t.
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Hence p-x(p(t),w(t)) = (p(t) - tee)-x(p(t),w(t)) = w(t) - xz(p(t),w(t))t w.
Therefore x(p(t),w(t)) is at most as good as x(p,w). In order to prove that
x(p(t),w(t)) is strictly less preferred to x(p,w), it is sufficient to prove
that these two are different, because the demand function is assumed to be
single-valued.

Now suppose that there exists a t > O such that x(p(t),w(t)) = x{(p,w).
Let u = v(p,w). Then we have h(p(t),u) = h(p,u). In particular, he(p(t),u) =
he(p,u). Since the Hicksian demand function s - he(p(s),u) is nonincreasing,
this equality implies that he(p(s),u) = hz(p,u) for every s € [0,t]. But
d[he(p(s),u)l/ds = ahg(p(s),u)/ape. Evaluating at s = 0, we have ahe(p,u)/ape
= su(p,w) = 0. This violates the assumption that su(p,w) < 0. Hence

h(p(t),w(t)) # h(p,w) for every t > O.

3.1.10 We consider an example of a consumer who face the choices over two
goods and whose preference > and demand function x(pl,pz,w) satisfy the
following condition:

For every p, € (1,2], x(pl,l,z) =((1 - e)/pl, 1+ ¢g);

for every P, € [1,2], x(_l,p2,2) =1-g (1+ e)/pz);

((1 -€)2,1+¢€)>(-¢g, (1 +€)2).
By using the figure below, you can convince yourself, perhaps with some

application of the weak axiom, that there actually exists such a preference.
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0 l-€ 1 2 X1
Figure 3.1.10

Define po = (2,1) and p1 = (1,2). Then

x(p%,2) = (1 - e)r2, 1 + ¢),

x(pl,Z) (1-¢, (1+€)2).

Thus x(p0,2) > x(p1,2). However, the area variation measure following the
price-change path p0 > (L,1) » p1 is
avip®pl2) = rle(p.1,2)dp, + [P (Lp.,2)dp
e 27171 1 172"7%2 2

_ _ 2 _ 2
= Il (1 e)/pl dpl+J“1 (1+e)/p2 dp,

2
p;=l

- [(1 - €)ln p1] + [(1 + €)ln pzl

2
p=l

2eln2 > 0.

i

. 1 0
Hence the area variation measure ranks p  over p .

3.1.11 If (p1 - pO)-x1 > 0, then w > po-xl. The local non-satiation implies

that xo is preferred to xl. Hence the consumer must be worse off at (pl,w).
As for the interpretation in term of the first-order approximation, since

e(p,u) is concave in p,

e(po,ul) = e(pl,ul) + Ve(pl,ul)-(po - pl).
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since Ve(p',ul)-(p° - pl) <0, e(po,ul) < e(piul) = w. Thus W = v(po,w) >
1
u.
. 1 o, .1 X . 0.1 . . .
Finally, (p- - p ):x > O if and only if w > p +x", which, in turn, is

equivalent to po-(x1 - xo) < 0. This test is depicted in the picture below:

o AP

X
X
0
. X1
Figure 3.1.11

3.1.12 Let u0 = v(po,wo) and u1 = v(pl,wl). Then we define

Ev(p%,wPiplwh = e(pOu) - e(pOu®) = etp’uh) - w’,
CV(pO,WO;pl,wl) = e(pl,ul) - e(pl,uo) = w1 - e(pl,uo).
The "partial information" test can be extended as follows: If pl-x0 < wl, then

the consumer is better off at (pl,wl). This can be proved in three ways.
The first one is the same revealed-preference argument as in the proof of
Proposition 3.1.1.
The second way is to use the indirect utility function. Since vip,w) is
quasiconvex, if
(p1 - po)-va(pO,wo) v (w! - wo)av(po,wo)/aw > 0,

then we can conclude that v(pl,wl) > v(po,wo). But, by Roy’s identity, this
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sufficient condition is equal to

- (p1 - po)-(av(po,wo)/aw)x(po,wo) + (w1 - wo)(av(po,wo)/aw)

(av(po,wo)/aw)(- pl-xo + wO + w1 - wo)

(c’iv(po,wO)/{:lw)(w1 - pl-xo) > 0.
0]

Hence, if pl-x < wl, then v(pl,wl) > v(po,wo).

The third way is to use the expenditure function. v(pl,wl) > v(po,wo) if
and only if e(pl,v(pl,wl)) > e(pl,v(po,wo)). But e(pl,v(pl,wl)) = w1 and
e(pl,v(po,wo)) s pl-xo. Hence, if pl-xo < wl, then we can conclude that

v(pl,wl) > v(po,wo).

3.J.1 [First printing errata: The difficulty level should probably be B.] It
follows immediately from the definition that if x(p,w) satisfies the strong
axiom, then it satisfied the weak axiom. Conversely, if x( p,w ) satisfies
the weak axiom (in addition to the homogeneity of degree zero and Walras’
law), then the Slutsky matrix is negative semidef iﬁite and, by Exercise

2.F.11, symmetric. Hence x(p,w) is integrable, implying that there exists a
preference relation that generates x( p,w ). Thus x(p,w) satisfies the strong

axiom as well.

3.AA.1 If (p,w) = (4,1,1), then x(p,w) = (0,1). The locally cheaper
condition is not satisfied since B ={x € !RI;_': x1 + x2 = 1} and there is no

y such that p-y < w, as depicted in the following figure.
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1
Figure 3.AA.1

To check that the demand function is not continuous at (1,1,1), consider the
sequence (pn,wn) =(-1/n,1, 1 - 1/n). Then (pn,wn) » (1,1,1) and x(pn,wn)
= (1,0), but x(1,1,1) = (0,1). This discontinuous change in demands arises

because the budget set B n n consists of (1,0) for every n, but B
p W
2

{x e R.: X+ X, = 1}, so that the commodity bundle (0,1) becomes available

suddenly at p = (1,1).

L1 -

3.AA.2 [First printing errata: The upper hemicontinuity of h(p,u} cannot be

guaranteed at p = O, because the local boundedness condition in the definition
of upp\;r hemicontinuity need not be satisfied. Hence the clause in the
bracket "even if we replace minimum by infimum and allow p = 0" should be
understood as concerning only with e(p,u).] We shall first prove that h(p,u)
is upper hemicontinuous. Let B be a compact subset of the domain of h(p,u)
(which is, in turn, a subset of {p € IRL: p >> 0} x R). Then there exists a
(p,u) € B such that u = u for every (p,u) € B. Let x € h(p,u), then u(x) =z u

z u for every (p,u) € B. For each £, define
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;2 = Max{p-ii/p2 € R,: (p,u) € B)
and y = (;71,...,§'L) € lRI_:. We now show that, for every (p,u) € B and x € t,,%
h(p,u), we have y = x. If fact, since u(x) = u, p'X = p-Xx. Since p > O and
X € lRI_:, PpXy = p'X. Thus p-)-( z PyXy Divide both side by Py then we obtain
p-i/pe z ) and hence ;IZ z Xy We have therefore established the local
boundedness condition of upper hemicontinuity. Next, let ((pn,un))n be a
sequence of pairs of price vectors and utility levels, converging to (p,u).
Let (xn)n be a sequence in RI;, x" e h(pn,un) for every n, and x" » x. It is

sufficient to prove that x € h(p,u). Since ux™ = u" and u(x™ - u(x) by the

continuity, we obtain u(x) = u. Hence x satisfies the constraint of the EMP

v

at (p,u). To show that it is cost-minimizing, let y € IRI_: and u(y) z u. If
u(y) > u, then uly) > u® for any sufficiently large n. Hence pn-y z pn-xn for

such n. By taking the limit as n 5 », we obtain p:y = p-x. Suppose then that

u(y) = u. By the local nonsatiation, there exists a sequence {yn)rl in IRI: such

that u(yn) > u(x) for every n and yn > X. Hence there exists a subsequence

{(pk(n)’uk(n))) JKm) k(n) .

=

n of ((pn,un))n such that u(yn) z Hence p

pk(n)-xk(n). By taking the limit as n » w, we obtain p'y = p-x. Hence x is
cost-minimizing.

We now turn to the continuity of e(p,u). In fact, its continuity at
every p >> O can be derived immediately the continuity of h(p,u), as the
latter is well defined at every p > 0. Thus the essential part of the
following proof is ttlxe case of nonnegative, but not strictly positive, price
vectors. We shall establish the continuity with respect to p and that with
respect to u separately.

Let u € R be a utility level, p € IR&' be a price vector, and {pn) be a

sequence of price vectors in IRI; converging to p. We need to prove that

[ b
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_e(pn,u) > e(p,u). As a preliminary result, let’s first prove that if the

sequence (e(pn,u)) in R, converges, then it must do so to e(p,u). Let w be
.. n L n n

the limit of {e(p ,u)}. Let X € R, and u(x) z u. Then p *x =z e(p ,u) for

every n. Taking the limit as n » », we obtain px = w. Since this holds for

every X € IRI_: with u(x) = u, we have e(p,u) 2 w. To prove the reverse

inequality e(p,u) = w, we use the concavity of e(p,u) in p € RI;. Take a

k(n) k(m)

(n)) of (pn) such that (pz - pe)(pe

subsequence {pk - pe) 20 forall e

{1,...,L} and positive integers n and m. That is, for each ¢ € {1,...,L}, we

require the sign of plz(n)

- Py along the subsequence to be constant (including
zero). Such a subsequence does actually exist because each prl ~ p has one of

at most ZL sign patterns. Now, for each ¢ e {l1,...,L}, let vy = 1 if

plz(n) - Py = 0 for every n; and vy = - 1if plz(n) ) = O for every n. Then,
k(n) _ | k(n) _ v
Py Py * 1Py Pe!Vy
So let 25 = ka(n) - p,| =z 0 and define ve € IRL by letting vZ = v, and ve =0
14 g 2 2 L k
for every k # £, then
k(n) n ¢
p + Zezzv .
. n n
Now, define zy = 1 - =120’ then
kin) _ _n n ¢
P = ZyP + zlzi,(p + V).
Since pk(n) - p, zrz1 > O for every ¢ € {1,...,L). Thus zg > 1. Hence, for
- n k(n) . S n
every sufficiently large n, zZ, >0 and p is a convex combination of z,,
zrll, cees ZE. Therefore, by the concavity,
e(pk(n),u) = zge(p,u) + Zezrele(p + vz, u).
k(n)

Since e(pn,u) > w, elp ,u) > w. The right-hand side converges to e(p,u).
Therefore w = e(p,u).
We have thus proved our preliminary fact that if the sequence (e(pn,u))

in IR+ converges, then it must do so to e(p,u). Let’s now prove by
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contradiction that this implies that e(pn,u) - e(p,u). So suppose not, then
k(n)

there are a 8 > O and a subsequence {p } of {pn) such that

k(n),u) - e(p,u)| =z &

(n)

le(p

for all n. Since the subsequence (e(pk ,u)} is bounded, it has a further,

convergent subsequence. On the one hand, the limit can never be e(p,u),

k(n),u) - e(p,u)| z & for all n. On the other hand, our

because |e(p
preliminary result implies that the limit must be e(p,u). This is a
contradiction. We must thus have e(pn,u) > e(p,u).

Let’s now turn to the continuity of e(p,u) with respect to u. Let p € IRI;
be a price vector, u € R be a utility level, and {un) be a sequence of utility
levels in R converging to u. We need to prove that e(p,un) > e(p,u). Just as
before, it is sufficient to prove that if the sequence {e(p,un)) in R,

converges, then it must do so to e(p,u). Let w be the limit of (e(p,un)).

let € >0, x € lRI;, u(x) =z y, and p-x < e(p,u) + €. By the local nonsatiation,

we can make u(x) > u while preserving p:x < e(p,u) + €. Then there exists a
positive integer N such that u(x) > u" for every n > N. Thus, for such n, p:x
S e(p,un). Take the limit as n » o, then p-x =2 w. Thus e(p,u) + € > w.
Since this holds for every € > 0, we must have e(p,u) =2 w. To show the
reverse inequality e(p,u) = w, we can assume that u" = u for every n. (The
reason is as follows: If there is a subsequence such that u? = u for every n
in the subsequence, then we can apply this case to subsequence. If there is
no such subsequence;, then there is a subsequence such that =y for every n
in the subsequence. Hence e(p,u) = e(p,un) for such n. Taking the limit, we

L

obtain e(p,u) =< w.) Now let X € IRI_: and u(x) = u. Define B = {x € R,:

v

X = x),

then B is compact. This and W= implies that the truncated EMP

Min p-x s.t u(x) = o
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has a solution, denoted by xn € B. Then xn € h(p,un), that is, xn a solution
to the original, untruncated EMP, because p € IRI_:. Since B is compact, there
is a convergent subsequence (xk(n)} of {x"). Denote its limit by x. Since

u(-) is continuous, u(x) = u and hence p-x = e(p,u). Moreover, p_xk(n) -

k
k(n) (n) p

elp,u ) and p-x ‘x. Thus w = p-x and hence w 2= e(p,u).

Suppose that u(x) is strictly quasiconcave, twice continuously
differentiable and that Vu(x) # O for all x. Then we know that h(p,u) is a
function and the Lagrange multiplier A of the EMP must be positive. The
first-order condition for the EMP can be considered as a system of L + 1
equations and L + 1 unknowns:

p - AVu(x) = 0

u(x) —-u =20
By the implicit function theorem (Theorem M.E.1), the solution h(p,u) as a
function of the parameters (p,u) of the system is differentiable if the
Jacobian of this system has a nonzero determinant

- D2u(x) -p
w0

at (p,x) satisfying the above two equations. But, then, p = AVu(x) and hence

0

this condition is equivalent to

- Dzu(x) - Vu(x)
T *0,
Vu(x) 0
that is,
D2u(x) Vu(x)
# 0.

) o
By Theorem M.D.3(i), this inequality holds if Dzu(x) is negative definite on

{y € IRL: Vu(x)-y = 0}). This sufficient condition is a stronger differential

version of quasiconcavity, as the latter is equivalent to the condition that

2 . . . .. L
D u(x) is negative semidefinite on {y € R : Vu(x)-y = O).
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CHAPTER 4

%
4.B.1 By Roy’s identity (Proposition 3.G.4) and vi(p,wi) = ai(p) + b(p)wi,
1 Vi
xi(p,wi) = - —VTP,-T)V V. (p,W) = - b(p) V a, (p) vab(p)
Vi
1 . . . . .
Thus Vwixi(p,wi) = - vab(p) for all i. Since the right-hand side is
identical for every i, the set of consumers exhibit parallel, straight
expansion paths.
As for the second part, by (3.E.1),
ei(p,ui) = (ui - ai(p))/b(p).
Hence, by letting c(p) = 1/b(p) and di(p) =~ ai(p)/b(p), we obtain ei(p,ui) =
c(p)ui + di(p).
4.B.2 (a) Let p € [RL be a price vector and w = O be an aggregate wealth.
Consider two consumers, i and j. Consider two wealth distributions LW
(wl,...,wI) and (wl,...,wI) such that w, = wJ. =wz0, W, = O for any k # i,

and wl’( = O for any k # j. Since the preferences are homothetic, x(p,O,sk) =
for every k. Thus the aggregate demand with (wl,...,wI) is x(p,w,si) and the
aggregate demand with (wi,...,wi) is x(p,w,sJ.). Since aggregate demand
depends only on prices and aggregate wealth, we have x(p,w,si) = x(p,w,sJ.).
Since p and w were arbitrarily chosen, this means that i and j have the same
demand function. Hence they have the same preference. Since i and j were

arbitrarily chosen, we conclude that all consumers have the same preference.

(b) By analogy to the Gorman form, consider the following form of indirect

utility functions:
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vi(p,wi,si) = ai(p) + b(p)wi + c(p)si.
Note that b(p) and c(p) do not depend on i. By this and Roy’s identity

(Proposition 3.G.4),

1
x(p,wi.si) = - vavi(p,wi)
1 Vi Si
= - Tp)Val(p) - Tp)—Vb(p) - m)—Vc(p)
Thus
1 iVi i%i
):ix(p,wi,si) = - WziVai(p) - _b_(—p—TVb(p) - Tp)VC(p)'

Thus the aggregate demand depends only on ziwi and Zisi (and p).

4.C.1 By the definition of a directional partial derivative,
Dpx(p,w)dp = 11m€_)0(1/s)(x(p + edp, w) - x(p,w)).

Hence

dp-Dpx(p,w)dp dp- (lim_(1/€)(x(p + edp, W) - x(p,w)))

= lime_)O(l/e)dp-(x(p + edp, w) - x(p,w))
But the ULD property implies that dp-(x(p + e€dp, w) - x(p,w)) = O for all € >
0. Hence, by taking the limit £ - 0, we obtain dp-Dpx(p,w)dp = 0. Thus
Dpx(p,w) is negative semidefinite.

We shall prove the converse by contradiction. Suppose that the Jacobian
Dpx(p,w) is negative definite fof all (p,w) and that there exist p € IRL, p €
lRI", and w, € R such that xi(p,wi) # xi(p’,wi) and

(p - p)-(xi(p’,wi) - xi(p,wi)) =z 0.
Let A > 1 be sufficiently close to 1 that for every A € [0,1], demand is well
defined at (1 - A)p + Ap’. (If demand is well defined at strictly positive

price vectors, A is determined so that (1 - A)p + Ap’ >> O for every A €

[0,A].) Define p(A) = (1 - A)p + Ap’ and
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wi(A) = (p’ - p)-(xi(p(h),wi) - xi(p,wi)).
Then the function w(-) is differentiable, wi(O) = 0, wi(l) z 0, and

wi(A) = (p’ - p)-Dpxi(p(A),wi)(p’ - ph
We consider two cases:
Case 1: wi(A) = O for every A € [0,A].
Then Wi(l) = 0 and it is a maximum. Thus wi(l) = 0, that is,

(p' - p)-Dpx(p’,w)(p' - p) = 0.
This is a contradiction to the negative definiteness.
Case 2: w,(d) > O for some A € [0,A].
Then, by the mean-value theorem, there exists A* € (0,A) such that wi(A) -
Wi(O) = wi(?\*)(?\ - 0). By Wi(O) = 0 and wi(?t) > 0, wi(?\"‘) > 0. That is,
(p’ - p)-Dpx(p(A*),w)(p’ - p)>o0.

This is a contradiction to the negative definiteness. Our proof is thus

completed.

4.C2 If Dpxi(p,uiw) is negative definite on the whole IRL for every i, then
thg sum ZiDpxi(p,ociw) is negative definite on the whole IRL. Since Dpx(p,w) =
ZiDpxi(p’“iW)' Dpx(p,w) is negative definite on the whole IRL, implying that
x(p,w) satisfies the ULD property. To establish the WA, one way is simply to
notice that the ULD property implies the WA, as the latter considers only
compensated price changes.

Another way is to prove the given differential sufficient condition.
Let’s assume that w > 0. Define H = {v € IRL: v-x(p,w) = 0}, that is, H is the
hyperplane with normal x(p,w) that goes through the origin. Then peH
because p:x(p,w) = w > 0. Thus, if v € IRL and v is not proportional to p,

# 0, v, is

then there exist v, € IRL and v, € lRL such that v. € H, v1 2
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proportional to p, and v = v+ Yy Since S(p,w)v2 = 0 and vz-S(p,w) = 0 by

Proposition 2.F.3, we have

v-S(p,w)v = (v1 + v2)-S(p,w)(v1 + vz)

vl-S(p,w)v1 + vl-S(p,w)v2 + vz-S(p,w)v1 + vz-S(p,w)v2
= vl-S(p,W)vl.

But here, by v, € H,

S(p,w)v1 = (Dpx(p,w) + Dwx(p,w)x(p,w)T)v1= Dpx(p,w)vl.

Hence VI-S(p,w)v1 = vl-Dpx(p,w)v1 < 0 because v # 0 and Dpx(p,w) is negative

definite. Thus the WA holds.

4.C.3 A Giffen good will be a most familiar example. In the figure below,

good 1 is a Giffen good.

Y

X1

Figure 4.C.3

This example shows that the ULD property is actually not derived from the

utility maximization. It is a restriction on preferences.

4.C.4 The L-shaped indifference curves imply that for every strictly positive
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price vector, the consumer’s demand is always be at the corner of a upper
contour set. Hence no compensated price change will change the demand. Thus

‘ T
Si(p’wi) = 0 for every (p,wi) and Dpxi(p,wi) = Dwixi(p,wi)xi(p,wi) . Suppose

that there exists (p,wi) such that Dw xi(p,wi) # (l/wi)xi(p,wi). Since
i

p-DWixi(p,wi) = p-(l/wi)x(p,wi) = 1, this implies that Dwixi(p,wi) and

xi(p,wi) are not proportional. Hence there exists a v e IR2 such that

v-DW xi(p,wi) < 0 and v-xi(p.wi) > 0, as illustrated in the figure below:
i

o]

Dvixi(p,wi)
(1/wi)xi(p,wi)
—>
0 X1
v Figure 4.C.4
Thus
v-Dpxi(p,wi)v = - v-Dwixi(p,wi)xi(p,wi)Tv = - (v-Dwixi(p,wi))(v-xi(p,wi)) >0,

which implies that the ULD property is not satisfied. Thus, if it is in fact

satisfied, then we must have DW xi(p,wi) = (l/wi)xi(p,wi) for every (p,wi).
i

Thus the unique wealth expansion path, which is the set of the corners of the
upper contour sets, is a ray going through the origin. Hence the preference

is homothetic.




¥ 4.C.5 Following the hint, we fix w = 1 and write xi(p) = xi(p,l). Consider

1

| the indirect demand function gi(X) = XVe0
i

Vui(x). Since xi(p) = x if and

only if gi(x) = p, the ULD property of xi(p) is equivalent to the following
‘ property: if x # y, then (gi(x) - gi(y))-(x - y) < 0. For this latter
property, it is sufficient to show that ngi(x) is negative definite. We
L shall now establish this.
' By the chain rule (Appendix M.A}),
Dg,(x) = (x-Vur,(x) (- V(XD (x) = Vur, (x)Vu, ()T = Vs, () DPus (30)
Let q = Vui(x) and C = Dzui(x), then this can be rewritten as
Dg,(x) = (x*@) 2((x*a)C - qa’ - ax C).
] We need to show that v-Dgi(x)v < O for every v # 0. If v-.q = O, then
v-Dgi(x)v = (x-q)_lv-Cv < 0. (This property is equivalent to the negative
definiteness of the bordered Hessian of ui(-) and used to guarantee the
differentiability of the demand function, as explained in the Appendix to
Chapter 3). So suppose that v-q # 0. By multiplying a scalar to v if
necessary, we can assume that v-q = x-q. Then
v-Dgi(x)v = (x-q)-l(v-Cv - v.q - xX-Cv).
By x-q > 0, we need to show that v-Cv - v-q - x:Cv < 0. Since C is symmetric,
v:Cv - x-Cv = (v - (1/72)x)-C(v - (1/2)x) - (1/4)x-Cx.
Since ui(-) is concave, C is negative semidefinite and the first term in the
above expression is non-positive. Thus,
v-Cv - x-Cv = - (1/4)x-Cx.
Hence

v:Cv - v.q - x*Cv s - (1/74)x-Cx - q*X.

Since - x:ix < 4, the right-hand side is negative. Hence so is the left-
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hand side.

4.C.6 By differentiating both sides of u(Ax) = Au(x) with respect to A and
taking A =1, we obtain Vu(x):x = u(x). Then by differentiating both sides of
this equality with respect to x, we obtain Dzu(x)x + Vu(x) = Vu(x). Thus

Dzu(x)x = 0 and hence o(x) = O.

4.C.7 Suppose that the distribution of wealth has a diff erentiable,
nonincreasing density function f(:) over the interval [O,w]. Let v e rE and v
# 0, then, just as in the proof of Proposition 4.C.4, we have

v-Dx(plv = Ig(v-s(p,w)v)f(w)dw - J'gv(v-Dw;é(p,w))(v-§(p,w))f(w)dw.
Here, the first term is negative, unless v is proportional to p. (This
property is equivalent to the negative definiteness of the bordered Hessian of
ui(') and used to guarantee the diff erentiability of the demand function, as
explained in the Appendix to Chapter 3). As for the second term, just as in
the proof of Proposition 4.C.4,

- ~ 2
FatveD_X(p,w))v-%(p,w)) (w)dw = (1r2)5y Avxtp.w)

dw

flw)dw.

By integration by parts and ;é(p,O) = 0, this is equal to
(1/2)(v-;(p,v-v))2f(v_v) - (I/Z)IEV(V'x(p,W))zf'(w)dw

The first part of this is always nonnegative, and it is positive when v is

proportional to p. The integral of the second part is nonpositive because

(p,w))?

Tw flw)dw = 0. Hence v:Dx(p)v < O.

f£'(w) = 0. Thus (/25 dv-x
To see that there are unimodal density functions for which the
conclusions of this propositions do not hold, recall that

v-Dx(p)v = f‘g(v-S(p,w)v)f(w)dw - J“g(v-Dw?c(p,w))(v-;(p,w))f(w)dw.

To be specific, let v = (1,0,...,0) e IRL, then



W S AN ~
Dlxl(p) = J"Osn(p,w)f(w)dw J"ODwxl(p,w)xl(p,w)f(w)dw.

| a Suppose also that the graph of the function w - §1(p,w) is as shown below.

0 w* w

Figure 4.C.7

Then Dw;él(p,w) z 0 for every w € [0,w*] and Dw;él(p,w) < O for every w €
| [w*,wl. Thus I‘g*Dw;cl(p,w)szl(p,w)f(w)dw =z 0 and J'V;‘;*Dwgl(p,w)Szl(p,w)f(w)dw = 0.
0 If the density function f(-) is nonincreasing, the weight placed on the

interval [0,w*] is sufficient to dominate the negative effect of the interval

[w*,w], implying that J‘ng;cl(p,w);l(p,w)f(w)dw = 0. If the distribution

function is not nonincreasing, then the weight on the interval [w*,w] may

dominate that on the interval [O,w*], so that Ingw;El(p,w);l(p,w)f(w)dw < 0.

It could even dominate the substitution effect, in which case we have

v-Dx(plv = Ivg(v-s(p,w)v)f(w)dw - Ivg(v-Dw;c(p,w))(v-;c(p,w))f(w)dw > 0.

4.C.8 By substituting (4.C.6) into (4.C.5), we obtain

T
S(p,w) = ):isi(p,aiw) - Ztiixi(p,aiw)xi(p,ociw) + (Ziatiixi(p,aiw))x(p,w) .

On the other hand, the‘ right-hand side of (4.C.7) equals to

T
):isi(p,ociw) - Zti_xi(p,aiw)xi(p,aiw) + (Ziati.xi(p,aiW))x(p,w)

1 1
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T T
+ Dwx(p,w)(zixi(p,aiw)) - (Zioci)Dwx(p,w))x(p,w)

- T i
= Zisi(p’aiW) - Ztiixi(p,ociw)xi(p,ociw) + (Zioctiixi(p,ociw))x(p,w) . W

We have thus proved (4.C.8).

4.C.9 The homotheticity implies that DW xi(p,ociw) = (l/aiw)xi(p,aiw) and
i

hence Dwx(p,w) = Zioctiixi(p,ociw) = (I/w)x(p,w). Thus

Clp,w) = Zioci((l/ociw)xi(p,ociw) - (l/w)x(p,w))((l/ai)xi(p,ociw) - x(p,w))T
_ _ ) T
= Zi(oci/w)((l/oci)xi(p,aiw) x(p,w))((l/ai)xi(p,aiw) x(p,w))".
Thus, for every v e IRL,

V-Co,wIv = T (o w)((1/e)x (p,aw) - x(p,w)-v) = 0

Therefore, C(p,w) is positive semidefinite.

4.C.10 Let’s start by f ormulating our continuum-of-consumers situation. We
take the interval [0,2] as the set of (the names of) the consumers. The W
population density is equal to 1/2 unif ormly on [0,2]. We assume that the
proportion of each consumer’s wealth to the average wealth (which is, in this
situation, a counterpart of the aggregate wealth) is constant regardless of
the amount of the aggregate wealth. We further assume that when the "average"
wealth is equal to w > O, the wealth of consumer 7 € [0,2] is equal to nw.
Since [ gnv_v(l/z)dn = w, the term "average" is justified.

The average demand is then defined by x(p,w) = Ig;é(p,nv_v)(l/z)dn and the
Slutsky matrix S(p,w) is defined as in (4.C.4). The Slutsky matrix of
consumer 7 is denoted by S(p,nw). We then define C(p,w) by

Clp,w) = f§§(p,n®)(1/2)dn - S(p,w).

Just as in the small-type discussion following the proof of Proposition 4.C.4,
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we have

C(p,w) .r(z)(n/Z)(Dw;(p,nv'v) - Dwx(p,v'v))(u/n);(p,nv'v) - x(p,v‘v))Tdn

12(1/2)D_%(p.nin)%(p,mivdn - D x(p,Wix(p, W)

= Ig(1/2)DW§(p,m7v);c(p,m?/)dn - (Icz)(n/Z)Dw;c(p,nv_v)dn)x(p,\;/)'r.
Thus, for each v € lRL,

v-Clp,w)v
= J“gu/zxv-Dw§(p,n€v))(v-§(p,n€v))dn - (f%(n/zw-ow;(p,n&)dn)(v-x(p,v'v)).

For the first term, we know that

r(1/2)tv+D ¥ p, ) (v Xlp,mw)dn = (1/aw)(v-%(p,2w)°.
As for the second term, by integration by parts,

2 ~ -
Io(n/Z)v-Dwx(p,nw)dn

[(n/z)(v-i(p,nv-v))(l/v_v)]z:g - Iguxz)(v-i(p,nv'v))u/v’v)dn

(L/w)(ve%(p,2w)) - (1/w)(v-x(p,w)).

n

Hence

v-Clp,w)v (1/v_v)((1/4)(v-§(p,25v))2 - (v-X(p,2w))(v- x(p,w)) + (v-x(p,v'v))z)

(W (1/2)(v - %(p,2w) - v-x(p,w)Z = 0.

Thus C(p,v—v) is positive semidefinite.

4.C.11 (a) When deriving individual demands from the first-order conditions
of utility maximization, we will neglect the nonnegativity constraints (which
is investigated in Exercise 3.D.4(c)). In fact, we will later see that, for
prices and wealths 'under consideration, the demands are always in the interior
of the nonnegative orthant.
It follows directly from the first-order conditions that
s, (p.w/2) = (¢, (p,w/2), 5, (p,wW/2)) = (W/2D) = 4P/Py, 4p5/p2),

2,2
xz(p,w/Z) = (xlz(p,w/z),xzz(p,w/Z)) = (4p2/p1, w/2p2 - 4p2/p1),



Hence

x(p,w) xl(p,w/z) + xz(p,w/Z)

2,2 2,2
(w/2pl - 4pl/p2 + 4p2/p1, w/2p2 - 4p2/p1 + 4p1/p2).

1]

(b) Denote the (£,k) entry of the Slutsky matrix Si(p,w) of consumer i by
SZki(p’W)’ Since c'3x21(p,w/2)/<9w1 = 0, 5221(p,w/2) = 6x21(p,w/2)/6p2 =

2,3 _ _ 2
- 8p1/p2. Hence by Proposition 2.F.3, szu(p,w/z) = s121(p,w/2) = 8pl/p2, and

hence s, (p,w/2) = - 8/p.,. Thus
111 2 r 2

- 8/p2 8p1/p2
2 2,31
i 8p1/p2 - 8p1/p2 ]

Sl(p,w/2)

Similarly, we can show that

2,3 2
( - 8p1/p2 8p2/p1

Sz(p,w/z)

2 .
8p2/pl - 8/p1 ]
We can also apply Proposition 2.F.3 to derive the Slutsky matrix S(p,w) of the

aggregate demand function:

2 2,3 2 2

- w/4p1 - 6/p2 - 6p2/pl w/4plp‘2 + 6p1/p2 + 6p2/p1

S(p,w) = > > 5 5 3
w/4p1p2 + 6p1/p2 + 6p2/p1 - w/4p2 - 6/p1 - 6[.)1/p2

By Exercise 2.F.9(b) (and S(p,w)p = 0), if dp € IRZ, dp # 0, and dp
is not proportional to P, then dp-S(P,w)dp < 0. Thus, according to the
small-type discussion after Proposition 2.F.3, the aggregate demand function
x(p,w) satisfies the WA.
(c) By substituting p = (1,1), we obtain

' w/4 - 4 4 - w/4J

Clp,w) = )_",iSi(p,w/Z) - S(p,w) =
4 - w/4 w/4 - 4

Thus, if w > 16, then it is positive semidefinite, and if 8 < w < 16, then it
is negative semidefinite. (This can be shown by applying Theorem M.D.2(ii),

or by noticing that C(p,w)p = O and p-C(p,w) = O and then applying the
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argument in the proof of Exercise 2.F.9(b).) For example, if w = 12 and v =
(1,0), then v-C(p,w)v = - 1. Thus C(p,w) is not positive semidefinite. We

saw in (b) that the aggregate demand function satisfies the WA. We can thus
conclude that in order for an aggregate demand function to satisfy the WA, it

is not necessary that the matrix C(p,w) is positive semidefinite.

(d) Here is a figure depicting the wealth expansions paths of the two
consumers for p = (1,1). They intersect each other at (4,4) because x1(1,1,8)
= x2(1,1,8) = (4,4). Note that if 8 < w < 16, the Engel curves resemble those

of figure 4.C.2(b); if w > 16, the Engel curves resemble those of figure

4.C.2(a).
consumer 2
x2 4 A
4 > consumer 1
)
0 4 Xi
Figure 4.C.11(d)

'

4.C.12 As suggested in the hint, our example is a two-commodity, two-consumer
economy in which the two consumers have the same preference and the wealth
distribution rule is such that when the aggregate wealth is equal to 4, the
wealth of consumer 1 is equal to 1 and the wealth of consumer 2 is equal to 3.

The example here is essentially the same as Example 4.C.1 (which is
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illustrated in Figure 4.C.1). Example 4.C.1 is not directly applicable to the

present context, because the two consumers have the same wealth but the W
different demands. However, if wealth levels are different between the two

consumers, then it is possible that they have the same preference and yet

demands similar to those in Figure 4.C.1, yielding a violation of the WA in

the aggregate. This is illustrated in the figure below:

Figure 4.C.12

4.C.13 We consider a two-commodity, two-consumer economy with the given
wealth distribution rule wl(p,w) = wpl/(p1 + pz) and wz(p,w) = wpz/(p1 + pz).
The preferences of the consumers are represented by the f ollowing utility

functions:

ul(xl) Min (xu,ZXZI),
uz(xz) = Min {2x12,x22}.
So the preferences are homothetic and have L-shaped indifference curves. The

unique wealth expansion paths are depicted in the figure below:
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X2 f consumer 2

S I /
consumer 1
2 e """""""" :
: >
0 2 4 X1
Figure 4.C.13

Just as we saw in the answer to Exercise 3.D.5(c), the individual demand
functions are
xl(p,wl) = (2w1/(2p1 + ;52), wl/(Zp1 + pz)).
xz(p,wz) = (wz/(p1 + 2p2), 2w2/(p1 + 2p2)).
The aggregate demand function is given by
x(p,w) = xl(p,wl(p,w)) + xz(p,wz(p,w)).

We claim that the aggregate demand function does not satisfy the WA. To
see this, define A = {p € IR3+: P+ Py = 1} and our restrict attention to p €
A and w = 1. Then wi(p,w) =P for both i and hénce

limp_)(l’o)x(p,l) = limpe(l’o)xl(p,wl(p,l)) = (1,172),
limp_)(o’l)x(p,l) = limp_)(o,l)xz(p,wz(p,l)) = (1/72,1).
Thus, if p € A, q € A, and P, and q, are sufficiently small, then q-x(p,1) <1
and p-x(q,1) < L Hence the aggregate demand function does not satisfy the
WA.

Proposition 4.C.1 does not apply to this example because the wealth

distribution rule of this example depends on prices, while the proposition

does not allow this.
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4.D.1 It is easy to check from the budget constraints that the distribution

(xl(p,wl(p,w)),...,xI(p,wI(p,w))) of commodity bundles satisfies the

constraints of the maximization problem in this exercise, and, from the
definition of the indirect utility f unctions, that it attains the value
v(ip,w). It thus remains to show that if (xl,...,xI) satisfies the constraints
of the maximization problem in this exercise, then W(ul(xl),...,ul(xl)) =
v(p,w). For each i, define W; = p*X,, then Ziwi = Zip-xi = p-(Zixi) = w, that
is, (wl,...,wI) satisfies the constraint of the maximization problem of
(4.D.1). Hence, by the definition of v(p,w),
W(vl(p,wl),...,vl(p,wl)) = vip,w).

On the other hand, by the definition of the indirect utility functions, ui(xi)
= vi(p,wi) for every i. This and the increasingness of W(-) imply that

W(ul(xl),...,ul(xl)) = W(Vl(-p’wl)’“"VI(p’wI))'

Hence W(ul(xl),...,ul(xl)) = v(p,w). This completes our proof.

4.D.2 To check that v(p,w) is increasing in w, let p be a price vector, w and
w’ be two aggregate wealth levels with w = w’, and (wl,...,wI) be a solution
to the social welfare maximization problem of (p,w). Then

vip,w) = W(vl(p,wl),...,vl(wl)).

Also, Ziwi = w and hence Ziwi = w’. Thus, by the definition of v(p,w’),
W(vl(p,wl),...,vl(p,wl)) s v(p,w’).
Hence v(p,w) = v(p,w’).
To check that v(p,w) is nonincreasing in p, let w be an aggregate wealth
level, p and p’ be two price vectors with and p’ = p, and let (wl,...,wI) be a

solution to the social welfare maximization problem of (p’,w). Then

v(p’,w) = W(vl(p’,wl),...,vI(p’,wI)).

4-15 '



Also, vi(p’,wi) = vi(p,wi) for every i because p’ = p. Since W(-) is
increasing, this implies that
W(vl(p’.wl).--.. vI(p’,wI)) = W(Vl(p’wl)"'"VI(p’wI))'
By the definition of v(p,w),
W(vl(p,wl),...,vl(p,wl)) = v(p,w).
Hence v(p’,w) = v(p,w).

To verify the homogeneity of degree zero and the quasiconvexity, we apply
the equivalence of the two maximization problems established in Exercise
4.D.1. For any (p,w) and A > O, the two price-wealth pairs (p,w) and (Ap,Aw)
give the same constraints to the maximization problem of Exercise 4.D.1.
Hence v(p,w) = v(Ap,Aw), implying the homogeneity. As for the quasiconvexity,
let v e R. Let (p,w) and (p’,w’) be two price-wealth pairs such that vip,w) =
v and v(p’,w’) = v. Let A € [0,1] and define p" = ap + (1 - A)p’ and w" = Aw
+ (1 - A)w’. Let (Xl””’xl) be a solution for (p",w"). Then p"-(zixi) = w"

and hence

1A

Ap-(zixi) + (1 - A)p’-(Eixi) aw + (1 - a)w’.
We must thus have either w = p-(Zixi) or w = p’-(Zixi). Hence we must have
either W(ul(xl),...,ul(xl)) < v(p,w) or W(ul(xl),...,ul(xl)) = v{ip’,w'). In

either case, we have W(ul(xl),...,ul(xl)) =< v. Hence v(p,w) is quasiconvex.

4.D.3 The welfare maximization problem is now rewritten with nonnegativity
constraints:

max ) W(vl(p,wl),...,vl(p,wl))

peo W
s.t. ):iwi = w,

w1 z O for all i.

We assume that xi(p,O) = 0 for every i and every p > 0. This assumption is
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satisfied if, for example, the consumption sets are all lRI_:. Then vai(p,O) =
O for every i and every p >> 0. The Kuhn-Tucker conditions for the %
social welfare maximization (Theorem M.K.2) are that there exist A > O and M,
z 0 such that

(3W/6ui)(6vi/6wi) - A+ M, = O for every i = 1,...,1,

LW = W,

w, = 0 and MW, = O for every i = 1,...,1,
where all derivatives are evaluated at the solution

(Wl""’wl) = (wl(p,w),...,wl(p,w)).

The Envelop Theorem (Theorem M.L.1) implies that

av/8w = A,

8v/8p, = Zi(BW/aui)(avi/ape).
Now define J = {i: wi(p,w) > 0}). Since b, = O for every i € J, dv/8w =

(BW/aui)(avi/awi) for every i € J. Since avi/ape =0 for any i ¢ J, av/ape =

Tie (8W/8u)(8v./6p,). Thus, W%
av/ape (8W/8u. )(av./8p,) (8W/8u.)(8v./8p,)
e =-7 i e y i i 4
ov/ow ie] av/aw ieJ (8W/8u.)(dv./dw.)
i i i
6vi/6p2

= - Zielw = Ziejxi(p,wi(p,w)) = Zixi(p,wi(p,w)).

Hence the Walrasian demand function derived from v(p,w) equals Zixi(p,wi(p,w))

and the proof is completed.

4.D.4 (a) If the uit-) and W(-) are monotone, then so is u(-).

)

If the ui(-) and W(-) are continuous, then the composite map (xl,...,xI
> W(ul(xl),...,uI(xI)) is also continuous. Thus, by the Theorem of the
Maximum (Theorem M.K.6), u(-) is also continuous.

If the ui(-) are concave and W(-) are monotone and concave, then u(-) is



concave. This can be proved as follows. Let x € IRL, x' € IRL, and A € [0,1].

Define x" = Ax + (1 - A)X’ € [RL. Let (xl,...,xl) € IRLI, (xi,...,xi) € [RLI,

Zixi = X, Zixi = x’, ulx) = W(ul(xl),...,ul(xl)), and u(x’) =
H] ? : ”n ”n LI L LI - ’
W(ul(xl),...,ul(xl)). Define (xl,...,xI) e R~ by Xy = Axi + (1 7\)xi for

each i. Then Zix'i' = Ax + (1 - A)x’ and hence
u(dx + (1 - A)x’) = W(ul(xl),...,ul(xl)).
By the concavity of the ui(-) and the monotonicity of W(-),
W(ul(xl),...,ul(xl))
z W(?\ul(xl) + (1 - A)ul(xl), . AuI(xI) + (1 - A)uI(xI)).
By the concavity of W(-),
W(Aul(xl) + (1 - A)ul(xl), . AuI(xI) + (1 - A)ul(xl))
= Aulx) + {1 - Au(x’).
Hence u{Ax + (1 - A)x’) = Au(x) + (1 - A)u(x’). Hence u(-) is concave.

It is worthwhile to point out that the quasiconcavity of W(-) and the

ui(°) does not imply that of u(:). As an example, let L =2, 1 = 2, ul(xl) =

2 2 _

X|p uz(xz) = X5 and W(ul,uz) =u +u, Then
w(2,0) = W(ul(Z,O),uz(0,0)) = W(4,0) = 4,
w(0,2) = W(ul(0,0),uz(O,Z)) = W(0,4) = 4,

w(,1) = W(ul(l,O),uz(O,l)) = W(,1) = 2.

(b) We shall first prove that, for every x € (RL, if there exists (Xl"”’xl) €
IRLI that satisfies Zixi =< x and is a solution to the maximization problem of
Exercise 4.D.1, then x is a solution to the maximization problem of this part.
In fact, suppose that (xl,...,xI) € lRLI, ):ixi = x, and (Xl""’xl) is a

solution to the maximization problem of Exercise 4.D.1. Let %X’ € IRL and p-x’

» ’ LI ) ’ ’ - [} )
= w. Let (xl,...,xI) e R, zixi = x', and u(x’) = W(ul(xl),...,ul(xl)).

Then p-(Lxi) = w. Hence W(ul(xi),...,ul(xi)) = Wy, (x,),...,u (x})). Since
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Zixi = x, W(ul(xl),...,ul(xl)) = u(x). Thus u(x’) = u(x). Hence x is a
solution to the maximization problem of this part.
By Exercise 4.D.1, (xl(p,wl(p,w),...,xI(p,wI(p,w)) is a solution to its
maximization problem. Thus, by the above result, ):ixi(p,wi(p,w)) is a
solution to the maximization problem of this part. Hence the Walrasian demand

function generated from it is equal to the aggregate demand function.

4.D.5 There is no positive representative consumer if the WA is violated.

Example 4.C.1 thus serves as an example for this exercise.

4.D.6 The social welfare maximization problem is now written as

Ma‘x(wl,...,wl) L% 1nv;(p,wy)

s.t. Ziwi = w.
The first-order conditions are that there exists A > O such that
(aW/aui)(avi/awi) = A for every i, where all derivatives are evaluated at a

solution (w w.). By the definition of W(-), ¢'3W/é)ui = oci/vi(p,wi). By

TS
Exercise 3.D.3(b), vi(p,wi) is homogeneous of degree one in W, and hence
E)vi(p,wi)/é-)wi = vi(p,wi)/wi. Hence the left-hand sides of the above

first-order conditions equal (ai/vi(p,wi))(vi(p,wi)/wi) = oci/wi for every i.

Thus w, = ai/h. Since Ziai =1 and Ziwi = w, w = 1/A. Hence W= ow. Thus

wi(p,w) = W,

4.D.7 The social welfare maximization problem is now written as

Malx(wl,...,wl) Liz;(p) + bp)Ew,)

s.t. Ziwi s w.

Thus any (wl,...,wI) with Eiwi = w is a solution to this problem and v(p,w) =
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Ziai(p) + b(p)w.

4.D.8 Suppose that (p’,w’) passes the potential compensation test over
(p,w). Then there exists (wi,...,wi) € R! such that Eiw’i = w and vi(p’,wi) >
vi(p,wi(p,w)). Since W{(-) is increasing, W(vl(p’,w’l),...,vI(p’,wi)) > vip,w).
By the definition of v(p’,w’), v(p’,w’) = W(vl(p’,wi),...,vI(p',wi)). Hence

v(p’,w') > vip,w).

4.D.9 Define Ai = (xi:ui(xi) = ui(;(i)), then A = ZiAi' Then, for every p >>
0, x e IRL is a solution to

Mmye A p'y
if and only if there exists (xl,...,xI) € A1 X oo X AI such that Zixi =X
and, for every i, X, is a solution to

Min pP'X
V€A

.
Hence Min{p‘y: y € A} = ZiMin(p-yi: y; € Ai). By the definition,

Min(p-yi: y; € Ai) = ei(p,ui(;(i))
for every i. Hence

Min{p'y: y € A} = Ziei(p,ui()-ci)).
On the other hand, by the definition,

Min{p-y: y € B} = e(p,u(x)).
Since A ¢ B, Min{p'y: y € A} = Min{p-y: y € B}. Hence
g(p) = elp,u(x)) - Ziei(p,ui(ii)) =0

for every p. By the definition, g(f)) = 0. Hence, by the second-order
necessary condition for a maximum (Section M.K), ng([_)) is negative
semidefinite. Since ng(l—)) = S(p,u(x)) - Zisi(p,ui()—(i)) by Propositions 3.G.3

and 3.G.3, S(p,u(x)) - ZiSi(p,ui()—ci)) is negative semidefinite.
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4.D.10 As we saw in the answer to Exercise 4.C.11(b), for every (p,w), S(p,w)

is symmetric, and if dp € IRZ, dp # O, and dp is not proportional to p, then W
dp-S(P,w)dp < 0. Thus, according to Section 3.H, there exists a positive

representative consumer. But according to Exercise 4.C.11(c), if 8 < w < 16,

then the matrix C(p,w) is not positive semidefinite. Hence, according to the

small-type discussion in Section 4.D, there is no normative representative

consumer.

4.D.11 We shall give an example in which L = 3 and Clz(p,v_v) # CZl(p’v-V)' By
the definition,
C 5P, w)
= JQU/2)(8%,(p,nw)/6w)%(p,miv)dn - (Fgtn/2)(8%, (p,m)/3w)dm)%. (p,mw).
Here, by integration by parts,

J“g(n/z)(a%(p,nv'v)/aw)dn

2 " - w |
J'O(n/2w)(dx1(p,nw)/dn)dn %

i(n/sz)fc(p,nJv)];':g - .rg(l/z&)}l(p,nv'v)dn

(1/w)x(p,2w) - (1/72W)x, (p, w).
Hence
- _ 2 ~ - ~ -
Clz(p,w) = J'o(l/z)(3x1(p,nw)/6w)x2(p,nw)dn
- (1/Jv)§1(p,z€v)x2(p,®) + (1/zx7v)x1(p,&)x2(p,v'v).
Similarly,
- _ 2 ~ -~ -
021(p’W) = J‘O(1/2)x1(p,nw)(axz(p,nw)/aw)dn
- (1/Jv)x1(p,x7v)§2(p,z\7v) + (1/2\7v)x1(p,\7v)x2(p,\7v).
Again by integration by parts,

I3(1/2)>"c1(p,nv?r)( afcz(p,nv?/)/aw)dn
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F2(1/2)% (p,mw )1/ )%, (p, mw) /dn)m

[(1/2&)§1(p,n€v)§2(p,n€v)13;3 - fg(1/zv'v)(d§1(p.nv“v)/dn)§2(p.n€v)dn

(1/2W)%,(p. 2W)%(p,2W) = J2(1/2)(0% (B, W)/ 8w (p,nW)dn
It is thus sufficient to obtain an example in which
Ig(l/z)(a§1(p,n6v)/aw)§2(p,nv?/)dn - (1/w)x, (p,2W)x,(p,W)
* (1/2w)x (p,2W)x,(p,2wW) - J'g(l/Z)(6)~cl(p.mi-v)/6w)§2(p,nv—v)dn
- (I/Jv)xl(p,cv);éz(p,zgv).
or, equivalently,
s2(1/2)(8% (p,mw)/ 8w, p,nw)dn
# (1/2W)%, (p,2W)X,(p,2W) + (1/W)x, (p,2W)x,(p,W) - (1/W)x, (p,W)x,,(p,2W).
So consider a preference, a price vector p, and the average wealth w such
that:
;ce(p,Z\;r) = 2 for both £ = 1,2,
xz(p,v.v) = Icz)(l/z))?z(p,nv-v)dn = 1 for both £ = 1,2.
(Another restriction will be given shortly. The demand for good 3 is
determined by Walras’ law.) Then the right-hand side of the above inequality
is equal to 2/w. It is then sufficient to show that
fg(1/2)(aSél(p,anr)/aw);z(p,m‘v)dn * 2/W.
But if the graphs of the functions 7 > ;éz(p,nv_v) are as in the figure below,
then the first term can be made as close to zero as needed. The above

inequality can thus be established.
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x2(p,NW)

2w

Figure 4.D.11
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CHAPTER 5

P

5.B.1 The first example violates irreversibility and the second one satisfies

this property.

Figure 5.B.1

5.B.2 Suppose first that Y exhibits constant returns to scale. Let z € IRI_,'_'_1
and @ > 0. Then (- z, f(z)) € Y. By the constant returns to scale,
(- az, af(z)) € Y. Hence af(z) = f(az). By applying this inequality to «az in
place of z and a—l in place of «, we obtain ocnlf(ocz) = f(oc_l(ocz)) = f(z), or
flaz) = af(z). Hence flaz) = af(z). The homogeneity of degree one is thus
obtained. |

Suppose conver:sely that f(-) is homogeneous of degree one. Let (- z, q)
€ Y and « = 0, then q = f(z) and hence aq = af(z) = fl(az). Since
(- az, flaz)) € Y, we obtain (- az, aq) € Y. The constant returns to scale is

thus obtained.

5.B.3 Suppose first that Y is convex. Let z, 2’ € [RI_:_1 and « € [0,1], then



(- z f(2)) € Y and (- z2’, f(2')) e Y. By the convexity,
(- {az + (1 - @)z), af(z) + (1 - a)f(z)) e Y.

Thus, af(z) + (1 - a)f(z) = floez + (1 - @)z). Hence F(z) is concave.

Suppose conversely that f(z) is concave. Let (a, -2) ey, (q, - Z’) e
Y, and « € [0,1], then 9 = f(z) and @’ = f(z’). Hence

«q + (1 - a)g’ = af(z) + (1 - a)f(z’).
By the concavity,
af(z) + (1 - a)f(2') = flaz + (1 - a)z’).
Thus
aq + (1 - &)q’ = flaz + (1 - a)z’).

Hence

(- (az + (1 - a)z), g + (1 - a)q’) = a(- z, q) + (1 - a)- 2, q’) € Y.

Therefore Y is convex.

5.B.4 Note first that if Y itself is additive, ther; Y+ = Y by the definition M
of the additive closure, This applies to Figures 5.B.4, 5.B.6(a), S5.B.6(b),
5.B.7, and 5.B.8. So we shall not depict them.

Let’s now take up the cases in which the production set is not additive.
Note first that Y+ is equal to the set of vectors of IRL that can be
represented as the sum of f initely many vectors of Y. If the production set
is convex, as in Figures 5.B.1, S.B.2(a), 5.B.2(b), 5.B.3(a), S.B.3(b), and
5.B.5(a) (which is the same as 5.B.2(b)), then we have the following stronger
property: v* consists of all "multiplied" production plans. To be more
precise, for each positive integer n, define nY c IRL by nY = {(ny e !RL: y € Y).
We then claim that Y+ = u:::lnY. In fact, if ¥y € nY for some n, then (I/n)y e
Y. By the definition, (1/n)y e Vel and hence y = n{(1/n)y) e Y*, Thus Y' >

u;:_lnY. To prove that Y' ¢ u:_lnY, it is sufficient to show that u:_lnY is

5
(™ i
”
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B

additive, by the definition of v'. so let y € U§=1nY and y’ € u:::lnY. Then
there exist positive integers n and n’ such that y € nY and y’ € n’Y. Thus
(I/n)y € Y and (1/n’)y’ € Y. Since Y is convex and n/(n + n’) + n’/(n + n’) =
1,

(n/(n + n’))((1/n)y) + (n’/(n + n"))((I/n')y’) € Y.
That is, (1/(n + n’))(y + y') € Y. Thus y + y’ € (n + n')Y.

If the production set is not convex, as in Figure 5.B.5(b), then we no
longer have Y+ = u:=1nY. As we can see in the above proof, while we still
have Y+ > u:_:lnY, we need not have Y+ C ucr::lnY. That is, it may be true that
some production plans in Y+ can be attained only by allocating different
inputs to different production units. This point can be formulated as
follows. Let (yi‘,ya) be the production plan at which the average return is
maximized. That is, yE/Iy’i‘l > yz/lyll for any other y = (yl,yz) € Y. Assume
that the function that associates each Y < 0 to the average return at Y is
quasiconcave. (This appears to be true from the figure. It is equivalent to
saying that the average return function is single-peaked.) Let ¥ < 0 be an
(aggregate) input level and n be the positive integer such that ny’i‘ < y, =
(n - l)y’f. Let (yll,...,y1 J) be an output-maximizing allocation of aggregate
input vy (The number J of production units to be used is also being
optimized here.) We shall prove that one of the following three cases must
then apply:

(i) J =n -1 and 3lflj = yl/(n - 1) for every j.
(ii) J = n and ylj = yl/n for every j.
(iii) J = n and there exists k € {1,...,J} such that Ve =¥ - {n - l)y*iE and

ylj = y*i‘ for any j # k.

To prove this, note first that we must have either yl.i = y*{ for every j, or

le. = y’f for every j. In fact, if neither of these applies, then a small



input reassignment from a production unit with ylj < y*f to one with le. > y*{
increases the (aggregate) output level, because the average return increases.

If ylj = y*f for every j, then the average return is decreasing at every yU.

and hence the le. must be all the same. By the quasiconcavity, J must be the
maximum integer that satisfies y‘f = ijlj (and ylj = y’i‘). Hence J = n - 1 and
(i) applies. If le. z y’f for every j, then the average return is increasing

at every le.. If the ylj are all the same, then, by the quasiconvexity, J

must be the minimum integer that satisfies yi = ijlj (and le. = y’f). Hence J
= n and (ii) applies. So suppose that some of the le. are different. If

there exist two production units for which le. > y’i‘, then a small input
reassignment from one to the other would increase the output level, because
the average return is increasing. Hence there must exist at most one k for
which Yik > y*{. By the quasiconcavity, yl_j = y’{ for any j # k. Thus (iii)
applies. This last case happens when the average return decreases very fast

after the input level goes beyond yi‘.

For Figure 5.B.1 For Figure 5.B.2(a)
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For Figure 5.B.2(b)

T
For Figure 5.B.3(a)




For Figure 5.B.3(b)

For Figure 5.B.5(b)



5B5 lLetyeYand v e - [RI:. Then, for every n € N, nv € - IRI; and hence nv
€e YbyYc - !RI;. Since Y is convex,
(1 - 1/n)y + (I/n)(nv) = (1 - I/n)y + v e Y.

Since Y is closed, y + v = limn_)mJ ((1 - I/n)y + v) € Y

5.B.6 (a) From the given functions ¢i(°) (i = 1,2), the production set is
defined as Y = ((yl,yz,q): there exist q z 0 and q, = 0 such that q +9, =49
and - A z ¢i(qi) for both i}). A three-dimensional production set is depicted

in the following picture, assuming that the ¢i(-) are convex.

output
A
input 2
“—¥—> input 1

Figure 5.B.6(a)

(b) We claim that the condition that
’ ] 14 Z 3 =

t)bi(qi + qi)(S ¢i(qi) + ¢i(qi) for all q = 0, q; 0, and i = 1,2,
is sufficient for additivity. In fact, let (yl,yz,q) € Y and (yi,y'z,q’) €Y.
Then there exist (ql,qz) such that q +4q,=q and - y; ® ¢i(qi)’ and (ql’ qz)
such that q * 49, z q" and - ¥ = ¢i(qi)’ Then

(q +q) +(q; +q)) =q+4d,

and

- O+ y) = 4(q) + ¢,(q) = ¢y(q; + qp).
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Thus (y1 + yi, Yy *+ yé, q + q') € Y, establishing the additivity.

(c) Let the output price be p. The first-order necessary conditions for
profit maximization are that, for both i, wiqb;(qi) = p, with equality if q; >
0. The interpretation is that marginal cost (in monetary term) due to a unit
increase of output level must be smaller than or equal to the output price,
and the former must be equal to the latter if fhe output level is positive.

If both ¢1(-) and ¢2(-) are convex (so that the corresponding production
set is convex), then, according to Theorem M.K.3, these f irst-order necessary

conditions are also sufficient.

(d) Let q > 0. By renumbering i = 1,2 if necessary, we can assume that
W1¢1(q) = w2¢2(q). In order to prove the statement, it is sufficient to show
that, for any q > 0 and q, > 0 with q + 49, = q, we have wl¢1(ql) + w2¢2(q2)
> wl¢1(q). In fact, since the ¢i(°) are strictly concave (and ¢i(0) = 0) and
979 + q,/q = 1, M

w1¢1(q1) + w2¢2(q2) > wl(ql/q)qbl(q) + wz(qz/q)¢2(q)

= (ql/q)w1¢1(q) + (qz/q)w2¢2(q) = w ¢ (q).

The statement is thus proved. The strict concavity of the ¢i(-) is
interpreted as the increasing returns to scale, which makes the statement
quite plausible: Under the increasing returns to scale, it is better to
concentrate on one technique.

The isoquants of the input use is drawn in the following figure. Note
that the additive separability imposes the same restriction on the isoquants

as that alluded to in Exercise 3.G.4(b).
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input 2

—>  inputl-

Figure 5.B.6(d)

5.C.1 If there is a production plan y € Y with p-y > O, then, by using ay € Y
with a large o > 1, it is possible to attain any sufficiently large profit
level. Hence n(p) = w. If, on the contrary, pry = O for all y € Y, then n(p)

= 0. Thus we have either n(p) = + @ or n(p) = 0.

S.C.2 Letp>0,p >0, «x €0,1], and y € ylap + (1 - a)p’), then p-y =
n(p) and p’*y = n(p’). Thus,

(ap + (1 -~ a)p’):y = ap'y + (1 - a)p’y = an(p) + (1 - «)u(p’).
Since (ap + (1 - a)p’)'y = nwlap + (1 - a)p’),

mlap + (1 - a)p’) =< an(p) + (1 - o)n(p’).

Hence n(-) is convex.
5.C.3 The homogeneity of c(-) in q is implied by that of z(:). We shall thus
prove this latter homogeneity only. Let w >> 0, q 2 0, and « > 0. Let z €
z(w,q). Since f(-) is homogeneous of degree one, f(az) = af(z) = aq. For

every z’ € IRI;_I, if f(z') = ag, then fla 'z’) = «lrz) = q. Thus, by z €
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z(w,q), w-(a—lz’) = w-z. Hence w:z’ = w-(az). Thus az € z(w,xq). So az(w,q)
< z(w,aq). By applying this inclusion to a—l in place of « and «q in place of
q, we obtain oc—lz(w,ocq) C z(w,oc-l(aq)), or z{w,aq) ¢ az(w,q) and thus conclude
that z(w,aq) = az(w,q).

We next prove property (viii). Let w e RI;;I, 20,9 =20, and « €
[0,1]. Let z € z(w,q) and z’ € z(w,q’). Then f(z) = q, f(z') = ¢, clw,q) =
w-2z, and c(w,q’) = w-z’. Hence

ac(w,q) + (1 - a)e(w,q’) = alw-z) + (1 - o)(w-2’) = welaz + (1 - a)z’).
Since f(-) is concave,

flaz + (1 - a)2') = af(z) + (1 - a)f(z’) = agq + (1 - a)q’.
Thus w-(az + (1 - a)z’) =z c(w, aq + (1 - «)q’). . That is,

ac(w, q) + (1 - a)clw, q') = clw, ag + (1 - alg’).

5.C.4 [First printing errata: When there are multiple outputs, the function

f(z) need not be well defined because it is conceivably possible to produce w
different combinations of outputs from a single combination of inputs.
Assuming that the first L - M commodities are inputs and the last M

commodities are outputs, we should thus understand the set {zz0: f(z) = q)

L-M

as {z € IR+_ : (- 2z, q) € Y).] For each q = 0, define

Y(q) = {z € IR,;-

M: (-2, 9)eY=(ze€ IRI_:_M: f(z) = q}.
Then c(-,q) is the support function of Y(q) for every q. Hence property (ii)
follows from the discussion of Section 3.F. Moreover, according to Exercise

3.F.1, if Y(q) is closed and convex, then
L-M

Y(q) = {z ¢ R, : w-z 2 c(w,q) for all w > 0).
Since Y = {(- 2, q): q = 0 and z € Y(q)}, this implies property (iii).

To prove property (iv), let w >> 0, qz0, >0, ze€ zwgq), and z’ €

Y(q). Then w-z = w-z’. Hence (aw)-z = (aw)-z’. Thus z € zlaw,q). Therefore




z(w,q) ¢ zlaw,q). By applying this inclusion to aw in place of w and oc_l in
place of «, we obtain z{aw,q) c z(oc—l(ocw),q) = z(w,q). Property (iv) thus
follows.

Property (iv) implies the homogeneity of degree one of c(-) in w, which
is the first part of property (i). As for its second part, let w >> 0, qz0,
qQ 20, and ¢’ = q. Then Y(q') ¢ Y(q). Since c(-,q) and c(-,q’) are the
support functions, this inclusion implies that c(w,q’) = c{w,q). Hence c(+)
is nondecreasing in q.

As for property (v), note that z(w,q) = Y(q) n {z € IRL: w-z = c(w,q)) for
every w > 0 and q = 0. Since both of the two sets on the right-hand side is
convex, so is the intersection, and hence so is z(w,q). As for the
single-valuedness, let ¢ 2 0, w >> 0, z € z(w,q) , 2’ € z(w,q), and z # Z’.
Also suppose that Y(q) is strictly convex. By the k‘convexity of z(w,q),

(1/72)z + (1/72)2’ € z(w,q).
By the strict convexity of Y(q), there exists a z" € Y(q) such that
(172)z + (172)2" >> Z"
Hence w-((1/2)z + (1/2)z’) > w-z", which contradicts (1/2)z + (1/2)2’ €
z(w,q). Thus z(w,q) must be single-valued.

Property (vi) follows from the fact that c(-,q) is the support function
of Y(q) and the duality theorem (Proposition 3.F.1).

Property (vi) implies that if z(-,q) is diff erentiable at w, then
DWZ(v-v,q) = Dw(Vwc(lw;—v,q)) = szvc(w;-v,q). As a Hessian matrix, this is symmetric.
By property (ii), it is negative semidefinite. By property (iv), Dwz(v_v,q)wfv =

0. Property (vii) is thus established.

5.C.5 If the production function f(-) is quasiconcave, then the set Y(q) = {z

€ [RI_:-I: f(z) = q} is convex for any q, and thus property (iii) holds. (Note
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that we used the convexity of Y(q), not of Y.)

If there is a single input and the production function is given by f(z) =
22, then it is quasiconcave but the corresponding production set exhibits
increasing returns to scale. Quasiconcavity is thus compatible with

increasing returns.

5.C.6 Throughout the following answers, the input prices are denoted by w >>
O and the output price is denoted by p > O. For convenience, we denote by
z(p,w) the input demands at prices (p,w). As a preliminary result, by using
the implicit function theorem (Theorem M.E.1), we shall prove that z(-) is a
continuously differentiable function and give its derivatives in terms of
F(-). (To be rigorous, we need to assume that f(-} is twice continuously
differentiable and the input demands are always strictly positive, so that the
nonnegativity constraints never bind.)

Since sz(z) is negative definite for all z, the first-order necessary
and sufficient condition (Theorems M.K.2 and M.K.3) for profit maximization is
then that z is an input demand vector at prices (p,w) if and only if

pVf(z) - w = 0.

If we regard the left-hand side as defining the function defined over (p,_w,z),
then the function is continuously differentiable and its derivative with
respect to z is equal to psz (z). It is negative definite, and hence has the
inverse matrix (at:every z). Thus, by the implicit function theorem (Theorem
M.E.1), for each (p,w), there is a unique z for which pVf(z) - w = O and the
mapping from (p,w) to z is continuously differentiable. This is equivalent to
saying that z(-) is a continuously differentiable function. The implicit
function theorem also tells us that

8z(p,w)/8p = (- 1/p)DF(z(p,w)) WF(z(p,w)),
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v, z(p,w) = (1/pID>F(z(p,w) .
Note here that, since sz(z(p,w)) is negative definite, so is its inverse

D2 f(z(p,w)) "} by Theorem M.D.1(iii).

(a) By the chain rule (Section M.A),
d 8
55 [ftztp, W] = V£ (z(p,w)) —ag- (p,w)
- (= 1/p)Vf(zlp,w))-D>F(z(p,w)) U izlp, W)

Since sz(z(p,w))_1 is negative definite, d(f(z(p,w))l/dp > O.

(b) Since Bf(z)/az2 > 0O for all £ and dlf(z(p,w))l/dp > O, as the output price

increases, the demand for some input must increase.

(c) Since sz(p,w) = (l/p)sz(z(p,w))-l, az(p,w)/ape is equal to the fth
diagonal entry of (l/p)sz(z(p,w))—l. Since sz(z(p,w))-1 is negative

definite, the diagonal entry is negative. Hence so is az(p,w)/ape.

5.C.7 [First printing errata: The condition azf(z)/azgazk < 0 should be

82f (z)/azeazk > 0. That is, all inputs are complementary to one another.] As

we saw in the answer to Exercise 5.C.6,
2z (pw) = (1/p)(D3f(z(p, W)™

and

—gz—(p,w) - - (I/p)ID%f(zlp, W) F(z(p,w)).
P az
ap

0 for all &, it is sufficient to show that all entries of [sz(z(p,w))]—1 are

Hence, in order to prove that azl(p,w)/awk < 0 for all k # £ and (p,w) >
negative. This is an immediate consequence of the celebrated Hawkins-Simon
condition, which can be found, for example, in "Convex Structures and Economic
Theory" by Hukukane Nikaido. Here, instead of simplemindedly quoting the
Hawkins-Simon condition, we shall provide a direct proof that relies on the

symmetry of sz (z(p,w)) (which is not assumed in the Hawkins-Simon condition).
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Write H = sz(z(p,w)). To show that all entries of I-I—l are negative, it

is sufficient to prove that, for every v e (RL-l, if Hv 2 0 and Hv # O, then v W

<< 0. In fact, then, for each ¢, we can choose v € IRL-1 so that Hv is the
vector whose fth coordinate is equal to one and the other coordinates are
equal to zero. Then H_I(Hv) is equal to the £th column of H_l. Of course, it
is also equal to v, which is claimed to be strictly negative. Thus every

column of le is strictly negative. Hence all entries of H-1 are negative.

For this property, in turn, it is sufficient to prove that for every v e

lRL-l, if Hv =z 0, then v = 0. (That is, weak inequalities suffice.) In fact,
if there exists a v € IRL'-1 such that Hv =2 0, Hv # 0, v = 0, and ve = 0 for
some £. Then v # O and hence
L, (8z,(p,w)/8w, Jv, = Ly20'02y(p,w)/8w, v, <0,
which contradicts Hv z 0.
We shall now prove by contradiction that for every v e IRL_l, if Hv = O,
then v = 0. Then there exists v € IRL-1 such that Hv =z 0, and vy > 0 for some w

£. By re-ordering the inputs if necessary, we can assume that the first M

entries of v are positive and the last L - 1 - M entries are nonpositive

x

Write write v = 1], where x, € lRM, X, » 0, x, € lRL—l-M, and x, = 0. Also,
X

2

H1 H
write H =
H3 H 4

whose entries are all positive, H3 is an (L - 1 - M) x M matrix whose entries

2], where I-I1 is an M x M matrix, H2 is M x (L - 1 - M) matrix

are all positive, and H, is an (L - 1 - M) x (L - 1 - M) matrix. Let Hv =

4
M1 M L-1-M
,WhereylelR,ylzo,yzelR ,andyZZO. Then
[Hl H, [Xl _ [Hlxl ¥ Hzxz] _ {y 1
H3 H 4l X5 I-l3x1 + H 4%, Yo

Hence H X, =y - Hzx2 z O because N =0, x

1

= 0, and all entries of H. are
? ? d
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positive. Thus, by x, >> 0, we obtain xl-Hlx = 0, which is a contradiction

1 1

to the negative definiteness of H, and hence that of Hl'

5.C.8 The cost that Al incurred in month 95 is 2-55 + 2-40 = 190, but it

could attain the same output level with a lower cost by using the input
combination of month 3: 2:-40 + 2-50 = 180. Thus the problem we will encounter
is that, perhaps due to mis-observation and/or some f‘estrictions that Al faced
outside the market, the profit-maximizing production plans are not observed to
have been used and it is impossible to use those observations in order to

recover its technology based on Proposition 5.C.2(iii) or 5.C.1(iii).

5.C.9. To find n(-) and y(-) for (a), the first-order condition (5.C.2) is
not very useful, because one of the nonnegativity constraint binds. Also, to
find n(-) and y(-) for (b), it is not even applicable because f(-) is not
differentiable. In both cases, however, because of the nature of the
production functions, it is quite easy to solve their CMP (which is similar to
those in Exercise 5.C.10.), and the cost functions c(:) turn out to be
differentiable with respect to output levels q. We can thus apply the first-
order condition (5.C.6) (which requires only the differentiability of the cost
function with respect to output levels) to find profit maximizing production
levels, and hence the profit functions and supply correspondences.

Throughout the answer, the output price is fixed to be equal to one.

1/4w1 if w, = w,;

1 2'
(a) n{w) = .
1/4w2 if w1 > w2.
{(- 1/4w2 0, 172w )} if w, < w.;
1’ ’ 1 1‘/ 2!
2. . _ .
ylw) =4 {(- z,, - 2y 1/2w1). z = 0, z, = 0, z +2,= 1/4w1) if W, = W
2 .
{{o, - 1/4w2, 1/2w1)) : if W, > W,
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(b) n(w) = 1/4(w1 + wz).

— ( 2 _ 2
ylw) = ( 1/4(w1 + wz) , 1/4(w1 + w2) , 1/2(w1 + wz)).

(c) Note first that this production function exhibits constant returns to
scale. Moreover, if p < 1, then the nonnegativity constraint does not bind.
If p =1, then this production function gives rise to the same isoquants as
that of (a), and hence one of the nonnegativity constraints binds. It is thus

easy to apply (5.C.6).

If p <1, then
r - -
i wp;/(p D, Wf2>/(p 1) 1:
n(w) = 4 j
0 if Wp/(p—l) + Wp/(p-l) > 1.
\ 1 2
{ - -
. ir w;1>/(p 1) + w;2>/(p 1) <1,
ytw) = 4 (at- w7, I (P1) (2 (oml) o/ () 170y 2 g
ir Wp1>/(p—1) + Wg/(p—l) = 1;
| {0} if wP/(P~1) | p/le-1) oy
1 2 Y,
If p =1, then
0 if Min{w,,w_.} =1
n(w) = I'2
o if Min{w_ ,w_} <1
1’2
{
{0} if Min(wl,wz} z 1
) if Mm(wl,wz} < 1;
{a(-1, 0, 1): = 0} if 1 = W< W,
YW =1 (a0, -1, 1): «= 0} ifw > w, = 1.
(tx(—zl, - 2, 1): a0, z = 0, z, = 0, z + zz=1)
{ if w1 = w2 = 1;
5.C.10
qw, if w, = w_;
(a) c(w,q) = 1 1 2

qw, if w, > w_.
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(q,0) if w, < W3

i
g

2 .
z(w,q) = ((zl,zz) € R z +2,= q) if w, 2

(0,q9) if W, > W,

(b} c(w,q)

(w1 + wz)q. z(w,q) = (q,q).

(c) clw,q) q(wrf/(p-l) . P/ (P~1)y1-1/p)

2
;1)/(p-1) . Wp/(p—l))(-l/p)(wi/(p-l)’Wl/(p-l)).

z(w,q) = q(w > 5

5.C.11 Assume that c(-) is twice continuously differentiable. By Proposition
5.C.2(vi), z(-) is continuously differentiable and

aze(w,q)/aq = (a/aq)(ac(w,q)/awe) = (a/awe)(ac(w,q)/aq).
Hence aze(w,q)/aq > 0 if and only if (6/awe)(60(w,q)/6,q).> 0, that is,

marginal cost is increasing in W,

5.C.12 Suppose first that y € Y maximizes profit at p, then (p,n(p))-(y, - 1)

= 0. Also, for every @ = 0 and y’ € Y, (p,u(p))-(aly’, - 1)) = alp-y’ - n(p))

1A

0. Thus (y', - 1) maximizes profit in Y’ at prices {p,m(p)).
Conversely, if y € Y and (y, - 1) maximizes profit in Y' at (p,pL+1),

then (p,pL+1)-(y, -1 =py- Py = O by the constant returns to scale.

Also, for every y’ € Y, (p,pL+l)-(y‘, -1) =py - Pla = 0. Hence y

maximizes profit in Y at prices p and n(p) = p*y = P4

5.C.13 Denote the production function of the firm by f(), then its
optimization problem is

Max(zl,zz)ZO pf(zl,zz) st Wiz, + Wz, = C.

This is analogous to the utility maximization problem in Section 3.D and the

function R(-) corresponds to the indirect utility function. Hence,
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analogously to Roy’s identity (Proposition 3.G.4), the input demands are

obtained as

1

_ _—VCR(p,W,C) VWR(p,W,C) = (ocC/wl, a - oc)C/wz).

S.D.1 We shall use the differentiability of C(:) only at q. The everywhere

differentiability is not necessary. By the definition,

AC'(q) = g_q[@] - C’(q)q_; c@)
q

Thus, if the average cost is minimized at q = g, then AC’(q) = 0 and hence

C’(q) = C(q)/q = AC(q).

5.D.2

(@

AC(9)

A9 Figure 5.D.2

5.D.3 Let g(w,p) be the profit-maximizing output level when the input prices
are w and the output price is p. Let w be the initial input prices, ;-) be the
initial output price, z be the initial long-run input demand at (w,p), and g
be the initial long-run output level at (w,p). By (5.C.6), dc(w,q(w,p))/dq =

p for every p (assuming that g(w,p) > 0). Thus, by diff erentiating both sides
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with respect to p and then evaluating at p = p, we obtain
& (azc(gv,q(v_v,;—)))/aqz)(aq(v_v,ﬁ)/ap) = 1,

that is, 8q(w,p)/3p = (8c>(w,q)/8%a) ",

On the other hand, define the short-run cost function function cs(w,qlil)
and the short-run output function qs(w,qlil) as suggested in the hint. Just
as we did abéve, we can show that 8qs(v_v,p_>lil)/6p = (6c§(v3,<_;|§1)/62q)—1
(assuming that qs(v_v,plil) > 0).

Now, by the definition, clw,q) = cs(v-s'/,qlil) for all q and c(w,q) =
cs(v_v,c—;lil). Hence the function g(q) = c(w,q) - cs(v-v,q|21) is maximized at q =
g and, by the second-order necessary condition (see Section M.K), g"(q) = 0,

that is, 602(\;1,5)/62q = acg(v-v,alil)/azq. Thus 8q(w,p)/dp = aqs(v_v,;—alil)/ap.

5.D.4 (a) Suppose that q = Z‘;=1qj. By the decreasing average costs (and C(0)
= 0), (qj/q)C(q) = C(qj). By summing over j, we obtain C(q) = ZLIC(qj).
Hence there is no way to break up the production of q among multiple firms and

lower the cost of production. Hence C(-) is subadditive.

(b) Let M = 2 and define C(q) = Vmin(ql,q‘z), then C(-) exhibits decreasing ray
average cost. But let q = (1,8), q, = (8,1), and q = q +4q, = (9,9). Then
C(ql) = C(qz) = 1 and C(q) = 3. Hence C(q) > C(ql) + C(qz). Hence C(-) is

not subadditive.

(c) We shall first prove that if q = quj and qj >> 0 for every j, then C(q) =
ZjC(qj). In fact, then, for every j, there exists ',rj > 0 such that "quj >> q.

By the increasingness, C(zquj) > €(q). Thus, by the continuity and C(q) >

C(qj), there exists aj € (1,7j) such that C(ochj) = C(q). Define B = Zjl/aj,

then Zjl/BocJ. =1 and ):J.(I/Baj)(ajqj) = (1/8)q. Thus, by the quasiconvexity,

“ C((1/B)q) = C(q). By the increasingness, B = 1. Hence, by the decreasing ray




average cost,
C(q.) =z ¥ .(I/a )C(e .q.) = }¥.(1/a.)C(q) = BC(q) = C(q).
Li¢la;) = L1/ )Clasq,) = F,(1/a)C(q) = BClq q
For the general case in which some q.j z 0 need not be strictly positive,
apply the above result to the q.j + €e, where € > 0 and e = (1,1,...,1) € IRM,

and then take the limit as € » 0. The continuity of C(-) then implies that

J >
Ljm(Clay) = Cla).

5.D.5 (a) The production function f(-) exhibits increasing returns if and

only if f(Az) = Af(z) for all z and all A = 1. Hence, if 2’ =z z > 0, then
(172°)f(2’) = (I/2’)f(2'/2)2) = (1/2')(2'/2)f(2) = (1/Z)f(=2).

Thus the average product is nondecreasfhg. The marginal product may however

be decreasing on some region of output levels, as the following example shows:

f2)

Y

Figure 5.D.5(a)

(b) Mathematically, the consumer’s maximization problem is

max__ o u(f(z)) - z.

>

The first-order necessary condition is u’(f(z))f’(z) = 1, which can be
rewritten as u'(f(z)) = f ’(z)-l. Since the cost function is given by z =

f—l(q), the marginal cost is equal to f’(z)-1 and the equality of marginal
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cost and marginal utility is thus a necessary condition for a maximum.
Economically, the consumer will choose the output level at which the
marginal utility of an extra unit of the output is exactly equal to the
disutility incurred by giving up the necessary amounts of input to produce it.
But the latter is nothing but the marginal cost. Hence the marginal utility

is equal to the marginal cost.

(c) This assertion is wrong. As the following figure shows, even if marginal
cost and marginal utility are equal at an input level, there may be another

input level at which the consumer attains higher utility:

2

Indifference Curves

Y

Figure 5.D.5(¢c)

The reason for suboptimality is that the first-order necessary conditions
are not sufficient when the production function exhibits increasing

returns (which gives rise to nonconvexity of the feasible set).

5.E.1 By applying Hotelling’s lemma (Proposition 5.C:1(vi)) twice, we get

* - * = = = .
y*(p) = Vn*(p) V():jnj(p)) ZJ.an(p) ijj(p)

5.E.2 This is just a matter of going through the proof of Proposition 5.E.1
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and checking that convexity was never used. Its interpretation was given

before the statement of the proposition (p. 148). It is a consequence of the ‘
very definition of the aggregate production set, that is, it is the sum of the

J firms’ production sets. It is thus independent of convexity or any other

properties of the firms’ production sets.

S.E.3 [First printing errata: We should assume that there is a p* >> 0 and y*
€ Zij' such that p*-y* = p*.y for every y € Zij' Otherwise, denoting the
profit function of ):_]'Yj by n*(-), the set {y € IRL: p'y = w*(p) for all p >> 0)
may be empty, and all we can obtain is the equality between Xij and {y e lRL:
p'y = w*(p) for all p = 0}. This assumption is also necessary for the
validity of Proposition 5.C.1(iii). In fact, its proof should go as follows:
It is sufficient to prove that, for every z € IRL\Y, there exist a p > 0 such
that p-z > n(p). Since Y is closed and convex, the separating hyperpgane
theorem implies the existence of such a nonzero vector p. The free disposal q
property implies that p must actually be nonnegative. If it is not strictly
positive, then take the convex combination (1 - &)p + ep* with a sufficiently
small € > 0. Then it is strictly positive, and satisfies ((1 - €)p + ep*)-z >
n((1 - €)p + ep*) by the upper semicontinuity of m(-), which is implied by its
convexity.] Since each. Yj is convex and satisfies the free disposal property,
ZJ.YJ. is also convex and satisfies the free disposal property. Since it is
also assumed to be'closed, Proposition 5.C.1(iii) implies that

ZJ.YJ. ={y e lRL: p'y = w*(p) for all p > 0}.
But here, by Proposition 5.E.1, n*(p) = Zjnj(p) and hence

Zij ={y e IRL: p'y = Zjnj(p) for all p > 0).

5.E.4 (a) Denote by yz(w) C IR3 the set of the supplies of the technology with
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characteristics z = (21’22) at input prices w = (wl,wz), then

{(- z), = 2y 1)) if Wizt W2, <1,
YZ(W) =1 ((- oz, - az,, @) « € (0,1} if wz + w,z, = 1,
{0} if Wzt WoZ, > 1.

The area of the characteristics z for which the output may be one is depicted

in the following picture.

(10,10)

Figure 5.E.4

(b) [First printing errata: The phrase "More generally” should be deleted.]
Denote the profit of the technology with characteristics z = (zl,zz) at input
prices w = (wl,wz) by nz(w), then

1 - Wiz - wyZ, if W,z + W,z, =1,

nz(w) =

0] if w2z + W,z > 1.
Thus, the aggregate (or, rigorously, average) profit is calculated by taking
the integral of 1 - Wz - W,Z, on the area {z € [0,10] x [0,10]: w2 + wyz,
= 1), which is depicted on the above figure. Thus the aggregate profit is

l/w1 (l—wlzl)/w2
(w) = o o a - w2 - wzzz)dzzdz1 = 1/600wlw2.
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(c) The aggregate input demand can also be obtained by integrating the input
demands of the individual firms, but the following point is noteworthy: If a
firm has characteristic z = (z 2y ) with wz, o+ wyZ, = 1, then it has multiple
input demands at input prices w = (wl,wz). But those firms constitute only a
negligible portion in the whole population. Hence it is harmless to assume

that such a firm has input demand z = (21’22) {in absolute values). Hence the

aggregate: demands are

J‘l/w J‘(l w,2, )/w2 1 dz dz _ 1
0] 0] 1100 600w2w ’
12
J‘l/le‘(l-wlzl)/Wz 1 U 1
0] 0 2 100 2™ 600w1w§ .

It is easy to check that these aggregate input demand functions can also be
obtained by applying Hotelling’s lemma to the aggregate profit function, which

was obtained in (b).

(d) We need to find an aggregate production function whose input demand
function is the same as the aggregate input demand function in (c). Denote
such a production function by f(-), then the first order-conditions for profit
maximization are 8f (zl,zz)/az1 =w, and é)f(zl,zz)/az2 = W, These

expressions, when evaluated at the inputs demanded, must hold for all w. Thus

af ( 1 1 ) = w af ( 1 1 ) = w
8z 2 ’ 2~ "1 8z 2 ’ 2 T2
1 600w1w2 600w1w2 2 600wlw2 600w1w2
Let
z. = 1/600w°w.. and z. = 1/600w. w>
1 172 2 172
then
2.1/3 _ 2.1/3
W = (22/60021) and w, = (21/60022) .
Thus
I (2.2) = (z /60022)1/ 3 and 2L (z,2,) = (2,/60025)">,
8z, 1’2 8z, z,
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Therefore, f(zl,zz) = 3(2122/600)1/3. The aggregate production function is a

Cobb-Douglas one exhibiting decreasing returns to scale.

5.E.5 (a) Plant j’s marginal cost is MCj(qj) = o + Zquj' Since Bj > 0 for
every j, the first-order necessary and sufficient conditions for cost
minimization are that quj = q and MCj(qj) = MCj,(qj,) for all j and j’. From

these, we obtain qj = (q/Bj)/(Zhl/Bh).

(b) (c) In both cases, it is cost-minimizing to concentrate on plants with the
smallest Bj < 0, because the average cost is decreasing at the highest rate at

such plants.

5.F.1 The production plan y in Figure 5.F.1(b) is not efficient but it

maximizes profit for p = (0,1).

5.G.1 Throughout the answer, we fix the price of the input at one and denote
the price of the output by p. Suppose that there are 1 consumer-owners,
indexed by i = 1,...,I. Denote their shares by ei > 0. Of course, Ziei = 1.
Since they have quasilinear utility functions, by Exercise 3.D.4(b), their
indirect utility functions can be written as vi(p,wi) =W, + ¢i(p). Note that
the demand function xi(-) for the output of consumer i does not depend on the

wealth and satisfies xi(p) = - ¢i(p) by Roy’s identity.

(a) When the input is z, the utility level of consumer ilis

ei(p(z)f(z) -z) + ¢i(p(z)).
(Here we are assuming that the consumers have no source of wealth other than
their shareholdings. But this does not affect our results below, because

their demands for the output does not depend on their wealth levels. Thus, if
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an input level z maximizes his utility level, then it satisfies the following
first-order condition:

ei(p’(z)f(z) + p(z)f'(z) - 1) + ¢3(p(z))p’(z) = 0.
If an input level z is unanimously agreed, then this first-order condition
must be satisfied at some z for all i. By taking the summation of the
condition over i and using xi(p(z)) = ~ ¢}(p(z)), we obtain

(p'(2)f(2) + pl2)f'(z) - 1) - Zixi(p(z))p’(z) = 0.
But, since f(z) = Zixi(p(z)), this implies p(z)f’(z) - 1 = 0. Plugging this
into the first-order condition, we obtain

eip’(z)f(z) - xi(p(z))p’(z) = 0.

Thus ei = xi(p(z))/f(z).

(b) We know from (a) that, if ownership share are identical, then, in order

for consumer-owners to unanimously agree on a production plan, it is necessary
that they all consume the same amount of the output. But if their tastes are
different for the output, then their consumption levels will be different.

Hence they will instruct managers to carry out different output levels.

(c) If preferences and ownership shares are identical, then the first-order
conditions are also identical and hence the consumer-owners unanimously agree
on an input level. We showed in (a) that, a necessary condition for the
unanimous agreement is that p(z) = 1/f’(z). The right-hand side is the
inverse of the marginal return, and hence equal to the marginal. This is
nothing but profit maximization with respect to input, when the output price

p(z) is taken as given.

S5.AA.1 From the unit isoquant,
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(2,1) if w, < w

1 2’
z{w,1) = {A(2,1) + (1 - AX1,2) € R: A € {0,1]} if W= W,
(1,2) if W, > W
Thus
2w1 + w2 if w1 =< w2,
clw,1) = w. o+ 2w, if w, > w
1 2 1 2
This is differentiable at w = (wl,wz) if and only if w1 # w2. Moreover,

Velw,l) = z(w,1) at w = (w w2) with w, # w..

r 1 2

5.AA.2 (a) We shall first prove that if B € RL_I, (I - A B =0, and (I - A)B

2 0, then b+g > O, and that if 8 € R-!

and (I - A)8 = 0, then b =0. In
fact, in the proof of Proposition 5.AA.1, we showed that since A is
productive, the inverse matrix (I - A)_1 exists and all its entries are

L-1

nonnegative. Thus, if B e R~ °, (I - A} =20, and (I - A)B # O, thén B =

(I - A)—l((l - A)B) =2 0 and B # 0. Since b > 0, this implies b-g > 0. If B

€ [RI"-1 and (I - A)B = 0, then B = 0 and hence b-8 = 0.

To derive efficiency from the above result, let « € IRI:1 and o’ € R]:_l.
If (I - A)az(I-A)e’ and (I - A)e # (I - A)e’, then (I - A)(a - «’) = O and
(I - A« - «’) # 0. Hence b:(e¢ - «’) > 0, or brax > b-a’. If (I - Ao =

{I - A)o’, then (I - Al - &’) = 0. Hence b{x - «’) =0, or brax = b*a’. In
any case, it is impossible that [ I_-bA ]oc = [ I_—bA ]a’ and

[ I__bA ]“ # [ I_-bA ]oc’. Efficiency is thus established.

(b) By (a) and Proposition 5.F.2, any production plan with a >> 0 is profit-
maximizing at some price vector. To establish its uniqueness, let p € IR];_1 be
a supporting price vector. By a >> O and the zero-profit condition for
activities being actually used, we must have p-(I - A) = b, that is, p =

(1 - A)_I)Tb {(where b is now a column vector). This implies the uniqueness

and the strict positivity of p, because all entries of (I - A)—1 are
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nonnegative, all its diagonal entries of are positive, and b >> O.

(c) For each ¢, denote by ) the vector in IRL—1 whose £th component is one and
the other components are zero. As we saw in the remark following Proposition
5.AA.1, the total amounts of the producible goods necessary to realize a net
output vector e, € IRL--1 is equal to (Zm AMe, = (I - A)_le . Hence the total
2 + n=0 L [4
amount of labor embodied in these necessary amounts of the producible goods
equals b-({: AMe, = b-(I - A)-le = p,. Thus the price (row) vector p =
=0 2 L A
b-(I - A)_1 can be interpreted as the amounts of primary factor directly or

indirectly embodied in the production of one unit of each producible goed.

(@ Let [ I-A ] c IRLx(l_-l)

- b be any alternative choice of activities that is

productive. By the productivity, the inverse matrices (I - A)"1 and

(1 - A’)“1 exist and are nonnegative. So denote them by C = [c, ... CL—ll and

1

C = [c1 CL—ll’ where the ) and ) (=1,..., L-1)are (L -1)-
dimensional column vectors. Then (I - A)c2 =€ and (I - A’)cé = e, Now,

for each € > 0, define de(e) =cp+ C(Zk:#eck) and dé(e) =cp+ e(zkﬁ.cl,()'

Then dz(e) ) and dk(e) - cé as £ » 0. Moreover, de(e) > 0, dk(e) >> 0,

and

(1 - A)de(e) = (I - A’)dﬁ(e) =+ e(zkae ) >> 0.

£k
By (a), [ I__bA ]de(e) is efficient. By this strict positivity and the
assumption that the, activities [ I_-bA ] have been singled out by the
nonsubstitution theorem, we must have b-de(e) = b’-dé(e). Taking the limit as
€ »> 0, we obtain b-ce = b’-cé. Thus b-(I - A)-1 =b (- A’)—l. The
assertion now follows from (c).

5.AA.3 (a) Denote the activity levels by o and a The resource constraint

o

for labor is ocl + Zoc2 = 10, or ocl/lO + a2/5 = 1. Since the production level
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10 -5 al/lo
is given by | _ 5 s |larss |’ the production possibility frontier is as
2

follows:

Figure 5.AA.3(a)

(b) By Exercise 5.AA.2(c), the equilibrium price vector is b-(I - A)—1 =

(4,6).

(c) The amount of labor embodied in each commodity equals its price, as

shown in Exercise 5.AA.2(c).

(d) The locus of amounts of good 1 and labor necessary to produce one unit of

good 2 is equal to

2
+'

(A(1,2) + (1 - AN1/2,8): A € [0,11} - R

assuming free disposal. It is represented in the following figure:
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L.

) 172 1 i O 1/2 yi
B>2 Bp<2
Figure 5.AA.3(d)

Y

(e) In the context of (d), the nonsubstitution theorem says that it is
possible to choose one of the two techniques to produce good 2 (or a
combination of the two with a fixed proportion) in such a way that any
efficient production plan with positive net outputs of the two producible
goods can be attained by using the technique chosen for good 2.

We could determine which of the two techniques (or their mixtures) is
efficient by actually plotting the frontier of the feasible output
combinations from one unit of labor. In the following, however, we shall
identify an efficient technique based on Exercise 5.AA.2(d). So let A’ =
[ 2 162] and b’ = [é ] For each A € [0,1], define A(A) = (1 - A)A + AA,
B(A) = (1 - A)b + Ab’, and p(A) = blA)-(I - AAN ™" (where p(A) is a row
vector). According,to Exercise 5.AA.2(d), if A* € [0,1] and the convex
combination of the first and the second technique with weight 1 - A* and A* is
efficient, then p(A) = p(A*) for every A € [0,1]. Hence the switch of
efficient techniques occurs precisely when the value of A* switches as B

varies. We shall now find a value of B at which the value of A* switches.

Just as in (b), we can calculate
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2 (B-2)A+4 28 -8 1
p(A) = 7\+2[(2]3—5)7\+6]ande(M_ —_(A+2)2|:2].

Hence: if B < 4, then A* = 0; if B > 4, then A* = 1; and if B = 4, then A* can
be any value in [0,1]. Thus the switching occurs at 8 = 4. More precisely:

if B < 4, then it is efficient to continue using the first technique; if B >

4, then it is efficient to switch to the second technique; and if B = 4, every

mixture of the two technique is efficient.

5.AA.4 (a) Since ¥y, = 3a1 + 3, ¥y = 3(a2 +ag+ a4), and Y4 = 4(a2 + a3),
these three vectors are in the production set. But Y and yg are not. To see

this, suppose that y1 = Zjajaj with_ocj = 0. According to good 2, oc1 = ocz = 0.

By a«, = 0, according to good 3, oy = 0. But there is no o, z 0 for which Y

IA

2
o,a,. Suppose next that Vs = Z_j“jaj with ocJ. z 0. According to good 1, o =

= 0. By @, = 0, according to good 4, o, = O. But there is no «, = 0 for

%4 3 2

which Vs = ya,.

(b) If p = (1,3,3,2), then p-a.j =< O for all j and p'y = 0. Hence y maximizes
profit at p. By Proposition S.F.1, y is efficient.

{c) Since y = a, y is feasible. But, since a, +ay+a, = 2, -1, 0, 0) is

feasible, y cannot be efficient. (Note that a, +tast+a, represents a

round-about production of good 1 out of good 2.)

5.AA.5 [First printing errata: The last elementary activity ag =

(- 2, - 4, 5, 2) should be aj = (- 2, - 4, 5, - 2).]

. . 4
(2) The set Y is defined as (Zmamam eR: a =0 for each m}. Let A € [0,1],

y = Emocmame Y, and y’ = Zmamam € Y. Then

Ay + (1 - Q)y’ = Zm(hocm + (1 - A)ar;l)am.
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Since Aocm + (1 - A)ocl;l z O for every m, Ay + (1 - A)y’ € Y. Thus Y is convex.

(b) Since all the activities use commodities 1 and 2 as an input, in order to
produce any commodity in positive quantity, it is necessary to use commodities

1 and 2 as an inputs. The no-free-lunch property thus follows.

(c) Note that it is impossible to dispose of one of commodities 3 and 4
without increasing the output of the other, and that it is impossible to
dispose of any one of commodities 1 and 2 without disposing the other. Hence
Y does not satisfy the free-disposal property and it is necessary to add the
four disposal activities to the given elementary activities in order for the

free-disposal property to be satisfied.

(d) Note that 3a1 = ag, 5 2

2a6, and a7 # 2a6. Hence as, a4, a8 and a6 are not efficient.

3a1=ta 2a4,a #a, 2a, za_, 2a, # a =

2 ¥ 8y 83 = 8g, 235 F Bg, 2y

(e) We can check that (4/3)a3 + (5/24)a,7 = a, (4/3)a3 + (5/24)a7 * a,,

a, + (1/2)a7 >

3 and a, + (1/2)a,7 # a Hence a, and a, are not efficient.

a2 3 2 1 2
(f) We shall prove that the set of the efficient production vectors is equal

to {a,a, + aa = 0). We have shown that every efficient

3833 T %q347 &4

production vector belongs to this set. Conversely, we can check that the

=

o, oc7
production vectors in this set cannot be dominated by each other. Hence they
are all efficient and the set of the efficient production vectors is equal to

(u3a3 * oA a, = 0, o, = 0).

(g) Since @ 2y + oA, = (- @y - Ba, - 20y - S, 3ag, - g + 100:7), the

problem of maximizing the net production of the third commodity is as follows:

Max 3
(oc3,oc7) 3
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s.t. a, + 8a75480,

Zocz + 5a7 = 300,
oc3 - 100’.,7 =< 0,
o, = R

oy =z 0

(h) The feasible set is shaded in the (oc3,a7)-space below.

203+ 5a7=300
60
o3 — 10007=0

12 o3 + 8“7 = 480

0 120 150 430 o
Figure 5.AA.5(h)

The solution to this problem satisfies 2a3 + Soc,7 = 300, oy = 10¢x7. Thus

(oc3,oc.7) = (120,12).
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CHAPTER 6

6.B.1 Suppose first that L > L’. A first application of the independence
axiom (in the "only-if" direction in Definition 6.B.4) yields
aL + (1 - a)L" > oL’ + (1 - a)L".
if these two compound lotteries were indifferent, then a
second application of the independence axiom (in the "if" direction) would
yield L’ » L, which contradicts L > L'. We must thus have
oL + (1 - a)L" > oL’ + (1 - a)L".
Suppose conversely that oL + (1 - a)L" > L’ + (1 - «)L", then, by the
independence axiom, L > L’. If these two simple lotteries were indifferent,
then the independence axiom would imply
oL’ + (1 - a)L" > oL + (1 - a)L",
a contradiction. We must thus have L » L’.
Suppose next that L ~ L’, then L » L’ and L’ » L. Hence by applying the W
independence axiom twice (in the "only if" direction), we obtain
ol + (1 = a)L" ~ al” + (1 - o)L
Conversely, we can show that if alL + (1 ~ «)L" ~ a«L’ + (1 ~ «)L", then L ~ L.
For the last part of the exercise, suppose that L » L’ and L" » L",
then, by the independence axiom and the first assertion of this exercise,
oL + (1 - a)L" > oL’ + (1 - «)L"
and
ol + (1 - a)L" > o’ + (1 - a)L".
Thus, by the transitivity of > (Proposition 1.B.1(i)),

ol + (1 - a)L" » al’ + (1 - a)L".
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6.B.2 Assume that the preference relation > is represented by an v.N-M

expected utility function U(L) = Enunpn for every L = (pl,...,pN) € £. Let L

= (pl,...,pN) € ¥ L = (pi,...,pI:I) € ¥ L" = (p'l',...,p") € £, and o € (0,1).

Then L > L’ if and only if Znunpn = Znunpr,x' This inequality is equivalent to
oc(f,nunpn) + (1 - on)([nunpx';) z a(f,nunpl’l) + (1 - &) (Znunp;l).

This latter inequality holds if and only if aL + (1 - «)L" » oL’ + (1 - &)L".

Hence L » L’ if and only if aL + (1 - «)L" > oL’ + (1 - a)L". Thus the

independence axiom holds.

6.B.3 Since the set C of outcomes is finite, there are best and worst

outcomes in C. Let L be the lottery that yields a particular best outcome

with probability one and L be the lottery that yields a particular worst

outcome with probability one. We shall now prove that L > L > L for every L €
£ by applying the following lemma:

Lemma: Let L ..., L, be (1 + K) lotteries and (ozl,...,ocK) =z 0 be

or
probabilities with 21::1“1( =1 If Lk > L0 for every k, then lef=1akLk > LO'

for every k, then L0 > lei=

K

If L, > L

o X My 1%k

Proof of Lemma: We shall prove this lemma by induction on K. If K = 1, there

is nothing to prove. So let K > 1 and suppose that the lemma is true for K -

1. Assume that Lk > L0 for every k. By the definition of a compound lottery,

04

-1 k
Elli=1akl"k =(1 - aK)le:=l T a Lk + ocKLK.
-1 %
By the induction hypothesis, lei—l_ITa_Lk > LO' Hence, as our first
B K

application of the independence axiom, we obtain
o
ZK-I _k
(1 - ocK) k=1WLk + (ZKLK l‘ (1 (X.K)LO + (X.KLK

Applying the axiom once again, we obtain
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(1 - aK)LO + ocKLK > (1 - aK)LO + aKLO = LO.

Hence, by the transitivity, z]li=1ak]"k > LO' The first statement is thus

verified. The case of L > L

0 can similarly be verified.

k
Now, for each n, let L" be the lottery that yields outcome n with
probability one. Then L b L" because both of them can be identified with sure

outcomes. Let L = (pl,...,pN) be any lottery, then L = Enann. Thus, L > L

the above lemma. The same argument can be used to prove that L > L.

6.B.4 [First printing errata: On the the 1ith and the 12th line of the

exercise, the phrase "the lottery of B with probability q and D with
probability 1 - q" should be "the lottery of A with probability q and D with
probability 1 -~ q". Also, in the description of Criterion 2, the phrase "an

unnecessary evacuation in 5%" should be "an unnecessary evacuation in 15%".]

{a) We can choose an assign utility levels (u uC,uD) so that u, = 1 and u

A'lB A D

= 0 as a normalization (Proposition 6.B.2). Then ug = p-l1+ (1 -p)0=pand

u. =q-l+ (1-4q)0=q
(b) The probability distribution under Criterion 1 is

(pA,pB,pC,pD)_ = (0.891, 0.099, 0.009, 0.001).
The probability distribution under Criterion 2 is

(pA.pB,pc,pD) = {(0.8415, 0.1485, 0.0095, 0.0005).

The expected utility under Criterion 1 is thus 0.891 + 0.099p + 0.009q. The
expected utility under Criterion 2 is thus 0.8415 + 0.1485p + 0.0095q. Hence
the agency would prefer Criterion 1 if and only if 99 > 99p + g, and it would

prefer Criterion 2 if and only if 99 < 99p + q.




6.B.5 (a) This follows from Exercise 6.B.l.

(b} The equivalence of the betweenness axiom and straight indifference curves
can be established in the same way as in the part of Section 6.B on pp.
175-176 that explains how the independence axiom implies straight indifference
curves. (Note that the argument there does not use the fully fledged
independence axiom; as it is concerned with two indifferent lotteries, the
betweenness axiom suffices.) Those straight lines need not be parallel,
because the betweenness axiom imposes restrictions only on straight
indifferent curves and nothing on the relative positions of different
indifference lines. In fact, the argument for Figure 6.B.5(c) is not

applicable to the betweenness axiom.

(c) Any preference represented by straight, but not parallel indifference
curves satisfies the betweenness axiom but does not satisfy the independence

axiom. Hence the former is weaker than the latter.

(d) Here is an example of a preference relation and its indifference map that

satisfies the betweenness axiom and yields the choice of the Allais paradox.
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(2 500 000 dollars)

a
0
.
by
S
' .
L2

L" - Li
(0 dollars) (500 000 dollars)

Figure 6.B.5(d)

6.B.6 Define C = ((ul(a),...,uN(a)) eRY: ae A}, then
U(p) = Max{p-c € R: c € C} = - Min{p'c € R: c € - C}.

Hence U(-) is equal to - p_c(-), the support function (Section 3.F) of - C
multiplied by - 1, where the domain of the support function is restricted to
the simplex {p € IRT: ann = 1}. Since any support function is concave, U(-)
is convex. (A more direct proof is possible, which is essentially the same as
the proof of concavity of support .f unctions in Section 3.F.)

As an example of a nonlinear Bernoulli utility function, consider A = B =

{1,2) and define ul(l) = u,(2) =1 and uz(l) = u1(2) =0 LetL = (pl,pz),

2
then U(L) = Max (pl,pz). (This is essentially the same as Example 6.B.4.)

6.B.7 Since the individual prefers L to L’ and is indifferent between L and

X, and between L’ and X, by Proposition 1.B.1(iii), he prefers X to X - By

the monotonicity, this this is equivalent to x, > x ,.

L L

6.C.1 If o« = D > O (complete insurance), then
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- q(l - Mu(w - «g) + n(l - qQu’(w - D + af{l - q))

- q(l - Mu’(w - Dq) + n(l - qQu’'(w - Dq)

u'(w - Dgi{n(1 - q) - q{l - ®)) <O

i

u'(w - Dgim - q) < O
by q > m. Thus the first-order condition is not satisfied at « = D. Hence

the individual will not insure completely.

6.C.2 (a) Let F(-) be a distribution function, then
Tu(x)dF(x) = F(BxZ + yx)dF(x) = BSx2dF(x) + ¥ xdF(x)

= B(mean of F)2 + B(variance of F) + y(mean of F).

(b) We prove by contradiction that U(+) is not compatible with any Bernoulli
utility function. So suppose that there is a Bernoulli utility function u(-)
such that U(F) = Ju(x)dF(x) for every distribution function F(-). Let x and y
be two amounts of money, G(-) be the distribution that puts probability one at
x, and H(-) be the distribution that puts probability one at y. Then

u(x) = U(G) = (mean of G) - (variance of G) = x - 0 = x,

uly) = U(H)

(mean of H) - (variance of H) =y - 0 = y.
Thus, x = y if and only if u(x) = u(y). Hence u(-) is strictly monotone. Now
let F 0(-) be the distribution that puts probability one on O and F(-) be the
distribution that puts probability 172 on O and on 4/r > 0. Since the mean
and the variance of F 0(°) are zero, U(F 0) = 0. The strict monotonicity of
u(+) thus implies that U(F) > 0. However, the mean of F(-) is 2/r and the
variance is 4/r2. Hence U(F) = 2/r - r‘(4/r2) = - 2/r < 0, which is a
contradiction.. Hence U(-) is not compatible with any Bernoulli utility
function.

An example of two lotteries with the property requested in the exercise

was given in the above proof of incompatibility. (Note that if all we need to
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show were the incompatibility of U(-) and any Bernoulli utility function, the
equality u(x) = x obtained above would be suff icient to complete the proof,
because this implies the risk neutrality, which contradicts the fact that the

variance of F(:) is subtracted in the definition of U(-).)

6.C.3 Suppose first that condition (i) holds. Let x € R and € > 0. Let F(-)
be the distribution that puts probability 1/2 on x - € and on x + €, and
Fe(-) be the distribution that puts probability 1/2 - w(x,e,u) on x - £ and

172 + n(x,e,u) on x + €. That is,

( 0 if zZ<X- g
F(z) = { 172 if x~-eg=<=z<x+e¢g
L 1 if x+¢e =z 2z
( 0 if Z<X-Eg
F€(2)=< 172 - mw(x,e,u) if x - € =z < X + ¢,
L 1 if x+¢e 2z 2z

Then fzdF(z) = x and Julz)dF(z) = u(x) = J‘u(z)dFe(z) by (i). But
Ju(2)dF(2) = (1/2)ulx - €) + (1/2)ulx + &), 7
J‘u(z)dFe(z) = (172 - n(x,e,udulx - €) + (172 + n(x,e,u)ulx + €).
= (172)ul(x - €) + (1/2)ulx + €) + nlx,e,u))(ulx + €) - ulx - €)).

Since u(x + €) - u(x - €) > 0, the above inequality is equivalent to m(x,e,u)
= 0. Thus (i) implies (iv).

Suppose conversely that condition (iv) holds. Let y € R, z € R, and y >
2. Define x = (y + z)/2 and € = (y - 2)/2, theny=x + €, z = X - £, and

u(x) = (172 + wlx,e,u)uly) + (1/2 - nlx,e,u)ulz)

= (172)uly) + (172)u(z) + n(x,e,u)(uly) - u(z)).
Since n(x,e,u) = 0 and u(y) = u(z), this implies
(172)uly) + (1/72)u(z) = ul(x) = ul(1/72)y + (1/2)z).

Although we omit the proof, this is sufficient for the concavity of u(-):
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Hence (iv) implies (ii). Since the equivalence of (i), (ii), and (iii) have
already been established, this completes the proof of the equivalence of all

four conditions.

N y ’ ’ N ’
6.C.4 (a) Let a = (ocl,...,aN) € R+, o = (ocl,...,ocN) € |R+, and o = a’, then

az = Enocr‘lzn for almost every realization (21""’ ), because all the

nn N

returns are nonnegative with probability one. Since u(-) is increasing, this

implies that U(Znanzn) = u(znocnzn) with probability one. Hence
J‘u(z:nanzn)dF(zl,...,zN) z Iu(Znocnzn)dF(zl,...,zN),

that is, U{a) = Ula’).

14

, N
1,...,ocN) € IR+, and A € [0,1], then, by

N ., _
(b) Let o = (al,...,ocN) € IR+, o = (a
the concavity of uf(-),
u(Xﬂ(Aocn + (1 - A)oclfl)zn) = u(?\[nocnzn + (1 - A)Z:nocr’lzn)
= Au([_nocnzn) + (1 - A)u(f‘nar’lzn)
for almost every realization (zl,...,zn). Hence
UAa + (1 - Aea’)
= J‘u(Zn(Aocn + (1 - A)qcr’l)zn)dF(zl,...,zN)
J'(AU(Enocnzn) + (1 - A)u(Znar’lzn))dF(zl,...,z

v

N

Afu(znanzn)dF‘(zl,...,zN) + (1 - A)J‘u(znocr’lzn))df‘(zl,...,z

N’

AUla) + (1 - A)U(e’).

(c) Let (ocm)InelN be & sequence in IRT converging to o € IRI:_’, then there exists a
positive number B such that o = (B,...,B) for every m. Of course, U(B,...,B)
is finite. But this is equivalent to saying that the (measurable) function z
- u(Znan) is integrable. Since u(-) is monotone and all the returns are

. . - m
nonnegative with probability one, u(Znocnzn) = u(Znan) for every m and for

s . . . m
every realization (zl,...,z ). Moreover, since u(:) is continuous, u(znocnzn)

N
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converges to U(Enanzn) for almost every realization (21,...,2 ). Hence, by

N

Lebesgue’s dominated convergence theorem,
m
J‘u(Znanxn)dF(xl,...,xN) > Iu():nanxn)dF(xl,...,xN).

That is, Ula™) - Ula).

6.C.5 (a) Let x € IRI_:, y € IRI; and A € [0,1]). In analogy with expression

(6.C.1) the value Au(x) + (1 - A)u(y) can be considered as the expected

utility from the lottery that yields x with probability A and y with

probability 1 - A. On the other hand, the value u(Ax + (1 - A)y) is the

utility from consuming the mean Ax + (1 - A)y of the lottery with probability
one. The concavity of u(-) would then imply that consuming the mean bundle of
the L commodities with probability one is at least as good as entering into

the lottery. But this is the defining property of risk aversion in Definition

6.C.1.

(b) {First printing errata: The Bernoulli utility function u(-) for wealth

should be denoted by another symbol, say E(-), to avoid confusion with the
original utility function u(-) defined on IRI_:.] Let p >> O be a fixed price
vector, w and w’ be two wealth levels, and A € [0,1]. Denote the demand
function by x(-) and let x = x(p,w) and X’ = x(p,w’), then p-(Ax + (1 - A)x")
= Aw + (1 - A)w’. Thus u(dx + (1 - A)x’) = uw + (1 - A)w’). If u(-) is
concave, then
udx + (1 - Ax’) = aulx) + (1 - Aulx’) = aulw) + (1 - A)a(w').

Hence u(Aw + (1 - A)w’) = Aulw) + (1 - A)u(w’). Thus u() also exhibits risk
aversion.

The following interpretation can be given to this result. Although, in

the text, we are mainly concerned with the cases where outcomes are monetary




amounts, in many cases in economic theory, utilities do not directly come from
] money, but from physical commodities. It is therefore desirable to derive
w 0 risk aversion of Bernoulli utility functions for money from the properties of
the underlying utility function for the commodities. The above result says
that, if an individual has a risk-averse utility function for commodities, the

his Bernoulli utility functions exhibits risk aversion.

(c) We shall give an example with the properties stated in the exercise. Let

L = 2. Define u: IRE > R by u(x) = \/Wl,xz), then u(-) is not concave. Now
consider the price vector p = (1,2), then, for each w = 0, x(p,w) = (w,0).

Hence u(w) = vw, which is concave and exhibits risk aversion. The lesson from
this example is that, in order to obtain the risk aversion. of u(+) for a fixed
price vector, all that matters is the risk attitude along the wealth expansion

path.

6.C.6 (a) Suppose that condition (ii) is true and let F(:) be any
distribution function, then
w(ul(C(F,uz))) = uz(c_(F,uz)) = J‘uz(x)dF(x).
Since Y(-) is concave,
J‘uz(x)dF‘(x) = I!ll(ul(x))dF(x) = w(J‘ul(x)dF(x)).

Thus l/J(ul(c(F,uz))) = lll(ful(x)dF(x)). Since ¥(+) is increasing, this implies

1A

that ul(c(F,uz)) Iul(x)dF(x). Since J‘ul(x)dF(x)= ul(c(F,ul)), this implies
that ul(c(F,uz)) = ul(lc(F,ul)). Since ul(-) is increasing, we obtain c(F,uZ)
= c(F',ul). Condition (iii) is thus established.

Conversely, suppose that (iii) is true. Let x € R, y € R, and A € [0,1].

We shall prove that

W(Aul(x) + (1 - A)ul(y)) 3 Aw(ul(x)) + (1 - A)!/J(ul(y)).
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Let F(-) be the distribution function that puts probability A on x and
probability 1 - A on y. Then, Aul(x) + (1 - A)ul(y) = ul(c(F,ul)) and hence
l.ll()\ul(x) + (1 - A)ul(y)) = UZ(C(F’UI))' On the other hand, by the definition,

Alll(ul(x)) + (1 - R)lﬁ(ul(y)) = Auz(x) + (1 - A)uz(y) = uz(c(F,uz)).
By (iii) and the increasingness of uz('), we obtain

WO, (x) + (1 = Au(y) = Ay (x) + (1 = Al (5).

(b) Suppose first that condition (iii) holds. If Ju,(x)dF(x) = uz()_c), then
uz(c(F,uz)) 3 uz(x). Thus c(F,uz) = x. By condition (iii), C(F,ul) = x.
Hence ul(c(F,ul)) = ul()-t), or J"ul(x)dF(x) = ul(i). Thus condition (v) holds.
Suppose next that (v) holds, then ,I‘ul(x)dF(x) = ul(c(F,uZ)). Since
Iul(x)dF'(x) = ul(c(F’,ul)), we have ul(c(F,ul)) = ul(c(F,uz)) and hence c(F,ul)

> c(F,uz).

6.C.7 Suppose first that condition (iii) holds. Let x € R and € > 0. Denote

by F(-) the distribution function that puts probability 1/2

n(x,e.uz) on

X - £ and 1/2 + n(x,c,uz) on X + €. That is,

0 if z <X - g,
F(z) = 1/2-1t(x,e,u2) ifx-e=sz<x+e¢g,
1 if x+¢ 2 2.

Then c(F,uz) = x. By (iii), c(F,ul) = x. Thus ul(c(F,ul)) = UI(X)' But
here, we have

ul(c(F,ul))

(172 - n(x,e,uz))ul(x -g) + (172 + n(x,e,uz))ul(x + €)

(1/2)u1(x -€) + (1/2)u1(x + )+ n(x,e,uz)(ul(x + g) - ul(x - £))
and

ul(x)

(172 - n(x,e,ul))ul(x -e)+ (172 + n(x,e,ul))ul(x + ¢)

6-11




= (1/2)u1(x - €)+ (1/2)u1(x + €) + n(x,e,ul)(ul(x + g) - ul(x - £)).
Thus the last inequality is equivalent to n(x,c,uz) = n(x,e,ul). Hence
condition (iv) holds.
Suppose now that condition (iv) holds. Since n(x,O,ul) = n(x,O,uz) =0,
(iv) implies that 6n(x,0,u2)/68 z an(x,O,uz)/ae. Since rA(x,ul) =

4an(x,0,u1)/ae and rA(x,uz) = 461t(x,0,u2)/6e, (i) follows.

6.C.8 Let w1 and w2 be two wealth levels such that wl > w2 and define ul(z) =

u(w, + z) and uz(z) = ulw

i + z), then uz(-) is a concave transformation of

2
ul(-) by Proposition 6.C.3. It was shown in Example 6.C.2 continued that the
demand for the risky asset of ul(-) is greater than that of uz(-). This means
that the demand for the risky asset of u(-) is greater at wealth level w, than

at w2.

6.C.9 [First printing errata: The function u(-) on the left-hand side of the
equality on the fifth line should be denoted by a different symbol, because,
on the right-hand side, u(-) is used for the utility function on the first

period.]

(a) The first-order condition for the first problem is u’(w - xo) = v’(xo).
For the second problem, let’s first define a function ¢(-) by
¢(x) = ulw - x) + Elv(x + y)l.

Then ¢’(x) = - u'(w - x) + E[v'(x + y)] and ¢"(x) = u"(w - x) + E[v'(x + y)l.
Note also that ¢’(x*) = O and ¢"(x) = O for every x, which implies that if
¢'(x) > 0, then x* > x. Now, since E[v’(x0 + y)l > v’(xo),

Fixg) = - wlw - xg) + Elxg + 3] = = Vxg) + EV(xy + )1 > 0.
Hence x* > x_..

0]
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(b) Define two functions nl(') and nz(-) by nl(x) = - vi(x) and nz(x) =

- vé(x). Then 'nl(') and nz(-) are increasing and the coefficients of absolute
prudence of vl(') and of vz(-) are equal to the coefficients of absolute risk
aversion of nl(') and of nz(-). Thgs, if the coefficient of absolute prudence
of vl(') is not larger than that of vz('), then the coefficient of absolute

risk aversion of nl(-) is not larger than that of 'nz('). Moreover, since
E[vi(xO + ) > vi(xo), we have E[nl(xo + y)] < nl(xo). Thus, by applying
Proposition 6.C.2 to 'nl(-) and nz(-), we obtain E[nz(xo + y)] < 'nz(xo). Hence
E[v:’z(z0 + y) > vé(zo).

The implication of this fact to part (a) is that, if the coefficient of
absolute prudence of the first is not larger than that of the second, and if
the risk y induces the first individual to save more, then it also induces the
second to do so. Hence coefficients of absolute prudence measure how much

individuals are willing to save when faced with a risk in the future.

(c) If v(x) > O, then 1"(x) = - v’(x) < O and hence n(-) exhibits risk

aversion. Thus E[n(x + y)] < n(x), that is, E[vi(x + y}l > vi(x).

(d) Since

v (x)v’(x) - v"(x)2 _ v'(x)

- V")(x) VII(X) )
V,(x)z v’ (x)

v'(x) v (x)

(-

rA(x,v) = - <0,

the assertion follows.

6.C.10 Thr‘oughoutl this answer, we let X, and X, be two fixed wealth levels

such that X, > X, and define ul(z) = u(x1 + z) and uz(z) = u(x2 +z). Itis
sufficient to prove that each of the five conditions of Proposition 6.C.3 is
equivalent to its counterpart of Proposition 6.C.2.

Since rA(z,ul) = rA(x1 + 2z, u) and rA(z,uz) = r‘A(x2 + 2z, u), property (i)
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of Proposition 6.C.3 is equivalent to (i) of Proposition 6.C.2.
' ’ Property (ii) of Proposition 6.C.3 is nothing but a restatement of (ii)
v .
of Proposition 6.C.2.

As for property (iii), note that

ful(z)dF(z) = .I'u(x1 + z)dF(z) = u(cxl) = u((cxl - Xl) + xl) = ul(cXl - xl)

and likewise for uz(-). Thus the certainty equivalent for ul(-) is smaller

than that for uz(-) if and only if cxl - % < cxz - X, Thus property (iii)
of Proposition 6.C.3 is equivalent to (iii) of Proposition 6.C.2.
As for property (iv), since
u(xl) = (172 - 1t(x1,s:,u))u(x1 -e)+ (/2 + 1t(x1,t:,u))u(x1 + €),
we have
ul(O) = (172 - n(xl,e,u))ul(- g) + (172 + n(xl,e,u))ul(c).

Hence n(xl,s,u) = n(O,e,ul). Similarly, n(xz,e,u) = n(O,e,uZ). Hence (iv) of

Proposition 6.C.3 is equivalent to (iv) of Proposition 6.C.2.

Note that J‘u(xl + z)dF(z) = u(xl) if and only if J‘ul(z)dF(z) = ul(O),
and likewise for u2(-). Thus property (v) of Proposition 6.C.3 is equivalent

to (v) of Proposition 6.C.2.

6.C.11 For any wealth level %, denote by ¥(x) the optimal proportion of x
invested in the risky asset. We shall give a direct proof that if the
coefficient of relative risk aversion is increasing, then ¥’(x) < O; along the
same line of proof, we can show that if it is decreasing, then 7’(x) > 0. As
shown in Exercise 6.C.2, y(x) is positive and satisfies the following
first-order condition for every x:

Ju'((1 - 7(x) + y(x)z)xN(z - 1)xdF(z) = O.

Hence




Ju'((l - 7(x) + y(x)2)x)(1 - y{x) + ¥(x)z)(z - 1)xdF(z)
Ju"((1 - 2(x) + ¥(x)2)x) (z - 1)%x%dF(z)

Since the denominator is negative, it is sufficient to show that the numerator

r'(x) = =

is positive.
By the definition of the coefficient of relative risk aversion,
- u"((l - y(x) + 7(x)2)x)(1 - y(x) + y(x)2)x
= rR((l - 7(x) + y(xX)Z)XL’((1 - 7(x) + y(x)z)x)
for every realization z. Note also that if z > 1, then (1 - 2(x) + y(x)z)x >
x by 7(x) > 0. Since the coefficient of relative risk aversion is increasing,
tﬁis implies that rR((l - 7(x) + ¥(x)z)x) > rR(x). Hence
- u"((l - y(x) + (xX)Z)x)1 - ¥(x) + y(x)z)x
> rR(x)u’((l - y(x) + ¥(x)z)x).
Byz-1>0,
- u"((l - 7(x) + ¥(x)Z)x)1 - ¥(x) + ¥(x)z)x(z - 1)
> rR(X)u’((l - y{x) + y(x)2)x)(z - 1).
We can similarly show that this last inequality also holds for every z < 1.
Therefore,
- Ju"lu - 7(x) + 7(x)2)x)1 - ¥(x) + ¥(x)2)x(z - 1)dF(z)
> J"rR(x)u’((l - 7(x) + y(x)2)x)(z - 1)dF(2)
= rR(x)J“u’((l - y(x) + y(x)z)x)(z - 1)dF(z) = O

by the first-order condition.

6.C.12 (a) [First Qr;nting errata: The coefficient B should be positive if p

< 1 and negative if p > 1. This makes u(-) increasing.] It is easy to check
that, if u(x) = Bxl_p + y with p # 1 and ¥ € R, then u(-) exhibits constant
relative risk aversion p. Suppose conversely that u{-) exhibits constant rirsk

aversion p, then u"(x)/u’(x) = - p/x. Thus In (u’(x)) = - pln x + < for some
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c, € R. Thus u’(x) = (exp cl)x_p. Hence u(x) = {exp cl)xl_p/(l -p)+ c, for

some ¢, € R. Letting B = (exp cl)/(l - p) and ¥ = c,, we complete the proof.

2 2’

(b) It is easy to check that, if u(x) = Bln x + ¥ with B > O and ¥ € R, then

u(+) exhibits constant relative risk aversion one. The other direction can be

shown in the same way as in (a).

(c) By L’hopital’s rule,

1 (- In x)xl_p/(- 1) = In x.

o _ ) _
1)/(1 - p)l hmp_)1

11mp_)1 [(x

6.C.13 Let m(:) be the profit function and F(-) be the distribution function
of the random price. Since n(:) is convex, [n(p)dF(p) = n(fpdF(p)) by

Jensen’s inequality. But the left-hand side is the expected payoff from the
uncertain prices and the right-hand side is the utility of the expected price

vector. Thus the firm prefers the uncertain prices.

6.C.14 Define a function g(-) by gla) = ka + v(ucl(oc)), then glu{x)) = ku(x)
+ v(x) = u*(x). It is thus sufficient to show that g(-) is concave. For
this, in turn, it is sufficient to prove that (VOu—l)(') is concave.

Let «, B € R and A € [0,1]. Since u(-) is increasing and concave, u-l(-)
is convex. Thus

o + (1 - 08) = auHw + (- At

(B).
Since v(-) is nonincreasing, this implies

v e + (- 08 = viw i) + (1 - AT
Since v(-) is concave,

vow e + (1 - e e = aww @) + (- A i),

Thus,
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v e+ (1 - 08D = vl + (1 - A kg,

or, equivalently, W

(vou e + (1 - 1B = Alvou D) + (1 = Mo b)(B).

(b) [Eirst printing errata: The entire interval {0, + «] should be [0, + w).]

Suppose that we have u*(x) = ku(x) + v(x) for a non-constant v(-). Since v(-)
is decreasing and concave, v(x + 1) - v(x) is negative and decreasing with x.
On the other hand, since u(-) is increasing, concave, and bounded above,
u(x + 1) - u(x) is positive and decreasing, and converges to zero. Since

u*(x + 1) - u*(x) = k(ulx + 1) - ulx)) + (v(x + 1) - v(x)),
u*(x + 1) - u*(x) is negative for any sufficiently large x. That is, u*(-) is
not increasing around such x. But this is a contr‘adiction to the assumption
that u*(:) is increasing. Thus, if u(-) is bounded, then there is no

non-constant v(-) such that u*(x) = ku(x) + v(x) for all x € [0, + ).

(c) By (a) and (b), it is sufficient to find u(-) and u*(:) such that u*(-) is W
more risk averse (in the Arrow-Pratt sense) than u(-) and u(-) is bounded.

Define u(x) = - exp(- ax) and u*(x) = - exp(- Bx), where 0 < < 8. By

Example 6.C.4, u(-) and u*(-) exhibit constant absolute risk aversion with

coefficients « and B. Hencé, u*(+) is more risk averse than u(-), but, since

u(x) < O for all x, u*(-) is not strongly more risk averse than u(-).
6.C.15 Throughout this answer, we assume that a # b, because, otherwise,
there would be no uncertainty involved in the payment of the second asset.

(a) If Min {a,b} = 1, the risky asset pays at least as high a return as the
riskless asset at both states, and a strictly higher return at one of them.

Then all the wealth is invested to the risky asset. Thus, Min {a,b} < 1 is a
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necessary condition for the demand for the riskless asset to be strictly

positive.

(b) If a + (1 - )b = 1, then the expected return does not exceed the
payments of the riskless asset and hence the risk-averse decision maker does
not demand the risky asset at all. Thus, ma + (1 - )b > 1 is a necessary

condition for the demand for the risky asset to be strictly positive.

In the following answers, we assume that the demands for both assets are

always positive.

(c) Since the prices of the two assets are equal to one, their marginal
utilities must be equal. Thus
nu’(x1 + X

a) + (1 - 1z)u’(xl + x2b) = 1taLu’(x1 + x.a) + (1 - 1t)bu’(x1 + Xzb)'

2 2
That is,

n(l - a)u (x1 + xza) + (1 - w1 - bu (x1 + xzb) = 0.
This and x, + x., = 1 constitute the first-order condition.

1 2

(d) Taking b as constant, define

¢(a,1r,xl) = n(l - a)u’(x1 + (1 - xl)a) + (1 - w0 - b)u’(x1 + (1 - xl)b),
then

d¢/8a = - 1tu’(xl + (1 - xl)a) + n(l - a)(l - xl)u"(xl + (1 - xl)a) <0,
8g/ax, = mll - )°u"(x, + (1 - x)a) + (1 - W - B)u"x, + (1 - x)b) < 0.
Thus, by the implici;c function theorem (Theorem M.E.1),

_ _ 9¢/8a
dxl/da = W < 0.

(e) It follows from the condition of (b) that b > 1, that is, that a is the
worse outcome of the risky asset. Thus, if the probability m of the worse

outcome is increased, then it is anticipated that the demand for the riskless
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asset is increased.

(f) Since b > 1,
8¢/0m = (1 - aJu’(x + (1 - x)a) - (1 - blu’(x + (1 - x)b)

=(1-aju'(x+(1-x)a)+(b-Dulx+(1-x)b) >0,

d¢/dm

because a < 1 < b. Thus dx/dn = - W

> 0, as anticipated.

6.C.16 Throughout the answer, we assume that u(-) is continuous, so that the

maximum and the minimum are attained.

(a) If the individual owns the lottery, his random wealth is (w + G, w + B).
Thus the minimal selling price RS is defined by

pulw + G) + (1 - plulw + B) = ulw + Rs).

(b) If he buys the lottery at price R, his random wealth is

(W -R+ G, w~R+B). The maximal buying price R_ is defined by

b

+ G) + (1 - plulw - R_ + B) = u(w).

pu(w - R b

b

(c) In general, these two prices are different. However, if u(-) exhibits
constant absolute risk aversion, then they are the same. In fact, the above

two equations can be restated as Cw =w + Rs and c = w, where C and c

w-R w-R

b b

are defined as in (iii) of Proposition 6.C.3. According to the proposition,

the constant absolute risk aversion implies that

w=-c. = (w - Rb) - cw—Rb'

This is equivalent to Rs = Rb.
(d) By a direct calculation,

R = SI(7 - a/3)p2 + (43 - 6)p + 1],

and Rb is one of the solutions to the quadratic equation
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(1 - 2p7)RY - 10(2p> + Tp° - 8p + LR, - 25(23p% - S4p + 29) = O.

6.C.17 According to Exercise 6.C.12, if u(-) exhibits constant relative risk
aversion p, then u(x) = Bxl—p + 7y or u(x) = Bln(x) + 7. In this answer, we
assume u(x) = Bxl_p. The case of Bln(x) + ¥ can be proven by the same
argument. Let’s first consider the portfolio problem of the individual in
period t = 1, after a realization of the random return has generated wealth

level w,. Denoting the distribution function of the return by F(-), his

problem is

M Jul((l - ocl)R + oclxz)wl)dF(xz).

aXOSa 151

As discussed in Example 6.C.2 continued (and also in Exercise 6.C.11), we can
show that the solution does not depend on the value of W, Denote the

solution by a*. If he chooses portfolio «., at t = O, then his random wealth

0]

att=1is w =((l—oc0)R+oc

| xl)w Given the solution a* at t = 1, his

0 (0}

problem in period t = O is

MaxOS(x =<1

1 JTu(((l - a«*)R + oc*xz)((l - ocO)R + ocoxl)wo)dF(xz)dF(xl).

Since the distributions of X, and x, are independent and u(x) = Bxl_p, we can
rewrite the objective function as

[J((1 - a*)R + a*xz)l'de(xz)HIu(((l - a )R + aoxl)wo)df(xl)].
Since the first integral does not depend on the choice of ®q the solution is
again oy = a*. This completes the proof.

For the case of a utility function exhibits constant absolute risk
aversions, the absolute amounts of wealth invested on the risky asset may vary
over the two periods t = 0,1, but those in period t = 1 do not depehd on the
realization of X, To see this, let u(x) = - Be-p. The individual’s problem
att =1is

6-20



M ,J“u((w1 - ocl)R + oclxz)dF(xz).

axosalsw
The solution turns out to be independent of the value of W and hence of Xq:

Denote the solution by a*. If he chooses portfolio a_ at t = 0, then his

(0]

random wealth at t = 1 is wl = (wO - ocO)R + ocoxl. Given the solution o* at t
= 1, his problem in period t = O is

M I.I‘u(((wo - aO)R + o X - a*)R + oc*xz)dF(xz)dF(xl).

axOSoclsl 0*1
Since the distributions of x1 and x2 are independent and u(x) = - Be—p , We can
rewrite the objective function as

[J exp(- .a*R + oc*xz)dF(xz)][f - Bexp(- ((w,. - ocO)R + ocoxl)Rp)dF(xl)].

0
Since the first integral does not depend on the choice of %, the solution of
this maximization problem is the same as the solution of the problem of
maximizing

J - Bexp(- ((w0 - aO)R + 1)Rp)dF(xl).

0¥
But the latter is the same as what the consumer would choose at t = 1 if his
coefficient of absolute risk aversion is equal to Rp.

Now, if R = 1, then the consumer invests a constant absolute amount of
wealth over two periods. Thus, their proportions out of the total wealths are
larger if the total wealths are smaller. So, the proportion ocl/w1 now depends

on w, and hence on the realization x Hence the proportions can no longer be

I

constant.

6.C.18 (a) A direct calculation shows that the coefficient of absolute risk
aversion at w = 5 is 0.1. Exercise 6.C.12(a) shows that the coefficient of

relative risk aversion is 0.5, which is constant over w.

(b) By a direct calculation, the certainty equivalent is 9 and the probability

premium is (V10 - 3)/2.
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(c) By a direct calculation, the certainty equivalent is 25 and the
probability premium is (V26 - 5)/2.

For each of these two lotteries, the difference between the mean of the
lottery and the certainty equivalent is equal to one. However, the
probability premium for the first lottery is larger. This is because u(-)
exhibits constant relative risk aversion and hence decreasing absolute risk

aversion.

6.C.19 Foe each n, denote by Bn the wealth invested in risky asset n. The
wealth invested in the riskless asset is then w - Ean. If the individual
takes portfolio B = (Bl""’BN) € IRN, then his random consumption is x =
(w - Zan)r + Eanzn, where z denotes the random return of asset n. By
linearity of normal distributions, x is a normal distribution with mean
(w - Ean)r‘ + Zanp.n and variance B-VB. The expected utility from x is
E[- exp (- ax)]. But this is equal to the value, multiplied by - 1, at - o« of
the moment-generating function of the normal distribution with mean
(w - Ean)r + Zan“n and variance B:-VB. Therefore,
2

E[- exp(- ax)] = - expl({w - Zan)r + annpn)(— o) - (B-VB)- a)7/2]).
By applying the monotone transformation u - (- 1/a)in(- u) to this utility
function, we obtain

((w - Ean)r + Zanyn) + (B-VBla/2.

The first-order condition for a maximum of this ob jective function with
respect to B gives the optimal portfolio B* = oc—IV-l(u - re), where e is the

vector of [RN whose components are all equal to one.
6.C.20 For each € =z O, let F e(-) be the distribution function of the lottery
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that pays x + £ with probability 1/2 and x - € with probability 1/2. Then,
c(F €,u) is defined as the solution to the equation
(172)u(x + €) + (1/72)u(x - €) - ulc) = 0
with respect to c. Hence, by the implicit function theorem (Theorem M.E.1),
c(F e,u) is a differentiable function of € and
172’ (x + €) - (172’ (x ~ €) - u’(c(Fe,u))(ac(Fs,u)/ae) = 0.
By putting € = 0, we obtain dc(F O,U)/as = 0. Also, by further differentiating
the left-hand side of this equality with respect to &, we obtain
(172u"(x + €) + (1/72)u"(x - €)
- u"(c(Fe,u))(ac(Fs,u)/ae)z - u’(C(Fe,u))(azc(Fe,u)/acz) = 0.
Thus, by putting € = 0 and substituting 8c(F O,u)/ae = 0, we obtain
w'(x) - u'(e(F _u@°c(F u)/ae) = 0.

Thus azc(F ,u)/a:»:2 = - r (x).
€ A

6.D.1 let L = (pl,pz,pg) and L’= (pi,pé.pé) be two lotteries and F(-) and

G(-) be their distribution functions.

(a) If a Bernoulli utility function is increasing, then there exists p € (0,1)

such that the decision maker is indifferent between the sure outcome of $2 and
the lottery that pays $1 with probability p and $3 with probability 1 - p.

Thus, the indifference line that goes through the $2-vertex must hit some

point on the ($1,$3)-face (excluding the vertices) and all indifference lines
must be parallel to it. Conver‘sely, this condition implies that the Bernoulli
utility function increasing. By varying p vary from O to 1, we can identify

the area of the lotteries that are above all indifference curves going through

L. The area is shaded in the following figure:
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Figure 6.D.1(a)

Thus, G(:) first-order stochastically dominates F(-) if and only if L’ is
located above the segment that goes through L and is parallel to the

($1,$2)-face and also above the segment that goes through L and parallel to

» @ the ($2,$3)-face.
4 |

(b) The distribution G(-) first-order stochastically dominates F(-) if and
only if P, z P and P, + P, = P +»p2. Since the second inequality is
equivalent to Py = p:’3, G(+) first-order stochastically dominates F{-) if and

only if L’ is located in the shaded area in the figure below:

$3

Figure 6.D.1(b)
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6.D.2 [First printing errata: The phrase "the mean of x under F(-), JxdF(x),

exceeds that under G(-), SxdG(x)" should be "the mean of x under G(-), N
JxdG(x), cannot exceed that under F(-), [xdF(x)". That is, the equality of

the two means should be allowed.] For the first assertion, simply put u(x) =

X and apply Definition 6.D.1. As for the second, let p € (0,1/2) and consider

the following two distributions:

0 if z <0,
Fiz) =4{ p if 0 =2z< 2
1 if 2 = z,
_J 0 ifz<1,
G(Z)"{liflsz.

Then F(1/2) = p > 0 = G(1/2) and [fxdF(x) = 2(1 - p) > 1 = fxdG(x). Hence F(-)
does not first-order stochastically dominate G(-), but the mean of F(-) is

larger than that of G(-).

6.D.3 Any elementary increase in risk from a distribution F(:) is a mean-
preserving spread of F(:). In Example 6.D.2, we saw that any mean-preserving W
spread of F(-) is second-order stochastically dominated by F(-). Hence the

assertion follows.

6.D.4 let L = (pl,pz,p3) and L’ = (pi,pé,pé) be two lotteries.

(a) By a direct calculation, the means of L and L’ are 2 - P, * P and 2 - pi
+ p:’3. Thus the two lotteries have an equal mean if and only if Pp - Py = pi -
p:’;. Hence they have an equal mean if and only if they are both on a segment

that is parallel to the segment connecting the $2-vertex and the middle point

of the ($1,$3)-face, as depicted below:

£
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Figure 6.D.4(a)

(b) If the decision-maker exhibits risk aversion, then he prefers getting $2
with probability one to the lottery yielding $1 with probability 1/2 and $3
with probability 1/2. Hence the indifference lines are steeper than the

segment connecting the $2-vertex and the middle point of the ($1,$3)-face.

Hence, when L and L’ have an equal mean, L is preferred to L' if and only if L

is located on the right of L’. Therefore, L second-order stochastically
dominates L’ if and only if L_ is located on the r‘ighﬁ of L’, as depicted in

the figure below:

$3

Figure 6.D.4(b)
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(c) The distribution of L’ is a mean preserving spread of that of L if and

only if they are both on a segment that is parallel to the segment connecting

the $2-vertex and the middle point of the ($1,$3)-face, and L’ is closer to

the ($1,$3)-face than L. This is depicted below:
$3

Figure 6.D.4(c)

(d) Inequality (6.D.1) holds if and only if pi zp, and pi + (pi + pé) zp o+

(p1 + pz). But, since L and L’ are assumed to have an equal mean, pi -p

p:’3 - P3 and hence these two inequalities are equivalent to pi =z p

1

alone.

Thus, (6.D.1) holds if and only if L is located in the right of L’, as

depicted below:

$3

Figure 6.D.4(d)
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6.E.1 Denote by R(x,x’) the expected regret associated with lottery x
relative to x’, and similarly for the other lotteries. A direct calculation
yields:

R(x,x’) = 2/3, R(x’,x) = V3/3,

R(x’,x") = (V2 + 1)/3, R(x",x’) = V5/3,

R(x",x) = (V2 + 1)/3, R(x,x") = V¥2/3.

Thus, X’ is preferred to X, X" is preferred to x’, but x is preferred to x" .
6.E.2 (a) Denote the probability of state s by L and the expected utility
from the contingent commodity vector (xl,xz) by U(xl,xz), then U(xl,xz) =
nlu(xl) + 1t2(1 - n)u(xz). Since u(-) is concave by the assumption of risk
aversion, U(-) is also concave. Thus the preference ordering on (xl,xz) is

convex.

{b) According to Exercise 6.C.5(a), the concavity of U(-) implies the risk

aversion for the lotteries on (xl,xz).

{c) By the additive separability of U(:) and Exercise 3.G.4(c), both X, and X,

are normal goods.

6.E.3 Since g*(s) = 1 + alg(s) - 1) for every s, we have

g*(s) > g(s) if g(s) < 1;
g*(s) = gl(s) if g(s) = 1;
g*(s) < g(s) if g(s) > 1

Thus G*(x) = G(x) for every x < 1 and G*(x) = G(x) for every x > 1. Since
G(+) and G*(-) are continuous from the right, we have G*(1) =z G(1). Hence
property (6.D.2) holds and thus G*(-) second-order stochastically dominates

G(-) weakly. (If g(s) # 1 for some s, then G*(x) < G(x) for some x <1 and
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G*(x) > G(x) for some x > 1. Hence, in this case, G*(-) second-order

stochastically dominates G(-) strictly.)

6.F.1 We shall first prove the uniqueness of the utility function on money up
to origin and scale. Suppose that two utility function u(:) and &(-) satisfy
the condition of the theorem. Since the state preferences % are represented
by both .f(nsu(xs) + Bs)dFs(xs) and J"(nsu(xs) + BS)dFS(xs), by applying
Proposition 6.B.2 to the set of all the lotteries in some state s, we know
that nsu(-) + Bs and ;s;(-) + ’gs are the same up to origin and scale. Hence
so are u(-) and 1:(-).

It remains to verify the uniqueness of sub Jective probability. Suppose
that both ans(f u(xs)dI-"S(xs)) and ):S;;S(I L:(xs)dF (X)) represents the same
preference relation on £. Now that we have shown that u(-) and 1:(-) are the
same up to origin and scale, without loss of generality, we can assume that

u(+) = u(-). We can normalize u(+) so that u(0) = 0 and u(l) = I. Note here w

that if a distribution function F s(-) puts probability p, on 1 and probability

1 - P, on O, then the expected utility is P Thus, by choosing P, suitably

for each s, any point in [0,1]S can be represented in the form
(J‘u(xl)dFl(xl),...,J‘u(xs)dF‘S(xS)).

Hence, if (nl,...,ns) # (1;1,...,;:5), then there would exist (Fl""’FS) 1

and (Fi,...,Fé) € ¥ such that

ans(fus(xs)dl-“s(xs)) > ):Sns(fus(xs)dl-“;(xs)),

L W (x )dF (x)) < Lw (fu_(x )dF(x ).

This contradicts the assumption that they represent the same preference. Thus

-~ PN

(Ttl,...,ns) = (1t1,...,11’

g
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6.F.3 (a) If P = {m), then UW(H) = 1 and UB(H) = 1 - n. Hence they are

As

3 “ determined from the expected utility wu(1000) + (1 - m)u(0). Moreover, UW(R)
]
> UW(H) if and only if 0.49 > wm. But this is equivalent to 0.51 <1 - m,

which is, in turn, equivalent to UB(R) < UB(H).

(b) We have UW(R) > UW(H) if and only if 0.49 > Min P. We have UB(R) > UB(H)
if and only if 0.51 > Min{l - w: m € P}, which is equivalent to 0.49 < Max P.

Hence Min P < 0.49 < Max P if and only if UW(R) > UW(H) and UB(R) > UB(H).
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CHAPTER 7

7.C.1

Figure 7.C.1
7.D.1 Player i has MlxszM3x- . -xMN strategies in this game. o
Player 2
7.D.2 H T

Player 1

Figure 7.D.2
7.E.1 (a) In order to specify a strategy for player 1, we need to determine
his moves in all of the three information sets in which he moves. Thus a
typical strategy for player 1 can be written as a triple. The set of
strategies for player 1 are:
S, = {(L, x, x), (L, x, y), (L, y, x), (L, y, y), (M, x, x), (M, x, y),

(M, y, x), (M, y, ¥), (R, x, x), (R, x, y), (R, v, x), (R, ¥, y¥) }




If player 1 uses strategy (L, x, y), he plays L at the root of the game, x in
ﬂ)/ . ‘ his information set following his move M (we refer to this information set as
"Information Set 2") and y in his information set following his move R We
refer to this information set as "Information set 3").
Similarly player 2’s strategy specify her move at her information set (we

refer tho this information set as "Information Set 1"). Thus, S2 = {(1),(r)}.

(b) A behavior strategy for player 1 consists of a randomization of his
possible moves at each information set in which he has to move. Suppose that

at the root, player 1 plays L, M, and R with probabilities of P;» P, and Py

respectively (p1+p2+p3=1); at information set 2, player 1 plays x, y with

probabilities of q, and 9, respectively (q1+q2=1); at information set 3,

and s, respectively.

player 1 plays x, y with probabijlities of S >

Assume that player 2 plays L and r with probabilities ¢(1) and o(r)

respectively (¢(1)+o(r)=1). Thus, if player 1 is using the above behavioral

strategy and player 2 is using this mixed strategy, the probability that we

reach each terminal node will be:

Pr(TO) = p; Pr(Tl) = p, o(l) q;; Pr(Tz) =p, a(l) 9,3 Pr(T3) =p, a(r) q;;
Pr(T4) =P, a(r) 9, Pr(T6) = pq o(l) ros Pr(T7) = Py o(r) r
Pr(T8) = ps o(r) ro

Now the following mixed strategy for player 1 is realization equivalent
to the above behavior strategy:
(L, x, x) with probability Py (M, x, x) with probability P4,
(M, y, x) with probability P54, (R, x, x) with probability N
(R, x, y) with probability Pyl [Note: Py * Py, * Pyd, * Pyl * Pylp = Py +
pz(ql + qz) + p3(r1 + rz) =p *+Pp, 1+ Py 1 =1}
If player 1 is using the above mixed strategy and player 2 is using the

mixed strategy ¢, the probability that we reach each terminal node will be the




same as shown before for the behavior strategy. Therefore, the above mixed

strategy is realization equivalent to the behavior strategy.

(c) Suppose that player 1 uses the following mixed strategy:

(L, x, x) with probability P, (L, x, y) with probability Py
(L, y, x) with probability Py (L, y, y) with probability Py
(M, x, x) with probability pg (M, x, y) with probability Pg
(M, y, x) with probability Py (M, y, y) with probability Pg»
(R, x, x) with probability Py (R, x, y) with probability Pio
(R, y, x) with probability Py, (R, y, y) with probability Py
[pi = 0 for all i and ¥ p; = 1]

If Player 2 uses the mixed strategy o, the probability that we reach each
terminal node will be: Pr(To) = P * P,* Py* P, Pr(Tl) = (p5 + p6) a(l),
Pr(Tz) = (p7' + p8)0‘(l), Pr(T3) = (p5 + p6) o(r), Pr(T4) = (p,7 + p8) a(r),
Pr(Ts) = (p9 + plo) ao(l), Pr(T6) = (p11 + plz) ao(l), Pr(T7) = (p9 + plo) o(r),
Pr(T8) = (p11 + plz) co(r).

The following behavioral strategy for player 1 is realization equivalent:
At the root of the game, player 1 plays L, M, R with probabilities of (p1 +
P2+ P3+ P4), (PS + P6+ P4+ ps) and (p9 + Piot p“+ plZ) respectively; at
information set 2, player 1 plays x, y with probabilities of (p5 + p6)/(p5 +,
Pg* P+ p8) and (p7+ p8)/(p5 + Pgt P+ p8) respectively; at information set 3,
player 1 plays x, ylwith probabilities of (p9 + plo)/(p9 *Piot Pyt p12) and

(p11+ plz)/(p9 * Pio*t Pyt plz) respectively.

(d) Note that if player 1 reaches his (only) information set after player 2
moves, he will not remember whether he chose M or R. Thus, the game is not of
perfect recall.

The result of part (b) still holds: there exists a mixed strategy for

player | which is realization equivalent to any behavior strategy. Suppose



player 1 uses the following behavior strategy:

At information set 1, player 1 plays L, M, R with probabilities of P, P,
and Py respectively; at information set 2, player 1 plays x, y with
probabilities of q, and 9, respectively. If player 2 is using the mixed

strategy o, then the probability that we reach each terminal node will be:

Pr(TO) Py Pr(Tl) =P, a(l) q Pr(Tz) = p, a(l) 9, Pr(T3) =p, o(r) q,

Pr(T4) p, o(r) d, Pr'(Ts) = Py o(l) q; Pr(T6) = P o(l) 5 Pr'(T7) = Py
a(r) q; Pr(T8) = Py o(r) 9,

The following mixed strategy for player 1 is realization equivalent:

(L, x) with probability Py (M, x) with probability P4,

(M, y) with probability P9, (R, x) with probability o (M, y) with
probability P39,

However, there does not always exist « behavior s;crategy that is
realization equivalent to a mixed strategy. Consider the following example.
Player 1 uses the mixed strategy playing (M, x) and (R, y) both with
probability 172. Player 2 uses the pure strategy (I). Suppose there exist a
behavior strategy for player 1 which is realization equivalent to the mixed
strategy: at the root of the game, player 1 plays L, M, R with probabilities
of Py P, and Py respectively; at his information set after player 2 moves,
player 1 plays x, y with probabilities of 9, and 9, respectively. The mixed
strategy generates the following distribution over the terminal nodes:

Pr(Tl) = Pr(T6) = 1/2 .

Pr(TO) = Pr(Tz) = Pr(T3) = Pr(T4) = Pr‘(TS) = Pr‘(T_I) = Pr‘(TS) = O The behavior
strategy generates:

Pr('I‘3) = Pr(T4) = Pr(T7) = Pr(T8) =0

Pr(TO) =P Pr(Tl) = Pyd,» Pr(Tz) = Pyd, Pr(TS) = P39, Pr(T6) = P44,

in order for these distributions to be equivalent, we need: Pr‘(Tl) = Pyq, =

1/2 = P, and q, * 0, Pr(Tz) = Pyd, = 0> q, = 0 since p, * 0, PP(T6) = P44, =
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1/2 which cannot hold since q2 = 0, a contradiction. There exists no behavior

strategy that is realization equivalent to the above mixed strategy.

In a game that is not of perfect recall the following holds:

- for any behavior strategy ther= exists a mixed strategy that is
realization equivalent,

- not for all mixed strategies does there exist a realization equivalent
behavior strategy. [Note: for a general proof of these results refer to

Fudenberg/Tirole (1991) Game Theory. MIT press, p. 87]




CHAPTER 8

8.B.1 Firm i chooses hi to maximize “Zihj + B(I‘Ijhj) - wi(hi)z. The

”

F.O0.C. is: a + B(jgihj) - 2wihi = 0. The best response function for firm i is

therefore: h, = [a + B (.g.h.)]—L . Therefore firm i has a strictly dominant
i JFL] 2wi

strategy iff 8 = O, i.e., if the best response function of i is not dependent

on the action of the other firms. If 8 = 0, firm i's strictly dominant

o

2w,
i

strategy is hi =

8.B.2 (a) Suppose s% € Si and s?
player i. This implies that u.(s%,s J=zuls*s )V s* S, and Vs .eS
i iit-i i 7i - Ui

€ Si are two weakly dominant strategies for

2 - , . 1
and u.(s¥, s .) Z u(s* s . Vs*e S, and .'s . € S .. In particular, u.(s.,
il T-i ii” T-i i i -i -i ii

s .} = u.(s?, s .) and u.(s?, s .) = u.(s!, s.) Vs .,eS . Therefore,
-i ii’ ~-i i~i T-i i~it - -i -i

u.(s%, s .) = u.(s?, s.) Vs.,e€S .
itit T-i it - -i -i

(b)
Player 2
L R
U 1,4 2,5
Player 1
. D 1,2 2,3
Figure 8.B.2

Both of player I's strategies (U) and (D) are weakly dominant. However,

player 2 prefers that pléyer 1 uses strategy (U).
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8.B.3 Suppose not. Assume bidder i bids bi > vy Then if some other bidder
bids something larger than bi’ bidder i is just as well of as if he would have
bid vi. If all other players bid lower than vi, then bidder i obtains the
objecf and pays the amount of the second highest bid. If the second highest
bid is bj< Vi this results in the same payoff for player i as if he bid vy
However, suppose that the second highest bid of the other is bj> vy Then, by
bidding bi bidder i will win the object and obtain a negative payoff. By
bidding Vi he will not win the object and obtain a payoff of zero. Therefore,
bidding bi > Vi is weakly dominated by bidding Vi

Suppose bidder i bids bi < Vi Then if all other bidders bid something
smaller than bi’ bidder i is just as well of as if he would have bid vy He
will win the object and pay the the second highest bid. If some other player
bids higher than Vo then bidder i does not win the object regardless whether
he bids bi or v,. However, suppose that nobody bids higher than v and the
highest bid of the other players is bj with bi< bj< Vi Then by bidding bi
bidder i will not win the object, therefore getting a payoff of 0. By bidding
Vi he would win the object, pay bj < Vo and thus obtain a payoff of vi - bj
> 0. Therefore, bidding bi < v; is weakly dominated by bidding Vi This

argument implies that bidding v; is a weakly dominant strategy.

8.B.4 Call the set of strategies for player i that remain after N rounds of
deletion of strictly .dominated strategies ZI:I Suppose s, € ZI:I is a strictly
dominated strategy given the strategies ZN_i of the other players Therefore,
there exists a strategy s’; € Z[?, which is not a strictly dominated strategy
given ZN_i, which strictly dominates s Suppose further that s will not be

deleted in the N+l round.



Since s; was strictly dominated by s’; given ZN_i, it will still be

strictly dominated by s’; given ZNti = EN .

5 and s’; € E?ﬂ (with the given

assumptions). Thus the strategy s will be deleted in the next round.

(Note: If s; is only weakly dominated by s’; given ZN_i, then s, may no longer
be weakly dominated _iven ZNfi since ZNti may no longer include the strategies
of the opponent relative to which some other strategy of player i will

strictly be better. Thus the order of deletion does matter for the set of
strategies surviving a process of iterated deletion of weakly dominated

strategies).

8.B.5 (a) Suppose, player j produces qj‘ Player i’s best response can be
calculated by maximizing (this is symmetr‘i_c for both players):
max [a - b(qi - qj) - r:lqi

which yields the F.0.C: [a - b(2qi + qJ.) - c] = 0, so the best response is:

a-c qj

bilay) = —5p~ - 3~

Now, since q; = 0, a, = (a-c)/2b (all other strategies would be strictly
dominated by q, = (a~c) / 2b). Therefore, since a, = (a-c)/2b, we have that

(a-c)/2b - (a-c)/4b

v
]

9, (a-c)/4b. Thus, since 9, z (a-c) / 4b, then

(a-c)/2b - (a-c)/8b

A

9, 3(a-c)/8b.  Continuing in this fashion we will
obtain: q = (a-c)/2b - q/2. Thus, after successive elimination of strictly

dominated strategies, q =4, = (a~c)/3b.

V

(b) Suppose, player j produces qj and player h produces 9y Player i’s best
response can be calculated by maximizing [a - b(qi + qj + qh) - c]qi, which
yields the F.O0.C [a - b(2qi + qJ_ + qh) - ¢l = 0, implying the best response:
bi(qj’qh) = (a-c)/2b - (qJ. + qh)/2.

Now, since 9y G4 z 0, q) = (a-c)/2b (all other strategies would

strictly be dominated by q = (a-c)/2b). Thus, since q = {a-c)/2b and
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similarly qy = (a-c)/2b, we have q, = (a-c)/2b - [2(a-c)/2bl/2 = O.
Therefore, successive elimination of strictly dominated strategies, implies
that 9 9y 9 = 0 and 9, dy 93 = (a-c)/2b. However, a unique prediction

cannot be obtained.

8.B.6 Suppose s*; is strictly dominated by the strategy a’;. Suppose further
that o is a mixed strategy in which s*; is played with strictly positive
probability a‘i(s‘;)>0. We claim that o, is strictly dominated by the mixed
strategy o"i, which is equivalent to o except that instead of playing s‘; with
probability o*i(s’;) it plays a"; with probability cri(s’;). This follows since:

u; (e, o) =2 o,(s,) u (s, o_))

= o.(s.) u.(s,, o .) + c.(s*) u.(s* o .
sigs*; i 1) 1( i -1) 1( 1) 1( i’ -1)

< o.(s.) u.(s,, o .) + ~.(s*) u.(c* o .
sigs‘; 1( i 1( i’ —1) 1( 1) 1( i —1)

=u.(e?, ¢.) for all ¢ ., € A(S .).
i i i -i -i

8.B.7 Suppose in negation that o, is a strictly dominant mixed strategy of
player i, and suppose, s%, cees s? are the pure strategies that are played
with positive probability in the mixed strategy .. Since o, is a strictly
dominant strategy: ui(cri, S-i) > ui(s*;, S-i) v s’;e Si and V s; € S_ .. In

particular, ui(cri,s_i) > ui(s“i',s_i) YV j = L,..., N. This implies that

N . .
ule,s .) >.5.[co.(sd) u.(s:’,s )l =ulc.,s .) , a contradiction.
11 -1 j=1"1i"1 i1 -1

8.C.1 Notice that the elimination of strategies that are never a
best-response is more demanding than strictly dominated strategy elimination.
Thus, in-every round of elimination, the deletion of never a best response

deletes more strategies than the deletion of strictly dominated strategies.
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Therefore, if the elimination of strictly dominated strategies yields a unique
prediction in a game, then the elimination of strategies that are never a
best-response cannot yield more than one strategy. Since a rationalizable
strategy always exist, the elimination of strategies that are never a
best-response will then also yield a unique prediction.

If the unique rationalizable strategy is not the unique prediction after
elimination of strictly dominated strategies, then there exist a round of
elimination in which this unique rationalizable strategy was strictly
dominated. However, if this strategy was strictly dominated it was also never
a best-response. This contradicts the assumption that the strategy is

rationalizable. Therefore, both procedures must yield the same prediction.

8.C.2 Call the set of strategies for player i that remain after N rounds of
deletion of never best-response strategies Zl:l Suppose s is never a
best-response to any strategy in EN_i. Suppose further that s; will not be
deleted in the N+! round. Since s; was never a best response to a strategy in
ZN_i, it will clearly not be a best-response to a strategy in ZNti = ZN_i.

Thus this strategy will be deleted in the next round.

8.C.3 Suppose that s is a pure strategy of player 1 that is never a best
response for any mixed strategy of player 2. Suppose in negation that s is

not strictly dominated. Construct the following correspondence for any

c. € A(Si) fori =1, 2

(0'1, 0‘2) - {0‘1| o, € argmax gl(ol,oz)) X (0"2| gl(sl, 0‘2) z gl(ol, 02) ).

1
The first part of this correspondence is the best response function for

player 1 and therefore satisfies all the conditions of the Kakutani fixed

point theorem. The second part of the correspondence is the set of mixed
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strategies of player 2, for which s, is not strictly dominated (it is a

1
non-empty set since ) is not a strictly dominated strategy. i.e., it is not
strictly dominated by o~1). Therefore, the second part of the correspondence

is convex valued and upper hemicontinuous due to the usual assumptions. Thus,
by Kakutani’s theorem there exists a fixed point (cr’i‘ ,o; ) of this
correspondence such that gl(sl, 0‘5) z gl(o*’i*, 0‘5) from the second part of the
correspondence, and gl((r’f, 0‘3) z gl(crl, o;) for all ¢, € A(Sl). Therefore,
gl(sl, o;) z gl(crl, 03) for all o, € A(Sl), which contradicts the assumption
that 5 is a pure strategy of player 1 that is never a best response for any
mixed strategy of player 2. Therefore, if S, is a pure strategy of player 1
that is never a best response for any mixed strategy of player 2, then s, is

1

strictly dominated by some mixed strategy of player 1.

8.C.4 [First Printing Errata: a typo appears in the lower left box of the
payoff matrix. Player 1’s payoff should be w + 4¢ and not n + 4e.]

For the continuation of this answer, a strategy for player 2 is to play u with
probability « and D with probability 1-«, and for player 3 is to play 1l with
probability B and r with probability 1-8. Denote by P A the expected payoff of
player 1 when action A € {L,M,R} is taken given « and B. Direct calculation

and simple algebra yield:

_ 3a + 38 _
PM—1t+[——2—— 3aB l]n
PL;n+(ZB—1)e
PR=1r+(1-2[3)e

(a) To show that M is never a best response to any pair of strategies of
players 2 and 3, («,8), we have three cases:

Case 1: B > 1/2
8P

Note that in this case
da

= 1[3/2 - 38] < 0. Thus the highest payoff for

w




player 1 if he plays M is obtained when a = O, and his payoff will be PM(a=0)
=7+ n[gB -1 <n+ 48[28 - 1] < m + 4el2B - 1] = P, . Further note that P
o 2 2 L L
is independent of «, so that these inequalities hold for all «. Therefore, M

cannot be a best response in this case.

Case 2: B<' 172

apP
Now, -—a—t:— > 0, the highest payoff for player 1 if he plays M is obtained when
_ . . 0y 3,3, _ _ _ 1 _3
« =1, and his payoff is PM(oc—l) =n + n[z + zB 3B-1= n+ n[z -Z—B] <
1 3 1 .
n + 'n[z - EB +5 =Bl < m + 4¢ll - 28] = PR' Further note that PR is

independent of a, so that these inequalities hold for all «. Therefore, M
cannot be a best response in this case.

Case 3: B= 172

In this case PM =n - 2 <n =P, =P . This concludes that M can never be a

R L

best response.

r 3 (b} Suppose in negation that there exists a mixed strategy, in which player 1
plays R with probability ¥ and L with probability 1-y, that strictly dominates
M.
Case 1. ¥ = 172,
If 8 =0 and a= 1 then PM =n + /2 > n. The mixed strategy will give a
payoff of m - 4e(1-2y) = m. Therefore, M cannot be a strictly dominated by
the mixed strategy in this case.
Case 2: ¥ > 1/72.
If B =1 and a= 0 then PM =7n + /2 > . The mixed strategy will give a
payoff of m - 4e(2y-1) = m. Therefore, M cannot be a strictly dominated by

the mixed strategy in this case. This implies a contradiction, so that M

cannot be strictly dominated.

{c) Suppose players correlate in the following way: Players 2 and 3 play
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(U, r) with probability 1/2 and (D, !) with probability 1/2. Any mixed
strategy for player 1 involving only L and R will give him a payoff of m.
However, playing M will yield him a payoff of ® + 7/2. Thus M is a
best-response to the above correlated strategy of player 2 and 3.

8.D.1 We know already from section 8.C that a,and b 4 are not rationalizable

4
strategies. Thus, these strategies cannot be played with positive probability
in a mixed strategy Nash equilibrium. Suppose that there exists a mixed
strategy equilibrium in which a; and a, are both played with a strictly
positive probability. Then the expected payoff from playing either one of
them has to be equal (see exercise 8.D.2). This implies that the probability
that player 2 plays b1 has to be equal to the probability that he plays b3.
Now, suppose that player 2 plays b1 and b: with probability « and b2 with
probability 1-2a. vThe expected payoff for player 1 obtained by playing either
a, or a, equals: 7« + (1-2a)2. The expected payoff for player 1 when playing
a, equals: S + Sa + (1-2a)3 = 10& + (1-2a)3 > 7a + (1-2a)2. Therefore, in a
mixed strategy equilibrium a and a, cannot both be played with positive
probability since playing a, would give the player a larger payoff.

Suppose, there exists a mixed strategy equilibrium in which player 1
plays a, and a, with strictly positive probability. Clearly, player 2’s best
response to this strategy of player 1 does not involve playing b3 with
strictly positive probability (given the strategy of player 1, playing b2 is
strictly better for player 2). Thus player 2 will play b1 with probability B
and b2 with probability 1-8. The payoff for player 1 from playing a,
equals: (1-B)2, playing a, yfelds: S8 + (1-8)3 > (1-B)2. Therefore, in a
mixed strategy equilibrium a and a, cannot both be played with strictly

positive probability since playing a. is always better.

2
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Similarly, it can be shown that there exists no mixed strategy
equilibrium in which a, and a, are both played with strictly positive
probability. Therefore, player 1 always plays a, in a Nash equilibrium.

Player 2 will then play his best response b2' Thus (a2, b2) being played with

certainty is the unique mixed strategy equilibrium.

8.D.2 We will show that any Nash equilibrium (NE) must be in Sm, the set
of strategies which survive iterated strict dominance. Since it is assumed
that this set contains one element, this will prove the required result.

Let (s*{,s;,...,s*f) be a (mixed) NE and suppose in negation that it does
not survive iterated strict dominance. Let i be the player whose strategy is
first ruled out in the iterative process (say in the kth round). Therefore,
there exists o and a, such that ui(tri,s__i) e ui(ai,s_i) v s_ie Sl_:l, and a,
is played with positive probability s’;(ai). Since k is the first round at
which any of the NE strategies, (s’i‘,s*,...,s}‘), are ruled out, we must have
that sfie Slle. Hence, ui(wi,sfi) > ui(ai,s_*_‘i). Let the strategy s’i be
derived from s*; execpt that any probability of playing a, is replaced by
playing oy We thus have that:

u.(s},s?)) = u,(sy,s¥) + sila)-lulo,,s%)) - u(a,,s* )l > u(s},s?))
which contradicts the assumption that (s*i‘,s*,...,s*i‘) is a NE.
8.D.3 First of all, notice that the first auction bid is a simultaneous move

game where a strategy for a player consists of a bid. Let b1 be the bid of

Player 1, and b2 be the bid of Player 2.

(i) If b1 > bz, Player 1 gets the object and pays bl for it;

Player 2 does not get the object. Thus, in this case:
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ul(bl,b2)=vl-bl [1’s valuation of the object
minus what he has to pay for it].

u2(b1’b2)=0

ul(bl’b2)=0
(ii) Similarly, if b2 > bl:
uz(bl,b2)=v2-b2
(iii) If b1 = b2’ each player gets the object with probability %:
(v.-b))
1 1, _ 10
ul(bl + b2) = E(v1 - bl)+ 5° 0= — -
(v, - b,)
.. _ 2 2
Similarly: uz(bl, b2) = 5

Therefore, we have for i,j € (1,2}, i # j:

, b, < b,
1 J

(vi - bi) , b1 = b2

v. -b.), b, >b,
i i i J

ui(bl' bz) =

~ N~ ©

(a) We claim that no strategy for player 1 is strictly dominated. Suppose in

negation that b1 is strictly dominated by b’, i.e., for any b2: ul(b’l,bz) >

» - y b’ . b* » ’
ul(bl'bZ)' Take b2 max (bl'bl) + 1,then: b2 > bl’ and b2 > bl' Hence,

ul(bi,bi) = “1“’1"’5’ = 0, a contradiction. Therefore, no strategy for player
1 is strictly dominated. Similarly, one can prove that no strategy for player

2 is strictly dominated, and thus no strategies are strictly dominated.

(b) We now claim that any strategy bl for Player 1 such that b1> v, is

1

weakly dominated by v,- Note that, if b > Vi

% ul(vl, bz) = vl— v1 =0

ul(bl’ b2) =V - b1 <0=u (vl, b2)

1
X ul(vl, bz) =3

ul(bl’ bz)

i) If b2 <v

(ii) If b2 =y (v1 - vl) =0

v b1 <0 = ul(vl, bz)




(iii) If v1< b2< blz ul(vl, b,) =0

ul(bl’ bz) v, - b1 <0 = ul(vl, bz)
(iv) If v < b2 = bl: ul(v1 R bz) =0
ul(bl’bz) = 1/2(v1- bl) <0 = ul(vl,bz)

(v) If b2 > bl: ul(vl, bz) =0

ul(bl’ bz) =0 = ul(vl, b2)

Thus, in all cases, ul(vl, bz) = ul(bl’ bz), and in some

inequality holds. Thus, bl > v is weakly dominated by v

cases strict

I Similarly, any

strategy b2 for Player 2 such that b2 > v, is weakly dominated by Vo

Now suppose v > 2. We claim that, in this case, bl =1 wéakly
dominates b’l = 0. Observe that:
(i) If b2 = O: ul(l, 0) = V) -1
1
Ul(o. O) = '2- Vl
i "1
Since v, > 2, ul(l,Q) - ul(0,0) = (vl-l) -5 =5 1>0

.. 1

(i) If b2 = I: ul(l, 1) = 5 (v1 ~-1>0
ul(O,l) =0

(iii) If b2 > 1 ul(l, b2) = ul(O,bz) = 0.

Thus, in all cases ul(l, b2) = ul(O,bZ), with strict inequality in some cases.

Finally, suppose that v € {1,2} . We claim that, in this case,

b1= v 1 weakly dominates b1= v

(i) If b2 <v-1 ul(vl—l,bz)

1 1>0= ul(vl,bz)

Il
]

(ii) 1If b2 vl—lz u(vl-l, bz) 172> 0 = ul(vl,bz)

(iii) If b2 > v1-1: u(vl—l, bz) =0 = ul(vl,bz)

Thus, in all cases, u(vl—l, bz) z U(VI’ bz), with strict inequality in (i)

and (ii). Similarly, it can be shown that:

-if Vs > 2, b2 = | weakly dominates b2 =0

-if v, =1, b2= yz—l weakly dominates b 2= v2




(c) Define the best response correspondence for Player 1 as the set of
maximizers of 1's utility, given the strategy for 2. We already have the
expression for ul(bl’ bz); in order to find out the best response

correspondence, all we have to do is maximize this function. Denoting this

best response by Rl(bZ)’ direct maximization of u(bl, b2) yields:

[ {by+ 1}, if b, < v-2

(bz,b2+1), if b2 = v1—2

Rl(bz) = 4 (bz), if b, = v,-1
(0,1,2,...v1), if b2=v1
(0,1,2,...,b2-—l) if b2 > v,

\

Similarly, if Rz(bl) is the best response correspondence for Player 2:

(b, + 1}, if by <v, -2
(bl, b1+1) , |if b1 =V, - 2
R,(b)) = 1 (bl) , if b=v,-1
(0,1,...,v2), if b1 =v,
0,1, ... b -1}, if b, > v,

ili N 3 i * } % #* » #* »*
A Nash equilibrium is a pair (bl’bz) where bl € Rl(bz), and b2 € Rz(bl)' It

can be verified that a NE always exists, and, for sufficiently large values

of v and vy, Nash equilibria are not unique.

More explicitly, it can be shown that, for v, v

r Vo z 2 the following are Nash

equilibria:

(i) If V= vy (vl, v2), (vl—l, vz-l), (vl—z, v2-2)

(ii) If V= v2+1: (vl-l, vl—2), (vl-Z, vl—2)
(iii) 1If v,= vl+1: (v2-2, v2-1), (v2—2, v2-2)
(iv) If vy > v2+1: (vl—x, vl—x—l), with 1 = x = v, T Y,

Note: if v1 = v2

(v) 1If vy > v1+1: (vz—x-l, v

+2: (vl-2, vl-Z) is also a NE.

2—x),with15xsv -v
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Note: if v, = v1+2: (v2-2, v2-2) is also a NE.

Thus, generally, uniqueness of NE does not hold, although existence does.

8.D.4 (a) If player i demands y = 100, then any strategy of player j with
X = O is payoff equivalent. Therefore, there exists no strictly dominated

strategy.

(b) Any strategy demanding more than $100 is weakly dominated.
Case 1: player 2 demands y = 100. Then any strategy of player 1 with x = O is

payoff equivalent. Case 2: player 2 demands O =< y < 100. Then, player 1 could

demand x = 100 - y and would obtain a payoff of 100 - y. Demanding x > 100
will give player 1 a payoff of O. Therefore, any strategy demanding more than

$100 is weakly dominated.

(c) Any pair (x, 100 - x) with 100 =2 x = O is a pure strategy Nash equilibrium
of this game.

Proof: Suppose, player 1 demands x with 100 =z x = 0. If player 2 demands

y = 100 - x, his payoff will equal 100 - x =z 0. If player 2 demands y > 100 -
X, the demands sum to more than $100 and both players get O. If player 2
demands O = y < 100 - x, he will obtain his demand and therefore be worse off
than if he would have demanded 100 - x. Thus, if player 1 demands X, player
2’s best response is to demand y = 100 - x. Similarly if player 2 demands 100

- %, player I's best response is to demand x.

8.D.5 (a) Let X, be the location of Vendor 1 and X, be the location of
Vendor 2. Thus, we can associate a strategy for Player i with X, € [0,1].
First, let us find out the payoff function for each of the vendors. Since the

price of the ice cream is regulated, we can identify the profit of each vendor



with the number of customers s/he gets. Suppose that x, < x_. In this case,

X+ X, 1 2
all consumers located to the left of (below) — will purchase from
X + X
Vendor 1, while all customers located to the right of 1 > will buy ice
cream from Vendor 2. Thus:
X, + X X, +X
1 2 1 2
ul(xl, xz) = > ( = length of [0,—2—])
X, + X X + X
1 2 _ 1 2
u2(xl, x2) =1 - 5 ( = length of [—2— ,11)
We can derive a similar result for X, < X:
X, + X
1 2
X
u(x, x,) = 1~ "2
271 T2 2

Now, if X = x,, the vendors split the business so that ul(xl,xz) = UZ(Xl’XZ)
1

= 5. Thus, summarizing:

2
X X
[ X %,
2 X <X
u(x, x,) = A 1 X, = X
171 72 2’ 1 2
X, + X
- > :
kl > ,x1 xz
( X + X
1 - 71 2,xl<x2
2
u,(x X)=<l X =X
271 72 2 S | 2
x1+x2 < >«
{ 2 i )

It is straightforward to check that x, =

1 X, = 1/2 constitutes a NE (no

firm can do better by deviating). To show uniqueness, suppose first that
X =X, < 1/2. Then any firm can do better by moving by € > O to the right,
since it will sell almost 1 - X, > 1/2 units rather than 1/2 units. Similarly

it can be shown that X, = X, > 1/2 does not constitute a NE. Suppose now that




X, <X

1 2 Then firm 1 can do better by moving to X, - g, with € > O, therefore

! | 9 this could not have been a NE. Similarly it can be shown that X, > X, does

not constitute a NE.

(b) Suppose that an equilibrium (x*i‘, xz, xg) exists. Suppose, first, that
x*i‘ = xz = x’:;. Then each firm will sell 1/3. But any firm can increase its

sales by moving to the right (if x’i‘ = xE = x:’; < 1/2) or the left (if x‘i‘ = xz =

x* = 1/2), a contradiction. Suppose that two firms locate at the same point,

3
let’s say x‘; = xg. If x*i‘ = x; < xg, then firm 3 can do better by moving to
x*; + e If x*i‘ = xz > x:‘;, then firm 3 can do better by moving to x*i’ - g, a

contradiction. Finally, suppose that all 3 firms are located at different
points. But then the firm that is located the farthest on the right will be
able to increase its sales by moving to the left by £ > 0, a contradiction.

Thus, there exists no pure strategy NE in this game.

a 8.D.6 Case l: u>wandl >y.

In this case player 1 always plays his dominant strategy a- Player 2 will
play his best response to this stratégy, i.e. if v > m he will play bl’ if

v < m he will play b2 and otherwise he will be indifferent.
g_a_sgg:u<w)’vandl<y.

In this case player 1 always plays his dominant strategy a,. Player 2 will
play his best response to this strategy, i.e. if x > z he will play bl’ if

x < z he will play bé and otherwise he will be indifferent.

Case 3: v> m and x > 2.

In this case player 2 always plays his dominant strategy bl’ Player 2 will
play his best response to this strategy, i.e. if u > w he will play a if

u < w he will play a, and otherwise he will‘ be indifferent.

Case 4: v <m and x < Z.
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In this case player 2 always plays his dominant strategy b Player 2 will

o
play his best response to this strategy, i.e. if 1 > y he will play a if

1 <y he will play a, and otherwise he will be indifferent.

Case 5: all other cases.

Suppose player 2 plays b1 with probability a and bz with probability 1-a.

Player 1's best response will be a mixed strategy if he obtains the same

payoff from playing either of his strategies:
y -1

au + (I-a)l = aw + (1-a)y, = CE I Ty I - w

Similarly suppose player 1 plays a with probability 8 and a, with probability
1-B. Player 2’s best response will be a mixed strategy if he obtains the same

payoff from playing either of his strategies:

Z - X

Bv + (1-B)x = Bm + (1-B)z. = B =

vVv+z-x-m’'

Player 1 playing a (az) with probability B (1-B) and player 2 playing b1 (b,)

2

with probability « (1-a) as defined above is a mixed strategy Nash

equilibrium.

8.D.7 (a) Suppose w, = ui(o“;, o‘fi). The following is true by definition:

v. =min [ max u (¢, ¢ .) ] =2 min [u.(¢* o .) ] = u.(c*, o*) = w..
iir i ii i i1 i -

o . o, o .
=1 1 -1

(b) Suppose (0";, cr:i) is a mixed strategy Nash equilibrium. We have:

u.(c¥ o*) = max u,(¢,, 0*) and u .(¢* o*) =max u .(c*, ¢ .). Since
i it - i - -1 i -i i -i
. o .
i -i

this is a zero-sum game we can rewrite the second equality:

-u.(o¥e*) =max [ - u.(c* ,c .) ] or, u.(c*0*) = min u.(c* ,0¢ .).
ii i ii i i -i i1 ~-i
o . .
-i -i
This yields: max ui(o-i, 0*i) = ui(cr’;, @fi) = min ui(o"iE s 0'_i). Now,

o, .
1 -1




min [max ui(O'i,cr_i)] < max ui(cri,o'fi) = ui(o‘;,o‘fi), and also

W

o ¢ c
9 -i i
u.(e?, o) = min u (e} , ¢_;) = max [min u (e, , o_,)]. Taking these two
c . c, o .
-i i -i
inequalities together we get:
v. = min [max u.(¢., ¢ ,)] = u,(c* ¢*) = max [min u.(c, , ¢ )] = w..
-i i it i i1 - ii -i =i
c. o, c. o .
-i i i -i

But we know from (a) above that Yi z v_vi. Therefore, we must have:

v. = u,(c* o*) =w..
- ii - -i

(c) Suppose (o"i‘, o*_*_*i) and (cr’i, o-’_i) are mixed strategy Nash equilibria. We

must therefore have that:

v

(i) u.(c*,0*.) =z u.(e’,0*.) = -u .(c’,0*) z -u .(¢',0’,) = u.l¢’,0’.)
iit i iir - - i - -i i i i it i

1A

(iiu.(c*,0*%.) -u .(o*,0*) = ~u .(6%¢’.) = u.(e*,c’.) = u.(¢’,0’.)
iir - -i i - -i i - i i -i i it -i

(these inequalities follow from the properties of NE and from the zero-sum
property). From part (b) we know that ui(o"i,o*’_i) = ui(o";, a‘fi) =V, =W

This, together with (i) and (ii) above yield:

v, = u.(c’,0'.) = u.(oc!,0%) = u.leo*e*) = u.(6%e’.) = u.(c’',0’.) = v,
-i Tivit-i i -i i it -i i it -i i i -i -i

Therefore, u.(c’,0*.) = u.(ec*c6*.) = u,(c*e’.) = u.(c’,0’.) = v..
i it -i i1 -i i i -i i it -i -

Since (cr*;, a‘fi) is an equilibrium we have: ui(o“;,crfi) = ui(oi,crfi) v ., SO

u.le’, o*,) = u.(oc* o*) =z u.(c,, o*.) VY ¢.. Similarly, u ,(c’,0’.) =
i it - i i - iir - i -i i -
u (e’ .) Vo ., sou  (¢/06*%)=u (c'y’')z2u (c',0c.) Vo . (Note,
-i it - -i -i i~ -i i -i -i i - -i
that u .(¢’, o*)) = u ,(c’, ¢’.) since u.(¢’,0*) = u.(¢’,0’.) and the game is
-i i’ i -i i i i1 - i it -i
zero-sum). This implies that (o"i,ofi) is a mixed strategy Nash equilibrium.

Similarly it can be shown that (o"{, o"_i) is a mixed strategy NE.

8.D.8 Let (O‘i,d’_i) be a mixed strategy Nash equilibrium, and suppose in
negation that o, assigns strictly positive probability to the pure strategies

si and S?, i.e. o, is not degenerate. This implies that si and s? are each a




best response to o_; and ui(s;,cr_i) = ui(s?, o-_i). By the convexity of Si’
as; + (l-a)s? € Si’ and since u, is strictly quasiconvex we have that W
u,( as% + (l-a)s?, c.)> uqv/(s!, c.)= u.(s?,o* .) for all a € (O, 1).

i i it - 171" -1 i -

This contradicts the fact that s; and s? are each best response to T

Therefore, any mixed strategy NE of this game must be degenerate.

8.D.9 (a) Playing L or R is quite risky, since we do not know what player 1
will be playing. The risk of obtaining a payoff of -49 is very large compared
to the payoff of 1 if player 2 played L, and the risk of obtaining a payoff of
-100 is very large compared to the payoff of 2 if player 2 played LL or R.

Therefore, it seems "reasonable" to play M.

(b) The’t[w\o\ pure Nash equilibria of this game are (U,LL) and (D,R). To
check for mixed strategy Nash equilibrium, player 1 must mix between U (with
probability p) and D (with probability 1-p). Player 2 then has 1l possible
mixing combinations: {LL,L}, {LL,M}, {LL,R}, {L,M)}, {L,R}, {M,R}, {M,L,R}, W
{LL,M,R}, {LL,L,R}, {LL,L,M}, and {LL,L,M,R}. We will show that only the first
combination, {LL,L}, is part of a mixed strategy NE.
For player 2 to mix between LL and L (with probabilities q and 1-q
respectively), we must have that p-(2)+(1-p)-(-100) = p-(1)+(1-p)-(-49) which
yields p = g—é The utility of player 2 from each strategy is then: uZ(LL) =
uZ(L) = Tfl; , uz(M),= 0, and uz(R) < 0. Then, for player 1 to mix between U
and D, we must have: q-(100)+(1-q)-(-100) = q-(-100)+(1-q):(100) which yields

and q = 1 is a mixed

(D) = 0. Therefore, p = 5

1 1
q =3 and ul(U) = u T3

strategy NE. For the rest of the answer we call this "NE*". We now show that
no other mixing combination of player 2 can be part of a mixed strategy NE.
(i) If player 2 mixes with the combination {LL,M}, we must have

50 L I _
P=z7: which gives utilities uz(LL) =u 3]

1
2(M) = 0, and uZ(L) = > 0, so w



this cannot be part of a mixed strategy NE.

(ii) If player 2 mixes with the combination {LL,R}, we must have
p = % , which gives utilities uz(LL) = uz(R) = - 49, and uz(M) = 0, so this
cannot be part of a mixed strategy NE.

(iii) If player 2 mixes with one of the combinations {L,M}, {L,R}, {M,R},
{M,L,R}, then player 1 will have D as a strict best reéponse, which in turn
has R as player 2’s strict best response.

(iv) If player 2 mixes with one of the combinations {LL,M,R}, {LL,L,R},
or {LL,L,M,R}, then the analysis of (ii) above implies that this cannot be
part of a mixed strategy NE.

(v) If player 2 mixes with the combination {LL,L,M} then the analysis of

(i) above implies that this cannot be part of a mixed strategy NE.

(c) The choice in part a) is not part of any NE described above. It is easy

1

to see that strategy M is rationalizable: If plyer 1 plays p = 5 then M is

W]

the unique best response of player 2.

(d) If preplay communication is possible, the players can agree to play one
of the pure strategy NE, which are payoff equivalent and Pareto dominant for
both players. Therefore, player 2 will play either LL or R depending on the

agreed upon equilibrium.

8.E.1 There are four pure strategies contingent on the type of player:
AA: Attack if either weak or strong type,

AN: Attack if strong and Not Attack if weak,

NA: Not Attack if strong and Attack if weak,

NN: Never attack.

The expected payoff of each pair of strategies can be easily computed and are



given in Figure 8.E.1:

Player 2
AA AN NA NN
M s+w M s+w|M s+w M_s [3M s+w -w
AA 57T 3722 73 [0 % M, 0
M s Mstw) M-s M-s Ms M-w M
AN42,24 4 4 2 4 4 2,0
Player 1
"W Mstwi M-w M_s M-w M-w M
NA 2 4 4 4,24 O 2,0
M
NN 0,M 0,7 0.%1 0,0
Figure 8.E.1

Any NE of this normal form game is a Baysian NE of the original game.
Case : M>w > s, and w > M/2 > s

From the above payoffs we can see that (AA,AN) and (AN,AA) are both pure
strategy Bayesian Nash equilibria.
Case 2: M >w >s, and M/2 < s

From the above payoffs we can see that (AA,NN) and (NN,AA) are both pure
strategy Bayesian Nash equilibria.
Case 3: w> M > s, and M/2 < s

From the above payoffs we can see that (AN,AN), (AA,NN) and (NN,AA) are
pure strategy Bayesian Nash equilibria.
Case 4: w > M > s, and M/2 > s

From the above payoffs we can see that (AA,AN), (AN,AA) and (AN,AN) are

pure strategy Bayesian Nash equilibria.
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8.E.2 (a) Suppose that all the bidders, use the bidding function b(v), that

’ is if their valuation is v they bid b(v). The expected payoff for a bidder

whose valuation is v is given by:

(Vi—b(vi))-Pr(b(vi) > b(vj)) + O-Pr(b(vi) < b(vJ.)). (Note that we ignore a tie
since it is a zero probability event given that b(vi) is a monotonic linear
function.) Since both players use the same monotonic linear bidding function
then Pr{b(vi) > b(vj)) = Pr(vi > vj) = vi/ v (since the valuations are
uniformly distributed on [0,v]. b(v) will in fact be the equilibrium bidding
function if it is not better for a player to pretend that his valuation is
different. To check this let us solve a bidders problem whose valuation is Vi
and who has to decide whether he wants to pretend to have a different
valuation v’. The bidder maximizes: (vi - b(v))-(v / v), and the FOC is:

(vi - b(v))/v - b’(v) v/7 = 0. blv) is an equilibrium bidding function if
it is optimal for the bidder not to pretend to have a different valuation,

that is, if v = vi is the optimal solution to the above FOC, i.e., if

(vi - b(vi))/; - b'(vi) vi/; = 0. This is a differential equation that has to
be satisfied by the bidding function b{(v) in order to be an equilibrium
bidding function. The solution to this differential equation is b(v) = v/2.

Thus a bidder whose valuation is v will bid v/2 (a monotonic linear function).

(b) We can proceed as above by assuming that all bidders use the same bidding

function b(v). Now,‘Pr(b(vi) > b(vj) Vj#i)=-= Pr‘(vi> Y Vijizir=
(vi)l—l/ v. Proceeding as in a) above, we get the following differential
equation:

-2 - , I-1 - . .
(I—l)(vi - b(vi))(vi) /v - b (vi) (Vi) /v = 0. The solution to this
differential equation is b(v) = I—;l—-v. As 1 » o, blv) = -I;—l-v » v, i.e., as

the number of players goes to infinity each player will bid his valuation.

8-21




8.E.3 A firm of type i = H or L, will maximize its expected profit, taken

as given that the other firm will supply qy or q depending whether this firm

is of type H or L. A type i € {H,L) firm 1 will maximize:

Max (1-u)l(a - b(q;+ qfl) - ci)q:] + pl(a - b(q§+ qi) - ci)qél

1

9

The FOC yields:(1-u){a - b(2q!+ qz) - c} + pla - b(2q%+ q2) -cJ=0. In
i- 'H i i L i
2 2

, . s 1 2 1
a symmetric Bayesian Nash equilibrium: QG = 94 = Yy and 4G =9 =9
Plugging this into the F.0.C we get the f ollowing two eqations:

(1-p)la - 3b ay - cH] + pla - b(2qH+ qL) - cH] = 0,

(1-p)la - b(qH+ ZqL) - cL] + ula - 3b q - cL] = 0.

Therefore, we obtain that
= la - Ko - .
b! [a °n * 3oL CH)] 36

= [a - L T
9@ = [a °L* 7 %y CL)]

&l
| -

8.F.1 For the proof of Proposition 8.F.1, we refer to:
Selten, R. (1975) "Reexamination of the Perfectness Concept for
Equilibrium Points in Extensive Games," International Journal of Game
Theory.

Another good source is Section 8.4 in Fudenberg & Tirole, (1991) Game Theory,

MIT press.

8.F.2 For the solution of this question we refer to:
van Damme, E. (1983). Refinements of the Nash Equilibrium Concept.

Berlin: Springer-Verlag (pp. 28-31).
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8.F.3 For the proof of this statement, we refer to:

: ‘ Selten, R. (1975) "Reexamination of the Perfectness Concept for

L Equilibrium Points in Extensive Games," International Journal of Game
Theory.

Another good source is Section 8.4 in Fudenberg & Tirole, (1991) Game Theory,

MIT press.
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CHAPTER 9

9.B.1 There are 5 subgames, each nne beginning at a different node of the

game (this includes the whole game itself).

9.B.2 (a) Clearly if o’ is a Nash equilibrium of FE, and I"E is the only

proper subgame of I‘E, then ¢° induces a NE in every proper subgame of the game

I'E. Thus, by definition ¢’ is a subgame perfect NE of FE'

(b) Assume in negation that o is a subgame perfect equilibrium of I"E, but

it does not induce a subgame perfect Nash equilibrium in every proper subgame

of I‘E. Then there exists a proper subgame (say, ITE) of I‘E in which the

restriction of ¢ to HE is not a SPNE. This implies that there exists a

proper subgame (say, QE) of ITE in which the restriction of ¢ to QE is not a

NE. Since QE is a proper subgame of TIE and I'IE is a proper subgame of FE, then

Q_ is also a proper subgame of I Therefore, o’ does not induce a NE in a

E E’

proper subgame of I E - contradiction.

9.B.3 Let player I’s pure strategy be sle(L,R), player 2’s be sze(a,b), and
player 3's be s4= (x,y,z) where x,y,z €{l,r}, x is what 3 does after player 1
played L, y is what 3 does after 1 played R and 2 played a, and z is what 3
does after 1 played Rl and 2 played b. The pure strategy SPNE identified in the
example is (R,a,(r,r,1)), which is easily seen to be a NE. Three other NE
which are not SPNE but yield the same outcome are (R,a,(l,r,1)), (R,a,(l,r,r))
and (R,a,(r,r,r)). For each of these NE, player 3 is not choosing a rational
move for some of his nodes. If player 3 is reached, he will always do the best

thing for himself, therefore if 1 plays L, 3 will play r. To support this as a




NE we need strategies for 2 and 3 that give player 1 less than -1 in the
subgame starting from player 2’s node, but recall that these strategies need
not be subgame perfect. Therefore, (L,b,(r,r,r)) would be another NE, in which
player 3 is again not acting sequentially rational. There can be no NE with
player 2 being reached and then choosing b, since after this move 3 will
choose 1, giving 2 a payoff of -1. Player 2 will then prefer to deviate and

play a, resulting in a higher payoff no matter what 3 will do then.

9.B.4 Proposition 9.B.1 claims that in any game, in which no player has the
same payoffs at any two terminal nodes, there exists a unique SPNE. Now
suppose one of the players has the same payoff at one of the terminal nodes.
This means that he will be indifferent between two actions that lead to either
one of them. However, since *he game is zero-sum, the other player will also
be indifferent between the payoffs resulting from these two actions. Thus, in
a finite zero-sum game of perfect information, there may exists many different
(in terms of the strategies played) SPNE (because of potential indifference of
the player between different terminal nodes), but all of them will yield the

same payoffs for the players, i.e. there are unique SPNE payoffs.

9.B.5 Note: for parts (a) and (b), m, denotes the number of strategies that
player i has. For the remainder of the question, m, denotes the move of player

i. This is done to be consistent with the question.

(a) Since the game is simultaneous, each player i has m, pure strategies.

If we allow for mixed strategies then each player has a continuum of
m, m

. _ i, i -
strategies: Zi- { (pl,...p e R kaO Y k, Ek=1 Py 1}

m., +
1

(b) Since player 1 moves first, he cannot make his strategies contingent on



any history, thus he still has m, (pure) strategies. Player 2 can, however,

condition her play on player I's move, thus allowing her to specify one of m,
m

actions for each of player I’s m, plays. Therefore, she has (mz) (pure)

strategies. There is, of course, a continuum of mixed strategies.

(c) Assume in negation that for all (ml,mz) and (m’,m’z) where either m,# m’1 or
’ I ’ .

m,* m;, we have that ¢i(m1,m2) * ¢i(m1,m2) for both i=1,2. Then, due to lack

of indifference (the negation condition) player 2 will have a unique best

response at each of her nodes. By backward induction, and by lack of

indifference, player 1 will have a unique best response to the SPNE strategy

of player 2, which contradicts multiple SPNE.

(d) Since player 2 has no indifference, she will have a unique best response
after she is reached. Let (m’;,mg) be the NE for the game in (a) yielding a
payoff of n to player 1. Clearly, player 1 playing m*i‘ and player 2 playing mz
at each of her nodes is a NE in the extensive form game. However, this is not
necessarily a SPNE since player 2 is not necessarily playing a best response

at each of her nodes. Note that in any SPNE player 2 will play m; after player

1 plays m’l'*, therefore player 1 can promise himself a payoff of = Given

I
player 2's unique SPNE strategy in the sequential game, player 1 can therefore

do at least as well as the NE (m*

1,m‘;d) in any SPNE. This conclusion would not

necessarily hold for NE of the sequential game - low payoffs for player 1

could be sustained in a NE with incredible threats by player 2.

(e) (1) Consider the normal and extensive form versions of a game depicted in

Figure 9.B.S(e.1):




Player 2
L R

K,

U 0,1 1,1

Player 1

D 0,0 1,0

Figure 9.B.5(e.1)

In this game condition (ii) holds for some strategy pairs. It is easy to see
(by backward induction) that any path in the extensive form game can be
supported by a SPNE. Therefore, if we consider the NE (U,R) in the normal form
version, then the conclusion of part (d) does not hold.

(2) Consider the normal and extensive form versions of the "matching

‘ pennies” game depicted in figure 9.B.5{(e.2):

Player 2
L R

U 1,0 0,1

Player 1

D 0,1 1,0

Figure 9.B.5(e.2)

The unique mixed strategy NE in the normal for game gives each player an
expected payoff of 1/2. It is easily seen, however, that the only two SPNE in
the extensive form game, (U,(R,L)) and (L,(R,L)), give player 1 a payoff of O.

Again, the conclusion of part (d) does not hold.




9.B.6 To find the mixed strategy equilibrium of the post-entry subgame,
suppose that firm E plays Small with probability x and Large with probability
1-x; firm I plays Small with probabhility y and Large with probability 1-y.

For firm I to be indifferent between playing Small and Large we need:

-6x - 1{1-x) = Ix - 3(1-x), or x = 2/9. For firm E to be indifferent between
playing Small and Large we need: -6y - 1(l-y) = 1y - 3(l-y), or y = 2/9.
Thus in the mixed strategy equilibrium of the post-entry game firms E and I
play Small with probability 2/9. This gives both firms a payoff of -19/9,
which will cause firm E to choose not to enter. Therefore, the following
strategies constitute a SPNE: firm E plays Out at the first node and
randomizes between Small and Large in the second node (with probabilities 2/9
and 7/9 respectively). Firm I plays Small with probability 2/9 and Large with

probability 7/9 given that firm E entered.

9.B.7 Consider the last period of the game. The offering player will offer
(v, 0) and the offered player will accept. In the second to last period, the
offering player will offer the other player a share that will make him
indifferent between accepting now and rejecting and obtaining v in the next
period. With the given cost ¢ for making an offer, the offered player in the
second to last period will accept any offer that gives him at least v - c.
Thus, the offering player in the second to last period offers {(c, v-c).
Similarly, we can show that the offering player in the third to last period
offers (v, 0).

If T is odd, then the player 1 will be the last player to make an offer.
Thus, he will offer (v, 0) in every period in which he makes offers and accept

an offer if he obtains at least v-c. Player 2 will offer (¢, v-c) in every




period in which she makes offers and accept if she obtains a non-negative
payoff. The result is that in the first period player 1 will offer (v, 0) and
player 2 will accept.

If T is even, then the player 2 will be the last player to make an offer.
Thus she will offer (0, v) in every period in which she makes offers and
accept an offer if she obtains at least v-c. Player 1 will offer (c, v-c) in
every period in which he makes offers and accept if he obtains a non-negative
payoff. The result is that in the first period player 1 will offer (c, v-c)
and player 2 will accept.

The argument above holds for any finite game, but if T = », then there
can be many SPNE of this game. For an analysis of this case we refer to:
Rubinstein, A. (1982) "Perfect Equilibria in a Bargaining Model,"

Econometrica, 50:97:109.

9,.B.8 Take all the proper subgames that do not strictly contain another
proper subgame. Since the whole game is finite, all proper subgames must be
finite. Thus, by Proposition 8.D.2, there exists a mixed strategy NE in each
of these subgames. Now construct a new finite game with terminal nodes at the
root of each of the previous subgames, and associate the payoff for every
player for each such terminal node by the payoff obtained from playing one of
the mixed strategy NE in the subgame that followed in the original game. We
can again look for all the proper subgames that do not strictly contain

another proper subgame. Repeating the above process we can find the mixed
strategy Nash equilibria in these subgames. Since the game is finite,

repeating the above procedure will end after a finite number of rounds. We
have therefore constructed a SPNE of the game. In every subgame players will

play the strategies that constitute one of the mixed strategy Nash equilibria




in this subgame.

9.B.9 The pure strategy NE of the one-shot game are (az,bz) and (a3,b3).
Thus any SPNE involves playing either of these in the second period. Thus,
playing either of these strategies in both periods constitutes a SPNE.
Additionally, the players could use them in any combination in the two
periods. This results in the following two classes of SPNE (a total of four

SPNE):
1) Player 1 plays a, and player 2 plays bi in both periods, i € {2,3}.

2) Player 1 plays a; in the first period and aJ. in the second period; player 2

plays bi in the first period and bj in the second period, i,j € {1,2} and i#j.

However, there exist more SPNE in this zame. The reason is that player 1
(or 2) can punish the other playe- by playing ag (b3) in the second period, if
the other player did not cooperate in the first period. [Note that this can
only happen because there are more than one NE in the second stage]. This

gives rise to two more classes of SPNE:

3) Player 1’s strategy: Play a,, i € {1,2,3) in period 1; Play a, in period 2

2

if player 2 played b1 in period 1, otherwise play a,.

Player 2’s strategy: Play b1 in period 1. Play b2 in period 2 if player 1

played a, in period 1, otherwise play b3.

4) Player 2’s strategy: Play bi’ i € {1,2,3} in period 1; Play b2 in period 2

if player 1 played a in period 1, otherwise play b3.

Player 1's strategy: Play a in period 1. Play a, in period 2 if player 2

2
played bi in period 1, otherwise play a,.
Too check that each of the 6 SPNE described by these classes in indeed a

SPNE, note that by deviating a player looses 4 in the second period (no




CHAPTER 13

13.B.1  The three functions are graphed in figure 13.B.1(a). This graph

also depicts the situation in figure 13.B.! in the text.
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Figure 13.B.1{b) depicts the situation in figure 13.B.2 in the text.

Figure 13.B.l{c) depicts the situation in figure 13.B.3 in the text.
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13.B.2 If w = é only workers of type 6 = 8 will accept the wage w and work.

But E (8 I 6 = 9] < 0 = w, which implies that firms demand less worker than

oes Lar F >0
there are in supply. This implies that the market does not clear. If w a,

* -~ *
only workers of type 8 < g > 8, with r{(o ) = w, will accept the wage w and

* *
work {since r() is an increasing function). But E (e ' 0=0]<6 =w

which implies that firms demand less worker than there are in supply. This

implies that the market does not clear.

Thus, to obtain market clearing firms have to offer a wage w < é, which
implies that some workers of type 8 < 6; will not work, and there will be
underemployment in the competitive equilibrium (in an equilibrium with perfect

information all workers of type 6 = 9 will work).

13.B.3 (a) Suppose firms offer a wage of w. All workers of type @, with r(e)
* »*
= w, will accept the wage and work. Suppose there exists a 8 with r(e ) = w.
* . *
Then all workers of type © 2 6 will work, since r(8) = r(8 ) =w and r{) is

decreasing. Thus, the more capable workers are the ones who will work at any

given work.

(b) Firms can offer the wage w = 5 and since r(a) > 8 no workers of type 8
will work. From part (a), no worker of any type will work. Therefore, the

competitive equilibrium is Pareto efficient, i.e. nobody will work.

() If w = g, only workers of type 6 2 8 will accept the wage w and work. But
E lo l 8 2 6] >80 = w, which implies that firms demand more workers than there
are in supply, and the market will not clear. If w < 6, only workers of type

* -~ »*
620 >0, withrie )= w, will accept the wage w and work (since r{) is a

decreasing function). But E [g | 8= O*] >0 = w, which implies that firms

demand more workers than there are in supply, and the market will not clear.
Thus, to obtain market clearing, firms have to offer a wage w > (; which

implies that some workers of type 8 < é will accept the job, and there is

over employment in the competitive equilibrium (in an equilibrium with perfect

information only workers of type 8 2 90 will work).
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13.B.4 We can think of the true valuation of the good, y, as a state of
nature s € S where S is the set of all states of nature, and both agents 1
(say the seller) and 2 (say the buyer) have a common prior that is common
knowledge. Lgt Hi(s) be the set of states that agent i believes is possible

given the true state s (this will depend on the signal observed). We can

define the following two events:

T E{seS\E[y]HI(s)nTzlsp}

]
[}

» {seS‘E[y[HZ(s)nTllzp}

That is, Ti is the event that agent i will say "trade" given that he knows

that event Hi(s) has occurred, and that he believes agent j will say "trade”.
Assume that .there exists an equilibrium where both agents say "trade”. Then,
each agent i knows that event Ti occurred, and since this is an equilbibrium

then each agent i believes with probability 1 that agent j knows that event Tj

occurred. Therefore, each agent believes with probability | that event

T=Tlr\T2 occurred. The seller (1) then prefers to trade if and only if
Ely|Tlsp, and the buyer (2) prefers to trade if and only if Ely|Tizp.
Assuming a generic distribution of values both can hold with probability zero,

therefore the set T must occur with probability zero.

13.B.5 (a) When r{8)=r for all 8, and E[8]zr>8, then the firms will make

zero profits (a necessary condition for a competitive equilibrium) in two

cases: Either w*=E[6] or w*=8. In this case, if w*>E[6] then firms are losing

money, while if w*e(r,E(8)) then 8*={Q,§] and firms make positive profits.
Finally if w*e(8,r) then no one will accept employment, and together with the

assumption that in this case firms believe that any worker who might accept

employment is a 8 type worker, we must have the of fered wage to be 6.
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If, hcwev > i
er, 8zr, then when w*=8 firms will make positive profits since all
workers wi
will work, and E(6)>w*, so the only competitive equilibrium is
w*=E(9).

On the other hand, if r>E(68) then when w*=E(8) no worker will wish

to be em i
ployed, and due to the assumption on firm beliefs, we must have w*=0

® e .

) In the equilibrium with w*=E(8), both firms have zero profit, there is

f

ull employment, and all workers have a utility of E(8)>r. If, however, w*=g

th i i .
en again both firms have zero profits but workers have a utility of only r

this is Pareto dominated by the full employment equilibrium.

(c) Th i i i
e analysis of SPNE is as in proposition 13.B.1 which applies (with
irai e
straightforward modifications due to a constant r() function). When E(8)=r
th . onn s ’
en both competitive equilibria are SPNE. This follows because no firm c
an

offer a iti
wage wel6,r] and make positive profits (because if w<E(8)=r no worker

will accept employment} and a wage w>r will cause losses

@ ci > \

early, when E(8)zr>6 and when 6xr then the highest wage competitive
equilibri
quilibrium has full employment, and is therefore Pareto optimal. For

the i
case where r>E(8) a simpler version of proposition 13.B.2 can be applied

I3.B.6  For a similar analysis we refer to:
Wit . "The iti
son, C. (1980} "The Nature of Equilibrium in Markets with Adverse
Selection," The Bell Journal of Economics, 11:108-30
13.B.7 i i
First assume there is a Pareto improving market intervention (W ,w )
that reduces emplo i -
ployment with respect to a competitive equilibrium with wage
w*. Clearly, we cannot h ’
, a * si
ve we< w* since then those workers who are employed
are worse off. Similarly we cannot h w W
ave wu< 0. Now assume that we> w* and w >
0. We can then reduce b W W .
: t W
ohwe and v, by £ > O such that W, £ > w*and w - &
u

>0 wi .
will still hold, the same groups of agents will be employed/unemployed
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and the government now has a surplus (it broke even with (v~ve,v~vu) since it must
have a balanced budget). The government can then distribute this surplus by
raising only v~vu, and this would still be a Pareto improvement relative to the
competitive equilibrium. This can be done as long as ‘;e> w*, and since it was
employment reducing we must have ;ve— w* < v';/u- 0, implying that we can reduce
both vae and ;vu until \';ve: w*. The result is a Pareto improving intervention of

the form (\;/e,wu) with \:ve= w* and x:vu> 0. The converse is trivial: if (\:ve,\:vu)

is a Pareto improving market intervention of the form v:/e= w¥* and \:vu> 0, then
we must have less employment since the maréinal type 6% who decided to work
had w* = r(6*) and now can be unemployed and receive r{e*) + vAvu> w* so he will
decide to be unemployed, and by continuity a positive mass of types will

decide so as well.

Second, assume there is a Pareto impr.‘oving market intervention (‘;e";u)
that increases employment with respect to a competitive equilibrium with wage
w*. Clearly, we cannot have vae< w* since then those workers who are employed
are worse off. Similarly we cannot have v~vu< 0. Now assume that Jve- e > w* and
;vu— ¢ > 0. We can then reduce both vae and v~vu by € > O such that ;ve> w* and
\:zu> 0 will still hold, the same groups of agents will be employed/unemployed,
and as before, the government can distribute the generated surplus by raising
only v~ve, and this would still be a Pareto improvement relative to the
competitive equilibrium. This can be done as long as v~vu> 0, and since it was
employment increasing we must have \7&18— w* > vNVU— 0, implying that we can reduce
both Jve and Cvu until vau= 0. The result is a Pareto improving intervention of
the form (\:16,\:\' ) with vAve> w* and \;vu= 0. As before, the converse is trivial.

Finally, these facts give a simple proof of proposition 13.B.2. by
contradiction: If there were a Pareto improving intervention, it must be
either employment increasing or reducing. Therefore, it must be of one of the

two forms: (i) (w_,w ) = (w* + 8,0}, or (ii) (w_,w ) = (w* e} If it is of
ey e
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form (i) then a firr ve _l
’ could have deviated w* + and b he
€d, proposed * 5 y th

conditions iven wo 1id v (e} A T - I o
g l have made positive p fits a contradiction
w*

being a SPN it i ii
g E. If it is of form (ii) then the government cannot balance jts

budget since r(-) is stri incr ri € lormer
g (-) rlctly mnc easing, therefo e the best of the f
ery

employed type i
ypes will choose to be unemployed, and by paying w* to the remaining

emplo
. ployed workers the government must lose money, in addition to the

unemployment it it i i
y benefit it is paying out, a contradiction to (w* ,g) being a

feasible intervention.

13.B.8 As f
sume that we have a mode] similar to the one studied in section 13.B

as displayed in figure 13.B.8 (let r(e*) = w*)

_Elolr(e) < w)

Q) r@ @)

Figure 13.B.8

In / i
our new model, since all workers of type 8 € (8%, 8] don't work, tI

ey get

to consum y 3 i
e the product x. Since the government observes the leve] of

n pt . X, nd prior to intervention the conomy 1s a competi
consumption c a T v e Q 2 ive

equilibri .
quilibrium, the government is able to identify the type of all individ I
iduals

for whic 6 3] Because their consu nption a f tion of B, x(0 whic
h > { S 1 ion 1s uncty f (0) I
» ’ Ich

is known to the v is i
- government, and x(6) is invertible because it s increasing.)

In etitiv ilibri
the competitive equilibrium of the model of section 13.B., fir break
.B., ms brea

even, and workers’ payoffs are:
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is still an increasing function. Therefore, the details of the prooi’ in the

textbook go through.

13.C.1 Suppose some workers, whose types do not equal to 8, do not submit
to the test. Call the worker with the highest type that did not submit to the
test 9“F > 8 Firms will now offer all the workers that did not submit to the
test a wage justified for the mean worker that did not submit to the test,

i.e. they will offer a wage equal to the expected value of © for workers that
did not submit to the test. This expected value will be lower than the type

of worker 6*, while if worker 94‘F submits to the test he will recejve a wage of
6* which is higher than the wage he would receive if he would not submit to
the test. Therefore all workers (except for the lowest type worker) submit to
the test in _ti;e unique SP%\IE of this game. It follows that firms offer no more
than 6 to workers who do not submit to the test (they loose money otherwise).
13.C.2  For simplicity, assume u=l (this does not change the qualitative
results). The competitive equilibrium with perfect information is given in

the following Claim:

Claim 1: At the competitive equilibrium with perfect information, type GH
dc
cati * * - S * -
(resp. OL) gets education level el (resp. eL), where de (CH, BH) 6H4 (resp.
de - o f ; * - *
I (eL, OL) = BL). The wage for OH (resp. OL) is given by Wyt = E)H + OHeH

* *
(resp. W O+ GLeL).

Proof of Claim |:

If a worker of quality 8 gets education level e, then his

marginal productivity is 6 + 8e, and his wage will be equal to 8 + 0e, since
firms are competitive. Workers of type 6 will thus choose their level of

education to maximize their utility, given this wage level:

max w - cle, 8) =9 + ge - cle, 8)
e

13 -9

. dc
and the FOC js: 25 (% =
e is e (e*, 8) = 8. Q.E.D.

% Remark: The competitive equilibrium with perfect information is Pareto
efficient.
As you may expect, both the separating equilibrium and the pooling equilibrium
look similar as in the original model in which education does not affect
productivity. That is:

- the equilibrium contracts provide the firms with zero profits.

- the low productivity type will obtain the op'timal level of education

in a separating equilibrium.

The good news is that the high productivity type may also obtain the Opt.imal
level of education, i.e the above competitive equilibrium with perfect
information may emerge as a separating equilibrium. In Figure 13.C.2(a) the
competitive equilibrium with perfect information is.bsustained as a separating

equilibrium:

) wi ™

S
i |
i
I (e W
e u
i e
i 7
l (// /
f /
‘/ Uy
(i /
/ e B
T
8; (e w*)

L

Figure 13.C.2(a)
In Figure [3.C.2(h) below, the outcome of the competitive equilibrium cannot

be attained as an equilibrium with imperfect information. Type UL would }ike

to pretend to be of type 8 ., if he is offered (e*. g ¥ *
H R E)LeL ) and (eH R eH +
BHE‘H'JA Thus, the incentive constraint for the low productivity type is not

satisfied.
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the utiljtj = =
€ Utilities of both types are uL(wL,eL) 0.5, and uH(wH,eH) = 3.47. 13.C.4

Note that since E{8) = 331 < 3.45 = u (4,1), we would not get a Pareto ;

[First Printing Errata: the question should end with "Derive the

H (nuique) separating perfect Bayesian equilibrium."]

Ry

improvement by banning the signal since the H type would be worse of £ The firms will offer a wage w(e) as a function of the observed level

of education. Given a wage schedule w(-), an agent of type 8* chooses e to

L . - 2, % * 2e* .
/ maximize his utility w(e) - /g , and the FOC is: w'(e ) = g% - Since

w / the firms are competitive we must have zero profits, w(e*) = o*, in
equilibrium. Combining this with the FOC gives us the differential equation:

w(e*)-w’(e*) = 2e* which implies that w(e) = vZ-e . This wage function,

together with each type choosing e that satisfies the FOC above, that is,
3.47
3.45

; el@) = 8 / V2, is the unique separating PBE.
E(e)=3§

There also exist many (in fact, a continuum of) pooling equilibria
(w*,e*) of the form: w* = E(8), and e € [0,el, where e js calculated by

equating: u(w*,elg) = u(8,0l0).

g

3 13.C.5 (a) The consumer wil] buy the product if the expected value of the

product is higher than the price, i.e., if A Vit (1-2) v, =p.

(b) Suppose there exists a separating equilibrium in which the high
quality producers spends A on advertising and only the high quality product

will be bought (in a separating equilibrium consumers know the quality of a

/// . ' product, so low quality products will not be bought since p > vL). This

/ : implies that the low quality producer makes no profit and the high quality

)// : ; producer makes a non-negative profit, HH =p - CH - A= 0.

‘ 03 However, a low quality producer can make a positive profit buy spending A
: on advertising, since the consumer will then mistake him for a high quality

1 e 0.88 1 e producer and buy the good from him. The low quality producer’s profit will

Figure 13C3(a) Figure 13C3(b) ‘ ‘ equal TIL =p - o - A>p - Ste A 2 0. Therefore, no separating equilibrium

AR .
b ; can exist.
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(Note, that the banks will not be compensated for the risk that they assume
since they are risk-neutral): A(pGR + (l—pG)O) + (l—A)(pBR + (l—pB)O) =1+,
or, R = (l+r) / (7\pG + (l—)\]pB).

An entrepreneur of type i will pursue a project if: (pl.(lT-R) + (l—pi)O) z 0
for i € {G,B}), or if I = (1+r)/[ApG + (l-A)pB]. Since, by assumption T z
(l+r)/pG and 1T = (1+r)/pB, the entrepreneurs will pursue a project if A is
large enough. In other words, if the fraction of good projects (A} is large

enough, then the banks will set a lower interest rate (R) and thus, the

entrepreneurs will undertake the project, i.e. T =2 R = (1+r)/[7\pG + (I—A)pB].

(b) (i) The entrepreneur’s expected payoff from a project of type ie{G,B} is:
pi[H—(l—x)R] + (l—pi)O - (l+p)x = pi(H-R) - x[(1+p) - piR] .
(ii) In a separating equilibrium the banks will know the type of the

project. Thus, the banks will offer an entrepreneur that pursues a good

project an interest rate of R = (l+r)/pG = Tl and an entrepreneur that pursues

a bad project an interest rate o, R = (1+r)/pB z 1. Therefore, in a

separating equilibrium no bad projects will be pursued.

Therefore, the minimum level of x, that allows the entrepreneur with the

good project to signal his type, has to give an entrepreneur with a bad
project a negative expected payoff if he contributes this level x of internal
funds and obtains financing from the bank at an interest rate of R = (l+r)/pG.
That is, pB(H—R) - x((l+p) - pBR) = 0. Substituting in the
equilibrium level of R we get: pB[H-(l+r)/pGl - xi(1+p) - pB(1+r)/pG] = 0, or,
X = [(H—(1+r)/pG)]/[(I+p)/pB - (1+r)/pG] <1

It follows that as PG increases and r decreases, x increases. As I or Py
increase, x increases. Since an entrepreneur with a bad project will obtain a
zero expected payoff by pursuing the project, an entrepreneur with a good
project will obtain a positive payoff.

The separating equilibrium is then: Entrepreneurs with bad projects will

13 - 1S
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contribute x = O and accept a bank’s offer if R = [I. Entrepreneurs with good
projects will contribute x = [(H—(l+r)/pG)]/[(l+p)/pB - (1+r)/pG] and accept a
bank’s offer if R = (l+r)/pG The banks will offer an interest rate of R =
(1+r)/pB if the entrepreneur contribute x = 0 and R = (1+r)/pG if he
contributed x = [(H‘(1+r)/pG)]/[(l+p)/pB - (1+r)/pG].

(iii) The entrepreneurs with the bad project will not be better off, and
may be worse off in the separating equilibrium of part (ii). For large enough
A, all projects will be financed in the equilibrium of part (i) and the
entrepreneurs with the bad project will make a strictly positive expected
profit. In the separating equilibrium of part (ii), however, entrepreneurs
with bad projects will always obtain a payoff of zero. For small 2,
entrepreneurs with bad projects will obtain a payoff of zero in both
equilibria.

For small A, entrepreneurs with good projects will be better off
in the separating equilibrium, since they obtain a positive payoff in the
separating equilibrium and a zero payoff in the equilibrium of part (i} (since
the projects will not be financed).

As A becomes larger, projects will also be funded in the equilibrium of
part (i}. Now, the entrepreneur will have to pay a higher interest rate R on
the bank loan in the equilibrium of part (i). In the separating equilibrium,
however, the entrepreneur has to contribute his own funds, which is costly to
him since he is liquidity constraint. Thus as A becomes large enough, the

entrepreneur will be better of in the equilibrium of part (i).

13.D.1  This is the screening analog of the signaling model of Exercise
13.C.2. The competitive equilibrium with perfect information is given in the
following Claim:

Claim l: At the competitive equilibrium with perfect information, type 0

H
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dc

* * * =
(resp. BL) has a task level of th (resp. tL), where ot (tH, QH) C (resp.
dc * - H H * -
It (tL, BL) = GL. The wage for OH (resp. BL) is given by wH = GH + thH

(resp. WL‘ = eL + eLtZ) .
Proof of Claim I: A worker of quality 6 performing a task level of t,
produces © + 6t, and his wage will be equal to @ + 6t, since firms are
competitive. Workers of type 8 will thus choose their task level to maximize
their utility, éiven this wage level: max w - c(t, 8) = 8 + 6t - c(t, 8) , and
the FOC is: g—i(t‘, 8) = 6. QE.D.
Remark: The competitive equilibrium with perfect information is Pareto
efficient.

As one may expect, the equilibrium looks similar as in the original mod_el in
which the task level is unproductive. That is:

- the equilibrium contracts provide the firms with zero profits.

- there exists no pooling equilibrium

- the low productivity type will provide the optima' task level in a

separating equilibrium.

The good news is that the high productivity type may also obtain the optimal
task level, i.e the above competitive equilibrium with perfect informaLiL)n may
emerge as a separating equilibrium. In Figure 13.D.1(a), the competitive
equilibrium with perfect information is sustained as a separating equilibrium:

wi

L e

8. (11w

Figure 13.D.1(a)

In Figure 13.D.1(b), the outcome of the competitive equilibrium cannot be
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attained as an equilibrium with imperfect information:

Wi
| ‘ }UH //e*{“
'/ 'y
5w A
‘u
B /YL
[ 10
7///
-1 (t *,WD

Figure 13.D.1(b)

Type eL would like to pretend to be of type GH, if he is offered

( 2] *) and (v * 6,  + BHt”*). Thus, the incentive constraint for

t*,
Loy H %

the low productivity type is not satisfied.
By a similar argument as in the tex* we can show:

Claim 2: The separating equilibrium of this model exists and is as follows:

- (e*, 8 ) and (

*
R 6 )

* »*
> %t %y
- the indifference curve of the high productivity type is above the

pooling break-even line.

- no cross-subsidizing contract, that will be accepted by both

types, exists that gives a firm a positive profit.

Thi= equilibrium is shown in Figure 13.D.1(c):
Wi 6= L0, (1 Hg,

. 8.
} ; U“u’/ PEAERAIY
(EH,»\'”).'~”'
ST ’
.
On’
- =T
o, (t;wh
e _— -
t

Figure 13.D.1(c¢)

Claim 4: No equilibrium exists in the following case: The indifference
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curve of the high productivity type is at some points below the pooling

break-even line. This equilibrium is shown in Figure 13.D.1{d):
Wi 8= 29, (1- VoL

even lme
Bul”
6 K<

P

:I8 (eLv“{‘k)

:

€

Figure 13.D.1(d)

13.D.2 (a) Once M and R are given, the wealth levels of an insured individual

in the two states, denoted by (Wl’ w2), are givgn by:
(Wl' W2) =(W-M W-L-M=+R)

Therefore, we can think of the insurance contraet as specifying the wealth

levels (Wl’ WZ) in the two states. The premium M and the repayment R can be

obtained by the following equations: M = W - w, and R = w, + L - Wy

(b) This game is analogous to the screening game studied in this chapter.
Therefore there exists no pooling equilibrium, and the existence of a
separating equilibrium is not always assured. If there exists a separating
equilibrium, then the high risk types are completely insured, i.e. w, = W}ZIA
The low risk types will not be completely insured, in fact wll‘ > Wy

For a proof of these results, we refer to the original paper by
Rothschild, M. and Stiglitz, J.(1977) "Equilibrium in Competitive Insurance

Markets with Adverse Selection,” QJE, p. 629 - 649 and to Laffont (1989) The

Economics of Uncertainty and Information, MIT press, Chapter 8.

13.D.3 (a) Assume for simplicity that p=1, which does not change the

qualitative results. The high (respectively, jow) type workers output is
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BH(I+T) (respectively, eL(1+T) ). A firm can now deduce from the observed
output level the worker’s type. Therefore, any firm will propose the

following contract:
- GH(HT) if observed output is GH(1+T)
- GL(1+T) if observed output is GL(1+T).
If BL(HT) z ¢, both types will accept the offer and work.
If OH(1+T) zc > GL(1+T), then only high type worker will accept the contract.

If ¢»> BH(1+T). none of the workers will accept the offer.

(b) Denote by (wG, w_.) the contract offered by a firm, in which it pays w

B G

(WB) if the output realization is good (bad). The firm chooses its contract,

(c) The problem only differs in respect to which workers will accept the -
offer given in part b):
A worker of high ty i - ES
igh type accepts, if Py u(wG) + (1 pH) u(wB) = u(c).
A worker of 1 > > if - =
r of low type accepts, if pLu(wG) + (1 pL) u(wB) = ufc).

13.D.4 It can be shown that under conditions (i) and (ii), Proposition
13.D.2 still remains true. However, with these added conditions The model
differs from the model of section 13.D. with respect to the existence of
equilibria. In this model the existence of an equilibrium is guaranteed if no
firm can offer a pooling contract, that attracts both types of workers, and
makes a positive profit. Thus, the existence of an equilibrium is guaranteed
in Figure 13.D.7(a) in the textbook. In Figure 13.D.7(b), however, there
exists no equilibrium, as is the case for the original model. The difference
for this model is for the situation displayed in Figure 13.D.8 of the
textbook. Contrary to the model discussed in the text, firms cannot offer
multipte contracts and thus cannot cross-subsidize between the workers, and an

equilibrium will exist.
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For a proof of these results, we refer to the original paper by
Rothschild, M. and Stiglitz, J.(1977) "Equilibrium in Competitive Insurance
Markets with Adverse Selection,” QJE, p. 629 ~ 649 and to Laffont (1989) The

Economics of Uncertainty and Information, MIT press, Chapter 8.

13.AA.1 An example appears in Section V of:

Cho, 1-K., and D.M. Kreps {1987} "Signaling Games and Stable Equilibria,"

QJE, 102:179-221.
In their paper, Cho and Kreps use the notion of "Riley outcome” to refer to
the textbook notion of "best separating equilibrium”. The example itself

appears under the sub-titie "Case B: More than two types,” on pages 212-13.
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CHAPTER 14

14.B.1  The answer is yes, and the argument is supplied in footnote 8,

immediately after Lemma 14.B.1 in the textbook.

14.B.2  Now, the program cannot be split into a minimization program and
afterward a maximization program since the principal is risk averse over

n - w(n). Therefore, letting u(-) denote t.he principal’s utility function,
the program becomes:

Max | u(m - w(n))f(n]eH)dn
wim) .

s.t. (i) u - v(w(n))f(n[eH)dn + g(‘eH) =0

{ii) v(w(n))f(n|eLjdn - v(w(n))f(nleH)dn + g(eH) + g(eL) =0

where constraint (i) is the participation constraint and (ii) is the incentive
constraint (assuming that CH is the desirable action). Letting ¥y and u be the
Kuhn-Tucker multipliers for (i), and (ii) respectively, the Kuhn-Tucker FOG

is:

~u’(n - W(”))f("|9},l) + v’ ( w(n))f(nleH) - u[f(rtleL) - f(n|eHHV’[w(n)) =0
which in turn yields:

finle,)

Ty H 1-f(neH)

Note that in this case the incentive constraint may not bind, i.e., we may
have p = 0. The reason is that due to optimal risk sharing it may be optimal

for the agent to have encugh risk such that (ii) dees not bind.
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14.B.3 [First Printing Errata: part (c) should end with "What effect do
changes in ¢ and 0‘2 have?"}
(a) Direct calculation gives:

Eulw(n),e) = Ela + Bu|e] - ¢VAR[a + Br|el - gle)

o + BE[nfe] - ¢32VAR[1t]e] - gle)

« + Be - ¢[320‘2 - gle) .

(b) Optimal risk sharing will result in a fixed wage for the agent, and
maximizing the principal’s profits ensures that this wage will exactly
compensate the agent for his effort. Therefore, the first-best contract with

observable (and verifiable) effort is the solution to:
ng Eln|el - gle) ,

and the FOC (which is necessary and sufficient) gives g’{e*) = 1, which gives

us the optimal effort level e*, and w = g(e*) is the wage.

(c) As in section 14.B of the textbook, the principal’s problem can be
divided into two steps. First, for a given effort level e’, the optimal
individually rational and incentive compatible compensation scheme (using the
result from part (a) above) is given by:

Min « + Be’

o,B

st () a+ Be’ - ¢ - gle’) = 0

(ii) oo + Be’ - ¢BZO‘2 - gle') =z a + Be ~ ¢/3202 - gle) Ye=e’

The incentive constraint (ii) implies that given e’, Be - gle) should reach a
maximum at e’. The condition of the question allow us to replace (ii) with

the FOC: g’(e’) = B, which uniquely determines 8 given e’. We also know that

(i) will bind, so B = g’(e’) implies: a = gle’) + ¢g’(e’)20“2 - g'(e

7

Je!'. We

14 -2

can now find the optimal compensation scheme by solving:

Max Eln|e]l - Efgle) + ¢>g'(e)20-2 - g'lele + g'(eln]el ,
which reduces to:

ng e - gle) - ¢g’(e)20-2.

Given the conditions of the question, this is a concave program, so the FOC
which is necessary and sufficient yields: 1 - g'le) - 2¢02g’(e)g"(e) =0,

1
1+ 2¢¢2g’(e)

"economically” reasonable because the incentives are not fully aligned with

which gives us: g’(e) = This implies that O < g < I, which is

profits due to optimal risk sharing. As ¢ increases, the agent is more averse
to risk (through variance) and therefore B will be lower, i.e., lower

. . : 2.
incentives. The same happens as ¢ increases.

14.B.4  [First Printing Errata: in the hint of part (b} it should read "v

and i and not vy and v2']

- 2 1 1
(@) Let p;= f(nHIei) so that P|= 5 P,= 5 and P3= 5= When effort is

observable, the principal will pay exactly gle) for effort level e, so that:

_ 2 1 25
11(81)—3—10+5 ——9>3,
_ 1 Lo 64
n(ez)—§10+§0 2—§<3,
_ L 2. 16
1!(83)-3101-50 <5 <2,
and therefore € is optimal with a wage of w = %g .

(b) Let a contract specify a pair (VH,VL) where v = v(wk). For e  to be

k 2

implementable, three conditions must hold:
(i)

(ii)
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calculations show that (ii) implies i = % + Vi and (iii} implies

vH > g + vL , and clearly both cannot be satisfied simultaneously. For 82 to

be implementable we must have both (ii) and (ii) satisfied. Rewriting both:
.. 1 1 2 ) S
D vy v vy - gley) = 3wy + 50w -5,
Gi) v+ Ly ey 2Ly 42, 4
2 H 2L 2 3 H 3L 3

or,

(ii) 10 - 6'g(ez) v E v,

1A
<

(iii) 6-g(e2) -8 + VL H-

IA
[\SIEN)

Both can be satisfied if and only if g(ez)

(c) [First printing errata: the end of this part of the question should
read: "What effects do changes in ¢ and 0‘2 have?".]

We established in (b) above that €, cannot be implemented. To implement é'3

get the first best contract by paying w = g(eg) = 1.;.‘ and the principal’s

expected profit is:

To implement e we must have both individual rationality and incentive
constraints satisfied. Consider the individual rationality constraint, and the

incentive constraint with respect to ey

2, L, _5
3H 3L 3
2 S _ 1
3 3

= L.y +z-v -
3 'H 3

4
L 3
w

which together give: (VH,VL) = (2,1}, or in terms of wages:( H,WL) = (4,1).

It is easy to check that incentives with respect to e, are satisfied. The

principal’s expected profit is:

2 1 2 1 33
n(el)—j'10+§~0—§4-§l—~9,
and therefore € is optimal with the compensation scheme (WH,WL) = {4,1).
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(d) When effort is observable, the principal wil] pay exactly g(e) for effort

? level e, so that:
n(el)=X'lO+(l—x)~O—8~—)2,
=1 164 6l
n(82)—§10+20 E_E>2,
=1 2. 16 _ 14
n(63)~510+§o _()__‘9(2,

and therefore as x — 1, € is optimal with a wage of w = 8.

When effort is not observable, the principal can still implement ey as in (c)

above with "(83) = % To implement €, we must have (similar to (b) above):
. 1 i 8
W gty 520,
.. 1 l 8
(H)ZVH+§VL—§—XVH+(1—X)VL-\/§,
Gip v ol 8.1 2. 4
2 'H 2 L 5 3 'H 3 L 37
. . . 12 4 .
Supposing that (i) and (iii) bind, we compute that (vH,vL) = (—5,5), or in
; terms of wages:(w, ,w, )} = (ﬁi E] and it is easy to verify that (ii) is
H L 25’257

satisfied. We therefore get:

1 144 1 16, _ 49
n(ez)—illo —2§]+§[O §§]_§§<2'

To implement e the principal can use a scheme so that as x is arbitrarily
close to 1, the cost of implementing € will be arbitrarily close to 8, the
wage which will exactly compensate the agent for his efforts. To sec this,
take some number & > 0, and let x = l-& where € — 0. Set the utility
compensation values (vH,vL) = ({1 + 81-VS,[1 + 5 - g]-\/g). It is easy to
check that for ali £, given € this scheme gives the agent an expected utility
of 0. Furthermore, as € - O we have that vL —> -w, so that the incentive

constraints will easily be satisfied, and as € — O we can make § arbitrarily

small so that both the individual rationality and incentive constraints are

) satisfied, and the expected wage that the principal will pay will approach 8,

resulting in n(el) — 2. therefore, as € — O the principal will prefer to
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implement e,

14.B.5

i

Assume this is not true, i.e., that the optimal incentive scheme is

as shown in Figure 14.B.5(a) below:

excess profits above Lee and receive W‘"l) rowln).
T e (nl,nzl the principal will end up paying w(rtl).

by the scheme depicted in Figure 14.B.5(b) above - a contradiction.

14.B.6

w(1T)

Figure 14.B.5(a)

Then, if any profit n e (nl,nz) was realized, the agent will dispose of any

a higher level than the first best level of effort.

w(T)

Figur¢ 14.B.5(b)

(a) The principal’s problem becomes:

Min

wi{R,(C)

S.t.

(ii)

F

R

i}

¢

u<R,C)fR(RIeCLfC(c]eC) AC dr

C

wR O (Rle )f(Cle

C) dC dR - g(ec)

]fC(Clec) dC dR - g(ec)
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v

Thus, for all realizations

But this can be achieved

1l
on

v

w(R,C)fR(R,eR)fC(C]eR) dC dR - glep)
RC
where constraint (i) is the participation constraint and (ii) is the incentive
constraint (assuming that e is the desirable action). Letting ¥ and u be the
Kuhn-Tucker multipliers for (i) and (ii) respectively, the FOC can be worked
out as is-done in section 14.B and further algebra yields:

| FR(Rleg)) (Fe(Cley)

v IiwB g Sy tu 1 -
vV Iw(R,C)) ¥ FRRTeC)[|FLCTeD

r
r

R(R[eR) .
®Te) increases, and the concavity of v(-) implies that
R c

As R increases,

w(-,+) should decrease. This makes sense because we want to suppress the

incentives of the agent to choose the revenue enhancing effort. Similarly, as -

fC(C]eR)

C increases, increases, and the concavity of v(-) implies that
fC(C eC)

w(-, ) should decrease. This makes sense because we want to strengthen the

incentives of the agent to choose the cost reducing effort.

(b) In this case the principal can no longer use R as a variable in the

compensation scheme. The intuition is straightforward: no compensation scheme
. . aw Lo 0w

that induces the agent to choose - will have E1g > 0, and if 7B < O for some

values of R, the manager will dispose of some revenues. Therefore we must

have i\ﬁ = 0 for all values of R. Thus, the optimal scheme will be w(C) with

3R
dw

c < 0. (The FOC will be as in condition 14.B.10 of the textbook.)

(c) In this case no compensation scheme can induce the manager to exert

effort level € That is, only R is implementable.

14.B.7  For an analysis of this problem we refer to:
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Rogerson, W. (1985) "Repeated Moral Hazard," Econometrica, 53:69-76.
It is worth mentioning that the conclusion of this model is counter-intuitive:
The optimal compensation scheme is history dependent. The reason is that in
addition to supplying the agent with correct incentives, the compensation

scheme also serves as a consumption smoothing device for the agent.

14.B.8 For an analysis of this problem we refer to:
Dye, R. (1986) "Optimal Monitoring policies in agencies,” The Rand

Journal of  Economics, 17:339-50.

14.C.1 Let 8 € {91’92""’6N)’ where state 6i occurs with probability )\i> 0,

N
and Zi-l-)‘izl' The revelation principlte still holds, so we can restrict

ourselves to a menu of contracts of the form ((wi,ei))r?_ Program 14.C.8 in

I'

the textbook now becdmes:

st w, - gle,8) = v @) Vi

(ii) w,o- g(ei,ei) ES Wj - g(eJ.,OJ.) Viand ¥V j=i

There are N individual rationality (IR) constraints given by (i) above, and
(N-1)N incentive compatibility (IC) constraints given by (ii) above. However,
an analog of Lemma 14.C.1 implies that only one IR constraint, that of type

61, binds. To see this note that the IC constraint ensuring that type 82 will

not choose (wl,el), the IR constraint of type 81, and the assumption that

gee("-] < 0, together imply that:

- gle,0.) > w - gle,o) = v ,

W, - 8le;8,) 2w )

and this can be repeated inductively. Now that we have only one IR

constraint, Lemma 14.C.2 holds as before, and we have: w, - gle,,8,) = v (u).

'l
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P,

The analog to Lemma 14.C.3 is that two type of inequalities hold:

The analog to Lemma 14.C.4 is that e = e’; for all i < N. The proof of this
can be seen with a graphical argument as in the textbook extended to N types,
or in a similar (yet more cumbersome) way to that of Appendix B in the
textbook. Moreover, we will only have the "downward" IC constraints binding,

i.e., (ii) above can be replaced with:
(ii’") w- g(ei’ei) = w P - gle. ’91‘) Vi>1.

To see this, note first that for all i > 2 wee can drop the IC constraints

with respect to all j < i - | because:
w iog T B0 ) B W o sle 50, )
(2) W, = g(ei,Qi) ES Wi g(ei—l'ai) ,
summing (1) and (2) we get that:
Wim B0 ) - a0 2w, - gley L0 ) - gle 6.

Rewriting this, and using the fact that (-,") < 0 we get:
g geO g

i % ie2 7Bl 0 )+ leley 0, ) - gle 0

To show that all the "upward binding IC constraints are not binding we can

follow a similar manner as suggested at the end of Appendix B in the textbook.

14.C.2 The manager’s utility function becomes u(w,e,8) = w - gle,B). It is
easy to show (similar to the textbook analysis where the state 8 is
observable) that the first best effort level must satisfy n’(e‘i‘) = gP(e’i',Gi)
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for i € {H,L}. Furthermore, when 8 is observable the manager has his
individual rationality constraint binding, that is:

- * - - * -0
Alwy, g(eH,eH)] + (1 Mlw glef.o, )] =u,
or,
- =0 * C - *
AwH + (1 A)wL u + Ag(eH,eH) + (1 A)g(eL,eL) .
This, in turn, gives the owner expected profits equal to:
= L - *) _
En Mn(eH) WH] + (1 A)[n(eL) wL)]
= * - *) _ [ * - »
An(eH) + (1 A)n(eL) [u + Ag(eH,eH) + (1 A)g(eL,eL)].
(Note that due to risk uncertainty for both the ménager and the owner, any
pair (WH,WL) that satisfies the manager’'s individual rationality constraint
above with equality, will give the owner the same expected profits as above.)
Now suppose that 6 is not observable, and the owner offers the manager the
following compensation scheme: w(n) = m ~ «, where
= * - *)_ — I * _ *
o An(eH) + {1 A)n(eL) wH] fu + agle ,OH) + {1 - A)gle ,GL)].

A manager of type i who faces this scheme will choose a level of effort that

maximizes w(n(e)) - g(e,ei), which is (recall that « is a constant):

Max n(e) - « - g(e,ei)
e

and the FOC is just the first best condition: n’(e’;‘) = ge(e’;,ei). We only need
to check that the owner makes the same profit as in the first best scenario,
and that the manager will choose to participate. First, since the owner will
pay w(n) = m - « for any realization ®, he is left with a profit of «, which

is exactly his expected utility in the first best scenario. Second, the

manager’s expected utility if he accepts the contract is:

Eu = Anlef) + (1 - Mulef) - o - Aglep0,) - (1 - Meglef.o,) = u.

This is shown in the (w,n) space in Figure 14.C.2(a}, and in the (w,e) space

in Figure 14.C.2(b).
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T,

ug= TTER) - -g(ef; 0,

Wi o= Tied) - —giet ;)

Mefy-at - - - - - -
uy
Tex) - &
- L -
Tier) ey m /et ¢l e

Figure 14.C.2(a) Figure 14.C.2(b)

The revelation mechanism which yields the same outcome is just the two points
which result from the compensation scheme above. That is, given a as above,

(w ,e ) = .(n(e;l) - a,el’f{), and (wL,eLJ = (n(e[':) - a,et).

14.C.3  (a) Assuming the same conditions on v(+) and g(-,) the program for

the optimal contract under full observability is:

Max A[n(eH) - WH] + {1 ~ A)[n(eL) - WL]

s.t. MV(WH) - g(eH,BH)] + - R)lv(wL) - g(eL.BL)] = u .

Letting ¥ denote the Kuhn-Tucker multiplier, and noting that as in the
textbook analysis the assumptions imply that the FOCs must hold with
equalities, we get the following four FOCs:

(i) -x+ ﬂkv’(w;{)] =0,

(i) -1 - A) + yl(1 - A)v’(wi)l =0,
(iii) An‘(e}jl) - Mge(e:{,eH) =0,
{iv) a1 - )\)n'(ei) -yl - A)ge(eE,OL) =0 .

From (i) and (ii) we get that wE = WE{' This makes sense because wages and
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(i)  -a+ 7[Av’(wﬁ)] =0,

(i) -1 - ) + 50 - A)v’(WE)] =0,

(iii) An’(e:{) - yhge(e}’;,eH) =0,

(iv) (a - A)n’(e[’f) -yl - A)ge(eE,BL) =0 .

From (i) and (ii) we get that WE = w*

frd This makes sense because wages and

disutility of effort are separable now, and the risk aversion is only on
monetary income so that an optimal contract will have both wage levels equal.
Using this we can rewrite (iii) and (iv), for states H and L respectively, as:
’ !
T (e*) = . * .
n (ei) v (w¥) ge(ei'ei)

This again makes sense because having WE = w:{ implies that ei < ei“l.

(b) This contract is clearly not feasible when 8 is unobservable. The reason
is that WE = w}’; = wW*, and ez< = e,_";, will cause the manager to choose the L

pair if the H state occurs, i.e., the H type will misrepresent.

14.C.4  For an analysis of this problem we refer to:
Hart, 0. (1983) "Optimal Labor Contracts under Asymmetric Information:

An Introduction,” The Review of Fconomic Studies, 50:3-35.

14.C.5 [First Printing Errata: the first line of the question should read

- in Section 14.C would not change if..."]
The objective function in (14.C.1) and (14.C.8) in the textbook changes to:

A[nH(eH) - WHI + (1~ A)[HL(eL) - WL]

and the first best effort levels are determined by: n’i(e}f‘) = ge(e’;‘,ei) for

i € {H,L), and the condition nl:l(e) = nI:(e) > 0 ensures that e}’; > e* | and

L

this promises that the analysis in section 13.C would not change. If,
however, we have 0 < "P’l(e) < nl"(e), it may be that e:{ < ei‘ , and in this

case the analysis of section 13.C would no longer apply. (Note that the
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Figure 14.C.5(a)

We present a brief graphical presentation of two possibilities for optimal

contracts when e}"; < ei. If the menu ((wH,eH),(wL,eL)) is incentive compatible

we must have &y > e (see Figure 14.C.4 in the textbook). Now start from the

i i = * < =q > e*
situation (WL,eL)—(wi,eE) where “L is chofen such that UL u. BecauseL eH,
the best contract for the H type will have ey = e = ei since this has the

least distortion of the H type's effort level. This means we will have a

pooling contract with (w,e)=(wi,e’“;. This, however, cannot be optimal because

L

a first order reduction of w and of e along the indifference curve of the L

type, u = u, will cause no first order change for the L type yet will cause a

L

first order benefit for the H type both with respect to a lower wage, and a

better effort choice (closer to e}‘{) . Therefore, if the probability of GH is

not too large, we will end Up at a pooling contract of the type {w,e), where
e}’l = ; = ei, and \;v is chosen so that the L type’s individual rationality
constraint is bonding. An illustration of this situation is given in Figure
14.C.5(b). If, on the other hand, /\H is large enough, then it will

be worthwhile to further distort the L type contract so that we get e = e;i,

H

and € < e}‘f{. An illustration of this g given in Figure 14.C.5(c),
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(b) In the program above, constraint (i} and (iv), together with 8y < O and only if:
€ (o —GB)
imply that constraint (ii) is redundant, so it is never binding. Constraint } A~e— < {1 - A).W ,
/ T T B
(i) must therefore bind for if it would not, we can reduce PT and PB by € > 0, or,
6. - 8

B

and all the remaining constraints will still be satisfied. This implies that i ? 5 < \—T B .
B

tourists will be indifferent between buying and not buying a ticket. Note that this is independent of the cost ¢, because this is a revenue trade

. Therefore, the price
(c) Assume that ((PT,WT),(PB,WB)) is an optimal, incentjve compatible . off (the costs are the same for both types) er

contract, and assume in negatio_n that WB > 0. Now reduce WB by £ > 0, and discrimination scheme can take on two forms:

increase PB by ;“; so that the B type’s utility does not change, and the firm 6. -8
B

I A < -T_J » then only the high types will be served and the
1 -2 2]
earns higher profits from the B type. We need to check that the T type will B
v
: ; <
not choose this new compensation package. Indeed, scheme will be (this assumes that c g
€ €
6P +W_=<g.p + W, =9_(P +~)+(W—c)<9(P =)+ (W, - ¢) Ad
, = {(0,v),(=—,0)})
LI B N o B | T8 6 B T8 "6y B . {(PL W), (PR W)Y = (( o
contradicting that ((PT,WT),(PB,WB)) is an optimal, incentive compatible o o
B A T B ill be served and the scheme will

contract. Therefore, we must have WB = 0. If, in an optimal contract, the ’ @y 1r T - A > eB > then both types wi

. . . \‘“ ’ it v
business travelers were not indifferent between (PT,WT) and (PB,WB), we could /,, ; ; be a pooling scheme with (this assumes that ¢ < 8_,):

| T
slightly raise PB and all the constraints would remain satisfied (recall that ’
v
= (P, W_) = (Z—0) .

(ii) is redundant), and the firm would earn higher profits from the business (PT’WT) ( B"'B 9-1-

types. Therefore, in an optimal contract we must have the business types Since the direction of the inequality in the condition above determines the

indifferent between (PT’WT) and (PB’WB)' type of scheme, it is easy to see how changes in A, QT’ and QB will affect the

scheme: If the proportion of B types is large enough (A small enough) the
(d) The trade of that the firm faces is: By lowering PT and increasing

firm will choose to serve only the B types. If the B types suffer less from
W.r SO as to keep the tourists indifferent between buying a ticket or not, the

prices (8, is smaller) then the firm is more likely to serve only them. If
firm can increase PB (recall that WB = 0). From parts (b) and (c) above, we B

i the T types suffer less from prices (GT is smaller) then the firm is more
can conclude that if the firm raises W_r by € and lowers PT by g— so that ‘ .
likely to serve them as well as the B types. Changes in the cost c are
the tourists remain indifferent between buying or not, then to keep the ‘
discussed in part (e) below.
business types indifferent between their package and the New tourist package,

e(0,.-6_) v ; “ibed in part (d)
. A are in case (i) as described in p
it can increase PB by 6B B - Since this trade off is linear, it is true no 2 2 3 {e) As long as ¢ < 5 and we
T°B é}j B
S0 TR ; we
24 i i i rve only the business types. If, however,
matter where we are in the (P,W) space, and therefore it will be profitable if : above, the firm will decide tolse y
14 - 17
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are in case (2) above, and Y o< c < g~ , then the scheme described in (d)
T B

above cannot be optimal because the firm is losing money. In such a case, the
firm will choose the scheme described in case (1) of part (d), and serve only

the business types. If ¢ > ;— the firm will choose not to operate at all.
B

14.C.9 (a) The monopolist will offer the individual a policy that fully
" insures him (optimal risk sharing) and keeps the individual at the same level
"of expected utility. That is, if we define u = Qu(W - L) + (I - 0)u{W), then
_l -

the optimal insurance policy has ¢, = c, = u {(u).

(b) The monopolist will offer an optimal screening contract of the form

) ((cll‘,clz“),(cll{,cgl) that solves:
Max  Al(l - BH)c}l{ + GHCSJ + (1 - O - echll‘ + eLcl?j]‘..
st () 0 - e uch + o ulch) = G
(D) (- o utchy + 6 ulcs) = &
(i) 0 - o utc) + opulc) = (1 - o Jutch) + 0 (ch)
() (-0 i) + o ulcs) = (1 - o hutcl) 0 utch)

This is again a standard monopolistic screening problem and the standard
analysis applies. Solving this program (again, (ii) and (iii) will be

redundant) will have the H type fully insured, and the L type not fully
insured. A graphical analysis is given using Figure 14.C.9 below. Both

types start at the point A, with utility levels L_JH and L—lL respectively. If

the monopolist would try to insure both types by offering the points B

and C to H and L respectively, the (unobservable) H type would choose policy C

instead of B, that is, the points B and C cannot be part of an incentive

compatible contract.
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Figure 14.C.9

If the monopolist offers péi_nts A and B, then the H types would choose B
(since they are indifferent), they would be fully insured, and the risk

neutral monopolist would rﬁake profits from their choice. The L types,
however, would prefer the point A to B and no profits would be made from them.
If the proportion of High types is large enough, then the monopolist will find
it profitable to slightly insure the L type at the cost of raising the utility

of the H type. This means that the optimal contract will look like the two
points D and E for the H and L types respectively. The mathematical analysis
is straightforward, and results in a situation common to monopolistic
screening (or hidden information): The H type will be at the first best
insurance level and his participation constraint is not binding. The L type
will be under insured (second best distortion so that screening is possible

and profitable), his participation constraint will bind and his incentive
compatibility constraint will not. {Note, that the pair of points A,B may be
optimal if the proportion of L types is smail. This is parallel to the hidden

information case where the H type is at the first-best observable point with
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no surplus, and the L type has eL = 0).

(c) The difference is who gets the surplus. Ip chapter 13 we discussed } E
competitive markets, so that the insurer was left with zero profits and the
individuals had utility levels above their reservation utility. Here, the

monopolist makes positive profits and at least the L type has no surplus,

I14.AA.1  For an analysis of this problem we refer to Proposition 5 in:
Milgrom, P. (198]) "Good News and Bad News: Representation Theorems and

Applications," Bell Journal of Economics, 12:380-9].

14.AA.2  Sufficient conditions for the first order approach to be valid wijll
promise that the agent’s optimization program yields a unique solution. Given

a compensation scheme (WH,WL), where w; is the compensation when profits n.
) i

are observed, the agent maximizes:

M:x f(nH[e)~v(wH) + 1 - f(nH]e)]-v(wL) - gle) .

The FOC will be sufficient if the SOC is satisfied, i.e., if
fee(nH]e)~[v(wH) - v(wL)J - g'le) <0

So, if v(wH) - v(wL) > 0, and fee(nH[e) < 0, then the first order approach
will be valid. The first inequality is implies by MLRP, and the second is
guaranteed by concavity of the density function. For more on this we refer
to:

Rogerson, W. (1985) "The first-order Approach to Principal-Agent

Problems," Econometrica, 53:1357-69.

14.AA3  The program to be solved js:

Max Alrle, } - wH] + (1~ Anle, ) - w ]

H L L
((wH,e ) ,(WL,eL))

H
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s.t. (i) wp - g(eL,BL) EY
(ii) Wy - g(eH,BH) z 0
(iii) Wy T g(eH,eH) S W= g(eL,eH)

(iv) W oo g(eL,GL) E Wy T g(eH,eL)

and we have already established in the textbook that (ii) is redundant {(Lemma

14.C.1). We proceed with two straightforward claims for the program without

constraint (ii):

Claim 1. Constraint (i) must bind at a solution.

Proof': Assume not. Then reduce both w and Wi by € > O such that (i) is
still satisfied. This will not change the remaining two constraints
and it will increase the objective function, a contradiction to
being at an optimum. o

Claim 2: Constraint (iii} must bind at a solution.

Proof': Assume not. Then reduce W by € > 0 such that (iii) is still
satisfied. This will not affect constraint (i), constraint (iv)
will only be further relaxed, and it will increase the ob jective

function, a contradiction to being at an obtimum, o
We now proceed to solve the "modified program” which is the original program
without constraints (ii) and (iv), and with constraints (i) and (iii) binding.
We will then proceed to show that at the solution to the modified program,

constraint (iv) will be satisfied. The modified program is therefore:

Max )\[n(eH) - wH] + (1 - )\)[n(eL) - wL]

s.t. (i) W g(eL,GL) =0
(iii) Wy - g(eH,eH) =w - g(eL,eH)

Letting ¥ and p be the Lagrange multipliers for constraints (i) and (iii)
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respectively. Then, assuming an interior solution, we get the FOCs:
(1) an (eH) - uge(eH,eH) =0

(2) (1 - A)n’(eL) - e(eL,O )+ uge(eL,eH) =0
3) -A+u=0

(4) -0 -A)+y-pup=0

"

From (3) we have that p = A, and plugging this into (4) we get that y. = L.

Substituting for p and A in (1) and (2) we get the well known conditions:

n’(eH) = ge(eH,eH) ,

0.

n' (e g(eLOL)+ [g (e 6) L H

L

w and Wy are then computed using the two binding constraints. Denote the

solution to the modified program by ((w eH) (w e, )}. We are left to show

H’ L

that this solution satisfies constraint (iv). We proceed with tow claims
regarding the modified program.

Claim 3: At the solution to the modified program: n(eH) T rt(eL) - W

Proof': Assume not. Then the firm can offer the pair (wL,eL
The L type will clearly accept it, and since we have shown that

(iii) is binding then the H type will be indifferent between this

pair and his original pair (WH,eH). This, however, will raise the

profits earned from the H type while leaving the profits earned from

the L type unchanged, a contradiction to (( eH) (w € )) being a

i L

solution to the modified program. o

Claim 4: Constraint (iv) must be satisfied at a solution to the modified

program.

) < w

L g(eL.GL q - g(eH,eL)A

Proof': Assume not. That is, assume that w
Then, the firm can offer (WH,eH) to both types, the H type will

clearly accept as he did before, and the low type will prefer this
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) to both types.

g

to (WL L) given our negation assumption. Furthermore, (wH,eH) must

satisfy (i) because (wL eL) did and the L type prefers (wH,eH) to

(wL,eL). But now the firm is earning profits of n(eH) T from

both types, which is (from Claim 3) at least as good as the profits

earned from the L type through (wL eL] The assumptions on n{-) and
g(-,-) guarantee a unique solution to the modified program, a

contradiction. Therefore, constraint (iv) must be satisfied at a

solution to the modified program. o

14 - 23



CHAPTER 15

15.B.1 (a) The budget constraint implies that

pl(xil(p) - wli) + pz(xZi(p) - w2i) =0
for each i = 1,2. Suppose that the above weak inequality = held with strict
inequality <, then there would be (xli’XZi) € Bi(p) such that (Xli'XZi) e
(xli(p),xzi(p)), because the preference of each consumer is locally
nonsatiated. This would contradict the fact that (xli(p),xZi(p)) is the
demand at p. We must thus have

pl(xn(p) - wli) + p2(x2i(p) - wZi) =0
for each i = 1,2. Summing over i = 1,2, we obtain

pl(zixil(p) - wl) + pz(zixZi(p) - wz) = 0.

(b) If the market for good 1 clears at p*, then Zixli(p*) - 51 = 0 and hence
pz(zixZi(p*) - (32) = 0 by the equality of (a). By pg > 0, this implies that
ZixZi(p*‘) - 52 = 0. Hence the market for good 2 clears at p* as well and p*

is a Walrasian equilibrium price vector.

15.B.2 As we saw in Example 15.B.1, the offer curves of the two consumers
are given by
OCl(p) = (ocp-wl/pl, (1- a)p-wl/pz),
0C2(p) = (Bp-wz/pl, (1 - B)P'wz/pz).
The total demand for good 2 at p is thus
(pl/pz)((l - oc)w11 + (1 - B)wlz) + (1 - oc)m21 + (1 - B)w22).

By (b) of Exercise 15.B.1, equating this to 52 = Wy + Voo gives the

awy) *+ Bu,,

Crep s . - -
equilibrium price ratio pl/p2 T “)”11 o B)wlz .

By substituting

this into the offer curves, we obtain the equilibrium allocations: OCl(p*) is

equal to
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o 1l -«

w.w, +Bw w,  +(1-Bw, w, ) , — — ),
| | 1721 11722 21712 aw,, + szz (1 oc)w11 + (1 B)wlz
w M and OC,(p*) is equal to

v -8
(W W, + (1 - w0, + e, ) B , —
12722 11722 21712 OLle + szz (1 oc)wu + (1 B)wlz

It is easy to check that

* »*
a(pt/p3)/dw, < O,
a0C, (p*)/8w,. > O,
11 11
(1 - e)(1 - B)wlz
l 80C., (p*)/dw,, = > 0,
. 21 11 ocw21 + szz
»*
90C,,(p*)/8w,, > O,

and, since 60(721(p*")/6m11 > 0 and (:)2 is constant,

A
30C,,,(p*)/dw, | < 0.

15.B.3 Let p* be a Walrasian equilibrium price vector and x’; be the demand
of consumer i (i = 1,2). Since the preference of consumer 1 is locally

non-satiated, the upper contour sets {x1 € IRE: X, > x*{) lies on or above the

1~1

budget line and the strict upper contour sets {x1 € (Ri: X > x’;} lies

strictly above the budget line. Symmetrically, the upper contour sets {x2 €

QRE: X5 % XE} lies on or below the budget line and the strict upper contour

sets (x2 € IRE: X XE} lies strictly above the budget line. Hence the two

272

2. - 2. - . .

sets (x1 € IR+. X xl) and {x2 € [R+. X, > xz) do not intersect; the other
2. - 2. . .

two, {x1 € IR+. x1 >-1 xl) and (x2 € IR+. x2 ;2 xz), do not either. Hence the

Walrasian equilibrium allocation x* = (x’{,x;) is Pareto optimal. See the

figure below.
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x*
w
N ——
O . \ AN
Figure 15.B.3 Y

15.B.4 (a) Here is an example of an offer curve (of consumer 1) with the
gross substitute property. The dotted curve is the indifference curve of

consumer 1 that goes through w.

Figure 15.B.4(a) Y

(b) As we discussed in the text, at any equilibrium, the offer curves of the
two consumers intersect and, conversely, any intersection of the offer curves
at an allocation different from w corresponds an equilibrium. In order to
verify that the offer curves intersect only once (not counting the
intersection at the initial endowments), it is therefore sufficient to show

that there is only one equilibrium price ratio p‘i‘/pg. So, let p* = (p*{,l) be
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[ 2n equilibrium price vector . If p, > p*i‘, then OCll(pl’l) < OCu(pT,l) and

. / . .

‘l | ' OClz(pl,l) < OClz(pl,l) by the gross substitute property. Hence OCu(pl,l) +
* *1) = o ;

OClz(pl,l) < OCn(pl,l) + OClz(pl’l) w,- Hence (pl.l) is not an

equilibrium price vector. Symmetrically, if P < p*, then there (Pl’l) is

not an equilibrium price vector either. Thus the offer curves intersect only

once.

(c) Here is an example of a normal offer curve that does not satisfy the

gross substitute property.

A
Q@

Figrue 15.B.4(c) 7

(d) Here is an example of '‘a preference, an initial endowment, and the

corresponding offer curve that is not normal.

A
0:

A

e
Y

Figrue 15.B.4(d.1) Y
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As for the second statement, we consider the case in which the price of
commodity 1 increases. (The case in which the price of commodity 1 increases
can be symmetrically proved.) Let (pl,pz) be the initial price vector and p’1
> p.. ’ > .(p < . .

P, Assume that OCli(pl’pZ) OCli(pl,pz) and 0021(p1’p2) 0621(p1’p2)
It is sufficient to prove that if commodity 1 is not inferior, then commodity
2 must be inferior. Suppose so. Then, by pi > P and Ocli(p’l,pz) >
OCli(pl’pZ)’ ‘the real wealth must have increased from p, to pi. (That is,
pIOCH(pl,pZ) + pZOCZi(pl’pZ) < P * pzwzi). Since the relative price of
commodity 2 has decreased, this and OCZi(pi,pz) < OCZi(pl’pZ) together imply

that commodity 2 must be inferior. This completes the proof’.

(e) Assume that the offer curve of consumer 1 is normal and that of consumer
2 satisfies the gross substitute property. If the initial endowments (wl,wz)
constitute a Walrasian equilibr:ium (and preferences are strictly convex),
then the two offer curves intersect only at the initial endowments, because
they are contained in the upper contour sets of W, and W, So suppose that
the initial endowments do not constitute a Walrasian equilibrium. Then we
first need to establish the following assertion:
If both p and p’ are equilibrium price vectors, then, f 6r every i = 1,2
and every £ = 1,2, we héve (OCﬁ(p) - wei)(OCﬁ(p’) - wﬁ) > 0.
In fact, suppose that we have (OCZi(p) - wZi)(OCZi(p’) - wli) = 0. Since the
initial endowments do not constitulte an equilibrium, the above weak inequality
is satisfied with strict inequality. Thus one of OCei(p) - Wy and OCEi(p,) -
wﬂi must be positive and the other must be negative. By the weak axiom of

revealed preference, OCi(p) and OCi(p’) must be outside the other budget

constraints, as shown in the figure below:

15-5




I

Figrue 15.B.4(¢e) \ Y

In the Edgeworth box, however, this implies that the offer curve of the other
consumer does not satisfy the weak axiom. This is a contradiction. Hence,
for every £ and i, we must have
(OCei(p) - wei)(ocﬁ(p ) - wﬁ) > 0.
Therefore, by relabelling the indexes of the commodities if necessary,
we can assume that OCu(p) -, > 0 for every equilibrium price vector p.
Now, let p* = (p*{,l) be an equilibrium price vector such that if p = (pl,l) is
any other equilibrium price vector, then p*f < P For any p = (pl,l) with p*f
< P by normality, we have either
*
OCu(p ) > OCu(p)

or

»* »*

OCll(p ) < OCu(p) and OCZI(p ) < OCZl(p).

Since OCu(p*) - Wy, > 0 and p’i‘ <Py if the second case applies, then

) pl(OCu(p) - wli) + OCZl(p) Wy, > 0, which is a contradiction to the budget

constraint. Thus the second case is actually impossible and the first case
applies. On the other hand, by the gross substitute property, we have

* — * W
OCIZ(p ) > 0C_,(p). Hence w = OCu(p ) + OClZ(p ) > OCH(p) + OClz(p). Thus

12

P is not an equilibrium price vector. Thus the Walrasian equilibrium price




vector p* is unique. Therefore, the two offer curves intersect only once,

except for the initial endowments.

(f) Here is an example in which two normal offer curves intersect several

times.

A OCh
| 02
|

(&)

A

0C:

O

Figure 15.B.4() Y

15.B.5 First, we can derive from the quasilinearity that 0021(p1’p2 .
-1/9

pz/pl, that is, OCZl(pl’pZ) = (pz/pl) . The budget constraint then implies

_ _ 8/9
that OCll(pl’pZ) =2+ r(pz/pl) (pz/pl) . Hence the offer curve of

)

consumer 1 is as given in Example 15.B.2. We can similarly show that the
offer curve of consumer 2 is also as given in the example. Rearranging the
equality of the total demand of the second good and its total supply and

substituting r = 28/9 - 21/9, we, obtain

8/9 9 _ 8/9  _1/9 _
- (pl/pz) = (2 2 )(pl/p2 1).

(pl/pz)
Then pl/p2 = 172, 1, 2 are solutions of this equation, and hence equilibrium

price ratios.

15.B.6 We can obtain the offer curves from the first-order conditions of the

utility maximization problem:
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p - -
0cp) = —m—— ], 12/3mp,'),
Py~ + (12/37)p,
p - -
0C,(p) = s (12/37p]3, 5313,
(12/31p2"% + p2
Set p, = 1 and write q = Pi/3, then
2 -1
OCu(p) + OCIZ(p) = — q + (12/37;q
q + 12/37  (12/37)q° + 1

¢ + (37/12)4° + % + 12/37
Q>+ (12/37 + 37/12)° + q
We can check that OCH(p) + OClz(p) =1 if and only if
12q° - 37q% + 37q - 12 = (q - 1)(4q - 3)3q - 4) = O,
Thus q = 1, 374, 4/3. Hence the equilibrium price ratios are given by
pI/py = 1, (3473, (s3>,

15.B.7 We shall prove that the set of Pareto optimal allocation looks like a
curve in the Edgeworth box. More precisely, we show that there is a
one-to-one, continuous mapping from a (non-degenerated) bounded closed
interval of R into the Edgeworth whose image is equal to the Pareto set. This
is sufficient for the first assertion of the exercise. For each i = 1,2, let
ui(-) be a utility function of consumer i. It is continuous, strongly
monotone, and strictly quasiconcave.

Note first that, since uz(-) is continuous, the set (uz(xz) € R 0 = X,
= w is a (non—d(-lzgenerated) closed bounded interval. Denote it by [60,61].
For each 8§ € [60,61], consider maximizing ul(xl) under the constraints 0 = X,
< w and uz((:) - xl) = 8. This maximization problem is feasible and, by the
compactness of {xlz 0= X, = o, uz((:) - xl) = 8}, there is at least one
solution. We shall now prove that the strict quasiconcavity of the ui(-)
implies that such a solution is unique. Let X, and xi be distinct solutions,

then ul((1/2)x1 + (l/z)xi)) > ul(xl) = ul(xi). We can assume without loss of

generality that uz(a) - xl) = UZ((:) - xi) z &. Then, by continuity and strong



monotonicity, there exists a unique A € [0,1] such that uz(h(a - xl)) =

u2(w - xl). By x, # X

1 1 and ul(xl) = ul(xl) , we have Alw - xl) * @ - X

Hence
uz((l/Z)A(w - xl) + (172w - xi)) > uz(h(w - xl)) = u2(w - xi).
Thus uz(a - ((1/2)x; + (1/2)x))) > 8. Therefore (1/2)x) + (1/2)x]) is

feasible and attains a higher utility than x, and xi, a contradiction. Thus

1
there must be a unique solution, which we denote by gol(a) € [RE. Define the

. ‘ - 2 2.
mapping ¢: [60,61] - ((xl,xz) € R, x R: x; +x,

9(8) = (p,(8), w - ¢,(8)).

= w} by

It is now sufficient to prove that ¢(-) is one-to-one and continuous,
and its image is equal to the Pareto set. The equality to the Pareto set
follows from its construction. As for being one-to-one, note that
u2(¢3 - gol(S)) = 8; otherwise, by strong monotonicity, a small transfer
collinear with w - qpl(é) from consumer 2 to 1 would increase the utility
level of consumer 1, a contradiction. It thus remains to verify the
continuity. For this, it suffices to prove that <p1(-) is continuous. Let
") be a sequence in [60,61] converging to 8. We shall prove that if ¢1(a“)
> X, then X, = ¢1(a). Note first that, by continuity, uz(&-) - Xl) = § and

hence ul(xl) = ul(tpl(s)). By strong monotonicity, for any sufficiently large

n

n, we can find x1

- n, _ (N n n

such that uz(w - xl) =z 8 and X > gol(é). Thus ul(xl) =
n : _

u1(<p1(6 }). Hence ul(tpl(a)) = ul(xl). Thus ul(gol(a)) = ul(xl). By

u2(w - Xl) = §, we obtain x, = gol(é).

1
For the second assertion of the exercise, it is sufficient to prove that
if the preferences of the coﬁsumers are homothetic and the Pareto set ever
cuts the diagonal in the interior of the Edgeworth box, then the Pareto set
must coincide with the diagonal. Let (3w, (1 - 8)w) (8 € (0,1)) a Pareto

optimal allocation on the diagonal. By the definition of a homothetic

preference (Definition 3.B.6), (3w, (1 - 8)w) is Pareto optimal for every & e
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{0,1). By strong monotonicity, (0,w) and (w,0) are also Pareto optimal.

Hence every allocation on the diagonal is Pareto optimal. By our previous
result (the existence of the one-to-one, continuous mapping ¢(-)), the
diagonal exhausts all Pareto optimal allocations. Hence the Pareto set is

equal to the diagonal.

15.B.8 Suppose that the preference of consumer i (i = 1,2) is represented
by a utility function ug: IRE - R of the quasi-linear form ui(xi) =Xt
¢i(X2i)' where ¢i: lR+ > R is continuous. We shall first prove that ¢i(-) is
strictly monotone and strictly concave. In fact, its strict monotonicity is
an immediate consequence of that of the preference. As for the strict
concavity, let xZi %z xéi and A € (0,1). By definition,

ui(¢i(x2i) - ¢i(0)’ XZi) = ui(¢i(X2i) - ¢i(0)’ XZi)'
Hence, by the strict convexity of the preference,

ui(A(¢i(X2i) - ¢i(0)) + (1 - A)(¢i(x2i) - ¢i(0)), AxZi + (1 - A)XZi)
> Aui(dzi(xZi) - ¢i(0)’ x2i) + (1 - A)ui(¢i(x21) - ¢i(0)’ XZi)'

This is equivalent to

qﬁi(?\xzi + (1 - A)xZi) > 7\¢i(x2i) + (1 - 7\)¢i(x21).
Thus ¢i(-) is strictly concave.-

Now define ¢: [0,w2] > R by go(x21) = ¢1(x21) + ¢2(w2 - x21), then ¢(-)

is continuous and strictly concave. Hence there exists a unique maximum x*“1 €

2
[0,w2].
In order to verify the assertion of the exercise, it is now sufficient
to prove that if x = (xl,xz) € IR%+ X lRi_ is a nonwasteful feasible allocation

in the interior of the Edgeworth box and X5 #* le, then x is not Pareto
optimal. In fact, let x be as such. Then, by the strict concavity of ¢(-),
for every A € (0,1), we have

p((1 - ?t)x21 + Axgl) > (1 - A)«)(XZI) + Ago(le) > ¢(x21).
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For each i = 1,2, define SM € R as

- 9,11 - 7\)x2i + Axéi) + ¢i(x2i) + (172)(p((1 - 7\)x21 + Axgl) - w(xZI)),

then & = 0 by the definition of ¢(-), and & i 0O as A > 0by

ALt S A

continuity. Since X > 0, we have X + SM > 0 for each i for any
sufficiently small A € (0,1). Moreover,

- * ) = - *
ui(xli +6,., (1 ?t)x2i + Ax2i) X, + BM + ¢i((1 A)x2i + AXZi)

Al 1i

=x; + ¢i(x2i) + (172)(pl(1 - 7\)x21 + Axél) - qo(x21))

Zi)'

Thus x is not a Pareto optimal allocation. The figure below depicts the set

> Xy v x5 = ulxpx

of the Pareto optimal allocations in the interior of the Edgeworth box.

[It is worthwhile to note that if the consumptions sets were taken to be
(- », w) x R as in Definition 3.B.7, theq the Edgeworth "box" would have an
infinite length in the horizontal direction and the assertion of this exercise
could more easily be proved, without the interiority assumption or an explicit
use of the utility functions. The reason is that, then, for any allocation x

with X5 # XEI’ there would always exist a feasible allocation x’ with X5 =

le that is Pareto superior to x. This is not always true when we have the

nonnegativity constraints.]

o | I | T
Figrue 15.B.8 \
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In connection with the discussion of Chapter 10, this fact implies that
in the absence of wealth effects, a Pareto optimal allocation (in the interior
of the Edgeworth box) of the non-numeraire commodities are uniquely
determined. The differences in the consumers’ utility levels at different
Pareto optimal allocations (this time including the numeraire) can all be

generated simply by redistributing the numeraire.

15.B.9 The offer curves of the two consumers are rather trivial when the

prices of the two commodities are both positive. Their graphs are ((Xpoc’xboc)

2 _ 2 _ 172
€ iR_H_. Xpoc = xba} and {(xpB,be) € [R++. XPB = (be) }. When one of the two

commodities has zero price, the offer curves are given by

. > i = >
0C (o .p.) = {((xpa,o). Xpoc = 0} if pp 0 and P 0,

a"p’*hb . . -
4 {(wpoc’xboc)' Xpo = wpa} if pp > 0 and P, 0.
{(x_,,20): x_, = 201/2) if p =0and p_ >0,

= pB pB P b
OCB(pp,pb) =

((0,_xba): X = 0} if Py >0 and p, = O.

These are depicted in the following figures. (Note that 4 < 201/2 < 5.)

A /OCl
02

A

Y

o} 20 / C
Figrure 15B8.9.1 oc:
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A

OC:

oo W

—>>

Y Figure 15B.9.2
Thus, when wpa = 30, all equilibria are on the boundary of the Edgeworth box

and the equilibrium price ratio and allocations are given by pp/pb = 0 and

2<

{((30 - x__,0), (x 20)): 201/ X . =< 30}). When wpoc = 5, the interior

pB’ pB’ PB
equilibrium is the intersection on the above figure . The boundary equilibria
have the price ratio pb/pp = 0 and allocations (((S,Xba), (0, 20 - xba)): 5=
Koo = 20}.

Note that, when w " decreases from 30 to 5, Alphanse’s utility level
increases and Betatrix’s utility level decreases, regardless of the choice of
equilibria to be compared. This is becvause, when wpoc = 30, Perrier is too

abundant relative to Brie and its equilibrium price is zero, implying that

Betatrix essentially consumes the total endowment of the economy. When wpa =
5, Perrier is scarce enough to have positive price and Alphanse can afford

positive consumptions of both goods. The price of Brie can even be driven

down to zero, in which case he essentially consumes the total endowment of

the economy.

15.B.10 (a) Suppose that the preferences of the two consumers are quasilinear

= 0. Suppose for a moment that w) =

with respect to commodity 2 and that w o1 =

21

0, so that there is no increase in the endowment of consumer 1 for commodity
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2. Here is an example in which an increase in the endowment of consumer 1 for

commodity 1 may lead a decrease in his utility.

02 02

A

Y

O ) '
Figrure 15.B.10(a) Y

Since equilibrium allocations depend continuously on the initial endowments,

we can still have a decrease in the utility of of consumer 1 when wél is

positive, but sufficiently small. We can thus take wé >> w, as asked for in
the exercise.

In this example, the small increment in the initial endowment leads to a
substantial decrease in the relative price of commodity 1 . Since the wealth
of consumer 1 comes exclusively from commodity 1, his real wealth then
decreases, despite the increase in his endowment. Hence his utility
decreases. This fact is often discussed in the theory of a quantity-setting

monopoly: It 1s not in the monopolist’s best interest to supply all it could

potentially do, because an increase in supply leads a decrease in price.

(b) Let (p,x) be an equilibrium of the original endowments (wl,wz) and (p’,x’)
be an equilibr‘%um of the new endowments (wi,w’z). In order to apply the result
of Exercise 15.B.8, assume that both x and X’ belong to the interior of the
Edgeworth box. By the first fundamental theorem of welfare economics, both x

and x’ are Pareto optimal. Thus by the result of Exercise 15.B.8, we have Xy
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= Xil and xiz = X, Hence, by the definition of quasilinearity (Definition
3.B.7), we can assume without loss of generality that p = p’. By the strong

monotonicity of the preferences, p > 0. Hence, by wi = w, and wi # w,, we

have pruw > Prw,. Since P X| = pro > prw, =p-x, we obtain x| > X

(c) Here is an example of the transfer paradox:

Figure 15.B.10(c) ‘ Y

In this example, a positive transfer is made from consumer 2 to consumer 1.
If the price ratio were kept to be at the original level pl/pz, then there
would be an excess demand for commodity 1. Thus the price ratio needs to
change to recover an equilibrium. In this example, pl/p2 decreases, but this
decrease induces a negative wealth effect on consumer 1 because he is the net
supplier of commodity 1. Hence his equilibrium consumptions goes down from

x1 to xl.

(d) Following the hint, we shall prove that there are other equilibria at the
original endowment w. In the figure of (c), draw the budget line that goes
through the original endowment w and the new equilibrium x’. This budget line
must be steeper than that of p’ because W) << wi. Hence the demand of

consumer 1 on this budget line must be in the north-west of x’. Of course,
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his offer curve with w; must go through this demand, as well as the original
equilibrium allocation x. Hence, as the relative price of commodity 1
increases, his offer curve must cut the contract curve from above at x.
Symmetrically, as the relative price of commodity 1 increases, the offer curve

of consumer 2 must cut the contract curve from below at x. This is

illustrated in the following f igure:

Contract Curve

X Offer Curve of 1

Offer Curve of 2

Figure 15.B.10(d) \J

Now recall that these two offer curves must go through the initial endowments.
It will then be easy to convince yourself that, in whatever way you will
extend the offer curves, they must intersect at at least two other points.

Hence there are at least three equilibria with the original endowments.

15.C.1 (a) This is a simple consequence of two simple facts, both of which
are already mentioned in the text: First, a Walrasian equilibrium is Pareto
optimal. Second, under the strict convexity assumptions, there is a unique

Pareto optimal allocation.

(b) Here is an example in which the slope of the excess demand function may
change its sign. Here, given p = 1, the equilibrium wage level is w* and, at

. s H t 3 <
wage levels W ant v, with W < W, < WX, we have O zl(wl) < zl(wz). Hence
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zl(') must have a positive slope somewhere between w, and Wy and a negative

slope somewhere between w2 and w¥*.

xi(wi, w1+ wil + T(W1))

x1(W2, W2+ Wl + m(w2))

Y

0 L- yx(Wl) L- ya(w2) L
Figure 15.C.1(b)

To prove that the slope of the excess demand function is negative in a

neighborhood of the equilibrium wage level w*, assume its differentiability
and denote the wealth level by v = wL + m(w), then

z)(w*) = (8x /8w)(w*, W L + m(w*)) + (3x /8v)(w*, WL + (W)L + m'(w*))

+ yi(w*).

Here, by (vi) of Proposition 5.C.1, n'(w*) = - yl(w*) and hence L + n’(w*) = L
- yl(W*) = xl(w*, w*L + m(w*)). Thus the sum of the first two terms is equal
to the diagonal element corresponding to labor of the Slutsky matrix of this
consumer. Hence it is negative by Propositions 3.G.2 and 3.G.3. By (vii) of

Proposition 5.C.1, yi(w*) < 0. Hence zi(w*) < 0.

(c) Suppose that the two consumers are endowed with the same amount of labor.
Then, at any wage level, the total wealth of the economy is split equally
between then. Here is an example of multiple equilibria. It is a

modification of Example 4.C.1.
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Figure 15.C.1(c.1)

If the firm operates under constant returns to scale, then there is a
unique equilibrium allocation. To prove this, note first that the profit of
the firm must be zero at any equilibrium. Thus, to find an equilibrium, we
can assume that m{w) = O for every w. Since, in addition, the individuals are
endowed with labor alone, they are always net suppliers of labor. Thus their

offer curves look as follows.

0 J L L
Figure 15.C.1(c.2)

Hence the total offer curve, that is, the sum of the two offer curves, also

looks as above, and the equilibrium is described as an intersection of the
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total offer curves and the boundary of the production set, according to the
profit maximization requirement of an equilibrium. Since the total offer
curve can cross the boundary only once (otherwise, the labor demand function

would be multi-valued), an equilibrium must be unique.

15.C.2 1t is sufficient to calculate the Pareto optimal production levels,

which is a solution to the maximization problem

172 172

wuz’" =, 1-2)=1n 2z +1In (1 - 2).

By the first-order condition, z = 1/3. If we fix the output price to be one,

then the equilibrium wage is 31/2/2. The equilibrium profit is 1/(2-31/2).

The equilibrium consumption is (1/31/2,2/3).

1S.D.1 (a) For any allocation z = (21,22) in the Edgeworth box, we have

221/2 >z /z, >z,./z,. if and only if z lies above the diagonal; z <

1> %% > 2%, 21711

22/21 < 222/212 if and only if z lies below the diagonal. Hence the assertion

follows.

(b) For this question, first recall that the differentiability of the cost
function of cJ.(-) (or equivalentiy, the uniqueness of - aj(w) at every w) is
equivalent to saying that fJ.(-) is strictly quasiconcave. This implies that
the marginal rates of substitution changes strictly monotonically along the
unit isoquant curve, and thus (tqgether with the homogeneity of degree zero)
that, for any zj and z:]., if 22j/21j * zéj/zij, then the marginal rates of
substitution at zj and 23 are different.

Now suppose that a ray from the origin of firm 1 and the Pareto set of
factor allocations intersect at z = (21’22) (which is not the origin) and let
z' = (zi,zé) be another point on the ray. (The case in which a ray starts
from the origin of firm 2 can be similarly proved.) It is sufficient to prove

/2). # 2. /z..

that 2’ is not Pareto optimal. By definition, z. . /z z, 2’2,

217%11 T %21
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Thus z, /z., # 2. _/Z The equality z 1

22 712 22" 712

marginal rates of substitution of firm 1 at z, and zi are the same. The

21/z11 = 221/2 implies that the

inequality 222/212 # 222/212 implies that the marginal rates of substitution

of firm 2 at z, and zé are different. By Pareto optimality, the marginal rate

of substitution of firm 1 at z) and that of firm 2 at z, are the same.
Therefore, the marginal rate of substitution of firm 1 at zi and that of firm
2 at 2’2 are different. Hence 2z’ is not Pareto optimal. Note that this result
is equivalent to saying that the factor intensities at different Pareto
optimal allocations are different.

Let’s now show the (strict) monotonicity of the factor intensities and
of the supporting relative factor prices along the Pareto set. It is
sufficient to prove that of the former. By Exercise 15.B.7, there exist a

bounded, closed (non-degenerated) interval (3 61] and a continuous,

O?

one-to-one map ¢(-) from [ 61] into the Edgeworth box whose image coincides

o’
with the Pareto set of factor allocations. Define a map y¥(:) from [60,61]
into R by letting y(38) be the factor intensity at & € [60,61], then y(-) is
continuous. We want to prove that it is (strictly) monotone. In fact, if
not, then the intermediate value theorem would imply that it is not
one-to-one. That is, two different Pareto optimal allocations would have the
same factor intensity. But this contradicts the result in the preceding

paragraph. Hence y(-) is strictly monotone, implying the (strict)

monotonicity of the factor intensity along the Pareto set.

1S.D.2 Let z = (21,22) and z’' = (zi,zé) be two feasible factor allocations.
Let A € [0,1]. We want to prove that the consumption vector
A(fl(zl),fz(zz)) + (1~ A)(fl(zl),fz(zz))
= (Afl(zl) + {1 - A)fl(zl), Afz(zz) + (1 - A)fz(zz))

is in the production possibility set. Clearly,
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(7«2l + (1 - A)zl) + (7\22 + (1 - A)zz)) =w
and, by concavity,

f1(7tz1 + (1 - A)zi)

v

Ml(zl) + (1 - A)fl(z’l),

v

f2(7\22 + (1 - A)Zé) Afz(zz) + (1 - A)fz(zé).

Hence the proof is completed.

15.D.3 We shall give two proofs. The first one uses Figure 1S.D.6(a). The
second one is more formal along the line of the Proof of Proposition 15.D.1.
In both proofs, we consider the case in which the price of good 1 increases.
The case in which the price of good 2 increases can be treated similarly.
For the first proof, suppose that the price of good 1 increases from P
to ?\pl, where A > 1. Let w* = (WI,WE) be the equilibrium factor price vector
of (pl,pz) and w** = (w’;*,wg*) be that of (Apl,pz). We want to show that w**

1

> Aw*f. Of course, both w* and Aw* are on the same ray. Since P, does not
change, both w* and w** are on the same unit-cost curve {w: cz(w) = pz) of
firm 2, which is downward-sloping. By the equilibrium condition and the
homogeneous of degree one of cl(-), both w** and Aw* are on the same unit-cost

curve {w: CI(W) = Apl). The positions of w*, Aw*, and w** are depicted in the

figure below:

Figure 15.D.3
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Hence we must have w’f"’ > AW’{.

For the second proof, note from the Proof of Proposition 15.D.1 that dw1

= * = * ) s ¥ * ) ¥
(a22(w )/IAI)dpl. Thus, by P, au(w )w1 + a21(w2)w2,

* _
dwl/w1 dpl/p1

* * _

((azz(w )/IAlw1 l/pl)dp1
»*

a22(w ) 1 1

* - * * *
w] [A] an(w )azz(w ) + a21(w )a2

dp, > O.

(w*)(wE/w’f) 1

2
15.D.4 (a) The utility function of consumer i (i = 1,2) is denoted by ui(-).
The production function of firm j (j = 1,2) is denoted by fJ.(-), which is
assumed to be homogeneous of degree one. A price vector of the two

consumption goods is denoted by p = (pl,pz) € lRi, a price vector of the two

2

inputs by w = (wl,wz) € lRi_, the consumption vector of consumer i by X; € [R+,

and the input demand of firm j by Z_j € lRi. Write x = (xl,xz) and z = (21’22)
for short. Then an equilibrium is defined as a vector (p*,w*,x*,z*) such that
1. (Utility Maximization) For each i, x’; solves the constraint maximization
problem
Max u.(x.) s.t. p*'x. = w*.
i i i
2. (Profit Maximization) For each Js z} solves the constraint maximization

problem

!

2
Max p*f.(z.) - w*-z, s.t. z, € R".
“ pJfJ J J J +
3 * * * * —
3. (Market Clearing) L%} (fl(zl),fz(zz)) and E_jzj (1,1).
Of course, Condition 2 can be replaced by the first-order condition p} =

* ok o I * *
cj(wl,wz) and zlj/ZZj alj(w )/a?.j(W ).

(b) Suppose now that we have two equilibria (p*,w*,x*,z*) and

(p**,w** x** Z**)  Assume without loss of generality that p*i' = p*i‘* =1 and

2

wi‘*/pz* = fz(zz*), WE* = fl(z*{*) by the utility maximization and the market

fl(z’f) = fl(z*f*) and fz(zg) = fz(zg*). Note that w’;/pg = fz(zg), w* = fl(z*f),
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clearing. According to Exercise 15.D.1(b), the input allocations z* and z**

can be depicted as follows:

A

Y

Figure 15.D.4(b.1) Y

Hence wz/w*iE = WE*/WT*. Thus, as we can see with the unit cost curves (and

because of p’f = .p*;* = 1), we must have wz z wz*, that is, the price of input 2

cannot increase even in the absolute value:

w2

Figure 15.D.4(b.2)

* ke *) = * *) = *n i
Hence fl(zl) = fl(z1 ). Thus fl(zl) fl(z1 ) and fz(zz) fz(z2 ). Since
the fJ.(') are strictly quasiconcave, this implies that z* = z**. Hence, by

p*i‘ = p’f* =1, w* = w** and pg = pX*,
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{c) Suppose now that we have two equilibria (p*,w*,x*,z*) and

(p**, w** x** 2**)  Assume without loss of generality that p*l* = p*{* =1. We

only show that it is not inconsistent to have f (z*) < f 1(2*‘”‘*), fz(za) >

*n * — * e — * e * = » TS L . *e
fz(z2 )s w] f (z ), w] fl(zl ), wl/p2 fz(zz), and w3 /p2 fz(z2 )} at

the same time. In fact, again, we know from the unit cost curves that w’; <

w*{* and WE > w**  But, as we saw in the proof of Exercise 15.D.3, the profit

2
maximization and the factor market clearing implies that W;*/WE < pE*/pE, that
is, wE*‘/pE* < wg/pz. This last inequality is nothing but f (z*) > fz(z**)

15.D.5 Denote the initial factor allocation by z = (21,22) and the new factor

allocation by z’ = (zi,zé), after the endowment of input 1 increases from El

’

to 21. Note on Figure 15.D.7 that Zj and z:j are proportional for each j =1,2,

and that z! >> z.. In particular, z’ Since the endowment of input is

1 1 21 %1
fixed at the level of w , this implies that z22 < 2y By proportionality,
z12 < 212. Thus, z1 - z11 < z1 - 211’ that is, z11 - z11 > o zl. Hence,

by dividing the left hand side by 2 and the right hand side by 21 (and
because of 9 < z ), we obtain zu/z > Ei/ﬁl. By the homogeneity of degree

one and the proportionality, we have f 1(z’)/fl(z) > Ei/ﬁl.

15.D.6 (a) Writing w* = (WT,WE), the equilibrium conditions for w* and

(ql,q*‘) are that

*) = p *) = * >
cl(w ) = P and cl(w ) P whenever q] 0;

> *) = * .
c2(w ) = Py and cz(w ) P, whenever qab > 0;

*)q % £)q* = - .
2, (whay + a,(whag = z;;

a, (w*)q* +a, (w*)q* = 22

(b) Suppose first that an equilibrium w and (q’i‘,qg) satisfies

Cl(;” =P and q* >0; ¢ (w) =P, and q* > 0.

By the factor intensity condition, (the inverse of) the slope all(w)/a21(w)
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of the optimal input vector of firm 1 must be greater the slope alZ(W)/aZZ(W)
of the optimal input vector of firm 2. By the market clearing condition and

q’f >0, qa > 0, the slope El/i of the endowment vector must be between these

2
two slopes. This is equivalent to saying that z belongs to the

diversification cone.
Suppose conversely that z belongs to the diversification cone. If q*f =
0, then the market clearing condition implies that qE(aIZ(W)’aZZ(W)) = z.

Thus alz(w)/azz(w) = 51/52 and hence z does not belong to the diversification
cone. Similarly, if qE = 0, then z does not belong to the diversification

cone either. We must thus have (q’i‘,qg) > 0.

(c) We shall prove the assertion of this question by showing that if the
unit-dollar isoquants intersect more than once, then the factor intensity
condition is not satisfied. The next paragraph is devoted to a proof of the
statement in the hint that if they intersect more than once, then there are
two points (one in each isoquant) proportional to each other and such that the
slopes of the isoquants at these points are identical. As the proof is
technical (and perhaps unnecessarily long), it can be skipped. The slope of
the unit-dollar isoquant of firm j at point (zlj’ZZj) is denoted by sj(zlj)'

(Since, for each z

1y there is only one z

2] such that (le’zz_j) lies on the

isoquant, we can suppress z,. from the augment of the slope function sJ.(-).)

2j
Let v e IRi_and v € IRE+ be two different intersections of the two
isoquants. Denote by C the region of the unit-dollar isoquant of firm 1
bounded by v and v’ inclusive, then C is a compact set. If there are
infinitely many intersections of the two isoquants on C, let (vn) be a
sequence of different intersections in C. We can assume without loss of

generality that it converges to a point v € C. Then v is also an
n -
v

intersection. Since sj(w_ll) = lim , we have sl(x-rl) = 52(31). Hence

<1

\P)
Vn -
1~ V1
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the hint is verified for this case of infinitely many intersections on C. If
there are only finitely many intersections on C, pick up two consecutive
intersections. To simplify notation, let v and v’ be as such and v, < v’l.

Since one of the two isoquants is above the other everywhere between v and v’,
we have (sl(vl) - Sz(vl))(sl(vl) - sz(vl)) = 0. If we have either SI(V) =

sz(v) or sl(v’) = sz(v’), then there is nothing to prove. So suppose not,

then (sl(vl) - sz(vl))(sl(vl) - sz(vl)) < 0. Suppose also that the isoquant

of firm 2 is above that of firm 1 everywhere between v and v’. (The other
case can be proved similarly.) Then sl(vl) < sz(vl) < 0 and sz(vl) < Sl(vl) <

0. For each z, € [vl,vi], let A(zll) = 1 be such that, if (z, . ,z..) lies on

11’721
) lies on that of firm 2. Note

1

the isoquant of firm 1, then 7\(211)(211,221

that A(vl) = Al(v!) =1 and Alz, )z, € [vl,vi] for every 2

1 111 € lvvil. Now

1

define g: [Vl’vll > R by g(zu) = sl(zll) - sZ(A(zu)zu), then g(vl) < 0 and

g(vi) > 0. By the continuity of g(-) (which is implied by the continuous
differentiability of the fj(- )) and the intermediate value theorem, there must

exist 2, € (vl,vl) such that g(zu) = 0. But this implies that 51(211) =

sZ(A(zu)zu), that is, if (211,221) lies on the isoquant of firm 1, then

A(zu)(z ) lies on that of firm 2 and the slopes of the two isoquants are

1'%21

the same on those two points. The Hint is thus proved.
Now suppose that there are more than one intersections. By the hint,

there are z’f and A > O such that z*{ lies on the unit-dollar isoquant of firm

i, 7\2’{ lies on the uhit-dollar isoquant of firm 2, and the slopes at those

points are the same. Hence if w = (wl,wz) € IRE_'_ is such that wz/w1 is equal

to the slope, then z’i‘ attains the minimum of w-z, on {zl: fl(zl) z l/pl) and

?\z’f is the minimum of w-z, on {22: fz(zz) z l/pz}. By homogeneity of degree

one, this implies that plz’i‘ attains the minimum of w-z, on (21: fl(zl) z 1}

. . .. . . - . "
and p27\21 attains the minimum of w-z_, on {zz. fz(zz) z 1}. But since P2

2

and pzhz’f are proportional, the factor intensity condition is not satisfied.
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As for the graphical construction of the diversification cone, if w is an
equilibrium input price vector, then, for each j, w supports {zj: f j(zJ.) =
I/p.} at (I/p NMa .(\:r),a .(vhv)). Moreover ‘;l'((l/ J(a .(V:/),a .(w;v))) = 1.

Pj Py s Pl Whag;

Hence we obtain the following figure.

(I/p)(an(%),ax(%))

N

Z1

Figure 15.D.6(c)

(d) As we saw in the discussion preceding Proposition 15.D.2 (Rybcszynski
Theorem), the factor intensity condition implies that there exists exactly one
factor price vector \:v = (\;\VI,V’;IZ) such that, for any total initial endowments,
the factor price vector of any equilibrium involving positive production of
both goods is equal to w. By (b), the total initial endowment vector z gives
rise to an (unique) equilibrium that involves positive production of both
goods if and only if z belongs to the diversification cone of \;' If z lies
below the cone, that is, 21/22 > alll(‘;’)/aZI(JV)’ then the economy specializes
in production of good 1 and the equilibrium factor price vector w* is
determined so that al(w*‘) = (l/fl(E))E and cl(w*) =P If, on the other
hand, z lies above the cone, that is, EI/EZ = alz(\;r)/azz(v:r), then the economy
specializes in production of good 2 and the equilibrium factor price vector

w** is determined so that az(w**) = (l/fz(E))E and cz(w**) = P, These are

illustrated in the following picture.
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Figure 15.D.6(d)

15.D.7 It is straightforward either from (15.D.1) and (15.D.2) or from

*  — a- * = - *x - * = 4 * —
(15.D.5S) that z}, 421/5, 23, 22/5, z}, 21/5, z3, 422/5 Wi

s/ 2/221/ 2, and wg = 5V 2/2%/ 2

15.D.8 It is easy to check that the production of good 1 is relatively more
intensive in factor 1 than in the production of good 2. We can thus apply the
graphical apparatus obtained in Exercise 15.D.6 to answer this question. By

some straightforward calculations, we can show that the unique equilibrium

~

factor price vector w = (wl,wz) that involves positive production of both

2/3/3) and is independent of the total factor

/3 “y _ 5273 “y _ ,=2/3 ~
, aZI(W) =2 , alZ(W) =2 , a22(w)

goods is equal to (22/3/3, 2

endowments; and that au(w) = 2l
21/3. Since the unit-dollar isoquants are equal to the (standard) isoquants

{zJ. € [Rf: fj(zj) = 1} by p = (1,1), these results yield the following figure:
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@3, 2'%3)

0 N

Figure 15.D.8

Hence the total factor endowments z gives rise to positive production of both

goods if and only if 2%/2%< 2 /2, < 2/°/27%7, that is, 172 < 2 /2, < 2.

The equilibrium production level g* = (ql,qz) must then satisfy w = ATq ,
where A is the 2 x 2 matrix as defined in the Proof of Proposition 15.D.1 and

AT is its transpose. Solving this, we obtain the equilibrium factor

allocation:

* = a%a2 (w) = Z - * = W) = zZ. -z
z}, qlan(w) (2/3)(221 z) z3, q1 21(w) (1/3)(221 22),

(w) = (3)2z, - 7,), 23 (w) = (2/3)(2z, - z,).

* o % *
212 T 99 22 = 9285,

If z lies below the diversification cone, that is, 21/22 =z 2, then the

economy specializes in production of good 1. The equilibrium factor price

vector w* is determined so that a,(w*)

(1/f1(5))5 and cl(w*) = Py Thus

1 - -

-2/3- 4/3- 2’717
2 z1 + 2 22

w* =

Symmetrically, if EI/EZ = 1/2, then the economy specializes in production of

good 2. The equilibrium factor price vector w* is given by

1
3/3- —2/3- (22’22’
2 zl + 2 22

w* =

15.D.9 Let (p*,w*,w B A B’qA’qB’ A,x"‘) be an equilibrium of this two-

15-29




country model, where p* e IRi_ is the international price vector of the two

consumption goods, WK € [Ri_ is the factor price vector in country A, ZZ € IRi_

is the factor allocation in country A, g* € [R2 is the output levels of the
A ++

two consumption goods in country A, and xX € lRi_ is the aggregate demand for

the two consumption goods of country A, and similarly for country B. By the

assumptions on the utility functions, xZ and xg are proportional. By the

market clearing condition, xK + XE = qZ + qE and this sum is proportional to

* * i *.(Xx* - %) = p¥*.(x* - q*) =
X3 and Xg - By the budget constraints, p (xA qA) p (xB qB) 0.

Hence, in order to verify this theorem, it is sufficient to prove that
* * * »*
947%4 > UGy
We shall now prove this inequality. Let A = _21/522 > 0 and consider an

auxiliary country C, which is endowed with the total factor allocation 7\52 €
[Ri_. It is easy to see that, faced with the international price vector p* of

the two consumption goods, the factor price vector wg would clear the input
markets in country C; the corresponding factor allocation would be equal to
7\2]’5 and the output levels to Aqg. Country A is endowed with the same amount
of factor 2 as country C and a larger amount of factor 1 than country C.
Hence (as neither of country A nor C specializes) the Rybcszynski Theorem is

applicable to comparison between countries A and C, implying that q*{ A > AqTB

* * * * * * o g% »*
and qZA < AqZB. Thus qlA/qZA > AqlB/AqZB qlB/qZB'
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