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Abstract 

The more realistic model of computation introduced in recent papers by Chazelle and Monier (1981a, b) 

has led to drastic revisions of VLSI complexity in general. Measured in terms of chip area and computation 

time the complexity of several problems has been shown to be much higher than previously thought We 

propose here to investigate the actual performance of well-known circuits in this new model, and to suggest 

designs which meet criteria of optimality. We will show in particular that many complicated schemes falsely 

believed to be efficient can be advantageously replaced by simpler and higher performance designs. 
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1 . Introduction 

The more realistic model of computation introduced in recent papers by Chazelle and Monier (1981a, b) 

has led to drastic revisions of VLSI complexity in general. Measured in terms of chip area and computation 

time the complexity of several problems has been shown to be much higher than previously thought We 

propose here to investigate the actual performance of well-known circuits in this new model, and to suggest 

designs which meet criteria of optimality. We will show in particular that many complicated schemes falsely 

believed to be efficient can be advantageously replaced by simpler and higher performance designs. 

Throughout this paper we will base all analyses of circuits on the model of computation described by 

Chazelle and Monier (1981b). The major new assumption of this model is to require propagation times at 

least linear in the distance. To make the model suited for upper bounds, we will add that linear propagation 

time is actually realistic with current technologies, e.g., electrical (with use of repeaters) or magnetic-bubble. 

Note that, based on these assumptions, the concept of optimality is meaningful only for large circuits, since 

the actual complexity of very small chips is overshadowed by parasitic effects. However, asymptotically 

optimal circuits which are conceptually simple will provide useful insights and guidelines for small designs. -

One major consequence of the model is that the time performance of a circuit is strongly dependent on its 

geometry rather than its topology. In particular, all the tree-based-schemes previously proposed cease to have 

their claimed logarithmic complexity. Examples of such circuits can be Found in Preparata and Vuillemin 

(1979), and in Thompson (1980a). Also, to be realistic, we must assume that clock signals follow the same law 

of propagation as any other signal. For example, broadcasting a control signal in constant time becomes 

impossible, which significantly alters the control of a device as simple as a shift register. 

In this paper, we carry out these ideas and present optimal designs for the following problems: Addition, 

cyclic shift, integer product, matrix arithmetic, linear transforms and FFT, sorting, and searching. Although 

we also establish a number of lower bounds, most of those used to prove optimality can be found in Chazelle 

and Monier (1981b). A common point for all these problems is to have an Q(N 1 / 2 ) lower bound on the time 

T, where N is the size of the problem. This shows the importance of pipelining computations in order to 

increase the throughput, and leads to the introduction of the period P, defined as the minimum time elapsed 

between two consecutive inputs. Thus we can analyze the behavior of circuits in the light of three measures: 

the time of computation T, the period P, and the chip area A. Composite measures defined as products of A, 

T, or P will also be considered to show possible resource trade-offs. 
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2. Addition 

For the problem of adding two N-bit integers, the following lower bounds have been shown by Chazelle 

andMonier (1981b): T^QCN 1 7 2 ), AT=G(N), ATP=Q(N 2 ). 

The simplest adder, consisting of a full-adder cell, has unit area and runs in linear time. It is thus optimal 

for the measures A, AT and ATP. 

In order to achieve optimal time performance, the carry-look-ahead scheme had been previously 

proposed. However, it is no longer optimal in our model, for its straightforward implementation yields linear 

time, while the H-tree layout creates enormous difficulties for ordering the inputs. Instead, we propose a new 

adder which can be regarded as a one-level CLA. Wlog, assume that N = m 2 . We decompose each input 

number a = a N ^ . . ^ Q and b into m blocks of m consecutive bits. Each block is read in sequentially into a cell 

which computes the sum of the two slices as well as the last carry, and which checks whether all the bits in the 

sum are equal to L Thus for each block, the sum (s J > m . 1 , . . . ,Sy ) X the last carry c., and one bit p ^ S j ^ A - A s . Q 

are computed It is important to notice that c £ = 1 implies p{=0. 

Summation Computation of carries Last summation 

b i b o 

a 3 3 2 
b 3 b 2 

S U -SljO 

h S S 4 

Fig. 1. An optimal adder. 

After m steps, we can propagate each carry at the block level by computing the actual carry sequentially: if 

p t = 0 the running carry is else it is c^. Finally we can update the partial sums in O(m) time with the value 

of the running carry (Fig.l). With A = 0 ( N ) and T - G C N 1 7 2 ) , this adder is optimal for T and ATP; 

Moreover, it requires very little logic since it is made of 0 (N) shift-register cells and CKN 1 7 2) full-adder-like 

cells. We observe that this scheme seems especially well-suited for magnetic-bubble technology. 

One shortcoming of this adder, though, is its failure to allow pipelining. It is easy, however, to design a 

very simple adder with period P = L Fig.2 illustrates this new scheme. Note that both time and area are 

linear, while the unit period makes this adder optimal for P and ATP. 
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Fig. 2. ^ Jullypipelined adder. 

3. Cyclic shift 

The complexity of the cyclic shift has been studied by Chazelle and Monier (1981b) and Vuillemin (1980); 

the following lower bounds have been established: A = Q(N), T = Q Q * m \ AP 2 =Q(N 2 ) . ' 

The function takes for input a pair (a,p), where a is binary sequence a r . . . ,a N and p is the value of the 

shift, and it returns the sequence b x , . . . ,b N with b i = a i - p ^ m o d ^ We will describe a circuit optimal for both A, 

and T, which is based on a clock-free implementation of a shift register. For simplicity we will assume that 

N = m 2 , and that we are given a and/?, withp = am+/? (/Km). : . 

Since we assume that a and /? are given in binary representation, the first task of the shifter will be to 

decode these integers. So, we start by describing a decoder, that is, a circuit receiving an integer i<m as input 

and producing a sequence of i l's. Let i=i k . . . i Q with k = [ l o g ^ J . 

k-1 i 
->i 

Fig. 3. A decoder. 

The circuit is a ladder of cells as shown in Fig.3. First the cells Bk,...,BQ read in the bits ik,...,iQ respectively. 

Then when the start signal s is activated, if i k = 0 , B k activates B k_ x and the process iterates; otherwise it 

activates A k , whose task is to generate 2 k l's on the output port of AQ. To do so, A Q simply outputs a 1 when 

activated by Al or BQ, and it acknowledges A 1 in the former case. Recursively A. activates A K , waits to be 

acknowledged by A..p repeats this operation, and when finished, acknowledges B r Finally Bj activates B.^ 

and the process iterates. Each A and B. is a very simple one- or two-state automaton whose details we can 

omit Clearly the time to decode any integer <m is 0(2 k )=O(m). 

Next we need to describe a scheme for shifting a chain of bits to a given position without resorting to a 
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broadcast synchronous clock. Consider a chain of m cells Ap...,Am with the first p cells holding values 

k l v . . ,k p . We wish to transfer k p to Am,..., k x to A m _ p + r To do so, we simply activate the first p cells in time 

O(p), then while k p proceeds to move towards A m , each cell A. which is currently holding a key conditionally 

transfers its content to the cell A. x if it is vacant The complete transfer is thus completed in O(m) time. 

A B 

D C 

B A 

C D. 

D 
C 

D 

B A 

Fig. 4. An optimal cyclic shifter. 

We are now ready to implement the cyclic shift The circuit is a n m x m array of cells as depicted in Fig.4. The 

input a 1,...,aN is read in by rows, and in a first stage the decoder described above permits us to delimit the 

areas A,B,C,D in 0(m) time. Then the actual shift proceeds in two phases as indicated in the picture. This 

can be done by having two channels between adjacent cells, enabling 2-way communication between them. 

Then it is straightforward to implement the two phases with the description of the shift register given above. 

4. Integer Product 

The following bounds are known for the product of two N-bit integers: A = 0 ( N ) , T = G ( N 1 / 2 ) , 

AP 2 =Q(N 2 ) . Not only tree-based schemes (Wallace trees) no longer yield logarithmic time, they cannot give 

better than linear time, since they all generate N 2 temporary bits. Instead, we propose a simple revised version 
of the shift-and-add scheme (Fig.5). 

First operand 
Second operand 

Carries 
Partial product 

a 2 a l a 0 > 
< ^ 2 b l ^ 

S4 S 3 S 2 h % 

J2 31 
*4 h h h *n I 

Fig. 5. The shift-and-add multiplier revisited 

It makes use of two clock-free shift registers meant to multiply the two numbers in carry-save representation; 

the carries are then released sequentially. This circuit is interesting mainly for its simplicity and the fact that it 
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uses minimal area, A = 0 ( N ) . It is possible to connect N copies of this circuit in order to obtain minimum 

period, P = l ; after each shift-and-add step, operands and partial results are shifted up one position, which 

after N steps yields the product in carry-save representation. The overall performance is: A = 0 ( N 2 ) , 

T = 0 ( N ) and P=0(1) , which makes the circuit optimal for P and AP 2 . 

Of all the circuits previously held as being optimal, e.g., Wallace tree or multiplication through DFT, none 

shows good time performance in our model. Recently, Preparata (1981) has given a careful description of a 

fast multiplier, optimal in our model: A = 0 ( N ) and T = 0 ( N 1 / 2 ) . It uses a square-mesh structure to compute 

the convolution of the two numbers (considered as vectors) via the DFT, then releases the carries to obtain 

the usual product The processors used in this mesh are very similar to those used in the sorting or DFT 

circuits mentioned in this paper: they mainly are small arithmetical units containing stored programs. 

5. Matrix arithmetic 

We next turn our attention to three matrix problems: Integer or boolean multiplication, transitive closure, 

and inversion. Since the first problem is reducible to the last two, as remarked by Savage (1979), the results of 

Chazelle and Monier (1981b) show that all three problems have the lower bounds, A=Q(N), T = Q ( N 1 / 2 ) , 

with N measuring the total number of elements in the matrices. 

Kung's systolic multiplier, described in Mead and Conway (1980), is thus optimal for A and T, and is the 

best known yet, although it cannot be pipelined. The same remark applies for the mesh-connected circuit 

proposed by Kung, Guibas, and Thompson (1979) to compute a transitive closure (note that for these results; 

we assume unit cost for element operations). Similarly Kung, in Mead and Conway (1980), describes an 

optimal circuit for inverting matrices which admit LU-decompositions (and Gaussian elimination without 

pivoting). It is easy to extend this scheme to compute the determinant of such matrices in time 0 ( N ). This 

matches the lower bound for arbitrary matrices, as is shown in the following. 
Lemma 1: The time required to compute the determinant of an arbitrary mxm matrix is Q(m). 

Proof: Using a result from Chazelle and Monier (198lb),.we simply have to show that 
computing a determinant involves a fan-in on 0(m 2 ) elements. 

Consider the matrix A k defined by the recurrence, Ax=(a^) 

where the r/s are the sums of A ^ ' s rows, i.e., T . r a i l + . - . + \ l L . r 



Noting that we can rewrite A. as 

\ = 

we derive the relation 

D e t ( A k ) = - D e t ( A k . 1 ) x ( a t l + . . . + a ^ ) 

which proves that the assignment a^ = 1 for all i j ; l<j<i<k, gives a hard input, that is, an inputfor 
which a change in any one of these assignments alters the value of the determinant This shows 
that computing Det(A v) involves a fan-in on k(k-l) /2+1 elements, which completes the proof. • 

6. l inear Transforms and Discrete Fourier Transform 

Vuillemin (1980) has shown that any circuit which can compute any linear transform on N k-bit elements 

(with k^lo^N) computes a transitive 'function of degree Nk. Using this result, lower bounds have been 

found for this problem by Monier and Chazelle (1981b): A=Q(Nk) and T = Q ( N 1 / 2 k 1 / 2 ) . One possible 

implementation requires that, in a first stage, a description of the transform be passed to the circuit as a 

parameter, thus enabling the circuit to compute the transform on any input vector. As yet, the best method 

known consists of either storing the matrix on the chip in its traditional array representation, or treating it as 

part of the input In both cases, we can then use a matrix-vector multiplier, such as the linear-time, linear-

area, systolic multiplier proposed by Kung in Mead and Conway (1980). This circuit is not optimal in time, 

but it seems hard to improve its performance as long as the N 2 elements of the matrix are to be memorized. 

Note that we are often interested in computing only specific linear transforms. The previous lower 

bounds no longer hold, since they yield no information on the behavior of a particular transform. We choose 

to turn our attention to one of the most important, the discrete Fourier transform. For this problem, a lower 

bound is already known: AT 2 =Q(N 2 k 2 ) . We extend this result in the following. 

Lemma 2: Any circuit computing a DFT on N k-bit numbers requires area A=Q(N) and time 
T = Q ( N 1 / 2 k 1 / 2 ) . 

Proof: The DFT is computed in the ring of integers modulo M. Let a> be a N ^ root of unity in 
this ring. Necessarily M>N; moreover we suppose that k~ [log^Nj+l. The DFT is defined by 
Y=MX, where X=(xQ,...,xN_ 1), Y=(y Q , . . . , y N 1 ) , and the matrix M is (o 1 J), for 0<iJ<N. 

Noticing that the first element yQ is the sum of all the x{, we can prove that one of its bits is a 
fan-in of O(Nk) input bits, simply by exhibiting a hard-input (see Chazelle and Monier (1981b) for 
definition of fan-in). Let x Q = 2 j - l with j = [k/2j, and x .=0 for i=1,...,N-1. The bit of y Q =2 J -1 is 
equal to 1; however, a change in the value of any bit of order <j of any x{ (i>0) will force it to 0. 

Lk-l 

0 0 . . .0 1 

l k-i 

k.k-1 

1 
0 
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Hence, this particular bit is a fan-in of Nk/2 input bits, which yields the desired lower bound on 
the time. 

To prove the result on the area, we show that the circuit must memorize at least N bits. Since 
the order in which the bits are input is fixed, consider the bit b input last, with b being the s1*1-
order bit of x.. Any y. can be written as y^a.-f co^2sb, where a. is independent of b. It is clear that 
changing the value of b affects the value of all the y/s, since o>1J2scannot be zero modulo M. 

It follows that, at the instant which just precedes the reading of b, at least one bit of every y i 

cannot have been output. Since the DFT is invertible, these bits must be able to take on arbitrary 
values, which implies that the circuit must memorize at least N bits. • 

A good survey of DFT circuits can be found in Thompson (1980b). Note that most of the schemes 

reviewed are optimal in a model where transmission costs are neglected. However, this ceases to be true in 

our model, where no logarithmic times are possible. Good examples are the straightforward implementation 

of the FFT network, or the CCC-scheme proposed by Preparata and Vuillemin (1979), where wires of length 

N contribute to the poor performance: roughly T=0(N)> A = 0 ( N 2 ) . 

Instead, we can see how very simple circuits are indeed optimal in our model. One simple method consists 

of performing a matrix-vector product, where the matrix (a>1J) is input to the hexagonal systolic multiplier. 

We have A = 0 ( N 2 k ) and TrsOONfk 3 7 2) provided that optimal adders and multipliers are used This circuit 

can be pipelined, thus reducing the period to 0 ( k 1 / 2 ) , which is optimal for the measure AP 2 . 

Another solution consists of using a linear matrix-vector multiplier, generating the matrix elements on the 

fly, as described in Kung and Leiserson (1979). The circuit is more efficient, A = 0 ( N k ) and T = 0 ( N k 1 / 2 ) , but 

it cannot be pipelined. 

A near-optimal design is the square mesh used to simulate a FFT network, as described by Stevens (1971) 

and Thompson (1980a). It involves N processors, each having the complexity of a microprocessor. The size 

of the programs involved, however, is comparable to the length of the words processed, which makes the total 

area O(Nk). Note that the computation time T = 0 ( N 1 / 2 k 1 / 2 ) is optimal and matches the I/O time. 

7. Sorting 

From Chazelle and Monier (1981b) we know that any circuit sorting N k-bit numbers, with k>21og2N, 

requires 12(N) area and Q(Nk) 1 / 2 time. Only the grid implementation of sorting networks proposed by 

Thompsoa.and Kung (1977) appears to give optimal time performance. However, this scheme requires Q(Nk) 

area, and thus does not match the known lower bound. This lower bound does not exclude the existence of a 

bit-serial sorting device, but no optimal-area scheme has yet been proposed. 
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8. A general data structure scheme 

As of yet, only the priority queue described in Leiserson (1979) has the complexity initially claimed. All 

the tree-like structures fail to be logarithmic for reasons already stated. Simple geometric considerations show 

that it is impossible to access any element of a set of N keys in less than N 1 7 2 steps. However we can achieve 

this performance with the scheme illustrated in Fig.6. The circuit we propose can be used as a dictionary 

where queries are answered in 0 ( N 1 / 2 ) time, with unit period* 

Fig„ 6. An optimal data structure. 

Insertions of keys proceed from the single input port by scanning the mesh sequentially in snake-order, and 

detecting the first vacant cell. Deletions and queries are handled by a downward diagonal sweep. Thus by 

using broadcasting, deletions are completed in 0 ( N 1 / 2 ) time. Queries are treated in a similar fashion, running 

on rows in a left-to-right motion, and downwards on the rightmost column where the partial results from each 

row are merged Proper synchronization is crucial; in particular the treatment of insertions and 

queries/deletions must occur in an alternate mode. Note that at all times we can distinguish between two 

kinds of keys: the keys stored at their final place, and the running keys in search of a vacancy. However, 

deletions and queries treat both of them in a similar way. A rigorous proof of correctness is left to the reader. 

9. Conclusions 

As our last application of the geometric nature of the model considered here, we can show how the idea 

proposed by Browning in Mead and Conway (1980) to solve NP-complete problems must now be discarded. 

The method is to simulate a non-deterministic Turing machine by using an exponential number of processors 

connected up in a tree structure. The paths between root and processors contain a polynomial number of 

nodes; however, a simple geometric argument shows that for any embedding of the tree, there exists paths of 

exponential lengthc This implies exponential communication times, which defeats the purpose of the scheme. 
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In this paper we have wished to show how the advantages of the high concurrency offered by VLSI 

technology should be appreciated from a realistic perspective. So far it appears that simplicity and elegance in 

design should win out. Complicated schemes don't seem to pay off, and even if this observation has been 

justified in an asymptotic -thus highly academic- framework, we still believe that it bears great significance on 

a more practical level. After focusing on lower bounds at length, theoretical work in VLSI should now turn 

decidedly to more practical aims including design and conception. 
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