Chapter 12. Rotation of a Rigid Body

Not all motion can be
described as that of a
particle. Rotation requires
the 1dea of an extended
object. This diver 1s moving
toward the water along a
parabolic trajectory, and
she’s rotating rapidly around
her center of mass.

Chapter Goal: To
understand the physics of
rotating objects.
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Chapter 12. Rotation of a Rigid Body
Topics:
* Rotational Motion
* Rotation About the Center of Mass
* Rotational Energy
e (Calculating Moment of Inertia
* Torque
* Rotational Dynamics
e Rotation About a Fixed Axis
 Static Equilibrium
* Rolling Motion
* The Vector Description of Rotational Motion
* Angular Momentum of a Rigid Body
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Chapter 12. Reading Quizzes
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A new way of multiplying two vectors is
introduced in this chapter. What is it
called:

A. Dot Product

B. Scalar Product
C. Tensor Product
D. Cross Product
E. Angular Product
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A new way of multiplying two vectors is
introduced in this chapter. What is it
called:

A. Dot Product
B. Scalar Product
C. Tensor Product

‘/ D. Cross Product
E. Angular Product
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Moment of inertia is

A. t
B. t

he rotational equivalent of mass.
he point at which all forces appear to act.

C.t

he time at which 1nertia occurs.

D. an alternative term for moment arm.
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Moment of inertia is

/’A. the rotational equivalent of mass.
B. the point at which all forces appear to act.
C. the time at which inertia occurs.

D. an alternative term for moment arm.
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A rigid body is in equilibrium if

C. neither A nor B.
D. either A or B.
E. both A and B.
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A rigid body is in equilibrium if

C. neither A nor B.
D. either A or B.
/' E. both A and B.
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Chapter 12. Basic Content and Examples
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Rotational Motion

. FIGURE 12.3 Two points on a wheel
The flgure shows a wheel rotate with the same angular velocity.
rOtatlng on an aXle° Its [Every point on the wheel turns Ilwm_l:gh
angular VeIOClty IS the same angle and thus undergoes circular

motion with the same angular velocity .

_do oy
C U v

The units of w are rad/s. If
the wheel 1s speeding up or
slowing down, its angular
acceleration 1s

Different\ o

 dw

- T, All points on the wheel have a tangential

df velocity and a radial (centripetal) acceleration.
They also have a tangential acceleration if the
wheel has angular acceleration.

a

The units of a are rad/s?.
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Rotational Motion

TABLE 12.1 Rotational kinematics for
constant angular acceleration

w; = o, + a At

il

wi = w® + 2a Af

FIGURE 12.4 The signs of angular velocity and angular acceleration.

Initial angular velocity

Speeding up ccw Slowing down ccw Slowing down cw Speeding up cw
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EXAMPLE 12.1 A rotating crankshaft

QUESTION:

EXAMPLE 12.1 A rotating crankshaft

A car engine is 1dling at 500 rpm. When the light turns green, the
crankshaft rotation speeds up at a constant rate to 2500 rpm over
an interval of 3.0 s. How many revolutions does the crankshaft

make during these 3.0 s?
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EXAMPLE 12.1 A rotating crankshaft

MODEL The crankshaft 1s a rotating rigid body with constant
angular acceleration.
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EXAMPLE 12.1 A rotating crankshaft

SOLVE Imagine painting a dot on the crankshaft. Let the dot be at
0. = Orad att = O s. Three seconds later the dot will have turned
to angle

1
&:@m+5mmf

where At = 3.0 s. We can find the angular acceleration from the
initial and final angular velocities, but first they must be converted
to SI units:

rev | min 211 rad

w; = 500 = 52.4 rad/s

min 60 s | rev

0, = 2500 — = 5@, = 262.0 rad/s
min
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EXAMPLE 12.1 A rotating crankshaft

The angular acceleration 1s

B Aw 262.0rad/s — 52.4 rad/s

= — = = 69.9 rad/s’
At 3.0 s radrs

o'
During these 3.0 s, the dot turns through an angle
1 _
A6 = (52.4rad/s)(3.0s) + 5(69.9 rad/s*) (3.0 s)* = 472 rad

Because 472/27 = 75, the crankshaft completes 75 revolutions as
it spins up to 2500 rpm.
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EXAMPLE 12.1 A rotating crankshaft

ASSESS This problem is solved just like the linear kinematics
problems you learned to solve in Chapter 2.
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Rotation About the Center of Mass

An unconstrained object FIGURE 12.5 Rotation about the center of
(1.e., one not on an axle ora ™M%®*

pivot) on which there isno.
net force rotates about a center of mass.
point called the center of "'
mass. The center of mass
remains motionless while
every other point in the
object undergoes circular

motion around it.

—
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Rotation About the Center of Mass

The center of mass 1s the mass-weighted center of the
object.

Xem = 77 J,x dm and Yem = 37 Jx dm
FIGURE 12.5 Rotation about the center of
Mmass.
(b) ¥
Center of mass
Particle 7 with
\~Cm A _ _ £ _ _ _ ® mass HII
Vi :
0 I i X
{) 'X-C[T] )i'
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Rotational Energy

A rotating rigid body has kinetic energy because all atoms
in the object are 1in motion. The kinetic energy due to
rotation 1s called rotational Kinetic energy.

| IS
Ky = ~lo
rot 2 w

Here the quantity /7 1s called the object’s moment of inertia.
[ = mlrlz + mzrf + mﬁf T = E”fﬂ‘?z
i

The units of moment of inertia are kg m?. An object’s
moment of inertia depends on the axis of rotation.
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TABLE 12.2 Moments of inertia of objects with uniform density
Object and axis Picture I Object and axis Picture I
Thin rod. . Ij %M’Lz Cylinder or disk, %-’h-ﬂfz
about center L& - about center é
—"7 >
: Wl N
Thin rod. Ij _';MLE Cylindrical hoop, MR?
about end / . . about center
L
e
Plane or slab, =M’ Solid sphere, MR?
about center h about diameter
|1|I !.d' ;_I
e
pd j
Plane or slab, IMa? Spherical shell, sMR?
about edge about diameter
h
/‘1 il
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EXAMPLE 12.5 The speed of a rotating rod

QUESTION:

EXAMPLE 12.5 The speed of a rotating rod

A 1.0-m-long, 200 g rod is hinged at one end and connected to a
wall. It 1s held out horizontally, then released. What is the speed of
the tip of the rod as it hits the wall?
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EXAMPLE 12.5 The speed of a rotating rod

MODEL The mechanical energy is conserved if we assume the
hinge is frictionless. The rod’s gravitational potential energy is
transtormed into rotational Kinetic energy as it “talls.”
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EXAMPLE 12.5 The speed of a rotating rod

VISUALIZE FIGURE 12.13 is a familiar before-and-after pictorial rep-

resentation ot the rod. We’ve placed the origin ot the coordinate
system at the pivot point.

y
L=10m

X

Hinge-~ Before: v, o = 0m
w, = Urad/s
m=0.20kg

Afterr y_, = —%L

Find: v, = @,L
1'_’;I'L]:-
_—
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EXAMPLE 12.5 The speed of a rotating rod

SOLVE Mechanical energy is conserved, so we can equate the
rod’s final mechanical energy to its initial mechanical energy:

] ]
Elw I2 T Mg}?ﬂn] — EL{UOZ T ngcm[)

The 1nitial conditions are w, = 0 and y.,0 = 0. The center of
mass moves to V., = —%L as the rod hits the wall. From Table 12.2

we find [ = %MLZ for arod rotating about one end. Thus

1[ 24+ M IM'L2 2 1M’L 0
— I . - — W — — —
2 I g}’un] 6 ] 2 g
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EXAMPLE 12.5 The speed of a rotating rod

We can solve this for the rod’s angular velocity as it hits the wall:

38
w; — -

L

The tip of the rod 1s moving in a circle with radius » = L. Its final
speed 1s

Vip = @ L = V3gL = 5.4 m/s
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EXAMPLE 12.5 The speed of a rotating rod

ASSESS Energy conservation 1s a powertul tool for rotational
motion, just as it was for translational motion.
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Torque

Consider the common experience of pushing open a door.
Shown 1s a top view of a door hinged on the left. Four
pushing forces are shown, all of equal strength. Which of
these will be most effective at opening the door?

Top view of door

The ability of a force to cause a rotation depends on three
factors:

1. the magnitude F' of the force.
2. the distance r from the point of application to the pivot.
3. the angle at which the force 1s applied.
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Torque

FIGURE 12.19 Force F exerts a torque about the pivot point.

F exerts a torque Angle ¢ is measured
about the pivot point.  ccw from the radial line.

*

Point
where
force 1s
applied

2
%‘)‘/\Rigid body

Pivot
point

Let’s define a new quantity called torque 7 (Greek tau) as

T = rFsing
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EXAMPLE 12.9 Applying a torque

QUESTION:

EXAMPLE 12.9 Applying a torque
Luis uses a 20-cm-long wrench to turn a nut. The wrench handle is
tilted 30 above the horizontal, and Luis pulls straight down on the

end with a force of 100 N. How much torque does Luis exert on
the nut?
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EXAMPLE 12.9 Applying a torque

VISUALIZE FIGURE 12.22 shows the situation. The angle is a nega-
tive ¢ = —120° because it is clockwise from the radial line.

FIGURE 12.22 A wrench being used to turn a nut.

20 cm

¢ = —120°
100N

Luis’s pull
"™~ Line of action

|
|
|
|
|
V]
Lil

I

Moment arm d
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EXAMPLE 12.9 Applying a torque

SOLVE The tangential component of the force is
F, = Fsingp = —86.6 N

According to our sign convention, F, is negative because it points
in a cw direction. The torque, from Equation 12.21, is

T=1rF,=(020m)(—86.6 N) = —17 Nm

Alternatively, Figure 12.22 shows that the moment arm from
the pivot to the line of action is

d = rsin(60°) = 0.17 m
Inserting the moment arm in Equation 12.22 gives
‘T‘ =dF = (0.17m)(100N) = 17 Nm

The torque acts to give a cw rotation, so we insert a minus sign to
end up with

T=—17Nm
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EXAMPLE 12.9 Applying a torque

ASSESS Luis could increase the torque by changing the angle so
that his pull is perpendicular to the wrench (¢ = —90°).
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Analogies between Linear and Rotational

.
Dynamics

TABLE 12.3 Rotational and linear dynamics

Rotational dynamics Linear dynamics

torque T et force ﬁncl

moment of inertia I mass m

angular acceleration o acceleration a

second law o = Tooll second law a = ﬁml/m

In the absence of a net torque (7., = 0), the object
either does not rotate («w = 0) or rotates with constant
angular velocity (o = constant).
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Problem-Solving Strategy: Rotational
Dynamics Problems

PROBLEM-SOLVING = =
crratecy 121 Rotational dynamics problems @

vopeL Model the object as a simple shape.
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Problem-Solving Strategy: Rotational
Dynamics Problems

Draw a pictorial representation to clarify the situation, define coordi-
nates and symbols, and list known information.

B [dentify the axis about which the object rotates.

B [dentify forces and determine their distances from the axis. For most prob-
lems it will be useful to draw a free-body diagram.

B [dentify any torques caused by the forces and the signs of the torques.
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Problem-Solving Strategy: Rotational
Dynamics Problems

The mathematical representation i1s based on Newton’s second law for
rotational motion:

Toet — lC¢ or a =

B Find the moment of inertia in Table 12.2 or, if needed, calculate 1t as an inte-
gral or by using the parallel-axis theorem.
m Use rotational kinematics to find angles and angular velocities.
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Problem-Solving Strategy: Rotational
Dynamics Problems

nssess Check that your result has the correct units, is reasonable, and answers
the question.
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EXAMPLE 12.12 Starting an airplane engine

QUESTION:

EXAMPLE 12.12 Starting an airplane engine

The engine in a small airplane 1s specified to have a torque of
60 Nm. This engine drives a 2.0-m-long, 40 kg propeller. On start-
up, how long does it take the propeller to reach 200 rpm?
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EXAMPLE 12.12 Starting an airplane engine

MODEL The propeller can be modeled as a rod that rotates about
its center. The engine exerts a torque on the propeller.
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EXAMPLE 12.12 Starting an airplane engine

VISUALIZE FIGURE 12.31 shows the propeller and the rotation axis.

FIGURE 12.31 A rotating airplane
propeller.

The torque from
engine rotates
propeller. *

AXis
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EXAMPLE 12.12 Starting an airplane engine

SOLVE The moment of inertia of a rod rotating about its center is
found from Table 12.2:

| |
[ = EML2 = 5(40 kg)(2.0 m)” = 13.33 kgm”

The 60 Nm torque of the engine causes an angular acceleration

T 60 Nm -
— = S = 4.50 rad/s
I 1333 kgm

The time needed to reach ;= 200 rpm = 3.33 rev/s =
20.9rad/s is

Aw o — ®; 209rad/s — Orad/s

_ = 4.6s
o o 4.5 rad/s’
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EXAMPLE 12.12 Starting an airplane engine

ASSESS We’ve assumed a constant angular acceleration, which 1s
reasonable for the first few seconds while the propeller is still
turning slowly. Eventually, air resistance and friction will cause
opposing torques and the angular acceleration will decrease. At
full speed, the negative torque due to air resistance and friction
cancels the torque of the engine. Then 7, = 0 and the propeller
turns at constant angular velocity with no angular acceleration.
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Static Equilibrium

e The condition for a rigid body to be 1n static
equilibrium 1s that there 1s no net force and no net
torque.

* An important branch of engineering called statics
analyzes buildings, dams, bridges, and other structures
in total static equilibrium.

e No matter which pivot point you choose, an object that
1s not rotating 1s not rotating about that point.

e For a rigid body in total equilibrium, there is no net
torque about any point.

e This 1s the basis of a problem-solving strategy.
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Problem-Solving Strategy: Static Equilibrium
Problems

PROBLEN-SOLUNG geagic @ auilibrium problems )

woper Model the object as a simple shape.
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Problem-Solving Strategy: Static Equilibrium
Problems

Draw a pictorial representation showing all forces and distances. List
known information.

® Pick any point you wish as a pivot point. The net torque about this point
1S Z€ro.

B Determine the moment arms of all forces about this pivot point.

B Determine the sign of each torque about this pivot point.
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Problem-Solving Strategy: Static Equilibrium
Problems

The mathematical representation i1s based on the fact that an object in
total equilibrium has no net force and no net torque:

—

Foet = 0 and Toet — 0

® Write equations for 2 F, = 0, 2F, = 0,and 27 = 0.
B Solve the three simultaneous equations.
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Problem-Solving Strategy: Static Equilibrium
Problems

nssess Check that your result 1s reasonable and answers the question.
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EXAMPLE 12.17 Will the ladder slip?

QUESTION:

EXAMPLE 12.17 WIill the ladder slip?

A 3.0-m-long ladder leans against a frictionless wall at an angle of
60°. What is the minimum value of u,, the coefficient of static
friction with the ground, that prevents the ladder from slipping?
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EXAMPLE 12.17 Will the ladder slip?

MODEL The ladder is a rigid rod of length L. To not slip, it must be
in both translational equilibrium ( F,,, = 0) and rotational equilib-
rium (7, = 0).

el
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EXAMPLE 12.17 Will the ladder slip?

VISUALIZE FIGURE 12.39 shows the ladder and the forces acting on it.

FIGURE 12.39 A ladder in total equilibrium.

L=30m

Center
of mass

YT . = 0 about

-’ net

> o this point.

= __ e

Weight acts at ¥ A e Static friction
the center of mass. prevents slipping.
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EXAMPLE 12.17 Will the ladder slip?

—

SOLVE The x- and y-components of ﬁml = 0 are
SE=n—f=0

EF_T: n— Mg =20

The net torque 1s zero about any point, so which should we
choose? The bottom corner of the ladder is a good choice because
two forces pass through this point and have no torque about it. The
torque about the bottom corner is

]
Thet — leG - dZHZ - E(LC056OD)M£’ - (LSjHGOD)Hg =0
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EXAMPLE 12.17 Will the ladder slip?

The signs are based on the observation that ﬁG would cause the
ladder to rotate ccw while 77, would cause it to rotate cw. All
together, we have three equations in the three unknowns n,, n,,
and f.. If we solve the third for n,,

3(Lcos60°)Mg Mg
Lsin60°  2tan60°

1, =

we can then substitute this into the first to find

Mg
© 2tan60°

Js
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EXAMPLE 12.17 Will the ladder slip?

Our model of friction is [, = [, ..« = MJ1;. We can find n, from
the second equation: n; = Mg. Using this, the model of static fric-

tion tells us that

Js = nsMg

Comparing these two expressions for f,, we see that p, must obey

= 0.29

=
Hs =5 tan60°

Thus the minimum value of the coetficient of static friction is 0.29.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



EXAMPLE 12.17 Will the ladder slip?

ASSESS You know from experience that you can lean a ladder or
other object against a wall if the ground is “rough,” but it slips 1t
the surface is too smooth. 0.29 is a “medium” value for the coetti-
cient of static friction, which is reasonable.
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Balance and Stability

FIGURE 12.40 Stability depends on the position of the center of mass.

(a) The torque due to gravity (b) The vehicle is at the critical (¢) Now the center of mass is
will bring the car back down angle 6_when its center of outside the base of support.
as long as the center of mass gravity is exactly over the pivot. Torque due to gravity will
is above the base of support. cause the car to roll over.

Base of
support
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Rolling Without Slipping

For an object that 1s rolling without slipping, there 1s a
rolling constraint that links translation and rotation:

1|"?'CI'['I - Rw

FIGURE 12.44 The motion of a particle in
the rolling object.

(b)
y Translational velocity
of point P,
<} b X
A
Sy = —Rw Point P
Rotational velocity The sum of the two
of point P velocities is zero. Point P

is instantaneously at rest.
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Rolling Without Slipping

We know from the rolling constraint that Rw 1s the
center-of-mass velocity v, . Thus the kinetic energy of a
rolling object 1s

1 > ] >
=—] w +—=Mv.. =K. ., + K.

rolling 2 cm 2 cm rot cm

K

In other words, the rolling motion of a rigid body can be
described as a translation of the center of mass (with
kinetic energy K_.) plus a rotation about the center of
mass (with kinetic energy K.
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The Angular Velocity Vector

I. Using your right hand, 2. Your thumb 1s
curl your fingers in the then pointing in
direction of rotation the direction of @.
with your thumb along i
the rotation axis.

' w

Rotation axis

e The magnitude of the angular velocity vector 1s w.

e The angular velocity vector points along the axis of
rotation 1n the direction given by the right-hand rule as
illustrated above.
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Angular Momentum of a Particle

FIGURE 12.56 The angular momentum vector L.

The momentum at this
instant makes angle 8 with 7.

o y
7 Trajectory ;

wﬁ = mv
/ N ﬁ

Particle of mass m .

The particle 1s moving along a trajectory.

A particle 1s moving along a trajectory as shown. At this
instant of time, the particle’s momentum vector, tangent
to the trajectory, makes an angle f with the position
vector.
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Angular Momentum of a Particle

FIGURE 12.56 The angular momentum vector L.

5]

. The angular momentum
vector is perpendicular
to the plane of motion.

=1

Plane of motion

The vector tails are placed together
to determine the cross product.

We define the particle’s angular momentum vector
relative to the origin to be

L

7 X p = (mrvsin B, direction of right-hand rule)
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Analogies between Linear and Angular
Momentum and Energy

TABLE 12.4 Angular and linear momentum and energy

Angular momentum Linear momentum

Ki = 3l0° Kew = 5Mvey)

L=1s* P =My,

dLidt = 7, dPldt = F,

The angular momentum of a system is The linear momentum of a system is
conserved if there is no net torque. conserved if there is no net force.

*Rotation about an axis of symmetry.
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Law of conservation of angular momentum The angular momentum L of an
isolated system (7., = 0) 1s conserved. The final angular momentum Lf is equal
to the initial angular momentum Ll.
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Chapter 12. Summary Slides
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General Principles

Rotational Dynamics

Every point on a rigid body rotating about a fixed axis has the same
angular velocity w and angular acceleration «.

Newton’s second law for rotational motion is

Tnet
/

Use rotational kinematics to find angles and angular velocities.

&:
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General Principles

Conservation Laws

Energy is conserved for an isolated system.

* Purerotation £ = K, + U, = %Iwz + Mgy,

* Rolling E = K, + K.y + U, = 3lw® + 5Mve, + Mgy,
Angular momentum is conserved if 7, = 0.

e Particle L = 7 X p

* Rigid body rotating about axis of symmetry L=1o
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Important Concepts

Torque is the rotational /
equivalent of force:

T = rFsing = rF, = dF

The vector description
of torque 1s /

T=7rFXF

— Line of
[ action

d/
J

Moment arm
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Important Concepts

Vector description of rotation

Angular velocity @ points along the rotation
axis in the direction of the right-hand rule.

For arigid body rotating about an axis of
symmetry, the angular momentum is L = [w.

dL
Newton’s second law 1s — = 7.
dt
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Important Concepts

A system of particles on which there is no net force undergoes
unconstrained rotation about the center of mass:

1 |
Aem = E J:l’ dm Yem = E J} dm

The gravitational torque on a body can be found by treating the body as
a particle with all the mass M concentrated at the center of mass.
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Important Concepts

The moment of inertia

I = Zmi-rf = Jrz dm

is the rotational equivalent of mass. The moment of inertia
depends on how the mass is distributed around the axis. If 7
i1s known, the [ about a parallel axis distance d away 1s given
by the parallel-axis theorem: / = [+ Md~.

cim
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Applications

Rotational kinematics

w; = w; + aAt

0 = 0, + w;,At + %ﬂ’(ﬁf)z
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Applications

Rigid-body equilibrium No rotational
or translational
An object is in total motion

equilibrium only
it both F,, = 0 and
E]:l'][.ll — O
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Applications

Rolling motion

For an object that rolls
without slipping

Vem — Rw
K = Ky T Ken
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Chapter 12. Questions
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The fan blade is speeding up. What are
the signs of ® and o?

A. w 1s positive and «a 1s positive.

B. o 1s positive and o 1s negative.
C. o 1s negative and a 1s positive.
D. w 1s negative and o 1s negative.
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The fan blade is speeding up. What are
the signs of ® and o?

A. w 1s positive and «a 1s positive.

B. w 1s positive and a 1s negative.

C. w 1s negative and a 1s positive.
V D. w is negative and « is negative.
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®

Four Ts are made from two identical rods of
equal mass and length. Rank in order, from

largest to smallest, the moments of inertia 7
to 1, for rotation about the dotted line.

(a) (b) © @
A L>1,>1>1
B. I.=1;>1 =1
C.L=1>I =1,
D.I.>1,>1;>1,
E. I.>1,>1;>1,
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Four Ts are made from two identical rods of
equal mass and length. Rank in order, from

largest to smallest, the moments of inertia 7
to 1, for rotation about the dotted line.

(a) (b) © (d)

VA IL>I,>1,>1,
B.I.=1,>1 =1,
C.lL.=l>1.=1,
D.I.>1,>1;>1,
E. I.>1,>1;>1,
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Rank in order, from largest to smallest, the
five torques 1, — 7. The rods all have the
same length and are pivoted at the dot.

(a) (b) (c) (d) (e)

T, T, T Ty T, T,
%=Q>QZ%ZQ

Q>Q>g=%>g

%=Q>%=%>Q

Mo awp»

%>r;>%>15>g
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Rank in order, from largest to smallest, the
five torques 1, — 7. The rods all have the
same length and are pivoted at the dot.

(a) (b) (c) (d) (e)

‘/A. T.>T,=T,>7,>T,
B° Td:Te>ra:Tb:Tc
C. Td>Te>Ta:Tb>Tc

D. =>4 =1,> T,

E

. Te>Ta>Td>Tb>Tc
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Rank in order, from =
largest to smallest, the

angular accelerations
(b)

o, to o
(c)
A. ab:ae>aa:ac>ad
B. o, > o, >0, > 0y > 0
— = (d) 1
C. Uy = Oy = O = Qg = O <8 it
D. aa:ab:ac>ad:ae %N
E. aa:ab:ac>ad>ae (e)
2 kg
o 4m
T‘j‘f/o
2N
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Rank in order, from =
largest to smallest, the
angular accelerations
o, to o

(b)

(c)
A. ab:ae>aa:ac>ad

B. ab>aa>ac>ad>ae

— — (d) 1
VC' ab>aa>ac Og = €, Z'Eié it
D. aa:ab:ac>ad:ae %N
E. aa:ab:ac>ad>ae (e)
2 kg
o 4m
T‘j‘f/o
2N

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

(- 2 Z.
wQ\ -
=} =]

|

o, W

(ad

'S Z

| ©



®

A student holds a meter stick straight out with one
or more masses dangling from it. Rank in order,
from most difficult to least difficult, how hard it
will be for the student to keep the meter stick from
rotating.

50 cm 50 cm
— ——F
— i —
___-@?.h|||||lll||| Wm ___-‘& IIIIIIIIIII @Y_Y_Y_Y_ IIIII T
500 ¢ — — 500 500 g

(a) (b) (©) (d)
A.c>b>d>a
B.b=c=d>a
C.c>d>b>a
D.c>d>a=b
E.b>d>c>a
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A student holds a meter stick straight out with one
or more masses dangling from it. Rank in order,
from most difficult to least difficult, how hard it
will be for the student to keep the meter stick from

rotating.
50 cm S0 cm
B “memmnass g “asmmsans N ammmss = '
500 g 1000 ¢ 1000 ¢ 500g 500¢g

(a) (b) (c)
A.c>b>d>a
B.b=c=d>a
C.c>d>b>a

¢/ Dc>d>a=b
E.b>d>c>a
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Two buckets spin around in

a horizontal circle on . | ,
frictionless bearings. \ / ‘ \ /

Suddenly, it starts to rain.
As a result,

A. The buckets speed up because the potential energy of the
rain is transformed into kinetic energy.

B. The buckets continue to rotate at constant angular velocity
because the rain is falling vertically while the buckets move
in a horizontal plane.

C. The buckets slow down because the angular momentum of
the bucket + rain system is conserved.

D. The buckets continue to rotate at constant angular velocity
because the total mechanical energy of the bucket + rain
system is conserved.

E. None of the above.
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Two buckets spin around in
a horizontal circle on

frictionless bearings. | / ‘ | /
Suddenly, it starts to rain.

As a result,

A. The buckets speed up because the potential energy of the
rain is transformed into kinetic energy.

B. The buckets continue to rotate at constant angular velocity
because the rain is falling vertically while the buckets move
in a horizontal plane.

“C. The buckets slow down because the angular momentum
of the bucket + rain system is conserved.

D. The buckets continue to rotate at constant angular velocity
because the total mechanical energy of the bucket + rain
system is conserved.

E. None of the above.
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