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Abstract. It is consistent that there exists a Souslin tree T such that after forcing with

it, T becomes an almost Souslin Kurepa tree. This answers a question of Zakrzewski [6].

1. Introduction

In this paper we continue our study of ω1-trees started in [3] and prove another consistency

result concerning them. Let T be a normal ω1-tree. Let’s recall that:

• T is a Kurepa tree if it has at least ω2-many branches.

• T is a Souslin tree if it has no uncountable antichains (and hence no branches).

• T is an almost Souslin tree if for any antichain X ⊆ T, the set SX = {ht(x) : x ∈ X}

is not stationary (see [1], [6]).

We refer to [3] and [4] for historical information and more details on trees.

In [6], Zakrzewski asked some questions concerning the existence of almost Souslin Kurepa

trees. In [3] we answered two of these questions but one of them remained open:

Question 1.1. Does there exist a Souslin tree T such that for each G which is T -generic

over V, T is an almost Souslin Kurepa tree in V [G]?

In this paper we give an affirmative answer to this question.

Theorem 1.2. It is consistent that there exists a Souslin tree T such that for each G which

is T -generic over V, T is an almost Souslin Kurepa tree in V [G].

The rest of this paper is devoted to the proof of this theorem. Our proof is motivated by

[2] and [3].
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2. Proof of Theorem 1.2

Let V be a model of ZFC + GCH. Working in V we define a forcing notion which adds

a Souslin tree which is almost Kurepa, in the sense that T becomes a Kurepa tree in its

generic extension. The forcing notion is essentially the forcing notion introduced in [2] and

we will recall it here for our later usage. Conditions p in S are of the form 〈t, 〈πα : α ∈ I〉〉,

where we write t = tp, I = Ip and 〈πα : α ∈ I〉 = ~πp such that:

(1) t is a normal ω-splitting tree of countable height η, where η is either a limit of limit

ordinals or the successor of a limit ordinal. We denote η by ηp.

(2) I is a countable subset of ω2.

(3) Every πα is an automorphism of t � Lim, where Lim is the set of countable limit

ordinals and t � Lim is obtained from t by restricting its levels to Lim.

The ordering is the natural one: 〈s, ~σ〉 ≤ 〈t, ~π〉 iff s end extends t, dom(~σ) ⊇ dom(~π) and for

all α ∈ dom(~π), σα � t = πα.

Remark 2.1. In [2], the conditions in S must satisfy an additional requirement that we do

not impose here. This is needed in [2] to ensure the generic T is rigid. Its exclusion does

not affect our proof, and in fact simplifies several details.

Let

P = {p ∈ S : for some αp, ηp = αp + 1}.

It is easily seen that P is dense in S. Let G be P-generic over V . Let

T =
⋃
{tp : p ∈ G}

and for each α < ω2 set

πi =
⋃
{σi : ∃u = 〈t, ~σ〉 ∈ G, i ∈ Iu}.

Then (see [2], Lemmas 2.3, 2.7, 2.9 and 2.14):

Lemma 2.2. (a) P is ω1-closed and satisfies the ω2-c.c.,

(b) T = 〈ω1, <T 〉 is a Souslin tree.

(c) Each πi is an automorphism of T � Lim.

(d) If b is a branch of T, which is T -generic over V [G], and if bi = πi“b, i < ω2, then the

bi’s are distinct branches of T . In particular T is almost Kurepa.
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Let S = {αp : p ∈ G, αp =
⋃
{αq : q ∈ G, αq < αp} and Ip =

⋃
{Iq : q ∈ G, αq < αp}}.

Then as in [3], Lemma 2.4, we can prove the following:

Lemma 2.3. S is a stationary subset of ω1.

Working in V [G] let Q be the usual forcing notion for adding a club subset of S using

countable conditions and let H be Q-generic over V [G]. Then (see [5] Theorem 23.8):

Lemma 2.4. (a) Q is ω1-distributive and satisfies the ω2-c.c.,

(b) C =
⋃

H ⊆ S is a club subset of ω1.

Let

R = {〈p, č〉 : p ∈ P, p‖−č ∈ Q∼ and max(c) ≤ αp}.

Since P is ω1-closed, Q ⊆ V and hence we can easily show that R is dense in P ∗Q∼.

Lemma 2.5. T remains a Souslin tree in V [G][H].

Proof. We work with R instead of P ∗ Q∼. Let A∼ be an R-name, r0 ∈ R and r0‖−“A∼ is a

maximal antichain in T∼”. Let f∼ be a name for a function that maps each countable ordinal

α to the smallest ordinal in A∼[G ∗ H] compatible with α. Then as in [2] we can define a

decreasing sequence 〈rn : n < ω〉 of conditions in R such that

• r0 is as defined above,

• rn = 〈pn, čn〉 = 〈〈tn, ~πn〉, čn〉,

• αpn < αpn+1 ,

• rn+1 decides f∼ � tn, say it forces “f∼ � tn = f̌n”,

• rn+1‖−C∼ ∩ (αpn , αpn+1) 6= ∅,

Let p = 〈t, ~π〉 where t =
⋃

n<ω tn,dom(~π) =
⋃

n<ω dom(~πn) and for i ∈ dom(~π), πi =⋃
n<ω πn

i . Let c =
⋃

n<ω cn ∪ {αp}, where αp = supn<ω αpn
. Then p ∈ S, but it is not clear

that p‖−“č ∈ Q∼”.

Let f =
⋃

n<ω fn and set a = ran(f � t). As in [2], Lemma 2.9, we can define a condition

s = 〈q, č〉 such that

• s ∈ R,

• ηq = αp + 1, (and hence αq = αp),
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• s‖−“A∼ ∩ ť is a maximal antichain in ť”,

• Every new node (i.e. every node at the αp-th level) of the tree part of s is above a

condition in a.

It is now clear that s‖−A∼ = ǎ, and hence s‖−“A∼ is countable”. The lemma follows. �

From now on we work in V ∗ = V [G][H]. Thus in V ∗ we have a Souslin tree T. We claim

that T is as required. To see this force with T over V ∗ and let b be a branch of T which is

T -generic over V ∗.

Lemma 2.6. In V ∗[b], T is an almost Souslin Kurepa tree.

Proof. Work in V ∗[b]. By Lemma 2.2(d) T is a Kurepa tree. We now show that T is almost

Souslin. We may suppose that T is obtained using the branches b and bi, i < ω2, in the sense

that for each α < ω1, Tα, the α-th level of T, is equal to {b(α)}∪{bi(α) : i < ω2} where b(α)

(bi(α)) is the unique node in b ∩ Tα (bi ∩ Tα). We further suppose that b = b0.

Now let α ∈ C, and let p ∈ G be such that α = αp. We define a function gα on Tα as

follows. Note that Tα = {bi(α) : i ∈ Ip}. Let

gα(bi(α)) = bi(αq)

where q ∈ G is such that αq < α is the least such that i ∈ Iq (such a q exists using the fact

that C ⊆ S). It is easily seen that gα is well-defined (it does not depend on the choice of

p), and that for each x ∈ Tα, gα(x) <T x. The rest of the proof of the fact that T is almost

Souslin is essentially the same as in [3], Lemma 2.6. �

This concludes the proof of Theorem 1.2.
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