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ABSTRACT
We present a scheme for optimal VLSI layout and packag-
ing of butter
y networks under the Thompson model, the
multilayer grid model, and the hierarchical layout model.
We show that when L layers of wires are available, an N -

node butter
y network can be laid out with area 4N2

L2 log2
2
N
+

o
�

N2

L2 log2 N

�
, maximum wire length 2N

L log2 N
+ o
�

N
L logN

�
,

and volume 4N2

L log2
2
N
+o
�

N2

L log2 N

�
, under the multilayer 2-D

grid model, where only one active layer (for network nodes)
is required and L layers of wires are available. Our lay-
out scheme allows us to partition an N -node butter
y net-

work into �(N1=l log1�1=lN)-node clusters with an average

of dic � 4l�4
log2 N

(= O( 1
logN

) for any constant integer l) inter-

cluster links per node, leading to optimal layout and pack-
aging at the same time under the hierarchical layout model.
The scalability of our layouts are optimal in that we can
allow each of O(N= logN) nodes to occupy an area as large

as o
�

N
L2 logN

�
and each of the remaining N �o(N) network

nodes to occupy an area as large as o
�

N

L2 log2 N

�
, without

increasing the leading constants of layout area, volume, or
maximum wire length.

1. INTRODUCTION
Under present assumptions on the computing environments,
processors are expensive and memory is relatively cheap.
Therefore, an important problem is to utilize processors ef-
�ciently. For general-purpose applications, the utilization of
processors in parallel computers is not as e�cient as that in
single-processor computers, so that the latter achieve better
performance per dollar. In future computing environments,
however, the roles are expected to be reversed, so that the
majority of chip area is used for memory. Therefore, the
optimization problem may then become the e�ciency in uti-
lizing the relatively expensive memory. Recent research on
processors in memory (PIM), computing in RAM, and smart
memory paradigms [9, 14, 18] shows that multiple processors
per chip, integrated with memory banks, can increase the
memory-processor bandwidth considerably, leading to im-
proved memory utilization. Also, with the rapid advances in

VLSI technologies, the number of transistors and the num-
ber of processors that can be put onto a chip are expected
to continue their exponential growths. Moreover, as pointed
out by Dally and Lacy [9], so far there is no e�cient al-
ternative to explicit parallelism for exploiting the increased
number of transistors and grid points. Therefore, single-chip
multiprocessors are expected to achieve better performance
per dollar even for general-purpose applications and may
achieve mainstream status in the future.

Another related development is the renewed interest in VLSI
layouts of switching and sorting networks used in network
switches and routers [16]. Many network switches/routers
are based on butter
y, Benes, or related interconnection
topologies. E�cient VLSI layout is very important to VLSI
chips, and potentially signi�cant for other technologies such
as multichip modules (MCM) and wafer-scale integration
(WSI), implementing the aforementioned multiprocessors
and network switches. For larger parallel architectures and
switches that are implemented using more than one packag-
ing level (such as chip, board, and cabinet levels), e�cient
network partition and packaging are also very important.
The impact of e�cient VLSI layout and packaging on the
cost-performance of the resulting parallel architecture is am-
pli�ed by the lower cost obtained through the reduction in
the number of chips, boards, and assemblies, and higher
performance achieved by lowering various performance hin-
drances, such as signal propagation delay, drive power, and
fraction of data transfers to o�-chip destinations. This ex-
plains the reintensi�ed research on �nding e�cient VLSI
layouts and packaging, especially for butter
y networks [1,
10, 11, 16, 21, 26, 27]. E�cient layouts and packaging con-
siderations for other interconnection networks can be found
in [7, 8, 12, 13, 24].

Butter
y networks are among the most important topologies
for building commercial and experimental parallel comput-
ers, special-purpose processors, and network switches. Re-
cently, Avior et al [1] proposed a VLSI layout for butter
y
networks under the grid model, showing that an N -node

butter
y network can be laid out in N2

log2
2
N
+ o
�

N2

log2 N

�
area

using two layers of wires. They also showed that the lay-
out area is optimal within a factor of 1 + o(1) when area is
de�ned by an upright encompassing rectangle. In [26, 27],
we proposed optimal VLSI layouts for butter
y networks (in
asymptotically the same area as in [1]) based on optimal 2-D
layouts of complete graphs. In our layout, the network nodes
(and clusters of nodes) are aligned as a 2-D grid so that they
utilize area e�ciently, especially when network nodes (con-
taining processors and memory banks) are large. Our layout
is scalable in terms of node size since each node can be as

large as a square with side W = o
� p

N
logN

�
without a�ecting

the leading constant of the layout area. In [16], Muthukrish-
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nan et al proposed a butter
y layout under the knock-knee

model [5] that uses area 2N2

3 log2
2
N

+ o
�

N2

log2 N

�
area. Note

that knock-knee layouts usually require more than two lay-
ers of wires for actual wiring within the same area. In [10],
Dinitz et al showed that butter
y networks can be laid out

in N2

2 log2
2
N

+ o
�

N2

log2 N

�
area when area is characterized by

a slanted encompassing rectangle (or equivalently, all wires
run at 45�), which is optimal within a factor of 1+ o(1) un-
der this model. In this paper, we propose optimal butter
y
layouts under the Thompson model, multilayer grid models,
and hierarchical layout model based on optimal collinear lay-
out of complete graphs. Like our previous layouts in [26, 27],
our new butter
y layouts align the network nodes and clus-
ters of nodes as a 2-D grid, leading to optimal scalability in
terms of node sizes, but improve the maximum wire length
of the layouts given in [26, 27] by a factor of 2 when using 2
layers of wires and by a factor of L when using L layers of
wires.

We show that, under the multilayer 2-D grid model, a but-
ter
y network can be laid out using L layers of wires, 2 �
L = o(

3
p
N), with area 4N2

L2 log2
2
N
+ o
�

N2

L2 log2 N

�
, maximum

wire length 2N
L log2 N

+ o
�

N
L logN

�
, and volume 4N2

L log2
2
N

+

o
�

N2

L log2 N

�
, where only one active layer is required (for net-

work nodes). In practice, a network node may be much
wider than a wire, especially when the node contains one or
several processors, memory banks, and a router. Our pro-
posed layouts are scalable in terms of node size, in that the
leading constants of the layout area, maximum wire length,
and volume are not a�ected even if each of O(N= logN)

nodes occupies a square of side W 0 = o
� p

N

L
p
logN

�
and each

of the remaining N �o(N) network nodes occupies a square

of side W = o
� p

N
L logN

�
. Clearly, the scalability of the mul-

tilayer layout is asymptotically optimal in terms of node
sizes. The multilayer butter
y layouts derived here are, to
the best of our knowledge, the best results reported in

the literature thus far for L = 3; 4; : : : ; o(
3
p
N). Note

that although we present the layout area, volume, and wire
length using asymptotic notation, our layouts are more ef-
�cient than those previously proposed, even for networks of
modest size.

We propose hierarchical layouts of butter
y networks that
achieve asymptotically optimal area and packaging at the
same time. In particular, our scheme allows us to partition

an R�R butter
y network into �(R1=l log2 R)-node clusters

with an average of dic =
4l�4

log2 R+1
(= O( 1

logR
) = O( 1

logN
) for

any l = O(1)) inter-cluster links per node, leading to e�-
cient packaging. In the process of presenting optimal pack-
aging and layouts for the butter
y networks, we introduce
indirect swap networks, a class of multistage networks with

exible connectivity and e�cient packaging properties, and
show how to transform them into corresponding butter
y
networks. By appropriately selecting parameters for the in-
direct swap network to be transformed, the resultant hier-
archical layout for the butter
y network can be adapted to
various packaging constraints.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present an e�cient partitioning and packaging
scheme for butter
y networks. In Section 3, we present
optimal layouts for butter
y networks under the Thomp-
son model. In Section 4, we introduce the multilayer grid
models and present e�cient multilayer layouts of butter
y
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Figure 1: Transforming a 4�4 indirect swap network
into a 4� 4 butter
y network. The address for each
of the network nodes is marked beside or above that
node.

networks. In Section 5, we introduce the hierarchical layout
model and present e�cient hierarchical layouts of butter
y
networks. In Section 6 we present our conclusions, while in
the appendix, we give the de�nitions of swap networks and
indirect swap networks.

2. PACKAGING OF BUTTERFLIES
In this section, we propose an e�cient partitioning and pack-
aging scheme for butter
y networks.

2.1 Indirect Swap Networks
An Indirect swap network (ISN) is obtained by unfolding
a swap network [23, 24, 28], in the same way that many
multistage networks are obtained from their direct network
counterparts. An ISN is characterized by the parameters
k1; k2; : : : ; kl. The majority of network nodes in an ISN
with k1 � 3 have two straight links and two cross links,
and the remaining nodes have one straight link, one cross
link, and one swap link, except for those in the �rst or last
stage. A useful property of ISNs is that they can be easily
and naturally partitioned into clusters so that only a small
number of links (i.e., some/all of the swap links) will become
inter-cluster links while most of the links (i.e., all straight
and cross links) are con�ned within clusters (see Figs. 1 and
2). We can also derive optimal layout for ISNs based on the
collinear layout of complete graphs. Di�erent parameters
lead to ISNs with di�erent partitioning and layout charac-
teristics. Figure 1 shows a 4 � 4 ISN with k1; k2 = 1. The
de�nitions of swap networks, ISNs, and their parameters are
given in Appendix A.

ISNs are closely related to butter
y networks. In the follow-
ing subsections, we show how to modify ISNs to obtain au-
tomorphisms of butter
y networks. A packaging and layout
scheme for butter
y networks can then be derived based on
this transformation, by �rst deriving e�cient packaging and
layout for the modi�ed ISNs. Note that we can present e�-
cient packaging and layout for butter
y networks for several
special cases (e.g., when two levels of hierarchy are present

and for certain choices of cluster sizes, say, �(
p
N logN)

nodes per cluster) in a simpler manner without resorting to
ISNs, but we need the structural features and parameters
of ISNs to make the partitioning and layout scheme general
and adaptable to various assumptions and technological re-
quirements.

2.2 Transforming ISNs into Butterfly Networks
An automorphism of a butter
y network can be obtained
by modifying the stages of an ISN that are connected by
swap links in a way to be described shortly. The resultant
modi�ed network is called a swap-butter
y.
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Figure 2: Mapping butter
y networks onto swap-
butter
ies. (a) A resultant 8� 8 butter
y network,
where the row numbers are marked in the circles.
(b) A resultant 16 � 16 butter
y network. The �rst
column of numbers represent the row numbers for
stages 0, 1, and 2, and the last column of numbers

represent the row numbers for stages 3 and 4.

We denote a pair of stages connected by swap links as stages
i�1 and i. We �rst double up all the swap links connecting

stages i � 1 and i of the ISN, remove the nodes in the ith

stage (through bypassing), and reconnect each of the repli-

cated links to one of the two links between the ith and the
(i+ 1)th stages through a removed node. The row numbers
of nodes in the swap-butter
y remain the same as in the
original ISN, while the stage numbers of nodes (except for
the �rst k1 +1 stages) are reduced, since some stages in the
original ISN are removed in the swap-butter
y. Figures 1
and 2 show the automorphisms of 4� 4, 8� 8, and 16� 16
swap-butter
ies. The row number of a node in these swap-
butter
ies is equal to the position of the row it belongs to;
the stage numbers are the same as those indicated in the
�gures for the corresponding butter
y networks.

A swap-butter
y with nl =
Pl

i=1 ki is an automorphism of
an nl-dimensional butter
y network. To see that, consider
the following mapping:

� (1) a node in the swap-butter
y is mapped to a node in
the butter
y network that has the same stage number;

� (2) a node in stage 0 of the swap-butter
y is mapped
to a node in stage 0 of the butter
y network that has
the same row number;

� (3) two nodes in the swap-butter
y connected by a
straight link or by a swap link followed by a straight
link are mapped to two neighboring nodes with the
same row number in the butter
y network.

Note that for a node with stage number larger than k1 (i.e.,
to the right of the stages connected by swap links), the row
number of the node in the swap-butter
y is di�erent from
the row number of the embedded node in a butter
y net-
work. For example, node (1; 2) of the swap-butter
y of Fig.
1 (i.e., the one at the intersection of row 1 and stage 2)

is mapped to node (2; 2) of an nl-dimensional butter
y net-
work, so the row number of node (1; 2) of the swap-butter
y
is 2 in a butter
y network.

The readers can verify that the transformed ISNs shown in
Figs. 1 and 2 (with renamed node labels) are indeed butter-

y networks by looking at their connectivity. An intuitive
reason for this is that ISNs can perform fast Fourier trans-
form (FFT) using a variant of an ascend algorithm. (In
an ascend algorithm, two nodes whose addresses di�er only
at bit i exchange packets at step i, i = 1; 2; 3; :::; log2 R,
and the 
ow graph of such an ascend algorithm is exactly
an R � R butter
y network.) More precisely, at step i,
i = 1; 2; 3; :::; log2R, if the data are held at a stage (column)
of an ISN that connects to the next stage with straight and
cross links, two nodes whose addresses di�er only at bit i can
exchange packets directly; if these two stages are connected
with swap links, the data packets have to be forwarded to the
next stage using swap links, and then they can be exchanged
using straight and cross links connecting to the following
stage. We can see that the 
ow graph of this algorithm is
exactly an ISN and the algorithm essentially performs the
function of an ascend algorithm, with some additional steps
for forwarding packets over swap links. Therefore, if we \by-
pass" the downstream stage reachable via swap links, while
reconnecting one of the duplicated swap link to a straight
link and the other one to a cross link, we obtain an auto-
morphism of the butter
y network.

2.3 Optimal Butterfly Packaging
We are now in a position to present an asymptotically op-
timal partitioning and packaging scheme for butter
y net-
works. We �rst consider the case where there are only two
packaging levels and there is a limit on the number of nodes
that can be placed onto a single module, such as a chip,
board, multi-chip module (MCM), or wafer. The partition-
ing and packaging methods to be described can be extended
to the case where there are more than two levels in the pack-
aging hierarchy. Our goal is to partition butter
y networks
and map network nodes onto the modules so that the num-
ber of modules and the number of o�-module pins required
per module are minimized. We also prefer to build the but-
ter
y networks with identical modules or a small number of
di�erent modules to eliminate the \number of parts" prob-
lem.

Let Bn denote an n-dimensional butter
y network. When

O(R1=l log2R) = O(2nl=lnl) nodes can be placed in a single
module, we begin with the R � R ISN(l; Bk1 ) derived from
HSN(l;Qk1) (see Sections A.1 and A.2), where ki = nl=l for
all i = 1; 2; :::; l andR = 2nl , assuming that the dimension nl
of the butter
y network is a multiple of l �rst for simplicity.
We then transform the ISN into an R�R butter
y network

and place each set of R1=l = 2nl=l = 2k1 consecutive rows of
the swap-butter
y (l; Bk1) (i.e., the one transformed from
ISN(l; Bk1)) onto the same module, leading to a total of

R
l�1

l = 2
l�1

l
nl = 2(l�1)k1 modules. By partitioning the

swap-butter
y (l; Bk1) in this way, we can place each nucleus
butter
y network Bk1 in the same module so that only swap
links will leave the modules, while straight links and cross
links are all con�ned to within modules. Since there are
4(l � 1) swap links per row in the swap-butter
y (l; Bk1),

a fraction 2k1�1

2k1
of which leave the module, and there are

nl+1 nodes per row, the average number of o�-module links
per node is

4(l� 1)(2k1 � 1)

(nl + 1)2k1
<

4(l � 1)

nl + 1
<

4

k1
:

An example for partitioning a 9-dimensional butter
y net-
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work is given in Section 5. As a basis for comparison, the
average number of o�-module links per node when placing
consecutive rows of a butter
y network onto the same mod-
ule is approximately equal to 2. Therefore, our packaging
scheme outperforms the latter simple scheme by a factor
of �(logN) and is better even for small k1 (e.g., k1 = 3).
As will be shown in Section 3, our method leads to optimal
packaging (within a constant factor) and optimal layout area
(within a factor of 1 + o(1)) at the same time.

If the number of nodes that can be placed within a module
is even smaller and is

O(R
1=l

log2R=l) = O(2
nl=lk1) = O(2

k1k1) = O(N
1=l

logN=l);

we can place a single nucleus butter
y network Bk1 onto a
module. Since a node in the �rst or last stage of the nucleus
butter
y network Bk1 has 2 swap links connecting to other
modules, and there are k1 nodes per row of the nucleus but-
ter
y network, the average number of o�-module links per
node is 4

k1
: Although it may seem that the reduction in mod-

ule size is not large and the average number of o�-module
links per node is slightly larger, this variant packaging may
perform better for networks of practical sizes. This is be-
cause for a given upper bound on the permissible module
size, we may choose a larger k1 and a smaller l using the
latter method so that the resultant average number of o�-
module links per node is smaller. Moreover, each node in
the �rst (or last)stage of the burly network can now have 2
links connecting to processors (or memory modules, respec-
tively) without increasing the average number of o�-module
links per node. If we include these links in comparing the
two methods, the di�erence in the average numbers of o�-
module links per node becomes very small (i.e., smaller than

1

2k1�1
of the average numbers of o�-module links per node),

even when using the same values for k1 and l in both cases.

The preceding partitioning scheme can be extended to the
case where log2R = nl is not a multiple of l. We �rst trans-
form an ISN with ki = k1 for i = 2; 3; 4; : : : ; l�1 and kl < k1
(i.e., an ISN derived from an incomplete HSN(l;Qk1) [23])

into a butter
y network. We then either place 2k1 consecu-
tive rows of the swap-butter
y or a basic building block (Bk1
or Bkl) onto the same module. The latter method leads to
the following theorem.

Theorem 2.1. We can partition an R�R butter
y net-

work into modules that have no more than 2k1k1 nodes and

no more than 2k1+2
o�-module links per module, which is

asymptotically optimal within a constant factor.

A matching lower bound on the number of o�-module links
required can be derived by computing the maximum injec-
tion rate for performing random routing in a butter
y net-
work with uniformly distributed sources and destinations.
The maximum injection rate is �(1= logR) since the aver-
age distance is O(logR) and the tra�c is balanced within a
constant factor between the most heavily used nodes/links
and the average, leading to a lower bound 
(M= logR) on
the number of o�-module links required for anM -node mod-
ule to be able to support such an injection rate. Note that
in such a partition, nodes in the �rst or last stage can have
additional links connecting to processors or memory banks;
l�1 out of l modules contain Bk1 and the remaining module
(for the last kl stages of the swap-butter
y) is Bkl . We can
see that the greater the number of nodes in a module (or
k1), the more e�cient the packaging in terms of the number
of o�-module links per module.

The proposed partitioning and packaging methods can be
extended to the case where there are more than two levels in
the packaging hierarchy by selecting appropriate ISNs that
can be modi�ed to give an automorphism of the butter
y
network. Since the module sizes at higher levels are usually
larger, the improvements over the simple partitioning and
packaging scheme are even more signi�cant.

3. OPTIMAL LAYOUT OF BUTTERFLIES
UNDER THE THOMPSON MODEL

In this section, we present layouts for butter
y networks
under the Thompson model that are optimal within a factor
of 1 + o(1).

3.1 The Thompson Model
In the Thompson model, a network is viewed as a graph
whose nodes correspond to processing elements and edges
correspond to wires. The graph is then embedded in a 2-
D grid, where wires have unit width and a node of degree
d occupies a square of side d. The wires can run either
horizontally or vertically along grid lines. Two wires can
cross each other at a grid point, but cannot overlap or bend
at the same grid point, which would form a knock-knee [5].

The area of a layout is de�ned as the area of the smallest
rectangle that contains all the nodes and wires. (In this
paper we only consider upright rectangle for this purpose.)
When there are two layers of wires, it is guaranteed that
we can lay out the network within the area. More precisely,
we can use one layer of wires to lay out all the horizontal
segments of wires and the other layer to layout all the verti-
cal segments. When a wire makes a turn, its horizontal and
vertical parts in di�erent layers are connected by an inter-
layer connector known as a via. In Section 4, we modify
the butter
y layout derived in this section to obtain more
compact layouts that use L layers of wires with L > 2.

Note that some authors have assumed that a node occupies
a square of side 1 in the layout model they use. Some of
such layouts cannot be extended to the Thompson model
without a nonnegligible increase in area, while layouts under
the Thompson model can usually be extended to the former
model using comparable area.

3.2 Butterfly Layout with Dimension n = 3k1
We �rst lay out n-dimensional butter
y networks assuming
that n is a multiple of 3 and then extend the layout method
to the general case. We transform an ISN(3; Bn=3) with

k3 = k2 = k1 = n=3 to obtain an automorphism of an n-

dimensional butter
y network. We place every
3
p
R = 2n=3

rows of the swap-butter
y into the same block, and arrange

them as a 2-D 2n=3�2n=3 grid in the row major order. That

is, the �rst 2n=3 blocks (which contains the �rst 22n=3 rows)

are arranged as the �rst row of the 2-D grid, the next 2n=3

blocks are arranged as the second row of the 2-D grid, and
so on. By verifying the connectivity of ISNs, we can see
that a row or column of the resultant graph, when view-
ing each block as a supernode, becomes a complete multi-
graph (i.e., a complete graph with multiple links). More
precisely, if we merge each row of an ISN(3; Bn=3) into a su-

pernode, it becomes the HSN(3;Qn=3) it was derived from,

where each inter-cluster link is duplicated (corresponding to
two swap links); if we continue to merge each nucleus hy-
percube Qn=3 of an HSN(3;Qn=3) (without multiple links)

into a supernode (corresponding to a block), it becomes a

2-dimensional radix-2n=3 generalized hypercube [4], where
each pair of (super)nodes belonging to the same row or col-
umn are connected by a link. Since each swap link of an
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Figure 3: Top-view of a layout based on the recur-
sive grid layout scheme. Level-l blocks are arranged
as a 2-D grid.

ISN is duplicated to transform it to a corresponding butter-

y network Bn, each pair of blocks belonging to the same
row or column in the preceding partition are connected by
4 links.

We use the recursive grid layout scheme we proposed in [27]
to lay out the swap-butter
y. In this scheme, we arrange the
blocks as a 2-D grid, where neighboring rows (or columns)
are separated by a su�cient number of horizontal (or ver-
tical, resp.) tracks (see Fig. 3). Then we lay out the swap
links connecting these blocks, then lay out each of the block
(which contains 3 n=3-dimensional butter
y networks) ei-
ther recursively or using any previous layout [1, 26, 27],
and �nally connect the links incident to each of the blocks
to nodes within that block. Since supernodes within each
row (or column) of blocks are completely connected, we can
use the collinear layout presented in Appendix B to lay out
these swap links. More precisely, we view each block as a su-
pernode in a complete graph and replicate each of the wires

of the collinear layout of a 2n=3-node complete graph four
times. The number of tracks required for a row or column

is 22n=3, for a total of 2n vertical tracks and 2n horizontal
tracks. Since three n=3-dimensional butter
y networks can

be laid out in O(22n=3) area [1, 10, 16, 26] and the additional
area required for accommodating the links connecting nodes
to links incident to the block to which they belong is also

O(22n=3), the area for the butter
y network is dominated
by links connecting these blocks. Therefore, the area of the
layout for an N -node butter
y network is

2
n=3

2
2n=3 � 2

n=3
2
2n=3

+ o(2
2n
) =

N2

log22N
+ o

�
N2

log2N

�
;

which is optimal within a factor of 1 + o(1) [1], and the
maximum wire length is

2
n=3 � 2

2n=3
+ o(2

n
) =

N

log2N
+ o

�
N

logN

�
;

which is a factor-of-2 improvement over that of our previous
layouts proposed in [26, 27].

3.3 Butterfly Layout with General Dimension
In what follows we generalize the layout to butter
y net-
works whose dimension n is not a multiple of 3. For such
an n, we transform an ISN with k2 = k1 = (n + 1)=3 and
k3 = (n�2)=3 when n modulo 3 is 2, or with k1 = (n+2)=3
and k3 = k2 = (n�1)=3 when n modulo 3 is 1, to obtain an

automorphism of an n-dimensional butter
y network. We
can then lay out the swap-butter
y using the preceding lay-

out method. The only di�erence is that we place every 2k1

rows of the swap-butter
y into the same block, and arrange

them as a 2-D 2k3�2k2 grid in the row major order. We then

use the collinear layout of a 2k2 -node complete graph, each

wire of which is replicated 22+k1�k2 times, to lay out links
connecting each row of blocks and use the collinear layout of

an 2k3 -node complete graph, each wire of which is replicated

22+k1�k3 times, to lay out links connecting each column of
blocks. It can be easily veri�ed that the area and maximum
wire length, remain asymptotically the same (with the same
leading constant and lower order terms of the same order)
as the case where n is a multiple of 3.

Note that the nucleus butter
y networks Bk1 , Bk2 , and Bk3

within blocks can be laid out using the preceding method
recursively. This corresponds to transforming ISNs derived
from recursive hierarchical swap networks [23] into butter
y
networks and laying out the swap-butter
ies. We can also
transform ISN(l; Bk1) with l > 3 into a butter
y network
and then lay it out either using the recursive grid layout
scheme [27] or using a bottom-up method as the method we
used to lay out hypercubes in [26]. For both methods, the
leading constants of the resultant area and maximum wire
length. remain the same By selecting an appropriate ISN for
transformation to a butter
y network, both the layout area
and the number of o�-module links can be minimized. Note
also that since the network nodes are arranged as a 2-D grid
in our layout, the area of the proposed layout is not sensi-
tive to the size of network nodes. When each network node

occupies a square of sideW for anyW = o
� p

N
logN

�
, the lead-

ing constants of the layout area and maximum wire length
are not a�ected so the layout is scalable in terms of node
size. We can also let each of O(R) = O(N= logN) nodes

occupy a square of side W 0 for any W 0 = o
�q

N
logN

�
and

each of the remaining N � o(N) nodes occupy a square of

side W = o
� p

N
logN

�
, without a�ecting the leading constants.

The latter is particularly useful for butter
y networks with
processors and memory banks at the �rst and/or last stages.
It is clear that larger node sizes (by a nonconstant factor)
will lead to nonnegligible increase in the layout area. Thus,
the scalability of our butter
y layout under the Thompson
model is optimal in terms of node sizes. Compared with the
method proposed in [1, 16], our approach leads to layouts
that are not only area-optimal (within a factor of 1 + o(1)),
but also require a factor of �(logN) fewer pins when there
are at least two levels in the packaging hierarchy, given that

no more than O(N1=2��) nodes can be placed in a module

for any constant � [e.g., for modules with nodes �(
3
p
N) or

�(
4
p
N)]. By selecting an appropriate ISN for transforma-

tion to a butter
y network, both the layout area and the
number of o�-module links can be asymptotically optimal
using our layout and partitioning method. An example for
optimization under both layout and packaging considera-
tions is given in Section 5.

Another important advantage of our butter
y layouts is that
they can be extended to obtain multilayer layouts whose
area, volume, and maximum wire length are all signi�cantly
reduced when more than two layers of wires are available,
as shown in the following section.

4. LAYOUT OF BUTTERFLIES UNDER
THE MULTILAYER GRID MODEL
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In this section, we introduce the multilayer grid model for
VLSI layout of networks. We then derive e�cient multilayer
layouts for butter
y networks.

4.1 The Multilayer Grid Model
In the multilayer grid model, a network is viewed as a graph
whose nodes correspond to processing elements and edges
correspond to wires. The nodes and edges of the graph are
then embedded in a 3-D grid, where edges have unit width,
can run along grid lines, but cannot cross or overlap with
each other (i.e., the paths for embedding these edges must be
edge- and node-disjoint). The area A of a layout is de�ned
as the area of the smallest upright rectangle along the x-y
directions that contains all the nodes and wires. The volume
of a layout is equal to the number L of layers times its area
A.

In the multilayer 2-D grid model, the nodes of the graph
are embedded in the 2-D grid of the �rst layer (i.e., z = 1).
The range of actual node sizes must be speci�ed explicitly
in this model, and is usually taken to be between the min-
imum size required to implement a node (e.g., a square of

side d, d=4, or d
4L

for a degree-d node in some technologies)
and the maximum allowable size without a�ecting the lead-
ing constants for area, volume, and maximum wire length.
A network with area A under the Thompson model can be
laid out with area no larger than A under the multilayer
2-D grid model with L = 2 layers, so the former can be
viewed as a special case of the latter. Note, however, that
we may derive layouts under the two-layer 2-D grid model
with area smaller than the Thompson model. In the multi-
layer 3-D grid model, the nodes of the graph are embedded
in LA layers of the 3-D grid. These LA layers are called
\active layers" and do not need to be consecutive layers.
The range of actual node sizes is also required to be spec-
i�ed explicitly, which is usually between the minimum size
required to implement a node (e.g., a cuboid with sides at
least d=h�d=h�h, 1 � h � LA � L, for a degree-d node in
some technologies) and the maximum allowable size without
a�ecting the leading constants for area, volume, and maxi-
mum wire length. The multilayer 2-D grid model is a special
case of the multilayer 3-D grid model with LA = 1 active
layer. Note that a d=h � d=h � h cuboid node requires h
active layers for its implementation, while a d�d�1 cuboid
node requires only 1 active layer. The cost of a layout under
the multilayer grid model is a function of A;L; and LA, as
well as other parameters.

We can extend the multilayer grid model to the multilayer

layout model by allowing nodes and edges to run in other
speci�ed directions. Layouts under this model may have
smaller area and volume compared with layouts under its
multilayer grid model counterpart. Moreover, wires in this
model may have di�erent width and cross area, depending
on the technology used. For example, wires along the z
direction may have larger cross area in PCB. In what follows,
we focus on the multilayer 2-D grid model. Layouts under
other models will be reported in the near future.

4.2 Multilayer Butterfly Layout
In this subsection we present e�cient multilayer layouts for
butter
y networks.

We �rst derive butter
y layouts with an even number L of
layers and then extend them to the case of odd L. The mul-
tilayer 2-D grid layout of an n-dimensional butter
y network
can be obtained from the 2-D grid layout of an ISN(3; Bk1 )
with k1 + k2 + k3 = n by partitioning all the horizontal
(or vertical) tracks above each row (or to the right of each
column, resp.) of blocks into L=2 groups, each of which

has at most d 2k1+k2+1c
L

e horizontal tracks (or d 2k1+k3+1c
L

e
vertical tracks, resp.) and is wired using two layers. More
precisely, the vertical segments connecting the horizontal
tracks of groups i (above each row) and the vertical tracks
of groups i (to the right of each column) are wired using
layer 2i � 1, and the horizontal tracks of groups i and the
horizontal segments connecting the vertical tracks of groups
i are wired using layer 2i, for i = 1; 2; : : : ; L=2. In other
words, odd-numbered layers are used to wire vertical tracks
and segments and even-numbered layers are used to wire
horizontal tracks and segments. When a link makes a turn
in the 2-D grid layout, its vertical and horizontal segments,
wired in neighboring layers i � 1 and i in the multilayer
layout, should be connected by a wire (or via) along the z
direction.

When L = o(
3
p
N) and L is even, the area of the resultant

L-layer layout is reduced from N2= log22N + o(N2= log22N)
under the Thompson model (with L = 2 layers of wires) to

2
k3 2

k1+k2+1

L
� 2

k2 2
k1+k3+1

L
+ o

�
22k1+2k2+2k3

L2

�

=
4N2

L2 log22N
+ o

�
N2

L2 log2N

�
;

the maximum wire length of the L-layer layout is reduced
from N= log2N + o (N= logN) under the Thompson model
to

2
k3 2

k1+k2+1

L
+ o

�
2k1+k2+k3

L

�
=

2N

L log2N
+ o

�
N

L logN

�
;

and the volume of the L-layer layout is reduced from
2N2= log22N + o(N2= log2N) under the Thompson model
(using two layers of wires) to

L� 22k1+2k2+2k3+2

L2
+ o

�
22k1+2k2+2k3

L

�

=
4N2

L log22N
+ o

�
N2

L log2N

�
:

Since we can arrange all the network nodes as a 2-D grid
with comparable numbers of rows and columns, the leading
constants of the layout area, maximum wire length, and
volume are not a�ected when each network node occupies

a square of side W for any W = o(
p
N=(L logN)), so the

layout is scalable in terms of node size. This can be easily
shown when L is not very large.

When L is odd, we simply partition horizontal tracks outside
blocks into (L+1)=2 groups, wired on layers 1; 3; : : : ; L, and
partition vertical tracks outside blocks into (L�1)=2 groups,
wired on layers 2; 4; : : : ; L � 1. We can also partition and
wire them the other way around. These layouts lead to the
following theorem.

Theorem 4.1. An N-node butter
y network can be laid

out using L layers of wires, L = 2; 3; :::; o(
3
p
N), and area

4N2

L2 log22N
+ o

�
N2

L2 log2N

�

when L is even, or area

4N2

(L2 � 1) log22N
+ o

�
N2

L2 log2N

�

when L is odd.
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Note that N network nodes, each occupying an area of

o
�

N

L2 log2 N

�
, are allowed to occupy o

�
N2

L2 log2 N

�
area in to-

tal, which is, for any layout method, the maximum possible
node size allowed without increasing the leading constant of
the layout area. Similar to our butter
y layout under the
Thompson model, each of a subset of O(R) = O(N= logN)

nodes can occupy an even larger area o
�

N
L2 logN

�
without

a�ecting the leading constants. Thus, the scalability of our
multilayer butter
y layout is also optimal in terms of node
sizes. Note also that if a network node occupies a W1 �W2

rectangle, W1 andW2 are not within a constant, and W1W2

is very close to �
�

N

L2 log2 N

�
, then we should align network

nodes as a �(
p
W2N=W1) � �(

p
W1N=W2) grid to min-

imize the layout area. These multilayer butter
y layouts
are the best results reported in the literature thus far for

L = 3; 4; : : : ; o(
3
p
N) in terms of both area and volume.

Note also that the above layout for L = 2 has asymptotically
the same area as those of the best previous layouts without
knock-knees when computed using an upright encompassing
rectangle [1, 10, 26], all of which achieve optimal area within
a factor of 1 + o(1) under the Thompson model. Similarly,
we can show that the above layouts achieve optimal area
within a factor of about 2 + o(1) under the multilayer grid
model. Since we have obtained area-e�cient L-layer layouts

for butter
y networks, L = 2; 3; : : : ; o(
3
p
N), we can mini-

mize the cost for implementation, which will be a function
of area A, the number L of layers, the number LA = 1 of
active layers, as well as other parameters.

If a very large number L of layers and LA > 1 active lay-
ers are available, we can design butter
y layouts under the
multilayer 3-D grid model to further reduce the layout area,
maximum wire length, and volume. To obtain multilayer
3-D layouts for a (k1 + k2 + k3 + k4)-dimensional butter-


y network, we can use 2k4 copies of a layout similar to a
multilayer 2-D layout for a (k1 + k2 + k3)-dimensional but-
ter
y (except for an additional nucleus butter
y Bk4 in each
block), and connect butter
y building blocks Bk3 and Bk4

vertically in a way similar to a collinear layout of a 2k4 -node
complete graph. To minimize the volume of the multilayer

3-D layout, we should select L = �
� p

N
logN

�
. More details

concerning multilayer 3-D layouts of butter
y networks and
a variety of other networks will be reported in the near fu-
ture.

5. LAYOUT OF BUTTERFLIES UNDER
THE HIERARCHICAL LAYOUT MODEL

In this section, we introduce the hierarchical layout model,
which takes into account both layout and packaging issues
for parallel architectures with multiple packaging levels. We
then derive e�cient hierarchical layouts for butter
y net-
works.

5.1 The Hierarchical Layout Model
A parallel computer is typically built from several chips
on a board, multiple boards in a cabinet, and several such
cabinets interconnected together. Modules at each level of
the packaging hierarchy have their respective characteristics
in terms of the number of pins, maximum area, minimum
wire width, maximum allowable wire length, and the num-
ber of wires per link [2]. In what follows, we consider the
case where several nodes (processors, routers, and associated
memory banks) of a network are implemented on a single
chip, or more generally, a single module (e.g., chip, board,
wafer, or multi-chip module (MCM)), and several modules

are used to built the parallel architecture or a higher-level
module. Since the number of available o�-module pins per
node, in addition to layout area, is one of the major con-
straints limiting the performance and the number of pro-
cessors that can be put on a module, e�cient partition is
crucial to obtaining e�cient hierarchical layouts.

In an l-level hierarchical layout, a level-imodule, i = 1; 2; :::; l,
consists of level-(i� 1) modules as basic components, inter-
connected by level-i wires, where each level-0 module is a
network node and the single level-l module is the resultant
l-level hierarchical layout. We can view each level-(i � 1)
module as a supernode; then the level-i module becomes a
multilayer layout with rules presented in the previous sec-
tion. Therefore, the multilayer layout model is a special case
of the hierarchical layout model with a single level of hier-
archy. As we have to specify the range of node sizes in the
multilayer layout model, we have to specify the maximum
area within and the maximum size of a level-i module for all
i; as a network node has degree at most d, we have to specify
the maximum number of pins (or links) allowed for level-i
modules for all i. Moreover, the minimum wire widths may
be di�erent at di�erent levels. Note that there may be more
than one type of level-i modules allowed for some i. These
parameters are important for computing the �nal cost of
the hierarchical layout, which may be determined by a func-
tion of the resultant area, volume, and/or the numbers of
level-i modules for some/all values of i. Note that if a cer-
tain level is area-limited, we may concentrate on layout at
that level. Similarly, if area and volume are less important
at a certain level, we mainly focus on the packaging con-
straints and/or the maximum wire length so that partition
of networks and/or the arrangement of nodes become more
important issues at that level.

5.2 Hierarchical Butterfly Layout:
An Example

In this subsection we present a simple example to illustrate
how e�cient hierarchical layouts can be derived based on
the results in previous sections.

Consider a parallel architecture based on a 9-dimensional
butter
y built with two levels of hierarchy: the chip and
board levels. We assume that the chip level is pin-limited
to simplify the problem and a chip has at most 64 o�-chip
links. We also assume that a chip is a square with side 20
and a level-2 link has unit width collectively. We would like
to compute the number of layers of wires on the board and
the total area required to put them onto a single board, as
well as the total number of chips required.

To obtain an e�cient hierarchical layout under these as-
sumptions, we have to �rst obtain an e�cient partition that
utilizes (most of) the 64 links in a chip e�ciently to mini-
mize the number of chips required. Using the results given in
Section 2, we can obtain a partition where each chip conains
80 nodes by placing 8 consecutive rows of the swap-butter
y
onto a chip. To minimize the total area required, we need
to arrange these chips appropriately and lay out links ef-
�ciently on the board. Using the layout method given in
Section 3, we arrange the chips as an 8� 8 grid, where each
chip is a block in the recursive grid layout scheme (see Fig.
3). We use the collinear layout of a 8-node complete graph
with quadruple links (see Appendix B) to connect blocks
(i.e., chips) belonging to the same row or column, so that
neighboring rows or columns are separated by 64 links. Note
that we can split approximately half of the wires belonging
to the same link to opposite sides of the chip (to which it is
incident) so that a block of side at least 16 is su�cient. We
can further improve the layout area by moving links con-
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necting neighboring blocks to the tracks connecting those
blocks, so that the number of links is reduced by 4 between
neighboring rows or columns of chips. If we use two layers
of wires, the total area required is 409.6K, which can be
considerably reduced if we use more layers of wires and/or
more than one active layer for chips. For example, when 4
layers of wires are available, the area is reduced to 160K;
when 8 layers of wires are available, the area is reduced to
78.4K.

It can be seen that the saving in total area diminishes in
relative importance when the number L of layers becomes
larger. The reason is that for small L, the area is still dom-
inated by wires so additional layers are highly bene�cial,
while when L = 8, e.g., the chip and wires both contribute
to the �nal area (in that the space required by wires be-
tween neighboring chips is 15, which is somewhat smaller
than the side of a chip). Thus, we can see the advantages
of aligning network nodes and node clusters as 2-D grids:
when the space for network nodes or clusters of network
nodes dominates the layout area, which may be true (1) for
smaller networks, or (2) for network nodes with large proces-
sors and memory banks, or (3) when a su�cient number of
layers for wiring are available, or (4) when lower-level mod-
ule sizes are relatively large, such arrangement may be quite
e�ective (though arrangements such as the one given in [10]
may also tolerate node size to a certain degree). Note that
even though the area is only reduced by a factor of about
2, our multilayer layout method may still be preferred when
L = 8 since the maximum wire length is reduced by a fac-
tor of about 1.4 compared to L = 4, while the maximum
wire length may remain the same (for nonsquare layouts) or
become somewhat larger (for square layouts) compared to
L = 4 by folding a 4-layer layout to obtain an 8-layer layout.
Moreover, the folding method requires that we have two ac-
tive layers (containing chips) and if this can be implemented,
we should use multilayer 3-D grid layout to further reduce
the area, since the area required for chips is considerably
reduced when LA = 2. Note also that when the chips are
responsible for a nonnegligible portion of total area, aligning
them as a 2-D grid as done in our layout is usually the most
e�ective arrangement, while if we arrange chips as a cross
or its variant (e.g., [1, 10]) or on two opposite edges of the
board a nonnegligible amount of area may be wasted.

The previous example can be easily extended to layouts with
more than two levels of packaging hierarchy, with various
assumptions on module sizes and pins, using the techniques
introduced in previous sections. For more levels of hier-
archy, the proposed partitioning and packaging results are
particularly important. Note that if a drill hole or via has
diameter larger than unit width, the layout area will be in-
creased. We have shown, using minor modi�cations to the
results presented here, that the layouts for butter
y net-
works and many other networks, such as hypercubes and k-
ary n-cubes, have area, volume, and maximum wire length
that are asymptotically the same (within a factor of 1+o(1))
even for very large drill holes and vias. The details will be
reported in the near future.

As another comparison, if we partition the network by plac-
ing neighboring rows of the butter
y into a chip, we can
place at most three rows into a chip, leading to a total of 171
chips, which approximately triples the number of chips re-
quired by our partitioning scheme, resulting in larger board
area also (or more layers of wires for similarly limited board
area). Previous layouts in [1, 10], although having optimal
areas using two layers or wires within a single chip, did not
consider packaging and multilayer problems and did not ar-
range the network nodes (or their clusters) as a 2-D grid.
Note that when the number of links per chip is increased,

the superiority of our partitioning method is even more pro-
nounced, as shown in Section 2.

6. CONCLUSION
In this paper, we introduced the multilayer 2-D grid model,
which can signi�cantly reduce the layout area, volume, and
maximum wire length when more than two layers of wires
are available, and the hierarchical layout model, which is of
practical importance, given that parallel architectures are
usually implemented using more than one chip. We pre-
sented an e�cient layout and packaging scheme for butter-

y networks under the Thompson model, the multilayer 2-D
grid model, and the hierarchical layout model. Compared
to previous layouts reported in the literature, our layouts
not only have asymptotically optimal area (within factors of
1+ o(1) and 2+ o(1), under the �rst two models for upright
rectangle) but also have an asymptotically optimal number
of pins (within a small constant factor) when multiple levels
of packaging are involved. Our layouts under the multilayer
2-D grid model and the hierarchical layout model are, to the
best of our knowledge, the best results reported in the liter-
ature thus far. The fact that butter
y networks can be laid
out e�ciently based on collinear layout of complete graphs
is also interesting.
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APPENDIX
A. INDIRECT SWAP NETWORKS
In this appendix we give the de�nitions and discuss the
structures of swap networks and indirect swap networks (ISNs).
Details in swap networks can be found in our papers [23, 24,
28]; a special case of ISNs, the indirect version of swap net-
works, can be found in [22].

A.1 Structure of Swap Networks
An indirect swap network (ISN) (also called unfolded swapped
network (USN) [22]) is a multistage network that can be ob-
tained by unfolding the structure of a swap network [23, 24,
28]. In our previous paper [22], we only dealt with a special
case of ISNs. In what follows, we present general ISNs so
that we can obtain e�cient partition for butter
y networks
under various assumptions.

We present the de�nition of swap networks as follows, where
the short form Zi:j is used to represent ZiZi�1 � � �Zj+1Zj for
any symbol Z. An l-level swap network based on a k1-cube,
denoted by SN(l;Qk1), begins with a nucleus k1-cube Qk1 ,
which forms an SN(1; Qk1). To build a 2-level swap network,

SN(2; Qk1), we use 2k2 identical copies of the nucleus k1-

cube, each having 2k1 nodes, where k2 � k1. Each nucleus
is viewed as a level-2 cluster, and is given a k2-bit string

X2 = xk2+k1�1:k1 = xk2+k1�1xk2+k1�2 � � �xk1+1xk1

as its address. We also assign each node a k1-bit string

X1 = xk1�1:0 = xk1�1xk1�2 � � �x1x0
as its address within the nucleus k1-cube to which it belongs.
Node X1 within nucleus X2 has an n2-bit string

X
0
2 = X2X1 = xk2+k1�1:0 = xn2�1:0 = xn2�1xn2�2 � � � x1x0

as its address within the SN(2;Qk1), where n2 = k2 + k1.

Each of the 2k2 nucleus copies has a link connecting it to

each of the other 2k2 � 1 nuclei, via which node X 0
2 = X2X1

is connected to node

xk2�1:0xk1�1:k2X2 = xk2�1:0xk1�1:k2xk2+k1�1:k1

= xk2�1xk2�2 � � �x1x0xk1�1xk1�2 � � � xk2
xk2+k1�1xk2+k1�2 � � �xk1 :

In other words, the new neighbor of a node, called the level-
2 neighbor, is obtained by swapping the �rst and last k2 bits
of the address of that node.

To build an l-level swap network, SN(l; Qk1), we use 2kl

identical copies of SN(l�1;Qk1), where kl � nl�1 =
Pl�1

i=1 ki.
Each copy of the SN(l�1;Qk1) is viewed as a level-l cluster,
and is given a kl-bit string

Xl = xnl�1:nl�1 = xnl�1xnl�2 � � �xnl�1+1xnl�1

as its address, where nl = kl + nl�1 =
Pl

i=1 ki. Each node
has already been given an nl�1-bit string

X
0
l�1 = Xl�1:1 = xnl�1�1:0 = xnl�1�1xnl�1�2 � � �x1x0

as its address within the level-l cluster to which it belongs.
Node X 0

l�1 within the level-l cluster Xl has an nl-bit string

X
0
l = XlX

0
l�1 = Xl:1 = xnl�1:0 = xnl�1xnl�2 � � �x1x0

as its address within the SN(l;Qk1). Each of the level-l
clusters has 2nl�1 nodes and 2nl�2 links connecting it to

each of the other 2kl � 1 level-l clusters, via which node
X 0
l = XlXl�1:1 connects to node

xkl�1:0xnl�1�1:klXl = xkl�1:0xnl�1�1:klxnl�1:nl�1 :

In other words, the new neighbor, called level-l neighbor, is
obtained by swapping the �rst and last kl bits of the address
of a node.

In summary, the address of a node in an l-level swap network
based on a hypercube can be partitioned into l groups of

bits, the ith of which (from the right) is composed of ki bits,
1 � i � l. Two nodes in an SN(l; Qk1) are connected if and
only if

� (a) their addresses di�er in exactly one bit in the �rst
group (we say they are connected by a dimension-i nu-

cleus link if the addresses di�er in the ith least signi�-
cant bit) , or

� (b) one node's address can be obtained from that of

the other by swapping the ith group, i 2 [2; l], with
the rightmost ki bits (we say they are connected by a
level-i inter-cluster link).
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Hierarchical swap networks (HSNs) are a special case of
swap networks where ki = kj for all i; j 2 [1; l] [23, 24,
28].

A.2 Structure of Indirect Swap Networks
In this subsection, we �rst map FFT onto swap networks
and then use its 
ow graph to de�ne indirect swap networks.
FFT can be performed in swap networks using the following
recursive algorithm:

� Step 1: Perform FFT in each level-l cluster.

� Step 2: Send the data item located at each node X =

Xlxnl�1�1:klxkl�1:0 to node xkl�1:0xnl�1�1:klXl via its

level-l inter-cluster link.

� Step 3: Perform FFT in each level-l cluster using the

same routing paths as those used when performing FFT
for the �rst kl dimensions.

An FFT algorithm for the nucleus hypercube Qk1 and the
steps forwarding packets along inter-cluster links form the
building blocks for the preceding recursive algorithm. In
what follows, we represent an FFT algorithm for hierarchical
swap networks HSN(l;Qk1) in a bottom-up manner using
such building blocks:

� Step 1: Perform FFT in each of the nucleus hypercubes.

� Step 2: For i = 2 to l,

{ Step 2.1: Send the data item at each node X =

Xl:i+1XiXi�1:2X1 to node Xl:i+1X1Xi�1:2Xi via
its level-i inter-cluster link.

{ Step 2.2: Perform FFT in each of the nucleus hy-

percubes.

An indirect swap network (ISN) is a multistage network ob-
tained by the 
ow graph for performing FFT on a corre-
sponding swap network [23, 24, 28], similar to the way a
butter
y network is derived from a hypercube. Let m be
the maximum number of steps for the preceding FFT algo-
rithm in a swap network SN(l;Qk1). Then an ISN derived
from SN(l;Qk1) has m + 1 stages, each having R = 2nl

nodes, where R = 2nl is the size of the SN(l;Qk1). A node
in the ISN can be represented by a pair (x; y) as its ad-
dress, where x 2 [0; R � 1] is an nl-bit binary row num-
ber and y 2 [0; m] denotes the stage number. If in step i,
i 2 [1;m � 1], of the FFT algorithm of the SN, we need to
forward the data items through nucleus links, then a node
(u; i � 1) in the ISN derived from that SN has a cross link
connecting it to node (v; i), where u and v di�er only in the

ith bit, and a straight link connecting it to node (u; i); if
in step i, i 2 [1; m � 1], of the FFT algorithm of the SN,
we must forward the data items through level-j inter-cluster
links (i.e., Step 2 of the recursive FFT algorithm), then a
node (u; i� 1) in the ISN derived from that SN has a level-i
swap link connecting it to node (v; i), where u and v can be

obtained from each other by swapping the ith group of bits
with the rightmost ki bits (i.e., u and v are connected by
a level-i inter-cluster link in the corresponding SN(l; Qk1)).
See Fig. 1 for an example of a 4� 4 ISN. Figure 2 shows the
automorphisms of swap-butter
ies (see Subsection 2.2); by
combining the duplicated links between each pair of neigh-
boring nodes (including those without numbers), we obtain
the automorphisms of an 8 � 8 ISN and a 16 � 16 ISN in
Figs. 2a and 2b, respectively.

The basic building modules for an ISN derived from an
SN(l; Qk1) are butter
y networks of dimensions no larger
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Figure 4: A collinear layout for the 9-node complete
graph K9.

than k1. Basic modules of neighboring stages are connected
through swap links using rules similar to the inter-cluster
links of the SN it is derived from. ISNs can also be derived
by unfolding the structure of swap networks [23, 24, 28]
along routing paths, similar to the way butter
y networks
are derived from hypercubes. The details are omitted here.

B. STRICTLY OPTIMAL COLLINEAR
LAYOUT FOR COMPLETE GRAPHS

In [6], a layout that requires 4(4log2 N�1 � 1)=3 � N2=3
tracks is presented for mapping an N -node complete graph,
KN , onto a linear array. In what follows, we show that
such a mapping, called a collinear layout, can be consider-
ably improved to one that uses bN2=4c tracks, which exactly
matches the bisection-based lower bound.

To obtain the collinear layout, we �rst place the N nodes,
labeled 1 through N , along a row. Let a link be type-i if
it connects two nodes whose addresses di�er by i. Then
the N(N � 1)=2 links in KN can be classi�ed into types
1; 2; 3; :::; N �1, and there are N � i type-i links. To lay out
KN , we place all the type-1 links in one track, all the type-2
links in two tracks, where links connecting nodes with odd
addresses are put in one track and links connecting nodes
with even addresses in the other, and then all the type-i
links in min(i; N � i) tracks for i = 3; 4; 5; : : : ; N � 1. More
precisely, type-i links are placed in i tracks if i � N=2, where
links are put in the same track if the remainder of the node-
address modulo i is the same, and each of the N � i type-i
links is placed in a di�erent track if i > N=2, Clearly, such
an arrangement will not result in overlapped links within a
track. The resulting layout for a K9 is illustrated in Fig. 4.
Note that we can reverse the order of horizontal tracks so
that the maximum wire length is reduced.

The total number of tracks in the layout described above is
equal to

N�1X
i=1

min(i; N � i) =

bN=2cX
i=1

i+

N�1X
i=bN=2c+1

(N � i)

=

bN=2cX
i=1

i+

dN=2e�1X
i=1

i = bN2
=4c:

Since the bisection width of KN is equal to N2=4 when N

is even and (N2�1)=4 when N is odd, this layout is strictly
optimal in terms of the number of tracks for collinear lay-
outs of complete graphs. Therefore, the number of tracks
required for the minimal collinear layout of an N -node com-
plete graph is bN2=4c. This upper bound is 25% smaller
than the one given in [6, Theorem 1] and leads to optimal
layouts for butter
y networks under various layout models.
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