
6An Introduction to Probability,
Statistics, and Uncertainty

Processes that are not fully understood, and
whose outcomes cannot be precisely predicted,
are often called uncertain. Most of the inputs to,
and processes that occur in, and outputs resulting
from water resource systems are not known with
certainty. Hence so too are the future impacts of
such systems, and even people’s reactions and
responses to these impacts. Ignoring this uncer-
tainty when performing analyses in support of
decisions involving the development and man-
agement of water resource systems could lead to
incorrect conclusions, or at least more surprises,
than will a more thorough analysis taking into
account these uncertainties. This chapter intro-
duces some commonly used approaches for
dealing with model input and output uncertainty.
Further chapters incorporate these tools in more
detailed optimization, simulation, and statistical
models designed to identify and evaluate alter-
native plans and policies for water resource
system development and operation.

6.1 Introduction

Uncertainty is always present when planning and
operating water resource systems. It arises
because many factors that affect the performance
of water resource systems are not and cannot be
known with certainty when a system is planned,
designed, built, and operated. The success and
performance of each component of a system often
depends on future meteorological, demographic,

social, technical, and political conditions, all of
which may influence future benefits, costs, envi-
ronmental impacts, and social acceptability.
Uncertainty also arises due to the stochastic
(random over time) nature of meteorological and
hydrological processes such as rainfall and
evaporation. Similarly, future populations of
towns and cities, per capita water usage rates,
irrigation patterns, and priorities for water uses,
all of which impact water demand, are not known
with certainty. This chapter introduces methods
for describing and dealing with uncertainty, and
provides some simple examples of their use in
water resources planning. These methods are
extended in the following two chapters.

There are many ways to deal with uncertainty.
The simplest approach is to replace each uncer-
tain quantity either by its expected or average
value or by some critical (e.g., “worst-case”)
value and then proceed with a deterministic
approach. Use of expected values or alternatively
median values of uncertain quantities can be
adequate if the uncertainty or variation in a
quantity is reasonably small and does not criti-
cally affect the performance of the system. If
expected values of uncertain parameters or vari-
ables are used in a deterministic model, the
planner can then assess the importance of uncer-
tainty with sensitivity and uncertainty analyses,
discussed later in this and subsequent chapters.

Replacement of uncertain quantities by either
expected or worst-case values can adversely
affect the evaluation of project performance
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when important parameters are highly variable.
To illustrate these issues, consider the evaluation
of the recreation potential of a reservoir.
Table 6.1 shows that the elevation of the water
surface varies from year to year depending on the
inflow and demand for water. The table indicates
the pool levels and their associated probabilities
as well as the expected use of the recreation
facility with different pool levels.

The average pool level L is simply the sum of
each possible pool level times its probability, or

L ¼ 10ð0:10Þþ 20ð0:25Þþ 30ð0:30Þ
þ 40ð0:25Þþ 50ð0:10Þ ¼ 30

ð6:1Þ

This pool level corresponds to 100
visitor-days per day

VDðLÞ ¼ 100 visitor-days per day ð6:2Þ

A worst-case analysis might select a pool
level of 10 as a critical value, yielding an esti-
mate of system performance equal to 25 visitor-
days per day

VDðLlowÞ ¼ VDð10Þ ¼ 25 visitor-days per day ð6:3Þ

Neither of these values is a good approxima-
tion of the average visitation rate, which is

VD ¼ 0:10VDð10Þþ 0:25VDð20Þþ 0:30VDð30Þ
þ 0:25VDð40Þþ 0:10VDð50Þ

¼ 0:10ð25Þþ 0:25ð75Þþ 0:30ð100Þ
þ 0:25ð80Þþ 0:10ð70Þ

¼ 78:25 visitor-days per day

ð6:4Þ

Clearly, the average visitation rate,
VD ¼ 78:25, the visitation rate corresponding to
the average pool level VD(L) = 100, and the
worst-case assessment VD(Llow) = 25, are very
different.

The median and the most likely are other
measures that characterize a data set. They have
the advantage that they are less influenced by
extreme outliers. For the symmetric data set
shown in Table 6.1, the median, most likely, and
the mean are the same, namely 30. But if instead
the probabilities of the respective pool levels were
0.30, 0.25, 0.20, 0.15, and 0.10, (instead of 0.10,
0.25, 0.30, 0.25, 0.10) the expected value or mean
is 25, the value having the highest probability of
occurring (the most likely) is 10, and the median
or value that is greater or equal to half of the other
values and less than or equal to the other half of
the values in the data set is 20.

Table 6.1 Data for determining reservoir recreation potential
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Thus using only average values in a complex
model can produce a poor representation of both
the average performance and the possible per-
formance range. When important quantities are
uncertain, one should evaluate both the expected
performance of a project and the risk and possi-
ble magnitude of project failures and their
consequences.

This chapter reviews many of the methods of
probability and statistics that are useful in
water resources planning and management.
Section 6.2 reviews the important concepts and
methods of probability and statistics that are
needed in this and other chapters of this book.
Section 6.3 introduces several probability dis-
tributions that are often used to model or
describe uncertain quantities. The section also
discusses methods for fitting these distributions
using historical information, and methods of
assessing whether the distributions are adequate
representations of the data. Sections 6.4, 6.5,
and 6.6 expand upon the use of these distribu-
tions, and discuss alternative parameter estima-
tion methods.

Section 6.7 presents the basic ideas and con-
cepts of stochastic processes or time series.
These are used to model streamflows, rainfall,
temperature, or other phenomena whose values
change with time. The section contains a
description of Markov chains, a special type of
stochastic process used in many stochastic opti-
mization and simulation models. Section 6.8
illustrates how synthetic flows and other time
series inputs can be generated for stochastic
simulations. The latter is introduced with an
example in Sect. 6.9.

Many topics receive only brief treatment here.
Readers desiring additional information should
consult applied statistical texts such as Benjamin
and Cornell (1970), Haan (1977), Kite (1988),
Stedinger et al. (1993), Kottegoda and Rosso
(1997), Ayyub and McCuen (2002), and
Pishro-Nik (2014).

6.2 Probability Concepts
and Methods

This section introduces basic concepts of proba-
bility and statistics. These are used throughout
this chapter and in later chapters in the book.

6.2.1 Random Variables
and Distributions

A basic concept in probability theory is that of
the random variable. A random variable is a
function whose value cannot be predicted with
certainty. Examples of random variables are
(1) the number of years until the flood stage of a
river washes away a small bridge, (2) the number
of times during a reservoir’s life that the level of
the pool will drop below a specified level, (3) the
rainfall depth next month, and (4) next year’s
maximum flow at a gage site on an unregulated
stream. The values of all of these quantities
depend on events that are not knowable before
the event has occurred. Probability can be used to
describe the likelihood these random variables
will equal specific values or be within a given
range of specific values.

The first two examples illustrate discrete ran-
dom variables, random variables that take on
values in a discrete set (such as the positive
integers). The second two examples illustrate
continuous random variables. Continuous ran-
dom variables take on values in a continuous set.
A property of all continuous random variables is
that the probability that they equal any specific
number is zero. For example, the probability that
the total rainfall depth in a month will be exactly
5.0 cm is zero, while the probability that the total
rainfall will lie between 4 and 6 cm can be non-
zero. Some random variables are combinations of
continuous and discrete random variables.

Let X denote a random variable and x a pos-
sible value of that random variable X. Random
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variables are generally denoted by capital letters
and particular values they take on by lowercase
letters. For any real-valued random variable X, its
cumulative distribution function FX(x), often
denoted as just the cdf, equals probability that the
value of X is less than or equal to a specific value
or threshold x

FXðxÞ ¼ Pr½X� x� ð6:5Þ

This cumulative distribution function FX(x) is
a non-decreasing function of x because

Pr½X� x� � Pr½X� xþ d� for d[ 0 ð6:6Þ

In addition,

lim
x!þ1FXðxÞ ¼ 1 ð6:7Þ

and

lim
x!�1FXðxÞ ¼ 0 ð6:8Þ

The first limit equals 1 because the probability
that X takes on some value less than infinity must
be unity; the second limit is zero because the
probability that X takes on no value must be zero.

If X is a real-valued discrete random vari-
able that takes on specific values x1, x2, …,
the probability mass function pX(xi) is the prob-
ability X takes on the value xi. Thus one would
write

pXðxiÞ ¼ Pr½X ¼ xi� ð6:9Þ

The value of the cumulative distribution
function FX(x) for a discrete random variable is
the sum of the probabilities of all xi that are less
than or equal to x.

FXðxÞ ¼
X
xi � x

pXðxiÞ ð6:10Þ

Figure 6.1 illustrates the probability mass
function pX(xi) and the cumulative distribution
function of a discrete random variable.

The probability density function fX(x) for a
continuous random variable X is the analogue of

the probability mass function of a discrete ran-
dom variable. The probability density function,
often called the pdf, is the derivative of the
cumulative distribution function so that

fXðxÞ ¼ dFXðxÞ
dx

� 0 ð6:11Þ

The area under a probability density function
always equals 1.

Zþ1

�1
fXðxÞ ¼ 1 ð6:12Þ

If a and b are any two constants, the cumu-
lative distribution function or the density func-
tion may be used to determine the probability
that X is greater than a and less than or equal to
b where

Pr a\X� b½ � ¼ FXðbÞ � FXðaÞ ¼
Zb
a

fXðxÞdx

ð6:13Þ

The probability density function specifies the
relative frequency with which the value of a
continuous random variable falls in different
intervals.

Life is seldom so simple that only a single
quantity is uncertain. Thus, the joint probability
distribution of two or more random variables
can also be defined. If X and Y are two con-
tinuous real-valued random variables, their joint
cumulative distribution function is

FXYðx; yÞ ¼ Pr½X� x and Y � y�

¼
Zx
�1

Zy
�1

fXYðu; vÞdudv ð6:14Þ

If two random variables are discrete, then

FXYðx; yÞ ¼
X
xi � x

X
yi � y

pXYðxi; yiÞ ð6:15Þ

where the joint probability mass function is
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pXYðxi; yiÞ ¼ Pr X ¼ xi; and Y ¼ yi½ � ð6:16Þ

If X and Y are two random variables, and the
distribution of X is not influenced by the value
taken by Y, and vice versa, the two random vari-
ables are said to be independent. Independence is
an important and useful idea when attempting to
develop a model of two or more random variables.
For independent random variables

Pr½a�X� b and c� Y � d�
¼ Pr½a�X� b� Pr½c� Y � d� ð6:17Þ

for any a, b, c, and d. As a result,

FXYðx; yÞ ¼ FXðxÞFYðyÞ ð6:18Þ

which implies for continuous random variables
that

fXYðx; yÞ ¼ fXðxÞfYðyÞ ð6:19Þ

and for discrete random variables that

pXYðx; yÞ ¼ pXðxÞpYðyÞ ð6:20Þ

Other useful concepts are those of the mar-
ginal and conditional distributions. If X and Y are
two random variables whose joint cumulative
distribution function FXY(x, y) has been specified,
then FX(x), the marginal cumulative distribution
of X, is just the cumulative distribution of X ig-
noring Y. The marginal cumulative distribution
function of X equals

(a) (b)

Fig. 6.1 Cumulative distribution and probability density or mass functions of random variables: a continuous
distributions; b discrete distributions
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FXðxÞ ¼ Pr½X� x� ¼ lim
y!1FXYðx; yÞ ð6:21Þ

where the limit is equivalent to letting Y take on
any value. If X and Y are continuous random
variables, the marginal density of X can be
computed from

fXðxÞ ¼
Zþ1

�1
fXYðx; yÞdy ð6:22Þ

The conditional cumulative distribution func-
tion is the cumulative distribution function for
X given that Y has taken a particular value
y. Thus the value of Y may have been observed
and one is interested in the resulting conditional
distribution, for the so far unobserved value of
X. The conditional cumulative distribution func-
tion for continuous random variables is given by

FXjYðxjyÞ ¼ Pr½X� xjY ¼ y� ¼
R x
�1 fxyðs; yÞds

fyðyÞ
ð6:23Þ

It follows that the conditional density function
is

fXjYðxjyÞ ¼ fXYðx; yÞ
fYðyÞ ð6:24Þ

For discrete random variables, the probability
of observing X = x, given that Y = y equals

pXjYðxjyÞ ¼ pxyðx; yÞ
pyðyÞ ð6:25Þ

These results can be extended to more than
two random variables. See Kottegoda and Rosso
(1997) for a more advanced discussion.

6.2.2 Expected Values

Knowledge of the probability density function of a
continuous random variable, or of the probability

mass function of a discrete random variable,
allows one to calculate the expected value of any
function of the random variable. Such an expec-
tation may represent the average rainfall depth,
average temperature, average demand shortfall, or
expected economic benefits from system opera-
tion. If g is a real-valued function of a continuous
random variable X, the expected value of g(X) is

E½gðXÞ� ¼
Zþ1

�1
gðxÞfXðxÞdx ð6:26Þ

whereas for a discrete random variable

E½gðXÞ� ¼
X
xi

gðxiÞpXðxiÞ ð6:27Þ

E[ ] is called the expectation operator. It has
several important properties. In particular, the
expectation of a linear function of X is a linear
function of the expectation of X. Thus if a and
b are two nonrandom constants,

E½aþ bX� ¼ aþ bE½X� ð6:28Þ

The expectation of a function of two random
variables is given by

E½gðX; YÞ� ¼
Zþ1

�1

Zþ1

�1
gðx; yÞfXYðx; yÞdx dy

or

E½gðX; YÞ� ¼
X
i

X
j

gðxi; yiÞpXYðxi; yiÞ ð6:29Þ

If X and Y are independent, the expectation of
the product of a function h(�) of X and a function
g(�) of Y is the product of the expectations

E½gðXÞhðYÞ� ¼ E½gðXÞ�E½hðYÞ� ð6:30Þ

This follows from substitution of Eqs. 6.19
and 6.20 into Eq. 6.29.
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6.2.3 Quantiles, Moments, and Their
Estimators

While the cumulative distribution function pro-
vides a complete specification of the properties of
a random variable, it is useful to use simpler and
more easily understood measures of the central
tendency and range of values that a random vari-
able may assume. Perhaps the simplest approach
to describing the distribution of a random variable
is to report the value of several quantiles. The pth
quantile of a random variable X is the smallest
value xp such that X has a probability p of
assuming a value equal to or less than xp

Pr½X\xp� � p� Pr½X� xp� ð6:31Þ

Equation 6.31 is written to insist if at some
point xp, the cumulative probability function
jumps from less than p to more than p, then that
value xp will be defined as the pth quantile even
though FX(xp) ≠ p. If X is a continuous random
variable, then in the region where fX(x) > 0, the
quantiles are uniquely defined and are obtained
by solution of

FX xp
� � ¼ p ð6:32Þ

Frequently reported quantiles are the median
x0.50 and the lower and upper quartiles x0.25 and
x0.75. The median describes the location or cen-
tral tendency of the distribution of X because the
random variable is, in the continuous case,
equally likely to be above as below that value.
The interquartile range [x0.25, x0.75] provides an
easily understood description of the range of
values that the random variable might assume.
The pth quantile is also the 100 p percentile.

In a given application, particularly when
safety is of concern, it may be appropriate to use
other quantiles. In floodplain management and
the design of flood control structures, the
100-year flood x0.99 is often the selected design
value. In water quality management, a river’s
minimum seven-day-average low flow expected
once in 10 years is often used as the critical
planning value: Here the one-in-ten year value is

the 10 percentile of the distribution of the annual
minima of the seven-day average flows.

The natural sample estimate of the median
x0.50 is the median of the sample. In a sample of
size n where x(1) ≤ x(2) ≤ ��� ≤ x(n) are the
observed observations ordered by magnitude,
and for a nonnegative integer k such that n = 2k
(even) or n = 2k + 1 (odd), the sample estimate
of the median is

x̂0:50 ¼ xðkþ 1Þ for n ¼ 2kþ 1
1
2 xðkÞ þ xðkþ 1Þ
� �

for n ¼ 2k

�
ð6:33Þ

Sample estimates of other quantiles may be
obtained using x(i) as an estimate of xq for q =
i/(n + 1) and then interpolating between obser-
vations to obtain x̂p for the desired p. This only
works for 1/(n + 1) ≤ p ≤ n/(n + 1) and can
yield rather poor estimates of xp when (n + 1)p is
near either 1 or n. An alternative approach is to
fit a reasonable distribution function to the
observations, as discussed in Sects. 6.3.1 and
6.3.2, and then estimate xp using Eq. 6.32, where
FX(x) is the fitted distribution.

Another simple and common approach to
describing a distribution’s center, spread, and
shape is by reporting the moments of a distri-
bution. The first moment about the origin μX is
the mean of X and is given by

lX ¼ E½X� ¼
Zþ1

�1
xfXðxÞdx ð6:34Þ

Moments other than the first are normally
measured about the mean. The second moment
measured about the mean is the variance, deno-
ted Var(X) or r2X , where

r2X ¼ VarðXÞ ¼ E½ðX � lXÞ2� ð6:35Þ

The standard deviation σX is the square root
of the variance. While the mean μX is a measure
of the central value of X, the standard deviation
σX is a measure of the spread of the distribution
of X about its mean μX.

6.2 Probability Concepts and Methods 219



Another measure of the variability in X is the
coefficient of variation,

CVX ¼ rX
lX

ð6:36Þ

The coefficient of variation expresses the
standard deviation as a proportion of the mean. It
is useful for comparing the relative variability of
the flow in rivers of different sizes, or of rainfall
variability in different regions, which are both
strictly positive values.

The third moment about the mean denoted λX,
measures the asymmetry or skewness of the
distribution

kX ¼ E½ðX � lXÞ3� ð6:37Þ

Typically, the dimensionless coefficient of
skewness γX is reported rather than the third
moment λX. The coefficient of skewness is the
third moment rescaled by the cube of the stan-
dard deviation so as to be dimensionless and
hence unaffected by the scale of the random
variable

cX ¼ kX
r3X

ð6:38Þ

Streamflows and other natural phenomena that
are necessarily nonnegative often have distribu-
tions with positive skew coefficients, reflecting
the asymmetric shape of their distributions.

When the distribution of a random variable is
not known, but a set of observations {x1, …, xn}
is available, the moments of the unknown dis-
tribution of X can be estimated based on the
sample values using the following equations.

The sample estimate of the mean

X ¼
Xn
i¼1

Xi=n ð6:39aÞ

The sample estimate of the variance

r̂2X ¼ S2X ¼ 1
ðn� 1Þ

Xn
i¼1

ðXi � XÞ2 ð6:39bÞ

The sample estimate of skewness

k̂X ¼ n

ðn� 1Þðn� 2Þ
Xn
i¼1

ðXi � XÞ3 ð6:39cÞ

The sample estimate of the coefficient of
variation

dCVX ¼ SX=X ð6:39dÞ

The sample estimate of the coefficient of
skewness

ĉX ¼ k̂X=S
3
X ð6:39eÞ

The sample estimate of the mean and variance
are often denoted �x and s2X . All of these sample
estimators only provide estimates. Unless the
sample size n is very large, the difference between
the estimators from the true values of lX; r

2
X ; kX;

CVX; and cX may be large. Inmanyways, the field
of statistics is about the precision of estimators of
different quantities. One wants to know how well
the mean of 20 annual rainfall depths describes the
true expected annual rainfall depth, or how large
the difference between the estimated 100-year
flood and the true 100-year flood is likely to be.

As an example of the calculation of moments,
consider the flood data in Table 6.2. These data
have the following sample moments:

�x ¼ 1549:2

sX ¼ 813:5dCVX ¼ 0:525

ĉX ¼ 0:712

As one can see, the data are positively skewed
and have a relatively large coefficient of variance.

When discussing the accuracy of sample
estimates, two quantities are often considered,

bias and variance. An estimator ĥ of a known or
unknown quantity h is a function of the values of
the random variable X1, …, Xn that will be

available to estimate the value of θ; ĥ may be

written ĥ[X1, X2, …, Xn] to emphasize that ĥ
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itself is a random variable because its value
depends on the sample values of the random

variable that will be observed. An estimator ĥ of

a quantity h is biased if E½ĥ� 6¼ h and unbiased if

E½ĥ� ¼ h. The quantity fE½ĥ� � hg is generally
called the bias of the estimator.

An unbiased estimator has the property that its
expected value equals the value of the quantity to
be estimated. The sample mean is an unbiased
estimate of the population mean μX because

E X
� � ¼ E

1
n

Xn
i¼1

Xi

" #
¼ 1

n

Xn
i¼1

E Xi½ � ¼ lX

ð6:40Þ

The estimator S2X of the variance of X is an
unbiased estimator of the true variance r2X for
independent observations (Benjamin and Cornell
1970):

E S2X
� � ¼ r2X ð6:41Þ

However, the corresponding estimator of the
standard deviation, SX, is in general a biased
estimator of σx because

E½SX � 6¼ rX ð6:42Þ

The second important statistic often used to

assess the accuracy of an estimator ĥ is the

Table 6.2 Annual Maximum Discharges on Magra River, Italy, at Calamazza, 1930–1970

1930

1931

1932
1933

1934

1935

1936
1937

1938

1939

1940

1941
1942

1943

1944

1946

1947
1948

1949

1950

date     discharge

E0
21

10
1b

  410

1150

  899
  420

3100

2530

  758
1220

1330

1410

3100

2470
  929

  586

  450

1040

1470
1070

2050

1430

cu ft/s 
date     discharge

cu ft/s 

1951

1952

1953
1954

1955

1956

1957
1958

1959

1960

1961

1962
1963

1964

1965

1966

1967
1968

1969

1970

3070

2360

1050
1900

1130

  674

  683
1500

2600

3480

1430

  809
1010

1510

1650

1880

1470
1920

2530

1490

The value for 1945 ismissing
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variance of the estimator VarðĥÞ, which equals

Efðĥ� E½ĥ�Þ2g. For the mean of a set of inde-
pendent observations, the variance of the sample
mean is

Var X
� � ¼ r2X

n
ð6:43Þ

It is common to call rx=
ffiffiffi
n

p
the standard error

of X rather than its standard deviation. The
standard error of an average is the most com-
monly reported measures of the precision.

The bias measures the difference between the
average value of an estimator and the quantity to
be estimated. The variance measures the spread
or width of the estimator’s distribution. Both
contribute to the amount by which an estimator
deviates from the quantity to be estimated. These
two errors are often combined into the mean
square error. Understanding that θ is fixed, and

the estimator ĥ is a random variable, the mean
squared error is the expected value of the squared
distance (error) between the two

MSE ĥ
� 	

¼ E ĥ� h
� 	2
 �

¼ E ĥ
h i

� h
n o2

þE ĥ� E ĥ
h i� 	2� �

¼ Bias½ �2 þVar ĥ
� 	

ð6:44Þ

where [Bias] is EðĥÞ � h. Equation 6.44 shows
that the MSE, equal to the expected average

squared deviation of the estimator ĥ from the true
value of the parameter θ, can be computed as the
bias squared plus the variance of the estimator.

MSE is a convenient measure of how closely ĥ
approximates θ because it combines both bias
and variance in a logical way.

Estimation of the coefficient of skewness γx
provides a good example of the use of the MSE
for evaluating the total deviation of an estimate
from the true population value. The sample
estimate ĉX of cX is often biased, has a large
variance, and was shown by Kirby (1974) to be
bounded so that

jĉX j �
ffiffiffi
n

p ð6:45Þ

where n is the sample size. The bounds do not
depend on the true skew γX. However, the bias
and variance of ĉX do depend on the sample size
and the actual distribution of X. Table 6.3 con-
tains the expected value and standard deviation
of the estimated coefficient of skewness ĉX when
X has either a normal distribution, for which
γX = 0, or a gamma distribution with γX = 0.25,
0.50, 1.00, 2.00, or 3.00. These values are
adapted from Wallis et al. (1974a, b) who
employed moment estimators slightly different
than those in Eq. 6.39a.

For the normal distribution, E ĉX½ � ¼ 0 and
Var ĉX½ � ≅ 5/n. In this case, the skewness esti-
mator is unbiased but highly variable. In all the
other cases in Table 6.3 it is also biased.

To illustrate the magnitude of these errors,
consider the mean square error of the skew
estimator ĉX calculated from a sample of size 50
when X has a gamma distribution with γX = 0.50,
a reasonable value for annual streamflows. The
expected value of ĉX is 0.45; its variance equals
(0.37)2, its standard deviation squared. Using
Eq. 6.44, the mean square error of ĉX is

MSE ĉXð Þ ¼ 0:45� 0:50ð Þ2 þ 0:37ð Þ2
¼ 0:0025þ 0:1369 ¼ 0:139 ffi 0:14

ð6:46Þ

An unbiased estimate of γX is simply
(0.50/0.45)ĉX . Here the estimator provided by
Eq. 6.39a has been scaled to eliminate bias. This
unbiased estimator has mean squared error

MSE
0:50ĉ

X

0:45


 �
¼ 0:50� 0:50ð Þ2 þ 0:50

0:45


 �
ð0:37Þ


 �2
¼ 0:169 ffi 0:17

ð6:47Þ

The mean square error of the unbiased esti-
mator of ĉX is larger than the mean square error
of the biased estimate. Unbiasing ĉX results in a
larger mean square error for all the cases listed in
Table 6.3 except for the normal distribution for
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which γX = 0, and the gamma distribution with
γX = 3.00.

As shown here for the skew coefficient, biased
estimators often have smaller mean square errors
than unbiased estimators. Because the mean
square error measures the total average deviation

of an estimator from the quantity being esti-
mated, this result demonstrates that the strict or
unquestioning use of unbiased estimators is not
advisable. Additional information on the sam-
pling distribution of quantiles and moments is
contained in Stedinger et al. (1993).

Table 6.3 Sampling properties of coefficient of skewness estimator

Source Wallis et al. (1974b) who divided just by n in the estimators of the moments, whereas in Eqs. 6.39b and 6.39c
we use the generally adopted coefficients of 1/(n − 1) and n/(n − 1)(n − 2) for the variance and skew
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6.2.4 L-Moments and Their
Estimators

L-moments are another way to summarize the
statistical properties of hydrologic data based on
linear combinations of the original sample
(Hosking 1990). Recently, hydrologists have
found that regionalization methods (to be
discussed in Sect. 6.5) using L-moments are
superior to methods using traditional moments
(Hosking and Wallis 1997; Stedinger and Lu
1995). L-moments have also proved useful for
construction of goodness-of-fit tests (Hosking
et al. 1985; Chowdhury et al. 1991; Fill and
Stedinger 1995), measures of regional homo-
geneity and distribution selection methods (Vogel
and Fennessey 1993; Hosking and Wallis 1997).

The first L-moment designated as λ1 is simply
the arithmetic mean

k1 ¼ E½X� ð6:48Þ

Now let X(i|n) be the ith largest observation in
a sample of size n (i = n corresponds to the lar-
gest). Then, for any distribution, the second
L-moment, λ2, is a description of scale based
upon the expected difference between two ran-
domly selected observations.

k2 ¼ ð1=2ÞE Xð2j1Þ � Xð1j2Þ
� � ð6:49Þ

Similarly, L-moment measures of skewness
and kurtosis use three and four randomly selected
observations, respectively.

k3 ¼ ð1=3ÞE Xð3j3Þ � 2Xð2j3Þ þXð1j3Þ
� � ð6:50Þ

k4 ¼ ð1=4ÞE Xð4j4Þ � 3Xð3j4Þ þ 3Xð2j4Þ � Xð1j4Þ
� �

ð6:51Þ

Sample estimates are often computed using
intermediate statistics called probability weighted
moments (PWMs). The rth probability weighted
moment is defined as

br ¼ E X FðXÞ½ �rf g ð6:52Þ

where F(X) is the cumulative distribution func-
tion of X. Recommended (Landwehr et al. 1979;
Hosking and Wallis 1995) unbiased PWM esti-
mators, br, of βr are computed as

b0 ¼ X

b1 ¼ 1
nðn� 1Þ

Xn
j¼2

ðj� 1ÞXðjÞ

b2 ¼ 1
nðn� 1Þðn� 2Þ

Xn
j¼3

ðj� 1Þðj� 2ÞXðjÞ

ð6:53Þ

These are examples of the general formula for
computing estimators br of βr.

br ¼ 1
n

Xn
i¼r

i
r


 �
XðiÞ=

n� 1
r


 �
¼ 1

rþ 1

Xn
i¼r

i
r


 �
XðiÞ=

n
rþ 1


 �
ð6:54Þ

for r = 1, …, n − 1.
L-moments are easily calculated in terms of

probability weighted moments (PWMs) using

k1 ¼ b0
k2 ¼ 2b1 � b0
k3 ¼ 6b2 � 6b1 þ b0
k4 ¼ 20b3 � 30b2 þ 12b1 � b0

ð6:55Þ

Formulas for directly calculating L-moment
estimators, b, of β, are provided by Wang (1997).
Measures of the coefficient of variation, skew-
ness, and kurtosis of a distribution can be com-
puted with L-moments, as they can with
traditional product moments. Whereas skew pri-
marily measures the asymmetry of a distribution,
the kurtosis is an additional measure of the
thickness of the extreme tails. Kurtosis is par-
ticularly useful for comparing symmetric distri-
butions that have a skewness coefficient of
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zero. Table 6.4 provides definitions of the tradi-
tional coefficient of variation, coefficient of
skewness, and coefficient of kurtosis, as well as
the L-moment, L-coefficient of variation,
L-coefficient of skewness, and L-coefficient of
kurtosis.

The flood data in Table 6.2 can be used to
provide an example of L-moments. Equa-
tion 6.53 yields estimates of the first three
Probability Weighted Moments

b0 ¼ 1549:20

b1 ¼ 1003:89

b2 ¼ 759:02

ð6:56Þ

Recall b0 is just the sample average �x. The
sample L-moments are easily calculated using
the probability weighted moments (PWMs). One
obtains

k̂1 ¼ b0 ¼ 1549

k̂2 ¼ 2b1 � b0 ¼ 458

k̂3 ¼ 6b2 � 6b1 þ b0 ¼ 80

ð6:57Þ

Thus the sample estimates of the L-Coefficient
of Variation, t2, and L-Coefficient of Skewness,
t3, are

t2 ¼ 0:295

t3 ¼ 0:174
ð6:58Þ

6.3 Distributions of Random Events

A frequent task in water resources planning is the
development of a model of some probabilistic or
stochastic phenomena such as streamflows, flood

Table 6.4 Definitions of dimensionless product-moment and L-moment ratios
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flows, rainfall, temperatures, evaporation, sedi-
ment or nutrient loads, nitrate or organic com-
pound concentrations, or water demands. This
often requires that one fit a probability distribu-
tion function to a set of observed values of the
random variable. Sometimes, one’s immediate
objective is to estimate a particular quantile of
the distribution, such as the 100-year flood,
50-year 6-h-rainfall depth, or the minimum
seven-day-average expected once-in-10-year
flow. Then the fitted distribution and its statisti-
cal parameters can characterize that random
variable. In a stochastic simulation, fitted distri-
butions are used to generate possible values of
the random variable in question.

Rather than fitting a reasonable and smooth
mathematical distribution, one could use the
empirical distribution represented by the data to
describe the possible values that a random variable
may assume in the future and their frequency. In
practice, the true mathematical form for the dis-
tribution that describes the events is not known.
Moreover, even if it was, its functional form may
have too many parameters to be of much practical
use. Thus using the empirical distribution repre-
sented by the data itself has substantial appeal.

Generally the free parameters of the theoretical
distribution are selected (estimated) so as to make
the fitted distribution consistent with the available
data. The goal is to select a physically reasonable
and simple distribution to describe the frequency
of the events of interest, to estimate that distri-
bution’s parameters, and ultimately to obtain
quantiles, performance indices, and risk estimates
of satisfactory accuracy for the problem at hand.
Use of a theoretical distribution does have several
advantages over use of the empirical distribution

1. It presents a smooth interpretation of the
empirical distribution. As a result quantiles,
performance indices, and other statistics
computed using the fitted distribution should

be more easily estimated compared to those
computed from the empirical distribution.

2. It provides a compact and easy to use repre-
sentation of the data.

3. It is likely to provide a more realistic
description of the range of values that the
random variable may assume and their like-
lihood; for example, using the empirical dis-
tribution one often assumes that no values
larger or smaller than the sample maximum or
minimum can occur. For many situations this
is unreasonable.

4. Often one needs to estimate the likelihood of
extreme events that lie outside of the range of
the sample (either in terms of x values or in
terms of frequency); such extrapolation makes
little sense with the empirical distribution.

5. In many cases one is not interested in X, but
instead is interested in derived variables
Y that are functions of X. This could be a
performance function for some system. If Y is
the performance function, interest might be
primarily in its mean value E[Y], or the
probability some standard is exceeded, Pr
{Y > standard}. For some theoretical X-dis-
tributions, the resulting Y-distribution may be
available in closed form making the analysis
rather simple. (The normal distribution works
with linear models, the lognormal distribution
with product models, and the gamma distri-
bution with queuing systems.)

This section provides a brief introduction to
some useful techniques for estimating the
parameters of probability distribution functions
and determining if a fitted distribution provides a
reasonable or acceptable model of the data.
Subsections are also included on families of
distributions based on the normal, gamma, and
generalized-extreme-value distributions. These
three families have found frequent use in water
resource planning (Kottegoda and Rosso 1997).
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6.3.1 Parameter Estimation

Given a set of observations to which a distribu-
tion is to be fit, one first selects a distribution
function to serve as a model of the distribution of
the data. The choice of a distribution may be
based on experience with data of that type, some
understanding of the mechanisms giving rise to
the data, and/or examination of the observations
themselves. One can then estimate the parame-
ters of the chosen distribution and determine if
the observed data could have been drawn from
the fitted distribution. If not, the fitted distribu-
tion is judged to be unacceptable.

In many cases, good estimates of a distribu-
tion’s parameters are obtained by the maximum
likelihood-estimation procedure. Given a set of
n independent observations {x1, …, xn} of a
continuous random variable X, the joint proba-
bility density function for the observations is

fX1;X2;X3 ; . . .Xnðx1; . . .; xnjhÞ
¼ fXðx1jhÞ � fXðx2jhÞ . . . fXðxnjhÞ ð6:59Þ

where θ is the vector of the distribution’s
parameters.

The maximum likelihood estimator of θ is that
vector which maximizes Eq. 6.59 and thereby
makes it as likely as possible to have observed
the values {x1, …, xn}.

Considerable work has gone into studying the
properties of maximum likelihood parameter
estimates. Under rather general conditions,
asymptotically the estimated parameters are
normally distributed, unbiased, and have the
smallest possible variance of any asymptotically
unbiased estimator (Bickel and Doksum 1977).
These, of course, are asymptotic properties, valid
for large sample sizes n. Better estimation pro-
cedures, perhaps yielding biased parameter esti-
mates, may exist for small sample sizes.
Stedinger (1980) provides such an example. Still,
maximum likelihood procedures are to be highly

recommended with moderate and large samples,
even though the iterative solution of nonlinear
equations is often required.

An example of the maximum likelihood pro-
cedure for which closed-form expressions for the
parameter estimates are obtained is provided by
the lognormal distribution. The probability den-
sity function of a lognormally distributed random
variable X is

fXðxÞ ¼ 1

x
ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � 1
2r2

lnðxÞ � l½ �2
� �

ð6:60Þ

Here the parameters μ and σ2 are the mean and
variance of the logarithm of X, and not of X itself.

Maximizing the logarithm of the joint density
for {x1, …, xn} is more convenient than maxi-
mizing the joint probability density itself. Hence
the problem can be expressed as the maximiza-
tion of the log-likelihood function

L ¼ ln
Yn
i¼1

f xi l; rjð Þ
" #

¼
Xn
i¼1

ln f xi l; rjð Þ

¼ �
Xn
i¼1

ln xi
ffiffiffiffiffiffi
2p

p� 	
� n lnðrÞ � 1

2r2
Xn
i¼1

lnðxiÞ � l½ �2

ð6:61Þ

The maximum can be obtained by equating to
zero the partial derivatives ∂L/∂μ and ∂L/∂σ
whereby one obtains

0 ¼ @L

@l
¼ 1

r2
Xn
i¼1

ln xið Þ � l½ �

0 ¼ @L

@r
¼ � n

r
þ 1

r3
Xn
i¼1

ln xið Þ � l½ �2
ð6:62Þ

These equations yield the estimators
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l̂ ¼ 1
n

Xn
i¼1

ln xið Þ

r̂
2 ¼ 1

n

Xn
i¼1

ln xið Þ � l̂½ �2
ð6:63Þ

The second-order conditions for a maximum
are met and these values do maximize Eq. 6.59. It
is useful to note that if one defines a new random
variable Y = ln(X), then the maximum likelihood
estimates of the parameters μ and σ2, which are the
mean and variance of the Y distribution, are the
sample estimates of the mean and variance of Y

l̂ ¼ �y

r̂2 ¼ ½ðn� 1Þ=n�s2Y
ð6:64Þ

The correction [(n − 1)/n] in this last equation is
often neglected.

The second commonly used parameter esti-
mation procedure is the method of moments. The
method of moments is often a quick and simple
method for obtaining parameter estimates for
many distributions. For a distribution with m = 1,
2, or 3 parameters, the first m moments of postu-
lated distribution in Eqs. 6.34, 6.35, and 6.37 are
equated to the estimates of those moments calcu-
lated using Eqs. 6.39a. The resulting nonlinear
equations are solved for the unknown parameters.

For the lognormal distribution, the mean and
variance of X as a function of the parameters μ
and σ are given by

lX ¼ exp lþ 1
2
r2


 �
r2X ¼ exp 2lþ r2

� �
exp r2
� �� 1

� � ð6:65Þ

Substituting �x for μX and s2x for r
2
X and solving

for μ and σ2 one obtains

r̂2 ¼ ln 1þ s2X=�x
2

� �
l̂ ¼ ln

�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2X=�x

2
p !

¼ ln�x� 1
2
r̂2

ð6:66Þ

The data in Table 6.2 provide an illustration
of both fitting methods. One can easily compute
the sample mean and variance of the logarithms
of the flows to obtain

l̂ ¼ 7:202

r̂2 ¼ 0:3164 ¼ ð0:5625Þ2 ð6:67Þ

Alternatively, the sample mean and variance
of the flows themselves are

�x ¼ 1549:2

s2X ¼ 661;800 ¼ ð813:5Þ2 ð6:68Þ

Substituting those two values in Eq. 6.66
yields

l̂ ¼ 7:224

r̂2 ¼ 0:2435 ¼ ð0:4935Þ2 ð6:69Þ

Method of moments and maximum likelihood
are just two of many possible estimation meth-
ods. Just as method of moments equates sample
estimators of moments to population values and
solves for a distribution’s parameters, one can
simply equate L-moment estimators to popula-
tion values and solve for the parameters of a
distribution. The resulting method of L-moments
has received considerable attention in the
hydrologic literature (Landwehr et al. 1978;
Hosking et al. 1985; 1987; Hosking 1990; Wang
1997). It has been shown to have significant
advantages when used as a basis for regional-
ization procedures that will be discussed in
Sect. 6.5 (Lettenmaier et al. 1987; Stedinger and
Lu 1995; Hosking and Wallis 1997).
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Bayesian procedures provide another approach
that is related to maximum likelihood estimation.
Bayesian inference employs the likelihood func-
tion to represent the information in the data. That
information is augmented with a prior distribution
that describes what is known about constraints on
the parameters and their likely values beyond the
information provided by the recorded data avail-
able at a site. The likelihood function and the prior
probability density function are combined to
obtain the probability density function that
describes the posterior distribution of the
parameters

fhðhjx1; x2; . . .; xnÞ / fXðx1; x2; . . .; xnjhÞnðhÞ
ð6:70Þ

The symbol ∝ means “proportional to” and
ξ(θ) is the probability density function for the
prior distribution for θ (Kottegoda and Rosso
1997). Thus, except for a constant of propor-
tionality, the probability density function
describing the posterior distribution of the
parameter vector θ is equal to the product of the
likelihood function fX(x1, x2, …, xn|θ) and the
probability density function for the prior distri-
bution ξ(θ) for θ.

Advantages of the Bayesian approach are that
it allows the explicit modeling of uncertainty in
parameters (Stedinger 1997; Kuczera 1999), and
provides a theoretically consistent framework for
integrating systematic flow records with regional
and other hydrologic information (Vicens et al.
1975; Stedinger 1983; and Kuczera 1983).
Martins and Stedinger (2000) illustrate how a
prior distribution can be used to enforce realistic
constraints upon a parameter as well as providing
a description of its likely values. In their case use
of a prior of the shape parameter κ of a GEV
distribution allowed definition of generalized
maximum likelihood estimators that over the
κ-range of interest performed substantially better
than maximum likelihood, moment, and
L-moment estimators.

While Bayesian methods have been available
for decades, the computational challenge posed
by the solution of Eq. 6.70 has been an obstacle
to their use. Solutions to Eq. 6.70 have been

available for special cases such as normal data,
and binomial and Poisson samples (Raiffa and
Schlaifier 1961; Benjamin and Cornell 1970;
Zellner 1971). However, a new and very general
set of Markov Chain Monte Carlo (MCMC)
procedures allow numerical computation of the
posterior distributions of parameters for a very
broad class of models (Gilks et al. 1996). As a
result, Bayesian methods are now becoming
much more popular, and are the standard
approach for many difficult problems that are not
easily addressed by traditional methods (Gelman
et al. 1995; Carlin and Louis 2000). The use of
Monte Carlo Bayesian methods in flood fre-
quency analysis, rainfall-runoff modeling, and
evaluation of environmental pathogen concen-
trations are illustrated by Wang (2001), Bates
and Campbell (2001) and Crainiceanu et al.
(2002) respectively.

Finally, a simple method of fitting flood fre-
quency curves is to plot the ordered flood values
on special probability paper and then to draw a
line through the data (Gumbel 1958). Even
today, that simple method is still attractive when
some of the smallest values are zero or unusually
small, or have been censored as will be discussed
in Sect. 6.4 (Kroll and Stedinger 1996). Plotting
the ranked annual maximum series against a
probability scale is always an excellent and rec-
ommended way to see what the data look like
and for determining whether a fitted curve is or is
not consistent with the data (Stedinger et al.
1993).

Statisticians and hydrologists have investi-
gated which of these methods most accurately
estimates the parameters themselves or the quan-
tiles of the distribution (Stedinger 1997). One also
needs to determine how accuracy should be
measured. Some studies have used average
squared deviations, some have used average
absolute weighted deviations with different
weights on under- and over-estimation, and some
have used the squared deviations of the
log-quantile estimator (Slack et al. 1975; Kroll
and Stedinger 1996). In almost all cases, one is
also interested in the bias of an estimator, which is
the average value of the estimator minus the true
value of the parameter or quantile being estimated.
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Special estimators have been developed to com-
pute design events that on average are exceeded
with the specified probability, and have the
anticipated risk of being exceeded (Beard 1960,
1997; Rasmussen and Rosbjerg 1989, 1991a, b;
Stedinger 1997; Rosbjerg and Madsen 1998).

6.3.2 Model Adequacy

After estimating the parameters of a distribution,
some check of model adequacy should be made.
Such checks vary from simple comparisons of
the observations with the fitted model using
graphs or tables, to rigorous statistical tests.
Some of the early and simplest methods of
parameter estimation were graphical techniques.
Although quantitative techniques are generally
more accurate and precise for parameter estima-
tion, graphical presentations are invaluable for
comparing the fitted distribution with the obser-
vations for the detection of systematic or unex-
plained deviations between the two. The
observed data will plot as a straight line on
probability graph paper if the postulated distri-
bution is the true distribution of the observation.
If probability graph paper does not exist for the
particular distribution of interest, more general
techniques can be used.

Let x(i) be the ith largest value in a set of
observed values {xi} so that x(1) ≤ x(2) ≤ ��� ≤
x(n). The random variable X(i) provides a rea-
sonable estimate of the pth quantile xp of the true
distribution of X for p = i/(n + 1). In fact, if one
thinks of the cumulative probability Ui associated
with the random variable X(i), Ui = FX(X(i)), then
if the observations X(i) are independent, the Ui

have a beta distribution (Gumbel 1958) with
probability density function

fUiðuÞ ¼
n!

ði� 1Þ!ðn� 1Þ! u
i�1ð1� uÞn�i

0� u� 1

ð6:71Þ

This beta distribution has mean and variance
of

E Ui½ � ¼ i

nþ 1
ð6:72aÞ

and

VarðUiÞ ¼ iðn� iþ 1Þ
ðnþ 1Þ2ðnþ 2Þ ð6:72bÞ

A good graphical check of the adequacy of a
fitted distribution G(x) is obtained by plotting the
observations x(i) versus G

−1[i/(n + 1)] (Wilk and
Gnanadesikan 1968). Even if G(x) exactly
equaled the true X-distribution FX[x], the plotted
points will not fall exactly on a 45-degree line
through the origin of the graph. This would only
occur if FX[x(i)] exactly equaled i/(n + 1) and
therefore each x(i) exactly equaled FX

−1[i/(n + 1)].
An appreciation for how far an individual

observation x(i) can be expected to deviate from
G−1[i/(n + 1)] can be obtained by plotting
G−1[ui

(0.75)] and G−1[ui
(0.25)], where ui

(0.75) and
ui
(0.25) are the upper and lower quantiles of the

distribution of Ui obtained from integrating the
probability density function in Eq. 6.71. The
required incomplete beta function is also available
in many software packages, including Microsoft
Excel. Stedinger et al. (1993) report that u(1) and
(1 – u(n)) fall between 0.052/n and 3(n + 1) with a
probability of 90%, thus illustrating the great
uncertainty associated with those values.

Figure 6.2a, b illustrate the use of this quan-
tile-quantile plotting technique by displaying the
results of fitting a normal and a lognormal
distribution to the annual maximum flows in
Table 6.2 for the Magra River, Italy, at Cala-
mazza for the years 1930–1970. The observa-
tions of X(i), given in Table 6.2, are
plotted on the vertical axis against the quantiles
G−1[i/(n + 1)] on the horizontal axis.

A probability plot is essentially a scatter plot
of the sorted observations X(i) versus some
approximation of their expected or anticipated
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value, represented by G−1(pi), where, as sug-
gested, pi = i/(n + 1). The pi values are called
plotting positions. A common alternative to i/
(n + 1) is (i − 0.5)/n, which results from a
probabilistic interpretation of the empirical dis-
tribution of the data. Many reasonable plotting
position formula have been proposed based upon
the sense in which G−1(pi) should approximate
X(i). TheWeibull formula i/(n + 1) and the Hazen
formula (i − 0.5)/n bracket most of the reason-
able choices. Popular formulas are summarized
in Stedinger et al. (1993), who also discuss the
generation of probability plots for many distri-
butions commonly employed in hydrology.

Rigorous statistical tests are available for
trying to determine whether or not it is reason-
able to assume that a given set of observations
could have been drawn from a particular family
of distributions. Although not the most powerful
of such tests, the Kolmogorov–Smirnov test
provides bounds within which every observation
should lie if the sample is actually drawn from
the assumed distribution. In particular, for
G = FX, the test specifies that

Pr G�1 i

n
� Ca


 �
�XðiÞ �G�1 i� 1

n
þCa


 �
for every i


 �
¼ 1� a

ð6:73Þ

where Cα is the critical value of the test at sig-
nificance level α. Formulas for Cα as a function
of n are contained in Table 6.5 for three cases:
(1) when G is completely specified independent
of the sample’s values; (2) when G is the normal
distribution and the mean and variance are esti-
mated from the sample with �x and s2x ; and
(3) when G is the exponential distribution and the
scale parameter is estimated as 1=ð�xÞ. Chowd-
hury et al. (1991) provide critical values for the
Gumbel and GEV distribution with known shape
parameter κ. For other distributions, the values
obtained from Table 6.5 may be used to con-
struct approximate simultaneous confidence
intervals for every X(i).

Figures 6.2 contain 90% confidence intervals
for the plotted points constructed in this manner.
For the normal distribution, the critical value of

Cα equals 0:819=ð ffiffiffi
n

p � 0:01þ 0:85=
ffiffiffiffiffi
nÞp
,

Table 6.5 Critical valuesα of Kolmogorov-Smirnov statistic as a function of sample size n
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(a)

(b)

Fig. 6.2 Plots of annual
maximum discharges of
Magra River, Italy, versus
quantiles of fitted a normal
and b lognormal
distributions
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where 0.819 corresponds to α = 0.10. For
n = 40, one computes Cα = 0.127. As can be
seen in Fig. 6.2a, the annual maximum flows are
not consistent with the hypothesis that they were
drawn from a normal distribution; three of the
observations lie outside the simultaneous 90%
confidence intervals for all points. This demon-
strates a statistically significant lack of fit. The
fitted normal distribution underestimates the
quantiles corresponding to small and large
probabilities while overestimating the quantiles
in an intermediate range. In Fig. 6.2b, deviations
between the fitted lognormal distribution and the
observations can be attributed to the differences
between FX(x(i)) and i/(n + 1). Generally, the
points are all near the 45-degree line through the
origin, and no major systematic deviations are
apparent.

The Kolmogorov–Smirnov test conveniently
provides bounds within which every observation
on a probability plot should lie if the sample is
actually drawn from the assumed distribution, and
thus is useful for visually evaluating the adequacy
of a fitted distribution. However, it is not the most
powerful test available for evaluating from which
of several families a set of observations is likely
to have been drawn. For that purpose several
other more analytical tests are available (Filliben
1975; Hosking 1990; Chowdhury et al. 1991;
Kottegoda and Rosso 1997).

The Probability Plot Correlation test is a
popular and powerful test of whether a sample
has been drawn from a postulated distribution,
though it is often weaker than alternative tests at
rejecting thin-tailed alternatives (Filliben 1975;
Fill and Stedinger 1995). A test with greater
power has a greater probability of correctly
determining that a sample is not from the pos-
tulated distribution. The Probability Plot Corre-
lation Coefficient test employs the correlation
r between the ordered observations x(i) and the
corresponding fitted quantiles wi = G−1(pi),
determined by plotting positions pi for each x(i).
Values of r near 1.0 suggest that the observations
could have been drawn from the fitted distribu-
tion: r measures the linearity of the probability

plot providing a quantitative assessment of fit. If
�x denotes the average value of the observations
and �w denotes the average value of the fitted
quantiles, then

r ¼
P

xðiÞ � �x
� �

wi � �wð ÞP
xðiÞ � �x
� �2P

wi � �wð Þ2
� 	h i0:5 ð6:74Þ

Table 6.6 provides critical values for r for the
normal distribution, or the logarithms of log-
normal variates, based upon the Blom plotting
position that has pi = (i − 3/8)/(n + 1/4). Values
for the Gumbel distribution are reproduced in
Table 6.7 for use with the Gringorten plotting
position pi = (i − 0.44)/(n + 0.12). The table
also applies to logarithms of Weibull variates
(Stedinger et al. 1993). Other tables are available
for the GEV (Chowdhury et al. 1991), the
Pearson type 3 (Vogel and McMartin 1991), and
exponential and other distributions (D’Agostion
and Stephens 1986).

L-moment ratios appear to provide
goodness-of-fit tests that are superior to both the
Kolmogorov–Smirnov and the Probability Plot
Correlation test (Hosking 1990; Chowdhury
et al. 1991; Fill and Stedinger 1995). For normal
data, the L-skewness estimator ŝ3 (or t3) would
have mean zero and Var[ŝ3] = (0.1866 + 0.8/n)/
n, allowing construction of a powerful test of
normality against skewed alternatives using the
normally distributed statistic

Z ¼ t3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1866þ 0:8=nð Þ=n

p
ð6:75Þ

with a reject region |Z| > zα/2.
Chowdhury et al. (1991) derive the sampling

variance of the L-CV and L-skewness estimators
ŝ2 and ŝ3 as a function of κ for the GEV distri-
bution. These allow construction of a test of
whether a particular data set is consistent with a
GEV distribution with a regionally estimated
value of κ, or a regional κ and CV. Fill and
Stedinger (1995) show that the ŝ3 L-skewness
estimator provides a test for the Gumbel versus a
general GEV distribution using the normally
distributed statistic
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Z ¼ ðŝ3 � 0:17Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2326þ 0:70=nð Þ=n

p
ð6:76Þ

with a reject region |Z| > zα/2.
The literature is full of goodness-of-fit tests.

Experience indicates that among the better tests
there is often not a great deal of difference
(D’Agostion and Stephens 1986). Generation of
a probability plot is most often a good idea
because it allows the modeler to see what the
data look like and where problems occur. The
Kolmogorov–Smirnov test helps the eye interpret
a probability plot by adding bounds to a graph
illustrating the magnitude of deviations from a
straight line that are consistent with expected
variability. One can also use quantiles of a beta
distribution to illustrate the possible error in
individual plotting positions, particularly at the
extremes where that uncertainty is largest. The

probability plot correlation test is a popular and
powerful goodness-of-fit statistic. Goodness-of-
fit tests based upon sample estimators of the
L-skewness ŝ3 for the normal and Gumbel dis-
tribution provide simple and useful tests that are
not based on a probability plot.

6.3.3 Normal and Lognormal
Distributions

The normal distribution and its logarithmic
transformation, the lognormal distribution, are
arguably the most widely used distributions in
science and engineering. The density function of
a normal random variable is

fXðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � 1
2r2

ðx� lÞ2

 �

for�1\x\þ1
ð6:77Þ

Table 6.6 Lower critical values of the probability plot correlation test statistic for the normal distribution using
pi = (i − 3/8)/(n + 1/4) (Vogel 1987)
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where μ and σ2 are equivalent to μX and r2X , the
mean and variance of X. Interestingly, the maxi-
mum likelihood estimators of μ and σ2 are almost
identical to the moment estimates �x and s2X .

The normal distribution is symmetric about its
mean μX and admits values from −∞ to +∞.
Thus it is not always satisfactory for modeling
physical phenomena such as streamflows or
pollutant concentrations, which are necessarily
nonnegative and have skewed distributions.
A frequently used model for skewed distributions
is the lognormal distribution. A random variable
X has a lognormal distribution if the natural
logarithm of X, ln(X), has a normal distribution.
If X is lognormally distributed, then by definition
ln(X) is normally distributed, so that the density
function of X is

fXðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � 1
2r2

‘nðxÞ � l½ �2
� �

dð‘nxÞ
dx

¼ 1

x
ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � 1
2r2

‘nðx=gÞ½ �2
� �

ð6:78Þ

for x > 0 and μ = ln(η). Here η is the median of the
X-distribution. The coefficient of skewness for the
three-parameter lognormal distribution is given by

c ¼ 3tþ t3 where t ¼ ½exp r2
� �� 1�0:5

ð6:79Þ

A lognormal random variable takes on values
in the range [0, +∞]. The parameter μ deter-
mines the scale of the X-distribution whereas σ2

Table 6.7 Lower critical values of the probability plot correlation test statistic for the Gumbel distribution using
pi = (i − 0.44)/(n + 0.12) (Vogel 1987)
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determines the shape of the distribution. The
mean and variance of the lognormal distribution
are given in Eq. 6.65. Figure 6.3 illustrates
the various shapes the lognormal probability
density function can assume. It is highly skewed
with a thick right-hand tail for σ > 1, and
approaches a symmetric normal distribution as
σ → 0. The density function always has a value
of zero at x = 0. The coefficient of variation
and skew are

CVX ¼ ½expðr2Þ � 1�1=2
cX ¼ 3CVX þCV3

X

ð6:80Þ

The maximum likelihood estimates of μ and
σ2 are given in Eq. 6.63 and the moment esti-
mates in Eq. 6.66. For reasonable-size samples,
the maximum likelihood estimates are generally
performed as well or better than the moment
estimates (Stedinger 1980).

The data in Table 6.2 were used to calculate
the parameters of the lognormal distribution that
would describe the flood flows and the results are
reported after Eq. 6.66. The two-parameter
maximum likelihood and method of moments
estimators identify parameter estimates for which
the distribution skewness coefficients are 2.06

and 1.72, which is substantially greater than the
sample skew of 0.712.

A useful generalization of the two-parameter
lognormal distribution is the shifted lognormal or
three-parameter lognormal distribution obtained
when ln(X − τ) is described by a normal distri-
bution, where X ≥ τ. Theoretically, τ should be
positive if for physical reasons X must be posi-
tive; practically, negative values of τ can be
allowed when the resulting probability of nega-
tive values of X is sufficiently small.

Unfortunately, maximum likelihood estimates
of the parameters μ, σ2, and τ are poorly behaved
because of irregularities in the likelihood func-
tion (Giesbrecht and Kempthorne 1976). The
method of moments does fairly well when the
skew of the fitted distribution is reasonably
small. A method that does almost as well as the
moment method for low-skew distributions, and
much better for highly skewed distributions,
estimates τ by

ŝ ¼ xð1ÞxðnÞ � x̂20:50
xð1Þ þ xðnÞ � 2x̂0:50

ð6:81Þ

provided that x(1) + x(n) − 2x̂ 0.50 > 0, where x(1)
and x(n) are the smallest and largest observations
and x̂0:50 is the sample median (Stedinger 1980;

Fig. 6.3 Lognormal
probability density
functions with various
standard deviations σ

236 6 An Introduction to Probability, Statistics, and Uncertainty



Hoshi et al. 1984). If x(1) + x(n) − 2x̂0:50 < 0, the
sample tends to be negatively skewed and a
three-parameter lognormal distribution with a
lower bound cannot be fit with this method.
Good estimates of μ and σ2 to go with ŝ in
Eq. 6.81 are (Stedinger 1980)

l̂ ¼ ‘n
�x� ŝffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2x= �x� ŝð Þ2
q
264

375
r̂2 ¼ ‘n 1þ s2x

�x� ŝð Þ2
" # ð6:82Þ

For the data in Table 6.2, Eq. 6.82 yields the
hybrid moment-of-moments estimates for the
three-parameter lognormal distribution

l̂ ¼ 7:606

r̂2 ¼ 0:1339 ¼ ð0:3659Þ2
ŝ ¼ �600:1

This distribution has a coefficient of skewness
of 1.19, which is more consistent with the sample
skewness estimator than was the value obtained
when a two-parameter lognormal distribution
was fit to the data. Alternatively, one can esti-
mate µ and σ2 by the sample mean and variance
of ln(X − ŝ) that yields the hybrid maximum
likelihood estimates

l̂ ¼ 7:605

r̂2 ¼ 0:1407 ¼ ð0:3751Þ2
ŝ ¼ �600:1

The two sets of estimates are surprisingly
close in this instance. In this second case, the
fitted distribution has a coefficient of skewness of
1.22.

Natural logarithms have been used here. One
could have just as well used base 10 common
logarithms to estimate the parameters; however,
in that case the relationships between the log
space parameters and the real-space moments
change slightly (Stedinger et al. 1993,
Eq. 18.2.8).

6.3.4 Gamma Distributions

The gamma distribution has long been used to
model many natural phenomena, including daily,
monthly, and annual streamflows as well as flood
flows (Bobee and Ashkar 1991). For a gamma
random variable X,

fXðxÞ ¼ bj j
CðaÞ bxð Þa�1e�bx bx� 0

lX ¼ a
b

r2X ¼ a

b2

cX ¼ 2ffiffiffi
a

p ¼ 2CVX

ð6:83Þ

The gamma function, Γ(α), for integer α is
(α − 1)!. The parameter α > 0 determines the
shape of the distribution; β is the scale parameter.
Figure 6.4 illustrates the different shapes that the
probability density function for a gamma variable
can assume. As α → ∞, the gamma distribution
approaches the symmetric normal distribution,
whereas for 0 < α < 1, the distribution has a
highly asymmetric J-shaped probability density
function whose value goes to infinity as x ap-
proaches zero.

The gamma distribution arises naturally in
many problems in statistics and hydrology. It
also has a very reasonable shape for such non-
negative random variables as rainfall and
streamflow. Unfortunately, its cumulative distri-
bution function is not available in closed form,
except for integer α, though it is available in
many software packages including Microsoft
Excel. The gamma family includes a very special
case: the exponential distribution is obtained
when α = 1.

The gamma distribution has several general-
izations (Bobee and Ashkar 1991). If a constant τ
is subtracted from X so that (X − τ) has a gamma
distribution, the distribution of X is a
three-parameter gamma distribution. This is also
called a Pearson type 3 distribution, because the
resulting distribution belongs to the third type of
distributions suggested by the statistician
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Karl Pearson. Another variation is the
log-Pearson type 3 distribution obtained by fit-
ting the logarithms of X with a Pearson type 3
distribution. The log-Pearson distribution is dis-
cussed further in the next section.

The method of moments may be used to
estimate the parameters of the gamma distribu-
tion. For the three-parameter gamma distribution

ŝ ¼ �x� 2
sX
ĉX


 �
â ¼ 4

ĉXð Þ2

b̂ ¼ 2
sXcX

ð6:84Þ

where �x; s2X; and ĉX are estimates of the mean,
variance, and coefficient of skewness of the dis-
tribution of X (Bobee and Robitaille 1977).

For the two-parameter gamma distribution,

â ¼ �xð Þ2
s2x

b̂ ¼ �x

s2x

ð6:85Þ

Again the flood record in Table 6.2 can be
used to illustrate the different estimation

procedures. Using the first three sample
moments, one would obtain for the three-
parameter gamma distribution the parameter
estimates

ŝ ¼ �735:6

â ¼ 7:888

b̂ ¼ 0:003452 ¼ 1=289:7

Using only the sample mean and variance
yields the method of moment estimators of the
parameters of the two-parameter gamma distri-
bution (τ = 0)

â ¼ 3:627

b̂ ¼ 0:002341 ¼ 1=427:2

The fitted two-parameter gamma distribution
has a coefficient of skewness γ of 1.05 whereas
the fitted three-parameter gamma reproduces the
sample skew of 0.712. As occurred with the
three-parameter lognormal distribution, the esti-
mated lower bound for the three-parameter
gamma distribution is negative (ŝ ¼ �735:6)
resulting in a three-parameter model that has a
smaller skew coefficient than was obtained with
the corresponding two-parameter model. The

reciprocal of b̂ is often reported. While b̂ has

Fig. 6.4 The gamma
distribution functions for
various values of the shape
parameter α
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inverse x-units, 1/b̂ is a natural scale parameter
that has the same units as x and thus can be easier
to interpret.

Studies by Thom (1958) and Matalas and
Wallis (1973) have shown that maximum likeli-
hood parameter estimates are superior to the
moment estimates. For the two-parameter gamma
distribution, Greenwood and Durand (1960) give
approximate formulas for the maximum likeli-
hood estimates (also Haan 1977). However, the
maximum likelihood estimators are often not
used in practice because they are very sensitive
to the smallest observations that sometimes suffer
from measurement error and other distortions.

When plotting the observed and fitted quan-
tiles of a gamma distribution, an approximation
to the inverse of the distribution function is often
useful. For |γ| ≤ 3, the Wilson–Hilferty
transformation

xG ¼ lþ r
2
c

1þ cxN
6

� c2

36


 �3

� 2
c

" #
ð6:86Þ

gives the quantiles xG of the gamma distribution
in terms of xN, the quantiles of the standard
normal distribution. Here μ, σ, and γ are the
mean, standard deviation, and coefficient of
skewness of xG. Kirby (1972) and Chowdhury
and Stedinger (1991) discuss this and other more
complicated but more accurate approximations.

Fortunately the availability of excellent approx-
imations of the gamma cumulative distribution
function and its inverse in Microsoft Excel and
other packages has reduced the need for such
simple approximations.

6.3.5 Log-Pearson Type 3
Distribution

The log-Pearson type 3 distribution (LP3)
describes a random variable whose logarithms
have a Pearson type 3 distribution. This distri-
bution has found wide use in modeling flood
frequencies and has been recommended for that
purpose (IACWD 1982). Bobee (1975), Bobee
and Ashkar (1991) and Griffis and Stedinger
(2007a) discuss the unusual shapes that this
hybrid distribution may take allowing negative
values of β. The LP3 distribution has a proba-
bility density function given by.

fXðxÞ ¼ jbjfb½lnðxÞ � n�ga�1

expf�b½lnðxÞ � n�g=fxCðaÞg ð6:87Þ

with α > 0, and β either positive or negative. For
β < 0, values are restricted to the range
0 < x < exp(ξ). For β > 0, values have a lower
bound so that exp(ξ) < X. Figure 6.5 illustrates
the probability density function for the LP3

Fig. 6.5 Log-Pearson type
3 probability density
functions for different
values of coefficient of
skewness γ
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distribution as a function of the skew γ of the P3
distribution describing ln(X), with σlnX = 0.3.
The LP3 density function for |γ| ≤ 2 can assume
a wide range of shapes with both positive and
negative skews. For |γ| = 2, the log-space P3
distribution is equivalent to an exponential dis-
tribution function which decays exponentially as
x moves away from the lower bound (β > 0) or
upper bound (β < 0): as a result the LP3 distri-
bution has a similar shape. The space with
−1 < γ may be more realistic for describing
variables whose probability density function
becomes thinner as x takes on large values. For
γ = 0, the 2-parameter lognormal distribution is
obtained as a special case.

The LP3 distribution has mean and variance

lX ¼ en
b

b� 1


 �a

r2X ¼ e2n
b

b� 2


 �a

� b
b� 1


 �2a
( )

for b[ 2; or b\0:

ð6:88Þ

For 0 < β < 2, the variance is infinite.
These expressions are seldom used, but they

do reveal the character of the distribution.
Figures 6.6 and 6.7 provide plots of the
real-space coefficient of skewness and coefficient

of variation of a log-Pearson type 3 variate X as a
function of the standard deviation σY and coeffi-
cient of skew γY of the log-transformation Y = ln
(X). Thus the standard deviation σY and skew γY
of Y are in log space. For γY = 0, the log-Pearson
type 3 distribution reduces to the two-parameter
lognormal distribution discussed above, because
in this case Y has a normal distribution. For the
lognormal distribution, the standard deviation σY
serves as the sole shape parameter, and the
coefficient of variation of X for small σY is just
σY. Figure 6.7 shows that the situation is more
complicated for the LP3 distribution. However,
for small σY, the coefficient of variation of X is
approximately σY.

Again, the flood flow data in Table 6.2 can be
used to illustrate parameter estimation. Using
natural logarithms, one can estimate the
log-space moments with the standard estimators
in Eqs. 6.39a that yield

l̂ ¼ 7:202

r̂ ¼ 0:5625

ĉ ¼ �0:337

For the LP3 distribution, analysis generally
focuses on the distribution of the logarithms
Y = ln(X) of the flows, which would have a

Fig. 6.6 Real-space
coefficient of skewness γX
for LP3 distributed X as a
function of log-space
standard deviation σY and
coefficient of skewness γY
where Y = ln(X)
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Pearson type 3 distribution with moments µY, σY
and γY (IACWD 1982; Bobée and Ashkar 1991).
As a result, flood quantiles are calculated as

xp ¼ expflY þ rYKp½cY �g ð6:89Þ

where Kp[γY] is a frequency factor corresponding
to cumulative probability for skewness coeffi-
cient γY. (Kp[γY] corresponds to the quantiles of a
three-parameter gamma distribution with zero
mean, unit variance, and skewness coefficient γY.)

Since 1967, the recommended procedure for
flood frequency analysis by federal agencies in
the United States uses this distribution. Current
guidelines in Bulletin 17B (IACWD 1982) sug-
gest that the skew γY be estimated by a weighted
average of the at-site sample skewness coefficient
and a regional estimate of the skewness coeffi-
cient. Griffis and Stedinger (2007b) compare a
wide range of methods that have been recom-
mended for fitting the LP3 distribution.

6.3.6 Gumbel and GEV Distributions

The annual maximum flood is the largest flood
flow during a year. One might expect that the
distribution of annual maximum flood flows

would belong to the set of extreme value distri-
butions (Gumbel 1958; Kottegoda and Rosso
1997). These are the distributions obtained in the
limit, as the sample size n becomes large, by
taking the largest of n independent random
variables. The Extreme Value (EV) type I dis-
tribution or Gumbel distribution has often been
used to describe flood flows. It has the cumula-
tive distribution function

FXðxÞ ¼ expf� exp½�ðx� nÞ=a�g ð6:90Þ

with mean and variance of

lX ¼ nþ 0:5772a

r2X ¼ p2a2=6 ffi 1:645a2
ð6:91Þ

Its skewness coefficient has the fixed value
equal to γX = 1.1396.

The generalized extreme value (GEV) distri-
bution is a general mathematical expression that
incorporates the type I, II, and III extreme value
(EV) distributions for maxima (Gumbel 1958;
Hosking et al. 1985). In recent years, it has been
used as a general model of extreme events
including flood flows, particularly in the context
of regionalization procedures (NERC 1975;
Stedinger and Lu 1995; Hosking and Wallis

Fig. 6.7 Real-space
coefficient of variation CVX

for LP3 distributed X as a
function of log-space
standard deviation σY and
coefficient of skewness γY
where Y = ln(X)
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1997). The GEV distribution has cumulative
distribution function

FXðxÞ ¼ expf�½1� jðx� nÞ=a�1=jg for j 6¼ 0

ð6:92Þ

For κ > 0, floods must be less than the upper
bound for κ < 0, ξ < x < ∞, whereas for κ > 0,
ξ < x < ξ + α/κ (Hosking and Wallis 1987). The
mean, variance, and skewness coefficient are (for
κ > −1/3)

lX ¼ nþða=jÞ½1� Cð1þ jÞ�;
r2X ¼ ða=jÞ2fCð1þ 2jÞ � ½Cð1þ jÞ�2g
cX ¼ SignðjÞf�Cð1þ 3jÞþ 3Cð1þ jÞCð1þ 2jÞ

� 2½Cð1þ jÞ�3g=fCð1þ 2jÞ � ½Cð1þ jÞ�2�g3=2

ð6:93Þ

where Γ(1 + κ) is the classical gamma function.
The Gumbel distribution is obtained when κ = 0.
For |κ| < 0.3, the general shape of the GEV dis-
tribution is similar to the Gumbel distribution,
though the right-hand tail is thicker for κ < 0, and
thinner for κ > 0, as shown in Figs. 6.8 and 6.9.

The parameters of the GEV distribution are
easily computed using L-moments and the rela-
tionships (Hosking et al. (1985)

j ¼ 7:8590cþ 2:9554c2

a ¼ jk2=½Cð1þ jÞð1� 2�jÞ�
n ¼ k1 þða=jÞ½Cð1þ jÞ � 1�

ð6:94Þ

where

c ¼ 2k2=ðk3 þ 3k2Þ � lnð2Þ= lnð3Þ
¼ ½2=ðs3 þ 3Þ� � lnð2Þ= lnð3Þ

As one can see, the estimator of the shape
parameter κ will depend only upon the
L-skewness estimator ŝ3. The estimator of the
scale parameter α will then depend on the esti-
mate of κ and of λ2. Finally, one must also use
the sample mean λ1 (Eq. 6.48) to determine the
estimate of the location parameter ξ.

Using the flood data in Table 6.2 and the
sample L-moments computed in Sect. 6.2, one
obtains first

c ¼ �0:000896

that yields

ĵ ¼ �0:007036

n̂ ¼ 1165:20

â ¼ 657:29

Fig. 6.8 GEV density
distributions for selected
shape parameter κ values
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The small value of the fitted κ parameter
means that the fitted distribution is essentially a
Gumbel distribution. Here ξ is a location
parameter, not a lower bound, so its value
resembles a reasonable x value.

Madsen et al. (1997a) show that moment esti-
mators can provide more precise quantile esti-
mators. Yet Martins and Stedinger (2001a, b)
found that with occasional uninformative sam-
ples, the MLE estimator of κ could be entirely
unrealistic resulting in absurd quantile estimators.
However the use of a realistic prior distribution on
κ yielded better generalized maximum likelihood
estimators (GLME) than moment and L-moment
estimators over the range of κ of interest.

The GMLE estimators are obtained my
maximizing the log-likelihood function, aug-
mented by a prior density function on κ. A prior
distribution that reflects general worldwide geo-
physical experience and physical realism is in the
form of a beta distribution

pðjÞ ¼ CðpÞCðqÞð0:5þ jÞp�1

ð0:5� jÞq�1=Cðpþ qÞ
ð6:95Þ

for −0.5 < κ < +0.5 with p = 6 and q = 9.
Moreover, this prior assigns reasonable proba-
bilities to the values of κ within that range. For κ
outside the range −0.4 to +0.2 the resulting GEV
distributions do not have density functions con-
sistent with flood flows and rainfall (Martins and

Stedinger 2000). Other estimators implicitly have
similar constraints. For example, L-moments
restricts κ to the range κ > −1, and the method
of moments estimator employs the sample stan-
dard deviation so that κ > −0.5. Use of the sam-
ple skew introduces the constraint that κ > −0.3.

Then given a set of independent observations
{x1, …, xn} drawn for a GEV distribution, the
generalized likelihood function is

lnfLðn; a;jjx1; . . .; xnÞg

¼ �n lnðaÞþ
Xn
i¼1

1
j
� 1


 �
lnðyiÞ � ðyiÞ1=j


 �
þ ln½pðjÞ�

with

yi ¼ ½1� ðj=aÞðxi � nÞ� ð6:96Þ

For feasible values of the parameters yi is
greater than 0 (Hosking et al. 1985). Numerical
optimization of the generalized likelihood func-
tion is often aided by the additional constraint
that min{y1, …, yn } ≥ ε for some small ε > 0 so
as to prohibit the search generating infeasible
values of the parameters for which the likelihood
function is undefined. The constraint should not
be binding at the final solution.

The data in Table 6.2 again provide a conve-
nient data set for illustrating parameter estimators.
The L-moment estimators were used to generate
an initial solution. Numerical optimization of the

Fig. 6.9 Right-hand tails
of GEV distributions
shown in Fig. 6.8

6.3 Distributions of Random Events 243



likelihood function Eq. 6.96 yielded the maxi-
mum likelihood estimators of the GEV
parameters

ĵ ¼ �0:0359

n̂ ¼ 1165:4

â ¼ 620:2

Similarly, use of the geophysical prior
(Eq. 6.95) yielded the generalized maximum
likelihood estimators

ĵ ¼ �0:0823

n̂ ¼ 1150:8

â ¼ 611:4

Here the record length of 40 years is too short
to reliably define the shape parameter κ so that
result of using the prior is to increase κ slightly
toward the mean of the prior. The other two
parameters adjust accordingly.

6.3.7 L-Moment Diagrams

This chapter has presented several families of
distributions. The L-moment diagram in
Fig. 6.10 illustrates the relationships between the
L-kurtosis (τ3) and L-skewness (τ2) for a number
of the families of distributions often used in

hydrology. It shows that distributions with the
same coefficient of skewness still differ in the
thickness of their tails, described by their kurto-
sis. Tail shapes are important if an analysis is
sensitive to the likelihood of extreme events.

The normal and Gumbel distributions have a
fixed shape and thus are presented by single
points that fall on the Pearson type 3 (P3) curve
for γ = 0, and the generalized extreme value
(GEV) curve for κ = 0, respectively. The
L-kurtosis/L-skewness relationships for the
two-parameter and three-parameter gamma or P3
distributions are identical, as they are for the
two-parameter and three-parameter lognormal
distributions. This is because the addition of a
location parameter does not change the range of
fundamental shapes that can be generated.
However, for the same skewness coefficient, the
lognormal distribution has a larger kurtosis than
the gamma or P3 distribution and thus assigns
larger probabilities to the largest events.

As the skewness of the lognormal and gamma
distributions approaches zero, both distributions
become normal and their kurtosis/skewness
relationships merge. For the same L-skewness,
the L-kurtosis of the GEV distribution is gener-
ally larger than that of the lognormal distribu-
tion. For positive κ yielding almost symmetric or
even negatively skewed GEV distributions, the
GEV has a smaller kurtosis than the three-
parameter lognormal distribution. The latter can

Fig. 6.10 Relationships
between L-skewness and
L-kurtosis for various
distributions
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be negatively skewed when τ is used as an upper
bound.

Figurer 6.10 also includes the three-parameter
generalized Pareto distribution, whose cdf is

FXðxÞ ¼ 1� ½1� jðx� nÞ=a�1=j ð6:97Þ

(Hosking and Wallis 1997). For κ = 0 it cor-
responds to the exponential distribution (gamma
with α = 1). This point is where the Pareto and
P3 distribution L-kurtosis/L-skewness lines
cross. The Pareto distribution becomes increas-
ing more skewed for κ < 0, which is the range of
interest in hydrology. The generalized Pareto
distribution with κ < 0 is often used to describe
peaks-over-a-threshold and other variables
whose density function has its maximum at their
lower bound. In that range for a given
L-skewness, the Pareto distribution always has a
larger kurtosis than the gamma distribution. In
these cases the α parameter for the gamma dis-
tribution would need to be in the range
0 < α < 1, so that both distributions would be
J-shaped.

As shown in Fig. 6.10, the GEV distribution
has a thicker right-hand tail than either the
gamma/Pearson type 3 distribution or the log-
normal distribution.

6.4 Analysis of Censored Data

There are many instances in water resources
planning where one encounters censored data.
A data set is censored if the values of observa-
tions that are outside a specified range of values
are not specifically reported (David 1981). For
example, in water quality investigations many
constituents have concentrations that are reported
as <T, where T is a reliable detection threshold
(MacBerthouex and Brown 2002). Thus the
concentration of the water quality variable of
interest was too small to be reliably measured.
Likewise, low-flow observations and rainfall
depths can be rounded to or reported as zero.
Several approaches are available for analysis
of censored data sets including probability
plots and probability plot regression, conditional

probability models, and maximum likelihood
estimators (Haas and Scheff 1990; Helsel 1990;
Kroll and Stedinger 1996; MacBerthouex and
Brown 2002).

Historical and physical paleoflood data pro-
vide another example of censored data. Before the
beginning of a continuous measurement program
on a stream or river, the stages of unusually large
floods can be estimated based on the memories of
humans who have experienced these events
and/or physical markings in the watershed
(Stedinger and Baker 1987). Before continuous
measurements were taken that provided this
information, the annual maximum floods that
were not unusual were not recorded. These
missing data are censored data. They cover peri-
ods between occasionally large floods that have
been recorded or that have left some evidence of
their occurrence (Stedinger and Cohn 1986).

The discussion below addresses probability
plot methods for use with censored data. Proba-
bility plot methods have a long history of use
with censored data because they are relatively
simple to use and to understand. Moreover,
recent research has shown that they are relatively
efficient when the majority of values are
observed, and unobserved values are known only
to be below (or above) some detection limit or
perception threshold that serves as a lower (or
upper) bound. In such cases, probability plot
regression estimators of moments and quantiles
are as accurate as maximum likelihood estima-
tors. They are almost as good as estimators
computed with complete samples (Helsel and
Cohn 1988; Kroll and Stedinger 1996).

Perhaps the simplest method for dealing with
censored data is adoption of a conditional prob-
ability model. Such models implicitly assume
that the data are drawn from one of two classes of
observations: those below a single threshold, and
those above the threshold. This model is appro-
priate for simple cases where censoring occurs
because small observations are recorded as
“zero,” as often happens with low-flow, low
pollutant concentration, and some flood records.
The conditional probability model introduces an
extra parameter P0 to describe the probability
that an observation is “zero.” If r of a total of
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n observations were observed because they
exceeded the threshold, then P0 is estimated as
(n − r)/n. A continuous distribution GX(x) is
derived for the strictly positive “nonzero” values
of X. Then the parameters of the G distribution
can be estimated using any procedure appropriate
for complete uncensored samples. The uncondi-
tional cumulative distribution function
(cdf) FX(x) for any value x > 0, is then

FXðxÞ ¼ P0 þ 1� P0ð ÞGðxÞ ð6:98Þ

This model completely decouples the value of
P0 from the parameters that describe the
G distribution.

Section 6.3.2 discusses probability plots and
plotting positions useful for graphical displaying
of data to allow a visual examination of the
empirical frequency curve. Suppose that among
n samples a detection limit is exceeded by the
observations r times. The natural estimator of the
exceedance probability P0 of the perception
threshold is again (n − r)/n. If the r values that
exceeded the threshold are indexed by i = 1, …,
r, wherein x(r) is the largest, then reasonable
plotting positions within the interval [P0, 1] arerno

pi ¼ P0 þð1� P0Þ ði� aÞ= rþ 1� 2að Þ½ �
ð6:99Þ

where a defines the plotting position that is used.
Helsel and Cohn (1988) show that reasonable
choices for a generally make little difference.
Letting a = 0 is reasonable (Hirsch and Stedinger
1987). Both papers discuss development of
plotting positions when there are different
thresholds, as occurs when the analytical preci-
sion of instrumentation changes over time. If
there are many exceedances of the threshold so
that r ≫ (1 − 2a), pi is indistinguishable from

p0i ¼ iþðnþ rÞ � a½ �= nþ 1� 2að Þ: ð6:100Þ

where again, i = 1, …, r. These values corre-
spond to the plotting positions that would be
assigned to the largest r observations in a com-
plete sample of n values.

The idea behind the probability plot regres-
sion estimators is to use the probability plot for
the observed data to define the parameters of the
whole distribution. And if a sample mean, sam-
ple variance, or quantiles are needed, then the
distribution defined by the probability plot is
used to fill in the missing (censored) observations
so that standard estimators of the mean, of the
standard deviation, and of the quantiles can be
employed. Such fill-in procedures are efficient
and relatively robust for fitting a distribution and
estimating various statistics with censored water
quality data when a modest number of the
smallest observations are censored (Helsel 1990;
Kroll and Stedinger 1996).

Unlike the conditional probability approach,
here the below threshold probability P0 is linked
with the selected probability distribution for the
above-threshold observations. The observations
below the threshold are censored but are in all
other respects envisioned as coming from the
same distribution that is used to describe the
observed above-threshold values.

When water quality data are well described by
a lognormal distribution, available values ln
[X(1)] ≤ ��� ≤ ln[X(r)] can be regressed upon
F−1[pi] = µ + σF−1[pi] for i = 1, …, r, where
the r largest observation in a sample of size n are
available. If regression yields constant m and
slope s, corresponding to population moments µ
and σ, a good estimator of the pth quantile is

xp ¼ exp mþ szp
� � ð6:101Þ

where zp is the pth quantile of the standard nor-
mal distribution. To estimate sample means and
other statistics one can fill in the missing obser-
vations with

xðjÞ ¼ exp yðjÞf g for j ¼ 1; . . . ; ðn� rÞ
ð6:102Þ

where

yðjÞ ¼ mþ sF�1 P0 j� að Þ= n� rþ 1� 2að Þ½ �f g
ð6:103Þ
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Once a complete sample is constructed, stan-
dard estimators of the sample mean and variance
can be calculated, as can medians and ranges. By
filling in the missing small observations, and
then using complete-sample estimators of statis-
tics of interest, the procedure is relatively
insensitive to the assumption that the observa-
tions actually have a lognormal distribution.

Maximum likelihood estimators are quite
flexible, and are more efficient than plotting
position methods when the values of the obser-
vations are not recorded because they are below
the perception threshold (Kroll and Stedinger
1996). Maximum likelihood methods allow the
observations to be represented by exact values,
ranges, and various thresholds that either were or
were not exceeded at various times. This can be
particularly important with historical flood data
sets because the magnitudes of many historical
floods are not recorded precisely, and it may be
known that a threshold was never crossed or was
crossed at most once or twice in a long period
(Stedinger and Cohn 1986; Stedinger 2000;
O’Connell et al. 2002). Unfortunately, maximum
likelihood estimators for the LP3 distribution
have proven to be problematic. However,
expected moment estimators seem to do as well
as MLEs with the LP3 distribution (Cohn et al.
1997, 2001).

While often a computational challenge, max-
imum likelihood estimators for complete sam-
ples, and samples with some observations
censored, pose no conceptual challenge. One
need to only write the maximum likelihood
function for the data and proceed to seek the
parameter values that maximizes that function.
Thus if F(x|θ) and f(x|θ) are the cumulative dis-
tribution and probability density functions that
should describe the data, and θ are its parameters,
then for the case described above wherein
x1, …, xr are r of n observations that exceeded a
threshold T, the likelihood function would be
(Stedinger and Cohn 1986)

Lðhjr; n; x1; . . .; xrÞ ¼ FðT jhÞðn�rÞf ðx1jhÞf ðx2jhÞ . . . f ðxrjhÞ
ð6:104Þ

Here (n − r) observations were below the
threshold T, and the probability an observation is
below T is F(T|θ) which then appears in
Eq. 6.104 to represent that observation. In addi-
tion the specific values of the r observations
x1, …, xr are available. The probability an
observation is in a small interval of width δr

around xi is δ
r f(xi|θ). Thus strictly speaking the

likelihood function also includes a term δr. Here
what is known of the magnitude of all of the
n observations is included in the likelihood
function in the appropriate way. If all that were
known of some observation was that it exceeded
a threshold M, then that value should be repre-
sented by a term [1 − F(M|θ)] in the likelihood
function. Similarly, if all that was known was
that the value was between L and M, then a term
[F(M|θ) − F(L|θ)] should be included in the
likelihood function. Different thresholds can be
used to describe different observations, corre-
sponding to changes in the quality of measure-
ment procedures. Numerical methods can be
used to identify the parameter vector that maxi-
mizes the likelihood function for the data
available.

6.5 Regionalization
and Index-Flood Method

Research has demonstrated the potential advan-
tages of “index flood” procedures (Lettenmaier
et al. 1987; Stedinger and Lu 1995; Hosking and
Wallis 1997; Madsen and Rosbjerg 1997a). The
idea behind the index-flood approach is to use
the data from many hydrologically “similar”
basins to estimate a dimensionless flood distri-
bution (Wallis 1980). Thus this method “substi-
tutes space for time” using regional information
to compensate for having relatively short records
at each site. The concept underlying the
index-flood method is that the distributions of
floods at different sites in a “region” are the same
except for a scale or index-flood parameter that
reflects the size, rainfall, and runoff characteris-
tics of each watershed. Research is revealing
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when this assumption may be reasonable. Often a
more sophisticated multi-scaling model is
appropriate (Gupta and Dawdy 1995a; Robinson
and Sivapalan 1997).

Generally the mean is employed as the index
flood. The problem of estimating the pth quantile
xp is then reduced to estimating the mean for a
site µx, and the ratio xp/µx of the pth quantile to
the mean. The mean can often be estimated
adequately with the record available at a site,
even if that record is short. The indicated ratio is
estimated using regional information. The British
Flood Studies Report (NERC 1975) calls these
normalized flood distributions growth curves.

Key to the success of the index-flood
approach is identification of sets of basins that
have similar coefficients of variation and skew.
Basins can be grouped geographically, as well as
by physiographic characteristics including drai-
nage area and elevation. Regions need not be
geographically contiguous. Each site can poten-
tially be assigned its own unique region con-
sisting of sites with which it is particularly
similar (Zrinji and Burn 1994), or regional
regression equations can be derived to compute
normalized regional quantiles as a function of a
site’s physiographic characteristics and other
statistics (Fill and Stedinger 1998).

Clearly the next step for regionalization pro-
cedures, such as the index-flood method, is to
move away from estimates of regional parame-
ters that do not depend upon basin size and other
physiographic parameters. Gupta et al. (1994)
argue that the basic premise of the index-flood
method, that the coefficient of variation of floods
is relatively constant, is inconsistent with the
known relationships between the coefficient of
variation CV and drainage area (see also
Robinson and Sivapalan 1997). Recently, Fill
and Stedinger (1998) built such a relationship
into an index-flood procedure using a regression
model to explain variations in the normalized
quantiles. Tasker and Stedinger (1986) illustrated
how one might relate log-space skew to physio-
graphic basin characteristics (see also Gupta and
Dawdy 1995b). Madsen and Rosbjerg (1997b)
did the same for a regional model of κ for the

GEV distribution. In both studies, only a binary
variable representing “region” was found useful
in explaining variations in these two shape
parameters.

Once a regional model of alternative shape
parameters is derived, there may be some
advantage to combining such regional estimators
with at-site estimators employing an empirical
Bayesian framework or some other weighting
schemes. For example, Bulletin 17B recom-
mends weighting at-site and regional skewness
estimators, but almost certainly places too much
weight on the at-site values (Tasker and
Stedinger 1986). Examples of empirical Baye-
sian procedures are provided by Kuczera (1982),
Madsen and Rosbjerg (1997b) and Fill and
Stedinger (1998). Madsen and Rosbjerg’s
(1997b) computation of a κ-model with a New
Zealand data set demonstrates how important it
can be to do the regional analysis carefully,
taking into account the cross-correlation among
concurrent flood records.

When one has relatively few data at a site, the
index-flood method is an effective strategy for
deriving flood frequency estimates. However, as
the length of the available record increases it
becomes increasingly advantageous to also use
the at-site data to estimate the coefficient of
variation as well. Stedinger and Lu (1995) found
that the L-moment/GEV index-flood method did
quite well for “humid regions” (CV ≈ 0.5) when
n < 25, and for semiarid regions (CV ≈ 1.0) for
n < 60, if reasonable care is taken in selecting
the stations to be included in a regional analysis.
However, with longer records it became advan-
tageous to use the at-site mean and L-CV with a
regional estimator of the shape parameter for a
GEV distribution. In many cases this would
be roughly equivalent to fitting a Gumbel dis-
tribution corresponding to a shape parameter
κ = 0. Gabriele and Arnell (1991) develop the
idea of having regions of different size for dif-
ferent parameters. For realistic hydrologic
regions, these and other studies illustrate the
value of regionalizing estimators of the shape,
and often the coefficient of variation of a
distribution.
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6.6 Partial Duration Series

Two general approaches are available for mod-
eling flood and precipitation series (Langbein
1949). An annual maximum series considers
only the largest event in each year. A partial
duration series (PDS) or peaks-over-threshold
(POT) approach includes all “independent” peaks
above a truncation or threshold level. An objec-
tion to using annual maximum series is that it
employs only the largest event in each year,
regardless of whether the second largest event in
a year exceeds the largest events of other years.
Moreover, the largest annual flood flow in a dry
year in some arid or semiarid regions may be
zero, or so small that calling them floods is
misleading. When considering rainfall series or
pollutant discharge events, one may be interested
in modeling all events that occur within a year
that exceed some threshold of interest.

Use of a partial duration series (PDS) frame-
work avoids such problems by considering all
independent peaks that exceed a specified thresh-
old. And, one can estimate annual exceedance
probabilities from the analysis of PDS. Arguments
in favor of PDS are that relatively long and reliable
PDS records are often available, and if the arrival
rate for peaks over the threshold is large enough
(1.65 events/year for the Poisson arrival with
exponential-exceedance model), PDS analyses
should yield more accurate estimates of extreme
quantiles than the corresponding annualmaximum
frequency analyses (NERC 1975; Rosbjerg 1985).
However, when fitting a three-parameter distri-
bution, there seems to be little advantage from
using a PDS approach over an annual maximum
approach, even when the partial duration series
includes many more peaks than the maximum
series because both contain the same largest events
(Martins and Stedinger 2001a).

A drawback of PDS analyses is that one must
have criteria to identify only independent peaks
(and not multiple peaks corresponding to the
same event). Thus PDS analysis can be more
complicated than analyses using annual maxima.
Partial duration models, perhaps with parameters
that vary by season, are often used to estimate

expected damages from hydrologic events when
more than one damage-causing event can occur
in a season or within a year (North 1980).

A model of a PDS series has at least two
components: first, one must model the arrival rate
of events larger than the threshold level; second,
one must model the magnitudes of those events.
For example, a Poisson distribution has often
been used to model the arrival of events, and an
exponential distribution to describe the magni-
tudes of peaks that exceed the threshold.

There are several general relationships
between the probability distribution for annual
maximum and the frequency of events in a partial
duration series. For a PDS model, let λ be the
average arrival rate of flood peaks greater than
the threshold x0 and let G(x) be the probability
that flood peaks, when they occur, are less than
x > x0, and thus those peaks fall in the range [x0,
x]. The annual exceedance probability for a
flood, denoted 1/Ta, corresponding to an annual
return period Ta, is related to the corresponding
exceedance probability qe = [1 − G(x)] for level
x in the partial duration series by

1=Ta ¼ 1� expf�kqeg ¼ 1� expf�1=Tpg
ð6:105Þ

where Tp = 1/(λqe) is the average return period
for level x in the PDS.

Many different choices for G(x) may be rea-
sonable. In particular, the Generalized Pareto
distribution (GPD) is a simple distribution useful
for describing floods that exceed a specified
lower bound. The cumulative distribution func-
tion for the generalized three-parameter Pareto
distribution is

FXðxÞ ¼ 1� ½1� jðx� nÞ=a�1=j ð6:106Þ

with mean and variance

lX ¼ nþ a=ð1þ jÞj
r2X ¼ a2=½ð1þ jÞ2 1þ 2jð Þ� ð6:107Þ

where for κ < 0, ξ < x < ∞, whereas for κ > 0,
ξ < x < ξ + α/κ (Hosking and Wallis 1987).
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A special case of the GPD is the two-parameter
exponential distribution obtain with κ = 0.
Method of moment estimators work relatively
well (Rosbjerg et al. 1992).

Use of a generalized Pareto distribution for G
(x) with a Poisson arrival model yields a GEV
distribution for the annual maximum series
greater than x0 (Smith 1984; Stedinger et al.
1993; Madsen et al. 1997a). The Poisson-Pareto
and Poisson-GPD models are a very reasonable
description of flood risk (Rosbjerg et al. 1992).
They have the advantage that they focus on the
distribution of the larger flood events, and
regional estimates of the GEV distribution’s
shape parameter κ from annual maximum and
PDS analyses can be used interchangeably.
Martins and Stedinger (2001a, b) compare PDS
estimation procedures a well as demonstrating
that use of the three-parameter Poisson-GPD
model instead of a three-parameter GEV distri-
bution generally results in flood quantile esti-
mators with the same precision.

Madsen and Rosbjerg (1997a) use a Poisson-
GPD model as the basis of a PDS index-flood
procedure. Madsen et al. (1997b) show that the
estimators are fairly efficient. They pooled
information from many sites to estimate the
single shape parameter κ and the arrival rate
where the threshold was a specified percentile of
the daily flow duration curve at each site. Then
at-site information was used to estimate the mean
above-threshold flood. Alternatively one could
use the at-site data to estimate the arrival rate as
well.

6.7 Stochastic Processes and Time
Series

Many important random variables in water
resources are functions whose values change
with time. Historical records of rainfall or
streamflow at a particular site are a sequence of
observations called a time series. In a time series,
the observations are ordered by time, and it is
generally the case that the observed value of the
random variable at one time influences the dis-
tribution of the random variable at later times.

This means that the observations are not inde-
pendent. Time series are conceptualized as being
a single observation of a stochastic process,
which is a generalization of the concept of a
random variable.

This section has three parts. The first presents
the concept of stationarity and the basic statistics
generally used to describe the properties of a
stationary stochastic process. The second pre-
sents the definition of a Markov process and the
Markov chain model. Markov chains are a con-
venient model for describing many phenomena,
and are often used in synthetic flow generation
and optimization models. The third part discusses
the sampling properties of statistics used to
describe the characteristics of many time series.

6.7.1 Describing Stochastic Processes

A random variable whose value changes through
time according to probabilistic laws is called a
stochastic process. An observed time series is
considered to be one realization of a stochastic
process, just as a single observation of a random
variable is one possible value the random vari-
able may assume. In the development here, a
stochastic process is a sequence of random
variables {X(t)} ordered by a discrete time index
t = 1, 2, 3, ….

The properties of a stochastic process must
generally be determined from a single time series
or realization. To do this several assumptions are
usually made. First, one generally assumes that
the process is stationary, at least in the short run.
This means that the probability distribution of the
process is not changing over some specified
interval of time. In addition, if a process is
strictly stationary, the joint distribution of the
random variables X(t1), …, X(tn) is identical to
the joint distribution of X(t1 + t), …, X
(tn + t) for any t; the joint distribution depends
only on the differences ti − tj between the times
of occurrence of the events. In other words, its
shape does not change over time if the distribu-
tion is stationary. In the long run, however,
because of climate and land changes, many
hydrologic distributions are not stationary, and
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just how much they will change in the future is
uncertain.

For a stationary stochastic process, one can
write the mean and variance as

lX ¼ E XðtÞ½ � ð6:109Þ

and

r2X ¼ Var XðtÞ½ � ð6:110Þ

Both are independent of time t. The autocor-
relations, the correlation of X with itself, are
given by

qX kð Þ ¼ Cov XðtÞ;Xðtþ kÞ½ �
r2X

ð6:111Þ

for any positive integer k (the time lag). These
are the statistics most often used to describe
stationary stochastic processes.

When one has available only a single time
series, it is necessary to estimate the values of μX,
r2X , and ρX(k) from values of the random variable
that one has observed. The mean and variance
are generally estimated essentially as they were
in Eq. 6.39a.

l̂X ¼ X ¼ 1
T

XT
t¼1

Xt ð6:112Þ

r̂2X ¼ 1
T

XT
t¼1

Xt � X
� �2 ð6:113Þ

while the autocorrelations ρX(k) can be estimated
as (Jenkins and Watts 1968)

q̂x kð Þ ¼ rk ¼
PT�k

t¼1 xtþ k � �xð Þ xt � �xð ÞPT
t¼1 xt � �xð Þ2 ð6:114Þ

The sampling distribution of these estimators
depends on the correlation structure of the
stochastic process giving rise to the time series.
In particular, when the observations are posi-
tively correlated as is usually the case in natural
streamflows or annual benefits in a river basin

simulation, the variances of the estimated
�x and r̂2X are larger than would be the case if the
observations were independent. It is sometimes
wise to take this inflation into account.
Section 6.7.3 discusses the sampling distribution
of these statistics.

All of this analysis depends on the assumption
of stationarity for only then do the quantities
defined in Eqs. 6.109–6.111 have the intended
meaning. Stochastic processes are not always
stationary. Urban development, deforestation,
agricultural development, climatic variability,
and changes in regional resource management
can alter the distribution of rainfall, streamflows,
pollutant concentrations, sediment loads, and
groundwater levels over time. If a stochastic
process is not essentially stationary over the time
span in question, then statistical techniques that
rely on the stationary assumption cannot be
employed and the problem generally becomes
much more difficult.

6.7.2 Markov Processes and Markov
Chains

A common assumption in many stochastic water
resources models is that the stochastic process X
(t) is a Markov process. A first-order Markov
process has the property that the dependence of
future values of the process on past values
depends only on the current value. In symbols for
k > 0,

FX½Xðtþ kÞjXðtÞ;Xðt � 1Þ;Xðt � 2Þ; . . .�
¼ FX½Xðtþ kÞjXðtÞ�

ð6:115Þ

For Markov processes, the current value
summarizes the state of the processes. As a
consequence, the current value of the process is
often referred to as the state. This makes physical
sense as well when one refers to the state or level
of an aquifer or reservoir.

A special kind of Markov process is one
whose state X(t) can take on only discrete values.
Such a processes is called a Markov chain. Often
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in water resources planning, continuous
stochastic processes are approximated by Mar-
kov chains. This is done to facilitate the con-
struction of simpler stochastic models. This
section presents the basic notation and properties
of Markov chains.

Consider a stream whose annual flow is to be
represented by a discrete random variable.
Assume that the distribution of streamflows is
stationary. In the following development, the
continuous random variable representing the
annual streamflows (or some other process) is
approximated by a random variable Qy in year y,
which takes on only n discrete values qi (each
value representing a continuous range or interval
of possible streamflows) with unconditional
probabilities pi whereXn

i¼1

pi ¼ 1 ð6:116Þ

It is frequently the case that the value of Qy+1

is not independent of Qy. A Markov chain can
model such dependence. This requires specifi-
cation of the transition probabilities pij,

pij ¼ Pr½Qyþ 1 ¼ qjjQy ¼ qi� ð6:117Þ

A transition probability is the conditional
probability that the next state is qj, given that the
current state is qi. The transition probabilities
must satisfy

Xn
j¼1

pij ¼ 1 for all i ð6:118Þ

Figure 6.11a, b show a possible set of tran-
sition probabilities in a matrix and as histograms.
Each element pij in the matrix is the probability
of a transition from streamflow qi in one year to
streamflow qj in the next. In this example, a low
flow tends to be followed by a low flow, rather
than a high flow, and vice versa.

Let P be the transition matrix whose elements
are pij. For a Markov chain, the transition matrix
contains all the information necessary to describe
the behavior of the process. Let pyi be the

probability that the process resides in state i in
year y. Then the probability that Qy+1 = qj is the
sum of the probabilities pyi that Qy = qi times the
probability pij that the next state is Qy+1 given that
Qy = qi. In symbols, this relationship is written

pyþ 1
j ¼ py1p1j þ py2p2j þ � � � þ pynpnj ¼

Xn
i¼1

pyi pij

ð6:119Þ

Letting py be the row vector of state resident
probabilities pyi ; . . .; p

y
n

� �
, this relationship may

be written

pðyþ 1Þ ¼ pðyÞP ð6:120Þ

To calculate the probabilities of each stream-
flow state in year y + 2, one can use p(y+1)

in Eq. 6.120 to obtain p(y+2) = p(y+1)P or
p(y+2) = pyP2

Continuing in this matter, it is possible to
compute the probabilities of each possible
streamflow state for years y + 1, y + 2,
y + 3, …, y + k, … as

pðyþ kÞ ¼ pyPk ð6:121Þ

Returning to the four-state example in
Fig. 6.11, assume that the flow in year y is in the
interval represented by q2. Hence in year y the
unconditional streamflow probabilities pyi are
(0, 1, 0, 0). Knowing each pyi , the probabilities

pyþ 1
j corresponding to each of the four stream-

flow states can be determined. From Fig. 6.11,

the probabilities pyþ 1
j are 0.2, 0.4, 0.3, and 0.1

for j = 1, 2, 3, and 4, respectively. The proba-
bility vectors for nine future years are listed in
Table 6.8.

As time progresses, the probabilities generally
reach limiting values. These are the uncondi-
tional or steady-state probabilities. The quantity
pi has been defined as the unconditional proba-
bility of qi. These are the steady-state probabili-
ties which p(y+k) approaches for large k. It is clear
from Table 6.8 that as k becomes larger,
Eq. 6.119 becomes
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(a)

(b)

Fig. 6.11 a Matrix of streamflow transition probabilities
showing probability of streamflow qj (represented by
index j) in year y + 1 given streamflow qi (represented by
index i) in year y. b Histograms (below) of streamflow

transition probabilities showing probability of streamflow
qj (represented by index j) in year y + 1 given streamflow
qi (represented by index i) in year y
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pj ¼
Xn
i¼1

pipij ð6:122Þ

or in vector notation, Eq. 6.122 becomes

p ¼ pP ð6:123Þ

where p is the row vector of unconditional
probabilities (p1, …, pn). For the example in
Table 6.8, the probability vector p equals (0.156,
0.309, 0.316, 0.219).

The steady-state probabilities for any Markov
chain can be found by solving simultaneous
Eqs. 6.123 for all but one of the states j together
with the constraint

Xn
i¼1

pi ¼ 1 ð6:124Þ

Annual streamflows are seldom as highly
correlated as the flows in this example. However,
monthly, weekly, and especially daily stream-
flows generally have high serial correlations.
Assuming that the unconditional steady-state
probability distributions for monthly stream-
flows are stationary, a Markov chain can be
defined for each month’s steamflow. Since there

are 12 months in a year, there would be 12
transition matrices, the elements of which could
be denoted as ptij. Each defines the probability of

a streamflow ptþ 1
j ðyÞ in month t + 1, given a

streamflow ptiðyÞ in month t. The steady-state
stationary probability vectors for each month can
be found by the procedure outlined above, except
that now all 12 matrices are used to calculate all
12 steady-state probability vectors. However,
once the steady-state vector p is found for one
month, the others are easily computed using
Eq. 6.121 with t replacing y.

6.7.3 Properties of Time Series
Statistics

The statistics most frequently used to describe
the distribution of a continuous-state stationary
stochastic process are the sample mean, variance,
and various autocorrelations. Statistical depen-
dence among the observations, as is frequently
the case in time series, can have a marked effect
on the distribution of these statistics. This part of
Sect. 6.7 reviews the sampling properties of
these statistics when the observations are a real-
ization of a stochastic process.

Table 6.8 Successive streamflow probabilities based on transition probabilities in Fig. 6.11
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The sample mean

X ¼ 1
n

Xn
i¼1

Xi ð6:125Þ

when viewed as a random variable is an unbiased
estimate of the mean of the process μX, because

E½X� ¼ 1
n

Xn
i¼1

E Xi½ � ¼ lX ð6:126Þ

However, correlation among the Xi’s, so that
ρX(k) ≠ 0 for k > 0, affects the variance of the
estimated mean X.

Var X
� � ¼ E X � lX

� �2h i
¼ 1

n2
E
Xn
t¼1

Xn
s¼1

Xt � lXð Þ Xs � lXð Þ
( )

¼ r2X
n

1þ 2
Xn�1

k¼1

1� k

n


 �
qX kð Þ

( )
ð6:127Þ

The variance of X, equal to r2X=n for inde-
pendent observations, is inflated by the factor
within the brackets. For ρX(k) ≥ 0, as is often the
case, this factor is a non-decreasing function of n,
so that the variance of X is inflated by a factor
whose importance does not decrease with
increasing sample size. This is an important
observation, because it means the average of a
correlated time series will be less precise than the
average of a sequence of independent random

variables of the same length with the same
variance.

A common model of stochastic series has

qXðkÞ ¼ ½qXð1Þ�k ¼ qk ð6:128Þ

This correlation structure arises from the
autoregressive Markov model discussed at length
in Sect. 6.8. For this correlation structure

Var X
� � ¼ r2X

n
1þ 2q

n

n 1� qð Þ � 1� qnð Þ½ �
1� qð Þ2

( )
ð6:129Þ

Substitution of the sample estimates for r2X
and ρX(1) in the equation above often yields a
more realistic estimate of the variance of X than
does the estimate s2X=n if the correlation structure
ρX(k) = ρk is reasonable; otherwise, Eq. 6.127
may be employed. Table 6.9 illustrates the affect
of correlation among the Xt values on the stan-
dard error of their mean, equal to the square root
of the variance in Eq. 6.127.

The properties of the estimate of the variance
of X,

r̂2X ¼ v2X ¼ 1
n

Xn
t¼1

Xt � X
� �2 ð6:130Þ

are also affected by correlation among the Xt’s.
Here v rather than s is used to denote the variance
estimator because n is employed in the

Table 6.9 Standard error of X when σx = 0.25 and ρX(k) = ρk
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denominator rather than n − 1. The expected
value of v2x becomes

E v2X
� � ¼ r2X 1� 1

n
� 2
n

Xn�1

k¼1

1� k

n


 �
qX kð Þ

( )
ð6:131Þ

The bias in v2X depends on terms involving
ρX(1) through ρX(n − 1). Fortunately, the bias in
v2X decreases with n and is generally unimportant
when compared to its variance.

Correlation among the Xt’s also affects the
variance of v2X . Assuming that X has a normal
distribution (here the variance of v2X depends on
the fourth moment of X), the variance of v2X for
large n is approximately (Kendall and Stuart
1966, Sect. 48.1).

Var v2X
� � ffi 2

r4X
n

1þ 2
X1
k¼1

q2X kð Þ
( )

ð6:132Þ

where for ρX(k) = ρk, Eq. 6.132 becomes

Var v2X
� � ffi 2

r4X
n

1þ q2

1� q2


 �
ð6:133Þ

Like the variance of X, the variance of v2X is
inflated by a factor whose importance does not
decrease with n. This is illustrated by Table 6.10
that gives the standard deviation of v2X divided by
the true variance r2X as a function of n and ρ
when the observations have a normal distribution

and ρX(k) = ρk. This would be the coefficient of
variation of v2X were it not biased.

A fundamental problem of time series analy-
ses is the estimation or description of the rela-
tionship between the random variable at different
times. The statistics used to describe this rela-
tionship are the autocorrelations. Several esti-
mates of the autocorrelations have been
suggested; a simple and satisfactory estimate
recommended by Jenkins and Watts (1968) is

q̂X kð Þ ¼ rk ¼
Pn�k

t¼1 xt � �xð Þ xtþ k � �xð ÞPn
t¼1 xt � �xð Þ2

ð6:134Þ

Here, rk is the ratio of two sums where the
numerator contains n − k terms and the denom-
inator contains n terms. The estimate rk is biased,
but unbiased estimates frequently have larger
mean square errors (Jenkins and Watts 1968).
A comparison of the bias and variance of r1 is
provided by the case when the Xt’s are inde-
pendent normal variates. Then (Kendall and
Stuart 1966)

E r1½ � ¼ � 1
n

ð6:135aÞ

and

Var r1ð Þ ¼ n� 2ð Þ2
n2 n� 1ð Þ ffi

1
n

ð6:135bÞ

Table 6.10 Standard deviation of (v2X=r
2
XÞ when observations have a normal distribution and ρX(k) = ρk
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For n = 25, the expected value of r1 is −0.04
rather than the true value of zero; its standard
deviation is 0.19. This results in a mean square
error of (E[r1])

2 + Var(r1) = 0.0016 + 0.0353 =
0.0369. Clearly, the variance of r1 is the domi-
nant term.

For Xt values that are not independent, exact
expressions for the variance of rk generally are
not available. However, for normally distributed
Xt and large n (Kendall and Stuart 1966),

Var rkð Þ ffi 1
n

Xþ1

l¼�1
q2x lð Þ� þ qx lþ kð Þqx l� kð Þ

� 4qx kð Þqx lð Þqx k � lð Þþ 2q2x kð Þq2x lð Þ�
ð6:136Þ

If ρX(k) is essentially zero for k > q, then the
simpler expression (Box et al. 1994)

Var rkð Þ ffi 1
n

1þ 2
Xq
t¼1

q2x lð Þ
" #

ð6:137Þ

is valid for rk corresponding to k > q; thus for
large n, Var(rk) ≥ l/n and values of rk will fre-
quently be outside the range of ±1.65/

ffiffiffi
n

p
, even

though ρx(k) may be zero.
If ρX(k) = ρk, Eq. 6.137 reduces to

Var rkð Þ ffi 1
n

1þ q2ð Þ 1� q2k
� �

1� q2
� 2kq2k


 �
ð6:138Þ

In particular for rl, this gives

Var r1ð Þ ffi 1
n

1� q2
� � ð6:139Þ

Approximate values of the standard deviation
of rl for different values of n and ρ are given in
Table 6.11.

The estimates of rk and rk+j are highly corre-
lated for small j; this causes plots of rk versus k to
exhibit slowly varying cycles when the true
values of ρX(k) may be zero. This increases the
difficulty of interpreting the sample
autocorrelations.

6.8 Synthetic Streamflow
Generation

6.8.1 Introduction

This section is concerned primarily with ways of
generating sample data such as streamflows,
temperatures, and rainfall that are used in water
resource systems simulation studies (e.g., as
introduced in the next section). The models and
techniques discussed in this section can be used
to generate any number of quantities used as
inputs to simulation studies. For example Wilks
(1998, 2002) discusses the generation of wet and
dry days, rainfall depths on wet days, and asso-
ciated daily temperatures. The discussion here is
directed toward the generation of streamflows

Table 6.11 Approximate standard deviation of r1 when observations have a normal distribution and ρX(k) = ρk
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because of the historic development and frequent
use of these models in that context (Matalas and
Wallis 1976). In addition, they are relatively
simple compared to more complete daily weather
generators and many other applications. Gener-
ated streamflows have been called synthetic to
distinguish them from historical observations
(Fiering 1967). The field has been called
stochastic hydrologic modeling. More detailed
presentations can be found in Marco et al. (1989)
and Salas (1993).

River basin simulation studies can use many
sets of streamflow, rainfall, evaporation, and/or
temperature sequences to evaluate the statistical
properties of the performance of alternative water
resources systems. For this purpose, synthetic
flows and other generated quantities should
resemble, statistically, those sequences that are
likely to be experienced during the planning
period. Figure 6.12 illustrates how synthetic
streamflow, rainfall, and other stochastic
sequences are used in conjunction with projec-
tions of future demands and other economic data
to determine how different system designs and
operating policies might perform.

Use of only the historical flow or rainfall
record in water resource studies does not allow
for the testing of alternative designs and policies
against the range of sequences that are likely to
occur in the future. We can be very confident that
the future historical sequence of flows will not be
the historical one, yet there is important

information in that historical record. That infor-
mation is not fully used if only the historical
sequence is simulated. By fitting continuous dis-
tributions to the set of historical flows and then
using those distributions to generate other
sequences of flows, all of which are statistically
similar and equally likely, gives one a broader
range of inputs to simulation models. Testing
designs and policies against that broader range of
flow sequences that could occur more clearly
identifies the variability and range of possible
future performance indicator values. This in turn
should lead to the selection of more robust system
designs and policies.

The use of synthetic streamflows is particu-
larly useful for water resource systems having
large amounts of over-year storage. Use of only
the historical hydrologic record in system simu-
lation yields only one time history of how the
system would operate from year to year. In water
resource systems having relatively little storage
so that reservoirs and/or groundwater aquifers
refill almost every year, synthetic hydrologic
sequences may not be needed if historical
sequences of a reasonable length are available. In
this second case, a 25-year historic record pro-
vides 25 descriptions of the possible within-year
operation of the system. This may be sufficient
for many studies.

Generally, use of stochastic sequences is
thought to improve the precision with which
water resource system performance indices can

Fig. 6.12 Structure of a simulation study, indicating the transformation of a synthetic streamflow sequence, future
demands and a system design and operating policy into system performance statistics
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be estimated, and some studies have shown this
to be the case (Vogel and Shallcross 1996; Vogel
and Stedinger 1988). In particular, if the opera-
tion of the system and performance indices have
thresholds and shape breaks, then the coarse
description provided by historical series are
likely to provide relative inaccurate estimates of
the expected values of such statistics. For
example, suppose that shortages only invoke a
nonlinear penalty function on average one year in
20. Then in a 60-year simulation there is a 19%
probability that the penalty will be invoked at
most once, and an 18% probability it will be
invoked five or more times. Thus the calculation
of the annual average value of the penalty would
be highly unreliable unless some smoothing of
the input distributions is allowed associated with
a long simulation analysis.

On the other hand, if one is only interested in
the mean flow, or average benefits that are mostly
a linear function of flows, then use of stochastic
sequences will probably add little information to
what is obtained simply by simulating the histor-
ical record. After all, the fitted models are ulti-
mately based on the information provided in the
historical record, and their use does not produce
new information about the hydrology of the basin.

If in a general sense one has available N years
of record, the statistics of that record can be used
to build a stochastic model for generating thou-
sands of years of flow. These synthetic data can
now be used to estimate more exactly the system
performance, assuming, of course, that the
flow-generating model accurately represents
nature. But the initial uncertainty in the model
parameters resulting from having only N years of
record would still remain (Schaake and Vicens
1980). An alternative is to run the historical
record (if it is sufficient complete at every site
and contains no gaps of missing data) through
the simulation model to generate N years of
output. That output series can be processed to
produce estimates of system performance. So the
question is: is it better to generate multiple input
series based on uncertain parameter values and
use those to determine average system perfor-
mance with great precision, or is it sufficient to

just model the N-year output series that results
from simulation of the historical series?

The answer seems to depend upon how well
behaved the input and output series are. If the
simulation model is linear, it does not make
much difference. If the simulation model were
highly nonlinear, then modeling the input series
would appear to be advisable. Or if one is
developing reservoir operating policies, there is a
tendency to make a policy sufficiently complex
that it deals very well with the few droughts in
the historical record but at the same time giving a
false sense of security and likely misrepresenting
the probability of system performance failures.

Another situation where stochastic
data-generating models are useful is when one
wants to understand the impact on system per-
formance estimates of the parameter uncertainty
stemming from short historical records. In that
case, parameter uncertainty can be incorporated
into streamflow generating models so that the
generated sequences reflect both the variability
that one would expect in flows over time as well
as the uncertainty of the parameter values of the
models that describe that variability (Valdes et al.
1977; Stedinger and Taylor 1982a, b; Stedinger
Pei and Cohn 1985; Vogel and Stedinger 1988).

If one decides to use a stochastic data gener-
ator, the challenge is to use a model that appro-
priately describes the important relationships, but
does not attempt to reproduce more relationships
than are justified or that can be estimated with
available data sets.

Two basic techniques are used for streamflow
generation. If the streamflow population can be
described by a stationary stochastic process, a
process whose parameters do not change over
time, and if a long historical streamflow record
exists, then a stationary stochastic streamflow
model may be fit to the historical flows. This
statistical model can then generate synthetic
sequences that describe selected characteristics of
the historical flows. Several such models are
discussed below.

The assumption of stationarity is not always
plausible, particularly in river basins that have
experienced marked changes in runoff
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characteristics due to changes in land cover, land
use, climate, or the use of groundwater during the
period of flow record. Similarly, if the physical
characteristics of a basin will change substan-
tially in the future, the historical streamflow
record may not provide reliable estimates of the
distribution of future unregulated flows. In the
absence of the stationarity of streamflows or a
representative historical record, an alternative
scheme is to assume that precipitation is a sta-
tionary stochastic process and to route either
historical or synthetic precipitation sequences
through an appropriate rainfall-runoff model of
the river basin.

6.8.2 Streamflow Generation Models

A statistical streamflow generation model is used
to generate streamflow data that can supplement
or replace historical streamflow data in various
analyses requiring such data. If the past flow
record is considered representative of what the
future one might be, at least for a while, then the
statistical characteristics of the historical flow
record can be used as a basis for generating new
flow data. While this may be a reasonable
assumption in the near future, changing land uses
and climate may lead to entirely different statis-
tical characteristics of future streamflows, if not
now, certainly in the more distant future. By then,
improved global climate models (GCMs) and
downscaling methods together with improved
rainfall-runoff predictions given future land use
scenarios may be a preferred way to generate
future streamflows. This section of the chapter
will focus on the use of historical records.

The first step in the construction of a statistical
streamflow generating model based on historical
flow records is to extract from the historical
streamflow record the fundamental information
about the joint distribution offlows at different sites
and at different times. A streamflow model should
ideally capturewhat is judged tobe the fundamental
characteristics of the joint distribution of the flows.
The specification of what characteristics are fun-
damental is of primary importance.

One may want to model as closely as possible
the true marginal distribution of seasonal flows
and/or the marginal distribution of annual flows.
These describe both how much water may be
available at different times and also how variable is
that water supply. Also, modeling the joint distri-
bution offlows at a single site in different months,
seasons, and years may be appropriate. The per-
sistence of high flows and of low flows, often
described by their correlation, affects the reliabil-
ity with which a reservoir of a given size can
provide a given yield (Fiering 1967; Lettenmaier
and Burges 1977a, b; Thyer and Kuczera 2000).
For multicomponent reservoir systems, repro-
duction of the joint distribution offlows at different
sites and at different times will also be important.

Sometimes, a streamflow model is said to
statistically resemble the historical flows if the
streamflow model produces flows with the same
mean, variance, skew coefficient, autocorrela-
tions, and/or cross-correlations as were observed
in the historic series. This definition of statistical
resemblance is attractive because it is operational
and requires that an analyst need only find a
model that can reproduce the observed statistics.
The drawback of this approach is that it shifts the
modeling emphasis away from trying to find a
good model of marginal distributions of the
observed flows and their joint distribution over
time and over space, given the available data, to
just reproducing arbitrarily selected statistics.
Defining statistical resemblance in terms of
moments may also be faulted for specifying that
the parameters of the fitted model should be
determined using the observed sample moments,
or their unbiased counterparts. Other parameter
estimation techniques, such as maximum likeli-
hood estimators, are often more efficient. Defini-
tion of resemblance in terms of moments can also
lead to confusion over whether the population
parameters should equal the sample moments, or
whether the fitted model should generate flow
sequences whose sample moments equal the
historical values—the two concepts are different
because of the biases (as discussed in Sect. 6.7) in
many of the estimators of variances and correla-
tions (Matalas and Wallis 1976; Stedinger 1980,
1981; Stedinger and Taylor 1982a).
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For any particular river basin study, one must
determine what streamflow characteristics need
to be modeled. The decision should depend on
what characteristics are important to the opera-
tion of the system being studied, the data avail-
able, and how much time can be spared to build
and test a stochastic model. If time permits, it is
good practice to see if the simulation results are
in fact sensitive to the generation model and its
parameter values using an alternative model and
set of parameter values. If the model’s results are
sensitive to changes, then, as always, one must
exercise judgment in selecting the appropriate
model and parameter values to use.

This section presents a range of statistical
models for the generation of synthetic data. The
necessary sophistication of a data-generating
model depends on the intended use of the data.
Section 6.8.3 below presents the simple autore-
gressive Markov model for generating annual
flow sequences. This model alone is too simple
for many practical studies, but is useful for
illustrating the fundamentals of the more com-
plex models that follow. Therefore, considerable
time is spent exploring the properties of this
basic model.

Subsequent sections discuss how flows with
any marginal distribution can be produced and
present models for generating sequences of flows
that can reproduce the persistence of historical
flow sequences. Other parts of this section pre-
sent models to generate concurrent flows at
several sites and to generate seasonal or monthly
flows while preserving the characteristics of
annual flows. For those wishing to study syn-
thetic streamflow models in greater depth more
advanced material can be found in Marco et al.
(1989) and Salas (1993).

6.8.3 A Simple Autoregressive Model

A simple model of annual streamflows is the
autoregressive Markov model. The historical
annual flows qy are thought of as a particular value

of a stationary stochastic process Qy. The genera-
tion of annual streamflows and other variables
would be a simple matter if annual flows were
independently distributed. In general, this is not the
case and a generating model for many phenomena
should capture the relationship between values in
different years or in different periods. A common
and reasonable assumption is that annual flows are
the result of a first-order Markov process.

Assume also that annual streamflows are
normally distributed. In some areas, the distri-
bution of annual flows is in fact nearly normal.
Streamflow models that produce nonnormal
streamflows are discussed as an extension of this
simple model.

The joint normal density function of two
streamflows Qy and Qw in years y and w having
mean μ, variance σ2, and year-to-year correlation
ρ between flows is

f qy; qw
� � ¼ 1

2pr2 1� q2ð Þ0:5

� exp qy � l
� �2�2q qy � l

� �
qw � lð Þþ qw � lð Þ2

2r2 1� q2ð Þ

" #
ð6:140Þ

The joint normal distribution for two random
variables with the same mean and variance
depend only on their common mean μ, variance
σ2, and the correlation ρ between the two (or
equivalently the covariance ρσ2).

The sequential generation of synthetic stream-
flows requires the conditional distribution of the
flow in one year given the value of the flows in
previous years. However, if the streamflows are a
first-order (lag 1) Markov process, then the
dependence of the distribution of the flow in year
y + 1 on flows in previous years depends entirely
on the value of the flow in year y. In addition, if the
annual streamflows have a multivariate normal
distribution, then the conditional distribution of
Qy+1 is normal with mean and variance

E½Qyþ 1jQy ¼ qy� ¼ lþ qðqy � lÞ
VarðQyþ 1jQy ¼ qyÞ ¼ r2ð1� q2Þ ð6:141Þ
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where qy is the value of Qy in year y. Notice that
the larger the absolute value of the correlation ρ
between the flows, the smaller the conditional
variance of Qy+1, which in this case does not
depend at all on the value qy.

Synthetic normally distributed streamflows
that have mean μ, variance σ2, and year-to-year
correlation ρ, are produced by the model

Qyþ 1 ¼ lþ qðQy � lÞþVyr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
ð6:142Þ

where Vy is a standard normal random variable,
meaning that it has zero mean, E[Vy] = 0, and

unit variance, E V2
y

h i
¼ 1. The random variable

Vy is added here to provide the variability in Qy+1

that remains even after Qy is known. By con-
struction, each Vy is independent of past flows
Qw where w ≤ y, and Vy is independent of Vw for
w ≠ y. These restrictions imply that

E VwVy

� � ¼ 0 w 6¼ y ð6:143Þ

and

E½ðQw � lÞVy� ¼ 0 w� y ð6:144Þ

Clearly, Qy+1 will be normally distributed if
both Qy and Vy are normally distributed because
sums of independent normally distributed ran-
dom variables are normally distributed.

It is a straightforward procedure to show that
this basic model indeed produces streamflows
with the specified moments, as demonstrated
below.

Using the fact that E[Vy] = 0, the conditional
mean of Qy+1 given that Qy equals qy is

E½Qyþ 1jqy� ¼ E½lþ qðqy � lÞþVyr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
�

¼ lþ qðqy � lÞ
ð6:145Þ

Since E{Vy
2] = Var[Vy] = 1, the conditional

variance of Qy+1 is

Var½Qyþ 1jqy� ¼ E½fQyþ 1 � E½Qyþ 1jqy�g2jqy�
¼ E½flþ qðqy � lÞþVyr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� ½lþ qðqy � lÞ�g2

¼ E½Vyr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
�2 ¼ r2ð1� q2Þ�

ð6:146Þ

Thus this model produces flows with the
correct conditional mean and variance.

To compute the unconditional mean of Qy+1

one first takes the expectation of both sides of
Eq. 6.142 to obtain

E Qyþ 1
� � ¼ lþ qðE Qy

� �� lÞ
þE Vy

� �
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ð6:147Þ

where E[Vy] = 0. If the distribution of stream-
flows is independent of time so that for all y,
E[Qy+1] = E[Qy] = E[Q], it is clear that (1 − ρ)
E[Q] = (1 − ρ)μ or

E½Q� ¼ l ð6:148Þ

Alternatively, if Qy for y = 1 has mean μ, then
Eq. 6.147 indicates that Q2 will have mean μ.
Thus repeated application of the Eq. 6.147 would
demonstrate that all Qy for y > 1 have mean μ.

The unconditional variance of the annual
flows can be derived by squaring both sides of
6.142 to obtain

E½ðQyþ 1 � lÞ2� ¼ E½fqðQy � lÞþVyr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
g2�

¼ q2E½ðQy � lÞ2� þ 2qr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
E½ðQy � lÞVy�

þ r2ð1� q2ÞE V2
y

h i
ð6:149Þ

Because Vy is independent of Qy (Eq. 6.144),
the second term on the right-hand side of
Eq. 6.149 vanishes. Hence the unconditional
variance of Q satisfies

E½ðQyþ 1 � lÞ2� ¼ q2E½ðQy � lÞ2� þ r2ð1� q2Þ
ð6:150Þ
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Assuming that Qy+1 and Qy have the same
variance yields

E½ðQ� lÞ2� ¼ r2 ð6:151Þ

so that the unconditional variance is σ2, as
required.

Again, if one does not want to assume that
Qy+1 and Qy have the same variance, a recursive
argument can be adopted to demonstrate that if
Q1 has variance σ2, then Qy for y ≥ 1 has vari-
ance σ2.

The covariance of consecutive flows is
another important issue. After all the whole idea
of building these time series models is to
describe the year-to-year correlation of the flows.
Using Eq. 6.142 one can compute that the
covariance of consecutive flows must be.

E½ðQyþ 1 � lÞðQy � lÞ� ¼ Ef½qðQy � lÞ
þVyr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
�ðQy � lÞg

¼ qE½ðQy � lÞ2� ¼ qr2

ð6:152Þ

where E[(Qy − μ)Vy] = 0 because Vy and Qy are
independent (Eq. 6.144).

Over a longer time scale, another property of
this model is that the covariance of flows in year
y and y + k is

E½ðQyþ k � lÞðQy � lÞ� ¼ qkr2 ð6:153Þ

This equality can be proven by induction. It
has already been shown for k = 0 and 1. If it is
true for k = j − 1, then

E½ðQyþ j � lÞðQy � lÞ� ¼ Ef½qðQyþ j�1 � lÞ
þVyþ j�1r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
�ðQy � lÞg

¼ qE½ðQy � lÞ�ðQyþ j�1 � lÞ�
¼ q½qj�1r2� ¼ q jr2

ð6:154Þ

where E[(Qy − μ)Vy+j−1] = 0 for j ≥ 1. Hence
Eq. 6.153 is true for any value of k.

It is important to note that the results in
Eqs. 6.145 to 6.153 do not depend on the
assumption that the random variables Qy and Vy

are normally distributed. These relationships
apply to all autoregressive Markov processes of
the form in Eq. 6.142 regardless of the distribu-
tions ofQy and Vy. However, if the flowQy in year
y = 1 is normally distributed with mean μ and
variance σ2, and if theVy are independent normally
distributed random variables with mean zero and
unit variance, then the generated Qy for y ≥ 1 will
also be normally distributed with mean μ and
variance σ2. The next section considers how this
and other models can be used to generate stream-
flows that have other than a normal distribution.

6.8.4 Reproducing the Marginal
Distribution

Most models for generating stochastic processes
deal directly with normally distributed random
variables. Unfortunately, flows are not always
adequately described by the normal distribution.
In fact, streamflows and many other hydrologic
data cannot really be normally distributed because
of the impossibility of negative values. In general,
distributions of hydrologic data are positively
skewed having a lower bound near zero and, for
practical purposes, an unbounded right-hand tail.
Thus they look like the gamma or lognormal dis-
tribution illustrated in Figs. 6.3 and 6.4.

The asymmetry of a distribution is often
measured by its coefficient of skewness. In some
streamflow models, the skew of the random
elements Vy is adjusted so that the models gen-
erate flows with the desired mean, variance, and
skew coefficient. For the autoregressive Markov
model for annual flows

E½ðQyþ 1 � lÞ3� ¼ E qðQy � lÞþVyr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

ph i3
¼ q3E½ðQy � lÞ3�
þ r3ð1� q2Þ3=2E V3

y

h i
ð6:155Þ
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so that

cQ ¼ E½ðQ� lÞ3�
r3

¼ ð1� q2Þ3=2
1� q3

ð6:156Þ

By appropriate choice of the skew of Vy, the
desired skew coefficient of the annual flows can
be produced. This method has often been used to
generate flows that have approximately a gamma
distribution using Vy’s with a gamma distribution
and the required skew. The resulting approxi-
mation is not always adequate (Lettenmaier and
Burges 1977a).

The alternative and generally preferred
method is to generate normal random variables
and then transform these variates to streamflows
with the desired marginal distribution. Common
choices for the distribution of streamflows are the
two-parameter and three-parameter lognormal
distributions or a gamma distribution. If Qy is a
lognormally distributed random variable, then

Qy ¼ sþ expðXyÞ ð6:157Þ

where Xy is a normal random variable; when the
lower bound τ is zero, Qy has a two-parameter
lognormal distribution. Equation 6.157 trans-
forms the normal variates Xy into lognormally
distributed streamflows. The transformation is
easily inverted to obtain

Xy ¼ lnðQy � sÞ forQy � s ð6:158Þ

where Qy must be greater than its lower bound τ.
The mean, variance, skewness of Xy and Qy

are related by the formulas (Matalas 1967)

lQ ¼ sþ expðlX þ
1
2
r2XÞ

r2Q ¼ expð2lX þ r2XÞ½expðr2XÞ � 1�

cQ ¼ expð3r2XÞ � 3 expðr2XÞþ 2

½expðr2XÞ � 1�3=2

ð6:159Þ

If normal variates Xs
y and Xu

y are used to
generate lognormally distributed streamflows
Qs

y and Qu
y at sites s and u, then the lag-k corre-

lation of the Qy’s, denoted ρQ(k; s, u), is deter-
mined by the lag-k correlation of the X variables,

denoted ρX(k; s, u), and their variances r2XðsÞ and
r2XðuÞ, where

qQðk; s; uÞ ¼
exp½qXðk; s; uÞrXðsÞrXðuÞ� � 1

exp½r2XðsÞ� � 1f g1=2 exp½r2XðuÞ� � 1f g1=2

ð6:160Þ

The correlations of the Xs
y can be adjusted, at

least in theory, to produce the observed correla-
tions among the Qs

y variates. However, more
efficient estimates of the true correlation of the
Qs

y values are generally obtained by transforming
the historical flows qsy into their normal equiva-
lent xsy ¼ ‘nðqsy � sÞ and using the historical
correlations of these xsy values as estimators of
ρX(k; s, u) (Stedinger 1981).

Some insight into the effect of this logarithmic
transformation can be gained by considering the
resulting model for annual flows at a single site.
If the normal variates follow the simple autore-
gressive Markov model

Xyþ 1 � l ¼ qXðXy � lÞþVyrX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2X

q
ð6:161Þ

then the corresponding Qy follow the model
(Matalas 1967)

Qyþ 1 ¼ sþDyfexp½lxð1� qXÞ�gðQy � sÞqX
ð6:162Þ

where

Dy ¼ exp½ð1� q2XÞ1=2rXVy� ð6:163Þ

The conditional mean and standard deviation
of Qy+1 given that Qy = qy now depend on
ðqy � sÞqX . Because the conditional mean of Qy+1

is no longer a linear function of qy, the stream-
flows are said to exhibit differential persistence:
low flows are now more likely to follow low
flows than high flows are to follow high flows.
This is a property often attributed to real
streamflow distributions. Models can be con-
structed to capture the relative persistence of wet
and dry periods (Matalas and Wallis 1976; Salas

264 6 An Introduction to Probability, Statistics, and Uncertainty



1993; Thyer and Kuczera 2000). Many weather
generators for precipitation and temperature nat-
ural include such differences by employing a
Markov chain description of the occurrence of
wet and dry days (Wilks 1998).

6.8.5 Multivariate Models

If long concurrent streamflow records can be
constructed at the several sites at which synthetic
streamflows are desired, then ideally a general
multisite streamflow model could be employed.
O’Connell (1977), Ledolter (1978), Salas et al.
(1980) and Salas (1993) discuss multivariate
models and parameter estimation. Unfortunately,
model identification (parameter value estimation)
is very difficult for the general multivariate
models.

This section illustrates how the basic uni-
variate annual flow model in Sect. 8.3 can be
generalized to the multivariate case. This exer-
cise reveals how easily multivariate models can
be constructed to reproduce specified variances
and covariances of the flow vectors of interest, or
some transformation of those values. This mul-
tisite generalization of the annual AR(1) or
autoregressive Markov model follows the
approach taken by Matalas and Wallis (1976).
This general approach can be further extended to
multisite/multiseason modeling procedures, as is
done in the next section employing what have
been called disaggregation models. However,
while the size of the model matrices and vectors
increases, the models are fundamentally the same
from a mathematical viewpoint. Hence this sec-
tion starts with the simpler case of an annual flow
model.

For simplicity of presentation and clarity,

vector notation is employed. Let Zy ¼
ðZ1

y ; . . . ; Z
n
y ÞT be the column vector of trans-

formed zero-mean annual flows at sites s = 1,
2, …, n, so that

E½Zs
y� ¼ 0 ð6:164Þ

In addition, let Vy ¼ V1
y ; . . .; V

n
y

� 	T
be a

column vector of standard normal random vari-
ables, where Vs

y is independent of V
r
w for (r, w) ≠

(s, y) and independent of past flows Zr
w where

y ≥ w. The assumption that the variables have
zero mean implicitly suggests that the mean
value has already been subtracted from all the
variables. This makes the notation simpler and
eliminates the need to include a constant term in
the models. With all the variables having zero
mean, one can focus on reproducing the vari-
ances and covariances of the vectors included in
a model.

A sequence of synthetic flows can be gener-
ated by the model

Zyþ 1 ¼ AZy þBVy ð6:165Þ

where A and B are (n × n) matrices whose ele-
ments are chosen to reproduce the lag 0 and lag 1
cross-covariances of the flows at each site. The
lag 0 and lag 1 covariances and cross-covariances
can most economically be manipulated by use of
the two matrices S0 and S1; the lag-zero covari-
ance matrix, denoted S0, is defined as

S0 ¼ E½ZyZT
y � ð6:166Þ

and has elements

S0ði; jÞ ¼ E Zi
yZ

j
y

h i
ð6:167Þ

The lag-one covariance matrix, denoted S1, is
defined as

S1 ¼ E½Zyþ 1ZT
y � ð6:168Þ

and has elements

S1ði; jÞ ¼ E Zi
yþ 1Z

j
y

h i
ð6:169Þ

The covariances do not depend on y because
the streamflows are assumed to be stationary.

Matrix S1 contains the lag 1 covariances and
lag 1 cross-covariances. S0 is symmetric because
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the cross covariance S0(i, j) equals S0(j, i). In
general, S1 is not symmetric.

The variance–covariance equations that define
the values of A and B in terms of S0 and S1 are
obtained by manipulations of Eq. 6.165. Multi-
plying both sides of that equation by Zy

T and
taking expectations yields

E Zyþ 1ZT
y

h i
¼ E AZyZT

y

h i
þE BVyZT

y

h i
ð6:170Þ

The second term on the right-hand side van-
ishes because the components of Zy and Vy are
independent. Now the first term in Eq. 6.170,

E AZyZT
y

h i
, is a matrix whose (i, j)th element

equals

E
Xn
k¼1

aikZ
k
yZ

i
y

" #
¼

Xn
k¼1

aikE½Zk
yZ

i
y� ð6:171Þ

The matrix with these elements is the same as

the matrix AE ZyZT
y

h i
.

Hence, A—the matrix of constants—can be
pulled through the expectation operator just as is
done in the scalar case where E[aZy + b] = aE
[Zy] + b for fixed constants a and b.

Substituting S0 and S1 for the appropriate
expectations in Eq. 6.170 yields

S1 ¼ AS0 or A ¼ S1S�1
0 ð6:172Þ

A relationship to determine the matrix B is
obtained by multiplying both sides of Eq. 6.165
by its own transpose (this is equivalent to
squaring both sides of the scalar equation a = b)
and taking expectations to obtain

E½Zyþ 1ZT
yþ 1� ¼ E½AZyZT

yA
T� þE½AZyVT

yB
T�

þE BVyZyAT� �þE½BVyVT
yB

T�
ð6:173Þ

The second and third terms on the right-hand
side of Eq. 6.173 vanish because the components
of Zy and Vy are independent and have zero

mean. E VyVT
y

h i
equals the identity matrix

because the components of Vy are independently
distributed with unit variance. Thus

S0 ¼ AS0AT þBBT ð6:174Þ

Solving of the B matrix one finds that it
should satisfy

BBT ¼ S0 � AS0AT ¼ S0 � S1S�1
0 ST1 ð6:175Þ

The last equation results from substitution of
the relationship for A given in Eq. 6.172 and the
fact that S0 is symmetric; hence S�1

0 is
symmetric.

It should not be too surprising that the ele-
ments of B are not uniquely determined by
Eq. 6.175. The components of the random vector
Vy may be combined in many ways to produce
the desired covariances as long as B satisfies
Eq. 6.175. A lower triangular matrix that satisfies
Eq. 6.175 can be calculated by Cholesky
decomposition (Young 1968; Press et al. 1986).

Matalas and Wallis (1976) call Eq. 6.165 the
lag-1 model. They did not call the lag-1 model a
Markov model because the streamflows at indi-
vidual sites do not have the covariances of an
autoregressive Markov process given in
Eq. 6.153. They suggest an alternative model
they call the Markov model. It has the same
structure as the lag-1 model except it does not
preserve the lag-1 cross-covariances. By relaxing
this requirement, they obtain a simpler model
with fewer parameters that generates flows that
have the covariances of an autoregressive Mar-
kov process at each site. In their Markov model,
the new A matrix is simply a diagonal matrix
whose diagonal elements are the lag-1 correla-
tions of flows at each site

A ¼ diag½q 1; i; ið Þ� ð6:176Þ

where ρ(1; i, i) is the lag-one correlation of flows
at site i.

The corresponding B matrix depends on the
new A matrix and S0, where as before
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BBT ¼ S0 � AS0AT ð6:177Þ

The idea of fitting time series models to each
site separately and then correlating in innovations
in those separate models to reproduce the
cross-correlation between the series is a very
general and powerful modeling idea that has seen
a number of applications with different time
series models (Matalas and Wallis 1976;
Stedinger et al. 1985; Camacho et al. 1985; Salas
1993).

6.8.6 Multiseason, Multisite Models

In most studies of surface water systems it is
necessary to consider the variations of flows
within each year. Streamflows in most areas have
within-year variations, exhibiting wet and dry
periods. Similarly, water demands for irrigation,
municipal, and industrial uses also vary, and the
variations in demand are generally out of phase
with the variation in within-year flows; more
water is usually desired when streamflows are
low and less is desired when flows are high. This
increases the stress on water delivery systems
and makes it all the more important that time
series models of streamflows, precipitation and
other hydrological variables correctly reproduce
the seasonality of hydrological processes.

This section discusses two approaches to
generating within-year flows. The first approach
is based on the disaggregation of annual flows
produced by an annual flow generator to seasonal
flows. Thus the method allows for reproduction
of both the annual and seasonal characteristics of
streamflow series. The second approach gener-
ates seasonal flows in a sequential manner, as
was done for the generation of annual flows.
Thus the models are a direct generalization of the
annual flow models already discussed.

6.8.6.1 Disaggregation Model
The disaggregation model proposed by Valencia
and Schaake (1973) and extended by Mejia and
Rousselle (1976) and Tao and Delleur (1976)
allows for the generation of synthetic flows that

reproduce statistics both at the annual level and
at the seasonal level. Subsequent improvements
and variations are described by Stedinger and
Vogel (1984), Maheepala and Perera (1996),
Koutsoyiannis and Manetas (1996) and Tarboton
et al. (1998).

Disaggregation models can be used for either
multiseason single-site or multisite streamflow
generation. They represent a very flexible mod-
eling framework for dealing with different time
or spatial scales. Annual flows for the several
sites in question or the aggregate total annual
flow at several sites can be the input to the model
(Grygier and Stedinger 1988). These must be
generated by another model, such as those dis-
cussed in the previous sections. These annual
flows or aggregated annual flows are then dis-
aggregated to seasonal values.

Let Zy ¼ Z1
y ; . . .; Z

N
y

� 	T
be the column vec-

tor of N transformed normally distributed annual
or aggregate annual flows for N separate sites or

basins. Next let Xy = X1
1;y; . . .; X

1
T ;y;X

2
1;y; . . .;

�
X2
Ty; . . .; X

n
1y; . . .; X

n
Ty

	T
be the column vector

of nT transformed normally distributed seasonal
flows Xs

ty for season t, year y, and site s.
Assuming that the annual and seasonal series,

Zs
y and Xs

ty, have zero mean (after the appro-
priate transformation), the basic disaggregation
model is

Xy ¼ AZy þBVy ð6:178Þ

where Vy is a vector of nT independent standard
normal random variables, and A and B are,
respectively, nT × N and nT × nT matrices. One
selects values of the elements of A and B to
reproduce the observed correlations among the
elements ofXy and between the elements ofXy and
Zy. Alternatively, one could attempt to reproduce
the observed correlations of the untransformed
flows as opposed to the transformed flows,
although this is not always possible (Hoshi et al.
1978) and often produces poorer estimates of the
actual correlations of the flows (Stedinger 1981).

The values of A and B are determined using
the matrices Szz ¼ E½ZyZT

y �, Szz ¼ E½ZyZT
y �,
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Sxx ¼ E½XyXT
y �, Sxz ¼ E½XyZT

y �, and Szy ¼
E½ZyXT

y � where Szz was called S0 earlier. Clearly,

STxz ¼ Szx. If Sxz is to be reproduced, then by

multiplying Eq. 6.178 on the right by ZT
y and

taking expectations, one sees that A must satisfy

E XyZT
y

h i
¼ E AZyZT

y

h i
ð6:179Þ

or

Sxz ¼ ASzz ð6:180Þ

Solving for the coefficient matrix A one
obtains

A ¼ SxzS�1
zz ð6:181Þ

To obtain an equation that determines the
required value of the matrix B, one can multiply
both sides of Eq. 6.178 by their transpose and
take expectations to obtain

Sxx ¼ ASzzAT þBBT ð6:182Þ

Thus to reproduce the covariance matrix Sxx
the B matrix must satisfy

BBT ¼ Sxx � ASzzAT ð6:183Þ

Equations 6.181 and 6.183 for determining
A and B are completely analogous to Eqs. 6.172
and 6.175 for the A and B matrices of the lag-1
models developed earlier. However, for the dis-
aggregation model as formulated, BBT and hence
the matrix B can actually be singular or nearly so
(Valencia and Schaake 1973). This occurs
because the real seasonal flows sum to the
observed annual flows. Thus given the annual
flow at a site and (T − 1) of the seasonal flows,
the value of the unspecified seasonal flow can be
determined by subtraction.

If the seasonal variables Xs
ty correspond to

nonlinear transformations of the actual flows Qs
ty,

then BBT is generally sufficiently non-singular
that a B matrix can be obtained by Cholesky
decomposition. On the other hand, when the
model is used to generate values of Xs

ty to be

transformed into synthetic flows Qs
ty, the con-

straint that these seasonal flows should sum to
the given value of the annual flow is lost. Thus
the generated annual flows (equal to the sums of
the seasonal flows) will deviate from the values
that were to have been the annual flows. Some
distortion of the specified distribution of the
annual flows results. This small distortion can be
ignored, or each year’s seasonal flows can be
scaled so that their sum equals the specified value
of the annual flow (Grygier and Stedinger 1988).
The latter approach eliminates the distortion in
the distribution of the generated annual flows by
distorting the distribution of the generated sea-
sonal flows. Koutsoyiannis and Manetas (1996)
improve upon the simple scaling algorithm by
including a step that rejects candidate vectors Xy

if the required adjustment is too large and instead
generates another vector Xy. This reduces the
distortion in the monthly flows that results from
the adjustment step.

The disaggregation model has substantial data
requirements. When the dimension of Zy is n and
the dimension of the generated vector Xy is m,
the A matrix has mn elements. The lower diag-
onal B matrix and the symmetric Sxx matrix,
upon which it depends, each have m(m + 1)/2
nonzero or nonredundant elements. For example,
when disaggregating two aggregate annual flow
series to monthly flows at five sites, n = 2 and
m = 12 × 5 = 60 so that A has 120 elements
while B and Sxx each have 1830 nonzero or
nonredundant parameters. As the number of sites
included in the disaggregation increases, the size
of Sxx and B increases rapidly. Very quickly the
model can become over parameterized, and there
will be insufficient data to estimate all parameters
(Grygier and Stedinger 1988).

In particular, one can think of Eq. 6.178 as a
series of linear models generating each monthly
flow Xk

ty for k = 1, t = 1, …, 12; k = 2,
t = 1, …, 12 up to k = n, t = 1, …, 12 that
reproduces the correlation of each Xk

ty with all

n annual flows, Zk
y, and all previously generated

monthly flows. Thenwhen one gets to the last flow
in the last month, the model will be attempting to
reproduce n + (12n − 1) = 13n − 1 annual to
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monthly and cross-correlations. Because the
model implicitly includes a constant, this means
one needs k* = 13n years of data to obtain a
unique solution for this critical equation. For
n = 3, k* = 39. One could say that with a record
length of 40 years, there would be only 1 degree of
freedom left in the residual model error variance
described by B. That would be unsatisfactory.

When flows at many sites or in many seasons
are required, the size of the disaggregation model
can be reduced by disaggregation of the flows in
stages and not attempting to explicitly reproduce
every season-to-season correlation by construct-
ing what have been called condensed and con-
temporaneous models (Lane 1979; Stedinger and
Vogel 1984; Gryier and Stedinger 1988;
Koutsoyiannis and Manetas 1996). Condensed
models do not attempt to reproduce the
cross-correlations among all the flow variates at
the same site within a year (Lane 1979; Stedinger
et al. 1985), whereas contemporaneous models
are like the Markov model developed earlier in
Sect. 8.5 and are essentially models developed
for individual sites whose innovation vectors Vy

have the needed cross-correlations to reproduce
the cross-correlations of the concurrent flows
(Camacho et al. 1985), as was done in Eq. 6.177.
Grygier and Stedinger (1991) describe how this
can be done for a condensed disaggregation
model without generating inconsistencies.

6.8.6.2 Aggregation Models
One can start with annual or seasonal flows, and
break them down into flows in shorter periods
representing months or weeks. Or instead one
can start with a model that describes flows and
the shortest time step included in the model; this
latter approach has been referred to as aggrega-
tion model to distinguish it from the disaggre-
gation approach.

One method for generating multiseason flow
sequences is to convert the time series of sea-
sonal flows Qty into a homogeneous sequence of
normally distributed zero-mean unit-variance

random variables Zty. These can then be mod-
eled by an extension of the annual flow genera-
tors that have already been discussed. This
transformation can be accomplished by fitting a
reasonable marginal distribution to the flows in
each season so as to be able to convert the
observed flows qsty into their transformed coun-
terparts zsty, and vice versa. Particularly, when
shorter streamflow records are available, these
simple approaches may yield a reasonable model
of some streams for some studies. However, it
implicitly assumes that the standardized series is
stationary in the sense that the season-to-season
correlations of the flows do not depend on the
seasons in question. This assumption seems
highly questionable.

This theoretical difficulty with the standard-
ized series can be overcome by introducing a
separate streamflow model for each month. For
example, the classic Thomas-Fiering model
(Thomas and Fiering 1962) of monthly flows
may be written

Ztþ 1;y ¼ btZty þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2t

q
Vty ð6:184Þ

where the Zty’s are standard normal random vari-
ables corresponding to the streamflow in season
t of year y, βt is the season-to-season correlation of
the standardized flows, and Vty are independent
standard normal random variables. The problem
with this model is that it often fails to reproduce
the correlation among months during a year and
thus misrepresents the risk of multi-month and
multi-year droughts (Hoshi et al. 1978).

For an aggregation approach to be attractive it
is necessary to use a model with greater persis-
tence than the Thomas-Fiering model. Time
series models that allow reproduction of different
correlation structures are the Box-Jenkins
Autoregressive-Moving average models
(Box et al. 1994). These models are presented by
the notation ARMA(p, q) for a model which
depends on p previous flows, and q extra inno-
vations Vty. For example, Eq. 6.142 would be
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called an AR(1) or AR(1, 0) model. A simple
ARMA(1, 1) model is

Ztþ 1 ¼ /1 � Zt þVtþ 1 � h1 � Vt ð6:185Þ

The correlations of this model have the values

q1 ¼ ð1� h1/1Þ /1 � h1ð Þ= 1þ h21 � 2/1h1
� �

ð6:186Þ

for the first lag. For i > 1

qi ¼ /i�1q1 ð6:187Þ

For / values near one and 0 < θ1 < ϕ1 the
autocorrelations ρk can decay much slower than
those of the standard AR(1) model.

The correlation function ρk of general ARMA
(p, q) model

Ztþ 1 ¼
Xp
i¼1

/i � Ztþ 1�i þVtþ 1 �
Xq
j¼1

hj � Vtþ 1�j

ð6:188Þ

is a complex function that must satisfy a number
of conditions to ensure the resultant model is
stationary and invertible (Box et al. 1994).

ARMA(p, q) models have been extended to
describe seasonal flow series by having their
coefficients depend upon the season—these are
called periodic Autoregressive-Moving average
models, or PARMA. Salas and Obeysekera
(1992), Salas and Fernandez (1993), and Claps
et al. (1993) discuss the conceptual basis of such
stochastic streamflow models. For example, Salas
and Obeysekera (1992) found that low-order
PARMA models, such as a PARMA(2,1), arise
from reasonable conceptual representations of
persistence in rainfall, runoff, and groundwater
recharge and release. Claps et al. (1993, p. 2553)
observe that the PARMA(2, 2) model which may
be needed if one wants to preserve year-to-year
correlation poses a parameter estimation challenge
(see also Rasmussen et al. 1996). The PARMA (1,
1)model ismore practical and easy to extend to the
multivariate case (Hirsch 1979; Stedinger et al.
1985; Salas 1993; Rasmussen et al. 1996). Expe-
rience has shown that PARMA(1, 1) models do a

better job of reproducing the correlation of sea-
sonal flows beyond lag one (see for example,
Bartolini and Salas 1993).

6.9 Stochastic Simulation

This section introduces stochastic simulation.
Much more detail on simulation is contained in
later parts of this chapter and in the next chapter.
Simulation is the most flexible and widely used
tool for the analysis of complex water resources
systems. Simulation is trial and error. One must
define the system being simulated, both its
design and operating policy, and then simulate it
to see how it works. If the purpose is to find the
best design and policy, many such alternatives
must be simulated.

As with optimization models, simulation
models may be deterministic or stochastic. One
of the most useful tools in water resource
systems planning is stochastic simulation.
While optimization can be used to help define
reasonable design and operating policy alter-
natives to be simulated, it takes those simula-
tions to obtain the best insights of just how
each such alternative will perform. Stochastic
simulation of complex systems on digital
computers provides planners with a way to
define the probability distribution of perfor-
mance indices of complex stochastic water
resources systems.

When simulating any system, the modeler
designs an experiment. Initial flow, storage,
and water quality conditions must be specified
if these are being simulated. For example,
reservoirs can start full, empty, or at random
representative conditions. The modeler also
determines what data are to be collected on
system performance and operation and how
they are to be summarized. The length of time
the simulation is to be run must be specified
and, in the case of stochastic simulations, the
number of runs to be made must also be
determined. These considerations are discussed
in more detail by Fishman (2001) and in other
books on simulation. The use of stochastic
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simulation and the analysis of the output of
such models are introduced here primarily in
the context of an example to illustrate what
goes into a simulation model and how one can
deal with the information that is generated.

6.9.1 Generating Random Variables

Included in any stochastic simulation model is
some provision for the generation of sequences of
random numbers that represent particular values
of events such as rainfall, streamflows, or floods.
To generate a sequence of values for a random
variable, probability distributions for the vari-
ables must be specified. Historical data and an
understanding of the physical processes are used
to select appropriate distributions and to estimate
their parameters (as discussed in Sect. 6.3.2).

Most computers have algorithms for generat-
ing random numbers uniformly distributed
between zero and one. This uniform distribution
is defined by its cdf and pdf;

FuðuÞ ¼ 0 for u� 0;

u for 0� u� 1 and 1 if u� 1

ð6:189Þ

and

fUðuÞ ¼ 1 if 0� u� 1 and 0 otherwise

ð6:190Þ

These uniform random variables can then be
transformed into random variables with any
desired distribution. If FQ(qt) is the cumulative
distribution function of a random variable Qt in
period t, then Qt can be generated using the
inverse function, as

Qt ¼ F�1
Q ½Ut� ð6:191Þ

Here Ut is the uniform random number used
to generate Qt. This is illustrated in Fig. 6.13.

Analytical expressions for the inverse of many
distributions, such as the normal distribution, are
not known, so that special algorithms are

Fig. 6.13 The probability
distribution of a random
variable can be inverted to
produce values of the
random variable
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employed to efficiently generate deviates with
these distributions (Fishman 2001).

6.9.2 River Basin Simulation

An example will demonstrate the use of
stochastic simulation in the design and analysis
of water resource systems. Assume that farmers
in a particular valley have been plagued by fre-
quent shortages of irrigation water. They cur-
rently draw water from an unregulated river to
which they have water rights. A government
agency has proposed construction of a
moderate-size dam on the river upstream from

points where the farmers withdraw water. The
dam would be used to increase the quantity and
reliability of irrigation water available to the
farmers during the summer growing season.

After preliminary planning, a reservoir with an
active capacity of 4 × 107 m3 has been proposed
for a natural dam site. It is anticipated that because
of the increased reliability and availability of irri-
gation water, the quantity of water desired will
grow from an initial level of 3 × 107 m3/yr after
construction of the dam to 4 × 107 m3/yr within
6 years. After that, demand will grow more
slowly, to 4.5 × 107 m3/yr, the estimated maxi-
mum reliable yield. The projected demand for
summer irrigation water is shown in Table 6.12.

Table 6.12 Projected water demand for irrigation water
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A simulation study will evaluate how the
system can be expected to perform over a
20-year planning period. Table 6.13 contains
statistics that describe the hydrology at the dam
site. The estimated moments are computed from
the 45-year historic record. .

Using the techniques discussed in the previ-
ous section, a Thomas-Fiering model is used to
generate 25 lognormally distributed synthetic
streamflow sequences. The statistical character-
istics of the synthetic flows are those listed in
Table 6.14. Use of only the 45-year historic flow
sequence would not allow examination of the
system’s performance over the large range of
streamflow sequences which could occur during
the 20-year planning period. Jointly, the syn-
thetic sequences should be a description of the
range of inflows that the system might experi-
ence. A larger number of sequences could be
generated.

6.9.3 The Simulation Model

The simulation model is composed primarily of
continuity constraints and the proposed operating
policy. The volume of water stored in the reser-
voir at the beginning of seasons 1 (winter) and 2

(summer) in year y are denoted by S1y and S2y.
The reservoir’s winter operating policy is to store
as much of the winter’s inflow Q1y as possible.
The winter release R1y is determined by the rule

R1y ¼
S1y þQ1y � K if S1y þQ1y � Rmin > K
Rmin if K� S1y þQ1y � Rmin � 0
S1y þQ1y otherwise

8<:
ð6:192Þ

where K is the reservoir capacity of 4 × 107 m3

and Rmin is 0.50 × 107 m3, the minimum release
to be made if possible. The volume of water in
storage at the beginning of the year’s summer
season is

S2y ¼ S1y þQ1y � R1y ð6:193Þ

The summer release policy is to meet each
year’s projected demand or target release Dy, if
possible, so that

R2y ¼ S2y þQ2y � K if S2y þQ2y � Dy [K
¼ Dy if 0� S2y þQ2y � Dy �K
¼ S2y þQ2y otherwise

ð6:194Þ

This operating policy is illustrated in
Fig. 6.14.

Table 6.13 Characteristics of the river flow
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The volume of water in storage at the begin-
ning of the next winter season is

S1;yþ 1 ¼ S2y þQ2y � R2y ð6:195Þ

6.9.4 Simulation of the Basin

The question to be addressed by this simulation
study is how well will the reservoir meet the
farmers’ water requirements. Three steps are
involved in answering this question. First, one
must define the performance criteria or indices to
be used to describe the system’s performance.
The appropriate indices will, of course, depend
on the problem at hand and the specific concerns
of the users and managers of a water resource
system. In our reservoir-irrigation system, several
indices will be used relating to the reliability with
which target releases are met and the severity of
any shortages.

The next step is to simulate the proposed
system to evaluate the specified indices. For our
reservoir-irrigation system, the reservoir’s oper-
ation was simulated 25 times using the 25 syn-
thetic streamflow sequences, each 20 years in
length. Each of the 20 simulated years consisted
of first a winter and then a summer season. At the
beginning of the first winter season, the reservoir
was taken to be empty (S1y = 0 for y = 1)
because construction would just have been
completed. The target release or demand for
water in each year is given in Table 6.12.

After simulating the system, one must pro-
ceed to interpret the resulting information so as
to gain an understanding of how the system
might perform both with the proposed design
and operating policy and with modifications in
either the system’s design or its operating pol-
icy. To see how this may be done, consider the
operation of our example reservoir-irrigation
system.

Fig. 6.14 Summer reservoir operating policy. The shaded area denotes the feasible region of reservoir releases
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The reliability py of the target release in year
y is the probability that the target release Dy is
met or exceeded in that year:

Py ¼ Pr½R2y �Dy� ð6:196Þ

The system’s reliability is a function of the
target release Dy, the hydrology of the river, the
size of the reservoir, and the operating policy of
the system. In this example, the reliability also
depends on the year in question. Figure 6.15
shows the total number of failures that occurred in
each year of the 25 simulations. In 3 of the 25
simulations, the reservoir did not contain sufficient
water after the initial winter season to meet the
demand the first summer. After year 1, few failures
occur in years 2 through 9 because of the low
demand. Surprisingly few failures occur in years
10 and 13, when demand has reached its peak; this
results because the reservoir was normally full at
the beginning of this period as a result of lower
demand in the earlier years. Starting in years 14
and after, failures occurred more frequently
because of the high demand placed on the system.
Thus one has a sense for how the reliability of the
target releases changes over time.

6.9.5 Interpreting Simulation Output

Table 6.14 contains several summary statistics of
the 25 simulations. Column 2 of the table con-
tains the average failure frequency in each

simulation, which equals the number of years the
target release was not met divided by 20, the
number of years simulated. At the bottom of
column 2 and the other columns are several
statistics that summarize the 25 values of the
different performance indices. The sample esti-
mates of the mean and variance of each index are
given as one way of summarizing the distribution
of the observations. Another approach is speci-
fication of the sample median, the approximate
interquartile range [x(6) − x(20)], and/or the range
[x(1) − x(25)] of the observations, where x(i) is the
ith largest observation. Either set of statistics
could be used to describe the center and spread of
each index’s distribution.

Suppose that one is interested in the distri-
bution of the system’s failure frequency or,
equivalently, the reliability with which the
target can be met. Table 6.14 reports that the
mean failure rate for the 25 simulations is
0.084, implying that the average reliability over
the 20-year period is 1 − 0.084 = 0.916 or
92%. The median failure rate is 0.05, implying
a median reliability of 95%. These are both
reasonable estimates of the center of the dis-
tribution of the failure frequency. Note that the
actual failure frequency ranged from 0 (seven
times) to 0.30. Thus the system’s reliability
ranged from 100% to as low as 70, 75, and
80% in runs 17, 8, and 11. Certainly, the
farmers are interested not only in knowing the
mean or median failure frequency but also the

Fig. 6.15 Number of
failures in each year of 25
twenty-year simulations
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Table 6.14 Results of 25 20-year simulations
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range of failure frequencies they are likely to
experience.

If one knew the form of the distribution
function of the failure frequency, one could use
the mean and standard deviation of the obser-
vations to determine a confidence interval within
which the observations would fall with some
prespecified probability. For example, if the
observations are normally distributed, there is a
90% probability that the index falls within the
interval μx ± 1.65σx. Thus, if the simulated
failure rates are normally distributed, there is
about a 90% probability the actual failure rate is
within the interval �x ± 1.65sx. In our case this
interval would be [0.084 − 1.65(0.081),
0.084 + 1.65(0.081)] = [−0.050, 0.218].

Clearly, the failure rate cannot be less than
zero, so that this interval makes little sense in our
example.

A more reasonable approach to describing the
distribution of a performance index whose
probability distribution function is not known is
to use the observations themselves. If the
observations are of a continuous random vari-
able, the interval [x(i) − x(n+1−i)] provides a rea-
sonable estimate of an interval within which the
random variable falls with probability

P ¼ nþ 1� i

nþ 1
� i

nþ 1
¼ nþ 1� 2i

nþ 1
ð6:197Þ

In our example, the range [x(1) − x(25)] of the
25 observations is an estimate of an interval in
which a continuous random variable falls with
probability (25 + 1 − 2)/(25 + 1) = 92%, while
[x(6) − x(20)] corresponds to probability
(25 + 1 – 2 × 6)/(25 + 1) = 54%.

Table 6.14 reports that for the failure fre-
quency, [x(1) − x(25)] equals [0 − 0.30], while
[x(6) − x(20)] equals [0 − 0.15]. Reflection on
how the failure frequencies are calculated
reminds us that the failure frequency can only
take on the discrete, nonnegative values 0, 1/20,
2/20, …, 20/20. Thus, the random variable
X cannot be less than zero. Hence, if the lower
endpoint of an interval is zero, as is the case here,
then [0 − x(k)] is an estimate of an interval within
which the random variable falls with a

probability of at least k/(n + 1). For k equal to 20
and 25, the corresponding probabilities are 77
and 96%.

Often, the analysis of a simulated system’s
performance centers on the average value of
performance indices, such as the failure rate. It is
important to know the accuracy with which the
mean value of an index approximates the true
mean. This is done by the construction of con-
fidence intervals. A confidence interval is an
interval that will contain the unknown value of a
parameter with a specified probability. Confi-
dence intervals for a mean are constructed using
the t statistic,

t ¼ �x� lx
sx=

ffiffiffi
n

p ð6:198Þ

which for large n has approximately a standard
normal distribution. Certainly, n = 25 is not very
large, but the approximation to a normal distri-
bution may be sufficiently good to obtain a rough
estimate of how close the average frequency of
failure �x is likely to be to μx. A 100(1 − 2α)%
confidence interval for μx is, approximately,

�x� ta
sxffiffiffi
n

p � lx ��xþ ta
sxffiffiffi
n

p

or

0:084� ta
0:081ffiffiffiffiffi

25
p


 �
� lx � 0:084þ ta

0:081ffiffiffiffiffi
25

p

 �

ð6:199Þ

If α = 0.05, then tα = 1.65 and Eq. 6.199
becomes 0.057 ≤ μx ≤ 0.11.

Hence, based on the simulation output, one
can be about 90% sure that the true mean
failure frequency lies between 5.7 and 11%.
This corresponds to a reliability between 89
and 94%. By performing additional simulations
to increase the size of n, the width of this
confidence interval can be decreased. However,
this increase in accuracy may be an illusion,
because the uncertainty in the parameters of the
streamflow model has not been incorporated
into the analysis.
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Failure frequency or system reliability
describes only one dimension of the system’s
performance. Table 6.14 contains additional
information on the system’s performance related
to the severity of shortages. Column 3 lists the
frequencies with which the shortage exceeded
20% of that year’s demand. This occurred in
approximately 2% of the years, or in 24% of the
years in which a failure occurred. Taking another
point of view, failures in excess of 20% of
demand occurred in 9 out of 25, or in 36% of the
simulation runs

Columns 4 and 5 of Table 6.14 contain two
other indices that pertain to the severity of the
failures. The total shortfall in Column 4 is cal-
culated as

TS�
X20
y�1

D2y � R2y
� �þ

where

Q½ � þ¼ Q if Q[ 0
0 otherwise

�
ð6:200Þ

The total shortfall equals the total amount by
which the target release is not met in years in
which shortages occur.

Related to the total shortfall is the average
deficit. The deficit is defined as the shortfall in
any year divided by the target release in that year.
The average deficit is

AD ¼ 1
m

X20
y¼1

D2y � R2y
� �

D2y
ð6:201Þ

where m is the number of failures (deficits) or
nonzero terms in the sum.

Both the total shortfall and the average deficit
measure the severity of shortages. The mean total
shortfall TS, equal to 1.00 for the 25 simulation
runs, is a difficult number to interpret. While no
shortage occurred in seven runs, the total short-
age was 4.7 in run 8, in which the shortfall in two
different years exceeded 20% of the target. The
median of the total shortage values, equal to
0.76, is an easier number to interpret in that one

knows that half the time the total shortage was
greater and half the time less than this value.

The mean average deficit A�D is 0.106, or
11%. However, this mean includes an average
deficit of zero in the seven runs in which no
shortages occurred. The average deficit in the
18 years in which shortages occurred is (11%)
(25/18) = 15%. The average deficit in individual
simulations in which shortages occurred ranges
from 4 to 43%, with a median of 11.5%.

After examining the results reported in
Table 6.14, the farmers might determine that the
probability of a shortage exceeding 20% of a
year’s target release is higher than they would
like. They can deal with more frequent minor
shortages, not exceeding 20% of the target, with
little economic hardship, particularly if they are
warned at the beginning of the growing season
that less than the targeted quantity of water will
be delivered. Then they can curtail their planting
or plant crops requiring less water.

In an attempt to find out how better to meet
the farmers’ needs, the simulation program was
rerun with the same streamflow sequences and a
new operating policy in which only 80% of the
growing season’s target release is provided (if
possible) if the reservoir is less than 80% full at
the end of the previous winter season. This gives
the farmers time to adjust their planting sched-
ules and may increase the quantity of water
stored in the reservoir to be used the following
year if the drought persists.

As the simulation results with the new policy
in Table 6.15 demonstrate, this new operating
policy appears to have the expected effect on the
system’s operation. With the new policy, only six
severe shortages in excess of 20% of demand
occur in the 25 twenty-year simulations, as
opposed to 10 such shortages with the original
policy. In addition, these severe shortages are all
less severe than the corresponding shortages that
occur with the same streamflow sequence when
the original policy is followed.

The decrease in the severity of shortages is
obtained at a price. The overall failure frequency
has increased from 8.4 to 14.2%. However, the
latter figure is misleading because in 14 of the 25
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Table 6.15 Results of 25 20-Year simulations with modified operating policy to avoid severe shortages
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simulations, a failure occurs in the first simula-
tion year with the new policy, whereas only three
failures occur with the original policy. Of course,
these first-year failures occur because the reser-
voir starts empty at the beginning of the first
winter and often does not fill that season.

Ignoring these first-year failures, the failure
rates with the two policies over the subsequent
19 years are 8.2 and 12.0%. Thus the frequency
of failures in excess of 20% of demand is
decreased from 2.0 to 1.2% by increasing the
frequency of all failures after the first year from
8.2 to 12.0%. Reliability increases while vul-
nerability decreases. If the farmers are willing to
put up with more frequent minor shortages, it
appears they can reduce their risk of experiencing
shortages of greater severity.

The preceding discussion has ignored the
statistical issue of whether the differences
between the indices obtained in the two simula-
tion experiments are of sufficient statistical reli-
ability to support the analysis. If care is not
taken, observed changes in a performance index
from one simulation experiment to another may
be due to sampling fluctuations rather than to
modifications of the water resource system’s
design or operating policy.

As an example, consider the change that
occurred in the frequency of shortages. Let X1i

and X2i be the simulated failure rates using the ith
streamflow sequence with the original and
modified operating policies. The random vari-
ables Yi = X1i − X2i for i equal 1 through 25 are
independent of each other if the streamflow
sequences are generated independently, as they
were.

One would like to confirm that the random
variable Y tends to be negative more often than it
is positive and hence that policy 2 indeed results
in more failures overall. A direct test of this
theory is provided by the sign test. Of the 25
paired simulation runs, yi < 0 in 21 cases and
yi = 0 in four cases. We can ignore the times
when yi = 0. Note that if yi < 0 and yi > 0 were
equally likely, then the probability of observing
yi < 0 in all 21 cases when yi ≠ 0 is 2−21 or
5 × 10−7. This is exceptionally strong proof that

the new policy has increased the failure
frequency.

A similar analysis can be made of the fre-
quency with which the release is less than 80% of
the target. Failure frequencies differ in the two
policies in only four of the 25 simulation runs.
However, in all 4 cases where they differ, the
new policy resulted in fewer severe failures. The
probability of such a lopsided result, were it
equally likely that either policy would result in a
lower frequency of failures in excess of 20% of
the target, is 2−4 = 0.0625. This is fairly strong
evidence that the new policy indeed decreases
the frequency of severe failures.

Another approach to this problem is to ask if
the difference between the average failure rates
�x1 and �x2 is statistically significant; that is, can
the difference between x1 and x2 be attributed
to the fluctuations that occur in the average of
any finite set of random variables? In this
example, the significance of the difference
between the two means can be tested using the
random variable Yi defined as X1i − X2i for
i equal 1 through 25. The mean of the observed
yi’s is

�y ¼ 1
25

X25
i�1

x1i � x2ið Þ ¼ �x1 � �x2

¼ 0:084� 0:142 ¼ �0:058 ð6:202Þ

and their variance is

s2y ¼
1
25

X25
i¼1

x1i � x2i � �yð Þ2 ¼ 0:0400ð Þ2

ð6:203Þ

Now if the sample size n, equal to 25 here, is
sufficiently large, then t defined by

t ¼ �y� lY
sY=

ffiffiffi
n

p ð6:204Þ

has approximately a standard normal distribution.
The closer the distribution of Y is to that of the
normal distribution, the faster the convergence of
the distribution of t is to the standard normal
distribution with increasing n. If X1i − X2i is
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normally distributed, which is not the case here,
then each Yi has a normal distribution and t has
Student’s t-distribution.

If E[x1i] = E[x2i], then μY equals zero and
upon substituting the observed values of �y and s2Y
into Eq. 6.204, one obtains

t ¼ �0:0580

0:0400=
ffiffiffiffiffi
25

p ¼ �7:25 ð6:205Þ

The probability of observing a value of t equal
to −7.25 or smaller is less than 0.1% if n is
sufficiently large that t is normally distributed.
Hence it appears very improbable that μY equals
zero.

This example provides an illustration of the
advantage of using the same streamflow
sequences when simulating both policies. Sup-
pose that different streamflow sequences were
used in all the simulations. Then the expected
value of Y would not change, but its variance
would be given by

VarðYÞ ¼ E½X1 � X2 � ðl1 � l2Þ�2
¼ E½ðX1 � l1Þ2� � 2E½ðX1 � l1ÞðX2 � l2Þ�
E½ðX2 � l2Þ2�

¼ r2x1 � 2Cov X1; X2ð Þþ r2X2

ð6:206Þ

where Cov(X1, X2) = E[(X1 − μ1)(X2 − μ2)] and
is the covariance of the two random variables.
The covariance between X1 and X2 will be zero if
they are independently distributed as they would
be if different randomly generated streamflow
sequences were used in each simulation. Esti-
mating r2x1 and r2x2 by their sample estimates, an
estimate of what the variance of Y would be if
Cov(X1, X2) were zero is

r̂2Y ¼ s2x1 þ s2x2 ¼ 0:081ð Þ2 þ 0:087ð Þ2¼ 0:119ð Þ2
ð6:207Þ

The actual sample estimate sY equals 0.040; if
independent streamflow sequences are used in all
simulations, sY will take a value near 0.119 rather

than 0.040 (Eq. 6.203). A standard deviation of
0.119 yields a value of the test statistic

t ¼ �y� lY
0:119=

ffiffiffiffiffi
25

p lY¼0

�� ¼ �2:44 ð6:208Þ

If t is normally distributed, the probability of
observing a value less than −2.44 is about 0.8%.
This illustrates that use of the same streamflow
sequences in the simulation of both policies
allows one to better distinguish the differences in
the policies’ performance. Using the same
streamflow sequences, or other random inputs,
one can construct a simulation experiment in
which variations in performance caused by dif-
ferent random inputs are confused as little as
possible with the differences in performance
caused by changes in the system’s design or
operating policy.

6.10 Conclusions

This chapter has introduced some approaches
analysts can consider and use when working with
the randomness or uncertainty of their data. Most
of the data water resource systems analysts use is
uncertain. This uncertainty comes from not
understanding as well as we would like how our
water resource systems (including its ecosys-
tems) function as well as not being able to
forecast, perfectly, the future. It is that simple.
We do not know the exact amounts, qualities,
and their distributions over space and time of
both the supplies of water we manage and the
water demands we try to meet. We also do not
know the benefits and costs, however measured,
of any actions we take to manage both water
supply and water demand.

The chapter began with an introduction to
some probability concepts and methods for
describing random variables and parameters of
their distributions. It then reviewed some of the
commonly used probability distributions and
how to determine the distributions of sample
data, how to work with censored and partial
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duration series data, methods of regionalization,
stochastic processes and time series analyses.

The chapter concluded with an introduction to
a range of univariate and multivariate stochastic
models that are used to generate stochastic
streamflow, precipitation depths, temperatures,
and evaporation. These methods have been
widely used to generate temporal and spatial
stochastic process that serve as inputs to
stochastic simulation models for system design,
for system operations studies, and for the eval-
uation of the reliability and precision of different
estimation algorithms. The final section of this
chapter provides an example of stochastic simu-
lation, and the use of statistical methods to
summarize the results of such simulations.

This chapter is merely an introduction to some
of the tools available for use when dealing with
uncertain data. Many of the concepts introduced
in this chapter will be used in the chapters that
follow on constructing and implementing various
types of optimization, simulation, and statistical
models. The references provided in the next
section provide additional and more detailed
information.

Although many of the methods presented in
this and the following two chapters can describe
many of the characteristics and consequences of
uncertainty, it is unclear as to whether or not
society knows exactly what to do with that
information. Nevertheless there seems to be an
increasing demand from stakeholders involved in
planning processes for information related to the
uncertainty associated with the impacts predicted
by models. The challenge is not only to quantify
that uncertainty, but also to communicate it in
effective ways that inform, and not confuse, the
decision-making process.
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Exercises

6:1 Identify a water resources planning study
with which you have some familiarity.
Make a list of the basic information used
in the study and the methods used trans-
form that information into decisions, rec-
ommendations, and conclusions.

(a) Indicate the major sources of uncer-
tainty and possible error in the basic
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information and in the transformation
of that information into decisions,
recommendations, and conclusions.

(b) In systems studies, sources of error
and uncertainty are sometimes
grouped into three categories

1. Uncertainty due to the natural
variability of rainfall, temperature,
and stream flows which affect a
system’s operation.

2. Uncertainty due to errors made in
the estimation of the models’
parameters with a limited amount
of data.

3. Uncertainty or errors introduced
into the analysis because concep-
tual and/or mathematical models
do not reflect the true nature of the
relationships being described.

Indicate, if applicable, into which category
each of the sources of error or uncertainty
you have identified falls.

6:2 The following matrix displays the joint
probabilities of different weather conditions
and of different recreation benefit levels
obtained from use of a reservoir in a state
park:

Weather Possible recreation benefits

RB1 RB2 RB3

Wet 0.10 0.20 0.10

Dry 0.10 0.30 0.20

(a) Compute the probabilities of recre-
ation levels RB1, RB2, RB3, and of dry
and wet weather.

(b) Compute the conditional probabilities P
(wet∣RB1), P(RB3∣dry), and P(RB2∣wet).

6:3 In flood protection planning, the 100-year
flood, which is an estimate of the quantile
x0.99, is often used as the design flow.
Assuming that the floods in different years
are independently distributed

(a) Show that the probability of at least
one 100-year flood in a 5-year period
is 0.049.

(b) What is the probability of at least
one 100-year flood in a 100-year
period?

(c) If floods at 1000 different sites occur
independently, what is the probability
of at least one 100-year flood at some
site in any single year?

6:4 The price to be charged for water by an
irrigation district has yet to be deter-
mined. Currently it appears as if there is
as 60% probability that the price will be
$10 per unit of water and a 40% proba-
bility that the price will be $5 per unit.
The demand for water is uncertain. The
estimated probabilities of different
demands given alternative prices are as
follows:

Price/Quantity Prob. of quantity demanded given
price

30 55 80 100 120

$5 0.00 0.15 0.30 0.35 0.20

$10 0.20 0.30 0.40 0.10 0.00

(a) What is the most likely value of future
revenue from water sales?

(b) What are the mean and variance of
future water sales?

(c) What is the median value and in-
terquartile range of future water sales?

(d) What price will maximize the revenue
from the sale of water?

6:5 Plot the following data on possible recre-
ation losses and irrigated agricultural
yields. Show that use of the expected
storage level or expected allocation
underestimates the expected value of the
convex function describing reservoir los-
ses while it overestimates the expected
value of the concave function describing
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crop yield. A concave function f(x) has the
property that f(x) ≤ f(x0) + f′(xo)(x – x0)
for any x0; prove that use of f(E[X]) will
always overestimate the expected value of
a concave function f(X) when X is a ran-
dom variable.

Irrigation
water
allocation

Crop
yield/Hectare

Probability of
allocation

10 6.5 0.2

20 10 0.3

30 12 0.3

40 11 0.2

Summer
storage level

Decrease in
recreation
benefits

Probability of
storage level

200 5 0.1

250 2 0.2

300 0 0.4

350 1 0.2

400 4 0.1

6:6 Complications can be added to the eco-
nomic evaluation of a project by uncer-
tainty concerning the usefulness life of the
project. For example, the time at which the
useful life of a reservoir will end due to
silting is never known with certainty when
the reservoir is being planned. If the

discount rate is high and the life is rela-
tively long, the uncertainty may not very
important. However, if the life of a reser-
voir, or of a wastewater treatment facility,
or any other such project, relatively short,
the practice of using the expected life to
calculate present costs or benefits may be
misleading.In this problem, assume that a
project results in $1000 of net benefits at
the end of each year is expected to last
between 10 and 30 years. The probability
of ending at the end of each year within the
range of 11–30 is the same. Given a dis-
count rate of 10%

(a) Compute the present value of net
benefits NB0, assuming a 20-year
project life.

(b) Compare this with the expected pre-
sent net benefits E[NB0] taking
account of uncertainty in the project
lifetime.

(c) Compute the probability that the
actual present net benefits is at least
$1000 less than NB0, the benefit esti-

mate based on a 20-year life.
(d) What is the chance of getting $1000

more than the original estimate NB0?

6:7 A continuous random variable that could
describe the proportion of fish or other
animals in different large samples which

12

10

Irrigation water allocation

20 30 40

Yield

200

Summer Storage Level

250 300 350

5 

Decrease
in

Benefits

400
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have some distinctive features is the beta
distribution whose density is (a > 0, b > 0)

fXðxÞ ¼ cxa�1ð1� xÞb�1 0� x� 1
0 otherwise

�

(a) Directly calculate the value of c and
the mean and variance of X for
α = β = 2.

(b) In general, c = Γ(α + β)/Γ(α)Γ(β),
where Γ(α) is the gamma function
equal to (α − 1)! for integer α. Using
this information, derive the general
expression for themean and variance of
X. To obtain a formula which gives the
values of the integrals of interest, note
that the expression for c must be such
that the integral over (0, 1) of the den-
sity function is unity for any α and β.

6:8 The joint probability density of rainfall at
two places on rainy days could be descri-
bed by

fX;Yðx; yÞ 2= xþ yþ 1ð Þ3 x; y� 0
0 otherwise

�
Calculate and graph

(a) FXY(x, y), the joint distribution func-
tion of X and Y.

(b) FY(y), the marginal cumulative distri-
bution function of Y, and fY(y), the
density function of Y.

(c) fY|X(y|x), the conditional density func-
tion of Y given that X = x, and FY|X(y|
x), the conditional cumulative distri-
bution function of Y given that
X = x (the cumulative distribution
function is obtained by integrating the
density function).
Show that

FY jXðyjx ¼ 0Þ[FYðyÞ for y[ 0

Find a value of x0 and y0 for which

FY jXðy0jx0Þ\FYðy0Þ

6:9 Let X and Y be two continuous indepen-
dent random variables. Prove that

E gðXÞhðYÞ½ � ¼ E gðXÞ½ �E hðYÞ½ �

for any two real-valued functions g and
h. Then show that Cov(X, Y) = 0 if X and
Y are independent.

6:10 A frequent problem is that observations
(X, Y) are taken on such quantities as
flow and concentration and then a
derived quantity g(X, Y) such as mass
flux is calculated. Given that one has
estimates of the standard deviations of
the observations X and Y and their cor-
relation, an estimate of the standard
deviation of g(X, Y) is needed. Using a
second-order Taylor series expansion for
the mean of g(X, Y) as a function of its
partial derivatives and of the means,
variances, covariance of the X and
Y. Using a first-order approximation of g
(X, Y), obtained an estimates of the
variances of g(X, Y) as a function of its
partial derivatives and the moments of
X and Y. Note, the covariance of X and
Y equals

E½ðX � lXÞðY � lYÞ� ¼ r2
XY

6:11 A study of the behavior of water waves
impinging upon and reflecting off a
breakwater located on a sloping beach was
conducted in a small tank. The height
(crest-to-trough) of the waves was mea-
sured a short distance from the wave
generator and at several points along the
beach different distances from the break-
water were measured and their mean and
standard error recorded.
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Location Mean wave
height (cm)

Standard error of
mean (cm)

Near wave
generator

3.32 0.06

1.9 cm from
breakwater

4.42 0.09

1.9 cm from
breakwater

2.59 0.09

1.9 cm from
breakwater

3.26 0.06

At which points were the wave heights
significantly different from the height near
wave generator assuming that errors were
independent?
Of interest to the experimenter is the ratio of
the wave heights near the breakwater to the
initial wave heights in the deepwater.Using
the results in Exercise 6.10, estimate the
standard error of this ratio at the three points
assuming that errors made in measuring the
height of waves at the three points and near
the wave generator are independent. At
which point does the ratio appear to be
significantly different from 1.00?
Using the results of Exercise 6.10, show
that the ratio of the mean wave heights is
probably a biased estimate of the actual
ratio. Does this bias appear to be
important?

6:12 Derive Kirby’s bound, Eq. 6.45, on the
estimate of the coefficient of skewness by
computing the sample estimates of the
skewness of the most skewed sample it
would be possible to observe. Derive also
the upper bound (n − 1)1/2 for the estimate
of the population coefficient of variation mx

�x

when all the observations must be
nonnegative.

6:13 The errors in the predictions of water
quality models are sometimes described
by the double exponential distribution
whose density is

f ðxÞ ¼ a
2
exp �a x� bj jð Þ

�1\x\þ1

What are the maximum likelihood esti-
mates of α and β? Note that

d
db

x� bj j ¼ �1 x[ b
þ 1 x\b

�
Is there always a unique solution for β?

6:14 Derive the equations that one would need
to solve to obtain maximum likelihood
estimates of the two parameters α and β of
the gamma distribution. Note an analytical
expression for dΓ(α)/dα is not available so
that a closed-form expression for maxi-
mum likelihood estimate of α is not
available. What is the maximum likeli-
hood estimate of β as a function of the
maximum likelihood estimate of α?

6:15 The log-Pearson Type-III distribution is
often used to model flood flows. If X has a
log-Pearson Type-III distribution then

Y ¼ lnðXÞ � m

has a two-parameter gamma distribution
where em is the lower bound of X if β > 0
and em is the upper bound of X if β < 0.
The density function of Y can be written

fYðyÞdy ¼ ðbyÞa�1

CðaÞ expð�byÞdðbyÞ

0\by\þ1

Calculate the mean and variance of X in
terms of α, β and m. Note that

E½Xr� ¼ E expðY þmÞð Þr½ �
¼ expðrmÞE expðrYÞ½ �

To evaluate the required integrals
remember that the constant terms in the
definition of fY(y) ensure that the integral
of this density function must be unity for
any values of α and β so long as α > 0 and
βy > 0. For what values of r and β does
the mean of X fail to exist? How do the
values of m, α and β affect the shape and
scale of the distribution of X?
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6:16 When plotting observations to compare
the empirical and fitted distributions of
streamflows, or other variables, it is nec-
essary to assign a cumulative probability
to each observation. These are called
plotting positions. As noted in the text, for
the ith largest observation Xi,

E FXðXiÞ½ � ¼ i=ðnþ 1Þ

Thus the Weibull plotting position
i/(n + 1) is one logical choice. Other
commonly used plotting positions are the
Hazen plotting position (i – 3/8)/
(n + 1/4). The plotting position (i − 3/8)/
(n + 1/4) is a reasonable choice because
its use provides a good approximation to
the expected value of Xi. In particular for
standard normal variables

E½Xi� ffi U�1 i� 3=8ð Þ= nþ 1=4ð Þ½ �

where Φ(�) is the cumulative distribution
function of a standard normal variable.
While much debate centers on the appro-
priate plotting position to use to estimate
pi = FX(Xi), often people fail to realize
how imprecise all such estimates must be.
Noting that

VarðpiÞ ¼ iðn� i� 1Þ
ðnþ 1Þ2ðnþ 2Þ ;

contrast the difference between the esti-
mates p̂i of pi provided by these three
plotting positions and the standard devia-
tion of pi. Provide a numerical example.
What do you conclude?

6:17 The following data represent a sequence of
annual flood flows, the maximum flow
rate observed each year, for the Sebou
River at the Azib Soltane gaging station in
Morocco.

Date Maximum
discharge
(m3/s)

Date Maximum
discharge
(m3/s)

03/26/33 445 03/13/54 750

12/11/33 1410 02/27/55 603

11/17/34 475 04/08/56 880

03/13/36 978 01/03/57 485

12/18/36 461 12/15/58 812

12/15/37 362 12/23/59 1420

04/08/39 530 01/16/60 4090

02/04/40 350 01/26/61 376

02/21/41 1100 03/24/62 904

02/25/42 980 01/07/63 4120

12/20/42 575 12/21/63 1740

02/29/44 694 03/02/65 973

12/21/44 612 02/23/66 378

12/24/45 540 10/11/66 827

05/15/47 381 04/01/68 626

05/11/48 334 02/28/69 3170

05/11/49 670 01/13/70 2790

01/01/50 769 04/04/71 1130

12/30/50 1570 01/18/72 437

01/26/52 512 02/16/73 312

01/20/53 613

(a) Construct a histogram of the Sebou
flood flow data to see what the flow
distribution looks like.

(b) Calculate the mean, variance, and
sample skew. Based on Table 6.3,
does the sample skew appear to be
significantly different from zero?

(c) Fit a normal distribution to the data
and use the Kolmogorov–Smirnov test
to determine if the fit is adequate.
Draw a quantile-quantile plot of the
fitted quantiles F−1[(i – 3/8)/
(n + 1/4)] versus the observed quan-
tiles xi and include on the graph the
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Kolmogorov–Smirnov bounds on
each xi, as shown in Figs. 6.2a, b.

(d) Repeat part (c) using a two-parameter
lognormal distribution.

(e) Repeat part (c) using a three-parameter
lognormal distribution. The Kol-
mogorov–Smirnov test is now
approximate if applied to loge[Xi − τ],
where τ is calculated using Eq. 6.81 or
some other method of your choice.

(f) Repeat part (c) for two- and three-
parameter versions of the gamma
distribution. Again, the Kolmogorov-
Smirnov test is approximate.

(g) A powerful test of normality is pro-
vided by the correlation test. As
described by Filliben (1975), one
should approximate pi = FX(xi) by

p̂i ¼
1� ð0:5Þ1=n i ¼ 1
ði� 0:3175Þ=ðnþ 0:365Þ i ¼ 2; . . .; n� 1
ð0:5Þ1=n i ¼ n

8<:
Then one obtains a test for normality
by calculation of the correlation
r between the ordered observations Xi

and mi the median value of the ith
largest observation in a sample of
n standard normal random variables
so that

mi ¼ U�1ðp̂iÞ

where Φ(x) is the cumulative distribu-
tion function of the standard normal
distribution. The value of r is then

r ¼
Pn

i¼1 ðxi � �xÞ2ðmi � �mÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � �xÞ2Pn

i¼1 ðmj � �mÞ2
q

Some significance levels for the value
of r are (Filliben 1975)

Significance level

n 1% 5% 10%

10 0.876 0.917 0.934

20 0.925 0.950 0.960

30 0.947 0.964 0.970

40 0.958 0.972 0.977

50 0.965 0.977 0.981

60 0.970 0.980 0.983

The probability of observing a value of
r less than the given value, where the
observations actually drawn from a
normal distribution, equals the specified
probability. Use this test to determine
whether a normal or two-parameter
lognormal distribution provides an
adequate model for these flows.

6:18 A small community is considering the
immediate expansion of its wastewater
treatment facilities so that the expanded
facility can meet the current deficit of 0.25
MGDand the anticipated growth in demand
over the next 25 years. Future growth is
expected to result in the need of an addi-
tional 0.75MGD. The expected demand for
capacity as a function of time is

Demand ¼ 0:25MGDþG 1� e�0:23t
� �

where t is the time in years and G = 0.75
MGD. The initial capital costs and main-
tenance and operating costs related to
capital are $1.2 × 106 C0.70 where C is the
plant capacity (MGD). Calculate the
loss Primary>Loss of economic efficiency
LEE and the misrepresentation of minimal
costs (MMC) that would result if a
designer incorrectly assigned G a value of
0.563 or 0.938 (±25%) when determining
the required capacity of the treatment
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plant. [Note: When evaluating the true
cost of a nonoptimal design which pro-
vides insufficient capacity to meet demand
over a 25-year period, include the cost of
building a second treatment plant; use an
interest rate of 7% per year to calculate the
present value of any subsequent expan-
sions.] In this problem, how important is
an error in G compared to an error in the
elasticity of costs equal to 0.70?
One MGD, a million gallons per day, is
equivalent to 0.0438 m3/s.

6:19 A municipal water utility is planning the
expansion of their water acquisition sys-
tem over the next 50 years. The demand
for water is expected to grow and is given
by

D ¼ 10tð1� 0:006tÞ

where t is the time in years. It is expected
that two pipelines will be installed along
an acquired right-of-way to bring water to
the city from a distant reservoir. One pipe
will be installed immediately and then a
second pipe when the demand just equals
the capacity C in year t is

PV ¼ ðaþ bCcÞe�rt

where

a ¼ 29:5

b ¼ 5:2

c ¼ 0:5

r ¼ 0:07=year

Using a 50-year planning horizon, what is
the capacity of the first pipe which min-
imizes the total present value of the
construction of the two pipelines? When
is the second pipe built? If a ± 25% error

is made in estimating γ or r, what are the
losses of economic efficiency (LEE) and
the misrepresentation of minimal costs
(MMC)? When finding the optimal deci-
sion with each set of parameters, find the
time of the second expansion to the
nearest year; a computer program that
finds the total present value of costs as a
function of the time of the second
expansion t for t = 1, …, 50 would be
helpful. (A second pipe need not be
built.)

6:20 A national planning agency for a small
country must decide how to develop the
water resources of a region. Three devel-
opment plans have been proposed, which
are denoted d1, d2, and d3. Their respective
costs are 200f, 100f, and 100f where f is a
million farths, the national currency. The
national benefits which are derived from
the chosen development plan depend, in
part, on the international market for the
goods and agricultural commodities that
would be produced. Consider three possi-
ble international market outcomes, m1, m2,
and m3. The national benefits if develop-
ment plan 1 selected would be, respec-
tively, 400, 290, 250. The national benefits
from selection of plan 2 would be 350,
160, 120, while the benefits from selection
of plan 3 would be 250, 200, 160.

(a) Is any plan inferior or dominated?
(b) If one felt that probabilities could not

be assigned to m1, m2, and m3 but
wished to avoid poor outcomes, what
would be an appropriate decision
criterion, and why? Which decisions
would be selected using this
criterion?

(c) If Pr[m1] = 0.50 and Pr[m2] = Pr
[m3] = 0.25, how would each of the
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expected net benefits and expected
regret criteria rank the decisions?

6:21 Show that if one has a choice between two
water management plans yielding benefits
X and Y, where X is stochastically smaller
than Y, then for any reasonable utility
function, plan Y is preferred to X.

6:22 A reservoir system was simulated for
100 years and the average annual benefits
and their variance were found to be

B ¼ 4:93

s2B ¼ 3:23

The correlation of annual benefits was also
calculated and is:

k rk

0 1.000

1 0.389

2 0.250

3 0.062

4 0.079

5 0.041

(a) Assume that ρ(l) = 0 for l > k, com-
pute (using Eq. 6.137) the standard
error of the calculated average benefits
for k = 0, 1, 2, 3, 4, and 5. Also cal-
culate the standard error of the calcu-
lated benefits, assuming that annual
benefits may be thought of as a
stochastic process with a correlation
structure ρB(k) = [ρB(1)]

k. What is the
effect of the correlation structure
among the observed benefits on the
standard error of their average?

(b) At the 90 and 95% levels, which of the
rk are significantly different from zero,
assuming that ρB(l) = 0 for l > k?

6:23 Replicated reservoir simulations using two
operating policies produced the following
results:

(a) Construct a 90% confidence limits for
each of the two means Xi.

(b) With what confidence interval can you
state that Policy 1 produces higher
benefits than Policy 2 using the sign
test and using the t-test?

(c) If the corresponding replicate with
each policy were independent, esti-
mate with what confidence one could
have concluded that Policy 1 produces
higher benefits with the t-test.

6:24 Assume that annual streamflow at a gaging
site have been grouped into three cate-
gories or states. State 1 is 5–15 m3/s, state
2 is 15–25 m3/s, and state 3 is 25–35 m3/s,
and these grouping contain all the flows on
records. The following transition proba-
bilities have been computed from record:

Pij j

1 2 3

i 1 0.5 0.3 0.2

2 0.3 0.3 0.4

3 0.1 0.5 0.4

Replicate Benefits

Policy 1 Policy 2

1 6.27 4.20

2 3.95 2.58

3 4.49 3.87

4 5.10 5.70

5 5.31 4.02

6 7.15 6.75

7 6.90 4.21

8 6.03 4.13

9 6.35 3.68

10 6.95 7.45

11 7.96 6.86

Mean, Xi 6.042 1.570

Standard deviation
of values, sxi

1.217 4.859
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(a) If the flow for the current year is
between 15 and 25 m3/s, what is the
probability that the annual flow
2 years from now will be in the range
25–35 m3/s?

(b) What is the probability of a dry, an
average, and a wet year many years
from now?

6:25 A Markov chain model for the stream-
flows in two different seasons has the
following transition probabilities

Streamflow in Season
1

Streamflow next Season 2

0–3
m3/s

3–6
m3/s

≥6 m3/s

0–10 m3/s 0.25 0.50 0.25

≥10 m3/s 0.05 0.55 0.40

Streamflow in Season
2

Streamflow next Season 1

0–10 m3/s ≥10 m3/s

0–3 m3/s 0.70 0.30

3–6 m3/s 0.50 0.50

Calculate the steady-state probabilities of
the flows in each interval in each season.

6:26 Can you modify the deterministic discrete
DP reservoir operating model to include
the uncertainty, expressed as Pij

t , of the
inflows, as in Exercise 6.25?
(Hints: The operating policy would define
the release (or final storage) in each season
as a function of not only the initial storage
but also the inflow. If the inflows change,
so might the release or final storage vol-
ume. Hence you need to discretize the
inflows as well as the storage volumes.
Both storage and inflow are state variables.
Assume for this model you can predict
with certainty the inflow in each period at
the beginning of the period. So, each node
of the network represents a known initial
storage and inflow value. You cannot
predict with certainty the following peri-
od’s flows, only their probabilities. What
does the network look like now?

6:27 Assume that there exist two possible dis-
crete flows Qit into a small reservoir in
each of two periods t each year having
probabilities Pit. Find the steady-state
operating policy (release as a function of
initial reservoir volumes and current peri-
od’s inflow) for the reservoir that mini-
mizes the expected sum of squared
deviations from storage and release targets.
Limit the storage volumes to integer values
that vary from 3 to 5. Assume a storage
volume target of 4 and a release target of 2
in each period t. (Assume only integer
values of all states and decision variables
and that each period’s inflow is known at
the beginning of the period.) Find the
annual expected sum of squared deviations
from the storage and release targets.

Period, t Flows, Qit Probabilities,
Pit

i = 1 i = 2 i = 1 i = 2

1 1 2 0.17 0.83

2 3 4 0.29 0.71

This is an application of Exercise 6.26
except the flow probabilities are indepen-
dent of the previous flow.

6:28 Assume that the streamflow Q at a par-
ticular site has cumulative distribution
function FQ(q) = q/(1 + q) for q ≥ 0.
Show how to compute the mean stream-
flow, and the probability that any specified
value of streamflow, q, will be exceeded.

6:29 Assume that a potential water user can
withdraw water from an unregulated
stream, and that the probability distribu-
tion function FQ() of the available
streamflow Q is known. Calculate the
value of the withdrawal target T that will
maximize the expected net benefits from
the water’s use given the two short-run
benefit functions specified below.

(a) The benefits from streamflow Q when
the target is T are
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BðQjTÞ ¼ B0 þ bT þ cðQ� TÞ Q� T
B0 þ bT þ dðQ� TÞ Q\T

�

where δ > β > γ. In this case, the
optimal target T* can be expressed as
a function of P* = FQ(T) = Pr{Q ≤
T}, the probability that the random
streamflow Q will be less than or
equal to T. Prove that

P� ¼ ðb� cÞ=ðd� cÞ:

(b) The benefits from streamflow Q when
the target is T are

BðQjTÞ ¼ B0 þ bT � dðQ� TÞ2

6:30 If a random variable is discrete, what effect
does this have on the specified confidence
of a confidence interval for the median or
any other quantile? Give an example.

6:31 (a) Use Wilcoxon test for unpaired sam-
ples to test the hypothesis that the distri-
bution of the total shortage TS in
Table 6.14 is stochastically less than the
total shortage TS reported in Table 6.15.
Use only the data from the second 10
simulations reported in the table. Use the

fact that observations are paired (i.e.,
simulation j for 11 ≤ j ≤ 20 in both tables
were obtained with the same streamflow
sequence) to perform the analysis with the
sign test.
(b) Use the sign test to demonstrate that the
average deficit with Policy 1 (Table 6.14)
is stochastically smaller than with Policy 2
(Table 6.15); use all simulations.

6:32 The accompanying table provides an
example of the use of non-parametric
statistics for examining the adequacy of
synthetic streamflow generators. Here the
maximum yield that can be supplied with
a given size reservoir is considered. The
following table gives the rank of the
maximum yield obtainable with the his-
toric flows among the set consisting of the

historic yield and the maximum yield
achievable with 1000 synthetic sequences
of 25 different rivers in North America.

(a) Plot the histogram of the ranks for
reservoir sizes S/μQ = 0.85, 1.35,
2.00. (Hint: Use the intervals 0–100,
101–200, 201–300, etc.) Do the ranks
look uniformly distributed?
Rank of the Maximum Historic Yield
among 1000 Synthetic Yields

T

β

δ
Bo

Benefits

Flow q

γ

P* 1-P*

fQ(q)
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River number Normalized active storage, S/μQ

0.35 0.85 1.35 2.00

1 47 136 128 235

2 296 207 183 156

3 402 146 120 84

4 367 273 141 191

5 453 442 413 502

6 76 92 56 54

7 413 365 273 279

8 274 191 86 51

9 362 121 50 29

10 240 190 188 141

11 266 66 60 118

12 35 433 562 738

13 47 145 647 379

14 570 452 380 359

15 286 392 424 421

16 43 232 112 97

17 22 102 173 266

18 271 172 260 456

19 295 162 272 291

20 307 444 532 410

21 7 624 418 332

22 618 811 801 679

23 1 78 608 778

24 263 902 878 737

25 82 127 758 910

Source A.I. McLeod and K.W. Hipel, Critical Drought
Revisited, Paper presented at the international Symposium
on Risk and Reliability in Water Resources, Waterloo,
Ont., June 26–28, 1978

(b) Do you think this streamflow genera-
tion model produces streamflows
which are consistent with the historic
flows when one uses as a criterion the
maximum possible yield? Construct a
statistical test to support your conclu-
sion and show that it does support
your conclusion. (Idea: You might
want to consider if it is equally likely
that the rank of the historical yield is

500 and below 501 and above. You
could then use the binomial distribu-
tion to determine the significance of
the results.)

(c) Use the Kolmogrov–Smirnov test to
check if the distribution of the yields
obtainable with storage S/μQ = 1.35 is
significantly different from uniform
FU(u) = u for 0 ≤ u ≤ 1. How
important do you feel this result is?

6:33 Section 7.3 dismisses the bias in νx
2 for

correlatedX’s as unimportant to its variance.

(a) Calculate the approximate bias in νx
2

for the cases corresponding to
Table 6.10 and determine if this
assertion is justified.

(b) By numerically evaluating the bias
and variance of νx

2, when n = 25,
determine if the same result holds if
ρx(k) = 0.5(0.9)k, which is the auto-
correlation function of an ARMA(1,
1) process sometimes used to describe
annual streamflow series.

6:34 Consider the crop irrigation problem in
Exercise 4.31. For the given prices 30 and
25 for crop A and B, the demand for each
crop varies over time. Records of demands
show for crop A the demand ranges from 0
to 10 uniformly. There is an equal proba-
bility of that the demand will be any value
between 0 and 10. For crop B the demand
ranges from 5 units to 15 units, and the
most likely demand is 10. At least 5 units
and no more than 15 units of crop B will
be demanded. The demand for crop B can
be defined by a triangular density function,
beginning with 5, having a mean of 10 and
an upper limit of 15. Develop and solve a
model for finding the maximum expected
net revenue from both crops, assuming the
costs of additional resources are 2/unit of
water, 4/unit of land, 8/unit of fertilizer,
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and 5/unit of labor. The cost of borrowed
money, i.e., the borrowing interest rate, is
8 percent per growing season. How does
the solution change if the resource costs
are 1/10th of those specified above?

6:35 In Sect. 6.9.2 generated synthetic stream-
flows sequences were used to simulate a
reservoir’s operation. In the example, a
Thomas-Fiering model was used to gen-
erate ln(Q1y) and ln(Q2y,) the logarithms of
the flows in the two seasons of each year
y, so as to preserve the season-to-season
correlation of the untransformed flows.
Noting that the annual flow is the sum of
the untransformed seasonal flows Q1y and
Q2y, calculate the correlation of annual
flows produced by this model. The
required data are given in Table 6.13.
(Hint: You need to first calculate the
covariance of ln(Q1y) and ln(Q1,y+1) and
then of Q1y and Q2,y+1).

6:36 Part of New York City’s municipal water
supply is drawn from three parallel reser-
voirs in the upper Delaware River basin.
The covariance matrix and lag-1 covari-
ance matrix, as defined in Eqs. 6.166 and
6.168, were estimated based on the
50-year flow record to be (in m3/s):

S0 ¼
20:002 21:436 6:618

21:436 25:141 6:978

6:618 6:978 2:505

264
375 ¼ ½CovðQi

y;Q
j
yÞ�

S1 ¼
6:487 6:818 1:638

7:500 7:625 1:815

2:593 2:804 0:6753

264
375 ¼ ½CovðQi

yþ 1;Q
j
yÞ�

Other statistics of the annual flow are

Site Reservoir Mean
flow

Standard
deviation

r1

1 Pepacton 20.05 4.472 0.3243

2 Cannosville 23.19 5.014 0.3033

3 Neversink 7.12 1.583 0.2696

(a) Using these data, determine the values
of the A and B matrices of the lag 1
model defined by Eq. 6.165. Assume

that the flows are adequately modeled
by a normal distribution. A lower tri-
angularBmatrix that satisfiesM = BBT

may be found by equating the elements
of BBT to those ofM as follows:

M11 ¼ b211 ! b11 ¼
ffiffiffiffiffiffiffiffi
M11

p

M21 ¼ b11b21 ! b21 ¼ M21

b11
¼ M21ffiffiffiffiffiffiffiffi

M11
p

M31 ¼ b11b31 ! b31 ¼ M31

b11
¼ M31ffiffiffiffiffiffiffiffi

M11
p

M22 ¼ b221 þ b222 ! b222 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M22 � b221

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M22 �M2

21=M11

q
and so forth for M23 and M33. Note
that bij = 0 for i < j and M must be
symmetric because BBT is necessarily
symmetric.

(b) Determine A and BBT for the Markov
model which would preserve the
variances and cross-covariances of the
flows at each site, but not necessarily
the lag 1 cross covariances of the
flows. Calculate the lag 1 cross-
covariances of flows generated with
your calculated A matrix.

(c) Assume that some model has been
built to generate the total annual flow
into the three reservoirs. Construct and
calculate the parameters of a disag-
gregation model that, given the total
annual inflow to all three reservoirs,
will generate annual inflows into each
of the reservoirs preserving the vari-
ances and cross-covariances of the
flows. [Hint: The necessary statistics
of the total flows can be calculated
from those of the individual flows.]

6:37 Derive the variance of an ARMA(1, 1)
process in terms of ϕ1, θ1, and σv2. [Hint:
Multiply both sides of the equation to
obtain a second. Be careful to remember
which Vt’s are independent of which Zt’s.]

6:38 The accompanying table presents a
60-year flow record for the normalized
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flows of the Gota River near Sjotop-
Vannersburg in Sweden.

(a) Fit an autoregressive Markov model to
the annual flow record.

(b) Using your model, generate a 50-year
synthetic flow record. Demonstrate the
mean, variance, and correlation of your
generated flows deviate from the spec-
ified values no more than would be
expected as a result of sampling error.

(c) Calculate the autocorrelations and par-
tial autocovariances of the annual flows
for a reasonable number of lags. Calcu-
late the standard errors of the calculated
values. Determine reasonable value of
p and q for anARMA(p, q) model of the
flows. Determine the parameter values
for the selected model.

Annual Flows, Gota River near
Sjotop-Vannersburg, Sweden

1898 1.158 1918 0.948 1938 0.892

1899 1.267 1919 0.907 1939 1.020

1900 1.013 1920 0.991 1940 0.869

1901 0.935 1921 0.994 1941 0.772

1902 0.662 1922 0.701 1942 0.606

1903 0.950 1923 0.692 1943 0.739

1904 1.120 1924 1.086 1944 0.813

1905 0.880 1925 1.306 1945 1.173

1906 0.802 1926 0.895 1946 0.916

1907 0.856 1927 1.149 1947 0.880

1908 1.080 1928 1.297 1948 0.601

1909 0.959 1929 1.168 1949 0.720

1910 1.345 1930 1.218 1950 0.955

1911 1.153 1931 1.209 1951 1.186

1912 0.929 1932 0.974 1952 1.140

1913 1.158 1933 0.834 1953 0.992

1914 0.957 1934 0.638 1954 1.048

1915 0.705 1935 0.991 1955 1.123

1916 0.905 1936 1.198 1956 0.774

1917 1.000 1937 1.091 1957 0.769

Source V.M. Yevdjevich, Fluctuations of Wet and Dry Years,
Part I, Hydrology Paper No. 1, Colorado State University,
Fort Collins, Colo., 1963

(d) Using the estimated model in (c),
generate a 50-year synthetic stream-
flow record and demonstrate that the
mean, variance, and show that first
autocorrelations of the synthetic flows
deviate from the modeled values by no
more than would be expected as a
result of sampling error.

6:39 (a) Assume that one wanted to preserve
the covariance matrices S0 and S1 of
the flows at several site Zy using the
multivariate or vector ARMA(0, 1)
model

Zyþ 1 ¼ AVy � BVy�1

where Vy contains n independent stan-
dard normal random variables. What is
the relationship between the values of
S0 and S1 and the matrices A and B?

(b) Derive estimates of the matrices A, B,
and C of the multivariate AR(2) model

Zyþ 1 ¼ AZy þBZy�1 þCVy

using the covariance matrices S0, S1,
and S2.

6:40 Create a model for the generation of
monthly flows. The generated monthly
flows should have the same marginal
distributions as were fitted to the
observed flows of record and should
reproduce (i) the month-to-month corre-
lation of the flows, (ii) the month-to-
season correlation between each monthly
flow and the total flow the previous
season, and (iii) the month-to-year cor-
relation between each monthly flow and
the total 12-month flow in the previous
year. Show how to estimate the model’s
parameters. How many parameters
does your model have? How are the
values of the seasonal model? How
do you think this model could be
improved?
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Open Access This chapter is distributed under the terms
of the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial
use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if
changes were made.

The images or other third party material in this
chapter are included in the work's Creative Commons
license, unless indicated otherwise in the credit line; if
such material is not included in the work’s Creative
Commons license and the respective action is not per-
mitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt or
reproduce the material.
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