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Abstract 

 
 

THE UNIVERSITY OF MANCHESTER 
 
 
ABSTRACT OF THESIS submitted by Solomon Eyoka Nte 
for the degree of Doctor of Philosophy 
and entitled “Parallel Distributed Processing (PDP) models as a framework for designing 
cognitive rehabilitation therapy” 
Month and Year of Submission – August 2014 
 
 
Parallel Distributed Processing (PDP) modelling has simulated developmental learning 
across a range of domains such as reading (e.g. Seidenberg & McClelland,1989) or 
Semantics (e.g. Rogers et al. 2004). However aside from two notable exceptions (Plaut, 
1996; Welbourne & Lambon Ralph, 2005b) modelling research has not addressed the 
simulation of relearning during spontaneous recovery or rehabilitation after brain damage, 
and no research has considered the effect of the learning environment. This thesis used an 
established PDP model of semantic memory (Rogers et al., 2004) to simulate the influence 
of the learning environment. A novel quantitative measure (called representational 
economy) was developed to monitor efficiency  during learning. Developmental learning is 
considered to be multimodal (e.g. Gogate et al., 2000) whereas rehabilitation is normally 
carried out through therapy sessions employing unimodal learning tasks (Best & Nickels, 
2000). This thesis hoped to discover whether multimodal rehabilitation may be more 
efficient (as suggested by Howard et al., 1985). Three sets of simulations were conducted: 
The first set contrasted multimodal and unimodal learning in development and recovery, 
and tested internal representations for robustness to damage finding multimodal learning to 
be more efficient in all cases. The second set looked at whether this multimodal advantage 
could be approximated by reordering unimodal tasks at the item level. Findings indicated 
that the multimodal advantage is dependent upon simultaneous item presentation across 
multiple modalities. The third set of simulations contrasted multimodal and unimodal 
environments during rehabilitation while manipulating background spontaneous recovery, 
therapy set size and  damage severity finding a multimodal advantage for all conditions of 
rehabilitation. The thesis findings suggest PDP models may be well-suited to predicting the 
effects of rehabilitation, and that clinical exploration of multimodal learning environments 
may yield substantial benefits in patient-related work. 
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Introduction 

The structure of the thesis 

This thesis describes a series of computational investigations using a Parallel Distributed 

Processing (PDP) model of semantic memory to simulate the mechanisms that underpin 

rehabilitation from brain damage, and to understand how to maximise rehabilitation 

efficiency. The thesis is presented in alternative format and is structured into an initial 

introduction, 3 articles (Chapters 1, 2 and 4), a technical report (Chapter 3) on preparing a 

suitable computational model for the simulations described in Chapter 4. Finally the thesis 

finishes with a general discussion including some conclusions on the thesis findings and 

suggestions for future directions implied by those findings. Each of the 3 article chapters 

(i.e. 1, 2 and 4) is self-contained and provides its own introduction covering the literature 

relevant to that chapter and its discussion, though technical specifications for the model 

that have been previously described are only referred to in subsequent chapters, and not 

repeated. 

 

The goal of this thesis was to use PDP models to understand which factors affect the 

efficiency with which the brain extracts, and internally represents, information from the 

learning environment during development, recovery and rehabilitation therapy. The thesis 

focuses on the role of the learning environment in terms of the sensory modalities targeted. 

Previous research using PDP models (e.g. Rogers et al., 2004), as well as experimental 

studies (e.g. Gogate et al., 2006), suggested developmental learning in childhood occurred 

in a multimodal learning environment. Similarly research into rehabilitation therapy for 

aphasia suggested that relearning after brain damage in adults may benefit from a 

multimodal learning environment (e.g. Howard et al, 1985) . This thesis considers whether 

particular learning environments facilitate learning more efficiently, and if so whether a 
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measure of that efficiency could predict the learning outcome in development, recovery 

and rehabilitation. Clearly an efficiency measure for learning in computational models, that 

also possessed some predictive powers, would be useful in understanding and predicting 

patient rehabilitation behaviour through simulation. The thesis documents the development 

of a statistic (named representational economy) to measure changes in efficiency alongside 

learning performance during the time course of learning. This represents a first step 

towards developing subsequent simulations of rehabilitation that could usefully predict 

possible outcomes for patient-related interventions. Representational economy yields 

detailed information regarding the evolution of learning in terms of simulating and 

assessing the internal representations the brain develops to support learning. 

This thesis explored how manipulating the multimodality of the model’s learning 

environment, whilst monitoring representational economy within the model, would help to 

understand the evolution of efficiency in a variety of situations.  Three hypotheses were 

explored: Firstly, that multimodal learning would be more efficient than unimodal learning 

in development, recovery and rehabilitation. Secondly, that multimodal learning could be 

approximated through rearranging the order of unimodal learning tasks so that tasks 

relating to the same item were always grouped together. Thirdly, that the model could be 

used to understand efficiency in the context of rehabilitation therapy delivered to patients, 

and thus predict strategies for improving therapy. The exploration of these hypotheses falls 

under two broad themes that are discussed in the following sections. 

 

Thesis Theme 1: How do PDP Models extract efficient and effective representations 

from the learning environment? 
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This section looks briefly at the history of using PDP models to simulate behaviour. It goes 

on to consider learning and relearning in PDP models, subsequently considering effective 

representations in models, distinguishing between input /output representations and the 

development of internal representations to support learning. Finally the section discusses 

measuring the efficiency of internal representations and the degree to which this efficiency 

is dependent upon the learning environment. 

 

Beginning with McClelland, Rumelhart and The PDP Research Group's (1986) seminal 

work, Parallel Distributed Processing, PDP Models offer testable software simulations of 

cognitive processes that are capable of independent learning. Implemented in software as 

neural networks, PDP models are layered collections of simple units, loosely analogous to 

neurons, possessing weighted connections for intercommunication (Callan, 1999). 

Traditional models of cognitive processes employed by psychologists have consisted of a 

"box and arrows" diagrammatic approach. These models are essentially flowcharts where 

the boxes contain some form of stored representation of the external world, and the arrows 

indicate the cognitive processes that map between different levels of representation. PDP 

models offer an advantage over these "box and arrows" models since PDP models 

genuinely learn (Welbourne & Lambon Ralph, 2005a). PDP models are particularly useful 

for understanding mechanisms of cognition since they provide testable simulations of how 

learning can occur in a neural network.  Additionally, the architecture of a PDP model 

makes a concrete proposition about the structure of stored knowledge, and its functional 

arrangement within such networks. Examining these network architectures makes it 

immediately obvious which stored representations of the external world are being 

considered by the model, and the proposed mechanism by which those representations are 

extracted from the environment, function efficiently, and facilitate a particular cognitive 
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process. For example a PDP model of the process of reading could consist of a network 

architecture for mapping between orthographic and phonological representations of words 

(e.g. Seidenberg & McClelland, 1989; Harm & Seidenberg,1999; Zevin & Seidenberg, 

2002; Monaghan & Ellis, 2010). 

 

There has been a substantial amount of research  using  computational models to provide 

accounts of the underlying mechanisms responsible for developmental learning  (for a 

general introduction see Quinlan, 2003) as well as normal cognitive and language 

functions (for a general introduction see McLeod, Plunkett, & Rolls, 1998) . Indeed 

wherever possible PDP research has attempted to produce models whose performance can 

account for experimental observation, by considering the brain’s internal representation 

processes. For example, learning in PDP models mimics experimental findings in 

developmental learning such as the vocabulary spurt (McLeod, Plunkett, & Rolls, 1998). 

Particular progress in producing  PDP models of behaviour has been made in the domain 

of reading and semantics: Seidenberg and McClelland (1989) proposed a triangular general 

framework for lexical processing which became the basis for their own, and many 

subsequent, PDP models of linguistic tasks. Often referred to as the triangle model of 

reading, their framework suggests a bidirectional network architecture such that mapping 

between orthographic, phonological and semantic representations accounts for most types 

of linguistic processing. Some examples of such types of linguistic processing are mapping 

from orthography to phonology corresponding to reading aloud, and mapping from 

phonology to semantics corresponding to comprehension. Their initial implementation of 

the model consisted of simulating the orthography- phonology pathway, and thus visual 

word recognition and pronounciation.. Their orthographic and phonological representations 

were derived from a system of letter triples whereby MAKE  would be  orthographically 
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represented as  _MA, MAK, AKE, KE_ (where _ indicates beginning and ends of words) 

and phonologically represented as _ma, mak, ak_ This representation system was 

developed since merely having a single active unit for each letter would mean words with 

the same letters (e.g. BAT and TAB) would have the same representation. Thus the model 

tackles the problem of adequate representation systems for inputs and outputs though does 

not consider the nature of representations that develop at hidden layers to support mapping 

between modalities. Seidenberg and McClelland's (1989) initial exploration of the triangle 

model shows how a PDP model can offer an account of normal cognitive function: Their 

simulations account for differences between words in terms of processing difficulty,  

pronunciation of novel items, differences of word recognition skill in different readers, 

transitions from beginning to skilled reading, and differences in performance on lexical 

decision and naming tasks. They also suggest how impairments can arise from damage to 

normal function by considering dyslexia within the model. Plaut, McClelland,  Seidenberg, 

and Patterson's (1996) model of single word reading (PMSP96) made considerable 

improvements to SM89. The main criticism of SM89 was that it performs poorly when 

compared to skilled readers at pronouncing nonwords (Besner, Twilley, McCann, & 

Seergobin, 1990). Plaut et al. (1996) overcame this issue by designing new representations, 

moving to an onset, vowel, coda structure for each monosyllabic word that more 

effectively captured the word structure such that the model’s non-word reading improved. 

PMSP96 consequently yielded a PDP model of single word reading that had improved task 

performance, and as a consequence offered a more substantial account of acquired 

dyslexias than that suggested by Patterson, Seidenberg, and McClelland's  (1989) original 

proposition. Subsequent work on modelling reading has also discussed the issue of 

choosing the right representations to capture the task being simulated, or more specifically 

refining representation structure to improve model performance. For example Monaghan et 
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al. (2004) discuss representations split across input and hidden layers simulating the left 

and right visual fields in developing an account of hemispheric asymmetries in their split-

foveal model of semantic processing. Similarly Chang et al. (2012b) developed letter 

representations derived from monochrome bitmaps images of each letter in an attempt to 

achieve greater realism in modelling reading. The increase in realism comes from 

providing input representations at the level of visual input; Previous orthographic 

representations (e.g. those used in PMSP96) have been provided at a level that already 

assumes some type of processing has occurred so orthographic representations are not 

learned from visual input but instead are learned after a structure has been imposed upon 

them that makes assumptions about how words are processed visually.  This level of 

representation also shows how the level at which input/output representations are provided 

can influence, and is indeed directly responsible for, the internal representations  that 

develop as a result of learning. 

 

Many early PDP models of linguistic processing provide accounts of the mechanisms 

behind tasks involving a single mapping between two modalities, These models show how 

statistical regularities in the learning environment can be extracted and applied to 

generalise to new knowledge. However these models do not offer insights into how 

effective representations are extracted from the learning environment. In terms of 

considering representations, most models tend to focus upon developing and refining 

input/output representation structures and do not focus their analyses towards 

understanding the development of the learnt representations in the hidden layers, or what 

makes them effective in supporting learning.   

 

These early PDP models are often  similar in structure to Seidenberg and McClelland's 
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(1989) PDP model. Such models include (but are not limited to): Hinton and Shallice's 

(1991) model of acquired dyslexia;Plaut and Shallice's (1993) models exploring the nature 

of Deep Dyslexia; Mayall and Humphreys (1996) model of Alexia; Plaut, McClelland,  

Seidenberg, and Patterson's (1996) model of Word Reading; Plaut's (1997) models of word 

reading and lexical decision; Cree, McRae and McNorgan's (1999) model simulating 

semantic priming; Harm and Seidenberg's (1999) model of reading acquisition and 

dyslexia; Lambon Ralph, McClelland, Patterson, Galton and Hodges'  (2001) model of 

object naming and semantic impairment; Gotts and Plaut's  (2002) model of Semantic 

Impairment; Zevin and Seidenberg's (2002) model of age of acquisition effects in word 

reading. 

 

 

Seidenberg and McClelland's (1989) triangular framework for lexical processing contains 

bidirectional connections between domains. In other words mapping between each of the 

domains can occur in both directions. Although Seidenberg and McClelland do not 

implement this bidirectionality, later models have done so with important consequences: 

Hinton and Shallice's (1991) use of recurrent bidirectional connections between semantics 

and "clean-up" units allowed the model to capture the semantic similarity of words.  Only 

models with full bidirectional connectivity between all domains can allow attractor states 

to develop across the whole model that capture similarity relations present in initial 

representations across different modalities. However there is an important difference 

between internal representations that support a single mapping between two domains and 

representations that support mapping between multiple domains and as such capture the 

similarity structure between multiple connected domains. These similarity relations form 

the basis of the degree of efficiency within the internal representations that are extracted 
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from the learning environment. When considering bidirectional mappings between several 

different sensory modalities efficiency can be seen as the degree of convergence to a single 

robust internal attractor state at the hidden layer which can handle multiple cross-modal 

mappings. Most bidirectional models do not consider these internal representations 

however it is through the development of bidirectional models, and thus truly interactive 

networks, that a greater understanding of efficiency can be considered. It is thus worth 

identifying that there are a number of bidirectional models that build substantially upon the 

type of proposed framework offered by Seidenberg and McClelland (1989) and lay the 

groundwork for the consideration of bidirectionality that supports the modelling work in 

this thesis: Farah and McClelland's (1991) model of semantic memory impairment;  

Devlin, Gonnerman, Andersen, and Seidenberg's (1998) model of category specific 

semantic impairment; Joanisse and Seidenberg's (1999) model of impairments in verb 

morphology; Lambon Ralph and Howard's (2000) model of anomia and impaired verbal 

comprehension; McLeod, Shallice and Plaut's  (2000) model of attractor dynamics in word 

recognition; Plaut's (2002) model of optic aphasia; Harm and Seidenberg's (2004) model 

looking at the division of labour in word reading; Rogers, Lambon Ralph, Garrard, Bozeat, 

McClelland, Hodges, and Patterson's (2004) model of semantic memory; Dilkina, 

McClelland, and Plaut's (2008) model of semantic and lexical impairment; Smith, 

Monaghan and Huettig’s (2014) model of an amodal shared resource. 

 

 

There has been considerable focus on refining the nature of the externally provided 

input/output representations, for example the development of orthographic representations 

in reading models as discussed earlier in the context of implementations of the triangle 

model of reading.  Rogers et al. (2004) describe this type of representation process in the 
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context of developing patterns of activation, across a layer of units, that can represent the 

visual properties of objects in the external world: 

 

"Each unit in the visual layer represents a unique visual property, such as "has limbs" or "is 

round". Visual representations of objects correspond to patterns of activity across this 

assembly of visual features, such that objects with similar visual appearances give rise to 

similar visual representations ” (Rogers, Lambon Ralph, Garrard, Bozeat, McClelland, 

Hodges, & Patterson, 2004: p207). 

 

 Very little modelling work however has been done on the internal representations 

generated at the hidden layers of models as a result of learning. The Rogers et al. (2004) 

model of semantic memory (see Figure 0.1 for a diagram of its architecture) uses emergent 

amodal internal re-representations within a model’s hidden layer to provide a convincing 

account of semantics. This model is well suited to the explorations that this thesis wanted 

to carry out  for the following reasons: Firstly, the model is fully bidirectional and has 

several input/output modalities with semantics as the intermediate hidden layer acting as a 

convergence zone. Secondly, the analysis Rogers et al. (2004) carried out showed that the 

internal representations at the hidden layer captured a categorical structure that develops as 

a result of learning that could possibly account for semantic memory in terms of the 

learning process itself. Finally, the model simulated developmental learning, and also 

acquired adult disorders through replicating the patterns of the impaired performance 

observed in patients on particular semantic tasks. Whilst the effectiveness of the 

representations the model extracts can be measured in term of performance accuracy, the 

Rogers et al. (2004) analysis suggested the basis for this thesis to develop the idea that 

efficiency could be measured as the Euclidean similarity between the internal 
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representations generated by the trained model for the multiple cross-modal mappings 

belonging to the same item. This thesis fills a gap in the literature, as no modelling work 

has been done to examine the factors in the learning environment, that affect the efficiency 

of the internal representations that the model develops, in terms of how well they facilitate 

mapping between input and output representations. 

 

 

Figure 0.1 Rogers et al.'s (2004) model of semantic memory 

 

Within the thesis the learning environment is considered in terms of the degree of 

multimodality it possesses as well as the nature of that multimodality. This thesis develops 

a novel measure of efficiency (representational economy) for the internal representations 

of PDP models in the context of the structure of increasing differentiation between internal 

representations of learned items that the model develops as a result of the learning process. 

This thesis then applies this measure to developmental learning, robustness to damage of 

the fully trained model and recovery/rehabilitation relearning after damage for a range of 

learning environments.  
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The idea that learning requires a multimodal environment arises from a variety of sources. 

Experimental studies with pre-verbal infants, have shown mothers use temporally 

synchronous naming when presenting objects or actions for their child to learn (Gogate et 

al., 2000; Messer, 1978). Similarly experimental work by Sullivan & Horowitz (1983, 

p210) suggests infant learning of word–object relations is “accomplished in the context of 

the infant’s multimodal interactions with its mother” .  The thesis explores this by 

contrasting multimodal and unimodal learning, thus considering the role of the learning 

environment on learning efficiency in terms of the modalities targetted during learning 

episodes and learning environments across the lifespan, development vs 

recovery/rehabilitation (i.e. learning vs relearning) to see if efficiency is constant across all 

situations. 

 

 

 

 

Thesis Theme 2: How can PDP models be used to understand recovery and 

rehabilitation for impairments in the context of patient-related work? 

 

This thesis considers recovery and rehabilitation in relation to patient-related findings in 

spontaneous recovery and rehabilitation for aphasia. Specifically attempting to simulate 

issues surrounding therapeutic intervention  in anomia. In order to understand how PDP 

models can simulate aphasic behaviours it is worth briefly considering what constitutes 

aphasia and aphasia therapy. 

 

Aphasia is generally defined (e.g. Ashcraft, 1989) as a loss of language abilities resulting 
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from a brain lesion. Such lesions are normally the result of stroke, head injury or other 

causes such as dementia (Tesak & Code, 2008). Many different types of aphasia have been 

identified beginning with the two most famous: 1) Broca's aphasia, classified by 

neuroanatomist Paul Broca (1861) - characterised by minimal speech ability though 

virtually normal comprehension, and a lesion to a part of the brain in the left inferior 

frontal gyrus, which has become known as Broca's area. 2) Wernicke's aphasia, classified 

by neurologist Carl Wernicke (1874) - characterised by jumbled, incoherent speech, 

impairment to  comprehension and repetition ability, and a lesion to an area of the brain 

surrounding the posterior portion of the superior temporal gyrus, which has  become 

known as Wernicke's area. Three other aphasias types are also relevant to this discussion: 

1) Anomia, which is an inability to name objects. 2) Acquired dyslexia, which is a reading 

impairment resulting from brain lesions. 3) Semantic Dementia, which is a progressive 

impairment of semantic ability in cognitive tasks such as object naming  (Snowden, 1989). 

It is worth noting that aphasic impairment normally affects ability in multiple, as opposed 

to single, linguistic tasks, and that although impairments are related to the location of the 

lesion the exact nature of the impairment is very hard to predict solely on the basis of 

knowledge of the lesion location. Indeed Geva et al. (2011) show that though identifying 

lesion-symptom relationships can be done with imaging techniques of Voxel Based 

Morphometry (VBM) or Voxel-based Lesion Symptom  

Mapping (VLSM), the results of each process do not always concur  making impairment 

prediction difficult. Perhaps similarly important for this thesis is the idea that "regardless 

of their classical diagnostic classification, almost all individuals with aphasia show 

significant impairment on tasks of single word production, such as picture naming" 

(Wilshire, 2008: p1020). Accordingly, many theories of aphasia rehabilitation focus on 

these kind of single word production tasks. 
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Speech and Language therapists who deliver aphasia therapy use sets of particular tasks to 

both assess the nature of a patient's aphasia and decide on an appropriate therapy strategy. 

The stages in this process can be summed up as follows: "Determine the level of 

breakdown in language processing, identify a therapy that is appropriate for that level of 

breakdown, predict the pattern of change, and obtain these results" (Best & Nickels, 2000). 

The level of breakdown is often assessed using test batteries such as PALPA 

(Psycholinguistic Assessments of Language Processing in Aphasia (Kay, Lesser & 

Coltheart, 1992)). Following this type of assessment, therapists often employ further 

diagnostic tools such as psycholinguistic models of language processing (e.g. Ellis & 

Young, 1988) to select a therapeutic strategy (i.e. an appropriate set of linguistic tasks), 

according to the processing modalities they wish to target. Therapeutic tasks can include, 

but are not limited to, picture naming, word-to-picture matching, word repetition, reading 

aloud, phonemic cueing, listening and writing (Howard & Hatfield, 1987). Predicting the 

pattern of change, as a result of therapy, is a difficult process (Wilshire, 2008). Much 

research into the effectiveness of particular therapeutic strategies comes from case studies, 

yet not all patients respond in the same way to a particular therapeutic task, even if those 

patients possess similar deficits (Best & Nickels, 2000). Due to these difficulties it is 

particularly desirable to obtain both measures, and predictive models, of the efficacy of 

aphasia therapies, especially if they could be understood in terms of the way in which the 

brain re-establishes internal representations. 

 

Several researchers (e.g. Howard, Patterson, Franklin, Orchard Lisle, & Morton, 1985) 

have argued the benefits of a "multimodal" approach to therapy. This "multimodal" 

approach refers to the idea that "a word should be elicited in any one of a variety of ways - 
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repetition, phonemic cueing, reading, writing or listening - and their use practised in a 

variety of situational and grammatical contexts" (Howard et al, 1985: p52). In this sense 

multimodal refers to targeting multiple sensory modalities during the therapeutic process in 

a manner similar to developmental learning. The rationale behind multimodal therapy is 

that more durable rehabilitation requires patients to access semantic representations 

(Howard et al., 1985) of the words, or pictures, they are working with. Thus multimodal 

therapy measures efficacy as overall performance on a range of single tasks across multiple 

sensory modalities, and this efficacy is dependent upon rehabilitating access to semantic 

representations.  Despite this many, if not most of the reported cases in the literature use 

unimodal therapy interventions. Predictive models need to focus on issues in patient-

related work  that can be easily identified and measured: One such issue is therapy set size 

which has been explored in some clinical studies but not modeled. Therapy set size is the 

number of unique items in verbal, pictorial or written form (e.g. dog, car, apple etc.) used 

for learning during a therapy session. Clinical data on studying the manipulation of therapy 

set size  has been obtained by Snell, Sage and Lambon Ralph (2010) whose meta-analysis 

of set size within the therapy literature points towards set size being a variable that could 

be usefully modelled with a view to predicting the variation in therapy efficacy as a 

function of varying set size. Snell, Sage and Lambon Ralph (2010) also recruited a case-

series of aphasic patients with varying severity and gave all of them the same naming 

therapy which varied in two levels of therapy set size in order to explore the role of set size 

that their meta-analysis suggested. Since understanding learning during rehabilitation 

through simulation is one of the goals of this thesis it explores the role of manipulating set 

size in models of rehabilitation therapy. Therapy set size was chosen as a variable of 

particular interest since clinical data is available for contrast and comparison with the 

results of  the simulations.    
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PDP models are well suited to simulating the symptoms of brain damage because they can 

be selectively and incrementally damaged and their performance under damage shows 

graceful degradation. Early PDP models (e.g.  Rumelhart & McClelland, 1986) focussed 

on providing accounts of possible mechanisms for a variety of normal cognitive functions 

but in trying to account for normal functions an understanding of impairments arose (e.g 

Seidenberg and McClelland, 1989) end up with results that also suggest accounts of 

developmental and acquired dyslexia). Accounting for neuropsychological symptoms with 

PDP models thus grows with later modeling work (e.g. Plaut & Shallice, 1993 or Dell, 

Schwartz, Martin, Saffran & Gagnon, 1997 looked at how such models could be adjusted 

to simulate specific cognitive impairments). PDP Models of normal function can be 

"lesioned"  (i.e. selectively impaired )by removing units, weighted connections or adjusting 

other parameters such as weight decay. A model "lesioned" in this manner can display an 

impaired performance, on its intended mapping, in such a way that the pattern of errors 

made resembles that of patients with particular types of brain lesion. Indeed several authors 

have focussed on lesioning models to simulate particular types of cognitive impairments, 

for example deep dyslexia (Plaut & Shallice, 1993), and their rehabilitation (e.g. 

Welbourne & Lambon Ralph, 2005b) .  

 

All PDP models that simulate aphasic behaviour, do so via simulating brain damage by 

selectively lesioning models of normal function in one of the manners described above. In 

considering a model's performance under damage, it is usual to look at the pattern of error 

and compare it to the pattern of error in patients believed to possess analogous brain 

damage. However this is only possible where clinical data is available for comparison. For 

example Rogers et al. (2004) compared patient and model performance for confrontation 
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naming, sorting words and pictures, word to picture matching and drawing and delayed 

copying. Simulating impairments is thus a two way process with the ability to model, and 

thus account for, patient error patterns as well as looking at recovery of damaged models to 

account for patient's cognitive recovery and rehabilitation. This thesis considers the 

process of comparing  the results of simulations with clinical data in discussing the results 

from modeling therapy set size in Chapter 4. 

 

The fact that PDP models learn means they should be useful tools for modelling post 

stroke recovery. The process of relearning in PDP models can mirror both the process of 

cognitive recovery and cognitive rehabilitation. At this point it is worth considering the 

distinction between the two processes. Recovery is generally speaking relearning that 

occurs as a result of plasticity, that is the ability of the brain to compensate for, and regain, 

function previously carried out by other tissue if that other tissue has been damaged. An 

initial discussion of plasticity and the PDP modelling process is presented by Munro 

(1986): In damaged PDP models recovery is accomplished by allowing the model to 

relearn, using the same training set as that which resulted in its original (pre-damage) 

learning but without changing other parameters  (Welbourne and Lambon Ralph 2005b). 

This is analogous to patient recovery where the patient regains cognitive function merely 

as a result of normal living without specific therapeutic intervention. Welbourne and 

Lambon Ralph (2005b) suggest that a post-damage learning period observed in PDP 

models might be equivalent to the period of spontaneous recovery seen in aphasia patients. 

Indeed other work by these authors (Welbourne & Lambon Ralph, 2005a, 2007) has 

specifically explored the role of plasticity related recovery in PDP models and how that 

process relates to patient data on recovery as well as distinguishing between recovery and 

rehabilitation. Rehabilitation is accomplished within PDP models as intense exposure to a 
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subset of the original items the model learnt by using a higher learning rate (Welbourne 

and Lambon Ralph, 2005b) than that with which the model was originally trained. This 

manner of simulating rehabilitation has been followed in this thesis. Hardly any PDP 

models of rehabilitation exist in the literature and those that do are all in the domain of 

reading (the main works being Plaut, 1996 and Welbourne & Lambon Ralph, 2005b). 

Earlier in this review it was stated that efficacy, in aphasia therapy, is considered  to be  

"demonstrable improvement on a specific [linguistic] task" (Best & Nickels, 2000: p232). 

Thus in order to parallel therapy the few existing PDP models of rehabilitation have 

focussed on relearning specific tasks (for example Sejnowski & Rosenberg, 1987; Plaut, 

1996 or Welbourne & Lambon Ralph, 2005b). Welbourne and Lambon Ralph (2005b: 

p804) specifcally refer to this in their model stating "rehabilitation is limited to therapy on 

the same task on which we wish to improve performance". For example picture naming 

therapy can be modelled by training on representations of visual features of an object, as 

discussed in Rogers et al. (2004). Whilst they have not modelled rehabilitation some 

authors (e.g. Dell, Martin & Schwartz, 2007 or Abel, Willmes & Huber, 2007) have 

considered the possibility of predicting therapeutic outcome, from models of post-damage 

performance on therapeutic tasks. This work addresses Best and Nickels (2000) concerns 

regarding the difficulty of predicting therapy outcome yet such models do not explicitly 

consider the role that variation in the regimes of retraining may play. This thesis prioritises 

considering the role of the retraining regime in accounting for recovery and rehabilitation.  

Plaut (1996) looks at relearning and generalization in a small model of the relationship 

between orthography-semantics that derives from  Seidenberg and McClelland’s (1989) 

triangle model of reading. Plaut’s methodology really just considers recovery as retraining. 

It is performed on all words and there is no attempt to emulate clinical selection of items 

for relearning or the intense exposure to items for relearning identified  and implemented 



 
 

! 30!

by Welbourne and Lambon Ralph (2005b).  

 

 

In all of the above cases PDP models have measured efficiency as performance accuracy, 

in the same way as in aphasia therapy, but the models allow for efficiency to be unpacked 

more subtly in terms of the internal representational structure the model develops as a 

result of relearning.  This idea suggests a new way of conceiving of the therapy process in 

terms of the type of representational structure therapists are seeking to re-establish in 

patients who have suffered brain damage. A key question arising from the aphasia 

literature is that while some authors recommend multimodal therapies most reported 

studies are unimodal or at least unimodal in terms of the output that is required from the 

patients. This thesis considers whether therapies that required multimodal outputs might be 

more efficient and effective. 

 

This thesis intended to explore possible therapeutic interventions by simulating underlying 

cognitive mechanisms believed to occur during recovery and rehabilitation in patients, and 

consider factors affecting their efficiency in simulation, with a view to predicting 

responses to different kinds of therapy intervention. Since it is possible to perform precise 

manipulations in models that are not possible in patients it is hoped that these models could 

then be used as part of the design process in creating therapeutic interventions. More 

generally the aim was to understand how the learning environment can be manipulated to 

maximise learning efficiency in a range of circumstances. The thesis investigated the effect 

of the learning environment on recovery and rehabilitation by measuring the efficiency (as 

representational economy) of  the internal representational structure that develops. In 

addition it looks at issues of specific interest in aphasia therapy such as the number of 
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items used in therapy (therapy set size) again in the context of the effect of the learning 

environment and at various levels of damage. 

 

Organisation of the thesis  

 

The thesis seeks to answer the following two questions for learning occurring in different 

life stages: development; spontaneous recovery and rehabilitation.  

1) Is multimodal learning more efficient than unimodal learning? 2) Can multimodality be 

approximated as sequential presentations of the same item in multiple modalities or must it 

be simultaneous presentations in multiple modalities?  

For rehabilitation learning there is an additional question. What effect does varying therapy 

set size have on learning efficiency in the context of the efficiency of the learning 

environment and the severity of damage?  

 

As previously described this thesis is submitted in alternative format. This introduction is 

followed by  three self-contained article chapters (1, 2 and 4) documenting a range of 

simulations that attempt to answer the above questions: Chapter 1  compares multimodal 

and unimodal learning in terms of measuring efficiency for development, robustness to 

damage  and recovery, and finds the multimodal learning environment to be more efficient. 

Chapter 2 explores whether the multimodal advantage found in Chapter 2 could be 

approximated by reordering unimodal learning. Chapter 3 is a technical report detailing the 

rescaling of the model used in Chapters 1 and 2 ready for use as a suitable starting point in 

simulating rehabilitation, whilst preserving the findings of Chapter 1. Chapter 4 compares 

multimodal and unimodal learning in terms of efficiency for rehabilitation. Rehabilitation 

is also considered in terms of the role of therapy set size, and the degree to which 
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background recovery contributes to rehabilitation performance,  for a range of damage 

severity. The thesis ends with a general discussion of the findings and conclusions reported 

in Chapters 1, 2 and 4 as well suggestions for future research directions that arise from the 

work reported in this thesis.  

 

 

 

Acknowledgement of contribution from other authors 

 

My supervisors, Dr. Stephen Welbourne and Professor Matthew Lambon Ralph have 

contributed to some aspects of the design and analysis of the simulations described in this 

thesis, as well as assisting with the thesis production itself.  

 

 

 

  



 
 

! 33!

Chapter 1 - Knowledge acquisition and representational economy: A computational 

investigation of efficiency in the brain’s ‘convergence zones’ 

 
 

Abstract  
 
Various researchers have suggested that knowledge acquisition is dependent upon the 

convergent interaction of modality-specific perceptual representations (e.g. Damasio, 

1989; Tranel et al., 1997; Meyer & Damasio, 2009). It has been suggested that such 

interaction occurs in the brain’s ‘convergence zones’, where internal representations 

develop that mediate the association of perceptions arising from different sensory 

modalities. This study uses an established model of semantic knowledge (Rogers et al., 

2004) to investigate temporal and representational efficiency in the convergence process, 

and to determine how variation in the learning environment of these convergence zones 

affects the acquisition of novel knowledge, and the re-acquisition of knowledge after 

neural network damage.  The model was trained to associate representations of objects in 

three domains (names, verbal descriptions and visual features ) across two perceptual 

modalities (verbal and visual): names, verbal descriptions and visual features. During 

training, a statistical measure of the efficiency of convergence (representational economy) 

was used to monitor how well the internal ‘semantic’ representations supported the 

model’s knowledge (i.e. learned associations across the three domains). The findings 

suggested that the learning environment had a direct effect upon developing convergence: 

multimodal learning  (targeting all possible domains at each presentation of  an object) 

yielded greater efficiency, being faster and developing more convergent semantic 

representations, than unimodal learning (targeting each domain separately). This was true 

for both initial learning and relearning after damage. In addition, multimodal learning 

yielded representations that were more robust to damage. However, when multimodal and 
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unimodal training was compared on a trial by trial basis (contrasting network performance 

after each presentation of a single training pattern), as well as in terms of equated error 

(contrasting network performance after each presentation of all the training patterns) across 

all training items, multimodal learning was not found to be more efficient than unimodal 

learning when compared in terms of equated error. This suggests that the greater efficiency 

of the multimodal learning environment results from the higher error signal obtained for 

each object presentation during learning. These results suggest a multimodal learning 

environment should offer greater efficiency in the re-acquisition of knowledge after brain 

damage (e.g. stroke, head injury), with implications for theories of learning in development 

and rehabilitation. 

 

Keywords: Convergence Zones; PDP neural network models; Semantic Knowledge; 

Representational Economy; Multimodal learning 

 

Introduction 
 

Both historical and contemporary neuroscience literatures discuss areas in the brain that 

merge semantic or conceptual information: Almost a century after Wernicke’s (1874) 

pioneering work on sensory association, Damasio’s (1989) proposed ‘convergence zones’ 

in the brain offer a contemporary perspective that encapsulates Wernicke’s idea as specific 

regions acting to draw information together.  Damasio (1989: p. 130) suggested that “it is 

not enough for the brain to analyze the world into its components parts: the brain must bind 

together those parts that make whole entities and events, both for recognition and recall”. 

Various authors, often including Damasio, have engaged in subsequent discussion of 

convergence zones (e.g. Damasio et al., 1996; Tranel et al., 1997; Moll & Miikkulainen, 
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1997) and their application in different domains (for an overview see Meyer & Damasio, 

2009). Convergence zones can thus possibly account for how the brain binds incoming 

information from various perceptual modalities (e.g. sensory, motor or linguistic), and how 

such binding supports both perception and recall of external world experiences. Given that 

conceptual knowledge is based upon incoming information, and derived from perception 

and action (e.g. Barsalou, 1999; Gallese & Lakoff, 2005), this information can be 

categorised and understood in terms of modality-specific perceptual representations 

(Rogers et al., 2004).  Convergence suggests that these modality-specific perceptual 

representations are then processed, for storage in the brain, into an abstracted intermediate 

re-representation independent of any modality-specific qualities (Rogers et al., 2004). 

These intermediate representations can be viewed as storage structures for the learned 

cross-modal association of modality-specific perceptions that support coherent 

generalisable concepts (Lambon Ralph et al., 2010). Subsequent perception in a single 

modality can stimulate the recall of  associated information arising from other modalities 

via this amodal intermediate representation.  For example, an intermediate representation 

could support the conceptual knowledge of a “dog” by facilitating the learned cross-modal 

associations between perception of a real dog, a picture of a dog, the sound of a dog 

barking, the phonology of the word “dog”, and the orthography of  the word “dog”. The 

convergence zone facilitates the binding of these various “dog” perceptions within an 

intermediate amodal representation. Any one of these modality-specific “dog” perceptions 

can trigger the others via the learned association encoded within the intermediate 

representation: If we hear a barking sound we imagine it is being produced by a furry 

creature with four legs, which we refer to as a dog. 

 

Whilst Damasio suggests the concept of convergence zones he does not describe their 
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function in great detail. Several authors have offered more substantial descriptions for the 

function of convergence zones (e.g. Rogers et al.. 2004, Lambon Ralph & Patterson, 2008; 

Lambon Ralph et al., 2010) though little is known regarding how convergence zones 

operate mechanically at the neuronal level, and what factors within the learning 

environment affect their efficiency. Furthermore it is only through computational 

modelling that neuronal behaviour in convergence zones can be explored in a controlled 

and systematic manner by simulating analogous situations to those cognition mechanisms 

believed to exist in the brain ( e.g. Moll and Miikkulainen, 1997). If the operation of 

convergence is to be understood, it is essential to know how, and why, it develops during 

the learning process of knowledge acquisition. This Chapter does not seek to concern itself 

with the debates regarding the neuroanatomical location and nature of convergence zones 

(for an overview see  Patterson et al, 2007).  Instead the intention here is to focus upon the 

computational role of convergence in the development of knowledge, and thus explore the 

function of brain areas that merge information and, in doing so, facilitate stored conceptual 

knowledge. The act of perception in any sensory modality generates activity in the brain’s 

neural networks, which can be modelled in a suitably designed computational ‘neural’ 

network. Parallel Distributed Processing (PDP) is one class of computational simulation, 

that allows the investigation of these computational neural networks. PDP models offer an 

advantage over other forms of computational simulation since the models actually learn 

(Welbourne & Lambon Ralph, 2005b). Using PDP models to simulate the performance of 

convergence zones through initial learning and recovery following damage is a powerful 

method to learn more about their function (Welbourne & Lambon Ralph, 2005b). Indeed 

Damasio (1989, p 130) suggested that “modeling studies should illuminate the collective 

properties of convergence zones and provide us with the intuition we need to sharpen our 

questions”. 
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This Chapter attempts to do just that by investigating how, and why, convergence zones 

may develop to support knowledge, and what possible advantages they may offer. It does 

this by examining their efficiency in direct relation to the learning environment under 

which they developed. The Chapter adopts a view of  knowledge as the merged internal re-

representation of multiple modality-specific perceptual representations. This view of 

knowledge derives from previous modelling literature (Plaut, 2002; Rogers et al., 2004; 

Dilkina et al, 2008) exploring neural network architectures containing groups of hidden 

units amongst which convergent representations develop to facilitate learning. The Rogers 

et al. (2004) model of semantic knowledge was chosen as the most suitable starting point 

to consider the role of convergence for two reasons: first, because it is an established 

model of semantic knowledge acquisition, which is a domain that is likely to depend 

heavily on the convergence of cross-modal information; and secondly, because it already 

contained some explicit investigation of  how convergent representations develop, 

facilitate learning and act as stored knowledge. The Rogers et al. (2004) model implements 

a convergence zone that supports the acquisition of conceptual knowledge (semantic 

memory). Indeed, it provides convincing evidence that convergence zones are required to 

enable cross-modal associations. Within the convergent zone, amodal semantic 

representations develop during learning to support the cross-modal association of 

representations of the visual features and verbal descriptions from a variety of objects. This 

model also produces an internal category structure, arguing for an emergent view of 

semantic memory in terms of the representational structure that develops. Additionally 

when damaged, the model convincingly simulates the behavioural patterns of semantic 

dementia (Rogers at al., 2004). 
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The Rogers et al. (2004) model also contains explicit information about its training regime. 

For PDP models, of this type, the training regime is designed to replicate key features of 

the external sensory-verbal environment. What then, is the role of learning environment, in 

terms of convergence? If convergence is a necessary condition for the generation of 

knowledge representations, then what aspects of sensory experience encourage it? If 

concepts are being learnt through exposure to sensory impressions, what process binds 

those incoming impressions, and what is the role of convergence in this binding? To derive 

an experimental situation where these questions can be answered it was necessary to 

develop a suitable manipulation of the learning process that would be expected to interact 

with the convergent architecture to either encourage or discourage the development of 

convergent representations.  

 

Developmental psychology offers the concept of epigenesis, that infant learning is the 

result of the interaction between genes and the learning environment (Mareschal et al., 

2004). On this view the PDP model architecture could be understood as analogous to the 

genetic material, and the training regime analogous to the learning environment. Several 

developmental studies, with pre-verbal infants, have shown that mothers use temporally 

synchronous naming when presenting new objects or actions that they wish the child to 

learn (Gogate et al., 2000; Messer, 1978). “During temporally synchronous naming, they 

[Mothers] speak a word while holding and moving an object rather than moving it out of 

phase with the spoken word” (Gogate, Bolzani & Betancourt, 2006: p.261). This 

synchronous presentation to multiple sensory modalities (i.e. multimodal stimulation) 

follows from the idea that infant learning of word–object relations is “accomplished in the 

context of the infant’s multimodal interactions with its mother” (Sullivan & Horowitz, 

1983, p. 210). The evidence from such developmental studies suggests that infant 
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knowledge acquisition is facilitated by a multimodal learning environment. The Rogers et 

al. (2004:  p215) model implements a training regime (learning environment) where “target 

values were applied across all visual and verbal units in the model, including the units 

acting as input during the trial”. Clearly this temporally synchronous multimodal 

presentation, of target values for learning, has much in common with evidence from 

studies of infant learning. As such it provides an established basis for examining 

convergence in initial (developmental) learning, as well as illustrating how learning 

knowledge is extracted from a learning environment from a modelling perspective. It 

would thus seem reasonable that a reduction in the degree of multimodality within the 

training regime would affect the degree of convergence that develops. This manipulation 

of the multimodality of the learning environment could have consequences for a number of 

areas. Obviously it may affect the speed of knowledge acquisition in development. It may 

also affect the quality of that knowledge and its robustness to damage. Similarly some of 

the considerations that apply during development may also be equally applicable in the 

case of relearning following brain damage. The current investigation  undertook to 

understand the effect upon learning efficiency of manipulating the degree of multimodality 

in the learning environment, both during development and in relearning after damage. 

 

The case of relearning after damage (i.e. recovery and/or rehabilitation through therapy) 

offers a contrasting learning environment to that found in the developmental case. Several 

researchers (e.g. Howard, Patterson, Franklin, Orchard Lisle, & Morton, 1985) have argued 

the benefits of a "multimodal" approach to therapy when relearning word-object relations. 

This "multimodal" approach refers to the idea that "a word should be elicited in any one of 

a variety of ways - repetition, phonemic cueing, reading, writing or listening - and their use 

practised in a variety of situational and grammatical contexts" (Howard et al, 1985: p52). 
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In this situation ‘multimodal’ refers to targeting multiple sensory modalities during the 

therapeutic intervention. Single therapy tasks (e.g. picture naming or reading aloud) 

concentrate on a single mapping between sensory modalities. In other words they are 

unimodal since they target a single output modality. The Rogers et al. (2004) model 

simulates picture naming as well as other therapy tasks in terms of the model’s impaired 

performance behaviour after damage. Although it does not consider relearning behaviour, 

exposing the model to further training after damage would easily allow for simulation of 

spontaneous recovery (Plaut, 1996) and therapy (Welbourne & Lambon Ralph, 2005b). 

These clinically-related targets were also considered in the current study. 

 

Aims 
 
The current investigation contrasted two learning scenarios using a replication of the 

Rogers et al. (2004) model: (i) developmental (i.e. infant) learning; (ii) recovery and 

therapy after brain damage (modeled as relearning post damage) as in the case of stroke or 

head injury in which therapy seeks to restore knowledge through the presentation of 

objects for re-learning. The Rogers et al. (2004) multimodal training regime developed 

convergent internal re-representations and, as discussed above, various authors have 

argued that human developmental learning is multimodal. The current investigation 

developed an additional, comparative unimodal training regime (similar to unimodal tasks 

used in cognitive rehabilitation therapy) to investigate whether manipulation of the uni- vs. 

multi-modality of the learning environment would affect the development of convergence, 

and its relationship to learning efficiency. Such a manipulation of multimodality, examined 

in terms of the effect on learning performance, could provide an account of why 

convergence may be necessary in terms of the organisational nature of environments in 

which learning is required. In order to measure convergence a novel statistical measure 
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(representational economy) needed to be developed in order to monitor the degree of 

convergence among representations in the model’s convergence zone at any learning point. 

Having developed this measure, three simulations were carried out to explore the issues 

described above. Simulation 1 considered initial (developmental) learning by investigating 

how convergence is affected by the learning environment, and whether there is a link 

between convergence and efficiency. Since all neural networks exhibit graceful 

degradation (McClelland et al., 1986), Simulation 2 explored possible benefits of 

convergence by examining whether highly convergent representations are also more 

resistant to damage. In other words do more convergent representations minimise the 

effects of damage and if so under what conditions does this occur (i.e. does the 

multimodality of learning affect that learning’s robustness. Simulation 3 considered 

relearning by exploring how convergent representations might best be re-established after 

damage in terms of targeted modalities. 

 

Simulation 1.1: Developmental learning  

 

Method  
 
The PDP model of semantic knowledge employed for this investigation was a replication 

of a previously established model of semantic knowledge (Rogers et al., 2004). This model 

was implemented using the LENS neural network simulator programming environment 

(Rohde, 2000). Figure 1.1 shows the network architecture of the model: 
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Figure 1.1 Architecture of the model adapted from Rogers et al. (2004) 

 
The model is a fully recurrent network consisting of four layers of units. Three layers of 

units labelled names, verbal descriptions and visual features are bidirectionally connected 

via a single layer of hidden units labelled semantics. The names, verbal descriptions and 

visual features layers are each capable of both input and output, and receive input directly 

from the environment. The semantics layer is a hidden layer and does not interact directly 

with the environment, it only receives input from, or outputs to, the names, verbal 

descriptions and visual features layers. All units in the semantics layer are also recurrently 

connected to each other. These recurrent connections assist in the development of 

attractors (Hinton & Shallice, 1991), stabilising representations within the semantics layer. 

Layers in the model represent specific brain regions in terms of function. The visual 

features layer represents distinct cortical regions of the brain handling high-level visual 
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information derived from earlier processing. This means that the activation state of each of 

the units in the visual features layer corresponds directly to visual properties of stimuli 

received from the environment (e.g. has eyes, has wheels). The verbal descriptions layer is 

similarly constructed representing specific cortical areas that handle linguistic information 

obtained from the environment. It is subdivided for convenience into three sections 

representing particular types of properties that can be expressed verbally: 

perceptual/structural properties (e.g. has eyes, has wheels), functional properties (e.g can 

fly, can roll) and encyclopaedic properties (e.g. lives in Africa, found in kitchen). The 

names layer operates in a similar manner to the verbal descriptions layer except that it only 

handles the representions of object names (e.g. animal, bird, chicken). The operation of the 

semantic layer is such that, as the model learns, the semantic units develop re-

representations of the inputs and outputs from the names, verbal descriptions and visual 

features layers that facilitate mapping between these inputs and outputs. For this reason the 

units are considered semantic since, as the model learns, they “derive amodal semantic 

representations that encode the semantic similarity relations among objects regardless of 

their surface [in this case name, verbal description and visual feature] similarities” (Rogers 

et al., 2004: p.233). These ‘semantic’ re-representations are the key subject of interest 

within the current investigation. Since this is a fully recurrent network as the model learns 

it develops attractors (Hinton & Shallice, 1991) which yield stable amodal representations 

across the semantic units. These amodal representations are also convergent as indicated 

by the Rogers et al.’s (2004) hierarchical cluster analysis of the category structure the 

model develops as a result of learning. Evidence for this convergence is also provided by 

the hierarchical cluster analysis that Rogers et al. (2004) perform upon the learned 

semantic representations with the trained model. 
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Figure 1.2 Architecture of the model redrawn as a generic PDP model with bidirectional mapping 
between each layer 

 

 Figure 1.2 illustrates the model in generic terms to show how an input representation 

(example e) of an object in any individual modality domain (layer), generates its own 

particular re-representation (denoted by H1,H2 or H3 from input in modalities M1,M2,M3 

respectively) as a pattern of activity across the hidden semantic units (i.e. the hidden layer 

H). These re-representations have a tendency to converge towards a single pattern of 

activation across the units of the hidden layer H as a result of the attractor structure (as 

illustrated by Rogers et al.’s (2004) cluster analysis of the learned representations) that 

develops within the model as it learns. So over time the hidden representations (i.e. H1,H2, 

H3) generated from the same item presented in different modalities begin to move closer 

together to become increasingly similar for each type of mapping between M modalities 

(i.e. approaching the idea that for a learned example object e, H1(e) = H2(e) = H3(e) in 
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Figure 1.2). In this manner the model implements a convergence zone within the semantics 

H layer.  

 

Training Stimuli 
 

The representations upon which the model was trained were created from prototype 

patterns in the same manner as in the original model (Rogers et al., 2004). The name 

representations were localist with 36 of the 40 units directly corresponding to a unique 

object upon which the model is trained. The four general object names (BIRD, ANIMAL, 

VEHICLE and TOOL) described in the Rogers et al. model , that would use the remaining 

4 localist name units were not used in the current study.  

Table 1.1 shows the category prototype patterns used to generate verbal description and 

visual feature representations for each named object according to the category to which it 

belongs. The verbal descriptions layer contained 112 units subdivided into 64 perceptual 

units, 32 functional units and 16 encyclopaedic units. The visual features layer contained 

64 units. The prototype patterns were used probabilistically to generate binary 

representation vectors for each of the input/output layers. Each element of these vectors 

describes an individual unit’s activation state according to the prototype pattern.  The 

symbols in the prototype patterns correspond to the probability that an individual unit is 

turned on or off: 

 +  means units likely to be active with a probability of activation of 0.8 

0  means units less likely to be active with a probability of activation of 0.2 

-   means units never active (i.e. are always 0) so probability of activation is 0 

These prototype patterns were used to generate 6 unique training items for each of the 6 

categories. 

 



 
 

! 46!

Table 1.1 Prototype patterns used to generate binary representations of verbal descriptions and visual 
features for each category of named object presented to the model for training 

 

Training the model  
 

The model was trained on either one of two distinct training regimes developed through a 

broadly epigenetic consideration of the role of the external environment’s influence upon 

developmental learning. The first regime was simultaneously multimodal (identical to that 

used in Rogers et al., 2004) since it  involved training the model to map from activation of 

a single input layer to generate the target outputs on all other (multiple) output layers (as 

illustrated in Table 1.2).  The Rogers et al. (2004) model was trained on multimodal 

outputs. Whilst training on multimodal inputs seems to be closer to the ecological situation 
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of word learning in development as well as therapeutic sessions, this study uses 

multimodal outputs from a single input. The evidence from the Rogers et al. (2004) model 

suggests that multimodal output training results in the best possible learning performance 

for the model, and mimics developmental learning, so this study employs multimodal 

output training in all simulations. The second regime was unimodal since it involved 

training input to a single layer to map to a target output in a single layer (as illustrated in 

Table 1.2).  

Table 1.2 Training regime patterns in terms of targeted output layers being manipulated between the 
multimodal and unimodal conditions 

 

The unimodal regime was developed as a result of splitting the multimodal regime into all 

of its constituent singular unimodal cross-domain mappings. This can be seen in Table 1.2 

where the three possible simultaneous multimodal cross-domain mappings, when 

considered in terms of unimodal cross-domain mappings clearly involve nine singular 
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unimodal mappings, so unimodal training is a reflection of this separation of the 

multimodal and corresponds to contrasting the two common real-world learning 

environments, development (multimodal) and post-damage rehabilitation tasks (unimodal). 

The unimodal regime was considered analogous to the learning environment experienced 

during adult learning such as that occurring during recovery or rehabilitation after damage 

(e.g. in the case of stroke etc.). Often therapeutic learning post-damage consists of 

presentation of learning items in single input and output modalities (e.g. ‘spoken word to 

picture matching’ consists of visual input, picture presentation, and verbal output, the 

spoken word).   

 

Each training trial (i.e. presentation of training patterns for a single item and subsequent 

weight update) the network was given during learning lasted for seven time steps, each 

time step lasted for four ticks, meaning each trial lasted for 28 ticks in total, where each 

tick corresponds to one update of all unit activation values in the network. Each trial 

consisted of three events. For the first event,  a name, verbal description, or visual feature 

training pattern was given as an input (see Table 1.2 for all possible inputs in the unimodal 

and multimodal conditions). This input was clamped and the model was then allowed to 

cycle for 3 time steps (i.e. the first event lasted for 12 ticks). For the second event, all 

inputs were removed and the model was then allowed to cycle for 2 time steps (i.e. the 

second event lasted for 8 ticks). Finally, the third event consisted of the application of 

target values across all the input/output layers (i.e. names, verbal descriptions and visual 

features) in the multimodal condition, or a single input/output layer in the unimodal 

condition. For this third event the model was allowed to cycle for 2 time steps (i.e. the third 

event lasted for 8 ticks). During training all possible training patterns for each of the items 

in the corpus were presented to the model once in random order. Learning consisted of 
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repeated presentation of the whole training corpus, with the order of presentation re-

randomised after each exposure of all items to the network. It should be noted that all 

aspects of each training trial in the multimodal training regime (as described above) were 

preserved in the unimodal regimes except that  target values were only applied across units 

in a single output layer (i.e. names, verbal descriptions or visual features) instead of across 

units in all possible output layers. 

Multimodal and unimodal training performance was compared on a trial by trial basis (i.e. 

at the level of individual items), as well as a comparison in terms of the number of 

presentations of the entire training corpus. Since presenting the entire corpus in the 

unimodal condition involved presenting three times as many training trials as in the 

multimodal condition, comparison in terms of the number of presentations of the entire 

corpus represented an “equal error comparison”. That is to say error was considered across 

all items to be learned in each condition. The comparison on a trial by trial basis 

necessarily means that a higher error signal will be present in the multimodal condition 

since in each trial it provides information on the relation between three times as many 

cross domain mappings as in the unimodal condition (see Table 1.2). In order to make a 

detailed comparison between multimodal and unimodal training, results were to be 

reported for both the item level trial by trial performance comparison as well as the corpus 

level equated error comparison. 

 The model was trained with online learning (i.e. using a batch size of one, thus with a 

weight update after the presentation of each training trial) using recurrent backpropagation 

through time with a steepest descent algorithm. The learning rate was set to 0.005. A 

weight decay of 0.0000002 was also used to prevent any weights developing values that 

were disproportionately high. Similarly, no momentum was used since its process of 

including a proportion of the previous step in every weight change can cause the effective 
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learning rate to become too high and inhibit learning. Each individual unit within the 

network was given a fixed, untrainable bias of –2.  “This has the effect of deducting 2 from 

each unit’s net input. Thus, in the absence of input, each unit’s activation settles to the low 

end of its activation range.” (Rogers et al., 2004: p. 215). Units in all of the input/output 

layers were clamped to their input values using a soft clamp with a clamp strength of 0.9. 

A target radius of 0.1 was used during the processing of each batch (in this case each 

training trial due to a batch size of one) so if an output unit's activation is within 0.1 of the 

target, no error will be generated. The model was trained until input in a single layer could 

generate target outputs on all layers to within an accuracy of 0.5. 

 

To simulate development, the model was trained for 648000 weight updates, using either 

the multimodal and unimodal training regime in each simulation. This equates to 6000 

presentations in the multimodal condition (multimodal presentation of the entire corpus 

takes 108 updates, i.e. 3 training trials for each of the 36 items). In contrast, this amount of 

training equates to 2000 presentations in the unimodal condition (unimodal presentation of 

the entire corpus takes 324 updates, i.e. 9 training trials for each of the 36 items).  During 

training, the model was tested on its ability to generate the correct target outputs (to within 

0.5) for all patterns, in all output modalities. 648000 weight updates was chosen for the 

duration of training through initial experimentation, as whenever the model learnt to 100% 

accuracy (verified through regular testing) it had occurred by this time.  The simulation 

was run ten times in the multimodal condition and ten times in the unimodal condition and 

the results were averaged. During training, regular testing recorded accuracy (percentage 

of examples correct upon testing), network error and representational economy (according 

to the equation derived below). 
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Calculating representational economy in the semantic convergence zone 
 
As the model learns and structure develops, the semantic representations generated for 

unrelated objects become increasingly differentiated, whilst the representations of the same 

item elicited from different domains become more similar. Representational economy (RE) 

within the semantic layer was formally investigated by developing a statistic that could 

quantify this process. Representational economy is defined as the average ratio between 

the similarity of semantic representation for unrelated examples in the same modality and 

the similarity of semantic representations for the same example from different modalities. 

The diagram in Figure 1.2.1 provides a visualisation of the representational economy 

calculation in order to provide a clearer practical understanding of the formulae presented 

below. This diagram is based upon the diagram of semantic space in Hinton et al. 1993. 

This is calculated according to the following equation: 
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where d  is a function to calculate the average euclidean distance between the 

representation generated by each input modality at the hidden layer H for an example ( ie ) 

and the representations of all the unrelated examples ( neee ,........, 21 ) generated at the 

hidden layer H (denoted by Hj(e1), Hj(e2),…..Hj(en) where j indicates the number of the 

input modality, by that same input modality, averaged across all m modalities. 

 

 

Figure 1.2.1 A visualisation of the representational economy calculation in semantic space derived 
from Hinton et al.’s (1993) diagram of semantic space.  

 

Testing the network and analysing representational economy 
 
Representational economy, accuracy and error were calculated at regular intervals during 

the model’s training. A 2x20 repeated measures analysis of variance (ANOVA) was 

conducted on these data to investigate the effect of manipulating the training regime 

(multimodal or unimodal) at twenty equally spaced time points during training on the 
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dependent variables (accuracy, representational economy and network error). The 

correlation between representational economy, accuracy, and error was conducted for all 

simulations carried out with the model to investigate the suggested relationship between 

Representational Economy, Accuracy and Network Error as the model learns. 

Results 
 

The graphs in Figure 1.3 illustrate the model’s performance during development, both on a 

trial by trial basis and for an equated error comparison. It can be clearly seen that 

multimodal training is more efficient than unimodal training on a trial by trial basis, 

obtaining greater accuracy and greater convergence (as evidenced by representational 

economy) as well as greater error reduction. These differences between multimodal and 

unimodal training are also statistically significant as the results of  the 2x20 analysis of 

variance given in the Table 1.3  clearly show. Figure 1.3 also shows how the multimodal 

training achieves greater acceleration in the learning process thus showing its greater 

efficiency at an earlier point. The equal error comparison between multimodal and 

unimodal training shows no substantial difference and indeed the small differences seen in 

the graphs in Figure 1.3 are not statistically significant (as indicated in the analysis results 

in  Table 1.3). Table 1.3 shows that multimodal learning does indeed perform better than 

unimodal learning by indicating  a statistically significant difference between multimodal 

and unimodal training for Accuracy, Representational Economy and Network Error. There 

is also a statistically significant interaction between training and time for Accuracy and 

Network Error between Equated Error Multimodal and Unimodal training but not for 

representational economy. This indicates that training is having an effect on the model, but 

that there is no statistically significant performance difference between the training 

regimes independent of time. 
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Representational Economy was strongly correlated with learning Accuracy for all 

conditions: Multimodal r(20)=.820, p<.001; Equated Error Multimodal r(20)=.878, p<.001; 

Unimodal r(20)=.869,p<.001. Representational Economy was strongly correlated with 

Network Error for all conditions: Multimodal r(20)=-.789,p<.001;Equated Error 

Multimodal r(20)=-.767,p<.001;Unimodal r(20)=-.760,p<.001. 
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Figure 1.3 Mean variation in training performance  during developmental learning
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Table 1.3 2x20 ANOVAs indicating significant performance differences between training  regimes 
during developmental learning 

 

 

 

Simulation 1.2: Robustness to damage 

 

Method 
 
The model was trained in the manner described in Simulation 1. In order to investigate the 

model’s robustness to damage the 10 multimodal and 10 unimodal trained networks from 

each of the these simulations were lesioned by removing an increasing proportion of all 

incoming and outgoing connections across all the units in all layers (i.e. names, verbal 

descriptions, visual features and semantics) . Each lesion was performed 10 times and 

scores for accuracy, error and representational economy were recorded. These data were 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 103.806 <0.001* 0.920 
Time 19,171 959.390 <0.001* 0.991 
Training*Time 19,171 483.020 <0.001* 0.982 

Representational 
Economy 

Training 1,9 114.888 <0.001* 0.927 
Time 19,171 942.068 <0.001* 0.991 
Training*Time 19,171 99.054 <0.001* 0.917 

Network Error Training 1,9 1195.770 <0.001* 0.993 
Time 19,171 1948.960 <0.001* 0.995 
Training*Time 19,171 1404.116 <0.001* 0,994 

Equated Error 
Multimodal 

Vs 
Unimodal 

Accuracy Training 1,9 0.581 0.465 0.061 
Time 19,171 1536.595 <0.001* 0.994 
Training*Time 19,171 1.675 0.045* 0.157 

Representational 
Economy 

Training 1,9 1.105 0.321 0.109 
Time 19,171 1406.016 <0.001* 0.994 
Training*Time 19,171 0.699 0.816 0.072 

Network Error Training 1,9 0.377 0.554 0.040 
Time 19,171 3089.077 <0.001* 0.997 
Training*Time 19,171 2.878 <0.001* 0.242 
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then plotted (see Figure 1.4) and analysed (see Table 1.4) to see if the multimodal training 

would result in models that were more robust to damage than those generated from 

unimodal training.  

 

Results 
 
The graphs in Figure 1.4 illustrate the model’s robustness to damage as the model was 

subjected to lesions of increasing severity following the 648000 weight updates of initial 

training. Across the range of lesions the multimodal regime consistently appeared to be 

more robust to damage with higher accuracy and lower network error, both for trial by 

trial, and equal error, comparison to unimodal training. However, for all except the 

smallest lesions (i.e. less than 2% of connections removed), RE after damage was reduced 

to the same low level regardless of whether the initial training had been multimodal or 

unimodal, and regardless of whether the two regimes are compared on a trial by trial or 

equated error basis. Table 1.4  illustrates that multimodal learning results in a structure that 

is more robust to damage than unimodal learning, as shown by the statistically significant 

difference between multimodal and unimodal training for Accuracy, Representational 

Economy and Network Error. There is also a statistically significant difference in the effect 

of the lesion severity for Representational Economy, Accuracy and Network Error between 

Equated Error Multimodal and Unimodal training, but no difference in the effect of 

training and no significant interaction between the effect of training training and lesion 

severity. Representational Economy was strongly correlated with learning Accuracy for all 

conditions: Multimodal r(11)=.836, p=.001; Equated Error Multimodal r(11)=.866, p=.001; 

Unimodal r(11)=.863,p=.001. Representational Economy was strongly correlated with 

Network Error for all conditions: Multimodal r(11)=-.635,p=.036;Equated Error 

Multimodal r(11)=-.628,p<.039;Unimodal r(11)=-.672,p<.024.
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Figure 1.4 Mean variation in robustness to damage for the fully trained model with each training regime



 

! 59!

 Table 1.4 2x11 ANOVAs indicating significant differences in robustness to damage between trained 
networks  

 

Simulation 1.3: Relearning after damage 
 

Method 
 

The model was trained in the manner described in Simulation 1. However, this time only 

the multimodal training regime was used to train the model as per the original simulation 

(see Rogers et al, 2004). In order to investigate the model’s re-learning behaviour after 

damage the 10 multimodally trained networks from the initial training were lesioned by 

removing a proportion of all incoming and outgoing connections across all the units in all 

layers (i.e names, verbal descriptions, visual features and semantics).  Initial experiments 

in lesioning the model solely at the connections to semantics to mimic the real situation of 

localised damage did not yield a range of damage severities appropriate for retraining. In 

order to consider different levels of damage, lesioning was required such that when the 

Training 
Regime 

Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 5.536 0.043* 0.381 
Lesion 10,90 1001.493 <0.001* 0.991 
Training*Lesion 10,90 2.338 0.017* 0.206 

Representational 
Economy 

Training 1,9 28.772 <0.001* 0.762 
Lesion 10,90 2256.564 <0.001* 0.996 
Training*Lesion 10,90 6.306 <0.001* 0.412 

Network Error Training 1,9 8.967 0.015* 0.499 
Lesion 10,90 226.110 <0.001* 0.962 
Training*Lesion 10,90 1.299 0.243 0.126 

Equated Error 
Multimodal 

Vs 
Unimodal 

Accuracy Training 1,9 0.296 0.600 0.032 
Lesion 10,90 1296.013 <0.001* 0.993 
Training*Lesion 10,90 0.495 0.889 0.052 

Representational 
Economy 

Training 1,9 1.379 0.270 0.133 
Lesion 10,90 1469.838 <0.001* 0.994 
Training*Lesion 10,90 0.737 0.688 0.076 

Network Error Training 1,9 0.081 0.782 0.009 
Lesion 10,90 340.135 <0.001* 0.974 
Training*Lesion 10,90 1.909 0.054 0.175 
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model relearns after damage it would relearn only to a certain level, and no further, 

essentially giving an accuracy graph that goes to asymptote for several different levels. 

Three levels of damage were decided upon to examine relearning after increasingly severe 

damage: Mild where the model relearns to around 90% accuracy, Moderate, where the 

model relearns to around 60% accuracy, and Severe where the model relearns to around 

30% accuracy. In the end this was only achievable in the model by lesioning uniformly 

across the model rather than a closer simulation to the real situation of localised injury.The 

trained networks were subjected to three separate lesions of varying degrees of severity: 

mild (removing 86 % of connections); moderate (removing 88% of connections);  and 

severe (removing 90% of connections). These degrees of severity were intended to 

encompass the range of damage that typically occurs after a stroke and thus cover a range 

of behavioural severity outcomes. After lesioning, each network underwent  2592000 

updates of retraining with both the multimodal and unimodal training regimes. This 

corresponds to 24000 multimodal, and 8000 unimodal, presentations of the entire training 

corpus. This repeated-measures methodology where the same initially trained network was 

subjected to each lesion and retraining condition allows us to remove any variance 

associated with individual pre or postmorbid differences. This is important since brain-

damaged patients are not a homogenous population, and studying the effects of treatment 

should be based upon “within-patient comparisons” (Howard & Hatfield, 1987, p.119). 

 

Results 
 
Mild Lesioning 
 

The graphs in Figure 1.5 illustrate the model’s performance during relearning after a mild 

lesion, both on a trial by trial basis and for an equated error comparison. It can be clearly 
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seen that multimodal training is more efficient than unimodal training on a trial by trial 

basis, obtaining greater accuracy, and greater convergence (as evidenced by 

representational economy) as well as greater error reduction. These differences between 

multimodal and unimodal training are also statistically significant as the results of the 2x20 

analysis of variance given in the table in Table 1.5 clearly show. Figure 1.5 again shows 

how the multimodal training achieves greater acceleration in the learning process reflecting 

greater temporal efficiency. The equal error comparison between multimodal and unimodal 

training shows no difference, is much noisier than during developmental learning, and not 

statistically significant (as show in the analysis results in Table 1.5). Examining  Table 1.5 

shows  multimodal learning results in better performance than unimodal learning, as shown 

by the statistically significant difference between multimodal and unimodal training for 

Accuracy, Representational Economy and Network Error. There is also a statistically 

significant difference in the effect of time, on Accuracy, Representational Economy and 

Network Error, between Equated Error Multimodal and Unimodal training, as well as a 

significant interaction between training and time. However whilst there is a significant 

difference in network error there is no difference in the level of accuracy and 

representational economy achieved between Equated Error Multimodal and Unimodal 

training. Representational Economy was strongly correlated with learning Accuracy for all 

conditions: Multimodal r(20)=.969, p<.001; Equated Error Multimodal r(20)=.947, p<.001; 

Unimodal r(20)=.924,p<.001. Representational Economy was strongly correlated with 

Network Error for all conditions: Multimodal r(20)=-.889,p<.001;Equated Error 

Multimodal r(20)=-.920,p<.001;Unimodal r(20)=-.938,p<.001. 
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Figure 1.5 Mean variation in training performance during relearning after a mild lesion
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Table 1.5 2x20 ANOVAs indicating significant performance differences between training regimes after 
a mild lesion 

 
Moderate Lesioning  
 
Figure 1.6 shows the model’s performance during relearning after a moderate lesion for a 

trial-by-trial, and an equated error, comparison. It can be clearly seen again that 

multimodal training was more efficient than unimodal training on a trial-by trial-basis, 

obtaining greater accuracy and greater convergence (as measured by representational 

economy) as well as greater error reduction. These differences between multimodal and 

unimodal training were also statistically significant (see Table 1.6). Figure 1.6 again 

continues to show the picture of multimodal training achieving greater acceleration in the 

learning process reflecting greater efficiency in the early phase. The equal error 

comparison between multimodal and unimodal training again showed no difference, is 

much noisier than during developmental learning and mild lesioning, and not statistically 

significant (as show in the analysis results in Table 1.6). The results of the ANOVA in 

ReTraining 
Regime 
Comparison  

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 236.941 <0.001* 0.963 
Time 19,171 361.673 <0.001* 0.976 
Training*Time 19,171 27.997 <0.001* 0.757 

Representational 
Economy 

Training 1,9 451.562 <0.001* 0.980 
Time 19,171 88.263 <0.001* 0.907 
Training*Time 19,171 2.475 <0.001* 0.216 

Network Error Training 1,9 1778.618 <0.001* 0.995 
Time 19,171 2357.452 <0.001* 0.996 
Training*Time 19,171 322.672 <0.001* 0.973 

Equated Error 
Multimodal 

Vs 
Unimodal 

Accuracy Training 1,9 3.357 0.1 0.272 
Time 19,171 348.978 <0.001* 0.975 
Training*Time 19,171 1.738 0.034* 0.162 

Representational 
Economy 

Training 1,9 3.614 0.90 0.287 
Time 19,171 223.372 <0.001* 0.961 
Training*Time 19,171 2.512 0.001* 0.218 

Network Error Training 1,9 54.635 <0.001* 0.859 
Time 19,171 6478.064 <0.001* 0.999 
Training*Time 19,171 6.549 <0.001* 0.421 
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Table 1.6 gives a statistically significant difference between multimodal and unimodal 

learning showing that multimodal learning results in better performance for Accuracy, 

Representational Economy and Network Error. Whilst a significant effect of time can also 

be seen for Accuracy, Representational Economy and Network Error when comparing 

Equated Error Multimodal and Unimodal training, there is only a significant effect of 

training on Network Error and a significant interaction between training and time for 

Representational Economy and Network Error so there is no difference in the level of 

Accuracy achieved. Representational Economy was strongly correlated with learning 

Accuracy for all conditions: Multimodal r(20)=.932, p<.001; Equated Error Multimodal 

r(20)=.807, p<.001; Unimodal r(20)=.809,p<.001. Representational Economy was strongly 

correlated with Network Error for all conditions: Multimodal r(20)=-.948,p<.001;Equated 

Error Multimodal r(20)=-.962,p<.001;Unimodal r(20)=-.955,p<.001. 
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Figure 1.6 Mean variation in training performance during relearning after a moderate lesion
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Table 1.6 2x20 ANOVAs indicating significant performance differences between training regimes after 
a moderate lesion 

 

 
 

Severe Lesioning  
 
Figure 1.7 shows the model’s performance during relearning after a severe lesion. Again 

data are displayed for a trial-by-trial and an equated error, comparison. Again there is an 

efficiency advantage of multimodal training over unimodal training on a trial-by-trial basis, 

obtaining greater accuracy, and greater convergence (as measured by representational 

economy) as well as greater error reduction. It should also be noted that during 

experimentation after the severe lesion the model was also left to run for twice the number 

of weight updates than those shown in Figure 1.7 since it was suspected that the model’s 

performance was not yet at asymptote. However, the model did not show any further gains, 

thus Figure 1.7 reflects an asymptotic performance which perhaps emphasises the 

ReTraining 
Regime 
Comparison  

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 253.503 <0.001* 0.966 
Time 19,171 94.440 <0.001* 0.913 
Training*Time 19,171 22.607 <0.001* 0.715 

Representational 
Economy 

Training 1,9 182.835 <0.001* 0.953 
Time 19,171 51.784 <0.001* 0.852 
Training*Time 19,171 1.624 0.055 0.153 

Network Error Training 1,9 1892.579 <0.001* 0.995 
Time 19,171 1031.058 <0.001* 0.991 
Training*Time 19,171 89.527 <0.001* 0.909 

Equated Error 
Multimodal 

Vs 
Unimodal 

Accuracy Training 1,9 1.104 0.321 0.109 
Time 19,171 114.307 <0.001* 0.927 
Training*Time 19,171 1.220 0.246 0.119 

Representational 
Economy 

Training 1,9 0.466 0.512 0.049 
Time 19,171 135.339 <0.001* 0.938 
Training*Time 19,171 1.840 0.022* 0.170 

Network Error Training 1,9 40.696 <0.001* 0.819 
Time 19,171 4093.398 <0.001* 0.998 
Training*Time 19,171 2.450 0.001* 0.214 
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efficiency advantage in multimodal training even more than in the mild and moderate 

lesion cases. These differences between multimodal and unimodal training were also again 

statistically significant (see Table 1.7).  illustrating greater efficiency in the early phase  for 

multimodal training, and reflecting greater acceleration in the learning process. The equal 

error comparison between multimodal and unimodal training again shows no difference,  is 

much noisier than during developmental learning, and relearning after mild or moderate 

lesions, and is not statistically significant (as show in the analysis results in Table 1.7). The 

results in Table 1.7  give a statistically significant difference between multimodal and 

unimodal training for Accuracy, Representational Economy and Network Error, showing 

the superior performance of the multimodal regime. There is also a statistically significant 

difference in the effect of time on Accuracy, Representational Economy and Network 

Error between Equated Error Multimodal and Unimodal training. A significant interaction 

between training and time for network error and representational economy can also be 

seen, but no difference in the level of accuracy, network error or representational economy 

achieved between Equated Error Multimodal and Unimodal training. Representational 

Economy was strongly correlated with learning Accuracy for all conditions: Multimodal 

r(20)=.777, p<.001; Equated Error Multimodal r(20)=.783, p<.001; Unimodal 

r(20)=.843,p<.001. Representational Economy was strongly correlated with Network Error 

for all conditions: Multimodal r(20)=-.932,p<.001;Equated Error Multimodal r(20)=-

.967,p<.001;Unimodal r(20)=-.981,p<.001. 
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Figure 1.7 Mean variation in training performance during relearning after a severe lesion
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Table 1.7 2x20 ANOVAs indicating significant performance differences between training regimes 
after a severe lesion 

 

 

 

Discussion  

 

Summary of Results 
 
Simulation 1 illustrated differences in learning efficiency resulting from manipulation 

of the learning environment (i.e. the multimodal or unimodal conditions). Utilising 

representational economy as a newly-derived measure of convergence enabled precise 

monitoring of the evolution of convergence during the learning process. Such 

monitoring gives a glimpse of the interrelation between the operation of a 

convergence zone and the quality of learning that it engenders and subsequently 

ReTraining 
Regime 
Comparison  

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 21.813 <0.001* 0.708 
Time 19,171 17.245 <0.001* 0.657 
Training*Time 19,171 12.539 <0.001* 0.582 

Representational 
Economy 

Training 1,9 45.774 <0.001* 0.836 
Time 19,171 45.823 <0.001* 0.836 
Training*Time 19,171 4.276 <0.001* 0.322 

Network Error Training 1,9 5304.952 <0.001* 0.998 
Time 19,171 999.062 <0.001* 0.991 
Training*Time 19,171 53.361 <0.001* 0.856 

Equated 
Error 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 0.431 0.528 0.046 
Time 19,171 7.540 <0.001* 0.456 
Training*Time 19,171 0.500 0.960 0.053 

Representational 
Economy 

Training 1,9 1.766 0.217 0.164 
Time 19,171 65.585 <0.001* 0.879 
Training*Time 19,171 2.851 <0.001* 0.241 

Network Error Training 1,9 0.885 0.372 0.089 
Time 19,171 1779.928 <0.001* 0.995 
Training*Time 19,171 2.559 0.001* 0.221 
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supports.  Previous modelling studies (e.g. Plaut, 2002; Rogers et al., 2004 or Dilkina 

et al., 2008) have shown that convergence zones can allow for the development of 

efficient amodal representations. However, the results of the current study indicate 

that the efficiency of representation development is also directly affected by the 

learning environment. Both multimodal and unimodal training regimes yield similar 

levels of accuracy at the end of the developmental learning period. Yet it is the time 

course of learning in terms of the relationship between accuracy and the degree of 

convergence occurring in the convergent zone that is of particular interest in the 

current investigation. Representational economy gives a measure of the degree of 

convergence in the computational terms of euclidean similarity between semantic 

representations supporting a variety of cross-domain mappings, as a function of 

developing structure. As such, representational economy not only provides 

information about whether or not convergence is occurring but also about how well 

that convergence supports learning. The clearly observed efficiency advantages 

observed in multimodal training as compared to unimodal, in trial-by-trial 

comparisons of both learning and relearning suggest learning efficiency is directly 

proportional to the degree of multimodality found in the learning environment.  At the 

item level, the multimodal regime is more efficient in terms of speed of learning 

(accelerated early development) and the degree of convergence (representational 

efficiency) it promotes.  

 

Multimodal and unimodal training was compared on a trial by trial basis (contrasting 

network performance after each presentation of a single training pattern), as well as in 

terms of equated error (contrasting network performance after each presentation of all 

the training patterns) across all training items. The equated error comparison suggests 
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that any comparison of learning environments based on the number of times the 

network sees the entire set of training patterns, would show no significant difference, 

regardless of the manner of presentation at the item level. When the network 

performance on multimodal training is compared to that of unimodal training on a 

trial by trial basis each multimodal trial gives the network more error information: A 

single multimodal training trial contains the input and target patterns of all possible 

crossmodal mappings for  an item (see Table 1.2). In contrast a single unimodal 

training trial contains the input and target patterns of just one crossmodal mapping for  

an item (see Table 1.2). Clearly the higher error signal available for every multimodal 

training trial accounts for the observed multimodal advantages in learning 

performance and the lack of performance difference in the equated error comparison. 

Nevertheless it is likely that any real world learning environment comparison would 

involve some degree of inequality during presentation of learning items. Such 

inequality could possibly arise as a result of attentional or memory issues such that it 

becomes difficult to achieve multimodal or unimodal conditions with precise control. 

Simulation 2 suggests other advantages for multimodal learning beyond those of pure 

efficiency in developmental or representational terms. The results of Simulation 2 

suggested that the more efficient convergent representations developed under 

multimodal learning were also more robust to damage than the representations 

developed under unimodal learning. It is thus possible to consider whether 

multimodal learning in development would confer some type of evolutionary 

advantage such that minor brain damage would still leave an individual with a degree 

of their previously learned knowledge. Moreover this possible residual degree of 

knowledge deriving from the more robust representational structure promoted by 

multimodal learning, would allow for more rapid relearning after damage. Statistical 
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testing confirmed this increased robustness in the multimodal condition only for 

lesions of extremely minimal severity (removal of just 2% of connections). For more 

severe lesions multimodal learning appeared to be no more robust to damage than 

unimodal. Simulation 3 showed that spontaneous recovery can make efficient use of 

convergence zones by virtue of the manner in which items are perceived during each 

learning episode resulting in considerably better performance. Detailed analysis of the 

representational economy within both training regimes demonstrated that there is a 

very strong relationship between the economy of representation and the performance 

of the network – those networks that made the most efficient use of their convergent 

zone also had the lowest error. Overall then the degree of convergence developed 

within the model’s convergence zone, with its attendant efficiency implications, is 

significantly affected by the manner of item presentation in the learning environment, 

and the multimodal environment proved more efficient and promoted greater 

convergence. 

 

The three simulations all showed a clear effect of the benefits of a multimodal as 

opposed to unimodal training regime in terms of efficiency. As discussed earlier, and 

illustrated in Figure 1.2, representational economy is a consequence of convergent 

intermediate ‘semantic’ re-representations developing as the model learns. In these 

terms, representational economy is a measure of convergence. It can be seen that 

representational economy follows the same developmental patterns as accuracy, thus 

these results establish a clear relationship between convergence and efficiency in the 

model both in temporal and representational terms. Examining the results then 

suggests how the semantic units in the model developed to function as a convergence 

zone, and how convergence can be used as an outcome measure of learning 
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efficiency. The most salient factor at this early stage of investigating the role of the 

learning environment is that convergence is clearly a characteristic of efficiency.  

 

Analysis of convergence in development 
 

Both the multimodal and unimodal training regimes exhibited well known 

characteristics of development, such as the ‘vocabulary spurt’ that various authors 

have noted in modelling terms (Plunkett et al., 1997). Similarly, both the multimodal 

and unimodal training regimes reached the same levels of accuracy at the end point of 

the training period. This would perhaps be expected given that both regimes exposed 

the model to the same material for learning and it is merely the manner of exposure 

which was subject to variation. The equated error condition illustrated and suggested 

that any multimodal advantage derived from the manner of exposure on a trial-by-trial 

basis. More specifically, it is the higher error signal in the multimodal condition, 

resulting from each training trial containing the input and target patterns of all 

possible crossmodal mappings for  an item (see Table 1.2), at each presentation of an 

object for learning, that was responsible for the multimodal advantage. The speed of 

learning was one of the most interesting aspects of initial learning. The multimodal 

regime resulted in much faster learning which coincided with faster development and 

greater convergence than the unimodal case (see Figure 1.3).  Observations like this 

allowed an initial consideration of why convergence may occur. As a whole the 

model’s learning process and properties offer an account of how convergence occurs 

across a  group of units (analogous to a collection of neurons) that handles 

intermediate re-representation in the facilitation of cross-modal mapping. Rogers et al. 

(2004) detailed how these convergent intermediate re-representations would form, and 
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how their formation could underpin semantic knowledge. Thus there exists an  idea of 

convergence supporting knowledge as the efficient association of perceptual 

information arriving via multiple sensory modalities. There is clearly evidence that 

convergence is a characteristic of efficient learning in the model, and is indeed 

necessary in some degree for learning, regardless of the training regime. Note that 

both multimodal and unimodal training generate convergence in the semantics 

convergence zone. One aim of the current investigation was to consider why 

convergence might be necessary. The measurement of convergence as an economy of 

the intermediate re-representations generated during the learning process offers a 

possible solution: In considering the graphs of initial learning (Figure 1.3), purely in 

terms of performance, it is obvious that increasing convergence is a characteristic of 

increasing accuracy. The learning environment of the model, embodied as multimodal 

or unimodal, in terms of  the training patterns employed, primarily affects the speed of 

learning. In other words, within the model, a multimodal environment promotes the 

rapid acquisition of knowledge, one characteristic outcome measure of which is 

convergence. A consequent possibility then arises as a consideration of the degree to 

which learning can occur without representational economy: Simulation 1.3 offers 

some insight by considering damaged models where  successively increasing the 

removal of connections between units necessarily reduces the capacity of the model to 

support convergence.  

 

Analysis of convergence in relearning after damage 
 

The time course of relearning (as illustrated in Figures  1.5, 1.6 and 1.7) presents a 

picture of  how convergence may operate, when the brain has to re-acquire knowledge 
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after damage. Various studies have found evidence of  plasticity in adult brains (e.g . 

Buonomano & Merzenich, 1998). Plasticity  offers an account of recovery that 

suggests that the brain’s adaptability after damage allows relearning to be 

accomplished by the remains of the damaged system. The process of relearning then 

involves these remaining undamagaed areas acquiring the ability to handle processing 

previously performed by areas that no longer function. After lesioning the model, the 

remaining connections facilitate cross-modal mappings previously performed by a 

substantially larger number of connections. Since damage involves the removal of 

connections, it necessarily removes a degree of the model’s capacity for convergence. 

This reduced convergent ability makes the damaged model useful for considering the 

brain’s learning behaviour with reduced convergence capacity. In other words, does 

convergence always accompany efficient learning? During relearning, the 

substantially lower values of representational economy showed that learning could 

still occur with lesser convergence. Various implications can be derived from the 

model’s relearning behaviour in terms of convergence. First, it is worth noting that the 

multimodal training regime yields faster and more accurate learning than a unimodal 

regime, earlier after damage regardless of damage severity. These benefits of 

multimodal training became more apparent with the severity of damage. In 

considering the graphs of relearning after severe damage (see Figure 1.7) it is possible 

to observe a pronounced increase in the beneficial effect of the multimodal regime. 

Indeed the picture offered in the case of severe damage clearly shows the multimodal 

regime yielding substantially greater accuracy and representational economy than the 

unimodal case. This could be of particular importance where, after severe damage, 

resources are limited and need to be used as efficiently as possible. Generally 

speaking, careful observation of both the initial learning and relearning graphs show 
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efficiency manifested in time-of-recovery and representational terms. The multimodal 

regime can be considered more efficient because it generates more accurate learning 

in a shorter number of updates. A characteristic of this efficiency is high convergence 

(as measured by representational economy). Could it not then be suggested that 

convergence zones exist in order to allow representational economy. What If the brain 

does indeed develop internal re-representations that integrate incoming perceptions 

from multiple sensory modalities in this manner? These representations, acting as 

stored knowledge, would then be an efficient compressed representation that 

integrated and associated original perceptual information from multiple sensory 

modalities. The efficiency of such stored knowledge would thus be a direct result of 

the manner and quality of interaction with the learning environment, as well as the 

richness with which the  learning environment itself could be perceived. 

 

Conclusion 
 
This study set out to determine what factors in the learning environment affect the 

generation of convergent representations, and thus understand learning efficiency in 

terms of the number of modalities targeted during learning. The results from this 

investigation suggest convergence zones allow for the possibility of the formation of  

economic convergent representations, and that the degree of this economy gives a 

reliable measure of learning efficiency . This property of convergence zones is clearly 

suited to maximising performance after damage when neural resources are 

considerably reduced. Learning environments which can promote greater efficiency 

within convergence zones (i.e. multimodal learning) result in better performance than 

environments that generate less efficient convergence (i.e. unimodal learning). 
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Various practical implications are suggested: If the role of convergent representations 

as suggested here is an accurate picture of how learning occurs then it would seem 

that multimodal learning offers particular benefits when normal learning is in some 

way impaired. The observation that an equated error comparison of multimodal and 

unimodal training shows no significant difference, suggests the efficiency of 

multimodal learning is driven by the increased error signal available during each 

learning episode.   Indeed some authors (e.g. Harm, McCandliss, & Seidenberg, 2003; 

Harm & Seidenberg, 2004) have noted that whilst structuring the training regime has 

minimal impact on normal performance, it can improve performance in an impaired 

model. Such impairments are typically observed in aphasia: The results of the current 

study suggest structuring the training regime multimodally for relearning can  

improve relearning efficiency in the domain of semantics and have implications for 

the design of aphasia rehabilitation therapies; suggesting an environment that can 

maximise convergence results in better relearning performance. Such observations, 

alongside those made in this paper with regard to convergence, suggest the structure 

adopted when presenting items for learning affects learning efficiency in a manner 

which may be a result of variation in convergence zone activity. Varying the learning 

environment clearly provides a tool for investigating convergence learning efficiency. 

However such findings would also need to correspond with clinical performance data 

regarding the manipulation of the learning environment. This investigation is 

hopefully a  first step in developing a fuller methodology for exploring the role of 

convergence in efficient knowledge acquisition and its implications for rehabilitation.  

  



 

! 78!

Chapter 2 - Learning by degrees: Exploring the structure and benefits of 

multimodal learning in a computational model of semantic knowledge 

 

Abstract 
 
Evidence from a variety of sources (e.g. developmental psychology, computational 

modelling, and speech and language therapy studies) suggest multimodal learning 

offers more efficient and robust potential for knowledge acquisition. Traditionally, 

cognitive rehabilitation does not place specific emphasis upon the number of sensory 

modalities targeted during episodes of relearning object knowledge. The current study 

investigates the degree to which multimodality may be important in all learning 

episodes, and how that multimodality is constructed. Using a computational 

simulation of semantic knowledge, three types of learning were compared for 

efficiency: multimodal learning (simultaneous learning of all cross-modal relations for 

all items), item-focused unimodal learning (targeting single pairwise cross-modal 

relations, but cycling through all possible pairwise cross-modal relations for each item 

to be learnt before moving on to the next item), and task-focused unimodal learning 

(targeting single pairwise cross-modal relations for all items to be learnt before 

moving on to the next pairwise cross modal relation). The results confirmed previous 

simulation data from Chapter 1 and results from other researchers (e.g. Rogers et al. 

2004) that multimodal learning offers substantial benefits in terms of the efficiency of 

the representational structure that develops to support knowledge. This implies that 

simple reorganisation of existing cognitive rehabilitation tasks (i.e. sequential 

perfomance of all learning tasks for each item to be learnt before moving on to the 

next item) cannot approximate the hypothesised benefits of multimodal learning 
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derived from previous computational simulations (see Chapter 1) . These 

computational results suggest that rehabilitation efficiency could be increased by 

adopting a multimodal approach during each learning/intervention trial. 

 

Introduction 
 
In our everyday lives we encounter objects and events in the world through our 

sensory perceptions and verbal experiences (e.g. looking, listening and touching). As 

a result of cognitive processing we are able to be aware of the unitary nature of such 

objects and events, that is to say we are aware of whole entities as opposed to separate 

sensations. For example, if we look at and listen to a barking dog we are aware of a 

single thing, namely the dog, as opposed to an awareness of the visual image of a dog, 

and a barking sound as separate entities.  Concepts therefore consist of unified 

multimodal experiences. It thus follows that there must be learning/representational 

systems for deriving such unified concepts from multimodal experience, and that 

there may be benefits, in terms of efficiency and storage, from deriving such coherent 

concepts. 

There is considerable evidence that children learn from a multimodal learning 

environment. For example, studies with pre-verbal infants have shown that mothers 

use temporally synchronous naming when presenting new objects or actions that they 

wish the child to learn (e.g. Gogate et al., 2000, Messer, 1978). “During temporally 

synchronous naming, they [Mothers] speak a word while holding and moving an 

object rather than moving it out of phase with the spoken word” (Gogate, Bolzani & 

Betancourt, 2006: p.261). This synchronous presentation to multiple sensory 

modalities follows from the idea that infant learning of word–object relations is 
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“accomplished in the context of the infant’s multimodal interactions with its mother” 

(Sullivan & Horowitz, 1983, p. 210). If developmental learning is indeed multimodal 

or perhaps is more efficiently accomplished multimodally, then multimodality is 

likely to be beneficial for all learning. Damasio (1989) suggested that convergence 

zones in the brain provide an account for the mechanism behind the brain's ability to 

bind incoming information from various perceptual modalities, and how such binding 

supports both perception and recall of learnt external world experiences. Damasio 

(1989: p. 130)  noted that “it is not enough for the brain to analyze the world into its 

components parts: the brain must bind together those parts that make whole entities 

and events, both for recognition and recall”. Maybe our ability to detect relationships 

between sensory perceptions, which cohere into object knowledge, is dependent upon 

the brain’s convergence zones working in conjunction with a multimodal learning 

environment. If the normal system for extracting long-term knowledge representations 

is based on distilling multimodal information into convergent unitary representations 

then it is possible that the greater the degree of multimodality in the learning 

environment, the more efficient the learning will be. 

 

There are two distinct major learning periods that occur across the lifespan. The first 

is development, which all humans experience, and is based on learning derived from 

childhood experience of the external world. The second learning period, and one 

which is only experienced by a small proportion of any population, is that of learning 

after brain damage (e.g. stroke or head injury). This postdamage learning can be split 

into spontaneous recovery (i.e. learning derived from exposure to the external world) 

and cognitive rehabilitation (i.e. discrete learning episodes consisting of intensified 

exposure to a specific set of concepts). It is possible that, if multimodality is truly 
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central to efficient developmental learning, it is also important for rehabilitation. 

Indeed some researchers (e.g. Howard et al., 1985) have suggested that multimodality 

is important for rehabilitation therapy. However, most formal rehabilitation 

therapeutic tasks are unimodal, that is to say they deal only with re-establishing 

relationships between paired sensory perceptions. For example, picture naming 

therapy deals with re-establishing the relationship between the names of objects and 

their corresponding visual image, in other words between isolated auditory and visual 

perceptions. 

 

One clear question that arises from the possible benefit of multimodality in learning 

episodes, is what neural processes would support learning in such a way that 

interaction with a multimodal learning environment maximises learning capacity. 

Connectionist models provide simulations of hypothesised neural processes 

underpinning learning. Parallel distributed processing (PDP) models are one class of 

connectionist simulation that allows the investigation of these learning processes (in 

development, recovery and as a part of rehabilitation interventions). PDP models offer 

an advantage over other forms of computational simulation since the models actually 

learn (Welbourne & Lambon Ralph, 2005b). Several PDP models of learning (e.g. 

Plaut, 2002; Rogers et al., 2004; Dilkina et al, 2008) also suggest that multimodality is 

important for learning. These models implement convergence zones and thus offer 

computational accounts for the processes proposed by Damasio (1989).  

 

The investigations reported in Chapter 1 used the Rogers et al. (2004) model of 

semantic memory as a starting point to explore the degree to which multimodal 

learning contributes to overall learning efficiency. The work attempted to discern, 
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given that convergence is always necessary for learning, whether convergence was 

actively promoted by multimodal or unimodal learning. The investigation also 

developed a quantitative measure, termed representational economy, that could track 

the degree of convergence during learning and relate it to learning accuracy. This 

measure means that such models may offer a concept of multimodal learning as 

advantageous due to its potential for generating greater cross-modal interaction within 

convergence zones, such that a higher error signal (in terms of deriving true 

relationships between perceptions in different modalities) is available during learning 

episodes. The findings from Chapter 1 suggested that: multimodal learning was more 

efficient than unimodal learning; learned representations were more robust and 

developed more quickly; and that multimodal learning also appeared to be beneficial 

in simulations of spontaneous recovery after brain damage. What is missing from 

Chapter 1 is an examination of how multimodal learning works. It has been 

previously stated that the minimum requirement for multimodality would merely be 

simultaneous perception in more than two modalities. That is to say any situation 

where the perceptual load is greater than simple paired sensory perceptions. The 

Rogers et al. (2004) model of semantic memory implements semantics as a 

convergence zone. It provides convincing evidence that convergence zones are 

required to enable the relation of sense perception from different modalities. As they 

(Rogers et al., 2004) discuss, within the convergent zone amodal semantic 

representations develop during learning to support the cross-modal association of 

representations of the visual features, names, and verbal descriptions from a variety of 

objects. This model also produces a convincing internal category structure, arguing 

for an emergent view of semantic memory in terms of the representational structure 

that develops. Most interestingly this model is trained by a particular view of 
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multimodal learning based upon simultaneous perception in multiple modalities. 

Hence their (Rogers et al., 2004) model was trained to associate input representations 

in a single modality with simultaneous presentations of target output representations 

in all possible modalities including the input modality (Rogers et al., 2004). The 

current investigation takes the view that other possible conceptions of multimodality 

are possible: By exploring whether simultaneous presentations of target output 

representations in all possible modalities, is an essential requirement of multimodal 

learning the current study seeks to establish whether sequential presentations of 

inputs, and their corresponding target output representations, for all possible cross-

modal relations of a given object could approximate the previously observed benefits 

of simultaneous multimodal learning (see Chapter 1). 

 

Aims 
 
It is worth reiterating that the multimodal learning, in other words multimodal item 

presentation, explored in Chapter 1 preserves the notion of multimodality suggested 

by Rogers et al.’s (2004) work since it corresponds well with the observations of 

multimodality in the developmental literature (i.e. Gogate et al., 2000, Messer, 1978). 

The aspect of simultaneity in multimodal learning is difficult to reconcile generally 

with formal learning (e.g. school and other learning situations) and more specifically 

would run counter to at least some SLT (Speech and Language Therapy) therapeutic 

interventions based on simple stimulus-response mappings, as it relates to individuals 

recovering from brain damage. Simply put it is difficult to conceive of how 

simultaneous perceptions of an object in multiple modalities can be achieved in 

regular therapeutic settings. The opportunity to gain all possible sensory perceptions 
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of many objects is just not practical. To reproduce all of the modalities in therapy, and 

to compress the long-term nature of developmental learning into a short, clinic-based 

rehabilitation seems beyond the scope of therapeutic interventions which are often 

necessarily short, and last only for a few weeks.  For example, objects that are too 

large (e.g. buildings, lakes etc), or too abstract, to be neatly presented in a home 

environment (where much post-damage therapy often takes place) can only be 

presented for learning in their pictorial representation. Yet clearly the opportunity for 

learning to consist of “hands-on” multisensory perception is certainly achievable for 

certain small concrete objects. If it were possible that sequential unimodal perceptions 

of objects could approximate simultaneous multimodal perception then perhaps it 

would not be necessary to worry about achieving multimodal learning environments. 

The current study sought to examine what effect particular learning protocols may 

have in simulation and use this to hypothesise what effects may be found in future 

patient studies. The current study utilised the same computational simulation as 

Chapter 1, in which efficiency advantages for multimodal learning were established in 

terms of both time and the quality of the developed representational structure that 

supported learnt object knowledge. Evidence from Chapter 1 showed no statistically 

significant difference between multimodal and unimodal training when compared in a 

condition where the error signal was equated. In other words no difference if each 

point of comparison occurs after the same number of presentations of all patterns in 

the training corpus. So it would seem reasonable to assume that rearranging unimodal 

tasks (i.e. names to verbal descriptions, names to visual features and verbal 

descriptions to visual features and the other tasks listed in Table 1.2)   so that they 

occur sequentially for a single item, could approximate simultaneous  multimodal 

presentation for that item and its advantages in terms of convergence. This sequential 
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item focused unimodal training strategy would contrast with existing task focused 

unimodal therapy strategies (e.g. picture naming, spoken word to picture matching 

etc). 

 

The current investigation used a replication of the Rogers et al. (2004) model 

described in Chapter 1 but trains the model with three different training regimes: 

multimodal, item-focused unimodal, and task-focused unimodal in order to determine 

which derives the greatest learning efficiency.The effect of these different training 

regimes were compared with respect to development, robustness to damage, and 

spontaneous recovery. The investigation sought to answer the following questions: 

Can sequential item-focused unimodal learning approximate the efficiency of 

simultaneous multimodal learning? Is there a gain in learning efficiency for sequential 

item-focused unimodal training compared to the existing task-focused unimodal 

training strategies that often occur in targeted therapy? Finally, since the benefits of 

multimodality have already been established, what are the efficiency implications for 

cognitive rehabilitation based upon simulating spontaneous recovery, in terms of the 

degree of multimodality that can be achieved within expected patient responses (in 

terms of output modalities utilised), for any given therapeutic task? 

 

Simulation 2.1: Developmental Learning 

Method  
 
For the current study the Rogers et al. (2004) model of semantic knowledge was 

recreated using LENS neural network simulator programming environment (Rohde, 

2000) and the network architecture of the model is shown in Figure 2.1. 



 

! 86!

 

Figure 2.1 Architecture of the model adapted from Rogers et al. (2004) 

 

The Rogers et al. (2004) model contains three layers of units labelled names, verbal 

descriptions and visual features. Each of these layeers are bidirectionally connected 

via a single layer labelled semantics and consiting entirely of hidden units. All layers 

except the semantic hidden layer can receive input and output directly from the 

environment. The semantics layer receives input from or outputs to, the names, verbal 

descriptions and visual features layers and is recurrently connected to itself to aid 

development of attractors (Hinton & Shallice, 1991), as stable semantic 

representations. The layers represent specific brain regions in terms of function. The 

visual features layer represents processing high-level visual information so the 

activation state of the layer corresponds with stimulus properties  (e.g. has eyes, has 
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wheels). The verbal descriptions layer handle language information. It contains three 

sections representing for verbally-expressed properties: perceptual/structural 

properties (e.g. has eyes, has wheels); functional properties (e.g. can fly, can roll); and 

encyclopaedic properties (e.g. lives in Africa, found in kitchen). The names layer 

represents object names (e.g. ‘animal’, ‘bird’, ‘chicken’). As the model learns, the 

semantic layer’s units “derive amodal semantic representations that encode the 

semantic similarity relations among objects regardless of their surface [in this case 

name, verbal description and visual feature] similarities” (Rogers et al., 2004: p.233).  

These amodal ‘semantic’ re-representations are also convergent as shown by the 

cluster analysis (Rogers et al, 2004).  

 

 

Figure 2.2 Architecture of the model redrawn as a generic PDP model with bidirectional 
mapping between each layer 
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Figure 2.2 illustrates the model in generic terms to show how an input representation 

(example e) of an object  in any individual modality domain (layer), generates its own 

particular re-representation (denoted by H1,H2 or H3 from input in modalities 

M1,M2,M3 respectively) as a pattern of activity across the hidden semantic units (i.e. 

the hidden layer H). These re-representations have a tendency to converge towards a 

single pattern of activation across the units of the hidden layer H as a result of the 

attractor structure (as illustrated by Rogers et al.’s (2004) cluster analysis of the 

learned representations) that develops within the model as it learns. So over time the 

hidden representations (i.e. H1,H2, H3) generated from the same item presented in 

different modalities begin to move closer together becoming increasingly similar for 

each type of mapping between M modalities (i.e. approaching the idea that for a 

learned example object e, H1(e) = H2(e) = H3(e) in Figure 2.2). In this manner the 

model implements a convergence zone within the semantics H layer.  

 

Training Stimuli 
 

The model was trained using representations made from prototypes. Within the 

localist name representations 36 of the 40 units represented a single item that the 

model would learning. The remaining 4 units which were used for general object 

names in the Rogers et al. (2004) model were not used here. Table 2.1 shows the 

prototype patterns derived from clinical research into object features (roger et al. 

2004) used to generate verbal description and visual feature representations. The 

verbal descriptions layer contained 112 units subdivided into 64 perceptual units, 32 

functional units and 16 encyclopaedic units. The visual features layer contained 64 
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units. The prototype patterns generate binary representation vectors for each layers. 

The symbols in the prototype patterns indicate unit activation as follows: 

 +  means units likely to be active with a probability of activation of 0.8 

0  means units less likely to be active with a probability of activation of 0.2 

-   means units never active (i.e. are always 0) so probability of activation is 0 

These patterns provide each of the 6 unique items for each of the 6 categories of 

object which the model was going to learn. 
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Table 2.1 Prototypes patterns used to generate binary representations of verbal descriptions and 
visual features for each category of named object presented to the model for training 

 

 

 

Training the model  
 
Batched learning was used to train the model with three regimes. This was further 

development of the findings in Chapter 1 which described an advantage for 

multimodal learning. The first training regime was simultaneously multimodal 

(identical to that used in Rogers et al., 2004) in which input was trained to map to 

target outputs in all possible domains (as illustrated in Table 2.2). The second training 
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regime was “item-focused” unimodal since it involved training each possible pairwise 

combination of single-layer input to a single-layer output (as illustrated in Table 2.2) 

for a single item before moving on to the next item. All possible pairwise 

combinations for an item were presented in a single batch. The third regime was 

“task-focused” unimodal since it involved training one type of single-layer input to 

single-layer output mapping for all items before moving on to the next pairwise 

combination of cross-modal mapping. The item-focused and task-focused unimodal 

regimes were developed by splitting the multimodal regime into all of its constituent 

singular unimodal cross-domain mappings. This is summarised in Table 2.2.  

 

Each training trial (i.e. presentation of training patterns for a single item and 

subsequent weight update) lasted for seven time steps. Each time step lasted for four 

ticks, meaning each trial lasted for 28 ticks in total, where each tick corresponds to 

one update of all unit activation values in the network. Each trial consisted of three 

events. For the first event, a name, verbal description, or visual feature pattern was 

given as an input (see Table 2.2 for all possible inputs in the unimodal and 

multimodal conditions). This input was clamped and the model was then allowed to 

cycle for 3 time steps (i.e. the first event lasted for 12 ticks). For the second event, all 

inputs were removed and the model was allowed to cycle for 2 time steps (i.e. the 

second event lasted for 8 ticks). Finally, the third event consisted of the application of 

target values across all the input/output layers (i.e names, verbal descriptions and 

visual features) in the multimodal condition, or a single input/output layer in the 

unimodal condition. For this third event the model was allowed to cycle for 2 time 

steps (i.e. the third event  lasted for 8 ticks). During training all possible patterns for 

each of the items in the training corpus were presented to the model once, in random 
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order. Learning consisted of repeated presentation of the whole training corpus, with 

the order of presentation re-randomised after each exposure of all items to the 

network. It should be noted that all aspects of each training trial in the multimodal 

training regime (as described above) were preserved in the unimodal regimes except 

that  target values were only applied across units in a single output layer (i.e. names, 

verbal descriptions or visual features) instead of across units in all possible output 

layers. 

 

Multimodal, item-focused unimodal and task-focused unimodal performance was  

compared on a trial-by-trial basis (i.e. at the level of individual items), as well as in 

terms of the number of presentations of the entire training corpus. Since presenting 

the entire corpus in the item-focused unimodal and task-focused unimodal conditions 

involved presenting three times as many training trials as in the multimodal condition, 

comparison in terms of the number of presentations of the entire corpus represented 

an “equal error comparison”. That is to say, error was considered across all items to 

be learned in each condition. The comparison on a trial-by-trial basis necessarily 

means that a higher error signal will be present in the multimodal condition since in 

each trial it provides information on the relation between three times as many cross 

domain mappings as in the unimodal condition (see Table 2.2 ). In order to make a 

detailed comparison between multimodal, item focused unimodal and task focused 

unimodal training, results were to be reported for both the item level trial by trial 

performance comparison as well as the corpus level equated error comparison. 

 The model was trained with batch learning (i.e. using a batch size of 9, representing 

the total number of possible cross-domain mappings, and allowing for item-focused 

presentation, with a weight update after the presentation of every batch of 9 training 
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trials) using recurrent backpropagation through time with a steepest descent 

algorithm. The learning rate was set to 0.005. A weight decay of 0.0000002 was also 

used to prevent any weights developing values that were disproportionately high. 

Similarly no momentum was used since it’s process of including a proportion of the 

previous step  in every weight change can cause the effective learning rate to become 

too high and inhibit learning. Each individual unit within the network was given a 

fixed, untrainable bias of –2.  “This has the effect of deducting 2 from each unit’s net 

input. Thus, in the absence of input, each unit’s activation settles to the low end of its 

activation range.” (Rogers et al., 2004: p. 215). Units in all of the input/output layers 

were clamped to their input values using a soft clamp with a clamp strength of 0.9. A 

target radius of 0.1 was used during the processing of each batch (in this case each 

training trial due to a batch size of one) so if an output unit's activation is within 0.1 of 

the target, no error will be generated. The model was trained until input in a single 

layer could generate target outputs on all layers to within an accuracy of 0.5. 
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Table 2.2 Training regime patterns. Arrows indicate order of trial presentation for focused 
unimodal training. Multimodal training trials are presented in random order 

 

 

 

 

 

Multimodal Training 
Multimodal cross-domain 

mappings 
Items 

dog cat raven apple car boat hammer 
Input Target Output each learning batch contains 9 multimodal cross-domain 

mappings selected at random 

name 

verbal 
descriptors 

       

visual features 
name 

verbal 
descriptors 

name        
visual features 
verbal 
descriptors 

visual features 

name        
verbal 
descriptors 
visual features 

Item Focused Unimodal Training 

Unimodal cross-domain mappings 
Items 

dog cat raven apple car boat hammer 
Input Target Output each learning batch contains all 9 unimodal cross-domain 

mappings of a particular item selected at random 
name verbal 

descriptors 
↓ ↓ ↓ ↓ ↓ ↓ ↓ 

name visual features ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
name name ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
verbal 
descriptors 

name ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

verbal 
descriptors 

visual features ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

verbal 
descriptors 

verbal 
descriptors 

↓ ↓ ↓ ↓ ↓ ↓ ↓ 

visual features name ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
visual features verbal 

descriptors 
↓ ↓ ↓ ↓ ↓ ↓ ↓ 

visual features visual features ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
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To simulate developmental learning, the model was trained for 129600 weight 

updates, using either the multimodal, item focused unimodal or task focused unimodal 

training regime in each simulation. Which equates to 10800 presentations in the 

multimodal condition (multimodal presentation of the entire corpus takes 12 updates 

i.e. 3 mappings for each of the 36 items, each trial consisting of a batch of 9 

mappings). In contrast this equates to 3600 presentations in the item focused and task 

focused unimodal conditions (unimodal presentation of the entire corpus takes 36 

updates i.e. i.e. 9 mappings for each of the 36 items, each trial consisting of a batch of 

9 mappings).  During training the model was tested on its ability for input in a single 

domain to generate the correct target outputs (to within 0.5) for all patterns, in all 

output modalities. 129600 weight updates was chosen for the duration of training 

through initial experimentation, as whenever the model learnt to 100% accuracy 

(verified through regular testing) it had occurred by this time.  The simulation was run 

Task Focused Unimodal Training 

Unimodal cross-domain mappings 
Items 

dog cat raven apple car boat hammer 
Input Target Output ordered presentation at task level 

each learning batch contains the same single cross-domain 
mapping for 9 items selected at random 

name verbal 
descriptors 

→ → → → → → → 

Name visual features → → → → → → → 
Name name → → → → → → → 
verbal 
descriptors 

name → → → → → → → 

verbal 
descriptors 

visual features → → → → → → → 

verbal 
descriptors 

verbal 
descriptors 

→ → → → → → → 

visual features name → → → → → → → 
visual features verbal 

descriptors 
→ → → → → → → 

visual features visual features → → → → → → → 
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ten times in the multimodal condition and ten times in the unimodal condition and the 

results were averaged. During training regular testing recorded accuracy (percentage 

of examples correct upon testing), network error and representational economy 

(according to the equation derived below). 

 

Calculating representational economy in the semantic convergence zone 
 

Representational economy in the semantic convergence zone was calculated in the 

exact same manner as described in Chapter 1. 

 

Testing the network and analysing representational economy 
 

Representational economy, accuracy and error, were calculated at regular intervals 

during the model’s training. 2x20  repeated measures analyses of variance (ANOVA) 

were conducted on this data to compare the effect of manipulating the training regime 

(multimodal, item focused unimodal or task focused unimodal) at twenty equally 

spaced time points during training on the dependent variables (accuracy, 

representational economy and network error). For all simulations the correlation 

between representational economy, accuracy, and network error was calculated to 

understand the developing Representational Economy’s relationship to Accuracy and 

Network Error as the model learns. 
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Results 
 
Figure 2.3 illustrates the model’s performance during development, both on a trial-by-

trial basis and for an equated error comparison. Despite observing a small difference 

in accuracy performance between item-focused and task-focused unimodal 

presentation during the "vocabulary spurt" period of developmental learning, overall 

there were no major benefits for item-focused unimodal presentation. Certainly, 

neither come close to the performance levels observed in simultaneous multimodal 

presentation, which is more efficient when considered on a trial-by-trial basis, 

obtaining greater accuracy, and greater convergence (as evidenced by representational 

economy) as well as greater error reduction. These differences between multimodal 

and unimodal training are statistically significant as the 2×20 analyses of variance 

show. Figure 2.3 also shows how the multimodal training achieves greater 

acceleration in the learning process thus showing better performance at an earlier 

point. The equal error comparison between multimodal, item focused and task focused 

unimodal training shows no substantial difference and indeed the small differences 

seen in Figure 2.3 are not statistically significant (as shown in the results of the 

analysis in Table 2.3). Statistical differences between the different learning conditions 

can be seen in Table 2.3: Multimodal training outperforms both Item-focused and 

Task-focused Unimodal training in  representational economy, accuracy and network 

error. Comparison of the Equated Error Multimodal and Item-focused Unimodal  

regimes show significant interaction between training and time for accuracy and 

network error and a significant effect of time for representational economy, network 

error and accuracy. However there is no significant performance difference for the 

effect of training between Equated Error Multimodal and Item-focused Unimodal. 

Similarly there is no significant performance difference in accuracy, representational 
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economy or network error for the effect of training between Item-focused Unimodal 

and Task-focused Unimodal training. A significant interaction between training and 

time for accuracy can however be seen, as well as a significant effect of time on 

accuracy, representational economy and network error. Representational Economy 

was strongly correlated with learning Accuracy for all conditions: Multimodal 

r(20)=.887, p<.001; Equated Error Multimodal r(20)=.888, p<.001; Item-focused 

Unimodal r(20)=.906,p<.001; Task-focused Unimodal r(20)=.888,p<.001. 

Representational Economy was strongly correlated with Network Error for all 

conditions: Multimodal r(20)=-.865,p<.001;Equated Error Multimodal r(20)=-

.702,p=.001;Item-focused Unimodal r(20)=-.702,p=.001; Task-focused Unimodal 

r(20)=-.680,p=.001. 
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Figure 2.3 Mean variation in training performance during developmental learning
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Table 2.3 2x20 ANOVAs indicating significant performance differences between training regimes 
during developmental learning

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Item Focused 
Unimodal 

Accuracy Training 1,9 204.194 <0.001* 0.958 
Time 19,171 1233.681 <0.001* 0.993 
Training*Time 19,171 407.577 <0.001* 0.978 

Representational 
Economy 

Training 1,9 81.712 <0.001* 0.901 
Time 19,171 963.772 <0.001* 0.991 
Training*Time 19,171 80.772 <0.001* 0.900 

Network Error Training 1,9 506.474 <0.001* 0.983 
Time 19,171 447.579 <0.001* 0.980 
Training*Time 19,171 334.652 <0.001* 0.974 

Equated Error 
Multimodal 

Vs 
Item Focused 

Unimodal 

Accuracy Training 1,9 1.381 0.270 0.133 
Time 19,171 2650.994 <0.001* 0.997 
Training*Time 19,171 4.977 <0.001* 0.356 

Representational 
Economy 

Training 1,9 3.522 0.093 0.281 
Time 19,171 1447.881 <0.001* 0.994 
Training*Time 19,171 1.400 0.132 0.135 

Network Error Training 1,9 5.296 0.047 0.370 
Time 19,171 1255.340 <0.001* 0.993 
Training*Time 19,171 3.306 <0.001* 0.269 

Multimodal 
Vs 

Task Focused 
Unimodal 

Accuracy Training 1,9 316.016 <0.001* 0.972 
Time 19,171 871.370 <0.001* 0.990 
Training*Time 19,171 448.648 <0.001* 0.980 

Representational 
Economy 

Training 1,9 182.117 <0.001* 0.953 
Time 19,171 139.297 <0.001* 0.994 
Training*Time 19,171 169.592 <0.001* 0.950 

Network Error Training 1,9 1583.328 <0.001* 0.994 
Time 19,171 917.542 <0.001* 0.990 
Training*Time 19,171 741.087 <0.001* 0.988 
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Simulation 2.2: Robustness to Damage 

Method  
 

The model was trained in the manner described in Simulation 2.1. In order to 

investigate the model’s robustness to damage the 10 multimodal, 10 item-focused 

unimodal and 10 task-focused unimodal trained networks were lesioned by removing 

an increasing proportion of all incoming and outgoing connections across all the units 

in all layers (i.e. names, verbal descriptions, visual features and semantics). Each 

lesion was performed 10 times and scores for accuracy, error and representational 

economy were recorded. The data were then plotted (see Figure 2.4) and analysed 

(results in Table 2.4) to test if the multimodal-trained models were more robust to 

damage than those generated from item-focused and task-focused unimodal training.  

A 2x11 repeated-measures analysis of variance (ANOVA) was conducted on these 

data, using the dependent measures of representational economy, accuracy and error 

Training 
Regime 
Comparison 
[continued] 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Item Focused 
Unimodal  

Vs 
Task Focused 

Unimodal 

Accuracy Training 1,9 3.705 0.086 0.292 
Time 19,171 2726.844 <0.001* 0.997 
Training*Time 19,171 7.444 <0.001* 0.453 

Representational 
Economy 

Training 1,9 0.327 0.581 0.035 
Time 19,171 2071.204 <0.001* 0.996 
Training*Time 19,171 1.263 0.214 0.123 

Network Error Training 1,9 0.397 0.544 0.042 
Time 19,171 2119.819 <0.001* 0.996 
Training*Time 19,171 1.009 0.454 0.101 
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at each lesion point, to investigate the effect of manipulating the training regime 

(multimodal, item-focused or task-focused unimodal). 

 

Results 
 
Figure 2.4 illustrates the model’s robustness to damage as the model was subjected to 

lesions of increasing severity. Across the range of lesions, the multimodal regime 

consistently appeared to be more robust to damage, with higher accuracy and lower 

network error, both for trial-by-trial, and equal error, when compared to item-focused 

or task-focused unimodal training. There was a statistically significant effect of 

training type on robustness to damage (see Table 2.4 ) However, for all except the 

smallest lesions (i.e. less than 2% of connections removed) RE after damage was 

reduced to the same low level regardless of training type. As found in Chapter 1, a 

clear advantage in terms of robustness to damage was present for the simultaneous 

multimodal training. Item-focused unimodal training generated no statistically 

significant greater robustness to damage than task-focused unimodal training. Thus, 

the differences in order and grouping between these two forms of unimodal training 

did not alter the degree of robustness to damage that unimodal training was capable of 

achieving. From Table 2.4 it can be seen that multimodal training yields a structure 

that is more robust to damage than those structures generated by Item-focused or 

Task-focused Unimodal training. There is a statistically significant difference between 

multimodal and item-focused unimodal for accuracy and representational economy, as 

well as a significant interaction between training and time for accuracy, 

representational economy and network error. There is also a statistically significant 

difference in the effect of training between multimodal and task-focused unimodal for 
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accuracy and representational economy. There is only a significant effect of training 

on representational economy when comparing equated error multimodal and item-

focused unimodal training as well as an effect of time and a significant interaction 

between training and time on accuracy, representational economy and network error. 

In comparing Item-focused Unimodal and Task-focused Unimodal there is a 

significant effect of time on accuracy, representational economy and network error as 

well as a significant interaction between training and time for network error only. 

Representational Economy was strongly correlated with learning Accuracy for all 

conditions: Multimodal r(11)=.870, p<.001; Equated Error Multimodal r(11)=.877, 

p<.001; Item-focused Unimodal r(11)=.873,p<.001; Task-focused Unimodal 

r(11)=.893,p<.001. Representational Economy was correlated with Network Error for 

all conditions: Multimodal r(11)=-.591,p<.006;Equated Error Multimodal r(11)=-

.595,p=.006;Item-focused Unimodal r(11)=-.617,p=.004; Task-focused Unimodal 

r(11)=-.569,p=.009. 
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Figure 2.4 Mean variation in robustness to damage for increasingly severe lesions to the fully trained model 
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Table 2.4 2x11 ANOVAs indicating significant differences in robustness to damage between 
trained networks

Training Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Item Focused 
Unimodal 

Accuracy Training 1,9 6.747 0.029 0.428 
Time 10,90 693.544 <0.001* 0.987 
Training*Time 10,90 3.356 <0.001* 0.272 

Representational 
Economy 

Training 1,9 9.680 0.012 0.518 
Time 10,90 761.322 <0.001* 0.988 
Training*Time 10,90 7.597 <0.001* 0.458 

Network Error Training 1,9 1.819 0.210 0.168 
Time 10,90 365.321 <0.001* 0.976 
Training*Time 10,90 1.901 0.017 0.174 

Equated Error 
Multimodal 

Vs 
Item Focused 

Unimodal 

Accuracy Training 1,9 4.137 0.072 0.315 
Time 10,90 664.804 <0.001* 0.987 
Training*Time 10,90 2.326 0.002 0.205 

Representational 
Economy 

Training 1,9 5.913 0.038 0.397 
Time 10,90 955.219 <0.001* 0.991 
Training*Time 10,90 4.520 <0.001* 0.334 

Network Error Training 1,9 1.607 0.237 0.151 
Time 10,90 375.897 <0.001* 0.977 
Training*Time 10,90 1.816 0.024 0.168 

Multimodal 
Vs 

Task Focused 
Unimodal 

Accuracy Training 1,9 11.286 0.008 0.556 
Time 10,90 830.903 <0.001* 0.989 
Training*Time 10,90 3.733 <0.001* 0.293 

Representational 
Economy 

Training 1,9 19.213 0.002 0.681 
Time 10,90 875.057 <0.001* 0.990 
Training*Time 10,90 10.382 <0.001* 0.536 

Network Error Training 1,9 4.079 0.074 0.312 
Time 10,90 350.308 <0.001* 0.975 
Training*Time 10,90 0.703 0.813 0.072 
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Simulation 2.3: Relearning after damage 
 

Method  
 

The model was trained in the manner described in Simulation 2.1. However, this time 

only the multimodal training regime was used to train the model as per the original 

simulation (see Chapter 1; and Rogers et al, 2004). In order to investigate the model’s 

re-learning behaviour after damage, the 10 multimodally-trained networks from the 

initial training were lesioned  by removing a proportion of all incoming and outgoing 

connections across all the units in all layers (i.e. names, verbal descriptions, visual 

features and semantics).  Based upon the findings from Chapter 1 lesioning was again 

required such that relearning would only occur to a certain level after damage to 

enable the exploration of relearning for a range of damage. The same three levels of 

damage from Chapter 1 were used: Mild where the model relearns to around 90% 

accuracy, Moderate, where the model relearns to around 60% accuracy, and Severe 

Training 
Regime 
Comparison 
[continued] 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Item Focused 
Unimodal  

Vs 
Task Focused 

Unimodal 

Accuracy Training 1,9 0.042 0.842 0.005 
Time 10,90 870.573 <0.001* 0.990 
Training*Time 10,90 0.156 1.000 0.017 

Representational 
Economy 

Training 1,9 0.044 0.839 0.005 
Time 10,90 1487.438 <0.001* 0.994 
Training*Time 10,90 0.499 0.961 0.052 

Network Error Training 1,9 0.025 0.879 0.003 
Time 10,90 326.095 <0.001* 0.973 
Training*Time 10,90 3.387 <0.001* 0.273 
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where the model relearns to around 30% accuracy. It is again acknowledged that this 

is not identical to the real situation of localised injury. As described in Chapter 1 this 

lesioning was uniform across the model since it was the only form of lesioning that 

yielded the practical situation in the model that the study wanted to explore. The 

trained networks were subjected to three separate lesions of varying degrees of 

severity; mild (removing 86 % of connections), moderate (removing 88% of 

connections) and severe (removing 90% of connections). These degrees of severity 

were intended to encompass a wide range of damage.  After lesioning, each network 

underwent 2592000 updates of retraining with either multimodal and unimodal 

training regimes. This corresponds to 21600 multimodal and 7200 unimodal 

presentations of the entire training corpus. This repeated-measures methodology, 

where the same initially trained network was subjected to each lesion and retraining 

conditions, allowed us to remove any variance associated with individual pre- or 

postmorbid differences. This is important since brain-damaged patients are not a 

homogenous population and studying the effects of treatment should be based upon 

“within-patient comparisons” (Howard & Hatfield, 1987, p.119). 

 

Representational economy, accuracy and error were calculated at regular intervals 

during the model’s training. A 2x20 repeated measures analysis of variance 

(ANOVA) was conducted on these data to investigate the effect of manipulating the 

training regime (multimodal, item-focused unimodal or task-focused unimodal) at 

twenty equally-spaced time points during training on the dependent variables 

(accuracy, representational economy and network error) for each lesion condition. 
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Results 
 

In all graphs of the results relearning is shown on a trial by trial basis (where each trial 

consists of the presentation of 9 cross-modal mappings to the model in batch learning) 

for each of the training regimes (i.e. multimodal, item-focused unimodal and task-

focused unimodal). The multimodal regime is also plotted for an equated error 

comparison to the unimodal regimes. A table of results also shows the results of 2x20 

ANOVAs carried out on each of the dependent measures (i.e. accuracy, 

representational economy and network error) for the 4 pairwise comparisons of the 

training regime that are necessary to confirm the findings displayed in the graphs. 

 

 

Mild Lesioning 
 

The graphs in Figure 2.5 illustrate the model’s performance during relearning after a 

mild lesion, which removed 86% of the model’s connections. It can be clearly seen 

that multimodal training is more efficient than either of the unimodal training regimes 

on a trial by trial basis, obtaining greater accuracy, and greater convergence (as shown 

by higher values of representational economy) as well as greater error reduction. 

These differences between multimodal and unimodal training are also statistically 

significant as the results of the 2x20 ANOVA given in Table 2.5 clearly show. The 

steeper slope of the line showing accuracy during multimodal training in Figure 2.5, 

also shows how the multimodal training achieves greater acceleration during 

relearning. The equal error comparison between multimodal and the two unimodal 

training regimes shows no difference, this lack of difference is confirmed by the 

results of the ANOVAs shown in Table 2.5. In examining Table 2.5 the advantage of 
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multimodal training over Item-focused and Task-Focused Unimodal training can be 

seen in the statistically significant difference between multimodal and item-focused or 

task focused unimodal learning in accuracy, representational economy and network 

error. Comparing Equated Error Multmodal and Item-focused unimodal shows a 

significant effect of time on accuracy, representational economy and network error, as 

well as an effect of training on representational economy. Contrasting Item-focused 

and Task-focused Unimodal training gives a significant effect of time as well as an 

effect of training on network error. Representational Economy was strongly correlated 

with learning Accuracy for all conditions: Multimodal r(20)=.970, p<.001; Equated 

Error Multimodal r(20)=.899, p<.001; Item-focused Unimodal r(20)=.938,p<.001; 

Task-focused Unimodal r(20)=.924,p<.001. Representational Economy was strongly 

correlated with Network Error for all conditions: Multimodal r(20)=-

.849,p<.001;Equated Error Multimodal r(20)=-.932,p<.001;Item-focused Unimodal 

r(20)=-.901,p<.001; Task-focused Unimodal r(20)=-.919,p<.001. 
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Figure 2.5 Mean variation in training performance during relearning after a mild lesion
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Table 2.5 2x20 ANOVAs indicating significant performance differences between training regimes 
after a mild lesion 

 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Item Focused 
Unimodal 

Accuracy Training 1,9 777.117 <0.001* 0.989 
Time 19,171 149.019 <0.001* 0.943 
Training*Time 19,171 23.496 <0.001* 0.723 

Representational 
Economy 

Training 1,9 160.503 <0.001* 0.947 
Time 19,171 63.577 <0.001* 0.876 
Training*Time 19,171 3.790 <0.001* 0.296 

Network Error Training 1,9 1056.707 <0.001* 0.992 
Time 19,171 601.826 <0.001* 0.985 
Training*Time 19,171 73.147 <0.001* 0.890 

Equated Error 
Multimodal 

Vs 
Item Focused 

Unimodal 

Accuracy Training 1,9 2.543 0.145 0.220 
Time 19,171 118.922 <0.001* 0.930 
Training*Time 19,171 0.874 0.615 0.089 

Representational 
Economy 

Training 1,9 33.195 <0.001* 0.787 
Time 19,171 91.086 <0.001* 0.910 
Training*Time 19,171 1.625 0.055 0.153 

Network Error Training 1,9 3.345 0.101 0.271 
Time 19,171 861.787 <0.001* 0.990 
Training*Time 19,171 0.887 0.600 0.090 

Multimodal 
Vs 

Task Focused 
Unimodal 

Accuracy Training 1,9 525.672 <0.001* 0.983 
Time 19,171 165.614 <0.001* 0.948 
Training*Time 19,171 23.393 <0.001* 0.722 

Representational 
Economy 

Training 1,9 256.310 <0.001* 0.966 
Time 19,171 64.953 <0.001* 0.878 
Training*Time 19,171 4.543 <0.001* 0.335 

Network Error Training 1,9 4114.769 <0.001* 0.998 
Time 19,171 648.042 <0.001* 0.986 
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Moderate Lesioning 
 

Here the picture is very similar to the results shown for milder lesioning. Though it is 

worth noting that at end point of relearning the difference between the multimodal 

training regime and all other training regimes is more pronounced,  The graphs in 

Figure 2.6 show the model’s relearning performance after a moderate lesion, which 

removed 88% of the model’s connections. As in the case of mild lesioning 

multimodal training is more efficient than either of the unimodal training regimes on a 

trial by trial basis, obtaining greater accuracy, convergence (as shown by higher 

values of representational economy) as well as greater error reduction. These 

differences between multimodal and unimodal training are also statistically significant 

as the results of the 2x20 ANOVA given in Table 2.6 clearly show. The line showing 

accuracy during multimodal training in Figure 2.6, also shows how the multimodal 

training achieves faster learning. The equal error comparison between multimodal and 

the two unimodal training regimes does shows a slightly better performance which is 

confirmed by the results of the ANOVAs shown in Table 2.6. In Table 2.6 the 

Training 
Regime 
Comparison 
[continued] 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Item Focused 
Unimodal  

Vs 
Task Focused 

Unimodal 

Accuracy Training 1,9 1.884 0.203 0.173 
Time 19,171 129.217 <0.001* 0.935 
Training*Time 19,171 0.707 0.808 0.073 

Representational 
Economy 

Training 1,9 0.002 0.970 <0.001 
Time 19,171 111.850 <0.001* 0.926 
Training*Time 19,171 0.911 0.570 0.092 

Network Error Training 1,9 5.293 0.047 0.370 
Time 19,171 1406.008 <0.001* 0.994 
Training*Time 19,171 1.035 0.424 0.103 
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multimodal advantage can be observed in the statistically significant difference 

between multimodal and item-focused or task focused unimodal learning in accuracy, 

representational economy and network error. There is also a statistically significant 

difference between equated error multimodal and item-focused unimodal learning in 

accuracy, representational economy and network error. When comparing Item-

focused and Task-focused Unimodal there is an effect of time on accuracy, 

representational economy and network error and a significant interaction between 

training and time on network error. Representational Economy was strongly 

correlated with learning Accuracy for all conditions: Multimodal r(20)=.961, p<.001; 

Equated Error Multimodal r(20)=.827, p<.001; Item-focused Unimodal 

r(20)=.792,p<.001; Task-focused Unimodal r(20)=.793,p<.001. Representational 

Economy was strongly correlated with Network Error for all conditions: Multimodal 

r(20)=-.900,p<.001;Equated Error Multimodal r(20)=-.949,p<.001;Item-focused 

Unimodal r(20)=-.964,p<.001; Task-focused Unimodal r(20)=-.972,p<.001. 
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Figure 2.6 Mean variation in training performance during relearning after a moderate lesion
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Table 2.6 2x20 ANOVAs indicating significant performance differences between training regimes 
after a moderate lesion 

 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Item Focused 
Unimodal 

Accuracy Training 1,9 330.307 <0.001* 0.973 
Time 19,171 171.052 <0.001* 0.950 
Training*Time 19,171 58.747 <0.001* 0.867 

Representational 
Economy 

Training 1,9 529.309 <0.001* 0.983 
Time 19,171 107.246 <0.001* 0.923 
Training*Time 19,171 4.089 <0.001* 0.312 

Network Error Training 1,9 10752.065 <0.001* 0.999 
Time 19,171 869.472 <0.001* 0.990 
Training*Time 19,171 59.646 <0.001* 0.869 

Equated Error 
Multimodal 

Vs 
Item Focused 

Unimodal 

Accuracy Training 1,9 14.634 0.004 0.619 
Time 19,171 58.217 <0.001* 0.866 
Training*Time 19,171 4.175 <0.001* 0.317 

Representational 
Economy 

Training 1,9 25.473 <0.001* 0.739 
Time 19,171 105.642 <0.001* 0.921 
Training*Time 19,171 2.152 0.005 0.193 

Network Error Training 1,9 31.856 <0.001* 0.780 
Time 19,171 1276.168 <0.001* 0.993 
Training*Time 19,171 2.063 0.008 0.186 

Multimodal 
Vs 

Task Focused 
Unimodal 

Accuracy Training 1,9 419.091 <0.001* 0.979 
Time 19,171 159.264 <0.001* 0.947 
Training*Time 19,171 63.518 <0.001* 0.876 

Representational 
Economy 

Training 1,9 267.988 <0.001* 0.968 
Time 19,171 83.998 <0.001* 0.903 
Training*Time 19,171 7.184 <0.001* 0.444 

Network Error Training 1,9 1631.492 <0.001* 0.995 
Time 19,171 708.504 <0.001* 0.987 
Training*Time 19,171 46.706 <0.001* 0.838 
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Severe  Lesioning 
 

Severe lesioning, which removed 90% of the model’s connections, echoes the 

findings of a multimodal advantage from the mild and moderate lesioning conditions. 

At end point of relearning the difference between the multimodal training regime and 

all other training regimes is very small, thought still statistically significant (see Table 

2.7).  The graphs in Figure 2.7 show the model’s relearning performance after a 

severe lesion. As in the case of mild, and moderate, lesioning multimodal training is 

more efficient than either of the unimodal training regimes on a trial by trial basis.  

These differences between multimodal and unimodal training are also statistically 

significant as the results of the 2x20 ANOVA given in Table 2.7 clearly show. 

Multimodal training obtains greater accuracy, convergence (as shown by higher 

values of representational economy despite the obvious noise which is reflected in the 

Training 
Regime 
Comparison 
[continued] 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Item Focused 
Unimodal  

Vs 
Task Focused 

Unimodal 

Accuracy Training 1,9 1.259 0.291 0.123 
Time 19,171 62.128 <0.001* 0.873 
Training*Time 19,171 1.041 0.417 0.104 

Representational 
Economy 

Training 1,9 1.619 0.235 0.152 
Time 19,171 127.135 <0.001* 0.934 
Training*Time 19,171 1.292 0.194 0.126 

Network Error Training 1,9 3.968 0.078 0.306 
Time 19,171 1068.487 <0.001* 0.992 
Training*Time 19,171 1.656 0.048 0.155 
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small effect sizes for the multimodal comparisons in Table 2.7), and greater error 

reduction. The equal error comparison between multimodal and the two unimodal 

training regimes does shows a slightly better performance in representational 

economy and network error, but not in accuracy which is confirmed by the results of 

the ANOVAs shown in Table 2.7. Table 2.7 highlights the statistically significant 

difference between multimodal and item-focused or task focused unimodal learning in 

accuracy, representational economy and network error that signifies the advantage of 

multimodal training over the other regimes. Comparing Equated Error Multmodal and 

Item-focused unimodal shows a significant difference in representational economy 

and network error but only an effect of time on accuracy. Similarly the comparison of 

item-focused and task-focused unimodal shows a significant effect of time on 

accuracy, representational economy and network error and an effect of training on 

network error. Representational Economy was strongly correlated with learning 

Accuracy for all conditions: Multimodal r(20)=.770, p<.001; Equated Error 

Multimodal r(20)=.702, p<.001; Item-focused Unimodal r(20)=.819,p<.001; Task-

focused Unimodal r(20)=.662,p<.001. Representational Economy was strongly 

correlated with Network Error for all conditions: Multimodal r(20)=-

.937,p<.001;Equated Error Multimodal r(20)=-.982,p<.001;Item-focused Unimodal 

r(20)=-.970,p<.001; Task-focused Unimodal r(20)=-.980,p<.001. 
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Figure 2.7 Mean variation in training performance during relearning after a severe lesion 
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Table 2.7 2x20 ANOVAs indicating significant performance differences between training regimes after 
a severe lesion 

 
 

 

 

 

 

 

 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Item Focused 
Unimodal 

Accuracy Training 1,9 24.745 <0.001* 0.733 
Time 19,171 17.103 <0.001* 0.655 
Training*Time 19,171 13.251 <0.001* 0.596 

Representational 
Economy 

Training 1,9 194.458 <0.001* 0.956 
Time 19,171 50.814 <0.001* 0.850 
Training*Time 19,171 1.979 0.012 0.180 

Network Error Training 1,9 1726.137 <0.001* 0.995 
Time 19,171 648.350 <0.001* 0.987 
Training*Time 19,171 31.488 <0.001* 0.778 

Equated Error 
Multimodal 

Vs 
Item Focused 

Unimodal 

Accuracy Training 1,9 2.481 0.150 0.216 
Time 19,171 2.735 <0.001* 0.233 
Training*Time 19,171 0.950 0.522 0.096 

Representational 
Economy 

Training 1,9 57.100 <0.001* 0.864 
Time 19,171 94.201 <0.001* 0.913 
Training*Time 19,171 3.307 <0.001* 0.269 

Network Error Training 1,9 19.639 0.002 0.686 
Time 19,171 738.045 <0.001* 0.988 
Training*Time 19,171 1.536 0.079 0.146 

Multimodal 
Vs 

Task Focused 
Unimodal 

Accuracy Training 1,9 25.720 0.001 0.741 
Time 19,171 17.061 <0.001* 0.655 
Training*Time 19,171 13.216 <0.001* 0.595 

Representational 
Economy 

Training 1,9 213.703 <0.001* 0.960 
Time 19,171 38.977 <0.001* 0.812 
Training*Time 19,171 3.070 <0.001* 0.254 

Network Error Training 1,9 1811.254 <0.001* 0.995 
Time 19,171 723.156 <0.001* 0.988 
Training*Time 19,171 42.187 <0.001* 0.824 
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Similar to the picture observed in development, item-focused unimodal training has no real 

advantage over task-focused unimodal training. Yet again, we observed a statistically 

significant multimodal advantage. There is a significant effect of training although it is 

worth noting that the differences between the two unimodal regimes observed during the 

"vocabulary spurt" period of development learning do not manifest themselves in recovery 

learning. Most importantly it can be seen that the levels of efficiency achievable through 

simultaneous multimodal item presentation cannot be achieved through rearrangement of 

unimodal item presentation nor through existing forms of unimodal presentation (i.e. task 

focused) commonly observed during therapies (e.g. picture naming etc). The error equated 

comparisons echo the finding from Chapter 1, that the observed multimodal benefits are a 

function of the higher error signal available for simultaneous multimodal presentation of 

learning items. 

Training 
Regime 
Comparison 
[continued] 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Item Focused 
Unimodal  

Vs 
Task Focused 

Unimodal 

Accuracy Training 1,9 0.854 0.380 0.087 
Time 19,171 3.369 <0.001* 0.272 
Training*Time 19,171 1.091 0.364 0.108 

Representational 
Economy 

Training 1,9 1.540 0.246 0.146 
Time 19,171 109.582 <0.001* 0.924 
Training*Time 19,171 0.736 0.778 0.076 

Network Error Training 1,9 16.311 0.003 0.644 
Time 19,171 1380.713 <0.001* 0.994 
Training*Time 19,171 1.299 0.190 0.126 
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Discussion  
 

Summary of Results 
 

Reorganising unimodal learning sequentially at the item level, to make it item-focused, 

does not approximate the benefits of multimodal learning, nor does it prove more efficient 

than task-focused unimodal learning. In development (see Figure 2.3 ), during the 

‘vocabulary spurt’ period (between 10000 and 20000 updates), item-focused unimodal 

learning performed worse than all other forms of learning, in terms of accuracy. Whilst 

convergence (as measured with representational economy) appeared to benefit slightly (see 

Figure 2.3) from item-focused unimodal learning, such benefits were not statistically 

significant. When considering robustness to damage (see Figure 2.4) multimodal learning 

yielded a more robust representational structure. There was no significant difference 

between the level of robustness derived from item-focused and task-focused unimodal 

learning. The picture for spontaneous recovery after damage (see Figures 2.5,2.6 and 2.7) 

remained consistent for all levels of lesioning in terms of the performance of the different 

training regimes. It is also worth noting that in the recovery picture there was no 

separation, at any point, between the accuracy achieved by item-focused or task-focused 

unimodal learning. Whilst minor differences in representational economy were observed 

between item-focused and task-focused unimodal learning, such differences were not 

statistically significant (see Tables 2.5,2.6 and 2.7). The picture emerging from the current 

investigation supports those observations in Chapter 1 regarding multimodal learning. 

Most interestingly, the current investigation cleared up the question of whether reorganised 



 

! 122!

unimodal learning could approximate multimodal learning, suggesting that it is the 

simultaneity of multimodal item presentation that is important, as opposed to merely 

presentation order. The results suggest that simultaneous multimodal learning achieves a 

consistent, statistically significant, advantage in efficiency compared to unimodal learning 

regardless of different forms of item organisation within the unimodal learning strategy. 

The lack of any statistically significant difference between the equated error comparison to 

the item-focused and task-focused unimodal conditions shows these advantages be a 

function of the higher error signal available during simultaneous multimodal presentation 

of learning items. 

 

 

Analysis of  multimodal learning in the context of efficiency 
 

The results of the current study, and indeed of the investigations in Chapter 1, are clear – 

knowledge about an object can be learnt more efficiently, if more information about that 

object is provided at the time at which it is learnt. The current investigation attempted to 

uncover the computational basis for why this should be the case. At this point, it is worth 

recalling that the model used in this study is one of semantic memory. Semantic memory, 

as part of declarative memory (Squire, 1992), has been extensively investigated not only in 

terms of how a semantic system can arise, but also in terms of what kinds of cognitive 

processing could account for such a system. Various cognitive researchers (e.g. Elio and 

Reutener,1970; Tulving, 1962) suggest that there is an advantage for memory in terms of 

how items are organised at the point when they are encoded. Hunt and McDaniel (1993) 

offer the idea that two different types of processing are at work when items are learnt: 

Firstly, the detection of similarity through ‘relational processing’. Secondly, the detection 
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of item distinctiveness through ‘item-specific processing’. Previous research by Mandler 

(1979) described item-specific processes as ‘integration’ whereby increasingly fluent detail 

was learnt about a specific item through its continual processing (e.g. maintenance 

rehearsal). Mandler (1979) also described relational processes as ‘elaboration’, in other 

words processing that establishes relationships between item representations in memory 

and elaborates knowledge of those items (i.e. performs semantic processing). In the context 

of discussing processing the Rogers et al. (2004) model of semantic memory incorporates 

both item-specific and relational processing. The category structure that develops amongst 

the model’s learnt internal semantic representations, as shown by Rogers et al. (2004) 

using cluster analysis, is evidence of relational processing. However relational processing 

relies upon preceding item specific processing. In other words all cross modal perceptual 

relations for a particular item need to be processed in order for that item to be correctly 

related to another item during further processing. As the model learns there is then a 

transition from item specific processing to relational processing. Simultaneous multimodal 

learning means that all possible cross modal relations for a given item are presented 

simultaneously for learning. It is likely then, that this simultaneous presentation reduces 

some of the requirement for item specific processing. For example in unimodal learning 

the model must combine separate cross modal relations for a given item to be aware of all 

possible cross modal relations for that item. This means in unimodal learning the model 

must multimodally combine incoming unimodal information before it can go on to develop 

the relations between items that are responsible for the emergent category structure 

amongst its semantic representations. If the model is considered in this way then the 

benefits of simultaneous multimodal learning would appear to be a reduction in the need 

for item specific processing allowing faster progress to relational processing. In real world 

terms, this means an idea of the multimodal learning environment reducing the level of 
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item integration that will be required from processing in the brain, and so allowing item 

elaboration to begin sooner than would occur in a unimodal learning environment. This 

would explain why no amount of reorganisation of unimodal learning tasks would 

approximate multimodal learning, since there would always be the need for the same level 

of integration before elaboration could begin. 

 

Conclusion 
 

One of the aims of the current investigation was to think about learning during spontaneous 

recovery and whether the nature of such learning would offer insights into cognitive 

rehabilitation: To consider possible requirements for clinical practice in terms of 

maximising learning efficiency after brain damage. If the benefits of multimodal learning 

are to be translated into clinical practice it seems that it will be necessary to provide tasks 

that allow simultaneous feedback across several modalities. Despite suggesting possible 

outcomes for rehabilitation as a result of observations made during the current study these 

simulations only consider spontaneous recovery not rehabilitation. It is thus possible that in 

focusing on spontaneous recovery it is only really possible to offer accounts of relearning 

as a result of re-exposure to previously learnt/known concepts in the external world. 

Models of the rehabilitation process as distinct from recovery are necessary to explore 

whether learning strategies in terms of targeted modalities have identical relevance in 

development, recovery and rehabilitation or whether each learning situation involves 

processes behaving in a distinct situation-specific manner. Simply put, is rehabilitation a 

separate case that due to its special circumstances as a learning situation is dependent upon 

different factors in the learning environment for its efficiency from those factors observed 

be relevant in development and recovery. Whilst the current study offers interesting 
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insights into possible mechanical accounts for the construction and benefits of multimodal 

learning, further research is required in order to discover how to construct multimodal 

learning environments in clinical practice that possess the necessary level of simultaneous 

multimodality. Computational simulation has allowed an understanding of the ideal 

conditions in which learning efficiency can be maximised by taking advantage of 

multimodality. It remains for clinical practice, in conjunction with further theoretical 

investigation, to adopt the challenge of achieving such beneficial levels of multimodality 

within therapeutic tasks. 
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Chapter 3 - Technical report on the replication and rescaling of the Rogers et al. 

(2004) model of semantic memory, and simulating spontaneous recovery to stable 

baseline  

 
 

Introduction 
 

The purpose of this Chapter is to provide a technical report detailing the replication and 

rescaling of the Rogers et al. (2004) model of semantic memory that was used in Chapter 

1, to provide a model which could be used to explore rehabilitation in Chapter 4. Chapter 1 

yielded the finding that multimodal learning was more efficient than unimodal learning, 

both in development and in recovery following damage. This Chapter sets out to replicate 

the model in the same manner as Chapter 1, except for making potentially non-significant 

adjustments to the model in order for it to be capable of learning twice the number of 

items. To begin simulating rehabilitation, it is necessary to have a model with enough 

learnt items so that after a period of recovery to stable baseline, the model will still have a 

proportion of items that it consistently gets wrong.  The number of these consistently 

incorrect items needs to be large enough to be split into a rehabilitation training set and a 

control training set, if simulated rehabilitation is to mimic the clinical processes for which 

it is trying to provide an account. 

 

 

Whilst there have been many models of developmental learning, to the extent that certain 

characteristics of children’s learning behaviour (e.g. the vocabulary spurt - Plunkett et al., 

1997) are easily observed in any Parallel Distributed Processing (PDP) model, there have 

been very few simulations of recovery and rehabilitation after neural network damage. 
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Relearning in PDP models can mirror both the process of cognitive rehabilitation (e.g. 

Plaut , 1996) and cognitive rehabilitation after recovery (e.g. Welbourne and Lambon 

Ralph, 2005b). In damaged PDP models, recovery is accomplished by allowing the model 

to relearn using the same training set as that which resulted in its original (pre-damage) 

learning. Central to this usage of PDP models is the idea that long-term recovery would 

employ the same learning mechansims as those used in development. This means that 

through relearning the model finds a set of connection weights that maximises performance 

given a balance between available computational resources and the training environment 

and these weights stabilise into a new ‘equilibrium’ in the same way weights stabilise in 

models of developmental learning. This post-damage relearning is analogous to 

spontaneous recovery where the patient regains cognitive function merely as a result of 

normal living without specific therapeutic intervention.  

 

This chapter details development and recovery simulations that parallel the simulations of 

development and recovery in Chapter 1. The purpose of the simulations within this chapter 

is to replicate the findings from Chapter 1 in a larger version (i.e. learning 72 items instead 

of 36) of the Rogers et al. (2004) model, and then to use the end point of the recovery 

simulations as the starting point for rehabilitation simulations in Chapter 4. The 

simulations in this chapter were essential to verify that doubling the number of items the 

model could learn did not in any way affect the previously observed performance 

comparison of the multimodal and unimodal learning environments. The simulations in 

Chapter 4 will attempt to simulate clinical observations so it is important to simulate this in 

a model capable of exhibiting a range of recovery behaviour such that different levels of 

damage severity will result in different numbers of items that the model consistently gets 

wrong on naming (notes on the importance of therapy items being consistently wrong 
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before therapy on those items commences can be found in Conroy et al., 2006). Thus 

rehabilitation learning performance can be investigated for a range of damage severity, and 

with different numbers of therapy items, all in the context of the original comparison of 

multimodal and unimodal learning environments established in Chapter 1.  

 

Simulation 3.1: Developmental learning 
 

Method  
 

For this simulation the PDP model of semantic knowledge employed in Chapter 1, a 

replication of a previously established model of semantic knowledge (Rogers et al., 2004), 

was scaled up so it was capable of learning twice as many items. This model was 

implemented using the LENS neural network simulator programming environment (Rohde, 

2000). Figure 3.1 shows the network architecture of the model: 
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Figure 3.1 Architecture of the model adapted from Rogers et al. (2004) 

 

Firstly it is important to note the changes to the model’s architecture. The original model 

learns 36 unique items (as detailed in chapter 3). In order to scale the model so it was 

capable of learning twice this number of items, the quantity of localist name units had to be 

doubled (to 80 from 40). In addition to this, the original use of 64 semantic units was not 

enough to allow learning of twice as many items so the number of semantic units was also 

doubled (to 128 from 64), after initial experimentation with a smaller number of units 

(100) proved unsucessful. All other aspects of the model were the same as the original 

simulations. The model was a fully recurrent network consisting of four layers of units. 

Three layers of units labelled names, verbal descriptions and visual features are 

bidirectionally connected via a single layer of hidden units labelled semantics. The names, 

verbal descriptions and visual features layers are each capable of both input and output, 
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and receive input directly from the environment. The semantics layer is a hidden layer and 

does not interact directly with the environment, it only receives input from, or outputs to, 

the names, verbal descriptions and visual features layers. All units in the semantics layer 

are also recurrently connected to each other. These recurrent connections assist in the 

development of attractors (Hinton & Shallice, 1991), stabilising representations within the 

semantics layer. Representational economy is measured in exactly the same way as 

described in Chapter 1. 

 

Training the model  
 
Identically to Chapter 1 the model was trained on either one of two distinct training 

regimes:simultaneously multimodal (identical to that used in Rogers et al., 2004) or 

unimodal  The model was trained with online learning (i.e. using a batch size of one, thus 

with a weight update after the presentation of each training trial) using recurrent 

backpropagation through time with a steepest descent algorithm. The learning rate was set 

to 0.005. A weight decay of 0.0000002 was also used to prevent any weights developing 

values that were disproportionately high.  

 

To simulate development, the model was trained for 1036800  weight updates, using either 

the multimodal and unimodal training regime in each simulation. This equates to 4800 

presentations in the multimodal condition (multimodal presentation of the entire corpus 

takes 216 updates, i.e. 3 training trials for each of the 72 items). In contrast, this amount of 

training equates to 1600 presentations in the unimodal condition (unimodal presentation of 

the entire corpus takes 648 updates, i.e. 9 training trials for each of the 72 items).  During 

training, the model was tested on its ability to generate the correct target outputs (to within 

0.5) for all patterns, in all output modalities. 1036800 weight updates was chosen for the 
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duration of training through initial experimentation, as whenever the model learnt to 100% 

accuracy (verified through regular testing) it had occurred by this time.   

 

Testing the network and analysing representational economy 
 
Representational economy (calculated as described in Chapter 1), accuracy and error were 

calculated at regular intervals during the model’s training. A 2x20 repeated measures 

analysis of variance (ANOVA) was conducted on these data to investigate the effect of 

manipulating the training regime (multimodal or unimodal) at twenty equally spaced time 

points during training on the dependent variables (accuracy, representational economy and 

network error). The resulting data from the simulations was also used to calculate the 

correlation between representational economy, accuracy, and network error as the model 

learns in order to examine Representational Economy’s relationship to Accuracy and 

Network Error. 

 

Results 
 

The graphs in Figure 3.2 show performance of the model during developmental learning, 

both on a trial by trial basis and for an equated error comparison. It can be clearly seen that 

(as found during simulations in Chapter 1, see Chapter 1 - Figure 1.3) multimodal training 

is more efficient than unimodal training on a trial by trial basis, obtaining greater accuracy 

and greater convergence (as shown by representational economy) as well as greater error 

reduction. Again this mirrors the findings of Chapter 1.  These differences between 

multimodal and unimodal training are also statistically significant as the results of the 2x20 

analysis of variance confirm (see Table 3.1). In addition Figure 3.2 shows how multimodal 

training achieves greater acceleration in the learning process thus showing its greater 
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efficiency at an earlier point in learning. This also mirrors the findings of Chapter 1.  The 

equal error comparison between multimodal and unimodal training shows no substantial 

overall difference and indeed the small differences seen in the graphs in Figure 3.2 are not 

statistically significant (as indicated in the analysis results in Table 3.1). However it is 

worth noting that during the vocabulary spurt period, and only here, the equal error 

comparison performs worse than unimodal training. Table 3.1 shows multimodal training 

outperforming unimodal training with statistically significant differences in accuracy, 

representational economy and network error.  When comparing equated error multimodal 

and unimodal there is an effect of time and significant interaction between training and 

time on accuracy, representational economy and network error.  Representational Economy 

was strongly correlated with learning Accuracy for all conditions: Multimodal r(20)=.964, 

p<.001; Equated Error Multimodal r(20)=.926, p<.001; Unimodal r(20)=.926,p<.001. 

Representational Economy was strongly correlated with Network Error for all conditions: 

Multimodal r(20)=-.895,p<.001;Equated Error Multimodal r(20)=-.816,p<.001;Unimodal 

r(20)=-.795,p<.001. 
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Figure 3.2 Mean variation in training performance during developmental learning 
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Table 3.1 2x20 ANOVAs indicating significant performance differences between training regimes 
during developmental learning 

 

 

 

 

Simulation 3.2: Spontaneous recovery to stable baseline 
 

Method 
 

The model was trained in the manner described in Simulation 3.1. However, this time only 

the multimodal training regime was used to train the model as per the original simulation 

(see Rogers et al, 2004). In order to investigate the model’s re-learning behaviour 

(spontaneous recovery) after damage, the 10 multimodally trained networks from the initial 

training were lesioned by removing a proportion of all incoming and outgoing connections 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 114.536 <0.001* 0.927 
Time 19,171 479.967 <0.001* 0.982 
Training*Time 19,171 213.605 <0.001* 0.960 

Representational 
Economy 

Training 1,9 192.012 <0.001* 0.955 
Time 19,171 1039.641 <0.001* 0.991 
Training*Time 19,171 117.331 <0.001* 0.929 

Network Error Training 1,9 350.789 <0.001* 0.975 
Time 19,171 994.417 <0.001* 0.991 
Training*Time 19,171 529.937 <0.001* 0.983 

Equated Error 
Multimodal 

Vs 
Unimodal 

Accuracy Training 1,9 0.853 0.380 0.087 
Time 19,171 2040.479 <0.001* 0.996 
Training*Time 19,171 1.753 0.032* 0.163 

Representational 
Economy 

Training 1,9 2.171 0.175 0.194 
Time 19,171 1125.866 <0.001* 0.992 
Training*Time 19,171 1.703 0.040* 0.159 

Network Error Training 1,9 4.671 0.059 0.342 
Time 19,171 2336.111 <0.001* 0.996 
Training*Time 19,171 5.251 <0.001* 0.368 
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across all the units in all layers (i.e., names, verbal descriptions, visual features and 

semantics). Based upon the findings from Chapter 1 lesioning was again required  but this 

time four levels of damage were needed as the simulations in Chapters 1 & 2 suggest that 

four levels of damage would capture the more detailed picture of relearning that would be 

required for the rehabilitation simulations in the following Chapter. The same four levels 

of damage chosen were: Minimal - where the model relearns to 90% accuracy or higher.  

Mild - where the model relearns to around 75% accuracy, Moderate - where the model 

relearns to around 55% accuracy, and Severe where the model relearns to around 30% 

accuracy or less. Again it should be pointed out this is not identical to the real situation of 

localised injury since this lesioning was uniform across the model to generate the levels of 

relearning this study wanted to explore. The trained networks were subjected to four 

separate lesions of varying degrees of severity: minimal (removing 88 % of connections); 

mild (removing 90 % of connections); moderate (removing 92% of connections); and 

severe (removing 93% of connections). These degrees of severity were intended to cover a 

range of behavioural severity outcomes. After lesioning, each network underwent 2073600 

updates of retraining with both the multimodal and unimodal training regimes. This 

corresponds to 9600 multimodal, and 3200 unimodal, presentations of the entire training 

corpus. 2073600 updates was chosen through experimentation in order to allow the 

network to recovery to a stable baseline level of accuracy that would provide a starting 

point for simulating rehabilitation. Rehabilitation learning focuses upon consistently failed 

items to start from a zero naming baseline for each participant which means effects of 

different rehabilitation regimes can be contrasted (Conroy et al., 2006). Since these 

simulations will form the structural basis of the model for use in a comparison of 

multimodal and unimodal rehabilitation in Chapter 4, it was essential to have achieved 

stable baseline performances in recovery. This repeated-measures methodology where the 
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same initially trained network was subjected to each lesion and retraining condition also 

allows us to remove any variance associated with individual pre or postmorbid differences. 

This is important since these simulations are an attempt to capture the relearning behaviour 

of brain-damaged patients, however these patients are not a homogenous population, and 

studying the effects of treatment should ideally be based upon “within-patient 

comparisons” (Howard & Hatfield, 1987, p.119). 
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Figure 3.3 Mean variation in training performance during spontaneous recovery to stable baseline after a minimal lesion 
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Table 3.2 2x20 ANOVAs indicating significant performance differences between training regimes after 
a minimal lesion 

 

 

Results 

 
Minimal Lesioning 
 

The graphs in Figure 3.3 show the model’s recovery performance to stable baseline after a 

minimal lesion, both on a trial by trial basis and for an equated error comparison. As 

observed during development it can be clearly seen that multimodal training is more 

efficient than unimodal training on a trial by trial basis, obtaining greater accuracy, and 

greater convergence (as shown by representational economy) as well as greater error 

reduction. These differences between multimodal and unimodal training are also 

statistically significant as confirmed by the results of the 2x20 analysis of variance (see 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 2953.537 <0.001* 0.997 
Time 19,171 472.046 <0.001* 0.981 
Training*Time 19,171 103.449 <0.001* 0.920 

Representational 
Economy 

Training 1,9 1033.339 <0.001* 0.991 
Time 19,171 155.000 <0.001* 0.945 
Training*Time 19,171 11.196 <0.001* 0.554 

Network Error Training 1,9 12493.587 <0.001* 0.999 
Time 19,171 2720.140 <0.001* 0.997 
Training*Time 19,171 235.713 <0.001* 0.963 

Equated Error 
Multimodal 

Vs 
Unimodal 

Accuracy Training 1,9 2.345 0.160 0.207 
Time 19,171 487.855 <0.001* 0.982 
Training*Time 19,171 0.366 0.993 0.039 

Representational 
Economy 

Training 1,9 1.831 0.209 0.169 
Time 19,171 347.650 <0.001* 0.975 
Training*Time 19,171 0.734 0.780 0.075 

Network Error Training 1,9 0.957 0.353 0.096 
Time 19,171 2855.395 <0.001* 0.997 
Training*Time 19,171 0.951 0.522 0.096 
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Table 3.2). Figure 3.3 again shows how the multimodal training achieved much greater 

acceleration in the learning process reflecting greater temporal efficiency. The equal error 

comparison between multimodal and unimodal training showed no overall difference, and 

is not statistically significant (as shown in the analysis results in  Table 3.2). The superior 

performance of multimodal training over unimodal is supported by the  results in Table 3.2 

which show a statistically significant difference between the two regimes in accuracy, 

representational economy and network error.  The comparison of equated-error multimodal 

and unimodal also shows a significant effect of time on accuracy, representational 

economy and network error. Representational Economy was strongly correlated with 

learning Accuracy for all conditions: Multimodal r(20)=.977, p<.001; Equated Error 

Multimodal r(20)=.908, p<.001; Unimodal r(20)=.907,p<.001. Representational Economy 

was strongly correlated with Network Error for all conditions: Multimodal r(20)=-

.879,p<.001;Equated Error Multimodal r(20)=-.950,p<.001;Unimodal r(20)=-.947,p<.001. 
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Figure 3.4 Mean variation in training performance during spontaneous recovery to stable baseline after a mild lesion
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Table 3.3 2x20 ANOVAs indicating significant performance differences between training regimes after 
a mild lesion 

 

 

Mild Lesioning 

 

The graphs in Figure 3.4 show the model’s recovery performance to stable baseline after a 

mild lesion, both on a trial by trial basis and for an equated error comparison. Multimodal 

training was again observed to be more efficient than unimodal training on a trial by trial 

basis, obtaining greater accuracy, and greater convergence (as shown by representational 

economy) as well as greater error reduction. These differences are statistically significant 

as the results of the 2x20 analysis of variance, given in Table 3.3, confirmed. Figure 3.4 

again shows how the multimodal training achieves much greater acceleration in the 

learning process reflecting greater temporal efficiency. The equal error comparison 

between multimodal and unimodal training shows no overall difference in accuracy or 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 938.547 <0.001* 0.991 
Time 19,171 150.985 <0.001* 0.944 
Training*Time 19,171 69.382 <0.001* 0.885 

Representational 
Economy 

Training 1,9 2065.153 <0.001* 0.996 
Time 19,171 110.923 <0.001* 0.925 
Training*Time 19,171 7.577 <0.001* 0.457 

Network Error Training 1,9 8042.993 <0.001* 0.999 
Time 19,171 777.629 <0.001* 0.989 
Training*Time 19,171 51.758 <0.001* 0.852 

Equated Error 
Multimodal 

Vs 
Unimodal 

Accuracy Training 1,9 0.809 0.392 0.082 
Time 19,171 150.190 <0.001* 0.943 
Training*Time 19,171 1.843 0.022* 0.170 

Representational 
Economy 

Training 1,9 7.969 0.020* 0.470 
Time 19,171 256.162 <0.001* 0.966 
Training*Time 19,171 2.412 <0.001* 0.211 

Network Error Training 1,9 0.842 0.383 0.086 
Time 19,171 2851.404 <0.001* 0.997 
Training*Time 19,171 1.125 0.330 0.111 
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error, and is not statistically significant (as show in the analysis results in  Table 3.3) for 

these measures. However a statistically significant difference was found in representational 

economy (see Table 3.3) for the equal error comparison. Table 3.3 gives the results from 

statistically comparing multimodal and unimodal training showing a multimodal advantage 

with the significant difference between the two in accuracy, representational economy and 

network error.  The comparison of the Equated Error Multimodal and unimodal training 

showed an effect of time on accuracy, representational economy and network error and a 

significant interaction between training and time for accuracy and representational 

economy. Representational Economy was strongly correlated with learning Accuracy for 

all conditions: Multimodal r(20)=.972, p<.001; Equated Error Multimodal r(20)=.769, 

p<.001; Unimodal r(20)=.791,p<.001. Representational Economy was strongly correlated 

with Network Error for all conditions: Multimodal r(20)=-.900,p<.001;Equated Error 

Multimodal r(20)=-.977,p<.001;Unimodal r(20)=-.958,p<.001. 
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Figure 3.5 Mean variation in training performance during spontaneous recovery to stable baseline after a moderate lesion 



 

! 144!

Table 3.4 2x20 ANOVAs indicating significant performance differences between training regimes after 
a moderate lesion 

 

 

Moderate Lesioning  

 

Figure 3.5 show the model’s recovery performance to stable baseline after a moderate 

lesion, both on a trial by trial basis and for an equated error comparison. Multimodal 

training is again observed to be more efficient than unimodal training on a trial by trial 

basis, obtaining greater accuracy, and greater convergence (as shown by representational 

economy) as well as greater error reduction. These differences are statistically significant 

as the results of the 2x20 analysis of variance, given in Table 3.4, confirm. Figure 3.5 

again shows how the multimodal training achieves much greater acceleration in the 

learning process reflecting greater temporal efficiency. However with the greater lesion 

severity the unimodal accuracy performance is almost zero. The equal error comparison 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 229.071 <0.001* 0.962 
Time 19,171 117.160 <0.001* 0.929 
Training*Time 19,171 101.985 <0.001* 0.919 

Representational 
Economy 

Training 1,9 364.888 <0.001* 0.976 
Time 19,171 169.446 <0.001* 0.950 
Training*Time 19,171 6.020 <0.001* 0.401 

Network Error Training 1,9 18439.087 <0.001* 1.000 
Time 19,171 5666.687 <0.001* 0.998 
Training*Time 19,171 127.694 <0.001* 0.934 

Equated Error 
Multimodal 

Vs 
Unimodal 

Accuracy Training 1,9 0.433 0.527 0.046 
Time 19,171 28.595 <0.001* 0.761 
Training*Time 19,171 0.795 0.710 0.081 

Representational 
Economy 

Training 1,9 11.557 0.008* 0.562 
Time 19,171 181.216 <0.001* 0.953 
Training*Time 19,171 3.931 <0.001* 0.304 

Network Error Training 1,9 8.509 0.017* 0.486 
Time 19,171 5152.525 <0.001* 0.998 
Training*Time 19,171 1.970 0.012* 0.180 
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between multimodal and unimodal training shows no overall difference in accuracy, and is 

not statistically significant (as show in the analysis results in Table 3.4) for these measures. 

However, a statistically significant difference was found in error and representational 

economy (see Table 3.4) for the equal error comparison. Table 3.4 again indicates a 

multimodal advantage with a statistically significant difference between multimodal and 

unimodal training in accuracy, representational economy and network error.  There is also 

a statistically significant difference between equated error multimodal and unimodal in 

representational economy and network error but not In accuracy where there is only a 

significant effect of time. Representational Economy was strongly correlated with learning 

Accuracy for all conditions: Multimodal r(20)=.848, p<.001; Equated Error Multimodal 

r(20)=.600, p=.005; Unimodal r(20)=.518,p=.019. Representational Economy was strongly 

correlated with Network Error for all conditions: Multimodal r(20)=-.964,p<.001;Equated 

Error Multimodal r(20)=-.961,p<.001;Unimodal r(20)=-.926,p<.001. 
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Figure 3.6 Mean variation in training performance during spontaneous recovery to stable baseline after a severe lesion 
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Table 3.5 2x20 ANOVAs indicating significant performance differences between training regimes after 
a severe lesion 

 

Severe Lesioning 
 

Figure 3.6 show the model’s recovery performance to stable baseline after a severe lesion, 

both on a trial by trial basis and for an equated error comparison. Recovery performance is 

very low. Multimodal training is again observed to be more efficient than unimodal 

training on a trial by trial basis, obtaining greater accuracy, and greater convergence (as 

shown by representational economy) as well as greater error reduction. Though the 

difference between multimodal and unimodal performance is much less for higher severity 

lesion. These differences are statistically significant as the results of the 2x20 analysis of 

variance, given in Table 3.5, confirm. The equal error comparison between multimodal and 

unimodal training shows no overall difference in accuracy or error,  and is not statistically 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Vs 

Unimodal 

Accuracy Training 1,9 53.992 <0.001* 0.857 
Time 19,171 37.520 <0.001* 0.807 
Training*Time 19,171 35.552 <0.001* 0.798 

Representational 
Economy 

Training 1,9 423.361 <0.001* 0.979 
Time 19,171 184.113 <0.001* 0.953 
Training*Time 19,171 6.619 <0.001* 0.424 

Network Error Training 1,9 9391.928 <0.001* 0.999 
Time 19,171 4227.733 <0.001* 0.998 
Training*Time 19,171 61.354 <0.001* 0.872 

Equated Error 
Multimodal 

Vs 
Unimodal 

Accuracy Training 1,9 1.976 0.193 0.180 
Time 19,171 1.784 0.028* 0.165 
Training*Time 19,171 1.784 0.028* 0.165 

Representational 
Economy 

Training 1,9 26.567 0.001* 0.747 
Time 19,171 158.702 <0.001* 0.946 
Training*Time 19,171 3.416 <0.001* 0.275 

Network Error Training 1,9 0.007 0.935 0.001 
Time 19,171 2352.847 <0.001* 0.996 
Training*Time 19,171 1.169 0.289 0.115 
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significant (as show in the analysis results in  Table 3.5) for these measures. However a 

statistically significant difference was found in representational economy (see Table 3.5) 

for the equal error comparison. The superior multimodal performance is reflected in the 

statistics in Table 3.5 where there is a statistically significant difference between 

multimodal and unimodal training in accuracy, representational economy and network 

error.  In addition there is a significant difference between equated error multimodal and 

unimodal training in representational economy as well as an effect of time on network 

error and accuracy and a significant interaction between training and time for accuracy. 

Representational Economy was correlated with learning Accuracy for all Multimodal 

r(20)=.739, p<.001; but not Equated Error Multimodal (zero values so no calculation) or 

Unimodal r(20)=.265,p=.258. Representational Economy was strongly correlated with 

Network Error for all conditions: Multimodal r(20)=-.980,p<.001;Equated Error 

Multimodal r(20)=-.950,p<.001;Unimodal r(20)=-.913,p<.001. 

 

 

 

 

Discussion 
 
Simulation 3.1 showed multimodal training to be more efficient than unimodal training for 

developmental learning in an identical manner to previous observations in Chapter 1. This 

scaled up replication of the Rogers et al. (2004) model of semantic memory behaves 

almost identically to the original model. It should be noted that the equated error 

comparison shows slightly poorer performance than unimodal during the vocabulary spurt 

period but is otherwise virtually identical to unimodal performance suggesting as 

previously observed in Chapter 1, the higher error signal available during multimodal 
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training is responsible for its efficiency advantages in a model where larger numbers of 

items need to be learned as well as for smaller numbers of items. 

 

Simulation 3.2 showed multimodal training to be more efficient than unimodal training for 

recovery to stable baseline, exhibited similar recovery behaviour to the performance of the 

smaller model in Chapter 1. The equated error comparison showed no difference over the 

course of recovery learning, however for certain lesions there was a difference in 

representational economy. It is very likely that this difference in convergence arises from 

the model being required to learn a larger number of items, and having semantic 

representations consisting of a larger number of units. Nevertheless, the overall recovery 

behaviour of the larger model seen here mirrors the findings of Chapter 1.  

 

 

Conclusion 
 

The intention of the simulations, reported in this Chapter, was to provide a replication of 

the Rogers et al. (2004) model used in Chapter 1, with appropriate adaptations to allow 

simulating rehabilitation after a period of spontaneous recovery to stable baseline. The goal 

of simulating rehabilitation was to consider rehabilitation learning behaviour under 

multimodal or unimodal training for different levels of lesion severity, and consequently 

for different numbers of items consistently wrong after recovery. The simulations reported 

here provide a suitable starting point for simulating rehabilitation given that they  

preserved the features and findings from Chapter 1 regarding the advantage of multimodal 

training. 
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Chapter 4 - Using computational models to investigate cognitive rehabilitation after 

brain damage 

 

Abstract 
 

Despite the large number of connectionist models that have attempted to account for 

developmental learning, very few models (notably  Plaut,1996 and Welbourne & Lambon 

Ralph, 2005b) have looked at recovery and rehabilitative relearning after brain damage. 

This study firstly seeks to replicate and extend previous approaches to modelling 

rehabilitation, but in a fully recurrent convergence zone model, which has not previously 

been attempted. Secondly, the study seeks to extend previous studies by incorporating both 

background spontaneous recovery and manipulations of therapy set size during relearning, 

after different levels of lesion damage. An enlarged version of the Rogers et al (2004) 

model of semantic memory was trained,damaged with varying severity (four levels), and 

subsequently allowed to recover to a stable baseline performance accuracy. At stable 

baseline, the model was tested on object naming and the error scores for each item were 

rank ordered. For each simulated rehabilitation, a therapy set and a control set 

(counterbalanced across simulations), each containing an identical number of items was 

created. These items were selected as those with the highest error scores from the list of 

rank-ordered items. Three simulations were conducted: In the first simulation the model 

was trained on either a multimodal or unimodal rehabilitation regime, where intervention 

was simulated by raising the learning rate for rehabilitation items (Welbourne and Lambon 

Ralph, 2005b) but for the target set only. In the second and third simulations, as well as 

training on the target items the model was also re-exposed to ‘continued’ spontaneous 
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recovery at the original learning rate for the remainder of items. In the second simulation, 

the effect of therapy set size (three levels) was explored at the severe level of lesioning. In 

the third simulation, the effect of therapy set size (two levels) was crossed with two 

degrees of lesioning to explore possible interactions between these variables. 

 

Simulation 1, a replication of previous rehabilitation learning methodology (Plaut, 1996) 

found that multimodal rehabilitation learning was more efficient than unimodal learning in 

all conditions. Simulation 2, an investigation of the effect of the manipulation of therapy 

set size on rehabilitation learning showed greater performance at the end of therapy for 

smaller therapy set sizes. In addition multimodal learning outperformed unimodal learning 

in all conditions. Simulation 3, considered the role of the level of damage in conjunction 

with manipulation of therapy set size and targeted modalities during rehabilitation 

learning: an interaction between therapy set size and the level of damage meant that a 

greater performance at the end point of therapy was seen for smaller set sizes with lower 

levels of damage. Again multimodal learning proved more effective than unimodal 

learning in all conditions. 

 

These results suggest that some consideration of the level of severity of damage observed 

in patients would be necessary in the context of selecting the number of items to be used in 

therapy. In addition, based on the model performance, multimodal rehabilitation strategies 

would be predicted to be more efficient than unimodal strategies (currently the 

predominant practice in aphasia therapy). 

 

Introduction 
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Across the lifespan it is perhaps possible to classify  learning into two distinct situations. 

First, there is developmental learning. Such learning  occurs during childhood and 

underpins knowledge and knowledge acquisition, for the remainder of the lifespan. 

Secondly, there is the type of learning that occurs after brain damage. This type of learning 

will necessarily only be undergone by a relatively small proportion of the broader 

population, nevertheless it marks a distinct situation in which learning consists of 

recovering or rehabilitating pre-existing knowledge. Following the development of 

computational parallel distributed processing (PDP) models in the early 1980s (Rumelhardt 

& McClelland, 1986), it was possible to simulate learning using computers. In the 20 or so 

years following the development of PDP modelling, most modelling activity has focused 

on situations from developmental learning, that is to say using models to account for 

learning processes observed during childhood (e.g., vocabulary spurt, learning the past 

tense, etc). However, beginning with the triangle model (Seidenberg and McClelland, 

1989) a body of research began to develop that used models to understand larger processes 

such as reading. One consequence of this was considering developmental processes and 

disorders, for example the range of issues described in Philip Quinlan’s (2003) book 

“Connectionist models of development: Developmental process in real and artificial neural 

networks”.   Similarly PDP models have been applied to investigations of 

neuropsychological situations such as the acquired dyslexias (see Welbourne and Lambon 

Ralph, 2005b) that can follow brain damage.  In other words, PDP models could be used to 

investigate the breakdown of learning that occurs following brain damage, and the 

recovery and rehabilitation learning that is possible in such situations. Since PDP models 

actually learn, they are able to consider developmental learning, spontaneous recovery 

after brain damage, and rehabilitation all within the same model. However, despite this 

capacity, very few researchers have pursued investigations into recovery and rehabilitation 
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learning using PDP models. Despite an early attempt by Hinton and Sejnowski (1986), the 

only substantial considerations of recovery and rehabilitation learning are those by Plaut 

(1996), who focussed on recovery learning as a first step towards full simulation of 

rehabilitation, and Welbourne and Lambon Ralph (2005b) who developed the most 

realistic rehabilitation simulation to date. The history of Aphasia therapy has seen the 

development of models that assist in understanding the mechanisms behind language 

learning in development, as well as the type of rehabilitation learning that occurs  during 

therapy, for language impairments following brain damage. Early models are “boxes and 

arrows” (e.g. Ellis & Young, 1988 or Kay et al., 1992). These models derive from the idea 

that opposing abilities on two different language tasks implies that a minimum of two 

distinct mechanisms are involved in those tasks (Wilshire, 2008). Over the last three 

decades these early theoretical models have given way to computational models that can 

simulate language learning and the mechanisms that support it. The earliest truly 

successful computational model that has influenced aphasia understanding is Seidenberg 

and McClelland's (1989) triangle model (SM89) which shows how a PDP model can offer 

an account of normal cognitive function and suggest how impairments can arise from 

damage by considering dyslexia within the model. Plaut, McClelland, Seidenberg, and 

Patterson's (1996) model of single word reading (PMSP96) made considerable 

improvements to SM89 by designing new representations such that the model’s non-word 

reading improved. Various early models early PDP models are often similar in structure to 

Seidenberg and McClelland's (1989) PDP model. Such models include (but are not limited 

to): Hinton and Shallice's (1991) model of acquired dyslexia;Plaut and Shallice's (1993) 

models exploring the nature of Deep Dyslexia; Mayall and Humphreys (1996) model of 

Alexia; Plaut, McClelland, Seidenberg, and Patterson's (1996) model of Word Reading; 

Plaut's (1997) models of word reading and lexical decision; Cree, McRae and McNorgan's 
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(1999) model simulating semantic priming; Harm and Seidenberg's (1999) model of 

reading acquisition and dyslexia; Lambon Ralph, McClelland, Patterson, Galton and 

Hodges' (2001) model of object naming and semantic impairment; Gotts and Plaut's (2002) 

model of Semantic Impairment; Zevin and Seidenberg's (2002) model of age of acquisition 

effects in word reading. Similarly Farah and McClelland's (1991) model of semantic 

memory impairment; Devlin, Gonnerman, Andersen, and Seidenberg's (1998) model of 

category specific semantic impairment; Joanisse and Seidenberg's (1999) model of 

impairments in verb morphology; Lambon Ralph and Howard's (2000) model of anomia 

and impaired verbal comprehension; McLeod, Shallice and Plaut's (2000) model of 

attractor dynamics in word recognition; Plaut's (2002) model of optic aphasia; Harm and 

Seidenberg's (2004) model looking at the division of labour in word reading; Rogers, 

Lambon Ralph, Garrard, Bozeat, McClelland, Hodges, and Patterson's (2004) model of 

semantic memory; Dilkina, McClelland, and Plaut's (2008) model of semantic and lexical 

impairment. 

 

Clearly various type of computational model exist that inform our understanding of aphasic 

impairments, however it becomes clear that it is PDP models that can provide the most 

ecologically valid simulations since as Welbourne and Lambon Ralph (2005b) point out, 

PDP models actually learn. Abel et al. (2007) used Dell et al.’s (1997) model of word 

retrieval simulating naming difficulty in aphasia: the weight-decay model (WD model; 

Dell et al., 1997) and the semantic-phonological model (SP model; Foygel & Dell, 2000) 

to predict therapy performance in patients. However these studies used models that do not 

learn. The current study  uses PDP models that learn to predict therapy outcome since it is 

an area that has not previously been explored but seems the most logical next step in 

understanding aphasia through modeling and simulation. Indeed the only step so far 
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towards using PDP models that learn to inform aphasia therapy comes from Kiran and 

Thompson (2003) using Plaut’s (1996) conclusions from simulating relearning in PDP 

models. Plaut noticed that during retraining atypical learning items resulted in greater 

generalization. Kiran and Thompson (2003) employed this discovery in creating a 

semantically based naming treatment which prioritised semantic features of typical items 

over those of atypical items in four participants who had fluent aphasia, All participants 

improved, three of whom showed some evidence of generalization however Plaut’s (1996) 

model is technically more one of recovery rather than rehabilitation since he re-exposes the 

network to further training after damage but does nothing to technically distinguish that 

further training from the initial training. Welbourne and Lambon Ralph (2005b) used 

selected items (those which the model consistently fails on), and an increased learning rate 

in their model to simulate rehabilitation as intense exposure to a subset of the items the 

model had learnt before it was damaged. This situation is much closer to the ecology of the 

clinical setting. Whilst it can be seen that several researchers have explored using 

computational models of language that do not learn to design aphasia therapy (e.g Abel, 

Willmes & Huber, 2007) or the results of the models of others (i.e. Kiran & Thompson, 

2003), the current study explores using PDP models of learning that go through 

development, spontaneous recovery and rehabilitation in order to simulate anomia therapy 

with greater ecological validity. This is accomplished by attempting to treat the model in 

exactly the same manner as a patient in terms of initial assessment, level of damage (but 

not type of damage since the model used in this study is not one of neuroanatomy ), 

establishing a baseline performance before therapy, incorporating background spontaneous 

recovery and selecting therapy items from those items the patient gets wrong on naming. In 

addition this study simulates the effects of lesioning  in a PDP model as oppose to trying to 

approximate the neuroanatomy of real lesions. In the version of the Rogers et al. (2004) 
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model used in the current study lesioning is uniform across the model rather than a closer 

simulation to the real situation where lesions would be localised. The reason for this is that 

the Roger et al. (2004) model simulates learning mechanisms and the effects of damages 

but in order to achieve different levels of damage such that performance after a period of 

recovery or rehabilitation will be at a range of points between full relearning and almost no 

relearning lesioning requires removal of random connections across the whole model. 

Experimentation during the model’s development showed that localized lesions (e.g. just 

the incoming connection to semantics) did not produce a range of relearning performance 

instead giving an ‘all or nothing situation’ where the model either relearnt to 100% 

accuracy or failed to learn anything. In this study the model’s training attempts ecological 

validity in terms of  using online learning, in other words presenting each item to be learnt 

separately. Similarly the model’s knowledge is tested for all possible cross-domain 

mappings on each individual item in the same manner as a patient would be presented with 

items individually for naming or any other task (e.g. those from the PALPA (Kay et al. 

1992)).   The current study chose to try an explore a particular therapy issue as a way of 

demonstrating how PDP models can be used to predict therapy outcome by comparison to 

pre-existing clinical findings. Therapy set size, the number of items presented to a patient 

for learning during a therapy session, was chosen as a suitable therapy issue to be explored 

through modelling since there were already clinical findings and a meta-analysis (Snell, 

Sage and Lambon Ralph, 2010)  that showed what would be expected to happen in patients 

when therapy set size was varied. Thus the model could first simulate therapy and predict 

outcome performance before comparing results with clinical data to see how close the 

model comes to clinical findings so far. The current study uses a replication of a fully 

recurrent model of semantic memory (Rogers et al., 2004), which implements semantics as 

a convergence zone, as a starting point to consider recovery and rehabilitation learning. 
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This particular model was chosen because it proposed an account of semantics in terms of 

the emergence of amodal intermediate representational structures that facilitate the storage 

and transformation of information arising in different modalities. Furthermore, this 

representational structure was shown to be an emergent property of learning, such that the 

representations possessed an emergent category structure even though category was not 

coded per se in the training patterns. This model can also be used to account for the 

behaviour of brain damaged patients in rehabilitation tasks such as picture naming, because 

it provides an ideal basis for considering recovery and rehabilitation learning. 

 

Aims  
 

The current study set out to explore two factors with regard to rehabilitation. The first aim 

was to simulate previous observations regarding recovery and rehabilitation and to 

consider such findings with regard to the role of the learning environment and, specifically, 

the number of sensory modalities targeted during relearning. Most current therapy 

strategies involve unimodal learning tasks (Best and Nickels, 2000), yet many accounts of 

developmental learning prioritise the role of multimodality (e.g., discussions of temporally 

synchronous naming such as Gogate, Bolzani & Betancourt, 2006). Indeed, the model used 

for this study also adopts the view that developmental learning is multimodal,.  

The second aim of the simulations was to explore the degree to which the number 

of items used in rehabilitation affects the outcome and how this interacts with the level of 

damage. Whilst therapy set size often varies across therapy studies, it has only been 

explored formally in one case-series study (for a meta-analysis of 21 therapy studies, 

involving 109 patients and a targetted case-series investigation, see Snell, Sage and 

Lambon Ralph, 2010) and as a result there are no clear conclusions as to best practice or 
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how therapy set size should be varied according to the severity of the patient. More 

generally, if it were possible to predict the level of benefit achievable for a given level of 

damage severity in relation to manipulating the learning environment and therapy set size, 

therapists would have a particularly useful tool at their disposal. This investigation seeks to 

provide that tool and comment on its consequences for guiding clinical practice. 

 

 

Simulation 4.1:  

Manipulating the learning environment in rehabilitation. 
 

This simulation consists of examining manipulating the learning environment in 

rehabilitation. The multimodal versus unimodal comparison that is first explored for 

developmental and recovery learning in Chapter 1, and verified in a larger model in 

Chapter 3, is carried out for rehabilitation learning in this simulation. 

Method  
 
The Rogers et al. (2004) model of semantic memory was replicated and scaled up to 

support twice as many items for this study. Details of the implementation and initial testing 

were reported in Chapter 3, as such this method section only details model parameters that 

have changed since Chapter 3  
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Figure 4.1 Architecture of the model adapted from Rogers et al. (2004) 
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Figure 4.2 Architecture of the model redrawn as a generic PDP model with bidirectional mapping 
between each layer 

 

 Figure 4.2 illustrates the model in generic terms to show how an input representation 

(example e) of an object in any individual modality domain (layer), generates its own 

particular re-representation (denoted by H1,H2 or H3 from input in modalities M1,M2,M3 

respectively) as a pattern of activity across the hidden semantic units (i.e. the hidden layer 

H).  

 

Training Stimuli 
 

The representations upon which the model was trained were created from prototype 

patterns in the same manner as in the original model (Rogers et al., 2004) described in 

Chapter 1.  As previously stated the model in the current study is a scaled up version of the 

original capable of learning twice as many items (see Chapter 3 for technical details 
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regarding the scaling process). The name representations were localist with 72 of the 80 

units directly corresponding to a unique object upon which the model is trained. The four 

general object names (BIRD, ANIMAL, VEHICLE and TOOL) described in the Rogers et 

al. model , that would use the remaining name units were not used in the current study.  

 

Training the model  
 

As detailed in Chapter 3 the model was trained with the multimodal training regime until it 

had learnt all items accurately. Following the findings of the technical report detailed in 

Chapter 3 the identical four levels of lesion severity were again used for the simulations in 

the current study: Minimal - where the model relearns to 90% accuracy or higher.  Mild - 

where the model relearns to around 75% accuracy, Moderate - where the model relearns to 

around 55% accuracy, and Severe where the model relearns to around 30% accuracy or 

less. As previously discussed in Chapters 1, 2 and 3 this is not identical to the real situation 

of localised injury but uniform lesioning across the model was the only practical solution 

to generate an appropriate range of relearning abilities necessary for the current set of 

simulations. The model was then lesioned at four different degrees of damage severity: 

Minimal (88% of the model’s connections removed), Mild (90% of the model’s 

connections removed), Moderate (92% of the model’s connections removed) and Severe 

(93% of the model’s connection removed). It should be noted that small variations in the 

percentage of connections removed have a substantial impact upon the model’s learning 

behaviour. The model was then allowed to recover to a stable baseline (a sustained level of 

performance accuracy as shown in Chapter 3), by re-exposure to its original multimodal 

training regime with identical parameters. Therapy studies in patients test that patients are 

at a stable baseline performance, before therapy commences, for the items that will be 

learnt during therapy. At the end point of recovery to stable baseline the model is tested on 
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its ability to name the items it had originally learnt (i.e. for name input to generate correct 

target outputs in all other modalities). All the items were then rank ordered by error 

(largest error first), and the 20 items with the highet error values were selected for use in 

rehabilitation training. These 20 items were then alternately assigned to either the therapy 

set or the control set, 10 items in each set. Alternately assigning the items ensured that the 

magnitude of the overall error for each set was as equal as possible to avoid one set 

containing an excess of items with a high error value. As far as possible modelling has thus 

attempted to simulate clinical practice.  

 

As previously in Chapter 3, the model was trained on either one of two distinct training 

regimes multimodal or unimodal.  

It is worth reiterating that the unimodal regime was developed as a result of splitting the 

multimodal regime into all of its constituent singular unimodal cross-domain mappings, 

and reflects the type of tasks used in rehabiltation therapy. Unimodal training is a 

reflection of this separation of the multimodal and corresponds to contrasting the two 

common real-world learning environments, development (multimodal) and post-damage 

rehabilitation tasks (unimodal). The unimodal regime was considered analogous to the 

learning environment experienced during adult learning such as that occurring during 

recovery or rehabilitation after damage (e.g. in the case of stroke etc.). Often therapeutic 

learning post-damage consists of presentation of learning items in single input and output 

modalities (e.g. ‘spoken word to picture matching’ consists of visual input, picture 

presentation, and verbal output, the spoken word).   

 

For rehabilitation the learning rate was set to 0.01 (double the learning rate of 0.005 used 

in recovery, see Welbourne and Lambon Ralph, 2005b for the origins of this technique and 
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a discussion of its validity) To simulate rehabilitation, the model was trained for 90000 

weight updates (therapy often only occurs for an extremely short number of hours when 

contrasted with developmental learning), using either the multimodal and unimodal 

training regime, on the therapy set, for the four different levels of damage. This equates to 

3000 presentations in the multimodal condition (multimodal presentation of the entire 

therapy, or control, set takes 30 updates, i.e. 3 training trials for each of the 10 items). In 

contrast, this amount of training equates to 1000 presentations in the unimodal condition 

(unimodal presentation of the entire therapy, or control, set takes 90 updates, i.e. 9 training 

trials for each of the 10 items).  During training, the model was tested on its ability to 

generate the correct target outputs (to within 0.5) for items in the therapy set, as well as 

items in the control set, in all output modalities. Since the model received no training on 

the control set, the control items effectively correspond to untreated items in therapy.   

90000 weight updates was chosen for the duration of training through initial 

experimentation, as whenever the model’s learning had stabilised it had occurred by this 

time.  The simulation was run ten times in the multimodal condition and ten times in the 

unimodal condition, for the therapy and  control sets, and the results were averaged. 

During training, regular testing on each set recorded accuracy (percentage of examples 

correct upon testing), network error and representational economy (according to the 

equation derived below). 

 
Calculating representational economy in the semantic convergence zone 
 

As discussed previously in Chapter 1 as the model learns and structure develops, the 

semantic representations generated for unrelated objects become increasingly 

differentiated, whilst the representations of the same item elicited from different domains 

become more similar. Representational economy (RE) within the semantic layer was 
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formally investigated by developing a statistic that could quantify this process. RE was 

measured in the same manner during this rehabilitation investigation.  

 

 

Testing the network and analysing representational economy 
 
Representational economy, accuracy and error were calculated at regular intervals during 

the model’s training for items in the therapy and control sets. A 2x20 repeated measures 

analysis of variance (ANOVA) was conducted on these data to investigate the effect of 

manipulating the training regime (multimodal or unimodal) for each level of damage 

severity (minimal, mild, moderate or severe) at twenty equally spaced time points during 

training on the dependent variables (accuracy, representational economy and network 

error). For each of the simulations the correlation between representational economy, 

accuracy, and network error was calculated as the model learns to explore Representational 

Economy’s relationship to Accuracy and Network Error for a range of relearning 

scenarios. 

 

Results 
 
This simulation took a damaged model that recovers to baseline (analogous to therapy 

beginning after recovery to stable baseline) and exposed it to both multimodal and 

unimodal learning environments for training on a targetted set of items. It is worth 

remembering that the purpose is to compare performance of multimodal and unimodal 

learning environments, the specific interest of  this thesis is to see whether the efficiency 

advantages of the multimodal environment observed in developmental and recovery 

learning (see Chapters, 1,2, and 3) will also occur in rehabilitation learning.  
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Figure 4.3 Mean variation in training performance during rehabilitation after a minimal lesion 
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Table 4.1 2x20 ANOVAs indicating significant performance differences between training regimes 
during rehabilitation after a minimal lesion 

 
 
 
 

 
 
 
Rehabilitation After Minimal  Lesioning 
 
 
After minimal lesioning, performance on the therapy set improved only slightly from 

its initial performance in terms of accuracy and network error, however there was a 

Training Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Therapy 

Vs 
Unimodal 
Therapy 

Accuracy Training 1,9 18.297 0.002* 0.670 
Time 19,171 13.374 <0.001* 0.598 
Training*Time 19,171 1.390 0.137 0.134 

Representational 
Economy 

Training 1,9 87.027 <0.001* 0.906 
Time 19,171 199.837 <0.001* 0.957 
Training*Time 19,171 2.547 0.001* 0.221 

Network Error Training 1,9 33.181 <0.001* 0.787 
Time 19,171 26.690 <0.001* 0.748 
Training*Time 19,171 1.249 0.224 0.122 

Equated Error 
Multimodal 

Therapy 
Vs 

Unimodal 
Therapy 

Accuracy Training 1,9 0.007 0.934 0.001 
Time 19,171 4.638 <0.001* 0.340 
Training*Time 19,171 1.178 0.282 0.116 

Representational 
Economy 

Training 1,9 14.397 0.004* 0.615 
Time 19,171 259.579 <0.001* 0.966 
Training*Time 19,171 2.367 0.002* 0.208 

Network Error Training 1,9 2.328 0.161 0.206 
Time 19,171 20.106 <0.001* 0.691 
Training*Time 19,171 0.995 0.469 0.100 

Multimodal 
Control 

Vs 
Unimodal 
Control 

Accuracy Training 1,9 46.185 <0.001* 0.837 
Time 19,171 40.353 <0.001* 0.818 
Training*Time 19,171 15.878 <0.001* 0.638 

Representational 
Economy 

Training 1,9 143.890 <0.001* 0.941 
Time 19,171 51.448 <0.001* 0.851 
Training*Time 19,171 20.059 <0.001* 0.690 

Network Error Training 1,9 286.559 <0.001* 0.970 
Time 19,171 82.477 <0.001* 0.902 
Training*Time 19,171 4.283 <0.001* 0.322 
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large improvement in convergence amongst semantic representations measured as 

representational economy (as illustrated in Figure 4.3) . Multimodal training achieved 

significantly higher accuracy, representational economy and lower network error than 

unimodal training on the therapy set (a summary of the ANOVAs is provided in Table 

4.1). The control set demonstrated no improvement in performance, despite starting 

with higher accuracy, representational economy, and lower network error. Indeed, 

there was a deterioration of performance over the rehabilitation period which is due to 

catastrophic interference (McCloskey and Cohen, 1989) within the network. The 

equated error comparison only shows a statistically significant difference in 

representational economy  (see Table 4.1) between multimodal and unimodal training 

on the therapy set with no difference for accuracy or network error.   

 

Table 4.1 shows a statistically significant advantage for multimodal therapy over 

unimodal therapy with a significant effect of training and time on accuracy, 

representational economy and network error, and a significant interaction between 

training and time for representational economy. There is a statistically significant 

difference between equated error multimodal therapy and unimodal therapy in 

representational economy and a significant effect of time on accuracy, 

representational economy and network error. It is also clear to see that the multimodal 

control outperformed the unimodal control with a significant difference in accuracy, 

representational economy and network error. Representational Economy was strongly 

correlated with learning Accuracy for all conditions: Multimodal Therapy r(20)=.860, 

p<.001; Equated Error Multimodal Therapy r(20)=.884, p<.001; Unimodal Therapy 

r(20)=.900,p<.001;Multimodal Control r(20)=.958,p<.001;Unimodal Control 

r(20)=.987,p<.001. Representational Economy was strongly correlated with Network 
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Error for all conditions: Multimodal Therapy r(20)=-.895, p<.001; Equated Error 

Multimodal Therapy r(20)=-.990, p<.001; Unimodal Therapy r(20)=-.988,p<.001; 

Multimodal Control r(20)=-.988,p<.001;Unimodal Control r(20)=-.962,p<.001. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

! 169!

 
 
Figure 4.4 Mean variation in training performance during rehabilitation after a mild lesion
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Table 4.2 2x20 ANOVAs indicating significant performance differences between training regimes 
during rehabilitation after a mild lesion. 

 
 
 
 

 
 
Rehabilitation After Mild Lesioning 

 
After mild lesioning, performance on the therapy set improved from its initial 

performance in terms of accuracy and network error, and in convergence amongst 

semantic representations measured as representational economy (as illustrated in 

Training Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Therapy 

Vs 
Unimodal 
Therapy 

Accuracy Training 1,9 27.621 0.001* 0.754 
Time 19,171 21.378 <0.001* 0.704 
Training*Time 19,171 0.735 0.779 0.075 

Representational 
Economy 

Training 1,9 183.168 <0.001* 0.953 
Time 19,171 68.072 <0.001* 0.883 
Training*Time 19,171 1.726 0.036* 0.161 

Network Error Training 1,9 98.664 <0.001* 0.916 
Time 19,171 86.139 <0.001* 0.905 
Training*Time 19,171 0.663 0.851 0.069 

Equated Error 
Multimodal 

Therapy 
Vs 

Unimodal 
Therapy 

Accuracy Training 1,9 2.912 0.122 0.244 
Time 19,171 14.167 <0.001* 0.612 
Training*Time 19,171 1.189 0.272 0.117 

Representational 
Economy 

Training 1,9 35.868 <0.001* 0.799 
Time 19,171 35.381 <0.001* 0.797 
Training*Time 19,171 1.317 0.178 0.128 

Network Error Training 1,9 2.680 0.136 0.229 
Time 19,171 77.639 <0.001* 0.896 
Training*Time 19,171 1.546 0.076 0.147 

Multimodal 
Control 

Vs 
Unimodal 
Control 

Accuracy Training 1,9 26.638 0.001* 0.747 
Time 19,171 20.892 <0.001* 0.699 
Training*Time 19,171 10.532 <0.001* 0.539 

Representational 
Economy 

Training 1,9 316.024 <0.001* 0.972 
Time 19,171 214.212 <0.001* 0.960 
Training*Time 19,171 49.520 <0.001* 0.846 

Network Error Training 1,9 578.869 <0.001* 0.985 
Time 19,171 526.339 <0.001* 0.983 
Training*Time 19,171 4.195 <0.001* 0.318 
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Figure 4.4) . This improvement is greater than after minimal lesioning. Multimodal 

training achieves higher accuracy, representational economy and lower network error 

than unimodal training on the therapy set and this difference is confirmed as 

statistically significant by the results of the ANOVA in Table 4.2. The control set 

exhibited no improvement in performance, despite starting with higher accuracy, 

representational economy and lower network error. Again, the deterioration of 

performance is again due to catastrophic interference within the network. The equated 

error comparison only shows a statistically significant difference in representational 

economy (see Table 4.2) between multimodal and unimodal training on the therapy 

set with no difference for accuracy or network error.  

 

In Table 4.2 the results give a statistically significant effect of training and time on 

accuracy, representational economy and network error for multimodal therapy over 

unimodal therapy, in addition there is a significant interaction between training and 

time for representational economy. When comparing equated error multimodal 

therapy and unimodal therapy  there is a significant effect of time on  on accuracy, 

representational economy and network error for as well as a significant effect of 

training for representational economy. A multimodal advantage over the unimodal 

control is also shown by the statistically significant difference in accuracy, 

representational economy and network error. Representational Economy was strongly 

correlated with learning Accuracy for all conditions: Multimodal Therapy r(20)=.981, 

p<.001; Equated Error Multimodal Therapy r(20)=.968, p<.001; Unimodal Therapy 

r(20)=.984,p<.001; Multimodal Control r(20)=.788,p<.001;Unimodal Control 

r(20)=.922,p<.001. Representational Economy was strongly correlated with Network 

Error for all conditions: Multimodal Therapy r(20)=-.968, p<.001; Equated Error 



 

! 172!

Multimodal Therapy r(20)=-.995, p<.001; Unimodal Therapy r(20)=-.996,p<.001; 

Multimodal Control r(20)=-.976,p<.001;Unimodal Control r(20)=-.965,p<.001. 
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Figure 4.5 Mean variation in training performance during rehabilitation after a moderate lesion
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Table 4.3 2x20 ANOVAs indicating significant performance differences between training regimes 
during rehabilitation after a moderate lesion. Zero comparisons indicated by …… 

 
 
 
 

 
Rehabilitation After Moderate Lesioning 
 

After moderate lesioning, performance on the therapy set improved considerably from 

its initial performance in terms of accuracy and network error, and in convergence 

amongst semantic representations measured as representational economy (as 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size (η2) 

Multimodal 
Therapy 

Vs 
Unimodal 
Therapy 

Accuracy Training 1,9 137.170 <0.001* 0.938 
Time 19,171 85.301 <0.001* 0.905 
Training*Time 19,171 0.958 0.513 0.096 

Representational 
Economy 

Training 1,9 316.866 <0.001* 0.972 
Time 19,171 218.662 <0.001* 0.960 
Training*Time 19,171 5.306 <0.001* 0.371 

Network Error Training 1,9 239.710 <0.001* 0.964 
Time 19,171 298.847 <0.001* 0.971 
Training*Time 19,171 15.355 <0.001* 0.630 

Equated Error 
Multimodal 

Therapy 
Vs 

Unimodal 
Therapy 

Accuracy Training 1,9 0.266 0.619 0.029 
Time 19,171 38.854 <0.001* 0.812 
Training*Time 19,171 1.620 0.056 0.153 

Representational 
Economy 

Training 1,9 9.479 0.013* 0.513 
Time 19,171 203.963 <0.001* 0.958 
Training*Time 19,171 2.191 0.004* 0.196 

Network Error Training 1,9 0.049 0.829 0.005 
Time 19,171 187.180 <0.001* 0.954 
Training*Time 19,171 2.093 0.007* 0.189 

Multimodal 
Control 

Vs 
Unimodal 
Control 

Accuracy Training 1,9 …… …… …… 
Time 19,171 …… …… …… 
Training*Time 19,171 …… …… …… 

Representational 
Economy 

Training 1,9 151.614 <0.001* 0.944 
Time 19,171 123.475 <0.001* 0.932 
Training*Time 19,171 30.052 <0.001* 0.770 

Network Error Training 1,9 376.800 <0.001* 0.977 
Time 19,171 379.682 <0.001* 0.977 
Training*Time 19,171 4.989 <0.001* 0.357 
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illustrated in Figure 4.5) . This improvement wass much greater than after minimal 

and mild lesioning. Multimodal training achieved higher accuracy, representational 

economy and lower network error than unimodal training on the therapy set and this 

difference is confirmed as statistically significant by the results of the ANOVA in 

Table 4.3. There was no improvement in performance on the control set. The equated 

error comparison again only shows a statistically significant difference in 

representational economy (see Table 4.3) between multimodal and unimodal training 

on the therapy set, with no difference for accuracy or network error. 

 

Table 4.3 presents results showing that the better performance of multimodal therapy 

is a statistically significant difference from the unimodal in accuracy, representational 

economy and network error except for the non-significant interaction between training 

and time for accuracy. The table also shows a significant effect of time and an 

interaction between training and time for the comparison of  equated error multimodal 

and unimodal therapy as well as a significant effect of training on representational 

economy. The multimodal control performs better than the unimodal control with 

significant differences in representational economy and network error though neither 

training yielded any accuracy hence no statistical comparison was possible for 

accuracy. Representational Economy was strongly correlated with learning Accuracy 

for all conditions: Multimodal Therapy r(20)=.986, p<.001; Equated Error 

Multimodal Therapy r(20)=.996, p<.001; Unimodal Therapy r(20)=.998,p<.001; 

Multimodal Control (zero values so no calculation);Unimodal Control (zero values so 

no calculation). Representational Economy was strongly correlated with Network 

Error for all conditions: Multimodal Therapy r(20)=-.968, p<.001; Equated Error 
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Multimodal Therapy r(20)=-.970, p<.001; Unimodal Therapy r(20)=-.972,p<.001; 

Multimodal Control r(20)=-.979,p<.001;Unimodal Control r(20)=-.980,p<.001. 
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Figure 4.6 Mean variation in training performance during rehabilitation after a severe lesion
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Table 4.4 2x20 ANOVAs indicating significant performance differences betweem training 
regimes during rehabilitation after a severe lesion. Zero comparisons indicated by …… 

 
 
 

 
Rehabilitation After Severe Lesioning 
 

After severe lesioning, there was a large improvement in performance on the therapy 

set in comparison to its initial performance in terms of accuracy and network error, 

and in convergence amongst semantic representations measured as representational 

economy (as illustrated in Figure 4.6). This improvement is much greater than after 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size (η2) 

Multimodal 
Therapy 

Vs 
Unimodal 
Therapy 

Accuracy Training 1,9 370.592 <0.001* 0.976 
Time 19,171 188.864 <0.001* 0.955 
Training*Time 19,171 7.381 <0.001* 0.451 

Representational 
Economy 

Training 1,9 852.454 <0.001* 0.990 
Time 19,171 568.231 <0.001* 0.984 
Training*Time 19,171 17.788 <0.001* 0.664 

Network Error Training 1,9 410.685 <0.001* 0.979 
Time 19,171 334.504 <0.001* 0.974 
Training*Time 19,171 25.626 <0.001* 0.740 

Equated Error 
Multimodal 

Therapy 
Vs 

Unimodal 
Therapy 

Accuracy Training 1,9 0.017 0.900 0.002 
Time 19,171 80.227 <0.001* 0.899 
Training*Time 19,171 0.431 0.982 0.046 

Representational 
Economy 

Training 1,9 2.499 0.148 0.217 
Time 19,171 242.239 <0.001* 0.964 
Training*Time 19,171 1.475 0.100 0.141 

Network Error Training 1,9 0.041 0.844 0.005 
Time 19,171 246.587 <0.001* 0.965 
Training*Time 19,171 1.870 0.019* 0.172 

Multimodal 
Control 

Vs 
Unimodal 
Control 

Accuracy Training 1,9 …… …… …… 
Time 19,171 …… …… …… 
Training*Time 19,171 …… …… …… 

Representational 
Economy 

Training 1,9 229.850 <0.001* 0.962 
Time 19,171 152.488 <0.001* 0.944 
Training*Time 19,171 16.004 <0.001* 0.640 

Network Error Training 1,9 486.625 <0.001* 0.982 
Time 19,171 748.662 <0.001* 0.988 
Training*Time 19,171 13.009 <0.001* 0.591 
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minimal,mild and moderate lesioning. Multimodal training achieves higher accuracy, 

representational economy and lower network error than unimodal training on the 

therapy set and this difference is confirmed as statistically significant by the results of 

the ANOVA in Table 4.4. There was no change in performance for the control set. The 

equated error comparison shows no statistically significant difference in accuracy, 

network error or representational economy (see Table 4.4) between multimodal and 

unimodal training on the therapy set.  

 

Table 4.4 again shows the multimodal advantage as a statistically significant 

difference between multimodal and unimodal therapy in representational economy, 

accuracy and network error. Comparing equated error multimodal and unimodal 

showed an effect of time in accuracy, representational economy and network error as 

well as a significant interaction between training and time for network error. The 

comparison of the  multimodal and unimodal control shows a multimodal advantage 

with significant differences in representational economy and network error though 

accuracy remained zero for both forms of training hence no statistical comparison was 

possible for accuracy. Representational Economy was strongly correlated with 

learning Accuracy for all conditions: Multimodal Therapy r(20)=.967, p<.001; 

Equated Error Multimodal Therapy r(20)=.990, p<.001; Unimodal Therapy 

r(20)=.991,p<.001: Multimodal Control (zero values so no calculation):Unimodal 

Control (zero values so no calculation). Representational Economy was strongly 

correlated with Network Error for all conditions: Multimodal Therapy r(20)=-.945, 

p<.001; Equated Error Multimodal Therapy r(20)=-.971, p<.001; Unimodal Therapy 

r(20)=-.972,p<.001: Multimodal Control r(20)=-.985,p<.001:Unimodal Control 

r(20)=-.973,p<.001. 
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Simulation 4.2:  

Manipulating the learning environment and therapy set size in rehabilitation 
from stable baseline recovery that incorporates background spontaneous 
recovery. 
 

This simulation extends simulation 4.1 by examining manipulating the learning 

environment in rehabilitation whilst also allowing a background level of recovery to 

occur in parallel with learning. The goal of this chapter is to realistically simulate 

patient rehabilitation. Since spontaneous recovery can continue in patients during their 

rehabilitation (Howard, 1994), allowing a background level of recovery to occur in 

the model in parallel to rehabilitation learning offers a more realistic simulation of 

what happens in rehabilitation therapy. The multimodal versus unimodal comparison 

that was first explored for developmental and recovery learning in Chapter 1, and 

verified in a larger model in Chapter 3, is carried out for rehabilitation learning in this 

simulation whilst incorporating a background level of recovery learning delivered 

identically to the recovery learning described in Chapter 3. 

 

 

Method 
 
The model was trained in the manner described in Simulation 4.1 for the severe 

damage condition (i.e. 93% of connections removed, since that yielded a suitably low 

starting performance) with 10 items in the therapy and control sets. The following 
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modifications were made: throughout rehabilitation, for each epoch, the model was re-

exposed to the entire original training corpus at the same learning rate used during the 

model’s recovery to stable baseline (0.005). Similarly, at each testing point, the 

therapy and control sets were assessed but alongside the entire corpus set in order to 

gain a measure of background spontaneous recovery as well as the targetted 

rehabilitation.  This approach was taken to capture the fact that spontaneous recovery  

still occurs during therapy and to gain a measure of its effects.  

This simulation compared a therapy (and control) set size, of 5 items with a set 

size of 10 and 20 items, in order to explore the effect that this has on therapy outcome. 

All other parameters and processes in this simulation are identical to those used in 

simulation 4.1. Analysis also now included an ANOVA comparison of multimodal 

and unimodal background recovery. 

 

Results 
 

The results for Simulation 4.2 are presented first as summary bar charts showing the 

mean performance accuracy for all 10 models (simulated patients) alongside the 

individual results for each model (see Figure 4.7). This is done to draw as much 

comparison as possible to the reporting of data from therapy studies. Then the 

breakdown graphs of accuracy, representational economy and log network error are 

presented .It is also worth noting, in advance, that unlike previous observations (from 

Chapters, 1,2 and 3), equated error comparisons are no longer approximately identical 

to unimodal relearning performance. 
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Figure 4.7 Rehabilitation performance for therapy and control sets for set sizes of 5, 10 and 20 
items with background recovery. Performance shown for each of the 10 individual models then 
the mean performance is given on the far right of each chart 

 

Clearly smaller therapy set sizes resulted in better performance with multimodal 

training outperforming unimodal training, this time even after equating for error 

unlike in Simulation 4.1. The control sets showed no improvement in performance as 

would be expected for untreated items. The level of background spontaneous recovery 

remains roughly identical regardless of changes in therapy set size. 
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Rehabilitation with a therapy set size of 5 and background spontaneous recovery 
after a severe  lesion 
 
After severe lesioning, and with a therapy set size of 5, there was a large improvement 

in terms of accuracy and network error, and in convergence amongst semantic 

representations measured as representational economy (as illustrated in Figure 4.8) . 

Multimodal training achieves higher accuracy, representational economy and lower 

network error than unimodal training on the therapy set and this difference is 

confirmed as statistically significant by the results of the ANOVA in Table 4.5. The 

control set exhibits no improvement in performance. The equated error comparison 

shows statistically significant differences in accuracy, network error and 

representational economy (see Table 4.5) between multimodal and unimodal training 

on the therapy set. The level of background recovery is greater for multimodal 

training and shows statistically significant differences in accuracy, network error and 

representational economy  (see Table 4.5) compared to unimodal training.  

 

Table 4.5 shows an advantage for multimodal therapy over unimodal therapy as well 

as an advantage for equated error multimodal therapy over unimodal therapy with as 

statistically significant difference across the board in accuracy, representational 

economy and network error. The multimodal control did slightly better than the 

unimodal control as show by the significant effect of training  and a significant 

interaction between training and time for representational economy and an effect of 

training, time and a significant interaction between training and time in network error. 

Multimodal background recovery also did better than unimodal background recovery 

with a significant difference in accuracy, representational economy and network error 

but no effect of time on network error. 
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Representational Economy was strongly correlated with learning Accuracy for all 

conditions: Multimodal Therapy r(20)=.964, p<.001; Equated Error Multimodal 

Therapy r(20)=.932, p<.001; Unimodal Therapy r(20)=.914,p<.001: Multimodal 

Control r(20)=-.115,p=.630:Unimodal Control r(20)=.284,p=.225; Multimodal 

General r(20)=.651,p=.002:Unimodal General (20)=-.173,p=.466. 

Representational Economy was strongly correlated with Network Error for all 

conditions: Multimodal Therapy r(20)=-.954, p<.001; Equated Error Multimodal 

Therapy r(20)=-.958, p<.001; Unimodal Therapy r(20)=-.972,p<.001: Multimodal 

Control r(20)=-.734,p<.001:Unimodal Control r(20)=-.697,p<.001; Multimodal 

General r(20)=-.814,p<.001;Unimodal General (20)=--.881,p<.001. 
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Figure 4.8 Mean variation in training performance for a therapy set of 5 with background recovery during rehabilitation after a severe lesion
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Table 4.5 2x20 ANOVAs indicating significant performance differences between training regimes 
for a therapy set of 5 during rehabilitation after a severe lesion  

 
 
 
 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size (η2) 

Multimodal 
Therapy 

Vs 
Unimodal 
Therapy 

Accuracy Training 1,9 54.106 <0.001* 0.857 
Time 19,171 37.104 <0.001* 0.805 
Training*Time 19,171 9.209 <0.001* 0.506 

Representational 
Economy 

Training 1,9 181.149 <0.001* 0.953 
Time 19,171 27.442 <0.001* 0.753 
Training*Time 19,171 4.964 <0.001* 0.355 

Network Error Training 1,9 277.138 <0.001* 0.969 
Time 19,171 121.535 <0.001* 0.931 
Training*Time 19,171 1.997 0.011* 0.182 

Equated Error 
Multimodal 

Therapy 
Vs 

Unimodal 
Therapy 

Accuracy Training 1,9 20.585 0.001* 0.696 
Time 19,171 18.486 <0.001* 0.673 
Training*Time 19,171 7.979 <0.001* 0.470 

Representational 
Economy 

Training 1,9 346.459 <0.001* 0.975 
Time 19,171 37.463 <0.001* 0.806 
Training*Time 19,171 3.723 <0.001* 0.293 

Network Error Training 1,9 381.414 <0.001* 0.977 
Time 19,171 65.456 <0.001* 0.879 
Training*Time 19,171 3.004 <0.001* 0.250 

Multimodal 
Control 

Vs 
Unimodal 
Control 

Accuracy Training 1,9 2.087 0.182 0.188 
Time 19,171 0.851 0.643 0.086 
Training*Time 19,171 0.552 0.934 0.058 

Representational 
Economy 

Training 1,9 29.736 <0.001* 0.768 
Time 19,171 1.281 0.202 0.125 
Training*Time 19,171 1.593 0.063 0.150 

Network Error Training 1,9 133.423 <0.001* 0.937 
Time 19,171 1.650 0.050 0.155 
Training*Time 19,171 2.148 0.005* 0.193 
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Rehabilitation with a therapy set size of 10 and background spontaneous 
recovery after a severe  lesion 
 

After severe lesioning with a therapy set size of 10 there was a large improvement in 

terms of accuracy and network error, and in convergence amongst semantic 

representations, measured in terms of representational economy (as illustrated in 

Figure 4.9) . This improvement was less than that observed for a therapy set size of 5. 

Multimodal training achieves higher accuracy, representational economy and lower 

network error than unimodal training on the therapy set and these differences were 

confirmed as statistically significant by the results of the ANOVA in Table 4.6. The 

control set makes no improvement in performance. The equated error comparison 

shows statistically significant differences in accuracy, network error and 

representational economy  (see Table 4.6) between multimodal and unimodal training 

on the therapy set. The level of background recovery is greater for multimodal 

training and again shows statistically significant difference in accuracy, network error 

and representational economy  (see Table 4.6) compared to unimodal training.  

Training Regime 
Comparison 
[continued] 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Background 

Recovery 
Vs 

Unimodal 
Background 

Recovery 

Accuracy Training 1,9 14.219 0.004* 0.612 
Time 19,171 20.214 <0.001* 0.692 
Training*Time 19,171 6.406 <0.001* 0.416 

Representational 
Economy 

Training 1,9 56.926 <0.001* 0.863 
Time 19,171 2.200 0.004* 0.196 
Training*Time 19,171 3.183 <0.001* 0.261 

Network Error Training 1,9 192.158 <0.001* 0.955 
Time 19,171 1.396 0.134 0.134 
Training*Time 19,171 2.440 0.001* 0.213 
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In Table 4.6 the advantage for multimodal therapy over unimodal therapy can be seen 

in the statistically significant difference in accuracy, representational economy and 

network error  between the two regimes. There is also a statistically significant 

difference in accuracy, representational economy and network error  between equated 

error multimodal and unimodal therapy. The multimodal control performed better 

than the unimodal in terms of training and time for representational economy and 

network error. Multimodal background recovery also showed an advantage over 

unimodal background recovery with a significant difference in accuracy, there was 

also a significant effect of training on representational economy and network error, a 

significant interaction between training and time for representational economy and a 

significant effect of time on network error. Representational Economy was strongly 

correlated with learning Accuracy for all conditions: Multimodal Therapy r(20)=.958, 

p<.001; Equated Error Multimodal Therapy r(20)=.894, p<.001; Unimodal Therapy 

r(20)=.903,p<.001: Multimodal Control r(20)=-.096,p=.686:Unimodal Control 

r(20)=.033,p=.891; Multimodal General r(20)=.466,p=.039:Unimodal General 

(20)=.298,p=.201. Representational Economy was strongly correlated with Network 

Error for all conditions: Multimodal Therapy r(20)=-.987, p<.001; Equated Error 

Multimodal Therapy r(20)=-.981, p<.001; Unimodal Therapy r(20)=-.977,p<.001; 

Multimodal Control r(20)=-.912,p<.001;Unimodal Control r(20)=-.954,p<.001; 

Multimodal General r(20)=-.466,p=.039;Unimodal General (20)=-.908,p<.001. 
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Figure 4.9 Mean variation in training performance for a therapy set of 10 with background recovery during rehabilitation after a severe lesion
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Table 4.6 2x20 ANOVAs indicating significant performance differences between training regimes 
for a therapy set of 10 during rehabilitation after a severe lesion 

 
 
 
 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size (η2) 

Multimodal 
Therapy 

Vs 
Unimodal 
Therapy 

Accuracy Training 1,9 260.153 <0.001* 0.967 
Time 19,171 57.630 <0.001* 0.865 
Training*Time 19,171 26.107 <0.001* 0.744 

Representational 
Economy 

Training 1,9 519.540 <0.001* 0.983 
Time 19,171 20.641 <0.001* 0.696 
Training*Time 19,171 4.065 <0.001* 0.311 

Network Error Training 1,9 593.567 <0.001* 0.985 
Time 19,171 84.490 <0.001* 0.904 
Training*Time 19,171 3.280 <0.001* 0.267 

Equated Error 
Multimodal 

Therapy 
Vs 

Unimodal 
Therapy 

Accuracy Training 1,9 42.960 <0.001* 0.827 
Time 19,171 18.460 <0.001* 0.672 
Training*Time 19,171 6.824 <0.001* 0.431 

Representational 
Economy 

Training 1,9 59.778 <0.001* 0.869 
Time 19,171 34.062 <0.001* 0.791 
Training*Time 19,171 4.547 <0.001* 0.336 

Network Error Training 1,9 88.910 <0.001* 0.908 
Time 19,171 56.932 <0.001* 0.863 
Training*Time 19,171 6.257 <0.001* 0.410 

Multimodal 
Control 

Vs 
Unimodal 
Control 

Accuracy Training 1,9 1.374 0.271 0.132 
Time 19,171 1.137 0.318 0.112 
Training*Time 19,171 1.201 0.262 0.118 

Representational 
Economy 

Training 1,9 141.360 <0.001* 0.940 
Time 19,171 2.866 <0.001* 0.242 
Training*Time 19,171 0.937 0.538 0.094 

Network Error Training 1,9 134.815 <0.001* 0.937 
Time 19,171 6.684 <0.001* 0.426 
Training*Time 19,171 0.755 0.757 0.077 
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Rehabilitation with a therapy set size of 20 and background spontaneous 
recovery after a severe lesion 
 

After severe lesioning with a therapy set size of 20 there is only a small improvement 

in terms of accuracy but not network error, or representational economy (as illustrated 

in Figure 4.10) . This improvement is much less than that observed for a therapy set 

size of 5 or 10. Multimodal training achieves higher accuracy, representational 

economy and lower network error than unimodal training on the therapy set and these 

differences were confirmed as statistically significant by the results of the ANOVA in 

Table 4.7. The control set exhibits no improvement in performance. The equated error 

comparison shows statistically significant differences in accuracy and network error 

but not representational economy (see Table 4.7) between multimodal and unimodal 

training on the therapy set. The level of background recovery is only slightly greater 

for multimodal training and shows statistically significant difference in network error 

and representational economy (see Table 4.7) compared to unimodal training.  

Training Regime 
Comparison 
[continued] 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Background 

Recovery 
Vs 

Unimodal 
Background 

Recovery 

Accuracy Training 1,9 59.296 <0.001* 0.868 
Time 19,171 19.959 <0.001* 0.689 
Training*Time 19,171 20.681 <0.001* 0.697 

Representational 
Economy 

Training 1,9 44.943 <0.001* 0.833 
Time 19,171 1.458 0.107 0.139 
Training*Time 19,171 2.275 0.003 0.202 

Network Error Training 1,9 175.416 <0.001* 0.951 
Time 19,171 3.953 <0.001* 0.305 
Training*Time 19,171 1.169 0.289 0.115 
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In Table 4.7 the advantage of multimodal therapy over unimodal therapy can be seen 

in the statistically significant difference between the two in accuracy, representational 

economy and network error. There is also a significant difference  between equated 

error multimodal therapy and unimodal therapy  in training on network error and a 

significant effect of time and a significant interaction between training and time for 

representational economy, accuracy and network error. There is a significant 

difference between multimodal and unimodal controls for representational economy 

and network error. Finally there is a significant difference between multimodal and 

unimodal background recovery in training for representational economy and network 

error as well as a significant effect of time and a significant interaction between 

training and time in accuracy. Representational Economy was strongly correlated with 

learning Accuracy for all conditions: Multimodal Therapy r(20)=.963, p<.001; 

Equated Error Multimodal Therapy r(20)=.901, p<.001; Unimodal Therapy 

r(20)=.884,p<.001: Multimodal Control r(20)=.509,p=.019:Unimodal Control 

r(20)=.603,p=.001; Multimodal General r(20)=.736,p<.001:Unimodal General (20)=-

.028,p=.890. Representational Economy was strongly correlated with Network Error 

for all conditions: Multimodal Therapy r(20)=-.987, p<.001; Equated Error 

Multimodal Therapy r(20)=-.985, p<.001; Unimodal Therapy r(20)=-.988,p<.001: 

Multimodal Control r(20)=-.923,p<.001:Unimodal Control r(20)=-.955,p<.001; 

Multimodal General r(20)=-.466,p=.021:Unimodal General (20)=-.827,p<.001. 
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Figure 4.10 Mean variation in training performance for a therapy set of 20 with background recovery during rehabilitation after a severe lesion
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Table 4.7 2x20 ANOVAs indicating significant performance differences between training regimes 
for a therapy set of 20 with background recovery during rehabilitation after a severe lesion 

 
 
 
 

 
 
 
 
 
 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size (η2) 

Multimodal 
Therapy 

Vs 
Unimodal 
Therapy 

Accuracy Training 1,9 33.605 <0.001* 0.789 
Time 19,171 21.245 <0.001* 0.702 
Training*Time 19,171 10.138 <0.001* 0.530 

Representational 
Economy 

Training 1,9 375.967 <0.001* 0.977 
Time 19,171 21.420 <0.001* 0.704 
Training*Time 19,171 3.031 <0.001* 0.252 

Network Error Training 1,9 719.723 <0.001* 0.988 
Time 19,171 35.894 <0.001* 0.800 
Training*Time 19,171 3.341 <0.001* 0.271 

Equated Error 
Multimodal 

Therapy 
Vs 

Unimodal 
Therapy 

Accuracy Training 1,9 6.781 0.029* 0.430 
Time 19,171 11.158 <0.001* 0.554 
Training*Time 19,171 2.311 0.002* 0.204 

Representational 
Economy 

Training 1,9 0.062 0.809 0.007 
Time 19,171 23.854 <0.001* 0.726 
Training*Time 19,171 3.678 <0.001* 0.290 

Network Error Training 1,9 6.538 0.031* 0.421 
Time 19,171 39.059 <0.001* 0.813 
Training*Time 19,171 6.277 <0.001* 0.411 

Multimodal 
Control 

Vs 
Unimodal 
Control 

Accuracy Training 1,9 2.975 0.119 0.248 
Time 19,171 1.204 0.259 0.118 
Training*Time 19,171 0.287 0.999 0.031 

Representational 
Economy 

Training 1,9 866.123 <0.001* 0.990 
Time 19,171 4.381 <0.001* 0.327 
Training*Time 19,171 1.216 0.250 0.119 

Network Error Training 1,9 461.251 <0.001* 0.981 
Time 19,171 4.790 <0.001* 0.347 
Training*Time 19,171 1.132 0.324 0.112 
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Simulation 4.3:  

Manipulating the learning environment, therapy set size and lesion severity in 
rehabilitation from stable baseline recovery that incorporates background 
spontaneous recovery. 
 

This simulation extends simulations 4.1 and 4.2 by examining manipulating the 

learning environment in rehabilitation but examing the variation in performance at 

different severity levels when different numbers of items (here described as therapy 

set size) are used for rehabilitation whilst maintaining a background level of recovery 

to occur in parallel with learning. Having firmly established a multimodal advantage 

in all previous simulations documented in this thesis, this final simulation explores the 

effect of increasing therapy set size on learning performance at different levels of 

severity.   

 

 

Training Regime 
Comparison 
[continued] 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Background 

Recovery 
Vs 

Unimodal 
Background 

Recovery 

Accuracy Training 1,9 3.012 0.117 0.251 
Time 19,171 8.348 <0.001* 0.481 
Training*Time 19,171 10.946 <0.001* 0.549 

Representational 
Economy 

Training 1,9 149.186 <0.001* 0.943 
Time 19,171 1.625 0.055* 0.153 
Training*Time 19,171 1.727 0.036* 0.161 

Network Error Training 1,9 787.446 <0.001* 0.989 
Time 19,171 0.963 0.507 0.097 
Training*Time 19,171 0.836 0.661 0.085 
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Method 
 

In order to look for the possibility of severity by set size interactions the model was 

trained in the same way as Simulation 4.2 but this time from the stable baseline 

recovery point it achieved after a moderate lesion (i.e. 92% of connections removed) 

and only with therapy set sizes of 5 and 10 items. The results were combined with 

data from the model trained in Simulation 4.2 for the severe damage condition (i.e. 

93% of connections removed) for therapy set sizes of 5 and 10 item. This gave a 2x2 

design with which to explore the effect of manipulating therapy set size and damage 

severity (each explored at two levels)  for both the multimodal and unimodal learning 

environment training regimes. All other parameters and processes in this simulation 

are identical to those used in simulation 4.2.  

 

Results 
 

As expected the difference in rehabilitation performance between therapy sets of 5 or 

10 items are more pronounced for the severe lesion explored in Simulation 4.2 than 

for the moderate lesion explored in the current simulation. 

Other qualities observed in Simulation 4.2  are replicated here. Specifically, 

relearning performance of background recovery and control sets in both multimodal 

and unimodal conditions is virtually identical. Multimodal learning achieves better 

rehabilitation performance in all conditions. This multimodal advantage is more 

pronounced when therapy sets contain smaller numbers of items. The equated error 

multimodal condition tends to outperform the unimodal condition for smaller therapy 

set sizes and more severe lesions. 
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Figure 4.11 Mean variation in rehabilitation performance contrasting therapy sets of 5 or 10 items with background recovery after moderate and severe lesions 

 



 

! 198!

 

Rehabilitation with a therapy set size of 5 and background spontaneous recovery 
after a moderate lesion 
 

After moderate lesioning with a therapy set size of 5 there is a large improvement in 

terms of accuracy and smaller improvement for network error, and in convergence 

amongst semantic representations measured as representational economy (as 

illustrated in Figure 4.12) . This improvement is similar to that observed for a therapy 

set size of 5 with a severe lesion. Multimodal training achieves higher accuracy , 
representational economy and lower network error than unimodal training on the 

therapy set and this difference is confirmed as statistically significant by the results of 

the ANOVAs in Table 4.8. The control set makes no improvement in performance. 

The equated error comparison shows statistically significant differences in accuracy, 

network error and  representational economy  (see Table 4.8) between multimodal and 

unimodal training on the therapy set. The level of background recovery is now 

slightly greater for unimodal training, unlike after a severe lesion and shows 

statistically significant difference in accuracy, network error and representational 

economy  (see Table 4.8) compared to multimodal training. 

 

Table 4.8 presents results showing a statistically significant difference between 

multimodal and unimodal therapy for accuracy, representational economy and 

network error except for non-significant interactions between training and time for 

accuracy and network error. The equated error multimodal therapy also performed 

better than unimodal therapy for accuracy, representational economy and network 

error. The multimodal control also performed better showing a significant effect of 
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training and a significant interaction between training and time for both 

representational economy and network error. Mu;timodal background recovery also 

outperformed unimodal background recovery as illustrated in the significant 

differences between accuracy, representational economy and network error. 

Representational Economy was strongly correlated with learning Accuracy for all 

conditions: Multimodal Therapy r(20)=.961, p<.001; Equated Error Multimodal 

Therapy r(20)=.980, p<.001; Unimodal Therapy r(20)=.977,p<.001: Multimodal 

Control r(20)=-.272,p=.245:Unimodal Control r(20)=.456,p=.043; Multimodal 

General r(20)=.891,p<.001:Unimodal General (20)=.835,p<.001.Representational 

Economy was strongly correlated with Network Error for all conditions: Multimodal 

Therapy r(20)=-.963, p<.001; Equated Error Multimodal Therapy r(20)=-.965, 

p<.001; Unimodal Therapy r(20)=-.971,p<.001: Multimodal Control r(20)=-

.904,p<.001:Unimodal Control r(20)=-.796,p<.001; Multimodal General r(20)=-

.960,p<.001:Unimodal General (20)=-.964,p<.001. 
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Figure 4.12 Mean variation in training performanc for a therapy set of 5 with background recovery during rehabilitation after a moderate lesion
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Table 4.8 2x20 ANOVAs indicating significant performance differences during rehabilitation 
between training regimes for a therapy set of 5 with background recovery after a moderate  
lesion 

 
 
 
 

 
 
 
 
 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size (η2) 

Multimodal 
Therapy 

Vs 
Unimodal 
Therapy 

Accuracy Training 1,9 60.923 <0.001* 0.871 
Time 19,171 31.629 <0.001* 0.778 
Training*Time 19,171 0.953 0.520 0.096 

Representational 
Economy 

Training 1,9 153.346 <0.001* 0.945 
Time 19,171 33.290 <0.001* 0.787 
Training*Time 19,171 2.251 0.003 0.200 

Network Error Training 1,9 157.523 <0.001* 0.946 
Time 19,171 95.854 <0.001* 0.914 
Training*Time 19,171 1.493 0.093 0.142 

Equated Error 
Multimodal 

Therapy 
Vs 

Unimodal 
Therapy 

Accuracy Training 1,9 24.889 0.001* 0.734 
Time 19,171 17.176 <0.001* 0.656 
Training*Time 19,171 1.911 0.016* 0.175 

Representational 
Economy 

Training 1,9 91.612 <0.001* 0.911 
Time 19,171 38.972 <0.001* 0.812 
Training*Time 19,171 3.380 <0.001* 0.273 

Network Error Training 1,9 100.340 <0.001* 0.918 
Time 19,171 74.803 <0.001* 0.983 
Training*Time 19,171 6.096 <0.001* 0.404 

Multimodal 
Control 

Vs 
Unimodal 
Control 

Accuracy Training 1,9 4.047 0.075 0.310 
Time 19,171 1.407 0.129 0.135 
Training*Time 19,171 1.386 0.139 0.133 

Representational 
Economy 

Training 1,9 41.422 <0.001* 0.822 
Time 19,171 0.814 0.688 0.083 
Training*Time 19,171 1.855 0.021* 0.171 

Network Error Training 1,9 139.141 <0.001* 0.939 
Time 19,171 0.980 0.487 0.098 
Training*Time 19,171 1.802 0.026* 0.167 
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Rehabilitation with a therapy set size of 10 and background spontaneous 
recovery after a moderate lesion 
 

After moderate lesioning with a therapy set size of 10 there is a medium improvement 

in terms of accuracy and smaller improvement for network error, and in convergence 

amongst semantic representations measured as representational economy (as 

illustrated in Figure 4.13) . This improvement is similar to that observed for a therapy 

set size of 5 with a severe lesion. Multimodal training achieves higher accuracy , 

representational economy and lower network error than unimodal training on the 

therapy set and this difference is confirmed as statistically significant by the results of 

the ANOVAs in Table 4.9. The control set makes no improvement in performance. 

The equated error comparison shows statistically significant difference in accuracy, 

and  representational economy but not network error (see Table 4.9) between 

multimodal and unimodal training on the therapy set. The level of background 

recovery is now slightly greater for unimodal training, unlike after a severe lesion and 

shows statistically significant difference in accuracy, network error and 

representational economy  (see Table 4.9) compared to multimodal training.  

Training Regime 
Comparison 
[continued] 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Background 

Recovery 
Vs 

Unimodal 
Background 

Recovery 

Accuracy Training 1,9 57.254 <0.001* 0.864 
Time 19,171 4.793 <0.001* 0.348 
Training*Time 19,171 5.551 <0.001* 0.382 

Representational 
Economy 

Training 1,9 44.157 <0.001* 0.831 
Time 19,171 2.700 <0.001* 0.231 
Training*Time 19,171 4.137 <0.001* 0.315 

Network Error Training 1,9 138.771 <0.001* 0.939 
Time 19,171 1.690 0.042* 0.158 
Training*Time 19,171 3.218 <0.001* 0.263 
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Table 4.9 shows the multimodal advantage as a statistically significant difference 

between multimodal and unimodal therapy in accuracy, representational economy and 

network error as well as between equated error multimodal and unimodal therapy in 

accuracy, representational economy and network error with the exception of no 

significant effect of training on network error. The multimodal control performs better 

than the unimodal with a significant effect of training and time in accuracy, 

representational economy and network error. Similarly the multimodal background 

recovery outperforms the unimodal in accuracy, representational economy and 

network error. Representational Economy was strongly correlated with learning 

Accuracy for all conditions: Multimodal Therapy r(20)=.966, p<.001; Equated Error 

Multimodal Therapy r(20)=.946, p<.001; Unimodal Therapy r(20)=.949,p<.001: 

Multimodal Control r(20)=.104,p=.663:Unimodal Control r(20)=.483,p=.031; 

Multimodal General r(20)=.821,p<.001:Unimodal General (20)=.876,p<.001. 

Representational Economy was strongly correlated with Network Error for all 

conditions: Multimodal Therapy r(20)=-.984, p<.001; Equated Error Multimodal 

Therapy r(20)=-.956, p<.001; Unimodal Therapy r(20)=-.973,p<.001: Multimodal 

Control r(20)=-.919,p<.001:Unimodal Control r(20)=-.929,p<.001; Multimodal 

General r(20)=-.884,p<.001:Unimodal General (20)=-.957,p<.001. 
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Figure 4.13 Mean variation in training performance for a therapy set of 10 with background recovery during rehabilitation after a moderate lesion
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Table 4.9 2x20 ANOVAs indicating significant performance differences between training regimes for a 
therapy set of 10 with background recovery during rehabilitation after a moderate lesion 

 
 
 
 

 

 
 
 
 
 

Training 
Regime 
Comparison 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size (η2) 

Multimodal 
Therapy 

Vs 
Unimodal 
Therapy 

Accuracy Training 1,9 102.348 <0.001* 0.919 
Time 19,171 29.392 <0.001* 0.766 
Training*Time 19,171 5.885 <0.001* 0.395 

Representational 
Economy 

Training 1,9 713.347 <0.001* 0.988 
Time 19,171 23.475 <0.001* 0.723 
Training*Time 19,171 3.301 <0.001* 0.268 

Network Error Training 1,9 520.454 <0.001* 0.983 
Time 19,171 63.352 <0.001* 0.876 
Training*Time 19,171 2.467 0.001* 0.215 

Equated Error 
Multimodal 

Therapy 
Vs 

Unimodal 
Therapy 

Accuracy Training 1,9 23.354 0.001* 0.722 
Time 19,171 15.857 <0.001* 0.638 
Training*Time 19,171 4.511 <0.001* 0.334 

Representational 
Economy 

Training 1,9 208.567 <0.001* 0.959 
Time 19,171 21.507 <0.001* 0.705 
Training*Time 19,171 3.974 <0.001* 0.306 

Network Error Training 1,9 0.151 0.707 0.016 
Time 19,171 12.628 <0.001* 0.584 
Training*Time 19,171 2.719 <0.001* 0.232 

Multimodal 
Control 

Vs 
Unimodal 
Control 

Accuracy Training 1,9 9.455 0.013* 0.512 
Time 19,171 2.816 <0.001* 0.238 
Training*Time 19,171 1.234 0.235 0.121 

Representational 
Economy 

Training 1,9 171.143 <0.001* 0.950 
Time 19,171 2.121 0.006* 0.191 
Training*Time 19,171 1.431 0.118 0.137 

Network Error Training 1,9 192.947 <0.001* 0.955 
Time 19,171 2.831 <0.001* 0.239 
Training*Time 19,171 1.466 0.103 0.140 
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Discussion  

 

Summary of Results 
 

Simulation 4.1 
 

As lesion severity increases greater improvements in therapy sets were observed. 

Multimodal training was always more efficient than unimodal training. The equated error 

comparison would again suggest multimodal efficiency is a function of its higher error 

signal (as observed in the simulations reported in Chapters 1,2 and 3). It is also worth 

noting that greater improvement in therapy sets were accompanied by higher measures of 

representational economy in all cases. There was no improvement in performance on  

control sets. 

 

 

Simulation 4.2 
 

Training Regime 
Comparison 
[continued] 

Dependent 
Variable 
Measure 

Independent 
Variables 

df F p Effect 
size 
(η2) 

Multimodal 
Background 

Recovery 
Vs 

Unimodal 
Background 

Recovery 

Accuracy Training 1,9 137.304 <0.001* 0.938 
Time 19,171 2.083 <0.001* 0.188 
Training*Time 19,171 4.913 <0.001* 0.353 

Representational 
Economy 

Training 1,9 57.388 <0.001* 0.864 
Time 19,171 1.961 0.013* 0.179 
Training*Time 19,171 2.903 <0.001* 0.244 

Network Error Training 1,9 164.700 <0.001* 0.948 
Time 19,171 1.946 0.014* 0.178 
Training*Time 19,171 1.868 0.019* 0.172 
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The performance of background recovery learning  in both multimodal and unimodal 

conditions is virtually identical, though there is a slight multimodal advantage. Multimodal 

learning achieves better rehabilitation performance in all conditions. This multimodal 

advantage is more pronounced when therapy sets contain smaller numbers of items. The 

equated error comparison would suggest that multimodal efficiency is no longer just a 

function of its higher error signal but actually has a greater effect in pushing the network’s 

weights towards a correct solution for a given item. This effect is lost for larger numbers of 

items as shown  by the bar chart comparison in Figure 4.7, and the identical results for the 

multimodal equated error comparison and unimodal training for a therapy set size of 20. 

 

Simulation 4.3 
 

Simulation 4.3 echoes some of the findings in Simulation 4.2. There is a difference in the 

relearning performance of background recovery learning, which is greater for unimodal 

training after a moderate lesion, and greater for multimodal training after a severe lesion. 

Aside from these differences, however, it was again found that multimodal learning 

achieves better rehabilitation performance in all conditions. The multimodal advantage was 

consistently more pronounced when therapy sets contained smaller numbers of items. The 

equated error comparison would suggest, that multimodal efficiency is no longer just a 

function of its higher error signal for relearning small subsets of the original training 

corpus when accompanied by background recovery. It is likely that for small numbers of 

items, where learning occurs both at the original background recovery rate and at the 

higher (double) rehabilitation rate, simultaneous multimodal presentation results in 

network weights being pushed so substantially in the optimal direction of a correct solution 

and very few therapy items to conflict with, even the equated error comparison 

outperforms the unimodal condition. 
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Analysis of simulated rehabilitation in the context of real therapy 

The purpose of simulating rehabilitation was to attempt to gain a greater understanding of 

the cognitive mechanisms that support learning behaviour during rehabilitation. The 

advantage of considering learning within a simulation is the complete control that is 

possible over every aspect of the situation in which that learning takes place. Such degrees 

of control are impossible in clinical studies. Whilst therapists can administer therapeutic 

tasks in a near identical manner for a number of patients, it would be impossible for all 

patients to have brain damage of exactly identical severity and, perhaps more interestingly, 

for patients to be involved in relearning items of equal difficulty.  

The model of semantic memory used in this study employs a prototype system (see 

methods section of Simulation 4.1) to generate learning items for the model. These items 

are of identical semantic difficulty, something which is unlike the real world. It is possible 

then that variations in item difficulty within therapy may play a role in the efficiency of 

that therapy, which may account for the findings within this study that suggest therapy set 

size affects therapy outcome, since patients studies (see Snell, Sage and Lambon Ralph, 

2010) do not confirm this finding. The greater proportion gains for smaller therapy set 

sizes observed in the above simulations do not reflect existing research (see Figure 4.11 

and  Snell et al., 2010) where meta analysis and clinical studies were used to understand 

the effect of varying therapy set size. This study suggests that the advantages observed in 

proportion gain for small therapy set sizes are related to the degree of representational 

economy that develops during learning as a result of convergence processes. Snell, Sage 

and Lambon Ralph (2010) found no difference in performance improvement between 

using small and large therapy sets. However both their small and large sets contained a 

very small proportion of the total number of items humans are expected to be familiar with. 



 

! 209!

In contrast in Simulation 4.2 a therapy set size of 20 represents relearning  27.8% (20/72 

items) of pre-damage knowledge.  

 

This study set out predominantly with an interest in the effect of the learning environment 

(in terms of targeted modalities during therapy) on rehabilitation efficiency. All 

simulations showed a statistically significant advantage for multimodal learning regimes. 

Furthermore when multimodality was combined with small therapy set sizes in simulations 

4.2 and 4.3, a multimodal advantage was determined even if the number of presentations of 

each item for learning was identical (i.e., the equated error comparison). This finding 

suggests that for small therapy set sizes, rehabilitation learning benefits much more from 

multimodality than for large therapy set sizes.  

 

The results also show a difference in background recovery learning depending upon the 

degree of lesion severity: unimodal training appears to benefit background recovery more 

than multimodal training for less severe lesions (the moderate lesion case of simulation 

4.3). This finding is consistent for different therapy set sizes, suggesting that unimodal 

therapy perhaps drives improvements in recovery more than any rehabilitation effect it 

may have. 

 

Conclusion 
 

Multimodal learning was observed to be more efficient than unimodal learning in 

rehabilitation. Representational economy appeared to be a guide to the efficiency 

advantages for multimodal learning . During rehabilitation learning, the observed 

differences between multimodal and unimodal learning seem to be more accentuated in the 
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case of more severe lesions, and this is reflected in the representational economy measure, 

in other words driven by a need for convergent internal representations supporting 

learning. Simulation 4.1 established a basic principle of simulating rehabilitation and  

simulations 4.2 and 4.3 offer small refinements  towards addressing real-world therapy 

issues. The idea that it is possible to explore manipulations of damage severity and therapy 

set size in the context of manipulating the learning environment, yields a powerful 

approach to thinking about therapy, and predicting patient behaviour. Any insights that can 

be gained through simulation generate hypotheses for the manner in which rehabilitation 

occurs as a result of considering the connectionist mechanisms supporting rehabilitation. 

Thinking about multimodality in therapy makes intuitive sense when it is contrasted 

against findings of multimodal learning in children (Quinlan, 2003) that are supported by 

modelling. The current study used  a model of semantic memory that supports the idea that  

multimodal learning is more efficient due to simultaneous perceptions in multiple 

modalities offering a higher error signal as the brain attempts to develop internal 

representations that support and associate these perceptions. The findings from this study 

offer an appealing, and somewhat intuitive, case for adopting a greater degree of 

multimodality within rehabilitation therapy tasks and that multimodality is advantageous 

irrespective of therapy set size or damage severity, but can display greater advantage when 

considered in the context of these other factors. 
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General Discussion 

 

This concluding chapter of the thesis focuses upon summarising and reviewing the findings 

of the simulations described in the preceding chapters in the context of the two themes 

which this thesis set out to explore. At this point it is perhaps worth reiterating that the goal 

of this thesis was to consider simulations of learning during different life stages and thus 

simulate rehabilitation in the context of exploring those issues likely to be major factors in 

the success of patient-related work. The starting point for thinking about simulating 

rehabilitation, and consequently learning during different life stages, was the role of the 

learning environment in terms of the sensory modalities targeted during therapy. The 

evidence, both from PDP modelling and from experimental studies on children’s learning, 

that developmental learning is multimodal (as discussed in the introduction to Chapter 1) 

formed the starting point for thinking about simulating rehabilitation: Any PDP model that 

was to undergo rehabilitation learning must first necessarily undergo developmental 

learning with subsequent damage and recovery learning as a prelude to rehabilitation. The 

two themes that govern the explorations detailed in this thesis form an attempt at a logical 

structure with which to approach the problem of simulating rehabilitation whilst 

prioritising the inclusion of some facility to manipulate the learning environment and 

measure the impact of any manipulations upon learning efficiency.  

 

Summarising the findings and their implications in terms of thesis theme 1  
 

Theme 1 deals with the problem of attempting to understand how PDP models extract 

efficient and effective representations from the learning environment. As discussed in the 

introduction the starting point for both themes was a replication of the Rogers et al. (2004) 
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model of semantic memory. This model represented the most appropriate established 

model that possessed the necessary architecture and theoretical implications to explore 

rehabilitation.  Chapters 1 and 2 tackle theme 1: Chapter 1 described the results of 

simulations that compared multimodal and unimodal learning using an original quantitative 

measure of efficiency (representational economy). These results indicated that the 

efficiency of representation development was dependent upon the structuring of the 

learning environment. Throughout all simulations in the thesis representational economy 

was strongly correlated with accuracy and network error whenever learning took place in 

the model suggesting it took be an accurate measure of convergence in the model as a 

function of its developing structure as a result of learning. The multimodal and unimodal 

learning episodes yielded similar levels of accuracy after developmental and recovery 

learning, however the time course of learning showed significant efficiency advantages for 

multimodal learning that were proportional to the degree of multimodality found in the 

learning environment. When learning was considered at the item level, multimodal 

learning was found to be more efficient in terms of speed (accelerated early development) 

and convergence (representational efficiency) in development and recovery learning. It 

was also noted that multimodal learning yielded representations that were more robust to 

damage. Chapter 2 took this finding of an advantage for multimodal learning as a starting 

point to explore whether it was possible to rearrange unimodal learning tasks in such a way 

that would approximate the efficiency advantages of multimodal learning tasks by 

targeting every modality sequentially for each item in turn. The findings from Chapter 2 

indicate that this manipulation, while theoretically appealing, due to its potential 

consequences for patient-related work,  does not in fact achieve the benefits of multimodal 

learning, nor does it display greater efficiency than traditional task-focused unimodal 

learning. Robustness to damage, speed of recovery  and representational economy were 
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also  again examined as in Chapter 1, but there were no significant improvements on any 

of these measures. Chapter 2 thus cleared up the question of whether reorganised unimodal 

learning could approximate multimodal learning, suggesting that it is the simultaneity of 

multimodal item presentation that is important, as opposed to merely presentation order. 

The conclusion of Chapters 1 and 2 therefore is simply that the higher error signal 

available during simultaneous multimodal presentation of learning items is responsible for 

the multimodal advantage.  

Chapter 3 was a technical report on scaling up the Rogers et al. (2004) model so it was 

capable of learning twice the number of items (i.e 72 instead of 36). This was done so that 

there would be enough items to model rehabilitation therapy. Although rescaling a model 

is a non-trivial task the activity itself has no implications for this conclusion beyond it 

having been accomplished successfully and suggesting future research could benefit from 

further scaling of this model or work with other larger models. 

 

 

 

Summarising the findings and their implications in terms of thesis theme 2  
 

Theme 2 deals with how PDP models can be used to understand recovery and 

rehabilitation for impairments in the context of patient-related work. Following Welbourne 

and Lambon Ralph (2005b) Chapter 4 addresses this by modelling rehabilitation as intense 

exposure to a small number of items from the learning environment. Simulation 4.1 

showed that as lesion severity increases greater performance improvements in therapy sets 

were observed. Multimodal learning was always found to be more efficient than unimodal 

learning across all severities. Simulation 4.2 manipulated therapy set size and incorporated 
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background recovery learning into the simulation of rehabilitation by alternating trials of 

recovery and rehabilitation. Incorporating recovery like this offered greater realism within 

the simulation since any patient will still be exposed to a background learning environment 

during their rehabilitation therapy sessions. The role of set size has been explored in 

clinical rehabilitation studies: Snell, Sage and Lambon Ralph  (2010) recruited a case-

series of aphasic patients with varying severity and gave all of them the same naming 

therapy which varied in two levels of therapy set size. They found that patients learnt the 

same proportion of items irrespective of set size. Contrary to this clinical finding, when 

expressed as a proportion of set size the model showed a decreasing effect of therapy as set 

size increased. The model basically re-learned a roughly fixed number of items irrespective 

of set size and so the proportion varies accordingly. 

 

In contrasting the multimodal and unimodal learning conditions the performance of 

background recovery was virtually identical, though a slight multimodal advantage was 

evident. Multimodal learning achieved better rehabilitation performance in all conditions. 

This multimodal advantage was also more evident for therapy sets with smaller numbers of  

items. Simulation 4.3 extended Simulation 4.2 by adding a manipulation of lesion severity 

( at two levels - moderate and severe) to the manipulation of therapy set size with 

background recovery. A greater relearning performance of background recovery was found 

for unimodal training after a moderate lesion, and greater for multimodal training after a 

severe lesion. In general though and corresponding to findings from the other simulations 

in Chapter 4, multimodal learning achieves better rehabilitation performance in all 

conditions.  
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Review of the findings in the context of thesis theme 1  
 

Theme 1 deals with the problem of attempting to understand how PDP models extract 

efficient and effective representations from the learning environment.  

Most work on representations in PDP models has concentrated upon realism within input 

and output representations. One particularly notable example of this focus on improving 

input and output representations is Plaut et al.’s (1996) refinement of the representations in 

Seidenberg and McClelland’s (1989) triangle model of reading, which improved model 

performance and generated better non-word reading.  Similarly, Chang et al. (2012a) 

extended the model by moving the input representations from orthography to vision thus 

allowing the orthographic representations to emerge naturally. This resulted in 

improvements in accounting for a number of serial effects most notably the length effect in 

nonword reading. This thesis answers the question of the degree to which hidden layer 

internal representations are responsible for the efficiency with which conceptual 

knowledge is acquired, re-established after damage, and maintained over time. 

 

PDP models have three distinct types of representation: Input and output representations 

attempt to capture salient features of the external world whose relations can be learnt by 

the model as the simulation runs. The third type of representations are those internal 

representations that emerge within the model’s hidden layers as a consequence of learning, 

eventually developing into stable attractor states which support the model’s emergent 

acquired knowledge of the relationship between input and output representations. Much 

modelling work concentrates upon the nature of input/output representations as they relate 

to, and capture through encoding, aspects of the external world which the model wishes to 
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explore. Such research considers learned mappings and how they may account for the 

relationship between input and output representations in the context of how the brain may 

acquire and store such a relation within its neural network. The findings of this thesis 

contribute towards understanding the manner in which internal representations develop to 

support learning and the degree to which these representations are dependent upon the 

model’s learning environment. Analysis of internal representations is rarely done in PDP 

modelling work, two examples of how such analyses can be employed are the work of 

Rogers et al. (2004)  and Chang et al. (2012b). This thesis used the Rogers et al. (2004) 

model of semantic memory as a basis for the simulations conducted. Rogers et al.’s (2004) 

cluster analysis of internal representations gives an account of semantics where semantic 

representations generated for unrelated objects become increasingly differentiated, whilst 

the representations of the same item elicited from different domains (i.e. names, verbal 

descriptions and visual features) become more similar, thus semantics is accounted for as 

an emergent categorising structure that develops as the model learns. Chang et al. (2012b) 

developed a model of letter recognition that can deal with the problem of size and shape 

invariance. In order to try and understand the internal representations that support these 

properties they used a principal components analysis to check that the internal 

representations of different sizes and cases of the same letters their model learnt were 

similar, and thus that the model had learnt that variations of the same letter are related. The 

degree to which representations that PDP models extract from the learning environment are 

effective can be measured purely in terms of learning performance. So if a model has learnt 

to correctly map between all its input and output representations the model is clearly 

developing effective internal representations to support its learning. However efficiency is 

not so clear cut. Considering efficiency within internal representations means considering 

the performance measures of the model in terms of speed and accuracy of learning and 
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what qualities of the internal representations may be responsible for influencing these 

factors. This thesis has focused on comparing the internal representations that arise when 

the model is trained unimodally (i.e. on single inputs to single outputs) or multimodally 

(i.e. on single inputs to multiple outputs). Learning efficiency is dependent upon the 

structure that develops amongst the internal representations in terms of the degree to which 

a single internal representation can support multiple input output mappings between 

different domains for the same item.  

 

The thesis findings show consistent multimodal advantage in all simulations (see Chapters 

1,2 and 4) of learning at different life stages. One question this thesis addresses is what 

constitutes multimodality in models and how that may translate to patient-related work. In 

theory multimodal learning can be the presentation of  multimodal inputs that require 

single or multiple outputs or it can be the presentation of a single input that requires the 

production of multimodal outputs. This thesis takes the view that requiring the production 

of multimodal outputs is critical to producing efficient representations and is analogous to 

the manner in which developmental learning occurs. This view is supported in PDP 

modelling by Rogers et al. (2004) and developmental studies such as Gogate et al. (2006), 

as discussed in the Introduction and Chapter 1. This thesis was concerned with 

understanding learning during different life stages (i.e. developmental vs 

recovery/rehabilitation learning after brain damage) in order to question whether 

recovery/rehabilitation learning would benefit from the type of multimodal environment 

that drives developmental learning. Research in aphasia rehabilitation had suggested 

relearning after brain damage in adults may benefit from a multimodal learning 

environment (e.g. Howard et al, 1985), though this had focused on multimodal inputs. 

Focusing on the effect of multimodal outputs however seems potentially more beneficial 
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specifically because developmental learning is very efficient and occurs with multimodal 

outputs. Chapter 1 trains the models using this multimodal outputs approach and contrasts 

it with the performance of the same model trained unimodally (i.e. single input to single 

outputs). Findings show multimodal learning to be more efficient than unimodal so 

Chapter 2 considers whether rearranging the unimodal training order so that all unimodal 

mappings for the same item are presented together before moving on to the next item. The 

findings of this thesis show that multimodality is only advantageous in efficiency terms 

when it consists of simultaneous presentation to multiple output modalities, in other words 

when the production of multimodal outputs are required. Since Chapter 2 shows no 

advantage for a re-arranged unimodal training regime, this thesis concluded that the higher 

error signal available when the model is trained using simultaneous multimodal outputs 

drives learning efficiency. This type of multimodal training is then explored in Chapter 4 

in the context of rehabilitation learning where findings show the use of simultaneous 

multimodal outputs yields greater efficiency than unimodal outputs. The full implications 

of this are discussed in terms of patient-related work in the following section, in the 

context of thesis theme 2.  

 

Representational economy is defined in Chapter 1 as the average ratio between the 

similarity of semantic representation for unrelated examples in the same modality and the 

similarity of semantic representations for the same example from different modalities. The 

findings of this thesis show representational economy to be a novel, effective measure of 

efficiency in the replication of the Rogers et al. (2004) model used in the simulations 

described in Chapters 1 and 2, as well as in the scaled up version of the model described in 

Chapter 3 and used for the rehabilitation simulations in Chapter 4. This means that 

representational economy is a statistic that measures efficiency in learning at different life 
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stages (i.e. developmental, recovery and rehabilitation learning) that this thesis intended to 

investigate. One question that arises is how representational economy could be 

theoretically transferred for application to other types of neural network model. When 

considering transposing this measure to other types of model architectures it is necessary to 

solve the problem of identifying the area of the model where stable attractor states are 

established and then derive  measures of the convergence that capture efficiency. In PDP 

models without the convergence zone architecture of the model used in this thesis there 

tends to be a single input modality, in this case efficiency would be measured in terms of 

the degree of convergence in the representation of related items generated by input in the 

same modality. Chang et al.’s (2012b) model of letter recognition is an example of using 

inputs of related items (size and shape variations in the letter form) in the same modality 

and analysing the similarity of internal hidden layer representations generated. In other 

words looking at similarity within internal representations of related input items. The 

measure of representational economy could be extended to neural network models 

possessing this type of structure: For example, Kohonen Self-Organizing Maps (Callan, 

1999) have single input and single hidden layers, so representational economy would look 

at similarity of related items in the map generated at the hidden layer. Similarly Deep 

Belief networks (Hinton et al., 2006) have single input and multiple hidden layers. In this 

case representational economy could be measured as similarity at each hidden layer and it 

would be possible to look at variations in representational economy across layers to see 

where efficiency was most important during the model’s training. Whilst such models are 

not generally used in considering rehabilitation they still represent possible accounts of 

other cognitive processes so could probably be applied to more abstract theoretical 

considerations of rehabilitation learning at the neuronal level.  
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Review of the findings in the context of thesis theme 2 
 
Theme 2 deals with how PDP models can be used to understand recovery and 

rehabilitation for impairments in the context of patient-related work.  

 

As discussed in the previous section the findings of this thesis show that multimodality is 

only advantageous in efficiency terms when it consists of simultaneous presentation to 

multiple output modalities - although exactly how this requirement for simultaneity 

translates to human learning has yet to be fully established. One of the goals of this thesis 

was to simulate rehabilitation and consider those factors in the learning environment that 

may be responsible for rehabilitation efficiency. The intention of such simulations was to 

evaluate the degree to which PDP models could be used to design cognitive rehabilitation 

therapy. The simulations in Chapter 4 consider the role that the learning environment, 

therapy set size and lesion severity play in shaping the outcome of therapy; illustrating how 

therapies could be designed and evaluated using models. However, it is clearly important 

that simulation results are grounded by comparison with results from therapy studies thus 

providing a clinical benchmark for accessing the simulations. Unfortunately, to the best of 

our knowledge, the use of multimodal outputs has not been explicitly explored in clinical 

populations. Instead therapy that is considered multimodal consists of multimodal inputs 

with a single output target. For example the use of multimodal cueing hierarchies (Nickels, 

2002) that present semantic (picture) and phonological (verbal) cues to elicit word 

production, and there are many other similar examples (e.g. Wambaugh , 2003; Abel et al., 

2005 or Wright et al., 2008). However, as discussed in the previous section developmental 

learning does often demand multimodal outputs (Gogate et al., 2000; Messer, 1978). The 

results of the simulations in Chapter 1 show that learning with multimodal outputs is more 

efficient that unimodal learning. Chapter 4 confirms that learning with multimodal outputs 
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is more efficient in all learning scenarios at different life stages. This work therefore 

predicts that recovery and rehabilitation learning after brain damage will be most 

efficiently accomplished in a multimodal context that is similar to the context for 

developmental learning.  

 

The simulations in Chapter 4 select therapy items by rank-ordering items by the highest 

error  at stable baseline and then selecting the worst performing items for the therapy set. 

For therapy studies it is not possible to select items based on a continuous measure of 

error, but this method is approximated by selecting items that are consistently named 

incorrectly across multiple baselines. In clinical practice therapy items can be chosen in a 

variety of ways often depending on the nature of impairment and so this suggests future 

simulation work could usefully explore simulating different methods of selecting items for 

therapy. Renvall et al. (2013) provide an overview of the selection of aphasia therapy items 

that states the selection can be accomplished by considering the functional relevance of 

items selected. Renvall et al. (2013) offer the notion of two types of items; Personally 

chosen items and generally frequent items: Personally chosen items are words that a person 

with aphasia, their significant other and their therapist have identified as necessary for the 

patient to successfully communicate. These words will thus relate more directly to the type 

of activities the patient wishes to engage in in daily life. Generally frequent items are 

words that unimpaired adult speakers use often in their everyday conversations. These 

words are identified through objective counts of word frequency from large samples of 

spoken language. It is worth considering how these types of item selection could be re-

created in simulation? The important thing is that personally chosen items have no 

requirement to be generally frequent. For example specific language relating to hobbies or 

professional interests. This thesis uses a PDP model that uses prototypes so emulating 
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generally frequent items would require modifying prototypes so they could encode general 

frequency in their representation. This would make it possible to train on generally 

frequent items and personally chosen items could be implemented by random selection (i.e. 

without consideration of frequency) from the training corpus. The simulations in Chapter 4 

use items identified by their continual failure to be named (i.e. high error value on naming) 

by the model at stable baseline. This method of item selection does not take into account 

functional relevance of items however this would need to be considered in future research 

 

Although not one of the original questions, the results generated by the simulations in 

Chapter 4 allow for consideration of issues surrounding generalisation  to untreated items 

during rehabilitation simulation. Plaut (1996) describes generalization in PDP models as 

weight changes during relearning that are in the right direction to re-establish the model’s 

overall knowledge. Essentially this means that since the model’s knowledge of all items is 

encoded in the same set of weights any training that pushes the weights in the right 

direction also offers the possibility that the weights will be able to handle other items it 

was initially trained on, but which are only present in the untreated control set for 

retraining during simulated rehabilitation. The simulations in Chapter 4 show no evidence 

of generalization to untreated items, this concurs with Best et al.’s (2013) clinical findings 

on generalisation and perhaps is accounted for by her observation that only patients with 

intact semantics showed evidence of generalization. Given that this thesis uses a model of 

semantic memory for its simulations, and that rehabilitation is explored in the context of 

increasingly severe damage to semantics it is not surprising that there is no real evidence of 

generalization.  In a semantic system such as this model mappings are generally not 

systematic. Other systems like phonology will have much more systematic mappings and it 

may be this that determines whether or not generalisation is possible. Minor generalization 
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can be seen amongst untreated items when including background spontaneous recovery 

(see Figure 4.12) in Chapter 4 simulation 4.3 for small therapy and control set of 5 after a 

moderate lesion. In this case it would seem likely that generalization is driven by 

background spontaneous recovery in conjunction with rehabilitation, but is not achieved 

with rehabilitation alone. 

 

This thesis set out to simulate rehabilitation with a view to using the simulation to answer 

clinical questions about particular factors that affect therapy outcome. Therapy set size was 

chosen for the later simulation in Chapter 4 as there are some clinical findings regarding 

the effect of set size that the simulation outcome could be compared to in order to examine 

whether the simulation captured the real-world consequences of varying therapy set size. 

Two explanations seem possible for the discrepancy between clinical findings on therapy 

set size (i.e. patients learn the same proportion of items regardless of set size - Snell, Sage 

and Lambon Ralph, 2010) and the findings described in the simulations in Chapter 4 (i.e. 

the model learned the same number of items regardless of set size so the proportion learnt 

varies with size). In the model used in this thesis very few items are learnt compared to the 

number of items in average human vocabulary. So the number of therapy items used in 

simulation is a much higher proportion of the total number of items contained in the 

model’s knowledge than in clinical therapy, essentially in the model the capacity 

limitations are more acute than in the patients. The second issue for clinical comparison is 

item difficulty. The model’s use of prototypes means that item difficulty is balanced in a 

way that doesn’t happen in the real world. For instance training could be accomplished 

using a mixture of known and unknown items which would bring out greater differences in 

a model with limited knowledge. Overall this thesis suggests a way of testing theories 

regarding various approaches to item presentation in therapy.  Developing novel  therapy 
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theories requires precise formulation of clinical questions, and such questions  can be 

usefully explored outside of clinical settings by employing  computational frameworks that 

really learn and observing the consequences of certain therapy choices through simulating 

their outcome.   

 

Future directions 
 
The most important finding of this thesis is that simultaneous multimodal presentation of 

items for learning is the most efficient way to achieve learning. This finding makes an 

important prediction about patient-related work. All the simulations conducted testify to 

this finding however simultaneous multimodal presentation is likely to be hard to achieve 

in patient-related work and would require the development of new therapies based upon 

this principle. The clinical rehabilitation literature has called for more multimodality in 

therapy (e.g. Howard, 1985), but this has been limited to a focus on multimodal inputs 

generating single (i.e. unimodal) outputs as oppose to multiple (i.e. multimodal) outputs. It 

will be challenging to construct a learning environment that involves simultaneous 

multimodal inputs and outputs. It is likely that one possible source of inspiration for 

creating simultaneous multimodal learning environment may come from those 

observations of multimodal learning recorded in literature on developmental research such 

as the observations of Gogate et al. (2006). It is likely that structuring rehabilitation 

learning environments according to the environments in which young children learn 

multimodally may be one way to test the findings of this thesis in clinical research. 

Certainly the evidence from the rehabilitation simulations detailed in Chapter 4 suggests 

this would be beneficial as would some consideration of the interaction between lesion 

severity and the number of items used in therapy.  
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Future simulation work would necessarily benefit from larger models with vocabulary 

sizes that are more similar to those recorded in human knowledge. Such models would 

however require substantial computational resources and so pursuing such a line of enquiry 

would be hardware dependent to a certain degree. Further work with smaller models would 

likely still yield interesting results. For example it would be of interest to know how the 

nature of the mapping task changes the learning results. In the Rogers et al. (2004) model 

all the mappings are arbitrary, but in other domains there is considerably more 

systematicity in the mappings (e.g. reading). Similarly, models that incorporate the ability 

to simulate a wider range of rehabilitation tasks would also be of interest such as the 

inclusion of a motor domain to allow for simulating the role of gesture. Aphasia therapy 

sessions often contain gestural responses as clients attempt to communicate by all possible 

means. Simulating gesture in the context of the above conclusions regarding simultaneous 

multimodality represents one interesting next step that could arise from the work described 

in this thesis. 

 

 

Conclusion 

 
The thesis sought to answer three questions concerning learning occurring in different life 

stages: development; spontaneous recovery and rehabilitation.  Firstly, is multimodal 

learning more efficient than unimodal learning? This thesis finds multimodal learning 

more efficient in all learning scenarios across different life stages. Secondly, can 

multimodality be approximated as sequential presentations of the same item in multiple 

modalities or must it be simultaneous presentations in multiple modalities? This thesis 

finds that the benefit of multimodality in the model is dependent upon simultaneous input 

in multiple modalities to show any advantage over unimodal learning.  Finally, for 
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rehabilitation learning what effect does varying therapy set size have on learning efficiency 

in the context of the efficiency of the learning environment and the severity of damage? 

This thesis found that the proportion of items learnt varies with therapy set size. The same 

total number of items were learnt regardless of variation in set size. Overall the findings 

suggest a conclusion that rehabilitation therapy can be designed in terms of measurable 

gains in efficiency using increasingly realistic PDP models, and that the greatest challenge 

is converting the theoretical implications of model results to genuine advances in clinical 

practice. 
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