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The modern theory of seepage [infiltration 1 is based on the concept of 

a porous medium consisting of impermeable grains separated by pore 

spaces. Comparison of the results of theoretical and laboratory invest- 

igations of non-steady-state flow of liquids with data for strata under 

natural conditions leads to the conclusion that current concepts of a 

porous medium are inadequate. In all natural strata, the development of 

some degree of fissuring is a characteristic feature. The description of 

non-steady-state flow of liquids in fissured strata by means of the 

usual equations of infiltration theory can lead, in some cases. to con- 

flicting conclusions of qualitative nature. 

At first glance, it appears that non-steady-state seepage in fissured 

rocks can be studied by assuming a system of fissures, which are regular 

to some extent, in the stratum. Apparently, for studying seepage in 

fissured rocks, this method is not promising. Even if it were possible 

to overcome the enormous mathematical difficulties involved in solving 

problems of non-steady-state flow in strata with a system of fissures of 

a sufficiently general type, it is not possible to determine the con- 

figuration of this system with any degree of reliability. Information ob- 

tained in the analysis of cores - specimens of the rock obtained by drill- 

ing from the surface - gives very incomplete data on the fissure system. 

The position is to some extent similar to that which occurs in investigat- 

ing the flow of a liquid in an ordinary porous medium - even if it were 

possible to overcome all the difficulties involved in the integration of 

the equations of motion of a viscous liquid in the pore spaces, the 

method would not be suitable for investigating seepage, since the pore 

configuration remains unknown. Various models of a porous medium, which 
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are based on one or another type of arrangement of the system of pores 
and grains and on the study of the motion of the liquid in such SYStemS 
(ideal soil, fictitious soil, etc. [ 1 1 ), proved suitable only for the 
qualitative investigation of seepage phenomena. Seepage theory has 
followed the trend which is characteristic of the mechanics of continuous 
media generally, namely, the introduction of mean characteristics of the 

media and flow (porosity, permeability, pressure, Seepage Velocity, etc.) 

and the formulation of basic laws in terms of these mean characteristics. 

Such an approach. applied irrespective of whether or not the system 

of fissures is regular in the natural stratum, also proved most advan- 

tageous in investigating seepage in fissured rocks. 

In this paper, the basic concepts of the motion of liquids in fissured 
rocks are presented. Mean-characteristics are introduced, whereby the 
averaging is carried out on a scale which is large compared to the 
dimensions of the individual blocks. The difference between the present 
scheme and the more usual scheme of seepage in a porous medium COnSiStS 

in the introduction at each point in space of two liquid pressures - 
liquid pressure in the pores and pressure of the liquid in the fissures 
a, and in taking into consideration the transfer of liquid between the 
fissures and the pores. Under certain assumptions, an expression is ob- 
tained for the intensity of this transfer. The basic equation of the 
seepage of a liquid in a fissured rock and the same general equations of 
the seepage of liquid in a porous medium with a double porosity are de- 
rived. These equations will obviously contain, as a particular case, the 
equations for the seepage of a liquid in an ordinary porous medium; in 
the paper an evaluation is made which indicates for which cases the latter 
equations are valid and when the more accurate expressions given in this 
paper have to be used. The formulation of the basic boundary-value prob- 
lems for seepage equations in fissured rocks is considered. Some 
characteristic features of non-steady-state seepage in fissured rocks are 
discussed, particularly the possibility of the occurrence, under certain 
conditions, of a pressure jump [discontinuity 1 within the system and at 
the boundaries, similar to the “infiltration gap” in non-pressure seep- 
age [ 2 1. Conditions at jumps are derived, and the features pertaining 
to the formulation of boundary-value problems in the presence of jumps 
are pointed ant. Solutions are given of certain specific problems of non- 
steady-state seepage in fissured rocks. 

1. Basic physical concepts. A fissured rock consists of pores 
and permeable blocks, generally speaking blocks separated from each other 
by a system of fissures (Fig. 1). The dimensions of the blocks will vary 
for the various rocks within wide limits, depending on the extent to 
which fissures are developed in the rock. ‘Ihe widths of the fissures are 
considerably greater than the characteristic dimensions of the pores, so 
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that the permeability of the fissure system considerably exceeds the 

permeability of the system of pores in 

the individual blocks. At the same time, 

it is a characteristic feature of 

fissured rocks that the fissures occupy 

a much smaller volume than the pores, 

so that the coefficient of fissuring of 

the rock s1 - the ratio of the volume 

of the cavity space occupied by the 

fissures to the total volume of the 

rock - is considerably smaller than the 

porosity of the individual blocks mz. 

Much factual data on fissured rocks has 

been published in [3-9 I; the paper by Fig. 1. 

Pirson 14 1 is of particular interest, since it gives a qualitative de- 

scription of the structure of a porous medium with double porosity, which 

is close to that considered in this paper. 

If the system of fissures is sufficiently well developed, the motion 

of the liquid in fissured rocks can be investigated by the following 

method. Unlike the classical seepage theory, for each point in space, not 

one liquid pressure but two, p1 and p2 are introduced. The pressure p1 

represents the average pressure of the liquid in the fissures in the 

neighborhood of the given point, while the pressure pz is the average 

pressure of the liquid in the pores in the neighborhood of the given 

point. For obtaining reliable averages, the scale of averaging should 

include a sufficiently large number of blocks. Therefore, it is neces- 

sary to take into consideration that any infinitely small volume includes 

not only a larger number of pores, as is assumed in the classical theory 

of seepage, but also that it contains a large number of blocks. This con- 

dition permits the use of the method of analysis of infinitesimals in 

investigating fissured rocks. 

In a similar manner, two velocities of seepage of the liquid can be 

defined at each point in space: V, and V,. Vector V, of the seepage velo- 
city of the liquid along the fissures is determined as follows: the pro- 

jection of this vector in some particular direction is equal to the flow 

of the liquid through the cross-section of the fissures of a small zone 

passing through the given point in a direction perpendicular to the given 

direction, divided by the density of the liquid and the total area of 

this zone. In the same way, the projection of vector V,, the seepage 

velocity of the liquid through the pores in a given direction, will equal 

the flow of the liquid through the cross-section of the blocks of the 

small zone mentioned, also divided by the density of the liquid and the 
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total area of the zone. 

It is a characteristic of fissured rocks that the flow of the liquid 

proceeds essentially along the fissures, so that the flow velocity of 

the liquid through the blocks is negligibly small as compared to seepage 

of liquid along the fissures. 

If the boundary between the fissures and the blocks is imagined im- 

permeable, the fissured rock can be considered as being a coarse-grained 

porous medium in which the fissures play the role of pores and the blocks 

play the role of grains. If, furthermore, the fissures are sufficiently 

narrow and the velocity of the liquid is sufficiently small, the motion 

of the liquid along the fissures will be inertialess and Darcy's law is 

fulfilled: 

Vi=-+radp, (1.1) 

where k, is the permeability of the system of fissures and p is the vis- 

cosity of the liquid. Application of Darcy's Law to seepage along the 

system of fissures is not of principal importance; if desired, inertia 

of the motion can be taken into account,using thereby a more complicated 

nonlinear law. 

A characteristic feature of the non-steady-state motion of a liquid 

in fissured rocks is the transfer of liquid between the blocks and the 

fissures. Therefore, in investigating the seepage of liquids in fissured 

rocks it is necessary, in contrast to the classical theory of seepage, 

to take into consideration the outflow of liquid from the "grains" - 

blocks into the nporesn - of the fissures. 

The process of transfer of liquid from the pores and the blocks takes, 

place essentially under a sufficiently smooth change of pressure, and, 

therefore, it can be assumed that this pressure is quasi-stationary, i.e. 

it is independent of time explicitly. It is obvious in such a case that 

during motion of a homogeneous liquid in the fissures of the rock, the 

volume of the liquid u, which flows from the blocks into the fissures 

per unit of time and unit of volume of the rock, depends on the follow- 

ing: (1) viscosity of the liquid CL; (2) pressure drop between the pores 

and the fissures pi- pl; and (31 on certain characteristics of the rock, 

which can only be geometrical ones, i.e. they may have the dimension of 
length, area, volume, etc., or even be dimensionless. On the basis of 

dimensional analysis [lo 1, we obtain for v an expression of the type 

ZJ = p (Pz - PI) (1.2) 

where a is some new dimensionless characteristic of the fissured rock. 



1290 C.I. Barcnblatt, Iu.P. Zheltov and I.N. Kochina 

Thus, for the mass q of the liquid which flows from the pores into the 

fissures per unit of time, per unit of rock volume, the following equa- 

tion is valid: 

Q = ; (Pa - Pi) (1.3) 

where p is the density of the liquid. 

It should be pointed out that in a somewhat different form relation 

(1.3) was applied for the integral estimate of the flow along the stratum 

as a whole [ 11 I . 

2. Equation of motion of a uniform liquid in fissured 
rocks. In accordance with what has been said above, the law of conserv- 

ation of mass of liquid in the presence of fissures can be written as 

follows: 

%+divpVi---40 (2.1) 

In view of the smallness of the volume of the fissures, the first 

term, which expresses the change in mass of the liquid due to compres- 

sion in the fissures and changes in the volume of the fissures in some 

element of the rock, is small as compared to the second term, which ex- 

presses changes in the mass of the liquid caused by the inflow of the 

liquid along the fissures through the boundary of this element. There- 

fore, relation (2.1) can be disregarded. Inserting Equation (1.1) 

(Darcy’s Law) into Equation (2.1), taking into consideration the fact 

that the liquid is slightly compressible so that 

P = PO + VP (2.2) 

(pa is the density of the liquid at some standard pressure, for instance, 

the initial pressure in the stratum, /3 is the coefficient of compress- 
ibility of the liquid, 6p is the change in the pressure relative to the 

standard pressure), assuming that the medium is homogeneous and neglect- 

ing the small higher-order terms, we obtain 

~,APl+ a (Pz - P1) = 0 (A is Laplace operator) (2.3) 

Further, the equations of conservation of mass of the liquid which is 
present in the pores can be written thus*: 

* Strictly speaking, in Equation (2.4), m2 will not represent the 

porosity of the blocks but the ratio of the volume of the pores to 
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%+divpV,+q=O (2.4) 

so that the quantity of liquid which flows into the fissures equals the 
quantity of the liquid which flows out of the blocks. 

In view of the low permeability of the blocks, the second term of 

Equation (2.41, which expresses changes in the mass of the liquid within 

the pores in some element of the rock, due to the inflow of liquid along 

the pores through the boundaries of the element, can be disregarded as 
compared to the first term which represents changes in the mass of the 
liquid in the pores due to its expansion, and also to changes in the 
volume of the pores. Therefore, Equation (2.4) can be re-written as 

(2.5) 

Furthermore, the porosity of the blocks m2 in the case of a constant 
pressure of the upper strata of the rocks on the roof of the stratum de- 
pends, generally speaking, on the pressure of the liquid in the fissures 
p1 and the pressure of the liquid in the pores ps. However, the volume of 
the fissures in the rock is considerably smaller than the volume of the 
pores. It can be assumed that, in contrast to the liquid located in the 
pores, the liquid located in the fissures does not participate in support- 
ing the upper strata of the rock formations. Therefore, the influence of 
the pressure of the liquid in the fissures p1 on the porosity of the 
blocks can be disregarded as compared to the influence of the pressures 
of the liquid in the pores p2, and it can be assumed that 

dm2 = Pc2dp2 (2.6) 

where pez is the coefficient of compressibility of the blocks. Taking 
into consideration, also, relations (1.3) and (2.2) and neglecting small 
terms of higher order, we obtain 

(PC2 + m,P) g + f (~2 - pl) = 0 (2.7) 

where mO is the magnitude of the porosity of the blocks at standard pres- 
sure. Equations (2.3) and (2.7) d escribe the motion of the liquid in 

the entire volume of the rock, including the volume of the fissures. 

However, in view of the small relative volume of the fissures compared 
to the relative volume of the pores, a) can be considered as repre- 
senting the porosity of the individual blocks. 
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fissured rocks. Eliminating from these equations p2, we obtain for the 

pressure of the liquid in the fissures p1 the equation 

3Pl 8APl -- 
at q at - = XAPI 

kl kl 

( %= pL(Pc,+MvY q = a, (2.8) 

The coefficient K represents the coefficient of piezo-conductivity of 

the fissured rock; it is interesting that this does not correspond to 

the permeability of the system of fissures k, but to the porosity and 

compressibility of the blocks. The coefficient n represents a new 

specific characteristic of fissured rocks. If 77 tends to zero, it cor- 

responds to a reduction of the block dimensions and an increase in the 

degree of fissuring, and Equation (2.8) will obviously tend to coincide 

with the ordinary equation for seepage of a liquid under elastic condi- 

tions. 

An approximate estimate of the possible magnitudes of the coefficient 

n will be made. 'Ihe dimensionless coefficient a, characterizing the in- 

tensity of the liquid transfer between the blocks and fissures, depends 

on the permeability of the blocks k, and the degree of fissuring of the 

rock, as a measure of which it is obvious to take the specific surface 

of the fissures u, i.e. the surface of the fissures per unit of volume 

of the rock. 'Ihe quantity o has the dimension of the reciprocal of length. 

On the basis of dimensional analysis we obtain 

ct - k2a2 (2.9) 

From this and Equation (2.8) we obtain 

h 
rl 

kl 2 ---- 
kg2 kz’ 

where 1 is the average dimension of a single block (the specific surface 

of the fissures is inversely proportional to the average dimension of a 

single block). Evaluations show that for various rocks the parameter 77 

will assume values within wide limits - from a few cm* to values of the 

order of lOlo cm*. 

Determination of the parameter v should be carried out by means of 

data for the steady-state flow of liquids in fissured rocks. Thus, where 

natural strata are involved, determination of this parameter should be 

carried out only on the basis of investigations of the behavior of the 

stratum under non-steady-state conditions and not on the basis of tests 

carried out on rock specimens brought to the surface. 

3. Equations of motion of a homogeneous liquid in a medium with double 

DOrOSity. The system of equations (2.3), (2.7) represents a particular 
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case of the system of equations of motion of a homogeneous liquid in a 
medium with double porosity. In some cases the latter equations may be 

of interest and, therefore, we will deal briefly with their derivation. 

The motion of a uniform liquid in a “double” porous medium will be 

considered: the first porous medium consists Of relatively wide Pores Of 
the first order - fissures and blocks; the relative volume of the pores 

of the first order, the porosity of the first order, equals ml. The 
blocks in themselves are porous, consisting of grains which are separated 
by fine pores of the second order; together they form the second porous 
medium. The porosity of this medium - the porosity of the second order - 
is designated by a2. It is pointed out that, generally speaking, m2 can- 
not be considered equal to the porosity of the blocks, since rnz repre- 
sents the ratio of the volume of the second-order pores to the total 
volume of the elements of the rock in which a known space is occupied by 
the fissures - pores of the first order. In the case where the upper 

strata exert a constant pressure on the roof of the stratum, both poro- 
sities, ml and m2, will depend on the pressures of the liquid in the 
pores of the first and second order, p1 and pq, so that 

dml = Pcldpl - P*dpt, 

where Pcl# Pc2# Pap P,, are positive constant coefficients. 

The equations for conservation of mass of the liquid for both media 
are of the form (2.1) and (2.4). respectively. Assuming that the flow of 
the liquid in the first medium (and thus also in the second medium) is 
inertialess, the Darcy law for both media can be written as 

VI = - 8 grad pl, Vs = -$ggradp, 

where k, is the porosity of the system of pores of the first order and 
k, the porosity of the system of pores of the second order. 

By inserting into Equations (2.1) and (2.4) relations (3.2), Expres- 
sion (1.3) for the liquid flow from one medium to the other (which will 
obviously remain valid even in this more general case), relation (2.2) 
for the density of the liquid and relation (3.1) for the (differentials 
of the porosity), and discarding smali quantities of higher order for 
the pressures of the liquid in both media pl and p2. the following 
system of equations is obtained: 

(3.3) 

2 API = (PCl + mloP)g - P, -$ 
dP9 

- ; (Pz - Pl) 

$ APZ = (Pc2 + 
aP2 

m2oP) at -P,, at am + + (Pz -Pd 
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where m1 and #2 are the values of the first and second order porosity at 

standard pressure. 

If the pressure pq changes, say decreases, at a constant pressure of 

the upper strata on the roof, the porosity of the first order will in- 

crease, on the one hand, as a result of the compression of the blocks 

and, on the other hand, it will decrease as a result of compression by 

the overlying strata. These effects will apparently compensate each other 

to some extent. The situation is similar for the second-order porosity 

a2 in the case of a change in the pressure pl. It is, therefore, advis- 

able to consider the model of the double porosity of the medium for which 

the porosity of each order depends only on the appropriate pressure, so 

that the coefficient p, and p,, in Equation (3.1) can be considered small 

and the appropriate terms in Equation (3.1) can be disregarded. 

Equations (3.3) for such a model of a porous medium with double poro- 

sity will be of the form similar to the equations for heat transfer in a 

heterogeneous medium considered by Rubinshtein cl2 1: 

Disregarding in Equations (3.3) the terms representing a change in 

the mass of the liquid due to the compressibility of the first medium 

and the compression of the liquid in the pores of the first order, and 

the changes in the mass of the liquid as a result of the seepage inflow 

along the pores of the second order, we again obtain the equations of 

motion of a liquid in a fissured porous medium (2.3) and (2.7). 

4. Basic boundary-value problems of the theory of non- 
steady-state seepage in fissured rocks. Equation (2.81, to which 

corresponds the pressure distribution of the lilguid in the pores pl, can 
be written as 

PO g - div [: grad p1 + T& g grad pl] = 0 

where PO is tk total effect of compressibility equalling PC2 + I@. 
This form of writing the basic equation indicates that motion in the 
system of fissures can be considered as the motion of a liquid in a 
porous medium with a total compressibility coefficient p,,, and the ex- 
pression for the velocity of seepage of the liquid can be written as 

h’ = - :gradp, - VP0 kgradp, 
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‘Ihe initial and the boundary conditions have to be added to Equation 
(2.8). As in the theory of seepage in a porous medium, the steady-state 
initial conditions are of greatest interest in the given case (i.e. the 
harmonic initial distributions pl, which satisfy Equation (4.1)). Among 

the possible types of boundary conditions the most important are the 
following: 

1) The pressures pI at the boundary of the rock of volume s under con- 
sideration are given (first boundary-value problem): 

Pl Is = I (S, t) (4.3) 

2) At the boundary s the flow of the liquid is given (second boundary- 
value problem), the following quantity being given, in accordance with 
what was stated above, at the boundary of the surface S: 

- (4.4) 

(J/an is the derivative along the normal to the surface S), and, finally, 

3) At the boundary a linear combination of the pressure and the flow 
of the liquid, generally speaking with variable coefficients A and B, is 

given (mixed problem): 

(4.5) 

If the initial pressure-distribution is continuous and the boundary 
conditions are consistent with the initial ones (i.e. the boundary values 

of the initial distribution on approaching the boundary points equal to 
the boundary values of the corresponding functions at the initial instant 
of time), the solutions of the above-stated boundary-value problems will 
be the ordinary classical solutions (4.1). However, if the initial pres- 
sure distribution is discontinuous or if the initial and the boundary 
conditions are unrelated, then the derived distributions will also be 
discontinuous and there is no classical solution for the boundary-value 
problems formulated .above; it is necessary to seek a generalized solution 
in the sense of Sobolev [ 13 1. To proceed further it is necessary to de- 
rive the conditions at the discontinuities. It is sufficient to consider 
the one-dimensional case, since in the neighborhood of the given point 
the surface of discontinuity can be considered as being plane. thus, it 
is assumed that within a sufficiently small vicinity on both sides of the 
isolated discontinuity surface x = 0 (x is the direction of the normal to 
the surface of the discontinuity), the function p1 is continuous, has 
appropriate continuous derivatives and satisfies the equation 
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(4.6) 

In the region G(- h G n Q h, 0 < t< T), where h is a small number, 
the terms in the expression Lpl are piece-wise continuous. E%y means of 

term-by-term integration of Lpi along the region G we obtain 

; (4.7) 

1 Lpi dx dt = p,, i {pI (x, T) - p1 (x, 0)) dx - i {T@, z -;- + $1 I.‘= dt = 0 
G -11 0 jX=-!i 

For h + 0 the first integral tends to zero and the preceding equality 
yields 

r 

il . ho ;gj (4.8) 
;; 

where as usual the sign [ 1 designates the difference between the values 
of the function on both sides of the discontinuity surface. Since T is 
arbitrary and the expression under the integral sign is a continuous 

function of time, it foliows that the expression under the integral sign 

equals zero: 

(4.9) 

i.e. the condition of continuity at the surface of discontinuity of the 

total flow of the liquid (a/& was replaced by a/an). To obtain the 

second condition, Equation (4.6) is multiplied by x and integration is 

carried out over the same region G: 

5 ALP, dx dt = Po i {PI (~9 T) - ~1 k, O,} xdx - 
-h 

T 

- S{ @ox a&jtJj- a?pl+;x~} h & _\{‘l~o~+~pl] h dt = 0 

0 -h 0 --h 

As h -, 0, the first and second integrals will become zero, and thus 

we obtain 
T 

(4.10) 
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so that the second condition at the surface of discontinuity 

in the form 

1297 

is obtained 

(4.11) 

For n = 0 the basic conditions at the surface of discontinuity (4.9) and 

(4.11) will change into the condition of continuity of the function and 

its derivative along the normal to any surface, i.e. the condition of 

absence of discontinuities+, which is well known in the theory of heat 

conduction and the theory of seepage in a porous medium. 

Integrating (4.9) and (4.11), we obtain the conditions at the discon- 

tinuities in the form 

(4.12) 

so that the pressure jumps and normal derivative of pressure Khich occur, 

due to the discontinuity or due to inconsistent initial conditions, will 

not be eliminated instantaneously as in a porous medium (and as is the 

case for jumps in temperature and heat flow in the theory of heat con- 

duction) but will decrease in accordance with the law eWKt/n. 'Ihis pro- 

perty is a characteristic qualitative feature of the mathematical de- 

scription of non-steady-state flow in fissured rocks, which is comparable 

with flow through a porous medium. 

5. Some specific problems of non-steady-state flow in 
fissured rocks. General qualitative conclusions. 1. Non-steady- 

state flow of liquid in a gallery. From the literature the importance of 

the study of non-steady-state seepage in drainage galleries is well known. 

This problem is formulated as follows: at the initial instant the pressure 

of the liquid in a semi-infinite stratum (0 Q x < =)P, is constant; the 

pressure at the boundary x = 0 suddenly assumes the value P,, differing 
from Pa, and then remains constant. 'lhe problem of determining seepage 

flow requires the solution of the equation 

l In obtaining the second law of conservation in a medium with a vari- 

able permeability coefficient k, it is necessary to multiply both 

Parts of Equation (4.6) by 
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3Pl @Pl __- 
at q ax%3t 

&aZPl 
al+ (5.1) 

for the uncoordinated initial and boundary conditions 

Plc? 0) = PO, Pl(--o, t) = p, (5.2) 

(the boundary pressure is given inmediately to the left of the boundary 
x = 0). At the initial instant there will be a pressure jump at the 
boundary equal to (PO - P,); according to (4.121, at time t this jump 
will equal (P, - P )e+t/q, so that the pressure of the liquid imnediate- 
ly to the right of’the boundary will equal 

p1 (+ 0, t) = P, + (P, - P,) e-X’l” (5.3) 

To find the pressure distribution at any desired instant of time t, 
the Laplace transform with respect to time t is applied. We set 

p1 (x, t) == p, - (PO - P,) u (2, t) (5.4) 

Then, for determining u(x, t) (t > 0, 0 d x < m ), we obtain the bound- 
ary-value problem 

ih d3l.4 SU 
-- 

at q axzat -=Xs, u (f 0, t) = 1 - e-x’/?, a (x,0) = 0 (5.5) 

Let 

u (Lx, 3L) = 7 e--ht u (a, t) dt 
6 

Applying the Laplace transform to Equation (5 5) we obtain 

d2U __ 
dX2 

U(oo, h) = 0 (5.6) 

whence, on the basis of the known rule of inversion 114 I, we obtain 

The evolution of the integral on the right-hand side of the previous 
equation yields 
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I 

2rci -2i e--"'sin 
s 
0 

1299 

(5.8) 

Inserting this expression into Equation (5.7) 
variables o/(1 - a) = v', we 

and substituting the 
obtain 

00 

.@J)=l-:\+ sinvxexp , ( 
-$$--dv=l-exp(-~)_ 

0 

2 ml v%t 
~ -- s y sinvx exp i ( - j, + v2q > - exp n ( )I -f dv 

0 

(5.9) 

From this and from Equation (5.4) we finally obtain 

p1 (x, t) = P, + 2 ‘po; ‘l)rF[exp(-*)-exp(-z)}dv+ (5.10) 

0 

+ (PO - P,) exp (-F) 

Since the integral in Equation (5.10) and the integral obtained after 
differentiation with respect to n under the integral sign are both uni- 
formly convergent, the expression given by EQuation (5.10) can be differ- 
entiated with respect to x. Hence, from Equation (5.10) we obtain the 
expression for the flow of the liquid through the boundary of the stratum 
x=0 

- exp 

(5.11) 

It is interesting to compare the derived solutions with the appropri- 
ate solution of the problem of the theory of seepage in a porous medium. 
'Ihis well-known self-similar solution is obtained from Equation (5.10) 
for the case when '1 = 0 

(5=&) (5.12) 
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where Cp is the symbol of the Kramp function. For comparing the pressures, 
Equations (5.10) and (5.12) which correspond to fissured and ordinary 
porous media, respectively, the distribution quantities u(x, t) = (pl - 

P,)lR - P,) for various values of the parameter tct/q have been plotted 
as a function of the self-similar variable E in 
Fig. 2. (The calculations were carried out by A. 
L. Dyshko at the Computing Center of the Academy 
of Sciences, USSR). It can be seen that with 

ium 

increasing Kt/q the pressure distribution in a 
fissured rock tends to the self-similar distribu- 
tion which is obtained in an ardinary porous me 
medium. 

2. Non-steady-state 
infiltration of a liquid 
from a well discharging 

state infiltration of a 
liquid from a well of in- 

a IO ZO 10 E finitely small radius 
with a constant yield is 

Fig. 2. of considerable interest. 
It is formulated as follows: an infinite horizontal stratum of constant 
thickness h is penetrated by a vertical well of negligibly small radius. 
At the initial instant, the pressure of the liquid in the stratum is con- 
stant and equal to P. Then, a liquid begins to flow in or out at a con- 
stant volume rate Q. 

The pressure of the liquid in the fissures pl(r, t) (r is the distance 
from the axis of the well) satisfies the equation 

with the initial conditions 

Pl (r, 0) = P (5.14) 

In accordance with Equation (4.4) the boundary conditions can be ex- 
pressed as 

We obtain therefrom 
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Integrating the last relation and applying the condition 

(rdp,/dr),,+, = 0 for t = 0 

we obtain the final formula for the boundary conditions 

Setting 

Pl (r, t) = p + &u 0.9 t) 

(5.15) 

(5.16) 

we obtain the following boundary-value problem for determining the func- 
tion u(r, tl: 

&L a 1 a au la au 
at-~atr3Gr’==XTrz 

(5.17) 

u (r, 0) = 0, 
h4 

( > ‘37 r=+0 
= - (1 - pwfr) 

To solve the boundary-value problem (5.1’7) we again revert to the 
Laplace transform, the relations (5.17) being reduced to the following 
form: 

Id dU ?b 
--r dr- x+hq r dr 

-Cl =o, 

Taking into consideration, also, the condition U(OO, A) = 0, we obtain 

(5.19) 

(K, is the symbol of the Macdonald function), and by the general rule of 
inversion 114 1 we obtain 

zz (7.9 q = & s (5.20) 
y-i03 

In an entirely analogous manner, after calculating the integral and 
reverting to the variable pl, we obtain the pressure distribution in the 
form 

(5.21) 
0 
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‘Ihe known self-similar solution of the corresponding problem of the 
theory of seepage in a porous medium is obtained from Equation (5.21) 
for n = 0: 

p1 (r, t) = P + 2&S T (1 - e--v2Xf) dv = P - & Ei (- &j (5.22) 

0 

It can be seen, in the same way as in the previous problem, that for 
increasing values of Kt/q, the solution (5.21) of the problem of seepage 
in a fissured rock tends asymptotically to the solution (5.22) of the 
problem of seepage in a porous medium. 

It can also be seen from the examples investigated that the most 
charactetistic property of the non-steady-state flow of liquids in 
fissured rocks is the occurrence of some delay in the transient processes; 
the characteristic time of this delay is 

z = r/x (5.23) 

‘lhus, the following general conclusion can be advanced: in consider- 
ing processes of non-steady-state infiltration in fissured rocks, the 
ordinary equations of non-steady-state flow in a porous medium can be 
applied only if the characteristic times of the process under consider- 
ation are long compared to the delay times r. However, if the character- 
istic times of the process are comparable to P, it is necessary to apply 
the model and the basic equations presented in this paper. ‘lhe estimates 
which have been carried out have shown that fissuring must be taken into 
consideration in many cases when investigating such processes as the re- 
storation of pressure in shut-down wells and, generally, transient pro- 
cesses during changes of the operating conditions of the well. 

In conclusion, the authors thank A.P. Krylov for his attention to the 
work and A.A. Abramov, M.G. Neigauz and A.L. Dyshko for their useful re- 
marks and for carrying out the calculations. 
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