
An introduction to Bloch and Kato’s
conjecture

Two lectures at the Clay Mathematical Institute Summer School,
Honolulu, Hawaii, 2009

Prerequisites: The prerequisites for these lectures are elementary:

(i) Algebraic number theory, including class field theory, and structure of the
Galois group of number fields (decomposition groups, Frobenius, etc);

(ii) Basic theory of finite-dimensional representations of groups;
(iii) Group cohomology.

Some knowledge of Galois cohomology (the duality theorems and the Euler-Poincaré
characteristic formula) can be useful, but I shall recall what I need. Similarly, I
shall recall and use some hard results in étale cohomology, and it is not necessary to
know them beforehand, nor their proof, but a familiarity with algebraic geometry
is necessary to understand their formulation.

Exercises: There are exercises in the text. I shall try to separate them in the
notes for other lectures, but here it would be artificial. Some exercises have the
label (easy) , which means that you should be able to solve them at sight, if you
have read and understood what is just above. So if you try and can’t solve an
easy exercise, reread what is above and try again. If you still can’t solve it, then
I have made a mistake. Most exercises have no label, meaning that they are of
intermediate difficulty and that you should be able to solve them with a paper and
a pencil in a few minutes. Some have the label (difficult), and they are difficult
exercises that needs either some real new ideas, or the knowledge of some other
theory, or both.

Terminology and convention: In all those lectures, a p-adic representation
V of G will be a finite-dimensional vector space over Qp, with a continuous linear
action of a topological group G (in general a Galois group). We could also consider
representations over finite extensions of Qp, but those representations can be seen
as p-adic representations in our sense, so this greater generality would only be
apparent. If V is a p-adic representation, V (n) is V tensor the cyclotomic character
to the power n. The symbol dim will means the dimension over Qp, when not
otherwise specified.
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2 JOËL BELLAÏCHE

Depending on the context, K will be either a characteristic 0 local field, or a
number field. In the latter case, v will denote a place of K, and Gv will denote
GKv , and there is a natural morphism Gv → GK well defined up to conjugacy that
allows us to define the restriction V|Gv

to Gv of a representation of GK .
Frobeniuses are arithmetic Frobeniuses, denoted Frobv. Predictions are corollary

of conjectures. Errors are mine.
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The aim of those lectures is to introduce and to explain the number-theoretical
significance of the conjecture of Bloch and Kato. This conjecture appeared in
print in 1990 in The Grothendieck Festschrift, a collection of papers in honor of
Grothendieck’s 60th birthday. It generalizes at least some important part of the
Birch and Swinnerton-Dyer conjecture, which is one of the seven Clay’s millennium
problem.

This conjecture has a particularity: it is a “second-order conjecture” (or call it a
meta-conjecture if you are fond of Hofstadter). That is to say, it talks about objects
whose basic properties, and which is worse sometimes definitions, still depend on
unproved conjectures. A consequence is that there are several formulations of this
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conjecture, that should be equivalent, but for which a proof of their equivalence
requires using more basic, or level-1, but yet unproved and certainly very hard,
conjectures.

In this lecture, I shall present a panorama of those level-1 conjectures needed
to get a full grasp of the Bloch-Kato conjecture, that I shall try to motivate by
showing how many classical (solved or still conjectural) questions of number theory
can be reformulated to become a special part of it.

In doing so, I will restrain myself to only a part of the conjecture of Bloch-Kato,
the part concerned with characteristic 0 phenomena. That is to say, I will consider
only Galois representations over finite extensions of Qp, instead of Zp or Z/pnZ,
(or “iso-motives” instead of “motives”) and order of zero and poles of L-functions,
instead of their principal values. I have to warn the reader that this is only the tip
of the iceberg. There is a world of interesting phenomena in characteristic p, and
even if we are only concerned with characteristic 0 questions, some motivations, and
the proof of many results unavoidably requires a detour in characteristic p. Yet I
believe that it may be easier to get a global picture of those huge sets of conjectures,
and of what is proved (very little) by restraining ourselves to characteristic 0.

In characteristic 0, the Bloch-Kato conjecture relates two objects attached to a
geometric Galois representation. A geometric Galois representation V is a semi-
simple continuous representation of the absolute Galois group GK of a number
field K on a finite dimensional vector space V over Qp. (or some finite extension)
which satisfies certain properties satisfied by the Galois representations that appears
in the étale cohomology H i(X,Qp) (see below) of proper and smooth variety X

over K. It is conjectured (the Fontaine-Mazur conjecture) that every geometric
representation appears this way. The first section will include a quick discussion of
those geometric Galois representations and their fundamental properties (be they
proved or conjectural).

To a geometric representation V of GK , one can attach two objects, one analytic,
and one algebraic, and the Bloch-Kato’s conjecture is a mysterious relation between
those objects. The analytic object is an analytic function of a complex variable s,
with possibly some poles, the L-function L(V, s). Its definition and properties
are studied in section 3. The algebraic object is called the Bloch-Kato Selmer
groups and denoted by H1

f (GK , V ). It is a Qp-vector space, and it is an attempt to
generalize for any geometric representation V the Mordell-Weil group of an elliptic
curve (in the sense that if Vp(E) is the Tate module of an elliptic curve E over K,
we have a canonical injective linear map E(K) ⊗Z Qp ↪→ H1

f (GK , Vp(E)) which is
conjecturally an isomorphism). The definition of the Bloch-Kato Selmer group as
well as many of its properties are studied in §2. The connection between those two
objects that forms (the characteristic 0 part of) the Bloch-Kato conjecture is that
the dimension of H1

f (K,V ) is equal to the order of the 0 of L(V ∗(1), s) at s = 1
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(where V ∗ is the dual representation of V ). Motivation, examples, and stability
properties of that conjecture are discussed in §4.

1. Geometric Galois representations

1.1. Representations coming from geometry.

1.1.1. Very brief reminder on étale cohomology. Let K be a number field. For X
a proper and smooth variety over K of dimension n, i an integer and p a prime
number, one sets

H i(X,Qp) = lim←−H
i
ét(X × K̄,Z/pnZ).

By transport of structure, the Qp-space H i(X,Qp) has a natural Qp-linear action of
the Galois group GK . The following properties are well known in étale cohomology.
They are the only ones we shall use, so a reader who ignores everything of étale
cohomology and takes them as axioms should have no serious problem reading the
sequel.

E1.– The space H i(X,Qp) is finite dimensional and of dimension independent of
p. The action of GK is continuous.

Actually, there is more: If one uses any embedding ι of K into C to associate to
X an algebraic variety X ×K,ι C over C, and then its analytic variety Xan over C,
then H i(X,Qp) is naturally isomorphic as a Qp-vector space to H i

betty(Xan ,Qp),
where the H i

betty is the singular cohomology (or any usual cohomology theory of
topological spaces).

E2.– X 7→ H i(X,Qp) is a contravariant functor from the category of proper and
smooth varieties over K to the category of p-adic representations of GK .

E3.– We have H i(X,Qp) = 0 for i < 0 and i > 2n = 2 dimX. If X is geometri-
cally connected, H0(X,Qp) = Qp (with trivial action) and H2n(X)(Qp) = Qp(−n).

E4.– There is a functorial cup product map of GK-representations H i(X,Qp)⊗
Hj(X,Qp)→ H i+j(X,Qp). When i+ j = 2n, it is a perfect pairing.

In particular, H i(X,Qp)∗ ' H2n−i(X,Qp)(−n).

Let v be a finite place of K, and O(v) the localization of the ring of integer OK
of K at v. We call kv the residue field of that local ring. We say that X has good
reduction at v if there is a proper and smooth scheme X over SpecO(v) such that
X × SpecK ' X. Such an X is called a model of X over O(v).

E5.– Let v be a finite place of K prime to p. If X has good reduction at v, then
the representation H i(X,Qp) is unramified at v. The characteristic polynomial of
Frobv acting on H i(X,Qp) has its coefficients in Z, and is independent of p (as
long as p stays prime to v). We call it Pv(X) ∈ Z[X]. Its roots all have complex
absolute value equal to q−i/2v , where qv is the cardinality of the residue field kv.

This is part of the cohomological interpretation of the Weil’s conjecture due to
Grothendieck, the assertion about the absolute value of the roots being the last
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Weil’s conjecture proved by Deligne in 1973. Even if we shall not need it, let
us mention the Lefschetz’s fixed point formula (aka Lefschetz Trace formula) of
Grothendieck: If X is a model of X over O(v), and Xv is its special fiber over kv,
then |Xv(kv)| =

∑2n
i=0(−1)itr(Frobv)Hi(X,Qp).

A proper and smooth variety over K has good reduction for almost all v, so
H i(X,Qp) is, as a p-adic representation of GK , unramified at almost all places.

Exercise 1.1. Prove this when X is projective and smooth.

E6.– Let v be a place of K dividing p. Then as a representation of Gv, H i(X,Qp)
is de Rham. If X has good reduction at v, H i(X,Qp) is even crystalline.

This is a hard result of Faltings. This will be discussed in Andreatta’s lectures.

E7.– If Z is a subvariety of codimension q, then there is associated to Z a
cohomology class η(Z) ∈ H2q(X,Ql)(q) that is invariant by GK . This maps extend
by linearity to cycles and rationally equivalent cycles have the same cohomology
class. Intersection of cycles become cup-product of cohomology classes. If P is
closed point, then η(P ) ∈ H2n(X,Qp)(n) = Qp is non zero

Besides those proved (with great difficulties) results, there are still some open
conjectures.

EC1.– If v is prime to p, and if X has good reduction at v, then the operator
Frobv of H i(X,Qp) is semi-simple (that is diagonalizable over Q̄p.)

This is called the semi-simplicity of Frobenius. There are also variants for places
v that divides p, and places with bad reduction. This is known for abelian varieties
by a theorem of Tate.

EC2.– The representation H i(X,Qp) of GK is semi-simple.
This is sometimes called “conjecture of Grothendieck-Serre”. This is known for

abelian varieties, by a theorem that Faltings proved at the same times he proved
the Mordell’s conjecture, and in a few other cases (some Shimura varieties, for
example).

EC3.– The subspace (H2q(X,Qp)(q))GK is generated over Qp by the classes η(Z)
of sub-varieties Z of codimension q.

This is the Tate’s conjecture, still widely open.

1.1.2. Representations coming from geometry.

Definition 1.1. Let V be an irreducible p-adic representation of GK . We say
that V comes from geometry if there is an integer i, an integer n, and a proper
and smooth variety X over K such that V is isomorphic to a subquotient of
H i(X,Qp)(n). (If EC2 holds, one can replace “sub-quotient” by “sub-representation”).

If V is a semi-simple representation of GK we shall say that V comes from
geometry if every irreducible component of V comes from geometry.



6 JOËL BELLAÏCHE

We shall refrain from talking about non-semi-simple representations coming from
geometry. All representations coming from geometry shall be by definition semi-
simple.

Exercise 1.2. Show that the category of p-adic representations coming from ge-
ometry of GK (morphisms are morphisms of representations) is stable by dual and
by tensor product.

1.2. Geometric representations.

1.2.1. The Fontaine-Mazur conjecture.

Definition 1.2. Let V be a p-adic semi-simple representation of GK . We say that
V is geometric if it is unramified at almost all places and de Rham at all places
dividing p.

A p-adic representation V coming from geometry is geometric by properties E5
and E6 above.

Conjecture 1.1 (Fontaine-Mazur). If V is geometric, then V comes from geome-
try.

This fundamental conjecture is known for abelian representation (by global class
field theory, Weil’s theory of algebraic Hecke characters, and Deuring’s theory of
complex multiplication for elliptic curves and its generalization to abelian varieties),
and now also for all representations of V of dimension 2 of GQ that are odd and
with distinct Hodge-Tate weights (by works of Kisin and others explained in this
conference). It is widely believed to be true, though a general proof would probably
require many completely new ideas.

1.2.2. Algebraicity and purity. The notion of motivic weight. Let V be a represen-
tation of GK that is unramified outside a finite set of places Σ.

Definitions 1.3. We shall say that a representation is algebraic if there is a finite
set of places Σ′ containing Σ such that the characteristic polynomial of Frobv on
V has coefficients in Q̄ when v 6∈ Σ′. When one wants to precise the set Σ′, we say
Σ′-algebraic.

For w ∈ Z, we shall say that a representation is pure of weight w if there is a
finite set of places Σ′ containing Σ such that V is Σ′-rational and all the roots of the
characteristic polynomial of Frobv have complex absolute values (for all embeddings
of Q̄ to C) q−w/2v . (Here qv is as above the cardinality of the residue field kv of K
at V ). When one wants to precise the set Σ′, we say Σ′-pure.

When V is pure of weight w, we call w the motivic weight of V , or simply its
weight.
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Exercise 1.3. Show that the cyclotomic character Qp(1) is algebraic and pure of
weight −2.

Proposition 1.1. A representation coming from geometry is algebraic. An irre-
ducible representations coming from geometry is pure

Proof — We can assume that V is irreducible, and appears as a sub-quotient of
H i(X,Qp)(n) for some X, i, n. Then by E5, V is Σ′-algebraic where Σ′ is the set
of primes where X has bad reduction or that divides p. Moreover, by E5 as well,
V is pure of weight i− 2n. �

Remember that H i(X,Qp) is pure of weight i.
If we believe that the Fontaine-Mazur conjecture is true, then

Prediction 1.1. Any geometric representation is algebraic, and if irreducible, pure
of some weight w.

This statement does not seem simpler to prove than the Fontaine-Mazur conjec-
ture itself.

1.2.3. Motivic weight and Hodge-Tate weights. The notion of motivic weight should
not be confused with the notion of Hodge-Tate weight. A geometric representation
V of dimension d of GK (K a number field) which is pure has exactly one (motivic)
weight. But each of its restrictions to Gv for v dividing p has d Hodge-Tate weight,
so V carries a big package of Hodge-Tate weights.

Yet there is a relation between the Hodge-Tate weights of V and its motivic
weight, when both are defined. To state it, let us introduce the following notation:

Definition 1.4. For V a geometric representation of GK , and for each k ∈ Z, we
denote by mk = mk(V ) the sum

mk(V ) =
∑
v|p

[Kv : Qp]mk(V|Gv
)

where mk(V|Gv
) is the multiplicity of the Hodge-Tate weight k for the representation

V|Gv
of Gv. We call mk(V ) the total multiplicity of k as an Hodge-Tate weight of

V .

Obviously, the mk(V ) are almost all 0, and we have∑
k∈Z

mk = [K : Q] dimV.

Lemma 1.1. If K0 is a subfield of K, and W = Ind
GK0
GK

V , them mk(V ) = mk(W ).

The proof is an exercise.
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Proposition 1.2. Let V be a p-adic representation of GK that is Hodge-Tate at
all places dividing p, and pure of weight w.

w[K : Q] dimV = 2
∑
k∈Z

mkk(1)

In other words, the weighted average of the Hodge-Tate weights k of V (weighted
by their total multiplicity mk) is w/2.

Proof — We prove this proposition by successive reduction.
First we can assume that K = Q. Indeed, replacing V by W := IndGQ

GK
V , the

right hand side is unchanged because of Lemma 1.1, and so is the left hand side
because w(V ) = w(W ), and [K : Q] dimV = dimW .

Second, we can assume that dimV = 1 (and still K = Q). Indeed, if V is
pure of weight w, then detV = ΛdimV V is of dimension 1 and pure of weight
w dimV . Therefore the RHS of (1) for detV is the same as for V . The same is true
concerning the LHS, as the unique Hodge-Tate weight of (detV )|Gp

is the sum of
the Hodge-Tate weights of V|Gp

. So proving the case of detV implies the case of V .
Third we can assume that dimV = 1, K = Q, and the Hodge-Tate weight of

V|Gp
is 0. For if this weight is k, then the one of V (k) is 0, and −2k is added to

both the LHS and the RHS of (1) when we change V to V (k).
Finally, assume that dimV = 1, K = Q, and that the Hodge-Tate weight of

V|Gp
is 0. We need to prove that V has motivic weight 0. By Sen’s theorem, the

inertia Ip of Gp acts through a finite quotient of V . Let χ be the character of
A∗Q attached to V by global class field theory. By local class field theory and its
compatibility with global class field theory, kerχ contains an open subgroup Up of
Z∗p. By continuity, kerχ contains also an open subgroup Up of

∏
l 6=p Z∗l , and by

definition it contains R∗+. Therefore, χ factors through A∗Q/Q∗UpUpR+
∗ , which is

finite. Thus χ has finite image, and this implies immediately that V has motivic
weight 0. �

Exercise 1.4. Assume that V = H i(X,Qp) for some proper and smooth variety
over K. Give another proof of (1) for V using Faltings’s theorem relating the
Hodge-Tate decomposition of V with the Hodge decomposition on H i(X).

There are actually stronger relations among the Hodge-Tate weights, but we
need to assume conjectures EC2 and EC3 to prove them. Let us just mention two
of them without proof (but see Exercise 1.7):

Prediction 1.2. Let V be a p-adic representation of GK coming from geometry.
Assume Tate’s conjecture (EC3). Let w be the motivic weight of V . We have for
all k ∈ Z

mk = mw−k.
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As a consequence, if we define

m<w/2 =
∑
k<w/2

mk,(2)

then we have [K : Q] dimV = 2m<w/2 is w is odd, and [K : Q] dimV = 2m<w/2 +
mw/2 if w is even.

We can say something more precise. Let

a±(V ) =
∑
v|∞

a±v ,(3)

where a±v = dimV is v is complex, and a±v is the dimension of the ±1-eigenspace
of the action of the complex conjugation at v on V if v is real. In other words,
a+ =

∑
v|∞ dimH0(Gv, V ). We have by simple counting that a+(V ) + a−(V ) =

[K : Q] dimV , and a±(V ) = a±(Ind
GK0
GK

V ).

Prediction 1.3. Let V be a p-adic representation of GK coming from geometry.
Let w be the motivic weight of V . Then a± ≥ m<w/2.

Of course, if we assume in addition the Fontaine-Mazur conjecture, then Predic-
tions 1.2 and 1.3 should hold for all geometric V . Note that for such a representa-
tion, Prediction 1.2 is stronger than Prop. 1.2.

Exercise 1.5. (easy) Keep the hypotheses of Prediction 1.2 and Prediction 1.3
(and suppose they are proved), and assume either that w is odd, or that K is totally
complex. Show that a+ = a−.

Exercise 1.6. Keep the hypotheses of Prediction 1.2 and Prediction 1.3 (and
suppose they are true), and prove that for a representation of GQ of even dimension
and distinct Hodge-Tate weights, we have tr(c) = 0 where c is the non-trivial
element of GR acting on V . In particular, representations attached to modular
eigenforms of weight k > 2 (they have Hodge-Tate weights 0 and k − 1) are odd
(that is, the eigenvalue of c are 1 and −1).

Exercise 1.7. (difficult)
a.– Let X be a proper and smooth variety over Q and V = H i(X,Qp). Show

Predictions 1.2 and 1.3 for V using Faltings’ theorem comparing Hodge and Hodge-
Tate weight. (Hint: you don’t need any conjecture for this case. For Prediction 1.3
use the fact that Hp(X,Ωq) and Hq(X,Ωp) for p + q = i are conjugate for the
relevant complex structure.)

b.– In general, when K is any number field and V is a only a sub-quotient of an
H i(X,Qp), how would you deduce the predictions from EC2 and EC3? (Hint: you
can give a look at §1.3 for inspiration).
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1.2.4. Automorphic Galois representations. We can not seriously discuss here the
fundamental subject of automorphic forms and of their Galois representations, even
as a survey, because it would take hundreds of pages and I have to go to the beach.
But to complete our picture of the conjectural landscape, and also to prepare the
discussion about L-functions of geometric Galois representations, let us just say the
following:

We assume that the reader knows (or is ready to pretend he knows) what is a
cuspidal automorphic representation π = ⊗′vπv of GLn(AK) (K a number field)
and what it means for such an automorphic representation to be algebraic (this
is a condition on the local factors πv for v archimedean). A p-adic semi-simple
Galois representation ρ is attached to π if it is unramified almost everywhere, and
for almost all places v of K, the characteristic polynomial of Frobv on V is equal
to the Satake polynomial of the local factor πv, up to a suitable normalization (we
have chosen once and for all a embedding of Qp into C to be able to compare the
characteristic polynomial of Frobv who lives in Qp[X] and the Satake polynomial
who lives in C[X]. But actually, both polynomial should have algebraic coefficients.)
By Cebotarev density theorem, if ρ is attached to π it is the only one that is.

It is expected (as a part of the global Langlands program) that to every auto-
morphic cuspidal algebraic representation π of GLn/K as above there exists one
(and only one) semi-simple representation ρπ : GK → GLn(L) attached to π(where
L is a finite extension of Qp in general, but if π is Q-rational, that is if its Satake
polynomials at almost every place have coefficients in Q, we should be able to take
L = Qp.)

A p-adic representation which is ρπ for some π as above is called automorphic.
So far, the main result in that direction is that we only the existence of ρπ when

K is a totally real field (resp. a CM field), when π satisfies a self-duality (resp.
conjugate self-duality) condition, and the local factors πv when v is infinite are not
only algebraic, but also regular (this condition corresponds to ρπ having distinct
Hodge-Tate weights at places dividing p). This result is an important part of the
global Langlands program, and it has required an incredible amount of work along
a sketch by Langlands, including the stabilization of the trace formula by Arthur,
the proof of the Fundamental Lemma by Laumon and Ngo, and hard final pushes
by Shin, Morel, Harris and other. See [Sh], [M], the book project on the web page
of Michael Harris, and Shin’s lecture for more details.

The representations ρπ for all cuspidal algebraic π should moreover be irreducible
and geometric. In the cases described above, it is known that ρπ is geometric.
(In most of those cases, the representation ρπ is, by construction, coming from
geometry, but there are some cases where ρπ is constructed by a limiting process,
and we only know that it is geometric.) The irreducibility assertion is not known,
except in low dimension (n ≤ 3 by results of Ribet, Wiles, Blasius-Rogawski and
n = 4, K = Q by a result of D. Ramakrishna)
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Conversely, we have the following folklore conjecture, sometimes called Langlands-
Fontaine-Mazur (as it is a combination of the Langlands philosophy and of the
Fontaine-Mazur conjecture)

Conjecture 1.2. Every geometric irreducible p-adic representation of GK is au-
tomorphic.

So far, mainly cases of dimension 2 and K = Q (and also all the cases n = 1,
any K by Class Field Theory) are known.

1.3. Appendix: Motives. It is important to be aware that p-adic geometric Ga-
lois representations are only a proxy for a more fundamental notion discovered
by Grothendieck, the notion of pure iso-motive (many people say “pure motive”
or simply “motive” instead of “pure iso-motive”, and we shall do the same from
now, but the right term should be pure iso-motive as we work with coefficient in
characteristic 0, and proper and smooth varieties over K).

Let VPSK be the categories of proper and smooth varieties over a field K.
Grothendieck and others have constructed many cohomology theories for objects
in VPSK . All are contravariant functors from VPSK to some abelian (or at least
additive) categories, that satisfy some standard properties. For example, for i
an integer, and p a prime, one has the functor X 7→ H i(X,Qp) defined using
étale cohomology as above, from the category VPSK to the category of p-adic
representations of GK . We also have the de Rham cohomology X 7→ H i

dR(X) from
VPSK to the category of K-vector spaces with a filtration (the Hodge filtration).
As explained in Conrad’s lecture there is no canonical splitting of this filtration in
general, but there is one is K = C. If ι : K → C is a field embedding, we also have
the functor X 7→ H i

ι(X,Z) = H i
betty((X×K,ιC)(C),Z) from VPSK to the category

of finite Z-modules, where H i
betty is the usual cohomology of topological spaces.

There are some comparison results between those cohomology theories. For ex-
ample, all our H i(X) have same dimension or rank. Also, if ι is as above, there
is a natural and functorial isomorphism of complex space u : H i

ι(X,Z) ⊗Z C '
H i

dR(X)⊗K,ι C. Combining the H i
ι(X,Z) and the H i

dR(X) one can attach functo-
rially on X a rich structure called, according to the following definition a K-Hodge
structure of weight i (see the definition below) ; (H i

ι(X,Z), H i
dR(X), u, (Hp(X ×

Spec C,Ωq)p,q∈N,p+q=i).

Definition 1.5. A K-Hodge structure (where K is a subfield or C, or when an
embedding ι : K → C is given) is a 4-uple (VZ, VK , u, (Vp,q)p,q∈Z2) where VZ is a
finite Z-module, VK a finite K vector space, u is an isomorphism VK ⊗K,ι C →
VZ⊗Z C, (Vp,q) is a finite family of subspacse of VK⊗C such that one has VK⊗C =
⊕p,qVp,q, Vp,q = V q,p for the conjugation on VK ⊗ C attached to the real structure
given by u(VZ⊗R), and where for each (i, p0) the subspaces ⊕p≥p0Vp,i−p of VK ⊗C
descend to VK .
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If for some i ∈ Z we have Vp,q = 0 whenever p+ q 6= i, we say that V is pure of
weight i.

Grothendieck has conjectured for every field K the existence of a universal
abelian category (the category of motives over K) through which all cohomology
functors from VPSK to various additive categories should factor. More precisely,
he has conjectured the existence of a Q-linear, abelian, graded, semi-simple cate-
goryMK of (pure iso-) motives over K with contravariant functors H i : VPSK →
MK (with image in objects whose only non trivial graded part is gri - we call
those objects “pure of weight i”) and realizations Q-linear functors Realp, Realι,
RealdR from MK to the categories of respectively of p-adic representations of
GK , Z-modules, filtered K-vector spaces, with natural isomorphism of functors
H i(−,Qp) = Realp ◦H i, H i

ι(−,Z) = Realι ◦H i, H i
dR(−) = RealdR ◦H i, with func-

torial isomorphisms RealdR⊗K,ι C ' Realι⊗Z C making Realι(M)⊗C a K-Hodge
structure Hodge(M). There should be plenty of other properties (comparison for
various K, existence of classes attached to subvarieties, existence of tensor products
and dual objects in MK , etc.) that I shall not state.

Grothendieck has also proposed a construction of this category, but verifying that
the resulting category has the required properties needs the standard conjectures
(Hodge and Lefschetz). If such standard conjectures were known and the category
MK constructed, then for K = C the functor M → Hodge(M) would be fully
faithful (this is the content of the Hodge conjecture). Analogously, for K a number
field, the Tate EC3 and Grothendieck-Serre conjecture EC2 would imply that for
any prime p the functor Realp from MK to the category of p-adic representations
of GK coming from geometry is an equivalence of categories. This functor sends
a motive that is graded only in weight i to a representation that is pure of weight
i. Alternatively, if we are not willing to assume the standard conjectures, but only
the Tate and Grothendieck-Serre conjectures, we could choose a prime p and define
the category MK as the category of p-adic representations coming from geometry
of GK , and the result would be an independent on p semi-simple Q-linear abelian
category satisfying all properties stated above (but maybe not all the properties
one wants for MK).

To summarize, in an ideal world in which all what we expect is true, a p-adic
representation V of GK coming from geometry should be not the primary object
of interest, but a tangible realization Realp(M), or as we say, an avatar, of a more
fundamental if less accessible object M in the category of motivesMK . The motive
M should be determined by V up to isomorphism, and thus to V we should be able
to attach a K-Hodge structure Hodge(M).

2. Bloch-Kato Selmer groups

2.1. Reminder of Galois cohomology.
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2.1.1. Continuous and discrete coefficients. Let G be a profinite group and p be a
prime. We shall consider the following condition, for i ≥ 0 an integer

(Fin(p, i)) For every open subgroup U of G, the set H i(U,Z/pZ) is finite.
(Fin(p)) G satisfies Fin(p, i) for all i ≥ 0.

Remark 2.1. Fin stands of course for “finiteness”. Note that Fin(p, 1) is the
p-finiteness condition used in Galois deformation theory. (See Kisin’s lecture.)

Exercise 2.1. a.– Let F be the p-Frattini subgroup of U , that is the closure of
the subgroup of U generated by all commutators and all p-powers. Show that F is
normal in U . Show that H1(U,Z/pZ) = Homcont(U,Z/pZ) is finite if and only if
U/F is finite.

b.– (difficult) Let L/K be an algebraic Galois extension of fields, and assume
that G = Gal(L/K) satisfies Fin(p, 1). Show that G satisfies Fin(p, 2) if and only
if for all open normal subgroup U of G the group H2(G/U, (LU )∗)[p] is finite.

c.– Show that if K is a finite extension of Ql, then GK and IK (the inertia
subgroup of GK) satisfies Fin(p) (use a.– and local class field theory for Fin(p, 1);
use b.– and the theory of the Brauer group for Fin(p, 2). There is nothing to prove
(e.g. [S2, Chapter II, §4.3]) for the other cases Fin(p, i), with i > 2).

d.– Show that if K is a number field, then GK does not satisfy Fin(p, 1) nor
Fin(p, 2) However, show that if Σ is a finite set of places, GK,Σ satisfies Fin(p). (use
a.– and global class field theory for Fin(p, 1); use b.– and the theory of the Brauer
group for Fin(p, 2). There is almost nothing to prove (e.g. [S2, Chapter II, §4.4])
for the other cases Fin(p, i), with i > 2).

We shall be concerned with continuous group cohomology H i(G,V ) of profinite
groups G satisfying Fin(p) (actually only among the Galois groups considered in
the above exercise) with values in finite dimensional Qp-vector spaces V with a
continuous action of G (V being provided with its p-adic topology, given by any
p-adic norm).

Let us first note that the usual tools of group cohomology (Shapiro’s lemma,
inflation-restriction, long exact sequence attached to a short exact sequence) work
without problem for continuous cohomology with values in finite dimensional vector
space over Qp with continuous G-action (that is, p-adic representation). The only
technical point to check, for the existence of a long exact sequence, is that a short
exact sequence of p-adic representation is always split as a short exact sequence of
Qp-vector spaces, which is obvious.

Since all basic results in Galois cohomology are proved with discrete coefficients,
we need a way to pass from discrete coefficients to p-adic coefficients. Such a way
is provided by the following result of Tate.
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Proposition 2.1 (Tate). Let G be a profinite group satisfying Fin(p) and V be a
continuous representation of G. Let Λ be a Zp-lattice in V stable by G.

(a) The continuous cohomology group H i(G,Λ) (with Λ given its p-adic topol-
ogy) is a finite Zp-module and we have a canonical isomorphism

H i(G,V ) ' H i(G,Λ)⊗Zp Qp.

(b) We have a canonical isomorphism H i(G,Λ) = lim←−H
i(G,Λ/pnΛ) (where

Λ/pnΛ is a finite group provided with its discrete topology).

The end of this § is devoted to the proof of (a), which is copied form [T] for the
commodity of the reader. For (b), which is simpler, see [T].

Lemma 2.1. If G is a profinite group satisfying F (p), and A be any finite (discrete)
p-primary abelian group with continuous G-action, then the groups H i(G,A) are
finite.

Proof — There exists an open normal subgroup U such that U acts trivially
on A. That is, as an U -module, A is a successive extension of Z/pZ (with trivial
U -action). By Fin(p) and the long exact sequences, the groups H i(U,A) are finite.
By the Hochschild-Serre spectral sequence H i(G/U,Hj(U,A))→ H i+j(G,A), and
since G/U is finite, the groups H i(G,A) are finite. �

Let Λ be any finite-type Zp-module with a continuous G-action.

Lemma 2.2. Let Y be a finitely generated Zp-submodule of H i(G,Λ), and set
Z = H i(G,Λ)/Y . If Z = pZ then Z = 0.

Proof — Let g1, . . . , gk be cocycles that represent a generating family of Y .
Suppose xn ∈ H i(G,Λ), n = 0, 1, 2, . . . , are such that xn ≡ pxn+1 (mod Y ).
We need to prove that x0 ∈ Y . Choosing cocycles fn representing xn we have
fn = pfn+1 +

∑k
m=1 anmgm + dhn with hn an i − 1-cochain. We thus get by in-

duction and p-adic limit f0 =
∑k

m=1(
∑

n≥1 p
nanm)gm + d(

∑
n≥1 p

nhn), so x0 ∈ Y .
This proves the lemma. �

Lemma 2.3. Assume G satisfies Fin(p). Then H i(G,Λ) is finitely generated for
all i.

Proof — By the long exact sequence, H i(G,Λ)/pH i(G,Λ) is a sub-module of
H i(G,Λ/pΛ), which is finite by Lemma 2.1. Lifting to H i(G,Λ) all elements of
H i(G,Λ)/pH i(G,Λ) we get a family g1, . . . , gm in H i(G,Λ) which generates a Zp-
submodule Y such that Z := H i(G,Λ)/Y satisfies Z = pZ. Therefore Z = 0, and
H i(G,Λ) = Y is finitely generated. �
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Now assume that Λ is free as a Zp-module, and set V = Λ⊗Qp, and let W = V/Λ.
We have a long exact sequence attached to the short exact sequence 0→ Λ→ V →
W → 0. Let δi : H i−1(G,W )→ H i(G,Λ) be the connecting morphism.

Lemma 2.4. Assume that G satisfies Fin(p). Then ker δ is the maximal divisible
subgroup of H i−1(G,W ) and Im δ is the torsion of H i(G,Λ). Moreover H i−1(G,W )
is torsion.

Proof — The Kernel ker δ is the image of the Qp-vector space H i−1(G,V ) and is
therefore divisible. By Lemma 2.3, each divisible subgroup of H i−1(G,V ) must be
in ker δ. This proves the assertion about ker δ.

Since G is compact and W is discrete, a cochain f : Gi−1 →W takes only a finite
number of values, and since W is torsion, so is H i−1(G,W ). Therefore the image
of δ is torsion. Moreover, the image of δ is the kernel of H i(G,Λ)→ H i(G,V ) and
since H i(G,V ) is torsion free, Im δ contains all torsion in H i(G,Λ). �

Using the Lemma (assuming that G satisfies Fin(p)), we see that the natural
map H i(G,Λ) ⊗ Qp → H i(G,V ) is injective, and that its cokernel is a torsion
group tensor Qp, that is 0. This completes the proof of (a).

Now consider the Ci(G,A) the continuous i-cochains from G to A.

2.1.2. The Kummer morphism. An important way to construct interesting ele-
ments of H1 is the Kummer construction.

Let K be a field, and A be an commutative group scheme over K, such that
the map “multiplication by p”, [p] : A → A is finite and surjective. Let n be
an integer. The kernel of the map [pn] : A → A, that is the multiplication by
pn in A, denoted A[pn] is a finite abelian group scheme over K, and A[pn](K̄)
is a finite abelian group with a continuous action of GK . The multiplication by
p induces surjective homomorphisms A[pn+1] → A[pn] of group schemes over K,
hence surjective morphisms A[pn+1](K̄)→ A[pn](K̄) compatible with the action of
GK .

We set Tp(A) = lim←−A[pn](K̄) and Vp(A) = Tp(A)⊗Zp Qp. The space Vp(A) is a
p-adic representation of GK .

Examples 2.1. If A = Gm, then V = Qp(1). If A is an abelian variety (e.g. an
elliptic curve), then Vp(A) is the usual Tate module of A. It satisfies Vp(A)∗(1) '
Vp(A) (Weil’s pairing).

The Kummer map κ will be a Qp-linear homomorphism A(K)→ H1(G,Vp(A))
for G some suitable quotient of GK through which Vp(A) factors. To construct it,
we shall take the projective limit of “finite-level Kummer map” κn that we now
describe.
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We construct a Kummer map

κn : A(K)/pnA(K)→ H1(GK , A[pn](K̄))

as follows. There is a short exact sequence of abelian groups with action of GK :

0→ A[pn](K̄)→ A(K̄)
[pn]→ A(K̄)→ 0.

Taking the long exact sequence, we get

A(K)
[pn]→ A(K) δ→ H1(GK , A[pn](K̄))→ H1(GK , A(K̄))(4)

The connecting morphism δ defines an injective morphism κn : A(K)/pnA(K) →
H1(GK , A[pn](K̄)).

Exercise 2.2. When A = Gm, show that κn is surjective.

This quick and easy construction of κn is not very explicit. Let us give a second,
more down-to-earth, construction of that morphism. Let x be in A(K). Since
pn : A(K̄) → A(K̄) is surjective, there exists y ∈ A(K̄) such that pny = x. Let us
choose such a y, and define cy(g) := g(y) − y for all g ∈ GK . We have pncy(g) =
pn(g(y)− y) = g(pny)− pny = g(x)− x = 0, so cy(g) ∈ A[pn](K̄). It is readily seen
that the maps g 7→ cy(g) is a 1-cocycle from GK to A[pn](K̄). It therefore has a class
c̄y in H1(GK , A[pn](K̄)). We claim that this class does not depends on the choice of
y, but depends only on x. For if y0 is another element of A(K̄) such that pny0 = x,
we have z = y− y0 ∈ A[pn](K̄), and cy(g) = cy0 + g(z)− z which shows that cy and
cy0 only differs by a coboundary, hence have the same class in H1(GK , A[pn](K̄)).
We thus have defined a map x 7→ c̄y, A(K) → H1(GK , A[pn](K̄). This map is a
morphism of groups, for if x and x′ are in A(K) and y and y′ are any elements in
A(K̄) such that pny = x and pny′ = x′, our map sends x− x′ to c̄y−y′ which is the
same as c̄y − c̄y′ since cy−y′(g) = g(y − y′) − (y − y′) = g(y) − y − (g(y′) − y′) =
cy(g)− cy′(g). And finally, our map sends pnA(K) to 0, since for x ∈ pnA(K) one
can take y ∈ A(K) and cy = g(y) − y is already 0 for all g. Therefore, we have a
map A(K)/pnA(K)→ H1(GK , A[pn](K̄)). This map is the same map as the map
κn constructed above.

Exercise 2.3. Look up in some text on group cohomology (e.g. Serre, local fields)
an explicit construction of the connecting homomorphism δ to check the last asser-
tion.

We shall now give a third construction of κn, which is actually a more concep-
tual but still very concrete formulation of the second one. It will be fundamental
in certain proofs below. Assume that K is perfect to simplify. Let again x ∈ A(K).
Instead of choosing a y such that pny = x, we consider the set of all such y, or
more precisely, we consider the fiber Tn,x at x of the map [pn]. This is a finite sub-
scheme of A; obviously this is not a group scheme, but there is an algebraic action
of the commutative group scheme A[pn] on Tn,x (that is a morphism of K-schemes
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A[pn]× Tn,x → Tn,x which on R-points is a group action of the group A[pn](R) on
the set Tn,x(R) for all K-algebras R): the map that sends (z, y) to z + y. Over
K̄, this action (of A[pn](K̄) on Tn,x(K̄)) is obviously simply transitive, or in other
words, Tn,x is isomorphic (over K̄, as a scheme with A[pn]-action) to A[pn] itself
with its right translation action. This implies (technically since Spec K̄ is an étale
cover of SpecK) that Tn,x is what we call a K-torsor under A[pn], locally trivial
for the étale (or Galois) topology. As part of the general principle that objects that
locally (for some Grothendieck topology) trivial object are classified by the H1 (on
the same topology) of the automorphism group sheaf of the corresponding trivial
objects, such torsors are classified by the H1

ét(SpecK,A[pn]) = H1(GK , A[pn](K̄)).
In particular, our torsor Tn,x defines an element of H1(GK , A[pn](K̄)) – this is
κn(x).

Finally, we construct a map κ form the κn’s. There is a small technical difficulty
due to the fact that G might not satisfy Fin(p).

Let G be a quotient of GK through which the action on Vp(A) factors, and such
that the image of κn lies in H1(G,A[pn](K̄)) ⊂ H1(GK , A[pn](K̄)). Assume that G
satisfies Fin(p). (If K is a characteristic 0 local field, one can simply take G = GK .
If K is a number field, it will be possible in practice to take G = GK,Σ for a suitable
finite set of places Σ).

It is clear that the injective maps

κn : A(K)/pnA(K) = A(K)⊗Z Z/pnZ→ H1(GK , A[pn])→ H1(G,A[pn](K̄))

for various n are compatible, so they define a map

lim←−A(K)⊗Z Z/pnZ→ lim←−H
1(G,A[pn](K)).

The LHS is the p-adic completion of A(K), that we shall denote Â(K). There is a
natural map from A(K)⊗Z Zp to Â(K) which is an isomorphism if A(K) is finitely
generated. The RHS is by Prop. 2.1 H1(G,Tp(A)). Tensorizing by Qp, we finally
get an injective map

κ : Â(K)⊗Zp Qp → H1(G,Vp(A)).

Exercise 2.4. Let K be a finite extension of Ql (with l a prime number equal or
different from p), G = GK , A = Gm. Show that the above map κ : K̂∗ ⊗Zp Qp →
H1(GK ,Qp(1)) is an isomorphism.

2.1.3. Results in local Galois cohomology. Let K be a finite extension of Ql, and
V be a p-adic representation of GK . From the standard results of Tate for Galois
cohomology with finite coefficients, we deduce using Prop. 2.1

Proposition 2.2.
(Cohomological Dimension) H i(GK , V ) = 0 if i > 2.
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(Duality) We have a canonical isomorphism H2(GK ,Qp(1)) = Qp and the pairing
H i(GK , V )×H2−i(GK , V ∗(1))→ H2(GK ,Qp(1)) = Qp given by the cup-product is
a perfect pairing for i = 0, 1, 2

(Euler-Poincaré) dimH0(GK , V ) − dimH1(GK , V ) + dimH2(GK , V ) is 0 if l 6= p

and [K : Qp] dimV if l = p.

Exercise 2.5. Prove those results using Prop. 2.1 and the results in any book of
Galois cohomology.

The importance of this theorem is that in practice one can very easily com-
pute the dimension of any H i(GK , V ). For dimH0(GK , V ) = dimV GK is sim-
ply the multiplicity of the trivial representation Qp as a sub-representation of V ;
dimH2(GK , V ) = dimH0(GK , V ∗(1)) (by duality) is simply the multiplicity of the
cyclotomic character Qp(1) as a quotient of V . And dimH1(GK , V ) can then be
computed using the Euler-Poincaré formula. Actually, the result for dimH1(GK , V )
is easy to remember, and worth remembering : it is 0 or [K : Q] dimV , plus the
number of times Qp appears as a sub-representation and Qp(1) appears as a quo-
tient in V , so most of the time, it is simply 0 or [K : Q] dimV (according to whether
l 6= p or l = p).

Exercise 2.6. (easy) Let V be an absolutely irreducible representation of GQp of
dimension d. What is the dimension of H1(GQp , adV )?

Exercise 2.7. What is the dimension of H1(GK ,Qp(1)) ? of K̂∗⊗Zp Qp ? (Recall
that Â is the p-adic completion of the abelian group A.) Compare with Exercise 2.4.

2.1.4. The unramified H1. Same notations as in the preceding §.

Definition 2.1. The unramified H1 isH1
ur(GK , V ) = ker(H1(GK , V )→ H1(IK , V ))

Proposition 2.3. (a) We have dimH1
ur(GK , V ) = dimH0(GK , V ).

(b) An element of H1(GK , V ) that correspond to an extension 0→ V →W →
Qp → 0 is in H1

ur(GK , V ) if and only if the sequence 0 → V IK → W IK →
Qp → 0 is still exact.

(c) Assume l 6= p. Then for the duality betwen H1(GK , V ) and H1(GK , V ∗(1)),
the orthogonal of H1

ur(GK , V ) is H1
ur(GK , V

∗(1)).

Proof — By the inflation-restriction exact sequence, the inflation map

H1(GK/IK , V IK )→ H1
ur(GK , V )

is an isomorphism. But GK/IK ' Ẑ, and for any p-adic representation W of Ẑ,
we have dimH0(Ẑ,W ) = dimH1(Ẑ,W ) (and dimH i(Ẑ,W ) = 0 if i > 1): this is
well-known is W is finite and the case of p-adic representations W follows using
Prop. 2.1 . Therefore, dimH1

ur(GK , V ) = dimH0(GK/IK , V IK ) = dimH0(GK , V ).
This proves (a).
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For a short exact sequence of representation of IK : 0 → V → W → Qp → 0

we have a long exact sequence 0 → V IK → W IK → Qp
δ→ H1(IK , V ) and by the

construction of the connecting morphism δ, the image of δ is the line generated
by the element of H1(IK , V ) corresponding to that extension. The assertion (b)
follows immediately.

For (c) we note that the image ofH1
ur(GK , V )⊗H1

ur(GK , V
∗(1)) inH2(GK ,Qp(1))

is 0 since it lies (using the fact that inflation maps are isomorphisms as in the
proof of (a)) in H2(GK/IK ,Qp(1)) = 0 (as seen in (a)). Assume l 6= p. We
only have to show that dimH1

ur(GK , V ) + dimH1
ur(GK , V

∗(1)) = dimH1(GK , V ).
But by (a), the LHS is dimH0(GK , V ) + dimH0(GK , V ∗(1)) = dimH0(GK , V ) +
dimH2(GK , V ) using the duality. But this is exactly the dimension of the RHS,
by the Euler-Poincaré characteristic formula since l 6= p. �

Exercise 2.8. (easy) Assume l 6= p. Show that the only irreducible representation
of GK such that H1

ur(GK , V ) 6= H1(GK , V ) is V = Qp(1). Show that in this case
H1

ur(GK , V ) = 0,

As suggested by the above exercise, the case of the representation Qp(1) is quite
special, and we study it in details. Remember (see §2.1.2 and exercise 2.4) that the
Kummer map is an isomorphism κ : K̂∗ ⊗Zp Qp → H1(GK ,Qp(1)).

Proposition 2.4. Assume p 6= l. The isomorphism κ identifies the subspace
Ô∗K ⊗Zp Qp of K̂∗ ⊗Z Qp with the subspace H1

ur(GK ,Qp(1)) of H1(GK ,Qp(1))

Proof — Indeed, both subspaces have dimension 0. �

Remark 2.2. This trivial result is the shadow in characteristic 0 of a non-trivial
(and important) result with torsion coefficients. Namely, that κn maps O∗K ⊗Z

Z/pnZ intoH1
ur(GK , µpn(K̄)) which is defined as ker(H1(GK , µpn(K̄))→ H1(IK , µpn(K̄))).

Here µpn = Gm[pn] denotes as usual the group scheme of pn-root of 1).
For pedagogical reasons, as we shall need later to do a more complicated proof

along the same lines, we make an exception to our rule of limiting ourselves to
characteristic 0 result and we prove this fact.

Let x in O∗K , and y ∈ K̄∗ such that yp
n

= x. The extension K(y)/K is unrami-
fied, since the polynomial Y pn − x has no multiple roots in the residue field k of K
(since its derivative is pnY pn−1 has only the root 0 of k (remember that p 6= l) and
0 is not a root of Y pn − x̄ since x ∈ O∗K). Therefore, for all g ∈ IK , g(y)/y = 1,
and the cocycle κn(x) is trivial on IK .

In the proof above, we have used the second construction of κn given in §2.1.2.
We could also have used the third. The end of the proof would have been: Let
x ∈ O∗K . The µpn-torsor Tn,x over K is the generic fiber of a µpn-torsor Tn,x over
OK (defined by the equation Y pn

= x.). This torsor is étale over SpecOK , hence
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locally trivial for the étale topology of SpecOK , therefore the class κn(x) of Tn,x in
H1

ét(SpecK,µpn) = H1(GK , µpn) lies in H1
ét(OK , µpn) = H1(GK/IK , µpn). QED.

Exercise 2.9. Assume l 6= p. Let E be an elliptic curve over K, and Vp(E) be
its Tate module. Show that H1(GK , Vp(E)) = 0. (Here is one possible method:
show first that H1

ur(GK , Vp(E)) = 0 using (a) of Prop. 2.3. Then use (c) of that
proposition to conclude, using that Vp(E) ' Vp(E)∗(1).)

2.1.5. Results in Global Galois cohomology, and Selmer groups. Let K be a number
field and p be a prime number. In what follows, Σ will always denote a finite set of
primes of K containing all primes above p. For v a place of K, we recall that we
denote by Gv the absolute Galois group of the completion Kv of K at v. Let V be
a p-adic representation of GK,Σ, that is a representation of GK that is unramified
at all prime not in Σ.

For global Galois cohomology we still have a simple Euler-Poincaré formula:

Proposition 2.5.

dimH0(GK,Σ, V )− dimH1(GK,Σ, V ) + dimH2(GK,Σ, V ) =∑
v|∞

H0(Gv, V )− [K : Q] dimV.

Exercise 2.10. Let V be an irreducible representation of dimension 2 of GQ,Σ.
Show that dimH1(GK,Σ, adV ) is at least 3 if V is odd (that is, the complex conju-
gation acts with trace 0 on V ), and at least 1 if V is odd.

We also have an analog of local duality, but instead of one clear theorem it is
a a web of inter-related results known as Poitou-Tate (e.g. Poitou-Tate duality,
the nine-term Poitou-Tate exact sequence, etc.). Those results do not relate the
dimension of H1(GK,Σ, V ) with the dimension of H1(GK,Σ, V ∗ (1)) but rather
with the dimension of a space of more general type (a Selmer group), which is the
subspace of H1(GK,Σ, V ) of elements whose local restrictions at places v ∈ Σ are
0. Moreover, those results do not give us any easy way to compute H2(GK,Σ, V )
as in the local case – and indeed, determining the dimension of H2(GK,Σ,Qp) is
still an open problem for most number fields K (see §5 below). The bottom line
is that in general the Euler-Poincaré formula gives us a lower bound for H1 but
that in general we don’t know if this lower bound is an equality. In exercise 2.10
for example, if V is geometric, it is conjectured that the lower bounds 3 and 1 are
equality, but this is not known in general.

We shall not expose here all the results belonging to the Poitou-Tate world. We
refer the reader to the literature for that (see e.g. [Mi] or [CNF].) We shall content
ourselves with two results. The first one is easily stated.

Proposition 2.6. Let i = 0, 1, 2. In the duality between
∏
v∈ΣH

i(Gv, V ) and∏
v∈ΣH

i(Gv, V ∗(1)), the images of H1(GK,Σ, V ) and the image of H1(GK,Σ, V ∗(1))
are orthogonal.
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To explain the second one, we need to introduce the general notion of Selmer
groups.

Definition 2.2. Let V be a p-adic representation of GK unramified almost every-
where. A Selmer structure L = (Lv) for V is the data of a family of subspaces Lv of
H1(Gv, V ) for all finite places v of K such that for almost all v, Lv = H1

ur(Gv, V ).

Definition 2.3. The Selmer group attached to L is the subspace H1
L(GK , V ) of

elements x ∈ H1(GK , V ) such that for all finite places v, the restriction xv if x to
H1(Gv, V ) is in Lv. In other words,

H1
L(GK , V ) = ker

H1(GK , V )→
∏

v finite place of K

H1(Gv, V )/Lv.


Exercise 2.11. If L is a Selmer structure, there is a finite set Σ of primes of
K containing the places above p, and such that for all finite place v 6∈ Σ, Lv =
H1

ur(Gv, V ). Show that H1
L(GK , V ) = ker

(
H1(GK,Σ, V )→

∏
v∈ΣH

1(Gv, V )/Lv
)
.

In particular, H1
L(GK , V ) is finite dimensional.

The most obvious choices for a component Lv of a Selmer structure are (0),
H1(Gv, V ) and of course H1

ur(Gv, V ). When v is prime to p, those are the only Lv
than one meets in practice. For v dividing p, see next §.

Definition 2.4. If L is a Selmer structure for V , we define a Selmer structure L⊥

for V ∗(1) by taking for L⊥v the orthogonal of Lv in H1(Gv, V ∗(1)).

Exercise 2.12. (easy) Why is L⊥ a Selmer structure?

We can now state the second duality result:

Proposition 2.7.

dimH1
L(GK , V ) = dimH1

L⊥(GK , V ∗(1))

+ dimH0(GK , V )− dimH0(GK , V ∗(1))

+
∑

v place of K (finite or not)

dimLv − dimH0(Gv, V )

This formula, a consequence of the Poitou-Tate machinery, appeared first (for
finite coefficients) in the work of Greenberg, and gained immediate notoriety when
it was used in Wiles’ work on Taniyama-Weyl conjecture.

Exercise 2.13. Applying the Prop. 2.7 for V ∗(1) instead of V , we get another
formula. Show that it is equivalent to the first one.

Exercise 2.14. Using Prop. 2.7, find a lower bound for the dimension ofH1(GK,Σ, V ).
Compare it with the lower bound you can get using the Euler-Poincaré character-
istic formula.
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2.2. The local Bloch-Kato Selmer groups at places dividing p. In all this §,
K is a finite extension of Qp.

2.2.1. The local Bloch and Kato’s H1
f . If V a p-adic representation of GK , we

are looking for a subspace L of H1(GK , V ) which is the analog of the subspace
H1

ur(GK′ , V ) of H1(GK′ , V ) where K ′ is a finite extension of Ql and V a p-adic
representation, p 6= l.

The naive answer (L = H1
ur(GK , V )) is not satisfying. For one thing, we know

that the p-adic analog of the l-adic notion of being unramified is not unramified but
crystalline. Moreover, the subspace Hur

1 (GK , V ) is not the orthogonal of the sub-
space H1

ur(GK , V
∗(1)) when the residual characteristic of K is p: their dimensions

do not add up to dimH1(GK , V ) = dimH1(GK , V ∗(1)) but is smaller (by (a) of
Prop. 2.3 and the local Euler-Poincaré characteristic formula).

The right answer has been found by Bloch and Kato ([BK])

Definition 2.5. We set H1
f (GK , V ) = ker(H1(GK , V )→ H1(GK , V ⊗Qp Bcrys)).

We have a very concrete alternative description of the H1
f .

Lemma 2.5. An element of H1(GK , V ) that corresponds to an extension 0 →
V → W → Qp → 0 is in H1

f (GK , V ) if and only if the sequence 0 → Dcrys(V ) →
Dcrys(W ) → Dcrys(Qp) → 0 is still exact. In particular, if V is crystalline, then
the extension W is in H1

f (GK , V ) if and only if it is crystalline.

Proof — The proof is exactly the same as the one of (b) of Prop. 2.3. �

When V is de Rham (which is the only case of interest), it is easy to compute
the dimension of the (local) H1

f .

Proposition 2.8. Assume that V is de Rham. Let D+
dR(V ) = (V ⊗ B+

dR)GK ⊂
DdR(V ) = (V ⊗BdR)GK . Then we have

dimQp H
1
f (GK , V ) = dimQp(DdR(V )/D+

dR(V )) + dimQp H
0(GK , V ).

Note that DdR(V )/D+
dR(V ) is a K-vector space. We insist that the formula

involves its dimension over Qp, that is [K : Qp] times its dimension over K.

Proof — We use the exact sequence

0→ Qp
α→ Bcrys ⊕B+

dR

β→ Bcrys ⊕BdR → 0

with α(x) = (x, x) and β(y, z) = (y−φ(y), y−z) where φ is the Frobenius on Bcrys.
Tensorizing it by V and taking the long exact sequence, we get

0→ H0(GK , V ) α→ Dcrys(V )⊕D+
dR(V )

β→ Dcrys(V )⊕DdR(V )

→ H1(GK , V ) α1→ H1(GK , V ⊗Bcrys)⊕H1(GK , V ⊗B+
dR)

β1→ H1(GK , V ⊗Bcrys)⊕H1(GK , V ⊗BdR),

(5)
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with α1(x) = (xc, xd) where xc (resp. xd) is the image of x by the mapH1(GK , V )→
H1(GK , V ⊗ Bcrys) (resp. H1(GK , V ) → H1(GK , V ⊗ BdR)), and β1(y, z) =
(y − φ(y), y′ − z′′) where y′ is the image of y by the map induced by the inclu-
sion Bcrys ⊂ BdR and z′′ is the image of z by the map induced by the inclusion
B+

dR ⊂ BdR.
We claim that kerα1 = ker(H1(GK , V ) x7→xc→ H1(GK , V ⊗Bcrys)). The inclusion

⊂ is clear, so let us prove the other, and consider an x ∈ H1(GK , V ) such that
xc = 0. Since (xc, xd) ∈ Imα1 = kerβ1, we have (xc)′ − (xd)′′ = 0 so (xd)′′ = 0,
but the map z 7→ z′′ is injective by the Lemma below, so we have xd = 0, so
α1(x) = (0, 0) which proves the claim.

Now we observe that the claim exactly says that kerα1 = H1
f (GK , V ). The exact

sequence (5) thus becomes

0→ H0(GK , V ) α→ Dcrys(V )⊕D+
dR(V )

β→ Dcrys(V )⊕DdR(V )→ H1
f (GK , V )

(6)

Since the alternate sum of the dimension of the spaces in an exact sequence is 0,
we get the result. �

Lemma 2.6. The natural map z 7→ z′′, H1(GK , V ⊗ B+
dR) → H1(V ⊗ BdR) is

injective.

Proof — By the long exact sequence attached to the short exact sequence 0 →
B+

dR → BdR → BdR/B
+
dR → 0 tensor V , we only have to prove that the sequence

0→ D+
dR(V )→ DdR(V )→ (V ⊗BdR/B

+
dR)GK → 0,

which is exact atD+
dR(V ) andDdR(V ), is exact. It suffices to show that dimK DdR(V ) ≥

dimK D
+
dR(V ) + dimK(V ⊗ BdR/B

+
dR)GK . But using the tiBdR/t

i+1BdR ' Cp(i),
we get that dimK D

+
dR(V ) ≤

∑
i≥0 dim(V ⊗Cp(i)), and dimK(V ⊗BdR/B

+
dR)GK ≤∑

i<0 dim(V ⊗Cp(i)), so dimK D
+
dR(V )+dimK(V ⊗BdR/B

+
dR)GK ≤

∑
i∈Z dim(V ⊗

Cp(i))GK which is known by a result of Tate to be less that dimV = dimK DdR(V ).
�

Exercise 2.15. With the same kind of ideas as in the Lemma, one can prove that
for any de Rham representation V , dimK D

+
dR(V ) + dimK D

+
dR(V ∗(1)) = dimQp V .

Do it.

As for the local cohomology group, the formula for the dimension of the H1
f is

simple and worth remembering. If H0(GK , V ) = 0, then dimH1
f (GK , V ) is [K : Qp]

times the number of negative Hodge-Tate weights of V .

Exercise 2.16. (easy) Show that if V is de Rham with all its Hodge-Tate weight
positive, then H1

f (GK , V ) is 0. Show that V is de Rham with all its Hodge-Tate
weights ≤ −2, then H1

f (GK , V ) = H1(GK , V ).
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Exercise 2.17. ComputeH1
f (GK ,Qp(n)) for all n. In particular, show thatH1

f (GK ,Qp)
is a line in H1(GK ,Qp) = Homcont(K∗,Qp) which has dimension [K : Q] + 1. Show
that this line is generated by the map x 7→ vp(x), where vp is the p-adic valuation
on K.

Exercise 2.18. Show that H1
ur(GK , V ) ⊂ H1

f (GK , V ). When do we have equality?

The first strong indication that H1
f (GK , V ) is a good analog in the p-adic case

of H1
ur(GK , V ) in the l-adic case is the following theorem of Bloch and Kato.

Theorem 2.1. Assume that V is de Rham. Then for the duality between H1(GK , V )
and H1(GK , V ∗(1)), the orthogonal of H1

f (GK , V ) is H1
f (GK , V ∗(1)).

Proof — We first notice that by Prop. 2.8, the dimension of H1
f (GK , V ) and

H1
f (GK , V ∗(1)) add up to dimH0(GK , V )+dimH0(GK , V ∗(1))+dimDdR(V )/D+

dR(V )+
dimDdR(V ∗(1))/DdR(V ∗(1)), that is using exercise 2.15 to dimH0(GK , V )+dimH0(GK , V ∗(1))+
[K : Qp] dimV , which is dimH1(GK , V ).

Therefore, we only have to prove that the restriction of the cup productH1(GK , V )⊗
H1(GK , V ∗) → H2(GK ,Qp(1)) = Qp to H1

f ⊗ H1
f is 0. Let x be an element in

H1
f (GK , V ∗), and let us denote by ∪x the cup-products by x (from H i(GK ,W ) to

H i+1(GK ,W ⊗ V ∗(1)) where i is any integer and W any space with a continuous
GK-action.) The crucial fact we shall use (a well-known fact of group cohomology)
is the compatibility of ∪x with the connecting homomorphisms in a long exact
sequence of cohomology attached to a short exact sequences. This fact is used to
guarantee the commutativity of the diagram below:

Dcrys(V )⊕DdR(V ) = H0(GK , V ⊗Bcrys ⊕ V ⊗BdR) //

∪x
��

H1(GK , V )

∪x
��

H1(GK , V ⊗ V ∗(1)⊗Bcrys ⊕ V ⊗ V ∗(1)⊗BdR) // H2(GK , V ⊗ V ∗(1))

where the first line is a part of the long exact sequence (5) and the second line is
another part of the same exact sequence but with V replaced by V ⊗V ∗(1). The first
vertical map ∪x obviously depends only on the image of x in H1(GK , V ∗(1)⊗Bcrys),
so it is 0 when x ∈ H1

f (GK , V ∗(1)). Therefore, the second vertical map ∪x is 0 on
the image of the first horizontal map. But by (6), this image is precisely H1

f (GK , V ).
This proves that the cup-product is 0 on H1

f (GK , V ) ⊗H1
f (GK , V ∗(1)), hence the

proposition. �

Another indication of the strong analogy between H1
f (when l = p) and H1

ur

(when l 6= p) is the following:

Proposition 2.9. The Kummer map κ : K̂∗ ⊗Zp Qp → H1(GK ,Qp(1)) identifies
O∗K ⊗Zp Qp with H1

f (GK ,Qp(1))
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Proof — Recall that Â is the p-adic completion of A. Since O∗K is already p-
adically complete, Ô∗K = O∗K is a subgroup of K̂∗.

By Prop. 2.8, dimH1
f (GK ,Qp(1)) = [K : Qp]. Since the logarithm defines an

isomorphism between an open (therefore finite index) subgroup of (O∗K ,×) and an
open subgroup of (OK ,+), and since such a subgroup is isomorphic to Z[K:Qp]

p , we
also have dimO∗K ⊗Qp = [K : Q]. Since κ is injective, we only have to prove that
κ(O∗K) ⊂ H1

f (GK ,Qp(1)). To do so, we use the third construction of κ (see §2.1.2):
for x ∈ O∗K , we call Tn,x the K-subscheme of Gm defined by the equation Y pn−x =
0, which is a torsor over µpn . The torsor Tn,x has a natural model Tn,x over OK ,
defined over the same equation, which is not finite étale, but at least finite and
faithfully flat over OK , and is a torsor over the finite faithfully flat group scheme
(µpn)OK

over OK .
The torsor Tn,x defines an extension in the category of finite faithfully flat group

schemes killed by pn over OK ,

0→ (µpn)OK
→ En,x → (Z/pnZ)OK

→ 0

where (Z/pnZ)OK
is the constant group scheme Z/pnZ : the extension En,x is the

one defined by the class of Tn,x in H1
fppf(SpecOK , (µpn)OK

) = Ext1
fppf(Z/pnZ, µpn).

Taking the generic fiber, we also get an extension En,x of Z/pnZ by µpn in the
category of finite group schemes killed by pn over K, whose class is the class of Tn,x
in H1

fppf(SpecK,µn) = H1
ét(SpecK,µn) = H1(GK , µn(K̄)), that is, by definition,

the class κn(x).
Now we let n vary. Of course the constructions are compatible for various n, and

therefore the system (Ex,n) define a p-divisible group Ex over K, whose attached
Tate module is, by construction, the extensionW of Qp by Qp(1) defined by the class
κ(x). But this p-divisible group has good reduction over OK , since the p-divisible
group Ex attached to the inductive system (Ex,n) is a model of it. Therefore, by the
theorem of Fontaine explained in one of Conrad’s talk, the Tate module W of E is
crystalline. This proves that κ(x) ∈ H1

f (GK ,Qp(1)) by Lemma 2.5. �

In the same spirit, we have the important:

Proposition 2.10. Let E be an elliptic curve over K. The Kummer isomorphism
κ for E is an isomorphism E(K)⊗Zp Qp

∼→ H1
f (GK , Vp(E)).

Proof — For simplicity, we treat only the case where E has good reduction over
OK . For the general case, see [BK, Example 3.10.1].

We begin by counting dimensions. The logarithm defines an isomorphism be-
tween an open s finite-index subgroup of E(K) and an open subgroup of the Lie
algebra of E/K, which is K, so E(K) is p-adically complete (which shows in pass-
ing that the Kummer map κ as indeed for source E(K) ⊗Zp Qp) and we have
dimE(K) ⊗Zp Qp = [K : Qp]. On the other hand dimH1

f (GK , Vp(E)) = [K : Qp]
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by Prop. 2.8. Since κ is injective, we only have to prove that for x ∈ E(K),
κ(x) ∈ H1

f (GK ,Qp(E)). For this we consider as in the third construction of the
Kummer homomorphism (see §2.1.2) the torsor Tn,x (fiber of [pn] : E → E at x over
the finite group scheme E[pn], over K) and observe that this torsor has a finite,
faithfully flat model Tn,x over OK : consider an elliptic scheme E (e.g. the Néron
model of E, or more simply the model defined by a minimal Weierstrass equation)
over OK whose generic fiber is E, and define Tn,x again as the fiber at x of the
faithfully flat morphism [pn] : E → E . The end of the proof is exactly the same as
in the above proposition. �

2.2.2. The variants H1
g and H1

e . We keep the same notations as above. Bloch and
Kato define two variants of H1

f (GK , V ), one slightly smaller H1
e (GK , V ) and one

slightly bigger H1(GK , V ). They are relatively useful, though not as much as the
H1
f .
They are defined as

H1
g (GK , V ) = ker(H1(GK , V )→ H1(GK , V ⊗BdR))

H1
e (GK , V ) = ker(H1(GK , V )→ H1(GK , V ⊗Bφ=1

crys ))

Since Bφ=1
crys ⊂ Bcrys ⊂ BdR, we have

H1
e (GK , V ) ⊂ H1

f (GK , V ) ⊂ H1
g (GK , V ).

Again we have a very concrete alternative description of the H1
g and H1

e

Lemma 2.7. An element of H1(GK , V ) that correspond to an extension 0→ V →
W → Qp → 0 is in H1

g (GK , V ) (resp. in H1
e (GK , V )) if and only if the sequence 0→

DdR(V ) → DdR(W ) → DdRQp → 0 (resp. 0 → Dcrys(V )φ=1 → Dcrys(W )φ=1 →
Dcrys(Qp)→ 0) is still exact. In particular, if V is de Rham, then the extension W

is in H1
g if and only if it is de Rham

Proof — The proof is exactly the same as the one of (b) of Prop. 2.3. �

Exercise 2.19. a.– Using the exact sequence 0→ Qp → Bφ=1
crys → BdR/B

+
dR, show

that there exists a natural surjective map

DdR(V )/D+
dR(V )→ H1

e (GK , V )

whose kernel is Dcrys(V )φ=1/V GK . This map is called the Bloch-Kato exponential
(because, in the case where V = Vp(A) for an abelian variety A over K, it can
be identified with the (the tensorization with Qp of) the exponential map from an
open subgroup of the Lie algebra of A to A(K). )

b.– Deduce that if V is de Rham,

dimH1
e (GK , V ) = dimDdR(V )/D+

dR(V ) + dimH0(GK , V )− dimDcrys(V )φ=1.
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The “g” in H1
g stands for geometric since geometric representations are de Rham.

The “e” in H1
e stands for “exponential”. This explains the “f” in the H1

f as f is
just between e and g in the alphabetic order.

Proposition 2.11. Assume that V is de Rham. For the pairing between H1(GK , V )
and H1(GK , V ∗(1)), the orthogonal of H1

e (GK , V ) is H1
g (GK , V ∗(1)) and the orthog-

onal of H1
g (GK , V ) is H1

e (GK , V ∗(1)).

Of course, it is sufficient to prove one of those assertions. For the proof of this
result, that we shall not use, see [BK, page 357].

Exercise 2.20. Show that if V is de Rham, then dimH1
g (GK , V ) = dimDdR(V )/D+

dR(V )+
dimH0(GK , V ) + dimDcrys(V ∗(1))φ=1.

Exercise 2.21. Compute dimH1
e (GK ,Qp(n)), dimH1

f (GK ,Qp(n)), dimH1
g (GK ,Qp(n)),

dimH1(GK ,Qp(n)) for all integers n. The answers depends on n only through the
conditions n < 0, n = 0, n = 1, n > 1, so you can put them in a 4 × 4-table that
you can write in the space below. You can check your answer on [BK, Example
3.9].
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Exercise 2.22. (difficult) Let E be an elliptic curve over K. Show that

H1
e (GK , Vp(E)) = H1

f (GK , Vp(E)) = H1
g (GK , Vp(E)).

2.2.3. Analogies. For K a finite extension of Ql, and V a p-adic representation, we
have three natural subspaces of H1(GK , V ) if l 6= p, and five if l = p.

case l 6= p (0) ⊂ H1
ur(GK , V ) ⊂ H1(GK , V )

case l = p (0) ⊂ H1
e (GK , V ) ⊂ H1

f (GK , V ) ⊂ H1
g (GK , V ) ⊂ H1(GK , V )

The correct analogies between the subspaces in the case l 6= p and l = p are
given by the vertical alignment in the above table. That is, the correct analog of
the full H1(GK , V ) (resp. of H1

ur(GK , V ), resp. of (0)) in the case l 6= p is, in the
case l = p, the subspace H1

g (GK , V ) (resp. H1
f (GK , V ), resp. H1

e (GK , V )).
Of course, this is only an analogy, so it cannot be proved and one is allowed

to disagree. But we have already strongly substantiated the analogy H1
ur / H

1
f .

Let us motivate the analogies (0) / H1
e and H1 / H1

g . Of course, if we want our
analogies to respect orthogonality, we only have to motivate one of them, say the
analogy H1 / H1

g . Now look at the formula for dimH1(GK , V )− dimH1
ur(GK , V )

if l 6= p, and compare it to the formula dimH1
g (GK , V ) − dimH1

f (GK , V ) if l = p

(from Prop. 2.8 and Exercise 2.20). They look rather similar, don’t they? While if
you consider dimH1(GK , V )− dimH1

f (GK , V ) the formula is more complicated.
Another argument is as follows: if V is de Rham (in the case l = p), an element of

x ∈ H1(GK , V ) represents an extension W of Qp by V , and x ∈ H1
g means that W

is de Rham (see Lemma 2.7), that is, by Berger’s monodromy theorem, potentially
semi-stable (in the p-adic sense). But if l 6= p, any representation W is potentially
semi-stable by Grothendieck’s monodromy theorem. So the analog of H1

g is the full
H1.

This motivates the following notations.

Notation 2.1. If K is a finite extension of Ql and V a p-adic representation of GK ,
and l 6= p, we set H1

e (GK , V ) = 0, H1
f (GK , V ) = H1

ur(GK , V ), and H1
g (GK , V ) =

H1(GK , V ).

2.3. Global Bloch-Kato Selmer group. In all this §, K is a number field, and
V is a geometric p-adic representation of GK .

2.3.1. Definitions.

Definitions 2.6. The global Bloch-Kato Selmer group H1
f (GK , V ) is the subspace

of elements x of H1(GK , V ) such that for all finites place v of K, the restriction xv
of x belongs to H1

f (GK , v).
More generally, if S is any finite set of finite places of K, we define H1

f,S(GK , V )
as the subspace of elements x of H1(GK , V ) such that for all finites place v of K,
the restriction xv of x belongs to H1

f (Gv, V ) if v 6∈ S, and to H1
g (GK , V ) if v ∈ S.
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Finally, we call H1
g (GK , V ) the union of all H1

f,S(GK , V ) when S runs among
finite sets of primes of K. In other words, H1

g (GK , V ) is the subspace of elements x
of H1(GK , V ) such that for all finite places v of K, the restriction xv of x belongs
to H1

g (Gv, V ), and such that xv belongs to H1
f (Gv, V ) for all but a finite number

of v.

Remember that by definition (see §2.2.3) H1
f (Gv, V ) means H1

ur(Gv, V ) and
H1
g (Gv, V ) means H1(Gv, V ) when v does not divides p. Of course, H1

f,∅ = H1
f ,

and H1
f,S ⊂ H1

f,S′ if S ⊂ S′.
The Bloch-Kato Selmer group H1

f (GK , V ) is an instance of a Selmer group in
the sense of Definition 2.2: it is the Selmer groups H1

Lf
(GK , V ) attached to the

Selmer structure Lf = (Lv) where Lv = H1
f (Gv, V ) for all v. So is H1

f,S(GK , V ) =
H1
Lf,S

(GK , V ) where Lf,S is the Selmer structure (Lv) with Lv = H1
f (Gv, V ) for

v 6∈ S and Lv = H1
g (Gv, V ) if v 6∈ S. In particular, they are finite-dimensional over

Qp.
A remarkable feature about the Selmer structure Lf is that it is self-dual: The

structure L⊥f of V ∗(1) is the same as its own structure Lf , as it follows from
Prop. 2.3(c) and Theorem 2.1. The duality formula for Selmer groups therefore
takes a very nice form for Bloch-Kato Selmer groups:

Theorem 2.2.

dimH1
f (GK , V ) = dimH1

f (GK , V ∗(1))

+ dimH0(GK , V )− dimH0(GK , V ∗(1))

+
∑
v|p

dimDdR(V|Gv
)/D+

dR(V|Gv
)

−
∑
v|∞

dimH0(Gv, V )

Proof — This results from Proposition 2.7, taking into account that

- for v a finite place not dividing p, dimH1
f (Gv, V )− dimH0(Gv, V ) = 0 by

Prop. 2.3(a).
- For v a finite place dividing p,

dimH1
f (Gv, V )− dimH0(Gv, V ) = dimDdR(V|Gv

)/D+
dR(V|Gv

)

by Prop. 2.8

�

Remark 2.3. The term on the third line of the above formula,∑
v|p

dimDdR(V|Gv
)/D+

dR(V|Gv
)

is equal to
∑

k<0mk(V ), where the mk(V )’s are the total multiplicity of the Hodge-
Tate weight k in V defined in §1.2.3. This is clear from their definition since
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dim(DdR(V|Gv
)/D+

dR(V|Gv
)) is equal to [Kv : Qp] times the number of negative

Hodge-Tate weights of V|Gv
, counted with multiplicity.

Similarly, the term on the fourth line
∑

v|∞ dimH0(Gv, V ) is by definition the
term we have denoted by a+(V ) in §1.2.3.

Exercise 2.23. What does this theorem say when V = V ∗(1)?

Exercise 2.24. a.– Show that H1
f (GK ,Qp) = 0. (Hint: use the finiteness of the

class group of K as well as Exercise 2.17.)

b.– Deduce from a.– that dimH1
f (GK ,Qp(1)) = r1 + r2 − 1 where r1 and r2 are

the number of real and complex places of K.

2.3.2. The case V = Qp(1). To explain the arithmetic significance of the Bloch-
Kato selmer groups, we look at two important examples: V = Qp(1), and V =
Vp(E) for E an elliptic curve.

Proposition 2.12. The Kummer map κ realizes an isomorphism

O∗K ⊗Z Qp → H1
f (GK ,Qp(1)).

Proof — Note that properly speaking, the Kummer map κ has not been defined in
this context of number fields, as GK does not satisfy the finiteness property Fin(p),
and as K∗ is not of finite type. This is of course a minor technical problem that
we shall circumvent in the next paragraph.

What we have defined is a compatible family of maps κn : K∗ ⊗ Z/pnZ →
H1(GK ,Z/pnZ(1)) that are isomorphisms (see Exercise 2.2). Let Σ be any finite
set of finite places containing that above p. Let O∗K,Σ be the group of units of
K outside Σ. If x ∈ O∗K,Σ ⊂ K∗, then by the proof of Prop. 2.4, κn(x) is in
H1(GK,Σ,Z/pnZ(1)) so since GK,Σ satisfies Fin(p) and OK∗,Σ is of finite type, we
can define by taking the projective limit of the κn’s an isomorphism κ : O∗K,Σ ⊗Z

Qp → H1(GK,Σ,Qp(1)). Of course, by construction, this κ is compatible with the
local Kummer maps κ : K̂∗v ⊗Zp Qp → H1(GKv ,Qp(1)) for v a place of K in Σ.

Now by proposition 2.4 and proposition 2.9, we see that for x ∈ O∗K,Σ ⊗Z Qp,
κ(x) ∈ H1

f (GK ,Qp(1)) if and only if x ∈ O∗K . Therefore κ induces an isomorphism
O∗K ⊗Qp → H1

f (GK ,Qp(1)). �

The proof shows easily that H1
f,S(GK ,Qp(1)) ' O∗K,S ⊗ Qp, where O∗K,S is the

group of S-unit of K.
This result, relating the Bloch-Kato Selmer group of Qp(1) with is a classical

object of interest in arithmetic (at least since the appearance of the Pell-Fermat
equation x2−Dy2 = ±1) is a first indication of the number-theoretical significance
of the Bloch-Kato Selmer group. The proof makes clear how the condition f of
Bloch-Kato makes it related to the interesting group O∗K (whose rank is the object
of one of the most beautiful theorem of the nineteenth century, Dirichlet’s units
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theorem), rather than to the much less mysterious K∗ (which is a free abelian
group of infinite rank times a finite cyclic group). Note that, using exercise 2.24,
this result implies that rkO∗K = r1 + r2 − 1, which is the hard part of Dirichlet
units theorem.

2.3.3. The case V = Vp(E) for E an elliptic curve. Now let E be an elliptic curve
over K. Let us recall (see [Silverman] for details) that the classical p-adic Selmer
group Selp(E) of E is defined as the subspace of H1(GK , Vp(E)) whose elements
are the x whose restriction xv at every finite place v belong to the image of E(Kv)
in H1(Gv, Vp(E)) by the local Kummer map κv. It is known that the Kummer
map induces an injectionres κ : E(K) ⊗Z Qp ↪→ Selp(E) which is an isomorphism
if and only if the p-primary component Cha(E)[p∞] of the Tate-Shafarevich group
Cha(E) of E is finite, which is conjectured to be true (as a part of Birch and
Swinnerton-Dyer conjecture).

Proposition 2.13. As subspaces of H1(GK , Vp(E)), we have Selp(E) = H1
f (GK , Vp(E)).

In particular, the Kummer map induces an injection E(K)⊗ZQp → H1
f (GK , Vp(E))

which is an isomorphism if and only if Cha(E)[p∞] is finite.

Proof — This is clear, since if v|p, for an element of H1(Gv, Vp(E)) it is equivalent
by Proposition 2.10 to be in the image of E(Kv) or to be in the H1

f (Gv, Vp(E));
and since v 6 |p, we have H1

f (Gv, Vp(E)) = H1(Gv, Vp(E)) = 0 by Exercise 2.9. �

This again shows that the H1
f is closely related to one of the most interesting

abelian group of algebraic number theory, the Mordell-Weil group E(K). Similar
results hold for abelian varieties.

2.3.4. Motivic interpretation and the other Bloch-Kato conjecture. Assume that V
is the p-adic realization of a motive M ∈MK . Let 0 6= x ∈ H1

g (GK , V ), and let W
be the extension of Qp by V defined by x. We note that the p-adic representation is
de Rham at places v dividing p (since V is, and xv is in H1

g (Gv, V ) – see Lemma 2.7),
and unramified at almost all places (since V is, and xv ∈ H1

f (Gv, V ) = H1
ur(Gv, V )

for almost all v). Should the p-adic representation W be the realization of some
motive N? If by motive we understand, as we have done so far pure (iso-) motives,
the answer is no, because such a realization should be semi-simple, and W is not.

However, according to Grothendieck, there should exist a Q-linear abelian cate-
goryMMK of mixed motives over K, containing the categoryMK of pure motives
as a full subcategory, with realization functors Realp toward the category of p-adic
representations of GK (for all prime p), extending those from MK . The category
MMK should be to MK what the category VK of all varieties over K (not neces-
sarily proper and smooth) is to its subcategory VPSK . In particular, there should
exist a contravariant functor H i : VK →MMK such that Realp ◦H i = H i(−,Qp),
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where H i(X,Qp) denotes for a general variety X over K the p-adic representation
H i

ét(X ×K K̄,Qp) of GK .
The most notable difference between MMK and MK is that MMK should

not be semi-simple (nor graded in any interesting way). If N ∈ MMK , the GK-
representation Realp(N) should be unramified almost everywhere, and de Rham at
places dividing p, but not semi-simple in general, nor pure of some weight (rather,
it should have an increasing filtration FilwRealp(N) whose graded piece are pure
geometric representation of weight w): those requirement are inspired by the known
properties of the étale cohomology of general varieties over K.

Going back to our extensionW of 1 by V = Realp(M) representing x ∈ H1
g (GK , V ),

it is expected that W should be Realp(N) for some mixed motive N ∈ MK . Ac-
tually it is even expected that the functor Realp induces an isomorphism between

Ext1
MMK

(Q,M) ' H1
g (GK , V )(7)

where Q is the object of MK such that Realp(Q) = Qp. This is the motivic
interpretation of H1

g . We should have similar interpretation for H1
f,S(GK , V ) by

considering mixed motives over SpecOK − S instead of SpecK.
Of course, the category of mixed motives MMK has not been constructed.

Nevertheless, when M = H i(X) for some X ∈ VPSK it is possible to give a non-
conjectural meaning to (what should be) Ext1

MMK
(Q,M) using the K-theory of

X (see [BK, page 359].) Bloch and Kato have conjectured ([BK, Conjecture 5.3])
that when Ext1

MMK
(Q,M) is defined this way, (7) holds. This other Bloch-Kato

conjecture has now been proved.

2.3.5. Relations between H1
f , H1

f,S and H1
g . It is a natural question to try to com-

pare the dimension of H1
f,S(GK , V ) and H1

f,S′(GK , V ). Of course, it would be
enough to understand completely the case S′ = S ∪ {v} where v is a finite prime
not in S. To put aside trivialities, let us just state that in this case

dimH1
f,S(GK , V ) ≤ dimH1

f,S′(GK , V ) ≤ dimH1
f,S(GK , V )+dim(H1

g (Gv, V )/H1
f (Gv, V )).

In particular, when V|Gv
has no quotient isomorphic to Qp(1), one has

dimH1
f,S(GK , V ) = dimH1

f,S′(GK , V ).

Exercise 2.25. Prove those relations.

The real challenge is when V|Gv
has a quotient isomorphic to Qp(1).

The rest of this § will be written after the conference.

3. L-functions

3.1. L-functions.
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3.1.1. Euler factors. Let V be a p-adic geometric representation of GK . For the
commodity of exposition, we suppose an embedding of Qp into C has been chosen.
This is an ugly thing to do, as it depends on the non-enumerable axiom of choice
and it is absolutely non-canonical, but actually, as we shall see, this choice shall
play no role in practice.

For every finite place v of K that does not divides p, we set

Lv(V, s) = det((Frob−1
v q−sv − Id)|V Iv )−1(8)

Here s is a complex argument, qv the cardinality of the residue field of K at v,
and the matrix of Frobv is seen as a complex (rather than p-adic) matrix using our
embedding. The function s 7→ Lv(V, s), called an Euler factor, is clearly a rational
(hence meromorphic) function from C to C, with only a finite number of poles. It
is also, formally, a power series in the variable p−s.

Note also that when V is algebraic, the coefficients of det((Frob−1
v q−sv −Id)|V Iv )−1

are algebraic numbers for almost all v by property E5 so the choice of the embedding
Qp → C is not really relevant, only an embedding of the field of algebraic numbers
in Qp to C matters.

For places v of V that divides p, we set

Lv(V, s) = det(φ−1q−1
v − Id)|Dcrys(V|Gv ))

−1,(9)

where φ is the crystalline Frobenius to the power fv, where qv = pfv
v where pv is

the prime dividing qv.
Caveat: I am (not even completely, actually) sure that it is the correct formula

only in the case where V is crystalline at v. Without access to the right books here
in Hawaii, I can’t check my memory that this is also the correct formula when V

is only de Rham at v. This detail will be fixed after the conference.

3.1.2. Formal definition of the L-function as an Euler product.

Definition 3.1. We set formally (that is, as a power series in the variable p−s),

L(V, s) =
∏

v finite place of K

Lv(V, s).

More generally, for S any finite set of finite places of K, we set

LS(V, s) =
∏

v finite place of K not in S

Lv(V, s).

The product of Euler factors defining the L-function is called an Euler product.
Even only formally, there are many things to say about the L-function. We will

only mention two of them. The first one is immediately checked, and fundamental.
We shall use it frequently without comments:

L(V (n), s) = L(V, s+ n).(10)

The second one needs a little computation, left as an exercise to the reader in the
case where V is crystalline at all places dividing v (for the general case, see [FPR]):
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Lemma 3.1. Let V be a p-adic representation of a number field K, K0 be a subfield
of K, and W = Ind

GK0
GK

V . Then

L(V, s) = L(W, s).

If S0 a finite set of finite places of K0 and S is the set of places of K that lies above
some place of S0, then

LS(V, s) = LS0(W, s).

3.1.3. Convergence. Let V be a p-adic representation that is pure of weight w ∈ Z.
Assume more precisely that it is Σ-pure, where Σ is a finite set of finite places
containing all places above p, and all places where V is ramified. Then by definition,
for v 6∈ Σ, we have

Lv(V, s) =
dimV∏
i=1

(1− α−1
i,v q
−s
v )−1

where α1,v, . . . , αdimV,v are the roots of the characteristic polynomials of Frobv in
V , and we see that Lv(V, s) have no zero, and only a finite number of poles, all on
the line <s = w/2.

Proposition 3.1. Let V be a representation that is Σ-pure of weight w, with Σ as
above. Then the Euler product defining LΣ(V, s) converges absolutely and uniformly
on all compact on the domain <s > w/2 + 1.

Proof — We have to see that
∑

v 6∈Σ

∑dimV
i=1 log(|1−α−1

i,v q
−s
v |) converges absolutely

and uniformly over all compact on the domain <s > w/2 + 1. Using the in-
equality | log(1 + z)| ≤ |z|, and |α−1

i,v | = q
w/2
v , we are reduced to check that the sum∑

v 6∈Σ |q
−s+w/2
v | converges absolutely and uniformly on all compact on the same do-

main. But the number of places v such that qv = n for a given non-negative integer n
is finite and bounded independently of n, so we are reduced to the convergence (ab-
solutely and uniformly on all compact) of the sum

∑
n≥1 |nw/2−s| =

∑
n≥1 n

w/2−<s,
which is clear. �

Corollary 3.1. The function LΣ(V, s) is a well-defined holomorphic functions with
no zero on the domain <s > w/2 + 1. The function L(V, s) is a well-defined
meromorphic functions with no zero on the domain <s > w/2 + 1

Proof — The first assertion follows directly from the proposition. The second
follows from the one if we observe that the missing factors Lv(V, s) for v 6∈ Σ are
meromorphic functions with no zeros. �
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3.1.4. Examples. If V = Qp, the function L(V, s) is the Dedekind zeta function
ζK(s). It is well known to have an analytic continuation to C with only one pole,
at s = 1, of order one. If V = Qp(n), then L(V, s) = ζK(s+ n).

If V = Vp(E) for E an elliptic curve over K, then Vp(E) = H1(E,Qp)∗ =
H1(E,Qp)(1), L(Vp(E), s) = L(H1(E,Qp)(1), s) = L(E, s+ 1) where L(E, s) is the
usual L-function of the elliptic curve.

3.1.5. Analytic continuation and zeros.

Conjecture 3.1. Assume that V is a geometric p-adic representation of GK , that
is pure of weight w. Then the function L(V, s) admits a meromorphic continuation
on all the complex plane. The function L(V, s) has no zeros on the domain <s ≥
w/2 + 1. If V is irreducible, L(V, s) has no poles, except if V ' Qp(n), in which
case L(V, s) has a unique pole at s = n+ 1, which is simple.

This conjecture is known to be true if V is automorphic. Let us detail this asser-
tion. If V is automorphic, it is attached to a cuspidal automorphic representation
π of GLd/K, where d = dimV , and we have L(V, s) = L(π, s) where L(π, s) is
the L-function attached to π in the theory of automorphic representation. That
the L-function of an automorphic representation satisfies the conjecture is a re-
sult of Hecke in the case d = 1, of Jacquet-Langlands in the case d = 2, and of
Jacquet-Shalika in the case d ≥ 3.

It is widely expected that proving conjecture 3.1 will require to prove that every
geometric representation is automorphic.

Let us add some cultural comments on the assertion in the conjecture that L(V, s)
has no zero on the domain <s ≥ w/2 + 1, which will be very important for us
through its special case L(V,w/2 + 1) 6= 0. By construction, as we have seen,
L(V, s) has no zero on the open domain <s > w/2 + 1, and the new assertion is
that L(V, s) has no zero on the boundary of the domain of convergence, that is the
line <s = w/2 + 1. In the special case V = Qp, K = Q, this is the assertion that
the Riemann zeta function ζQ has no zero on the line <s = 1. This was conjectured
in 1859 by Riemann, who noticed that such a statement would imply the “prime
number theorem”, a striking statement about the distribution on prime numbers
that was earlier conjectured by Gauss. In the same paper, Riemann proved the
analytic continuation of ζQ, and determined its pole, so this was really the ancestor
of Conjecture 3.1. Riemann’s argument that the non-vanishing of ζQ on the line
<s = 1 implies the prime number theorem was made completely rigorous later by
Weierstrass. This non-vanishing result was proved in 1896 by Hadamard and de
la Vallée Poussin, and further results on the non-vanishing on the boundary of the
domain of convergence for more general L-function were proved using the same
ideas.

As is well known, Riemann also conjectured that ζQ had no zero on <s > 1/2.
This is the famous Riemann hypothesis, still open and now another Clay Millennium
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Problem. However, this question is not related with the Bloch-Kato conjecture that
we discuss in these notes.

3.2. The functional equation.

3.2.1. The Gamma function and variants. Let us recall that the Γ-function is de-
fined as an holomorphic function for <s > 1 as

Γ(s) =
∫ ∞

0
ts−1e−t dt.

Its properties that we shall need are given as an exercise (or google “Gamma func-
tion”):

Exercise 3.1. a.– Show that Γ(s+ 1) = sΓ(s) for <s ≥ 1 and that Γ(1) = 1.

b.– Show that Γ has an analytic continuation on the whole complex plane with
only poles at non-positive integers s = 0,−1,−2,−3, . . . , and that those poles are
simple.

c.– Show that Γ has no zero.

d.– Show the duplication formula Γ(s)Γ(s+ 1/2) = 21/2−2s
√

2πΓ(2s).

We define two variants:

ΓR(s) = π−s/2Γ(s/2)

ΓC(s) = 2(2π)−sΓ(s)

Note that ΓC(s) = ΓR(s)ΓR(s+ 1). The poles of ΓR are at 0,−2,−4,−6, . . . and
those of ΓC are at 0,−1,−2,−3,−4,−5, . . . . These poles are all simple.

3.2.2. The completed L-function. To state the functional equation of L(V, s) we
need to complete the Euler product that defines it by adding “Euler factors at
infinity”, which are translated of the functions ΓR and ΓC. Morally, the precise
form of those Γ factors should be deduced from the Hodge structure attached to
the (motive underlying) V (see §1.3). For a definition using this Hodge structure,
see [S1] or [FPR]. Since we do not want to rely on motive theory, we give a definition
of those factors assuming only that V is a representation coming from geometry
that is pure of weight w, and this definition is (conjecturally) equivalent to the one
given in literature.

Recall that we have defined in 1.2.3 the total multiplicity mk = mk(V ) of the
Hodge-Tate weight k ∈ Z of V and also two natural integers a±(V ) which add up
to [K : Q] dimV . We have also set mw/2 =

∑
k<w/2mk.

We set

L∞(V, s) =
∏

k∈Z,k<w/2

ΓC(s− k)mk if w is odd.
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If w is even, we define a sign ε = (−1)w/2, and

L∞(V, s) =
∏

k∈Z,k<w/2

ΓC(s− k)mk ΓR(s−w/2)a
ε−m<w/2 ΓR(s−w/2 + 1)a

−ε−m<w/2

This definition may seem ad hoc. Since it is a definition, we cannot justify it
a priori, and since it is only used in a conjecture (the functional equation), not a
theorem, we cannot even say that it is the right definition that makes the theorem
work. However, it is really the only natural definition that matches the various
cases where we know the functional equation (Hecke characters, modular forms,
etc.). We hope that the following lemma and exercise will show that it is more
natural that it seems at first glance.

Lemma 3.2. We have L∞(V (n), s) = L∞(V, s+ n) for all n ∈ Z

Proof — It is enough to prove it for n = 1. Let V ′ = V (1). We have w(V ′) =
w(V )− 2, and mk′(V ′) = mk′+1(V ) for any k′ ∈ Z (since the Hodge-Tate weights if
V are those of V minus one). Therefore if in the product

∏
k∈Z,k<w(V )/2 ΓC((s+1)−

k)mk(V ) we make the change of variables k′ = k− 1, we get
∏
k′∈Z,k′<w(V ′)/2 ΓC(s−

k′)mk′ (V
′). This already proves that L∞(V (1), s) = L∞(V, s) in the case w(V ) (or

w(V ′), that amounts to the same) odd. For the case w(V ) odd, we notice that
ε(V ′) = −ε(V ). But we also have a+(V (1)) = a−(V ) by definition since the action
of the complex conjugation on Qp(1) is −1. Therefore the two changes of sign
cancel each other and we have a±ε(V (1))(V (1)) = a±ε(V )(V ). It is now easy to check
that

ΓR((s+ 1)−w(V )/2)a
ε(V )(V )−m<w(V )/2 ΓR((s+ 1)−w(V )/2 + 1)a

−ε(V )−m<w(V )/2(V )

= ΓR(s− w(V )/2)a
ε(V ′)(V ′)−m<w(V )/2 ΓR(s− w(V ′)/2 + 1)a

−ε(V ′)−m<w(V ′)/2(V ′),

and this proves the lemma. �

Exercise 3.2. Using Predictions 1.2 and 1.3, show that L∞(V, s) has no zero and
that the number of ΓR factors (a ΓC being worth two ΓR) in L∞ is [K : Q] dimV .

We note for further reference the following

Lemma 3.3. If w < 0, the function L∞(V, s) has no pole at s = 0. If w ≥ 0 is
odd, then L∞(V, s) has a pole at s = 0 of order

∑
0≤k<w/2mk. If w ≥ 0 is even,

then L∞(V, s) has a pole at s = 0 of order
∑

0≤k<w/2mk + a+ −mw/2.

Proof — Each term of the form ΓC(s− k)mk contributes to a pole at s = 0 (with
order mk) if and only if k ≥ 0. So the product of those terms for k < w/2 gives a
pole of order

∑
0≤k≤w/2 (which is 0 if w < 0) and that’s all if w is odd. If w is even,

we look at the factor ΓR(s−w/2) and ΓR(s−w/2 + 1). If w < 0, none of them has
pole at s = 0, which concludes the case w < 0. If w ≥ 0, and w/2 is even, only the
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factor ΓR(s−w/2) has a pole at s = 0. Since this factors appears aε−mw/2 times,
and ε = +1 in this case, we get a contribution to the order of the pole at s = 0
of a+ −mw/2. If w ≥ 0 and w/2 is odd (so in fact w ≥ 2), then only the factor
ΓR(s− w/2 + 1) has a pole at s = 0, and the order of this pole is a−ε −mw/2, but
in this case ε = −1, so the contribution is again a+ −mw/2. �

We set

Λ(V, s) = L(V, s)L∞(V, s).

This is the completed L-function of V

Example 3.1. Assume V = Qp. In this case we have w = 0, m0 = [K : Q]
ad m<w/2 = 0. We also have ε = 1, a+ = r1 + r2 and a− = r2, where r1 and
r2 are the number of real and complex places of K. We thus have L∞(V, s) =
ΓR(s)r1+r2ΓR(s+ 1)r2 , and

Λ(V, s) = ζK(s)ΓR(s)r1+r2ΓR(s+ 1)r2 = ζK(s)ΓR(s)r1ΓC(s)r2 .

Formulas equivalent to this one appears in Dedekind’s work (and in Riemann’s
work in the case K = Q).

3.2.3. The functional equation. Assume as before that V comes from geometry.
Then so does V ∗(1). Assume conjecture 3.1, so L(V, s) and L(V ∗(1), s) and there-
fore Λ(V, s) and Λ(V ∗, s) are well-defined meromorphic function on C. Then it is
conjectured that the following functional equation relates those two functions:

Conjecture 3.2. There exists an entire function with no zero ε(V, s) such that the
following holds

Λ(V ∗(1),−s) = ε(V, s)Λ(V, s).

It is further conjectured that ε(V, s) has a very simple form, namely s 7→ ABs

for A a complex constant and B a positive real constant. This conjecture is known
to be true for automorphic representations.

Example 3.2. Using the functional equation above in the case K = Q, V = Qp

(which is due to Riemann), one sees that the only zeros of ζQ at integers are simple
zeros at −2,−4,−6,−8, . . . If K is a general number field, using the functional
equation above for V = Qp (which is due to Hecke), one sees that ζK has a zero at
s = 0 of order r1 + r2− 1, where r1 is the number of real places and r2 the number
of complex places of K.

Exercise 3.3. Check carefully the computations leading to Example 3.2.
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3.2.4. The sign of the functional equation for a polarized representation. The prob-
lem with the functional equation given above is that it relates two different L-
functions, namely L(V, s) and L(V ∗(1), s) = L(V ∗, s + 1). When those function
are equal, or at least, translates of each other, things become more interesting. In
this §, we shall discuss cases where this happens.

Let V be a geometric and pure p-adic representation of GK . For τ any automor-
phism of the field K, we denote V τ the representation of GK over the same space
V , but where an element g in GK acts on V τ as σgσ−1, where σ is a fixed element
of GQ whose restriction to K is τ . The representation V τ only depends on τ (not
on σ) up to isomorphism and we have L(V, s) = L(V τ , s) where they are defined
and similarly for completed Λ-functions. Also V τ is pure of the same weight as V .

Exercise 3.4. Check these assertions (that’s easy) and prove the following partial
converse: assume that K is Galois over Q and V and V ′ are two irreducible geo-
metric and pure p-adic representations of GK such that L(V, s) = L(V ′, s). Then
V ′ ' V τ for some τ ∈ Gal(K/Q)

Definition 3.2. We shall say that V is polarized if for some integer w and some
τ ∈ Aut(K), we have V τ (w) ' V ∗. The integer w is called the weight of the
polarization.

It is obvious that if V is pure and polarized, then the weight of the polarization
w is the motivic weight of V .

Exercise 3.5. Prove that every representation V of dimension 1 is polarized. Prove
that the representation attached to an abelian variety is polarized of weight −1.
Prove that the representation attached to a classical modular eigenform of weight
2k and level Γ0(N) is polarized of weight 2k − 1. Prove that if V is an irreducible
polarized representation of GQ of dimension 2, then the weight of the polarization
is odd if and only if V is.

If V is polarized, geometric and pure of weight w, we have Λ(V ∗(1), s) =
Λ(V τ (1 + w), s) = Λ(V, s + 1 + w). Therefore assuming Conjectures 3.1 and 3.2,
the functional equation becomes

Λ(V,−s+ 1 + w) = ε(V, s)Λ(V, s).(11)

It involves only one L-function, L(V, s), and we can talk of the center of the func-
tional equation s = (w + 1)/2. Note that this center is 1/2 off the domain of
convergence of the Euler product. In particular, this center is not a pole of L(V, s).

In particular, since L(V, s) is not identically 0, one sees that ε(V, (w+1)/2) = ±1.
This sign is called the sign of the functional equation of L(V, s), or simply the sign
of L(V, s). One has the elementary relation:

Proposition 3.2. The order of the zero of L(V, s) at s = (w + 1)/2 is odd if the
sign of L(V, s) is −1, and even if it is 1.
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Proof — This is clear if L is replaced by Λ in view of the functional equation
(11). So we just have to show that the factor L∞(V, s) and L∞(V ∗(1), s) have no
pole and no zero at s = (w + 1/2). But they both are products of functions of the
form ΓR(s − i) with i < w/2. The results thus follows from the properties of the
Γ-function. �

This is especially interesting when the weight w of V is odd, because then the
center of the functional equation (w+1)/2 is an integer. By replacing V by V ((w+
1)/2, we can even assume that V has weight −1 and that the center of the functional
equation is at 0.

Remark 3.1. The progress in the Langlands program mentioned in §1.2.4 has
provided us with a vast supply of automorphic representations ρπ that are polarized
with K totally real and τ = Id, or K a CM field, and τ its complex conjugacy.
All representations constructed this way are also regular, that is they have distinct
Hodge-Tate weights.

Conversely, it is a reasonable hope that current methods (e.g. those explained
in this conference) will lead, some day, with a huge amount of work, to the proof
that every irreducible geometric regular polarized representation of GK (with K, τ
as above) is automorphic, and in most cases, comes from geometry.

For other geometric representations (non-polarized especially), some completely
new ideas seem required.

4. The Bloch-Kato conjecture

In all this section, K is a number field, and V is a pure geometric representation
of GK . We assume that the L-function L(V, s) has a meromorphic continuation to
the entire plane, in accordance to Conjecture 3.1

4.1. The conjecture.

4.1.1. Statement.

Conjecture 4.1 (Bloch-Kato).

dimH1
f (GK , V ∗(1))− dimH0(GK , V ∗(1)) = ords=0L(V, s).

The H0 term in the LHS is 0 unless V contains Qp(1) (as a quotient, though it
should not matter since V is expected to be semi-simple). It accounts for the pole
predicted by conjecture 3.1 of L(V, s). Aside the case of Qp(1), it can safely be
ignored.

The conjectures of Bloch-Kato relate two very different objects attached to V .
The Selmer group H1

f (GK , V ) is a global invariant of V , that contains deep number-
theoretical information attached to the representation V , the motives M of which
it is the p-adic realization, or ultimately, the algebraic variety where it comes from
(as H1

f (GK , Vp(E)) is closely related to E(K)); the L-function, on the other hand,
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is built on local information (the local Euler factors), but all this information is
mixed up, and via a mysterious process of analytical continuation, gives rise to an
integer, the order at s = 0 of the L-function. That this number should be equal to
the dimension of the Bloch-Kato Selmer group for V ∗(1) is very mysterious indeed.

Tautologically, proving the Bloch-Kato conjecture among to prove two inequali-
ties:

dimH1
f (GK , V ∗(1)) ≥ ords=0L(V, s) + dimH0(GK , V ∗(1))(12)

dimH1
f (GK , V ∗(1)) ≤ ords=0L(V, s) + dimH0(GK , V ∗(1)).(13)

The first one, the lower bound on the dimension of the Bloch-Kato Selmer group,
ask us to exhibit a sufficient number of independent extension of 1 by V ∗(1) whose
classes lies in the H1

f . So it is essentially a problem of constructing non-trivial
extensions between Galois representations with prescribed local properties. Chris’
lecture and mine will explain some of the techniques that allow to do so. Very often
those technics take a big input in the theory of automorphic forms.

The second inequality, the upper bound of the dimension of the Bloch-Kato
Selmer group, seems to be accessible by very different technics, using in many cases
the ideas of Euler systems. We shall give a short review of the results obtained in
its direction below.

4.1.2. Two examples. Assume first that V = Qp. Then L(V, s) is the Dedekind Zeta
function ζK(s), and as we have seen, ords=0ζK(s) = r1+r2−1 (cf. Example 3.2). On
the other hand, V ∗(1) = Qp(1) so H1

f (GK , V ∗(1)) ' O∗K ⊗Z Qp by Proposition 2.12
and H0(GK , V ∗(1)) ' 0. Therefore the Bloch-Kato conjecture reduces in this case
to

rkZO∗K = r1 + r2 − 1.

This equality is of course well known, as the Dirichlet’s units theorem.
Assume now that E is an elliptic curve over K, and V = Vp(E). Then V ∗(1) ' V

by the Weil’s pairing, so V is polarized of weight −1 in the terminology of §3.2.4.
The Bloch-Kato conjectures amount to the prediction:

dimH1
f (GK , Vp(E)) = ords=0L(Vp(E), s) = ords=1L(E, s).

As we have seen (Prop. 2.13), in this case dimH1
f (GK , V ) ≥ rkE(K), with equality

if Cha(E)[P∞] is finite. The Birch and Swinnerton-Dyer conjecture contains three
parts, of which the first two are: rkE(K) = ords=1L(E, s) (this part is actually one
of the seven Clay’s problem) and Cha(E)[p∞] is finite. Therefore, the Birch and
Swinnerton-Dyer conjecture implies the Bloch-Kato conjecture for V = Vp(E), and
assuming its second part (the finiteness of Cha(E)[p∞]), its first part is equivalent
to the Bloch-Kato conjecture for V = Vp(E).
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4.1.3. Prediction for representations of non-negative weight. Now assume that the
weight w of V satisfies w ≥ 0, and for simplicity that V is irreducible. Then V ∗(1)
has weight w′ = −2−w ≤ −2. The Euler product for L(V ∗(1), s) converges for <s >
w′/2 + 1 ≥ −1− w/2 + 1 = −w/2, and if V ∗(1) satisfies conjecture 3.1, L(V,∗ (1))
has no zero on the domain <s ≥= −w/2. In particular ords=0L(V ∗(1), s) = 0,
except if V = Qp, where this order is −1. Applying the Bloch-Kato conjecture to
V ∗(1), we thus get that H1

f (GK , V ) = 0. Since V has weight ≥ 0, we see easily
that in fact H1

f (GK , V ) = H1
g (GK , V ). So in fact

Prediction 4.1. If V is pure of weight w ≥ 0, then H1
g (GK , V ) = 0.

This prediction is an important part of the Bloch and Kato’s conjecture, and is
still widely open. Through the motivic interpretation of the H1

g (see §2.3.4), it is
also a consequence of the older, and still conjectural, “yoga of weights” developed by
Grothendieck in the sixties. Namely, Grothendieck emphasized that motivic weights
should go up in a non-trivial extension of pure motives in the categories of mixed
motivesMMK : if M ′ and M ′′ are pure motives, and 0→M ′ →M →M ′′ → 0 is
a non trivial extension inMK , one should have w(M ′) < w(M ′′). See the definition
of MMK in §2.3.4)

If V is pure of some weight w, then adV is pure of weight 0, so in particular

Prediction 4.2. For every V that is geometric and pure, H1
g (GK , adV ) = 0.

This prediction can be seen as an infinitesimal variant of the Fontaine-Mazur
conjecture. Indeed, H1

g (GK , adV ) can be seen (see Kisin’s lectures) as the tangent
space of the deformation functor of V that parameterizes deformation that stay
de Rham at all places dividing p, and unramified at almost all places, that is of
deformations that stay “geometric”. Now, if the Fontaine-Mazur conjecture is true,
all geometric representations come from geometry, so obviously there are at most
a countable number of such representations, which is not enough to make non-zero
dimensional families. Therefore, the tangent space to the (heuristic) “universal
families of geometric representation” at V , which is (heuristically) H1

g (GK , adV )
should be 0.

The heuristic argument described above can actually be promoted to a proof in
favorable context, and indeed, we know for example 4.2 for most V attached to
modular forms due to work of Weston and Kisin, and for some higher-dimensional
polarized V attached to automorphic form using work of Clozel-Harris-Taylor.

4.2. Stability properties for the Bloch-Kato conjecture.

4.2.1. Compatibility with the functional equation. This is the following statement.

Theorem 4.1. Assume that Conjectures 3.1 and 3.2 hold for V , and also Predic-
tions 1.2 and 1.3. Then the Bloch-Kato conjecture for V is equivalent to Bloch-Kato



AN INTRODUCTION TO BLOCH-KATO CONJECTURE 43

conjecture for V ∗(1). More precisely, (13) holds for V if and only if (13) holds for
V ∗(1), and similarly for (12).

Proof — We only need to show that

(14) ords=0L(V, s)− ords=0L(V ∗(1), s) = dimH1
f (GK , V ∗(1))

− dimH0(GK , V ∗(1))− (dimH1
f (GK , V )− dimH0(GK , V ))

Since this relation is symmetric in V and V ∗(1), we can assume that

w ≥ −1.

We first compute the LHS of (14). By the functional equation (conjecture 3.2),
we have ords=0Λ(V, s) = ords=0Λ(V ∗(1), s). By Lemma 3.3, we have

ords=0L(V, s) = ords=0Λ(V, s) +
∑

0≤k<w/2

mk if w is odd

ords=0L(V, s) = ords=0Λ(V, s) +
∑

0≤k<w/2

mk + a+ −m<w/2 if w is even

ords=0L(V ∗(1), s) = ords=0Λ(V ∗(1), s)

We thus get

ords=0L(V, s)− ords=0L(V ∗(1), s) =
∑

0≤k<w/2

mk if w is odd

ords=0L(V, s)− ords=0L(V ∗(1), s) =
∑

0≤k<w/2

mk + a+ −m<w/2 if w is even

We now compute the RHS of (14). By the duality formula for Bloch-Kato Selmer
group Theorem 2.2 this RHS is∑

v|∞

dimH0(Gv, V )−
∑
v|p

dimDdR(V|Gv
)/D+dR(V|Gv

) = a+ −
∑
k<0

mk,

the last equality coming from the definition of a+ and of mk (see Remark 2.3)
Therefore, in the case w odd, the formula (14) that we need to prove becomes∑

0≤k<w/2

mk = a+ −
∑
k<0

mk.

Grouping terms, this is equivalent to
∑

k<w/2mk = a+, that is m<w/2 = a+, which
follows from Predictions 1.2 and 1.3.

In the case w even, the formula (14) that we need to prove becomes∑
0≤k<w/2

mk + a+ −m<w/2 = a+ −
∑
k<0

mk,

which is obviously true. �
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Of course there are many conjectures to assume in order to make the above
a non-conditional theorem. However, in practice, for the V we work with (e.g.
automorphic V ), we know all of them.

This compatibility result is, in my humble opinion, the most convincing single
piece of evidence for the conjecture of Bloch-Kato. The functional equation relat-
ing L(V, s) and L(V ∗(1),−s) on the one hand, and the duality formula relating
H1
f (GK , V ) and H1

f (GK , V ∗(1), s) belong to two different paths in the history of
mathematics, the first one to the analytic ideas (often based on Poisson’s summa-
tion formula) initiated by Riemann in his study of the zeta functions, the second to
the world of duality theorems in cohomology. That they give compatible formulas
in the context of the Bloch-Kato conjecture seems to me a strong argument in favor
in a deep link between L-functions and Selmer groups.

Corollary 4.1. Same hypothesis as in the theorem above. Assume also that V is
pure of weight w 6= −1. Then the lower bound (12) in Bloch-Kato conjecture hold
for V .

Proof — If the weight w satisfies w ≥ 0, then we have seen in (4.1.3) that the
RHS of the Bloch-Kato conjecture is 0, so the inequality (12) obviously holds for
V . If the weight w of V satisfies w < −2, then the weight of V ∗(1) is ≥ 0, so (12)
holds for V ∗(1). Therefore it holds for V ∗(1) by theorem 4.1. �

This important result features the difference between the case w 6= −1 (where
one only needs to prove the upper bound in the Bloch-Kato conjecture), and the
case w = −1 (where one needs to prove both the upper and the lower bound).

4.2.2. Compatibility with induction.

Proposition 4.1. If K0 is a subfield of K, then if the Bloch-Kato conjecture holds
for V if and only if it holds for Ind

GK0
GK

V

This is true because both the left hand side and the right hand side of the
conjectural formula are invariant by inductions. Most of the arguments necessary
to prove this have been seen above. Collecting them is left as an exercise.

In particular, it is enough to prove the Bloch-Kato conjecture for K = Q.

4.2.3. A slightly more general conjecture. Let S be any finite set of primes of K.

Conjecture 4.2.

dimH1
f,S(GK , V ∗(1))− dimH0(GK , V ∗(1)) = ords=0LS(V, s).

The classical Bloch-Kato conjecture is the case S = ∅.

Exercise 4.1. (easy) Show that this holds in the case V = Qp
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Proposition 4.2 (Fontaine, Perrin-Riou). Under a certain assumption on V (that
is called strictly geometric) that is conjecturally always satisfied but very hard to
check in practice even for representations coming from geometry, the above conjec-
ture for a set S (and a given K, V ) is equivalent to the conjecture for any other
set S′ (and the same K,V ).

The precise statement and the proof (an application of the results of §) will be
written after the conference.

4.3. Results in special cases.

4.3.1. The case V = Qp(n). The Bloch-Kato conjecture is known for all number
fields K and all integers n for V = Qp(n), and more generally, all representa-
tion of the form V = A(n) where A is an Artin character. This is a conse-
quence of a theorem of Soulé. So in particular, for K = Q and n ∈ Z we have
dimH1

f (GQ,Qp(n)) = 1 if n = 3, 5, 7, 9, . . . and is 0 otherwise.

4.3.2. The case of elliptic curves over Q and classical modular forms. Let E/Q be
an elliptic curve and V = Vp(E)(n) for some integer n. Or more generally, let f be
a modular eigenform of level Γ1(N) that we assume, for the simplicity of exposition,
of trivial nebentypus and even weight k = 2k′ (and say p 6 |N); take V = Vp(f)(n)
for some integer. The second case is indeed more general as since the Tanyama-
Shimura-Weil conjecture proved by Breuil, Conrad, Diamond and Taylor, for E/Q
an elliptic curve, there exist an f as above such that Vp(f)(k′) = Vp(E). For such
V ’s, many partial results toward the Bloch-Kato conjecture are known.

In the case where V = Vp(E), the Bloch-Kato conjecture is closely related to
the Birch and Swinnerton-Dyer conjecture, so all results about the Birch and
Swinnerton-Dyer conjecture give a result for the Bloch-Kato conjecture. For ex-
ample, the combination of results of Gross-Zagier and Kolyvagin shows that for if
ords=0L(Vp(E), s) ≤ 1, the Bloch-Kato conjecture is known for V = Vp(E).

More generally for V = Vp(f)(n), a striking result of Kato ([K]) shows that the
upper bound in Bloch-Kato conjecture (13) is always true. The proof uses in a very
clever way Euler systems produced with the help of K-theory. Remember that the
lower bound (12) is always known for V of weight different from −1. The bottom
line is that the Bloch-Kato conjecture for V = Vp(f)(n) is known for all n except
n = k′ = k/2 and that for Vp(f)(k′) only the lower bound needs to be proved.

So we now turn to the result for V = Vp(f)(k′) which has weight −1. This
includes the case V = Vp(E). Using his theory of “Selmer complex”, Nekovar has
shown that if f is ordinary at p,

dimH1
f (GK , V ) ≡ ords=0L(V, s) (mod 2).

This can be rephrased as the parity of dimH1
f (GK , V ) is the one predicted by the

sign of the functional equation of L(V, s). In the case V = Vp(E), this results
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has been recently extended (by similar methods) to the supersingular case by B.D.
Kim.

4.3.3. Automorphic methods. There has been in recent years many results proving
existence of non-trivial elements in H1

f (GK , V ) by automorphic methods. All those
methods are cousin, their common grand-parents being Ribet’s proof of the converse
of Herband’s theorem (See Chris’ lecture) and the theory of endoscopy and CAP
forms for automorphic representation.

For example, for V = Vp(f)(k′) as in the preceding §, and for p ordinary, Belläıche
and Chenevier in the CM case and Skinner and Urban in the general case, have given
an automorphic construction of a non-zero element in H1

f (GK , Vp(f)(k′)) under the
assumption that the sign of L(Vp(f), s) is −1. This proves that dimH1

f (GK , V ) ≥ 1
if ords=0L(V ) is odd. This is of course contained in Nekovar’s result (and this is also
in the CM case, a consequence of the proof of the Iwasawa conjecture for quadratic
imaginary field by Rubin), but it is interesting to have a real construction of the
extension in the H1

f .
This hypothesis of ordinarity of p for f has been removed by Belläıche and

Chenevier ([BC2] if k > 2 and [B] if k = 2). Actually this is a special case of a
similar result valid for all automorphic representations V of GK of dimension n that
are polarized (for τ = Id in the case K = Q or for τ the complex conjugation in the
case K a quadratic imaginary field) with some restrictions at places dividing p) in
[BC2]. A similar result has been announced by Skinner and Urban [SU] where the
hypothesis that ords=0L(V, s) is odd has been weakened into ords=0L(V, s) ≥ 1.

5. Complement: a conjecture about the full H1

5.1. Small talk. We have all but forgotten the space H1(GK,Σ, V ) for V a geomet-
ric representation of GK ,K a number field, focussing on its subspace H1

f (GK , V ).
Even if the H1

f seemed more complicated at the beginning, we have seen that it
was this subspace that has the nicest number-theoretical (and also a motivic) in-
terpretation, and also the simplest duality theory. So one could say: why should
we care about the full H1(GK,Σ, V )? There are actually may reasons we should.

For one thing, simplicity is important, and it is quite frustrating, almost fifty
years after the pioneers’ work on Galois cohomology, not to be able to compute the
dimension of one of its single instance H1(GK,Σ, V ) even for the most simple V .

Also, those spaces have also a number-theoretical significance, though quite dif-
ferent from the H1

f or H1
g . Admittedly, the H1(GK,Σ, V ) have no motivic or K-

theoretical interpretation. But, for example, computing the dimension ofH1(GK,Σ,Qp)
(for Σ any finite set of places containing those above p) is equivalent to proving
(or disproving) the famous Leopoldt’s conjecture, whose classical statement is: the
natural map ι : O∗K ⊗Z Zp →

∏
v|pO∗Kv

is injective. This conjecture is ubiquitous
in algebraic number theory, and has proved very elusive: there have been many
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released proofs by eminent or less eminent mathematicians which have been found
faulty, and certainly many more which were refuted by their own author or a friend
before any public release1. But despite its importance in algebraic number theory,
there is a sense that it properly belongs to transcendence theory, due in part to
the fact that the two main known partial results (the proof in the case where K is
abelian over Q or over a quadratic imaginary field by Brummer, and a lower bound
on the rank of the image of ι by Waldschmidt) have proofs using heavily methods
of transcendence theory. Therefore, predicting the dimension of H1(GK,Σ, V ) for
various V can be seen as a generalized Leopoldt’s conjecture, and can hardly be
considered as non-important for number theory.

Let us add that the knowledge of the dimension of the H1(GK,Σ, V ) (and of the
H2(GK,Σ, V ), which is essentially equivalent by the Euler Characteristic formula)
would be useful in many situations. For example, it is needed to compute tangent
spaces and obstructions in Galois deformation theory. Also, if X is a variety over
K and if we want to compute the étale cohomology H1

ét(X,Qp) (the true cohomol-
ogy of X/K this time, not of X ×K K̄ that we have denoted H i(X,Qp) earlier),
then the natural way to proceed is to use the Grothendieck’s spectral sequence
H i(GK , H

j
ét(X×K K̄,Qp))⇒ H i+j

ét (X,Qp), but this takes to know how to compute
the Galois cohomology of the geometric representation Hj

ét(X×K ,Qp).

5.2. The Jannsen’s conjecture. In 1989, a few months before Bloch and Kato,
Jannsen made a conjecture that is essentially the same as the following (cf. [J])

Conjecture 5.1. Let V be a representation coming from geometry of GK,Σ which
is pure of weight w. Assume that w 6= −1. For simplicity, also assume that V|Gv

does not contain Qp(1) as a subquotient for all finite place v 6∈ Σ. Then

dimH1(GK,Σ, V ) = dimH0(GK,Σ, V ) +
∑
v|∞

H0(Gv, V )

This conjecture is equivalent to: H2(GK,Σ, V ) = 0 (under the same hypothesis
on V ). Clearly, the inequality ≥ follows from the Euler-Poincaré formula. The
condition on Qp(1) is simply here to simplify the formula. The condition w 6= −1 is
fundamental: If V = Vp(E) where E/Q is an elliptic curve, the conjecture, extended
to the case w = −1 would predict that dimH1(GQ,Σ, Vp(E)) = 1. But we know
that already the dimension of the subspace H1

f (GQ,Σ, Vp(E)) is at least the rank of
E(Q) and of course there are examples of E with rkE(Q) > 1. To my knowledge,
there is no conjecture in the case w = −1.

Exercise 5.1. (difficult) Find one and prove it.

1Currently, there is a proof in an article on arxiv, but it has not yet been verified, and some
specialists are skeptical.
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Exercise 5.2. (difficult) Let (Vn)n∈N and V be geometric Galois representations
of GK,Σ. Let Tn and T be the trace of Vn and V respectively. Assume that Tn
converges uniformly (as functions on GK,Σ) to T .

a.– Assume Jannsen’s conjecture, and that Vn and V satisfy its condition. Show
that lim infn→∞ dimH1(GK,Σ, Vn) ≤ dimH1(GK,Σ, V ).

b.– Show by an example that this property of lower semi-continuity does not
hold if H1 is replaced by H1

f .

c.– Can you prove a.– without assuming Jannsen’s conjecture?
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Ribet’s lemma, generalizations, and
pseudocharacters

Two lectures at the Clay Mathematical Institute Summer School,
Honolulu, Hawaii, 2009

Prerequisites: The prerequisites for these lectures are elementary:

(i) Theory of finite-dimensional representations of groups and algebras; Defi-
nitions and first properites of pseudocharacters (= psedurepresentations).

(iii) Very basic group cohomology.

Exercises: There are two kind of exercises, normal and difficult.

Terminology and convention: All rings and algebras are algebra with unity,
but not necessarily commutative. Morphisms of rings and algebra preserve unities.
Most often, a subring of a ring will have the same unity as the ring itself, but in a
few cases, always explicitly mentioned, the sub ring will have a different unity (so
the injection map from the subring to the ring will not be a morphism of rings).

In general, A will denote a commutative ring, and R,S shall be non necessarily
commutative A-algebra.

If B is a set, and d, d′ are integers, then Md,d′(B) is the set of matrices with
d columns and d′ rows and entries in B. If d = d′, we write Md(B) instead of
Md,d(B). If B and C are subsets of a ring A, there is of course a multiplication
map Md,d′(B)×Md′,d′′(C)→Md,d′′(A).

From Chris’ lecture on Ribet’s theorem and my lectures on Bloch-Kato, you
should have seen that constructing (non-trivial) extensions of Galois representations
is often important in number theory.

In these lectures, we want to explain the fundamental tool to construct such
extensions, Ribet’s lemma. This is a purely algebraic lemma (with no reference to
Galois group), and there will be no Galois group in these lectures. We will also
present generalizations of this lemma, due to various authors (mainly Mazur-Wiles,
and Belläıche-Chenevier). SInce those generalization involve the notion of pseudo-
representations, that we call for confusion pseudocharacters, we also develop the
theory of pseudocharacters where Kisin left it, proving in particular the fundamen-
tal theorems of the theory (Taylor’s theorem and Rouquier-Nyssen’s theorem).

1
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1. Ribet’s Lemma

In all this section, A is a discrete valuation domain, that is a local principal ideal
domain, and K is its field of fraction. Its maximal ideal is therefore of the form
πA for some π called a uniformizer, and any element of x = K∗ can be written
x = uπn with u ∈ A∗ and n ∈ Z, called the valuation v(x) of x. We call k the
residue field A/πA of A.

1.1. Reminder on lattices.

1.1.1. Definition of a lattice and first properties. Let V be a vector space over K
of dimension d. Since A ⊂ K, V has a structure of A-module.

Lemma and Definition 1.1. Let Λ be an A-submodule of V . The following are
equivalent:

(i) Λ is a finite A-module and KΛ = V .
(ii) Λ is a finite A-module. The natural map Λ⊗AK → V (that sends v⊗x to

xv) is an isomorphism.
(iii) Λ is a free A-module of rank d.

If they hold, we say that Λ is a lattice of V .

Proof — The equivalence between (i) and (ii) follows from two simple observations:
the map Λ⊗A K → V has image KΛ and is injective. Only the second one needs
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a proof. Let
∑
vi ⊗ xi with vi ∈ Λ, xi ∈ K be an element of Λ⊗K that maps to 0

in V that is such that
∑

i xivi = 0 ∈ V . Let us choose an n such that πnxi ∈ A for
all i (this is possible since there is a finite number of xi’s. Then we have

(
∑

vi ⊗ xi) =
∑

vi ⊗ (π−nπnxi) = (
∑

πnxivi)⊗ π−n = 0.

Assume (ii) holds. the A-module Λ is a finite, and torsion-free as a sub-module
of V which is torsion free. Since A is a principal ideal domain, Λ is free of some
rank d′, and the fact that Λ⊗A K → V is an isomorphism implies that d′ = d.

Conversely, assume (iii) holds. Then Λ is obviously finite, and Λ ⊗A K is a K-
vector space of rank d, so the linear map Λ ⊗A K → V , which we have seen is
injective, is also surjective by equality of dimension. �

Lemma 1.1. If Λ ⊂ Λ′ and Λ′′ is an A-module such that Λ ⊂ Λ′′ ⊂ Λ′, then Λ′′ is
also a lattice. If Λ and Λ′ are two lattices of V , so is Λ + Λ′. More generally, if
(Λi) is a non-empty family of sub-lattices of a lattice Λ, then +iΛi is a lattice.

Proof — This is clear by property (i). �

Definition 1.1. We say that two lattices Λ and Λ′ are homothetic if there exists
x ∈ K∗ such that Λ = xΛ′.

Obviously, to be homothetic is an equivalence relation, and x can always be
chosen of the form πn with n ∈ Z.

1.1.2. Stable lattices and representations. Let V be a K-vector space of dimension
d.

Definition 1.2. If G is a subgroup of GLK(V ), we say that a lattice Λ of V is
G-stable if GΛ = Λ or equivalently GΛ ⊂ Λ.

Proposition 1.1. For G a subgroup of GLK(V ), the following are equivalent:

(a) There exists a G-stable lattice in V .
(b) The coefficients of the matrices of elements of G in a suitable basis of V

are in A.
(c) The subgroup G is bounded in GLd(K)

Proof — The implication (a) ⇒ (b) ⇒ (c) are clear. Let us prove (c) ⇒ (a). Let
Λ be any lattice in V . Since G is bounded, there exists an n ∈ Z (n << 0) such
that gΛ ⊂ πnΛ. The sum of all gΛ is therefore a lattice by Lemma 1.1, and is
obviously stable by G. �
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Corollary 1.1. If G is a compact group, and ρ : G → GLK(V ) is a continuous
representation, there exists a lattice stable by ρ (i.e. a lattice Λ such that ρ(g)Λ = Λ
for all g ∈ G.

Proof — Apply the proposition to ρ(G), which is compact, hence bounded. �

If G is a group, and ρ : G→ GLK(V ) is a continuous representation, and if Λ is a
stable lattice by ρ, then we denote by ρΛ the representation G→ GLA(Λ) obtained
by restriction. This is a continuous ”representation” of G (on a free module of
rank d) over A. Of course for n ∈ N, πnΛ is also stable by ρΛ, so we can define a
representation ρΛ,n : G→ GLA/πnA(Λ/πnΛ). If we choose a basis of Λ over A, then
it defines a basis of Λ/πnΛ over A/πnA, and in this basis, ρΛ,n is just the reduction
modulo πn of ρΛ.

When n = 1, A/πA is the residue field k, so ρ̄Λ,1 is a representation of dimension
d over the field k. We shall write ρ̄Λ instead of ρΛ,1.

There may be various stable lattices Λ for a given ρ. For different stable lattices
Λ, the representations ρ̄Λ may be non-isomorphic (we shall see examples below).
Of course, if Λ and Λ′ are homothetic, then ρ̄Λ and ρ̄Λ′ are isomorphic, since ρΛ

and ρΛ′ are (the multiplication by x is an isomorphism if Λ′ = xΛ.) In general, we
have at least

Proposition 1.2. If Λ and Λ′ are two stable lattices, we have ρ̄ss
Λ = ρ̄ss

Λ′

Here we note ρss the semi-simplification of a representation ρ, that is the direct
sum of its Jordan-Hölder factors for any Jordan-Hölder sequence.

Proof — Let g ∈ G. The polynomial characteristic of ρ̄Λ(g) is the restriction mod
π of the characteristic polynomial of ρ̄Λ(g), which is simply the restriction of the
characteristic polynomial of ρ(g) (that we see in passing to be in A[X]), so it is the
same as the polynomial characteristic of ρΛ′(g). By the Brauer-Nesbitt theorem,
this proves that ρ̄Λ ' ρ̄ss

Λ �

Definition 1.3. If ρ is a representation that has a stable lattice, we call ρ̄ss any of
the semi-simplification ρ̄ss

Λ for Λ a stable lattice.

1.1.3. The tree of GL2(K). Let V be a vector space of dimension d over K. Let X
be the set of lattices in V , up to homotheties. If Λ is a lattice, we denote by [Λ] ∈ X
its equivalence class up to homotheties. This set has an interesting structure, of
which we recall some parts, leaving proofs in exercises.

Definition 1.4. We say that two points x and x′ in X are neighbors if they are
distinct there are lattices x = [Λ], x′ = [Λ′] such that πΛ ⊂ Λ′ ⊂ Λ.
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Lemma 1.2. Let x = [Λ] be a point in X. There exists a natural bijection between
the set of neighbors of x and the set of proper non-trivial k-subspaces of the k vector
space Λ/πΛ.

The bijection is defined as follows: if x′ is a neighbor of X, then the Λ′ such
that πΛ ⊂ Λ′ ⊂ Λ is unique, Λ being fixed. We attach to x′ the subspace Λ′/πΛ of
Λ/πΛ.

The relation ”x and x′ are neighbors” is symmetric. Therefore the set X with
this notions of neighborhood is a undirected graph, and all notions of graph theory
applies. For example a path from x to x′ is a sequence x = x0, x1, . . . , xn = x′ of
points in X such that for all i = 0, . . . , n− 1, xi is a neighbor of xi+1. The integer
n ≥ 0 is the length of the path, and the distance d(x, x′) between x and x′ is the
minimal length of a path from x to x′ (if any). A path is said injective if we have
xi 6= xj for all i, j ∈ {0, . . . , n}

Proposition 1.3. (a) The graph X is connected, that is, there is a path from
any point to any other.

(b) If d = 2, the graph X is simply connected, that is: for any x, x′ ∈ X, x 6= x′,
there is exactly one injective path from x to x′.

A graph X that is connected and simply connected is called a tree. From now
on, we assume that d = 2, so X is a tree. If k is finite, the number of neighbors
of any point X is |k|+ 1 (by Lemma 1.2), so X is a homogeneous tree.

In a tree, we define the segment [x, x′] as the set {x} is x = x′, and as the set
of points in the unique injective path from x to x′ otherwise. A subset C of X is
called convex if for all x, x′ ∈ C, the segments [x, x′] is included in C. A half-line
H in X is a subset of X that is an increasing union of segments of the form [x, xn]
of length n for n ∈ N. The point x is the origin of H

If d(x, x′) = n, then we can choose lattices x = [Λ] and x′ = [Λ′] such that
πnΛ ⊂ Λ′ ⊂ Λ. Once Λ is fixed, Λ′ is unique, and the A-modules Λ/Λ′ and Λ′/πnΛ
are isomorphic to A/πnA. Conversely, such a Λ′ define a point at distance n of [Λ].

Let x = [Λ] be a point in X, and L be a direct summand A sub-module of rank
one of Λ. Then if Λn := L + πnΛ, xn := [Λn] is a point at distance n of x and
L define a half-line H(L, x) = ∪[x, xn] of origin x. Conversely, assume that K is
complete. If H is a half-line in X as above, with origin x, there are unique points
xn = [Λn] in H such that πnΛ ⊂ Λn ⊂ Λ and Λ/Λn ' A/πnA. The intersection
L := ∩n∈NΛn is a free A-submodule of rank one of Λ that is direct summand. It is
canonically attached to H and Λ. and denoted by L(H,Λ).

A convex C is bounded if and only if it contains no half-line. A bounded convex
C contains a point that has at most one neighbors.

The group GlK(V ) operates on X (by g • [Λ] := [gΛ]) through its quotient
PGLk(V ) and preserves the graph structure. This operation is transitive.
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1.2. Ribet’s lemma. This is the following statement, that appears (as a ”propo-
sition” actually, not a lemma) in [R]

Proposition 1.4. Assume that K is complete. Let G be a compact group, and
ρ : G→ GLK(V ) be an irreducible representation of dimension 2. Assume that ρ̄ss

is the sum of two characters χ1, χ2 : G → k∗. Then there exists a stable lattice Λ
such that ρ̄Λ is a non-trivial extension of χ1 by χ2.

Remark 1.1. The characters χ1 and χ2 play a symmetric part in the hypotheses.
Therefore, the Proposition also asserts that there exists a stable lattice Λ′ such that
ρ̄Λ′ is a non-trivial extension of χ2 by χ1. In this situation it is clear that ρ̄Λ and
ρ̄Λ′ are not isomorphic.

We shall give a proof, due to Serre, of this result, which, though it is certainly
not the shortest, is probably the most illuminating. The proof will occupy the rest
of this §.

Let ρ : G→ GLK(V ) (with dimV = 2) be any representation that has a stable
lattice.

Let X be the tree of GLK(V ) and C be the set of x in X that are fixed by ρ(G)
(which operates on X as a subgroup of GLK(V )). We note that if x ∈ C, and
x = [Λ], then Λ is a stable lattice for ρ (indeed by definition we have ρ(g)Λ = πkΛ,
but since ρ(G) is bounded, k has to be 0). If x ∈ C and x = [Λ] = [Λ′], then
ρ̄Λ ' ρΛ′ , therefore there is no ambiguity in calling that representation ρ̄x.

Lemma 1.3. The subset C of X is non-empty and convex.

Proof — C is non-empty because it contains [Λ] where Λ is stable lattice by ρ. C
is convex because, if x, x′ are in C, the segment g• [x, x′] is a segment of extremities
x and x′, so is [x, x′] by uniqueness. Therefore [x, x′] ⊂ C. �

Lemma 1.4. if x is in C, then we have

(a) x has no neighbor in C if and only if ρ̄x is irreducible
(b) x has exactly one neighbor in C if and only if ρ̄x is reducible but indecom-

posable
(c) x has more than one neighbors in C if and only if ρ̄x is decomposable (that

is, the sum of two characters).

In case (c), the numbers of neighbors in C is 2 if the two characters appearing in
ρ̄x are distinct. If they are equal, every neighbors of x in X is actually in C.

Proof — It is elementary that a representation of dimension 2 has no (resp. one,
resp. 2, resp. all) stable line if and only if it is irreducible (resp. reducible but
indecomposable, resp. decomposable in the sum of two distinct characters, resp.
decomposable in the sum of two equal characters). This implies the Lemma if we
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can identify ”Lines stable by ρ̄x in Λ/πΛ” (where x = [Λ]) and ”neighbors of x in
C”. But that identification follows directly from the bijection of Lemma 1.2. �

Remark 1.2. In particular, ρ̄ss is irreducible if and only if C is reduced to a point,
that is if and only if ρ has only one stable lattice (up to homotethies). This is clear
from the lemma, since in a convex set not reduced to a point, every point has a
neighbor.

Lemma 1.5. Assume that K is complete. Then ρ is irreducible if and only if C is
bounded.

Proof — Assume C is not bounded. Then since it is convex it contains a half-line
H. Let x = [Λ] be the origin of such an half-line. Then the free A-submodule of
rank one L = L(H,Λ) of Λ is by construction stable by ρ(G), so KL is a stable line
in V , and ρ is not irreducible.

Assume that ρ is reducible. Then it has a stable K-line V0. Let L = Λ∩V0. This
is a free A-submodule of rank one, direct summand, of Λ. Let H = H(L, x) be the
half-line defined by L in X. By construction H ⊂ C. Therefore C is not bounded.
�

Now let us go back to Ribet’s lemma. We assume that ρ is irreducible (so C is
bounded), but that ρ̄ss is not (so that every point of C has at least one neighbor in
C). Since C is bounded and convex, it as a point x with at most one, so actually
exactly one neighbor in C. Therefore ρ̄x is reducible but not indecomposable, that
is which is a non-trivial extension of χ1 by χ2 or of χ2 by χ1.

This simple geometric argument almost proves Ribet’s lemma. ”Almost”, be-
cause Ribet’s lemma states that we can find an x where we actually get a ρ̄x that
is non-trivial extension of χ1 by χ2, not the other direction. Of course, this only
matters when χ1 6= χ2. So assume that χ1 6= χ2. Then every points of C has at
most two neighbors. Since C is convex and bounded, this easily implies that S is a
segment [x, x′]. It is an easy exercise to see that, up to exchanging x and x′, ρ̄x is
actually a non-trivial extension of χ1 by χ2 and ρ̄x′ is an extension of χ1 by χ2.

1.3. Exercises.

Exercise 1.1. If G ⊂ GLK(V ) has a stable lattice, then tr (G) ⊂ A. Show that the
converse is false, but becomes true if we assume that G is absolutely irreducible.

Exercise 1.2. Prove all the assertions of §1.1.3. They are all almost trivial, except
maybe Proposition 1.3, which may need a little bit of works.

Exercise 1.3. Prove that when d > 2, X is not a tree. A facet F is a subset of
X such that every two distinct elements are neighbors. Show that a maximal facet
has cardinality d+ 1. The set X with the data of al its facets has the structure of
building in the sense of Tits. It is called the Bruhat-Tits building of PGLK(X).
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Exercise 1.4. Show that when K is not complete, the argument constructing a
sub-module L of rank one in Λ attached to a half-line H ∈ X of origin [Λ] may fail.
(actually, the sub-module L it constructs may be (0))

Exercise 1.5. Do the exercise that concludes the proof of Ribet’s lemma.

In all the following exercises, we keep the notations and assumptions of Ribet’s
lemma, and we assume moreover that χ1 6= χ2, and that chark 6= 2. So as we have
seen the convex C is a segment.

Exercise 1.6. (difficult) Let l be the length of the segment C. Let n = n(ρ) be
the largest integer, if it exists, such that there exists two characters ψ1, ψ2 : G →
(A/πnA)∗ such that for all g ∈ G, tr ρ(g) (mod πn) = ψ1(g) + ψ2(g)

a.– Show first that n exists.
The integer n can be called the index of reducibility of ρ: the larger is n, the

”more reducible” is ρ).
b.– Show that l = n+1. (Hint: choose a g0 ∈ G such that χi(g0) = χ2(g0). Show

that ρ(g0) is diagonalizable. In a basis of V where it is diagonal, compare ρ(g) and
ρ(gg0) and their traces for all g ∈ G.)

c.– Show how to construct a representation G → GL2(A/πnA) which is an ex-
tension of ψ1 by ψ2, whore reduction modulo π is a non-trivial extension of χ1

by χ2. Show that this extensions generates a sub-module isomorphic to A/πn in
Ext1

A[G](χ2, χ1).

In the following exercise you are allowed to use the exercise 1.6.

Exercise 1.7. There exists x ∈ C such that ρ̄x is χ1 ⊕ χ2 if and only if n(ρ) > 1.

Exercise 1.8. Let G′ be a subgroup of G, and assume that (χ1)|G′ 6= (χ2)|G′ . Let
C ′ be the subset of X fixed by ρ(G′).

a.– Show that C ′ is either a segment, or a half-line, or a line in X (define your-
selves a line in X). Show that C ⊂ C ′.

b.– Show that C = C ′ if and only if for every x such that ρ̄x is (reducible)
indecomposable, then (ρ̄x)|G′ is (reducible) indecomposable.

Exercise 1.9. Let G be the subgroup of GL2(A) of matrices whose lower left entry
is in πA (this group is the Iwahori). Let ρ : G→ GL2(K) be the representation of
G given by inclusion. Show that S has two points in this case, and that for every
stable lattice Λ, ρ̄Λ is semi-simple.

Exercise 1.10. Show that up to replace K by any ramified extension, we can
always find a stable Λ such that ρ̄Λ is semi-simple.

1.4. Directions for a more general Ribet’s lemma. Ribet’s Lemma cries for
generalizations. First, what happens if ρ is a representation of dimension d, not
necessarily 2? When we ask this question, we see that ρ̄ss, if reducible, may be the
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direct sum of more than 2 irreducible representation, say r irreducible representa-
tions ρ̄1, . . . , ρ̄r of respective dimensions d1, . . . , dr (with of course d1 + · · ·+dr = d,
so r ≤ d). What extensions between the ρ̄i can we get?

We can go further. We have assumed that A was a complete discrete valuation
domain, with fraction field K and residue field k. What if we assume that A is a
general local domain, again with fraction field K and residue field k? The theory
of lattices will not be so simple, and it will not be the case that ρ has always a
stable free lattice, so we cannot define ρ̄ss so simply. But if we assume to begin
with that ρ is a representation over A : G→ GLd(A) such that ρ : G→ GLd(K) is
irreducible, while ρ̄ss = ρ̄1⊕· · ·⊕ ρ̄r is reducible, then we can ask : can we produce
somehow non-trivial extensions of ρ̄i by ρ̄j ?

If A is discrete valuation ring, SpecA has two points, the closed point Spec k and
the generic point SpecK, and the hypothesis of Ribet’s lemma can be rephrased
as: ρ is irreducible at the generic point, but reducible at the closed point. When A
is a general local domain, the geometry of SpecA is much richer, and it might be
sensible to refine the hypothesis that ρ is irreducible at the generic point. Is there
a largest closed subscheme red of SpecA on which ρ is reducible (in some sense,
for example some sense inspired by exercise 1.6)? If so, red is a proper subscheme
if and only if ρ is irreducible at the generic point, and instead of assuming that
ρ is irreducible at the generic point, we can make assumption on red, presumably
getting better results (that is more non-trivial extensions between the ρ̄i) when red
is smaller. When we do so, we see that we have no need to speak of the generic
point anymore, that is no need to assume that A is a domain, any local ring will
do.

To go further, why should we start with a representation ρ : G → GLd(A)? A
pseudo-character T : G → A of dimension d is more general. When A is a d.v.r.,
this generality is an illusion, but for general local ring A, it is not as we shall see.
So we should work with general pseudocharacters.

In the following section, we shall give a generalization of Ribet’s lemma along
the lines explained above. Since Kisin’s talk on pseudorepresentations have been
sketchy, and since we will need to go in detail, we begin by reviewing them, begin-
ning by giving them their right names.

2. Pseudocharacters

First, pseudocharacters and pseudorepresentations are the same things. Pseu-
dorepresentations was the term coined by Wiles, and used after by Taylor, Nyssen
and others. Pseudocharacters is the better term used by Serre and Rouquier. I will
use pseudocharacters

Second, when A is a commutative ring, Kisin’s defined a pseudocharacter T :
G → A over a group or T : R → A from an A-algebra R. Of course, the first
case is a special case of the second since a pseudocharacter T : G → A defines by
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linearization a pseudo-character T : A[G] → R. I will work almost uniquely with
the second definition (pseudocharacters over algebras) since it is more convenient
and more general.

Since Kisin did not prove Taylor and Rouquier’s theorem, and since I need ideas
from their proof I begin by using them.

In all this §, we fix T : R→ A be a pseudocharacterof dimension d. I will assume
that d! is invertible in A.

2.1. Preliminaries. Recall that kerT = {x ∈ R, T (xy) = 0 ∀y ∈ R}. It is a
two-sided ideal of A (since T (xy) = T (yx)), and T factors through the quotient
R/ kerT and define a pseudocharacter T : R/ kerT → A which is faithful, that is
which has trivial kernel.

We shall use the complicated definition of a pseudocharactermainly through a
consequence of it, which can be called the Cayley-Hamilton theorem for a pseudocharacter.

Lemma 2.1 (Newton). There exits unique polynomials

a0, . . . , ad−1 ∈ Z[1/d!][S1, . . . , Sd]

such that for every complex numbers α1, . . . , αd such that if sn =
∑d

i=1 α
n
i for

n = 1, . . . , d, then the polynomial Xd + ad−1(s1, . . . , sd)Xd−1 + · · ·+ a0(s1, . . . , sd)
has roots α1, . . . , αd.

The proof is left as an exercise.

Definition 2.1. If x ∈ R, we call Px,T the polynomialXd+ad−1(T (x), . . . , T (xd))Xd−1+
· · ·+ a0(T (x), . . . , T (xd)) ∈ A[X] is called the characteristic polynomial of x for T

Indeed, when T = tr ρ for ρ : R → Md(A), then Px,T is the characteristic
polynomial of ρ(x) (exercise).

Proposition 2.1 (Cayley-Hamilton). If T is faithful, then for every x ∈ R,
Px,T (x) = 0

Proof — Setting all the variables but one in the definition of a pseudocharacters of
dimension d equal to x, and the last one equal to y, we get (after some computations)
T (Px,T (x)y) = 0. Therefore Px,T (x) ∈ kerT = 0. �

In the following set of lemmas, we assume that A is local (of maximal ideal m),
and e is an idempotent of R (that is e2 = e)

Lemma 2.2. T (e) is an integer between 0 and d.

Proof — If in the definition of a pseudo-character we put all the variables equal
to em we get T (e)(T (e) − 1) . . . (T (e) − d) = 0. At most one of the factors are
in m since the difference in any two factors is an integer between −d and d so is
invertible in A. Therefore all factors except (maybe) one are invertible, so the last
one is 0. �
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Lemma 2.3. The restriction of T to eRe (with unity e) is a pseudocharacter of
dimension T (e).

Indeed, it is clear that Te is a pseudocharacter. Its dimension is its value on the
unity, hence T (e).

Lemma 2.4. If T is faithful, and T (e) = 0 then e = 0.

Proof — Indeed, if T (e) = 0, then T (en) = 0 for all n, so Pe,T (X) = Xd, and by
Cayley-Hamiltion, ed = 0, so e = 0. �

Lemma 2.5. If T is faithful, there cannot be in R a family of more than d nonzero
orthogonal idempotents.

Indeed, the sum of all those idempotents e1, . . . , ek would be an idempotent e
such that T (e) = T (e1) + · · ·+ T (ek) > 1 + · · ·+ 1 = k > d

Lemma 2.6. If T is faithful, then so is Te

Indeed, if x ∈ eRe is such that Te(xy) = 0 for each y ∈ eRe, then take z ∈ R.
We have T (xz) = T (xze) + T (xz(1 − e)) but T (xz(1 − e)) = T ((1 − e)xz) = 0 so
T (xz) = T (xze) = T (xeze) = Te(xeze) = 0. Since T is faithful, x = 0.

2.2. Proof of Taylor’s theorem.

Theorem 2.1. If A = k is a separably closed field, T = tr ρ for a unique semi-
simple representation ρ : R→Md(A).

Actually, this is a theorem of Taylor if k has characteristic 0, and Rouquier in
characteristic p (with p > d of course). The uniqueness of ρ has been proved in
Kisin’s lecture. Therefore I prove only the existence of ρ. The fundamental idea
(of Rouquier’s proof) is to investigate the structure of the algebra R/ kerT .

Lemma 2.7. The radical J of R/ kerT is trivial

Proof — Let x ∈ J . We first prove that x is nilpotent. Indeed write Px,T (X) as
aXi(1+XQ(X)) with a ∈ k, i ≥ 0. Then by Cayley-Hamilton, axi(1+xQ(x)) = 0.
But xQ(x) is in the radical J , so 1 + xQ(x) is invertible, and we get xi = 0.

The second point is that a nilpotent element x in R/ker T has T (x) = 0. There
are many proofs of this fact. Here is one : we may assume by induction that x2 = 0,
and then putting in the definition of a pseudocharacter all the variables equal to x,
on gets T (x)d+1 = 0. But k is a field...

Putting those two points together, we see that every element x of the radical
J has T (x) = 0. For every y ∈ R/ kerT , xy is also in the radical thus we have
T (xy) = 0. so x = 0. �
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This lemma says that the A-algebra R/ker T is semi-simple. Moreover it is
integral over A (by Cayley-Hamilton) and which is more every element in R is
killed by a monic polynomial in A[X] of degree d. And finally there are no family
of more than d orthogonal non-zero idempotents. Those three properties implies

Proposition 2.2. R/ker T is isomorphic to a product of matrix algebras over k:
Md1(k)× · · · ×Mdr(k).

Note that a classical result states that semi-simple finite-dimensional algebras
over k are of this form. Here we see that we can weaken the finite dimensionality,
replacing it by two finiteness conditions, one on idempotents, the other on degree.

Proof — The conditions on idempotents prove that there is at most d isomor-
phism classes of irreducible modules over R/ker T. If V is one of them, then
D := EndK(V ) is a division algebra. There is a natural morphism R→ EndD(V ).
The Jacobson density theorem states that this morphism is surjective if V is finite-
dimensional, and at least of dense image in the general case, in the sense that the
image contains EndD(V ′) for D-subspace V ′ of V of arbitrary high finite dimension.
But V can not be infinite dimensional because this would imply that the image of
R/ker T, hence R/ker T itself, would contain elements not killed by a unitary degree
d-polynomial. Hence R→ EndD(V ) is surjective. Since D ⊂ EndD(V ), we see that
every element in D is algebraic over k. Hence D is commutative, and a subfield of
k. Finally we use the classical result that the center of D is separable over k to
conclude D = k. Hence EndD(V ) is a matrix algebra over k. We see easily, since
R/ker T is semi-simple, that it is isomorphic to the product of Endk(Vi) where Vi
are the different simple modules over R.

�

Finally we get Taylor’s theorem: we may replace R by R/ker T, which is a
product of matrix algebras, and we want to show that the pseudocharacter T on it
is the trace of a semi-simple representation. Using idempotents e1, ..., er of R/ker T
given by the identity elements of the matrix algebras Mdi

(k), and results above on
idempotents, we may assume that R/ker T is a matrix algebra Mdi

(k). Hence we
are reduced to prove the following

Lemma 2.8. A pseudocharacter Md(k) → k is an integral multiple of the trace,
hence is the trace of a sum of copies of the standard representation.

Indeed, it is a trivial exercise to see that a linear form T on Mdi
(k) that satisfies

T (xy) = T (yx) is a multiple of the trace, say αtr . Applying this to an idempotent
e of trace 1 in Mdi

(k), we get α = T (1). But we know that T (1) is an integer.
This concludes the proof of existence in Taylor’s theorem. As a corollary of the

proof, we get that if T is irreducible (that is not the sum of two pseudo-characters
of smaller dimensions), then R/ kerT 'Md(k).



RIBET’S LEMMA, GENERALIZATIONS, AND PSEUDOCHARACTERS 13

2.3. Proof of Rouquier and Nyssen’s theorem.

Theorem 2.2. Let T : R → A be a pseudocharacter of dimension d. Assume
that A is local and strictly Henselian1, with residue field k. Assume that T̄ =
T ⊗ 1 : R⊗A k → k is irreducible (not the sum of two non-zero pseudocharacters).
Then R/ker T ' Md(A), and T is the trace of a unique representation, namely
R→ R/ker T = Md(A).

The uniqueness is due to Mazur and Serre and Carayol, the existence of the
representation and the result on R/ker T are due independently to Nyssen and
Rouquier.

For the proof, we may as well replace R by R/ ker(T ), which simplifies notations
and add the hypothesis that T is Cayley-Hamilton over R. By the above §, we have
that R⊗ k/ ker T̄ 'Md(k).

As in the case of a field, the starting point is to understand the radical of R.

Lemma 2.9. If T : R→ A is faithful, and A, T has above, then the radical J of R
is the inverse image of ker T̄ in R. In other words, R/J = (R⊗Ak)/ ker T̄ 'Md(k).

Proof — Let J ′ denote the inverse image of ker T̄ in R. It is a two-sided ideal of
R. Since R ⊗ k/(ker T̄ ) is a matrix algebra Md(k), hence is semi-simple, we have
J ⊂ J ′.

Let x ∈ J ′. We will show that 1 + x ∈ R∗. We have T (xy) ∈ m, for all y in R,
hence T (xi) ∈ m for all i, so that by the Cayley-Hamilton identity xd ∈ m(A[x]).
Let us consider the commutative finite A-algebra B := A[x]. Then B is local with
maximal ideal (m,x), as B/mB is. As a consequence, 1+x is invertible in B, hence
in R.

As J ′ is a two-sided ideal of R such that 1 + J ′ ⊂ R∗, we have J ′ ⊂ J . �

After this lemma we are almost done: in R/J ' Md(k) we have the elementary
matrices Ei,j , for i, j ∈ {1, . . . , d}. they satisfy

Ei,jEk,l = δj,kEi,l,

d∑
i=1

Ei,i = 1.

It is well known (see Bourbaki - this is the basic fact used for example in the theory
of Azumaya algebra) that we can lift those elements of R/J into elements of R that
we shall still denote Ei,j that satisfy the same relations. (this works since J is the
radical of R, since R is integral over A, and since A is Henselian. The proof of this
”basic fact” is a clever application of Hensel’s lemma).

The Ei,i are idempotents, hence each T (Ei,i) is an integer, which is not zero since
Ei,i 6= 0. Their sum has to be T (1) = d, so all the T (Ei,i) are 1. From this we

1Henselian means that Hensel’s lemma is true in A. For example, if A is complete, then it is
henselian. Strictly means that the residue field k is separably closed. If not, it is a basic result
that we can replace A by an étale extension which is local and strictly henselian
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deduce that the restriction of TEi,i of T to Ei,iREi,i is a faithful pseudocharacter
of dimension 1. But clearly this shows that Ei,iREi,i is isomorphic to A as an A-
algebra (TEi,i being such an isomorphism). As for Ei,iREj,j take x in this set. Then
Ej,ix is in Ej,jREj,j so by the above Ej,ix = T (Ej,ix)Ej, j . Then x = Ei,jEj,ix =
T (Ej,ix)Ei, j . This proves that Ei,iREj,j = AEi,j . Form those results it is easy
to see that the linear map from R to Md(A) that sends Ei,j to the (i, j)-elementary
matrix is an isomorphism of A-algebras. This proves the first part of the theorem,
from which it is trivial to deduce that T is the trace of a representation as we did
in the case of a base field.

2.4. Exercises.

Exercise 2.1. Show all non-proved assertions in §2.1.

Exercise 2.2. If B is a commutative A-algebra, show that T ⊗ 1 : R ⊗ B → B is
a pseudocharacter of dimension d. Show that if T is faithful and B is A-flat, then
T ⊗ 1 is faithful. Show that this result may be false when B is not A-flat.

Exercise 2.3. Let A = R and H be the field of quaternions. Show that T : H→ R,
T (a + bi + cj + dk) = a is a pseudocharacter on H that does not come from a
representation.

Exercise 2.4. Test: Let k be an algebraically closed field, and R a k-algebra. If
T : R → k is a pseudocharacter of some dimension, and R/ kerT = Mn(k), is T
necessarily irreducible?

Exercise 2.5. If T : R → A is a pseudocharacter, we call CH(T ) the two-sided
ideal of R generated by the Px,T (x) for x ∈ R. We say that T is Cayley-Hamilton
if CH(T ) = 0.

a.– Show that CH(T ) ⊂ kerT . Show that faithful implies Cayley-Hamilton.

b.– Deduce that T factors through a pseudocharacter T : R/CH(T )→ A, which
is Cayley-Hamilton.

c.– Show that with the notation of exercise 2.2, we have CH(T ⊗ 1) = CH(T )B
(even when B is not A-flat). In particular, if T is Cayley-Hamilton, then so is T⊗1.

d.– (difficult) If T : R → A is Cayley-Hamilton, and R/ kerT ' Md(A), then
T is faithful and R 'Md(A).

e.– (difficult) Deduce the global form of Rouquier’s theorem (with a simpler
proof than Rouquier’s) : If A is any commutative ring (with d! invertible in A),
and T : R→ A is a pseudocharacter of dimension d such that at every closed point
m of SpecA, T ⊗1 : R⊗A/m→ A/m is absolutely irreducible, then R/ kerT is an
Azumaya algebra over A (Remark: if you don’t knot what is an Azumaya algebra,
that’s not a problem. You only need to know that an algebra over A whose base
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change to any local ring at closed points of SpecA is a matrix algebra Md is an
Azumaya algebra)

Exercise 2.6. a.– Let k be a field, and T : R→ k be a pseudocharacter. Assume
that the T ⊗ 1 : R ⊗ k̄ → k̄ is the trace of a representation ρ that is irreducible.
(We say that T is absolutely irredicible). Show that R/ kerT is a central simple
algebra. (you might need to use exercise 2.2)

b.– By mimicking the proof of Rouquier-Nyssen theorem, show that if A is a
local Henselian ring wuth residue field k finite, and T : R→ A is a pseudocharacter
such that T̄ is absolutely irreducible, then T is the trace of a representation. (This
statement contains the one used by Mark Kisin).

3. Residually multiplicity-free pseudocharacters

We keep the notations of Rouquier and Nyssen’s theorem: T : R→ A be a pseu-
docharacter of dimension d. the ring A is a local and strictly henselian ring, with
residue field k, maximal ideal m. To simplify the exposition, we shall also assume
that A is noetherian and reduced (none of these hypotheses is really necessary),
and we call K its total fraction ring: K is a finite product of field.

Rouquier and Nyssen’s theorem is fine, but for the generalizations of Ribet’s
lemma it is not enough: We definitely need to work without the assumption that
T̄ = T ⊗ 1 : R⊗ k → k is irreducible.

If T̄ is not irreducible, it is a sum of irreducible characters, each of them being,
by Taylor-Rouquier’s theorem, the trace of a unique irreducible representation. So
we can write

T = tr ρ̄1 ⊕ · · · ⊕ ρ̄r.

We shall call d1, . . . , dr the dimensions of ρ̄1, . . . , ρ̄r, so that d1 + · · ·+ dr = d.
We will make the following simplifying assumption: for i 6= j, ρ̄i 6' ρj . We call

a T that satisfies this hypothesis residually multiplicity free. Important part of
the theory we shall expose below can be done without this hypothesis, that is for
general T (see [C]), but the theory is simpler in the residually multiplicity free case
and this case is sufficient for our purposes.

Our aim is, for T residually multiplicity free as above, to study, as we have done
in the more specific cases, the structure of R/ kerT (we shall see this way that such
T are not necessarily trace of representations), to define and show how to compute
the (total) reducibility locus of T in SpecA (the maximal closed subscheme on
which T is as reducible as it as at the closed point), and to prove the analog of
Ribet’s lemma (how we can use T to construct non-trivial extensions between the
ρ̄i)
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3.1. The structure theorem. We shall determine the structure of the A-algebra
R/ kerT . It will not always be a matrix algebra Md(A). Instead, it will be a
generalized matrix algebra (of type d1, . . . , dr) in the following sense:

Lemma and Definition 3.1. Let Ai,j , i, j = 1, . . . , r be fractional ideals of A
(that is finite type A-submodules of K) such that

(a) Ai,i = A for all i
(b) Ai,jAj,k ⊂ Ai,k for all i, j, k.
(c) Ai,jAj,i ⊂ m.

Consider elements a of Md(K) as matrices by blocks of size (d1, . . . , dr): call ai,j ∈
Mdi,dj

(K) the bloch (i, j). Let S be the subset of Md(K) of elements a such that
all the entries of ai,j are in Ai,j . That is to say:

S =


Md1(A1,1) Md1,d2(A1,2) . . . Md1,dr(A1,r)
Md2,d1(A2,1) Md2(A2,2) . . . Md2,dr(A2,r)

...
...

. . .
...

Mdr,d1(Ar,1) Mdr,d2(Ar,2) . . . Mdr(Ar,r)


Then

(i) S is a A-subalgebra of Md(K) (with same unity Id).
(ii) The trace Md(K) → K induces a map tr : S → A which is a pseudo-

character of degree d.
(iii) The map ri : S ⊗A k → Mdi

(k) induced by a 7→ ai,i is an irreducible
representation of S⊗Ak, and ri 6' rj if i 6= j. We have t̄r = tr r1+· · ·+tr rd.
In particular, the pseudo-character tr is residually multiplicity free.

The algebra S is called the generalized matrix algebra of type (d1, . . . , dr), attached
to the families of fractional ideal (Ai,j).

Proof — It is clear that S is an A-submodule, and properties (b) show that S
is stable by multiplication, while (a) shows that S contains Id. This proves (i).
Property (a) implies that tr sends S to A, and it is a pseudocharacter of dimension
d since tr : Md(K) → K is. This proves (ii). A simple computation using (c)
shows that ri is a morphism of algebras, and since it is clearly surjective, it is an
irreducible representation. The rest of (iii) is clear. �

Theorem 3.1. Let T : R → A be a residually multiplicity free pseudocharacters
as above. There exists a generalized matrix algebra S of type (d1, . . . , dr) attached
to the families of fractional ideal (Ai,j), and an A-isomorphism of algebras f :
R/ kerT → S such that tr ◦ f = T .

Remark 3.1. The ideals Ai,j are not uniquely determined. Actually it is clear
that if (xi)i=1,...,r is a families of elements of K∗, then the ideals

A′i,j = x−1
i xjAi,j(1)
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satisfy the same relations (a), (b), (c), and that the generalized matrix algebra S′

attached to the (A′i,j) is A-isomorphic to S with an isomorphism compatible with
traces. So we can change the Ai,j up to a transformation 1. Actually, it can be
shown that the families (Ai,j) is well-defined, up to a transformation of the type 1.

We shall use this theorem again and again. For T a residually multiplicity-free
pseudocharacter, we shall call Ai,j fractional ideals as in the theorem. The fact that
the Ai,j are well-determined only up to a transformation of type 1 will not matter,
since as the reader can check, all constructions using the Ai,j below will actually
be invariant by this transformation.

Proof — (Sketch) We can and do assume that T is faithful. We now want to prove
that R is a generalized matrix algebra of type (d1, . . . , dr).

Since the character T̄ : R ⊗A k → k, T̄ = tr ρ̄1 ⊕ · · · ⊕ tr ρ̄r is the sum of r
non isomorphic representation, we have (see the proof of Taylor’s theorem above)
(R ⊗ k)/ ker T̄ = ρ̄1(R ⊗ k) × · · · × ρ̄r(R ⊗ k) = Md1(k) × ×̇Mdr(K). Let εi be
the identity of Mdi

(K) seen as an element of R/ ker T̄ . Then the εi’s form an
orthogonal family of idempotents of sum 1. Recall that by Lemma 2.9, the kernel
of the surjective map R→ R⊗k → (R⊗k)/ ker T̄ is the radical J of R. Therefore,
we can lift the families εi to a families ei of orthogonal idempotents of R of sum 1.

Looking at the subalgebra eiRei of R (with unity ei) and mimicking the proof
of Rouquier-Nyssen’s theorem, it is not hard to prove that eiRei ' Mdi

(A) for
all i = 1, . . . , r (by considering the elementary matrices Eα,β ∈ Mdi

(k) seen as
elements of R⊗ k/ ker T̄ and by lifting then to eiRei).

Now if i 6= j, then eiRej as an obvious structure of left eiRei 'Mdi
(A)-module

and right ejRej 'Mdj
(A). By Yoneda’s theory, eiRej is isomorphic, for its bimod-

ule structure, to Mdi,dj
(Ai,j) for some A-modules Ai,j .

Moreover, the multiplication in R induces map eiRej ⊗ ejRek → eiRek. Again
by Yoneda’s theory, those maps are induced by morphisms of A-modules ψi,j,k :
Ai,j ⊗A Aj,k → Ai,k.

So we already can write R = ⊕i,jeiRej ' ⊕i,jMdi,dj
(Ai,j). Here the ' is an

isomorphism of algebra, where the right hand side is given an algebra structure
using matrix multiplication and the ψi,j,k. To check that the RHS is a generalized
matrix algebra, we only have to prove that the A-modules Ai,j are finite type and
can be embedded in K in such a way that the maps ψi,j,k : Ai,j ⊗A Aj,k → Ai,k

becomes induced by the multiplication of K. We leave this to the reader. �

3.2. Total reducibility locus.

Theorem 3.2. Let T : R→ A be a residually multiplicity free characters as above.
There exists a smallest ideal I of A, such T ⊗ 1 : R ⊗ A/I → A/I is the sum
of r non-zero pseudocharacters. We have I =

∑
i,j=1,...,r i 6=j Ai,jAj,i, where the

fractional ideals Ai,j are as in the structure theorem
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For the proof, that relies heavily on the structure theorem, see [BC]. We just
note that, with the notation of the structure theorem, if

∑
i,j=1,...,r i 6=j Ai,jAj,i ⊂ I,

then it is easy to see that T ⊗ 1 : R ⊗ A/I → A/I is the sum of r non-zero

pseudocharacters. Indeed, the maps ri : R
f→ S → Mdi

(A/I) induced by a 7→ ai,i

(mod I) are easily seen to me morphisms of algebra, so their trace tr ri defines
pseudocharacters R⊗A/I → A/I (of dimension di) and one has T ⊗1 =

∑r
i=1 tr ri.

What is harder is to prove the converse: that if on some ideal I T ⊗ 1 : R⊗A/I →
A/I is the sum of r characters, then

∑
i,j=1,...,r i 6=j Ai,jAj,i ⊂ I.

Definition 3.1. We call I the (total) reducibility ideal of T and SpecA/I the
(total) reducibility locus of T .

Remark 3.2. (i) We can consider other reducibility conditions. For example,
for 1 < s ≤ r, we can ask wether there exists a smallest ideal I such that
T ⊗ 1 : R ⊗ A/I → A/I is the sum of s non-zero pseudocharacters. Or,
given a partition of {1, . . . , r} = P1

∐
P2
∐
· · ·
∐
Ps, we can ask wether

there exists a smallest ideal I such that T ⊗ 1 : R ⊗ A/I → A/I is the
sum of s non-zero pseudocharacters T1, . . . , Ts such that for l = 1, . . . , s,
Tl ⊗ 1 : R ⊗ k → k is equal to

∑
i∈Pl

tr ρi. It can be shown that those
general reducibility ideal always exist. For example, for the one attached
to a partition P1

∐
· · ·
∐
Ps, the smallest I is +i,j not in the same Pl

Ai,jAj,i.
(ii) If we do not assume that T is residually multiplicity free, the reducibility

ideal may not exist.

Finally, let J be any proper ideal of A containing the (total) reducibility ideal of
T . The pseudocharacter T ⊗ 1 : R⊗A/J → A/J is the sum of r pseudocharacters
T1, . . . Tr : R ⊗ A/J → A/J . It can be shown that the Ti are unique, that is we
do not have another decomposition of T ⊗ 1 as a sum of r pseudocharacters, up to
renumbering of course.

Up to renumbering the Ti, we can assume that T̄i = Ti⊗1 : R⊗k → k is tr ρ̄i. It
can be shown that the Ti are unique, that is we do not have another decomposition
of T ⊗ 1 as a sum of r pseudocharacters. By Rouquier and Nyssen’s theorem,
there exists a unique representation ρi : R ⊗ A/J → Mdi

(A/J) of trace Ti. The
representation ρi is a lift (or a deformation, if you like) of ρ̄i to A/J .

3.3. Generalization of Ribet’s lemma: the case r = 2. Before going to the
general case, which is combinatorially involved, we dwell a little bit on the case
where T̄ is the sum of r = 2 irreducible pseudocharacters tr ρ̄1 and tr ρ̄2. The
dimension d of T is still unrestricted, and so is the nature of the local ring A

(beside being strictly henselian, Noetherian and reduced, as usual). The ideas in
this case mainly come from [MW], though they use a different terminology (Wiles
had not invented yet pseudorepresentations), and are in a more restricted situation
(d = 2, A is finite over a d.v.r, etc.)
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In this case the structure theorem takes a very simple form: there are two frac-
tional ideals B and C of A, with BC ⊂ m, and an isomorphism

f : R/ kerT → S =
(
Md1(A) Md1,d2(B)
Md2,d1(C) Md2(A)

)
that is compatible with traces. The proper ideal I = BC of A is the reducibility
ideal of A.

Proposition 3.1. Let J be any proper ideal of A that contains I. As we have
seen at the end of §3.2, the representations ρ̄i have canonical lifts ρi : R ⊗ A/J →
Mdi

(A/J). There exists natural injective maps of A-modules

ιB : HomA(B,A/J) → Ext1
R⊗A/J(ρ1, ρ2)(2)

ιC : HomA(C,A/J) → Ext1
R⊗A/J(ρ2, ρ1)(3)

Proof — We only treat the first case, the second being symmetric. The proof is by
direct computation: for r ∈ R, let us call f(r) its image in S, and a(r) ∈ Md1(A),
b(r) ∈ Md1,d2(B), c(r) ∈ Md2,d1(C), d(r) ∈ Md2(A) be its block constituents. We
have the multiplication relations a(rr′) = a(r)a(r′) + b(r)c(r′) in Md1(A), b(rr′) =
a(r)b(r′) + b(r)d(r′) in Md1,d2(B), and similarly for the other constituents. Note in
particular that b(r)c(r′) ∈Md1(BC) ⊂Md1(J) so a(rr′) ≡ a(r)a(r′) (mod J), and
similarly for d. Actually, by construction a(r) (mod J) = ρ1(r) in Md1(A/J) and
d(r) (mod J) = ρ2(r).

Now let l : B → A/J be a morphism of A-modules. We consider the map
ρl : R⊗A/J →Md(A/J) defined by

ρl(r ⊗ 1) =
(

(a(r) (mod J) l(b(r))
0 d(r) (mod J)

)
,

where l(b(r)) is the matrix in Md1,d2(A/J) obtained from b(r) by applying l to each
coefficients.

We claim that ρl is a morphism of algebras. Indeed, it obviously respects the
addition, and for the multiplication only the upper right corner may be a problem.
So we check : the upper right corner of ρl(rr′) is l(b(rr′)) ∈Md1,d2(A/J). The upper
right corner of ρl(r)ρl(r′) is a(r)l(b(r′))+b(r)l(d(r′)) = l(a(r)b(r′)+b(r)d(r′)) since
l is A-linear. Now we see that the two upper-tight corner are the same by the
multiplication formula for b given above.

Since ρl is a morphism of algebras, it is a representation of R⊗A/J . But clearly
it contains a = ρ1 as a sub-representation and d = ρ2 as a quotient. Therefore
ρl is an extension of ρ2 by ρ1. Hence a map ιB : l 7→ ρl, HomA(B,A/J) →
Ext1

R⊗A/J(ρ1, ρ2). This map is clearly linear from the definition of ρl. It remains
to show that is is injective. Assume that the extension ρl is trivial. This does not
imply that l(b(r)) = 0 for all r ∈ R but this clearly implies that l(b(r)) = 0 for r
such that ρ1(r) = 0 and ρ2(r) = 0. But f is surjective, so we can find r such that
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a(r) = 0, d(r) = 0, and b(r) is arbitrary in Md1,d2(B). So we see that l is 0 on B,
which proves the injectivity of the map l 7→ ρl. �

The generalization of Ribet’s lemma is the combination of this proposition and
the fact that BC is reducibility ideal.

Do you see why it is a generalization of Ribet’s lemma? Maybe not. Let me be
explicit. Assume as in the hypotheses of Ribet’s lemma that A is discrete valuation
domain, of fraction field K, and that T = tr ρ where ρ is a representation that is
irreducible over K, but such that ρ̄ss = ρ̄1 ⊕ ρ̄2. Since ρ is irreducible over K, the
reducibility locus is a proper subscheme of SpecA, that is to say, the reducibility
ideal I = BC is not 0. Therefore, neither B nor C is 0. SInce they are fractional
ideals of A, and A is principal, this does not leave us much choice: both B and C

are as A-modules isomorphic to A (and as fractional ideals, they are of the form
πbB and πcC with b, c ∈ Z, b+c ≥ 1). Now apply the proposition for J = m = (π).
Of course HomA(B,A/m) = k ad similarly for C, and the proposition tells us that
the spaces Ext1

R⊗k(ρ̄1, ρ̄2) and Ext1
R⊗k(ρ̄2, ρ̄1) have dimension at least one. This is

Ribet’s lemma.
Now in the same situation as above, we are not obliged to take J = m = (π). We

can take any J that contains the reducibility ideal I = BC. Say J = I. Then the
proposition tells us that the module Ext1

R⊗A/I(ρ1, ρ2) contains a module isomorphic
to A/I. Since I = (πn), where n is defined in exercise 1.6, we get the result of that
exercise.

But the most interesting aspect of our generalization of Ribet’s Lemma is that
A can be a much more general local ring that a d.v.r, with dimension greater than
one and an rich geometry of its own. To get a sense of what our results says in
general, let us focus on the case J = m, that is when we only are interested in
constructing extensions of ρ̄1 by ρ̄2 over A/m = k (instead of extensions of ρ1 by
ρ2 over A/J). The A-module HomA(B,A/m) = Homk(B/mB, k) is now the dual
vector space of the k-vector space B/mB. By Nakayama’s lemma, its dimension is
the minimal number of elements of a generating family of B: let’s call that g(B).
Therefore, the proposition says that

dimk Ext1
R⊗k(ρ̄1, ρ̄2) ≥ g(B),

that is we can construct g(B) independent extensions of ρ̄2 by ρ̄1. Similarly,

dimk Ext1
R⊗k(ρ̄2, ρ̄1) ≥ g(C).

Now what can we say about g(B) and g(C). Well, BC = I, the reducibility ideal.
It follows immediately that g(B)g(C) ≥ g(I). The number g(I) is the minimal
number of generators of I. It is at least equal to the codimension of SpecA/I in
SpecA, that is the codimension of the irreducibility locus. That is the smaller is
the reducibility locus, the larger has to be g(I), so the larger has to be g(B)g(C),
and the more extensions we construct. This is intuitive.
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A special case that we will meet in practice is when the irreducibility locus is
the smallest possible : the closed point of SpecA, that is I = m. In this case,
we have g(B)g(C) ≥ g(m). But g(m) is by Nakayama’s lemma the dimension of
m/m2, which is the cotangent space of SpecA at its closed point. If d is the Krull
dimension of A, we thus have g(m) ≥ d, with equality if and only if A is regular
ring by the theorem of Auslander-Buschbaum. In particular g(B)g(C) ≥ d, and if
A happens to be non-regular, g(B)g(C) > d. The geometry of A comes into the
play.

3.4. Ribet’s generalization: the general case.

Theorem 3.3. Let i, j ∈ {1, . . . , r}, i 6= j. Let J be an ideal containing the
reducibility ideal I. Let A′i,j = +k 6=i,jAi,kAk,j. (We have obviously A′i,j ⊂ Ai,j.)
There exists a natural injective map of A-modules:

ιi,j : HomA(Ai,j/A′i,j , A/J) ↪→ Ext1
R⊗A/J(ρj , ρi)

where ρi and ρj are the representations defined at the end of §3.2.

The construction of ιi,j and proof of its injectivity if similar to the proof of
Proposition 3.1. See [BC].

One can find that this method of construction of extensions (by hand, by giving
explicitly the matrix representation of the extension) is much less elegant than Ri-
bet’s method which provides explicitly a free A-module Λ with G-action (a lattice)
and see the extension in Λ/mΛ. Esthetic questions aside, it shall be useful in ap-
plication to have a construction a la ribet of extensions. We can do that, but we
have to give up the freeness assumption of the module.

Theorem 3.4. Let i ∈ {1, . . . , r}. There exists a natural finite torsion-free A-
module Mi with as structure of R-modules, whose trace on the Mi ⊗ K is T (in
particular Mi has generic rank d), and such that

(i) The R⊗ k-module Mi⊗ k has semi-simplification ⊕rj=1ρ̄
nj

j where the nj are
integers ≥ 1, and ni = 1. Moreover ρ̄i is a quotient of Mi ⊗ k.

(ii) For J as in theorem 3.3, and j 6= i, every extension of ρi by ρj over A/J
whose classes lies on the image of ιi,j appears as a subquotient of Mi.

Actually one takes Mi the injective hull of ρ̄i in the category of R/ kerT -modules.
We can show that as an A-module, Mi = ⊕dj=1A

dj

i,j . For the proof, see [BC].
It can be proved (see [BC]) that all extension of ρi by ρj that appears as a

subquotient of an R-module M which is finitely generated and torsion free as an
A-module, and whose character of M⊗K is T appears in the image of ιi,j . In other
words, the ιi,j construction see all extensions that it is possible to construct using
T .
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3.5. Exercises.

Exercise 3.1. Let A = Zp, and let R = A[X]. Let ρ : R→M2(A) be the morphism

that sends X to the matrix
(

1 1
p2 1

)
, and T = tr ρ. Show that T : R → Zp is a

pseudo-character of dimension 2, but that it is not residually multipilicty free. Show
that I = (p2) is the smallest ideal of A such that T ⊗ 1 : R ⊗ A/I is the sum of
two non zero pseudo-characters. Show however that T ⊗ A/I is the sum of two
pseudo-characters in several different ways.

Exercise 3.2. (difficult) Show by an example, that for a non-residually multi-
plicity free pseudocharacters, the reducibility ideal may not exist (of course, A has
to be not a d.v.r)

Exercise 3.3. Let k be a field and A = k[[X,Y,X]]/(XY − Z2). Show that A
is complete d.v.r with residue field k, and is a Noetherian domain. Let us call
K = Frac(A). Let B = XA + ZA ⊂ A and C = A + (Y/Z)A ⊂ K. Show

that R =
(
A B
C A

)
is a generalized matrix algebra, and that its trace T = tr is a

residually multiplicity free pseudocharacter of dimension 2. Show that T is not the
trace of any representation R→M2(A).

Exercise 3.4. (difficult) Assume that A is a unique factorization domain. Show
that every residually multiplicity-free pseudocharacterT : R→ A (for any A-algebra
R) of dimension d (any d) is the trace of a representation R→Md(A). (Hint : do
first the case r = 2, which is simpler). It can e shown that the converses also hold:
if every residually multiplicity-free pseudocharacterT : R → A of dimension d is
the trace of a representation R→Md(A), then A is a UFD.

Exercise 3.5. Prove theorem 3.3.

Exercise 3.6. With the notations of §3.3, and assuming that A is a domain (so
that K is its fraction field).

a.– show that T ⊗ 1 : R⊗K → K is irreducible if and only if B 6= 0 and C 6= 0.
b.– (difficult) Assuming that T is the trace of a representation and that I = m,

show that max(g(B), g(C)) ≥ g(I).
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[BC] J. Belläıche & G. Chenevier, p-adic Families of Galois representations, Astérisque, 324,
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Automorphic forms for unitary groups and
Galois representations

Eigenvarieties of unitary groups
Three lectures at the Clay Mathematical Institute Summer School,

Honolulu, Hawaii, 2009

Prerequisites: The prerequisites for these lectures are:

(i) Notions on algebraic groups.
(ii) If possible, classical modular forms, and their adelic interpretation.
(iii) For the eigenvarieties part, some notion of rigid analytic geometry.

Notations: During most of the lecture, F will be a number field. The ring of
adèles wil be denoted by AF or simply A. It is a product AF = AF,f × AF,∞ of
finite adèles AF,f = Af and infinite adèles AF,∞ = A∞ = F ⊗Q R. When g is an
adèle (or an idèle, or an adèle-valued point of a group scheme over F ) we denote
by gf and g∞ its finite and infinite componen. We often identify gf with the adèle
(or idèle, etc.) which ha has the same finite components and 0 (or 1) at all infinite
component, and similarly for g∞ so that g = gf + g∞ )or g = gfg∞).

We shall denote by Q̄ the set of complex numbers that are algebraic over Q. So
Q̄ is supposed to be embedded in C.
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This lecture is about automorphic forms and representations for unitary groups,
and their attached Galois representations. The very existence of those attached
representations is a recent progress that constitutes one of the most important
achievement in the still largely open Langlands’ program. It has been the result
of a huge collective work of many mathematicians over more than thirty years
(realizing an initial sketch, incredibly accurate in retrospect, of Langlands in the
seventies). It is absolutely out of question to give or even tho sketch the proof of
this existence in this paper.

The aim of this lecture is only to provide a short and intuitive introduction to
automorphic forms and representations for unitary groups, and to state the exis-
tence and main properties of their attached Galois representations. Even simply
giving a proper and workable definition of automorphic representations for a gen-
eral unitary group is a task that cannot be properly done in less than 100 pages.
There are many technical difficulties (especially at the archimedean places), which,
through important, are not essential to the intuitive understanding of the notions.
To avoid most of those difficulties, I will only consider a special case, namely unitary
groups that are definite, that is compact at all archimedean places. While there
are many arithmetical applications for which this special case may be sufficient,
considering the general case is necessary in many other (including some that might
be explained by Chris using Eisenstein series, which only exists for non-definite
unitary groups) and moreover, the construction of Galois representations requires
to consider non-definite places.

A natural question is: why unitary groups? The short answer is simply: because
they are (with a few sporadic other cases, most notably Sp4) the only algebraic
group for which we know, at this point, how to attach Galois representation to
automorphic representations. We should be able to do the same to many other
automorphic representations (e.g. all algebraic automorphic representations for
GLn) but it seems that some very difficult new ideas are missing in order to do
that.

1. Unitary groups

1.1. Generalities. Let k be a field of characteristic 0 (to simplify), and E be an
étale algebra of degree 2 of k (that is to say, either E is k × k or it is a extension
of degree 2 of E). The algebra E has only one non-trivial k-automorphism that we
note c. Let V be a free k-module of rank n, and q : V ×V → E be a non-degenrate
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c-Hermitian form. (That is to say, q(x, y) is E-linear in x and c-semilinear in y, we
have q(x, y) = c(q(y, x)) for all x, y ∈ V , and q(x, y) = 0 ∀y ∈ V implies x = 0.)

To these data (k,E, V, q) we can attach an algebraic group over k.

Definition 1.1. The unitary group G attached to (k,E, V, q) is the algebraic group
whose functor of points is

G(R) = {g ∈ GLE⊗kR(V ⊗k R), q(gx, gy) = q(x, y)∀x, y ∈ V ⊗k R}.

for all k-algebra R. In the case where E is a field (rather than k × k) we shall say
that G is a true unitary groups.

Exercise 1.1. This definition implicitly assumes that the functor R 7→ G(R) is
representable by a scheme over k. Prove it.

Intuitively, this is not very complicated. The k-points of the unitary group are the
set of E-linear automorphism of V that preserves the hermitian form q. Similarly
for R-points.

Example 1.1. Take k = R, E = C, V = Cn and

q((x1, . . . , xn), (y1, . . . , yn) = x1c(y1) + . . . xpc(yp)− xp+1c(yp+1)− · · · − xnc(yn).

Then the unitary group attached to these date is denoted U(p, n − p). The set of
real points U(p, n−p)(R) is the classical unitary group of signature (p, n−p) in the
sense of undergraduate mathematics. It is compact if and only if p = 0 or p = n.
Note that U(p, n − p) is isomorphic to U(n − p, p). It is not hard that any true
unitary groups over R is isomorphic to one of those U(p, n− p).

Proposition 1.1. If E is k × k, then the unitary group G is isomorphic to GLn.
The is isomorphism is well-defined up to inner automorphism if we chose one of
the two k-morphism E → k.

Proof — Let p : E → k be a k-morphism. The choice of p makes the isomorphism
E = k× k (as k-algebra canonical, by saying tjat p is the first projection on k× k.
Let V0 = V ⊗E,pk. We construct an morphism of functors G(R)→ GLR(V0⊗kR) by
sending g ∈ G(R) (an E-automorphism on V ⊗ER) to its action on V ⊗ER⊗E k =
V0 ⊗k R. We leave to the reader to check that is an isomorphism. �

Now, let k′ be any extension of k. We can consider E′ = E ⊗k k′ which is still
an etale algebra over k′ (but not that if E was a field, this may fail for E′, hence
the interest of the generality adopted), V ′ = V ⊗E E′ which is still free of rank n

over E, and q′ the natural extension of q to V ′. To the data (k′, E′, V ′, q′) one can
attach an unitary group G′ over k′. It is clear from the definition that G′ is G×k k′.
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1.2. Unitary groups over totally real number fields. Let F be a totally real
finite extension of Q, and E be a quadratic extension of E that is imaginary.. Let
c be the non-trivial automorphism of E over F . let V be an E-vector space of
dimension n and q be a non-degenerate c-hermitian form on V . To (F,E, V, q) one
can attach a unitary group G over F .

To get a better understanding of G we analyze the groups Gv = G×F Fv for all
places v of F .

If v is archimedean, then by assumption v is real, that is Fv = R, and Ev = C,
while c induces the complex conjugation on C. The group Gv is therefore R-
isomorphic to a group U(pv, n− pv) for some 0 ≤ pv ≤ n as in example 1.1.

Definition 1.2. We shall say that G is definite if Gv is compact (that is pv = 0 or
pv = n) for all real places v of F .

If v is finite and split in E, then E ⊗F Fv is not a field, but is isomorphic to
Fv×Fv. Therefore, the group Gv which is the unitary group attached to (Fv, E⊗F
Fv, . . . , . . . ) is by Prop 1.1 isomorphic to GLn over Fv. The choice of one of the two
Fv-morphismsE ⊗F Fv to FV , that is of one of the two places of E above v makes
this isomorphism canonical, up to conjugation.

If v is finite and either inert or ramified in E, then Ev is a quadratic extension
of Fv, so Gv is a true unitary groups of v.

The point to remember (for beginners) is that even a true unitary group over F
becomes GLn at basically one place of F over two: the places that are split in E.
This will be very helpful later.

1.3. Adelic points of G. Let G be a unitary group as in the preceding §. Since
the ring of adèles A = AF is an F -algebra (via the diagonal embeding), it make
sense to talk of the group G(AF ). SInce G is linear, that is a subgroup of GLm
for some m, G(Af ) ⊂ Mm(AF ) = Am2

F which allots to give a natural topology on
G(AF ), namely the coarsest that is finer that the topology of Am2

F and for which
x 7→ x−1 is continuous. This topology is easily been seen to be independent of
the choices. We shall need a good understanding of this group and of its natural
topology.

Let G be a model of G over SpecOF [1/f ] where f ∈ OF − {0}, that is a group
scheme over this scheme whose generic fiber is G. Then for all v prime to f , the
modeles define a subgroup G(Ov) of G(Fv) which is compact when v is finite. We
can therefore form the restricted product

∏′
v places of F G(Fv) with respect to the

subgroups G(Ov).

Lemma 1.1. This restricted product with its restricted product locally compact
topology is independant of the model G chosen and is naturally isomorphic, as a
topological group, with G(AF ).
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The same lemma of course holds for the finite adèles G(AF,f ) =
∏′
v finiteG(Fv)

We have G(AF ) = G(AF,f )×G(AF.∞).
The group G(F ) can be embedded diagonally in G(AF ). Its image is discrete. If

G is definite, then G(F ) is discrete in G(AF,f ) and the quotient is compact.

1.4. Local theory. In order to understand automorphic representations, we need
to remind (without any proof) a very little part of the very important and still
active theory of representations of p-adic Lie group.

1.4.1. Brief review on smooth representations. In this § only, G will be a group
where there is basis of neighborhood of 1 made of compact open subgroups U .

Exercise 1.2. Prove that such a group is locally compact and totally disconnected.
What about the converse?

Let k be a field of characteristic 0. By a smooth representation V of G over k we
mean a k-vector space (not finite dimensional in general) with a continuous action
of G such that for every vector v ∈ V , there exists a compact open subgroup U in
G such that v is invariant by U .

A smooth representation is admissible if for every open subgroup U of G, V U is
finite dimensional over k.

Let us fix a (left invariant, but since in practice our G will be unimodular, this
doesn’t really matter) Haar measure dg on G, normalized such that the measure
of some open compact subgroup U0 is 1. Then is is easily seen that the measure of
any other compact open subgroup will be a rational, hence an element in k.

We denote byH(G, k) the spaces of function from G to k that are locally constant
and have compact support. This space as a natural product : the convolution
of functions (f1 ∗ f2)(g) =

∫
G f1(x)f2(x−1g) dx. Indeed, since f1 and f2 are in

H(G, k), the integral is actually a finite sum, an what is more a finite sum of
terms that are products of a value of f1, a value of f2, and the measure of a
compact open subgroup. So the integral really defines a k-valued function, and it
is easy to check that f1 ∗ f2 ∈ H(G, k). This product makes H(G, k) an algebra,
which is not commutative if G is not, and which is general has no unity (the unity
would be a Dirac at 1, which is not a function on G if G is not discrete). If V
is a smooth representation of G it has a natural structure of H(G, k)-module by
f.v =

∫
G f(g)g.v dg. The algebra H(G, k) is called the algebra of the group G over

k.
Let U be a compact open subgroup of G. Let H(G,U, k) be the set of functions

form G to k that have compact support and that are both left and right invariant
by U . This is easily seen to be a subalgebra of H(G, k), with unity (the unity
is the characteristic function of U times a normalization factor depending on the
Haar measure). The algebra H(G,U, k) is called the Hecke algebra of G w.r.t U
over k. We have H(G, k) = ∪UH(G,U, k) and in particular we see that if G is not
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commutative, the H(G,U, k) are not for U small enough. The Hecke algebra are
important because of the following trivial property:

Lemma 1.2. Let V be a smooth representation of G (over k). Then the spaces of
invariant V U has a natural structure of H(G,U, k)-modules.

Indeed, if v ∈ V U ⊂, and f ∈ H(G,U, k) ⊂ H(G, k), f.v is easily seen to be in
V U .

If there is one thing to remember about Hecke algebras it is this lemma, not
the definition. In Jeopardy style : define the Hecke Algebra of G relatively to U ...
”What acts on V U when V is a (smooth) representation of G? ”

We will apply this theory to groups G(Fv) when G is a unitary group as above
and v is a finite place of F .

Exercise 1.3. Let k′ be an extension of k.

a.— Show that if V is a smooth representation of G over k, then V ⊗k k′ is a
smooth representation of G over k′.

b.– Show that the formation of V U commutes to the extesions k′/k.

c.– Show that H(G,U, k)⊗k k′ = H(G,U, k′).

Exercise 1.4. Let C(G, k) and C(G/U, k) be the space of smooth functions from
G and G/U to k.

a.– Show that they both are smooth representation of G (for the left translations)

b.– Show C(G, k)U = C(G/U, k). Therefore H(G,U, k) acts on C(G,U, k). Show
that this action commutes to the G-action.

c.– Show that H(G,U, k) is actually naturally isomorphic to EndG(C(G/U, k)).

Exercise 1.5. a.– Show that V 7→ V U is an exact functor form the category
from smooth representation of G over k to H(G,U, k)-module. This functor takes
admissible representations to H(G,U, k) that are finite dimensional.

b.– Let W = V U , W ′ ⊂ W a sub-H(G,U, k)-module, and V ′ ⊂ V the subrepre-
sentation of V generated by W ′. Show that V ′U = W .

c.– Deduce that if V is irreducible as a representation of G, than V U is irreducible
as a H(G,U, k)-module

Note that in general the functor defined in a.– above is not fully faithful (even
on admissible rep.) and that the converse of c.– is false.
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1.4.2. Maximal compact subgroups. If v is a finite place of F that splits in E, then
G(Fv) ' GLn(Fv). It is an easy fact that all maximal compact subgroups of
GLn(Fv) are conjugate (and conjugate to GLn(Ov).

If v is a finite place that does not spit in E, then G(Fv) is a true unitary groups.
It is not true that all maximal compact subgroups of G(Fv) are conjugate, though
there are only finitely many conjugacy class. If v is inert, then there is one class
whose elements have maximal volume (for a fixed Haar measure), and we call
compact of this class maximal hyperspecial compact subgroup of G(Fv). We shall
neglect places of F that ramify in E since there only in finite number.

Back to the case v split, we shall call any maximal compact subgroup hyperspe-
cial.

Proposition 1.2 (Tits). Let G be a model of G over SpecOF [1/f ]. Then G(Ov)
is a maximal compact hyperspecial subgroup of G(Fv) for almost all finite places v.

Corollary 1.1. Any compact open subgroup of G(Af ) contains a compact open
subgroup of the form

∏
v Uv with Uv a compact open subgroup of G(Fv) for all v,

with Uv maximal hyperspecial for almost all v.

1.4.3. Spherical Hecke algebras and unramified representations. Let v be a place of
F (not ramified in E), and Kv be a maximal compact hyperspecial subgroup of
G(Fv). Let k be any field of characteristic 0.

Proposition 1.3. The algebra H(G(Fv),Kv, k) is commutative

This fact is not a tautology. As we have seen, H(G(Fv), U) will certainly be
non commutative for small enough compact open subgroups. The fact that it
is commutative for Kv a well chosen maximal compact subgroup is what relates
ultimately the theory of automorphic forms to commutative algebra, and is at the
basis of all modern development (R = T . eigenvarieties, etc.) Instance of this
phenomenon were first noticed by Poincare in his paper on the shape of Saturn’s
rings. The proposition above is due I guess, to Bruhat, and dates back to the early
fifties.

Actually we can even determine the structure of the Hecke algebraH(G(Fv),Kv, k).
We shall only need it in the case v split, soH(G(Fv),Kv, k) = H(GLn(Fv),GLn(Ov), k).

Proposition 1.4 (Satake). There exists an isomorphism of k-algebras

H(GLn(Fv),GLn(Ov), k) ' k[T1, . . . , Tn−1, Tn, T
−1
n ]

that sends Ti to the characteristic function of

GLn(Ov)diag(π, . . . , π, 1, . . . , 1)GLn(Ov),

where the number of π’s is i.
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Lemma and Definition 1.1. Let V be a smooth irreducible representation of
G(Fv) over k, and Kv a maximal hyperspecial subgroup of G. The statements
V Kv 6= 0 and dim1 V

Kv = 1 are equivalent. We call V unramified if they hold.

Actually this lemma follows from the proposition 1.3 above as follows: we can
easily (see exercise 1.3) reduce to the case k algebraically closed and then since
if V is irreducible, V K is as a H(G,Kv, k)-module (see exercise 1.5), hence has
dimension one since the latter is commutative.

Here is an important observation: If V is unramified, V Kv has dimension 1 and
H(G(Fv),Kv, k) acts on V Kv . Therefore, V determines a character

ψV,v : H(G(Fv),Kv, k)→ k.(1)

It is a theorem (that we shall not use) that V is uniquely determined by ψV .
The information containing in ψV,v (that is the list of values ψV (T1), . . . , ψV (Tn)

in k, the latter being non-zero), can be summarized in a polynomial, the Satake
polynomial.

Definition 1.3. The Satake polynomial of V is the polynomial

PV,v(X) = Xn − ψV,v(T1)Xn−1 + ψV,v(T2)Xn−2 − · · ·+ (−1)nψV,v(Tn) ∈ k[X].

Important caveat: This is not the correct normalization (for what follows).
Actually coefficients should be multiplied by suitable integral power (or perhaps
half-integral power) of the cardinality of the residue field. The correct form is to
be found in Harris-Taylor’s book. Without access to this book here , this would
be an excessive effort (so close to the beach) to retrieve the correct coefficients. I’ll
put them after the conference.

Exercise 1.6. Prove Proposition 1.4 for n = 2, as follows. Replace first GL2(Kv)
by G = PGL2(Kv) and K by the image of GL2(Ov) in G. Proceed as follows:

a.– Construct an isomorphism of G-representations C(G/K, k) = C(X, k) where
X is the tree of PGL2(Kv) defined in the lectures note son Ribet’s lemma, and
C(X, k) the set of functions from X to k with finite support. Deduce (use exer-
cise 1.4) an ismorphism of algebras H(G,K, k) ' Endk[G](C(X, k)).

b.– Let T1 be the characteristic function of Kdiagπ, 1K. Show that this element
of H(G,K, k), seen as an operator on C(X, k) by the baoce isomorphsim, sends a
function f on X to the function f ′(x) =

∑
y neighbor of x f(y).

c.– Deduce that H(G,K, k) = C[T1]. Conclude.

2. Automorphic representations for G

We now fix a data (F,E, V, q) as in the preceding §and we assume that the group
G is definite.
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2.1. Automorphic forms.

Definition 2.1. A function f : G(AF ) = G(AF,f )×G(AF,∞)→ C is said smooth,
if it is continuous and if f(gf , g∞) is C∞ as a function of g∞ (for gf fixed) and is
locally constant with compact support as a function of gf (for g∞ fixed).

Definition 2.2. A function f : G(AF ) → C is called automorphic (or an auto-
morphic form) if it is smooth, left-invariant by G(F ), and if it generates a finite
dimensional spaces under G(AF,f ). The space of all automorphic forms is called
A(G).

The space A(G) has a natural hermitian product

(f, f ′) =
∫
G(F )\G(AF

f(g)f̄ ′(g) dg,

, which makes it a pre-Hermitian space (not a Hermitian space, since it is not
complere). It has a natural action of G(AF ) by right translation, which preserves
the hermitian product, so A(G) is a pre-unitary representation.

2.2. Automorphic representations. An irreducible representation π of G(A) is
said admissible if, writing π = πf ⊗π∞ where πf is an irreducible representation of
G(Af ) and π∞ is an irreducible representation of G(A∞), then πf is admissible.

Theorem 2.1. The representation A(G) is the direct sum of irreducible admissible
representations of G(A):

(2) A(G) =
⊕
π

m(π)π,

where π describes all the (isomorphism classes of) irreducible admissible represen-
tations of G(A), and m(π) is the (always finite) multiplicity of π in the above space.

It will be convenient to denote by Irr the set (of isomorphism classes) of irre-
ducible complex continuous (hence finite dimensional) representations of G(AF,∞).
For W ∈ Irr, we define A(G,W ) to be the G(AF,f )-representation by right transla-
tion on the space of smooth vector valued functions f : G(AF,f ) −→W ∗ such that
f(γg) = γ∞f(g) for all g ∈ G(AF,f ) and γ ∈ G(F).

Proof — (Sketch) As G(AF,∞) is compact the action of this group on A(G) is
completely reducible, hence as G(AF ) = G(AF,∞) × G(AF,f )-representation we
have:

A(G) =
⊕
W∈Irr

W ⊗ (A(G)⊗W ∗)G(AF,∞).

But we check at once that the restriction map f 7→ f|1×G(AF,f ) induces a G(AF,f )-
equivariant isomorphism

(A(G)⊗W ∗)G(AF,∞) ' A(G,W ).
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As a consequence, the compactness of G(F )\G(Af ) shows, by classical arguments
that A(G) is admissible, which together with the pre-unitariness of A(G,W ) proves
the lemma. �

Definition 2.3. An irreducible representation π of G(A) is said to be automorphic
if m(π) 6= 0.

Automorphic representations (for definite unitary groups) are always algebraic,
in the following sense.

Proposition 2.1. If π is automorphic, the representation πf has a model over Q̄.

Proof — Let W ∈ Irr and let us restrict it to G(F ) ↪→ G(AF,∞). As is well known
W comes from an algebraic representation of G, hence the inclusion Q̄ ⊂ C equips
W with a Q̄-structure W (Q̄) which is G(Q̄)-stable. As a consequence, the obviously
defined space A(G,W (Q̄)) provides a G(Af )-stable Q̄-structure on A(G,W ), and
the results follows. �

Definition 2.4. We say that a compact open subgroup U of G(Af ) is a level for
an automorphic form π if πU 6= 0. Equivalently πUf 6= 0. Or we say simply that π
has level U . The weight of π is simply the finite dimensional representation π∞.

Of course, if U ′ ⊂ U and then if π has level U it has also level U ′.
It is not hard to see that there exists only a finite number of automorphic rep-

resentations with a fixed level and weight. (We shall not use it, but it fixes the
ideas).

2.3. Decomposition of automorphic representations. Recall that if (Vi)i∈I is
a family of vector spaces, with Wi ⊂ Vi a given dimension 1 subspace defined for
almost all i (that is forall i except for a finite set J0 of I), then the restricted tensor
product

⊗′
i∈I Vi is defined as the inductive limit of

⊗′
i∈J Vi ⊗

⊗
i∈I−JWi over the

filtering set ordered by inclusion, of finite subsets J (containing J0) of I.

Theorem 2.2. Every admissible irreducible representation πf of G(AF,f ) can be
written in a unique way as a restricted tensor product πf = ⊗′v finite place πv where
πv is a irreducible admissible representation of G(Fv), and πv is unramified for
almost all v. More precisely, if πUf 6= 0 where U =

∏
v Uv, then πUv

v 6= 0.

In particular, an automorphic representation π = πf ⊗π∞ has components πv at
all places v of F : For finite v these are the components πv of πf in the above sense,
and for infinite v, simply the component of π∞ in the usual sense. If πf has level
U =

∏
v Uv, with Uv hyperspecial for all v except those in a finite set of places Σ,

then πv is unramified for v 6∈ Σ.
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3. Galois representations

3.1. set-up. Let π be an automorphic representation of level U , and assume that
U contains

∏
v Uv. Let Σ(U) be the set of places v of F such that

(i) the place v splits in E

(ii) Uv is a compact maximal (necessariy hyperspecial) of G(Fv)

If v ∈ Σ(U), then πv is an unramified representation of G(Fv), defined over Q̄.
The choice of one of the two places w of v defines an isomorphism (up to conjugacy)
G(Fv) ' GLn(Fv), so allows us to see πv as a well-determined up to isomorphism
representation of GLn(Fv). To such a representation one can attach its Satake
polynomial, that we shall denote by Pπ,w(X).

3.2. Existence. The following theorem may now be considered as proven (even if
some details have not yet appeared in print).

Let us fix an embedding of Q̄ into Q̄p.

Theorem 3.1. Let p be a prime. There exists a unique semi-simple Galois repre-
sentations ρπ : GE → GLn(Qp) such that at all places v of F in Σ(U) such that v
does not divide p, then for the two places w of E above v, ρπ is unramified at w,
and the characteristic polynomial of ρπ(Frobw) has coefficients in Q̄ and is equal to
Pπ,w.

Note that the representation ρπ is a representation of GE , not of GF Let us
prove the uniqueness: The set of w above a place in Σ(π) has density one in GE .
Therefore by Cebotarev, the set of such Frobw in GE is dense, and in particular the
character of ρπ is well determined by our condition. Therefore so is ρπ since it is
assumed semi-simple. (the proof of existence is about five thousand times longer).

3.3. Properties. The representation ρπ enjoys many more properties. Let us give
the most important ones.

(i) The non trivial automorphic c ∈ Gal(E/F ) induces by conjugation an outer
automorphism of GE , still denoted c. We have ρcπ = ρ∗π(1−n). In particular
ρπ is polarized in the sense of my notes on Bloch-Kato.

This is easy by looking at the form of the characteristic polynomials
Pπ,w and Pπ,w′ where w and w′ are the two places above v, where v is
as in the theorem. Of course, I have not been explicit enough about the
normalization so that you can check the details.

(ii) If v is any place of F where π is unramified, and w is a place of E above v,
then ρπ is unramified at v. (this is contained in the theorem for v split, but
this also true for v inert.) In particular ρπ is unramified almost everywhere.

(iii) For v split, and w above v, the restriction of ρπ to GEw corresponds by
Local Langlands to the representation πv of G(Fv) seen as a representation
of GLn(Fv) using the isomorphism determined by w. This determines what
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happens at all split v, for π unramified or not at v. (the analog statement
for v non-split is not known in full generality so far).

(iv) The representations ρπ is de Rham at all places dividing p and the Hodge-
Tate weights are determined by π∞. The representation ρπ is even crys-
talline at those places w of E that are unramified above places v of F such
that πv is unramified. The crystalline Frobenius slope are determined by
π∞ and Pπ,w.

(v) The representation ρπ is geometric. (This follows from (ii) and (iv)). In
most cases (technically, if π∞ is regular – see below), it is know by con-
struction that ρπ actually comes from geometry. If ρπ is irreducible, it is
pure of motivic weight, 1− n.

(vi) The L-function L(ρπ, s) satisfy all conjectures about L-functions sated in
my BK notes (continuation, no zeros on the boundary of the domain of
convergence, no poles exceot trivial case, functional equation).

Note that ρπ is not irreducible in general. We can construct examples (endoscopic
forms and C.A.P forms) of π for which ρπ is reducible, and even some where its
constituents have not all the same motivic weights (in those cases though, the set of
motivic weights is an arithmetic progression of ratio 1). However, for a large class
of representations π called stable (defined as those π whose base change to GLn/E
is cuspidal), it is expected that ρπ is irreducible. It is known so far only if n ≤ 3
(Blasius-Rogawsky for n = 3), n = 4 if F = Q and πc = π (Ramakrishna) or any n
and E but πv square integrable at some place v of F split in E (Taylor-Yoshida).

3.4. Hodge-Tate weights. We here explain how the weight π∞ of π determine
the HT weights of ρπ. For simplicity, we do so only in the case where F = Q and
p splits in F . In this case π∞ is simply a representation of the compact Lie group
U(n)(R), necessarily finitely dimensional.

If m := (m1, . . . ,mn) ∈ Zn satisfies m1 ≥ m2 ≥ · · · ≥ mn, we denote by Wm

the rational (over Q), irreducible, algebraic representation of GLm whose highest
weight relative to the upper triangular Borel is the character1

δm : (z1, · · · , zn) 7→
n∏
i=1

zmi
i .

For any field F of characteristic 0, we get also a natural irreducible algebraic rep-
resentation Wm(F ) := W ⊗Q F of GLn(F ), and it turns out that they all have this
form, for a unique m.

Let us fix an embedding E ↪→ C, which allows us to see U(n)(R) as a subgroup
of GLn(C) well defined up to conjugation (see Prop.1.1). So for m as above, we can
view Wm(C) as a continuous representation of U(n)(R). As is well known, the set
of all Wm(C) is a system of representants of all equivalence classes of irreducible

1This means that the action of the diagonal torus of GLn on the unique Q-line stable by the
upper Borel is given by the character above.
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continuous representations of U(m)(R). We will say that Wm has regular weight if
m1 > m2 > · · · > mn.

So by the above π∞ = Wm(C). The identification depends on an embedding of
E to C hence an embedding of E to the field Q̄ of algebraic number in C, hence
via the chosen embedding of Q̄ into Q̄p, an embedding E ↪→ Q̄p, that is a place w
of E above p.

Proposition 3.1. The Hodge-Tate weights of (ρπ)|GEw
are k1 = −m1 + 1, k2 =

−m2 + 2, . . . , kn = −mn + n.

Note that the Hodge-Tate weights are always distinct (this is a consequence of
our working with a definite unitary group, analog to the fact that ”modular forms
of weight 1 (that is of HT weights 0 and 0) are not quaternionic modular forms”).
When π∞ is regular, two Hodge-Tate weights are never consecutive numbers.

Exercise 3.1. a.– If w′ is the other place of E above p, what are the Hodge-Tate
weights of (ρπ)|GEw′

?

b.– Is your answer conform to prediction 2.1 in the BK notes ?

4. The set of all automorphic forms of level U

We begin to move slowly toward the definition of eigenvariety.
From now, for simplicity we shall assume that F = Q.
We shall fix an open compact subgroup U of G(Af ) as in 3.1, of which we keep

all notations. We consider automorphic representations of level U , but any weight.
Let Σ = Σ(U) be as above the set of places of F that are split in v and such

that Uv is hyperspecial. Let HΣ = ⊗v 6∈ΣH(G(Qv), Uv, Q̄). This is a commutative
Q̄-algebra. Every automorphic representation π of level U defines a character

ψπ : HΣ → Q̄ :

This characters sends a T ∈ H(G(Qv), Uv, Q̄) to its eigenvalues on πUv
v for all v ∈ Σ.

The character ψπ contains a lot of the information of interest about π. In par-
ticular it determines the Galois representation ρπ.

Let ZU be the set of all characters of the form ψπ : HΣ → Q̄ of the form ψπ for
some automorphic π of level U . The set ZU is enumerable, and there is of course a
surjective map π → ψπ from the set of automorphic forms of level U to ZU . This
map is not injective in general (its fiber are called (approximately) the L-packets
for G(A).) As we have just noticed, the map π 7→ ρπ factors through ZU .

We want to understand the set ZU .
Let us choose a topology on ZU as follows. Let | | be an absolute value of Q̄.

We put a metric (that could take infinite value) on ZU by saying that d(ψ,ψ′) =
supv∈Σ, w|v, i=1,...,n |ψ(Ti,w)− ψ′(Ti,w)|. This determines a topology of ZU .
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It is a fact that if | |, the set ZU for that topology is discrete. There is not much
to say about this: There is no continuous archimedean families of automorphic
forms for a definite unitary group. (Of course, for a non-definite unitary groups,
there are the families of Eisensteins series studied by Langlands).

Now let p be a prime and assume that | | is a p-adic absolute value of Q̄. (Say for
compatibility the one induced by the embedding Q̄→ Q̄p we have already chosen).
Then it is a fundamental fact, the basis of the theory of eigenvarieties, that ZU is
not discrete. Actually, we shall see that no point in ZU is isolated. (I believe
this point was first observed by Serre, though Ramanujan and Swinnerton-Dyer are
precursors)

In that respect, ZU is closely analog to Z: Z has an archimedean topology,
for which it is discrete, and a p-adic topology (for each p), for which it is not
discrete, and even without isolated point. Can we put the analogy further. By the
completion process, the points of Z (the integers) can be p-adically interpolated to
define points of Zp (p-adic numbers). Can the points of ZU (the automorphic forms)
can be p-adically interpolated to define more general object (p-adic automorphic
forms)? As we shall see, yes. Let us put the the analogy further again. The
topological space Z is a Zariski-dense subset of the set of Qp-points Zp = B1(Qp) of
the rigid analytic variety B1 = Sp Qp < T >. Can we find a natural rigid analytic
variety E such that ZU ⊂ E(Qp) in the same way? Until we precise our requirement
on E , the question is a little bit too vague to have an interesting answer. So let us
try to precise it.

We fix an embedding E ⊂ C, and we assume that p is split in E, and that Up
is a maximal compact (so that p ∈ Σ). As we have seen, this determines a place
w of E above p and for every π of level U , a set of integers k1(π) < · · · < kn(π)
(as in Prop ??). Let Zn< be the set of such n-uples of integers. The integers
k1(π), . . . , kn(π) are the weights of (ρπ)|GEw

. Therefore, they only depends on ρπ,
so they only depend on ψπ. We thus have a map κ : ZU → Zn<, which attaches to
ψπ the uple (k1(π), . . . , kn(π).

Proposition 4.1. The map κ has finite fibers. If we put on Zn< the topology such
that (k1, . . . , kn) is close to (k′1, . . . , k

′
n) if and only if ki ≡ k′i (mod (p− 1)pm) for

big m, then κ is continuous.

Proof — The fact that κ has finite fibers results from the fact that there exits
only a finite number of automorphic forms with fixed level and weight. To prove
that it is continuous, we note that ψπ 7→ ρπ is by definition continuous for the
p-adic topology. The fact that the weights of ρ are continuous in ρ is a result of
Wittenberger (with a recent different proof by Berger-Colmez). The proposition
follows. �
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Now it easy, and standard, to interpolate the topological Zn< by defining the rigid
analytic space W over Qp whose set of R-points are W(R) = Homcont((Z∗p)n, R∗)
where R is any Qp-affinoid algebra. Indeed, we can see Zn< as a subset of W (Qp) by
sending (k1, . . . , kn) to the continuous morphim of groups (z1, . . . , zn) 7→ zk11 . . . zkn

n

from (Z∗p)n to Q∗p, and the induced topology on Zn< is precisely the (mod (p−1)pm)
we have put on it. The space W (geometrically a disjoint union of (p− 1)n copies
of a unit ball) is called the the weight space.

Now in view of Prop 4.1, it is natural to ask the question : can we find a natural
rigid analytic space E over Qp with a locally finite map κ : E → W such that we
can see ZU (with its p-adic topology) as a subset of E(Qp), Zariski-dense in U , such
that the restricion of κ to ZU has image in Zn< and is just the map κ defined above?

Unfortunately, the answer is no. I have missed a turn somewhere...
To be continued
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