Think Java

How to Think Like a Computer Scientist

Allen B. Downey

5.1.2

Copyright (©) 2012 Allen Downey.

Permission is granted to copy, distribute, transmit and adapt this work under
a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License: http://creativecommons.org/licenses/by-nc-sa/3.0/

If you are interested in distributing a commercial version of this work, please
contact Allen B. Downey.

The original form of this book is IATEX source code. Compiling this IATEX
source has the e ect of generating a device-independent representation of the
book, which can be converted to other formats and printed.

The IATEX source for this book is available from: http://thinkapjava.com

This book was typeset using IATEX. The illustrations were drawn in x g. All
of these are free, open-source programs.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://thinkapjava.com

Preface

\As we enjoy great Advantages from the Inventions of others, we
should be glad of an Opportunity to serve others by any Invention
of ours, and this we should do freely and generously.”

| Benjamin Franklin, quoted in Benjamin Franklin by Edmund
S. Morgan.

Why I wrote this book

This is the fth edition of a book | started writing in 1999, when | was
teaching at Colby College. | had taught an introductory computer science
class using the Java programming language, but | had not found a textbook
I was happy with. For one thing, they were all too big! There was no way my
students would read 800 pages of dense, technical material, even if | wanted
them to. And I didn’t want them to. Most of the material was too speci c |
details about Java and its libraries that would be obsolete by the end of the
semester, and that obscured the material | really wanted to get to.

The other problem I found was that the introduction to object-oriented pro-
gramming was too abrupt. Many students who were otherwise doing well
just hit a wall when we got to objects, whether we did it at the beginning,
middle or end.

So | started writing. | wrote a chapter a day for 13 days, and on the 14th
day | edited. Then I sent it to be photocopied and bound. When | handed it
out on the rst day of class, | told the students that they would be expected
to read one chapter a week. In other words, they would read it seven times
slower than | wrote it.

iv Chapter 0. Preface

The philosophy behind it
Here are some of the ideas that make the book the way it is:

e Vocabulary is important. Students need to be able to talk about pro-
grams and understand what | am saying. | try to introduce the min-
imum number of terms, to de ne them carefully when they are rst
used, and to organize them in glossaries at the end of each chapter.
In my class, | include vocabulary questions on quizzes and exams, and
require students to use appropriate terms in short-answer responses.

e To write a program, students have to understand the algorithm, know
the programming language, and they have to be able to debug. I think
too many books neglect debugging. This book includes an appendix on
debugging and an appendix on program development (which can help
avoid debugging). | recommend that students read this material early
and come back to it often.

e Some concepts take time to sink in. Some of the more di cult ideas in
the book, like recursion, appear several times. By coming back to these
ideas, | am trying to give students a chance to review and reinforce or,
if they missed it the rst time, a chance to catch up.

e | try to use the minimum amount of Java to get the maximum amount
of programming power. The purpose of this book is to teach program-
ming and some introductory ideas from computer science, not Java. |
left out some language features, like the switch statement, that are
unnecessary, and avoided most of the libraries, especially the ones like
the AWT that have been changing quickly or are likely to be replaced.

The minimalism of my approach has some advantages. Each chapter is about
ten pages, not including the exercises. In my classes | ask students to read
each chapter before we discuss it, and | have found that they are willing to
do that and their comprehension is good. Their preparation makes class time
available for discussion of the more abstract material, in-class exercises, and
additional topics that aren’t in the book.

But minimalism has some disadvantages. There is not much here that is
intrinsically fun. Most of my examples demonstrate the most basic use of
a language feature, and many of the exercises involve string manipulation

and mathematical ideas. | think some of them are fun, but many of the
things that excite students about computer science, like graphics, sound and
network applications, are given short shrift.

The problem is that many of the more exciting features involve lots of details
and not much concept. Pedagogically, that means a lot of e ort for not much
payo . So there is a tradeo between the material that students enjoy and
the material that is most intellectually rich. | leave it to individual teachers
to nd the balance that is best for their classes. To help, the book includes
appendices that cover graphics, keyboard input and le input.

Object-oriented programming

Some books introduce objects immediately; others warm up with a more
procedural style and develop object-oriented style more gradually. This book
uses the \objects late" approach.

Many of Java’s object-oriented features are motivated by problems with pre-
vious languages, and their implementations are in uenced by this history.
Some of these features are hard to explain if students aren’t familiar with
the problems they solve.

It wasn’t my intention to postpone object-oriented programming. On the
contrary, | got to it as quickly as I could, limited by my intention to introduce
concepts one at a time, as clearly as possible, in a way that allows students
to practice each idea in isolation before adding the next. But | have to admit
that it takes some time to get there.

The Computer Science AP Exam

Naturally, when the College Board announced that the AP Exam would
switch to Java, | made plans to update the Java version of the book. Looking
at the proposed AP Syllabus, | saw that their subset of Java was all but
identical to the subset | had chosen.

During January 2003, | worked on the Fourth Edition of the book, making
these changes:

e | added sections to improve coverage of the AP syllabus.

vi Chapter 0. Preface

e | improved the appendices on debugging and program development.

e | collected the exercises, quizzes, and exam questions | had used in
my classes and put them at the end of the appropriate chapters. |
also made up some problems that are intended to help with AP Exam
preparation.

Finally, in August 2011 | wrote the fth edition, adding coverage of the
GridWorld Case Study that is part of the AP Exam.

Free books!

Since the beginning, this book has under a license that allows users to copy,
distribute and modify the book. Readers can download the book in a variety
of formats and read it on screen or print it. Teachers are free to print as
many copies as they need. And anyone is free to customize the book for
their needs.

People have translated the book into other computer languages (including
Python and Ei el), and other natural languages (including Spanish, French
and German). Many of these derivatives are also available under free licenses.

Motivated by Open Source Software, | adopted the philosophy of releasing
the book early and updating it often. I do my best to minimize the number
of errors, but | also depend on readers to help out.

The response has been great. | get messages almost every day from people
who have read the book and liked it enough to take the trouble to send in
a \bug report.” Often | can correct an error and post an updated version
within a few minutes. | think of the book as a work in progress, improving a
little whenever | have time to make a revision, or when readers send feedback.

Oh, the title

I get a lot of grief about the title of the book. Not everyone understands
that it is | mostly | a joke. Reading this book will probably not make you
think like a computer scientist. That takes time, experience, and probably a
few more classes.

vii

But there is a kernel of truth in the title: this book is not about Java, and
it is only partly about programming. If it is successful, this book is about a
way of thinking. Computer scientists have an approach to problem-solving,
and a way of crafting solutions, that is unique, versatile and powerful. | hope
that this book gives you a sense of what that approach is, and that at some
point you will nd yourself thinking like a computer scientist.

Allen Downey
Needham, Massachusetts
July 13, 2011

Contributors List

When | started writing free books, it didn’t occur to me to keep a con-
tributors list. When Je Elkner suggested it, it seemed so obvious that | am
embarassed by the omission. This list starts with the 4th Edition, so it omits
many people who contributed suggestions and corrections to earlier versions.

If you have additional comments, please send them to:
feedback@greenteapress.com

e Ellen Hildreth used this book to teach Data Structures at Wellesley
College, and she gave me a whole stack of corrections, along with some
great suggestions.

e Tania Pass eld pointed out that the glossary of Chapter 4 has some
leftover terms that no longer appear in the text.

e Elizabeth Wietho noticed that my series expansion of exp(—=z?) was
wrong. She is also working on a Ruby version of the book!

e Matt Crawford sent in a whole patch le full of corrections!
e Chi-Yu Li pointed out a typo and an error in one of the code examples.
e Doan Thanh Nam corrected an example in Chapter 3.

e Stijn Debrouwere found a math typo.

mailto:feedback@greenteapress.com

viii Chapter 0. Preface

e Muhammad Saied translated the book into Arabic, and found several
errors.

e Marius Margowski found an inconsistency in a code example.
e Guy Driesen found several typos.

e Leslie Klein discovered yet another error in the series expansion of
exp(—=?), identi ed typos in the card array gures, and gave helpful
suggestions to clarify several exercises.

Finally, I wish to acknowledge Chris May eld for his signi cant contribution
to version 5.1 of this book. His careful review lead to over one hundred
corrections and improvements throughout. Several new features include em-
bedded hypertext links and cross references, consistent layout of all exercises,
and Java syntax highlighting in code examples.

Contents

Preface

1 The way of the program

1.1
1.2
1.3
1.4
1.5
1.6
1.7

The rstprogram
Glossary

Exercises

2 Variables and types

2.1
2.2
2.3
2.4
2.5
2.6

More printing
Variables
Assignment L L
Printing variables
Keywords

Operators e

iii

Contents

2.7 Orderof operations 19
2.8 Operators for Strings, 20
2.9 Composition L e 20
210 Glossary 21
211 EXEerCiSeS v v v i e 22
Void methods 25
3.1 Floating-point 25
3.2 Converting from double to int 26
33 Mathmethods 27
3.4 Composition 28
3.5 Adding new methods 29
3.6 Classesand methods 31
3.7 Programs with multiple methods. 32
3.8 Parametersand arguments 33
3.9 Stackdiagrams e 34
3.10 Methods with multiple parameters. 35
3.11 Methods that returnvalues 36
312 Glossary 36
313 EXercises 37
Conditionals and recursion 39
41 The modulus operator 39
4.2 Conditional execution 39

4.3 Alternative execution 40

Contents Xi
44 Chained conditionals 41
45 Nested conditionals 42
46 Thereturnstatement 43
47 Typeconversion i 43
4.8 Recursion 44
4.9 Stack diagrams for recursive methods 46
410 Glossary 46
411 EXerciSeS o i 47

5 GridWorld: Part 1 51
51 Gettingstarted 51
52 BugRunner 52
53 EXerCises 53

6 Value methods 55
6.1 Returnwvalues, 55
6.2 Program development. 57
6.3 Composition 59
6.4 Overloading 60
6.5 Booleanexpressions 61
6.6 Logical operators 62
6.7 Boolean methods 63
6.8 Morerecursion. 64
6.9 Leapoffaith. 66
6.10 Onemoreexample 67
6.11 Glossary e e 68
6.12 EXercises o 69

xii

Contents

7 Iteration and loops

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8 Strings and things

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

Multiple assignment
The while statement
Tables
Two-dimensional tables
Encapsulation and generalization
Methods and encapsulation
Local variables
More generalization
Glossary

Exercises

Characters

Reading documentation
The index0f method
Looping and counting
Increment and decrement operators
Strings are immutable
Strings are incomparable
Glossary

Exercises

Contents xiii
9 Mutable objects 107
9.1 Packages 107
9.2 PointoObjects 108
9.3 Instance variables 109
9.4 Objects as parameters 110
95 Rectangles 110
9.6 Objectsasreturntypes 111
9.7 Objectsaremutable. 111
9.8 Aliasing 112
9.9 null e e 114
9.10 Garbage collection 114
9.11 Objects and primitives 115
9.12 Glossary e 116
9.13 EXErCISES v v v i e e e 117
10 GridWorld: Part 2 123
10.1 Termites e 125
10.2 Langton’s Termite 128
10.3 EXercises 129
11 Create your own objects 131
11.1 Class de nitions and object types 131
112 Time o e 132
11.3 Constructors e 133
11.4 More constructors 134

Xiv Contents
11.5 Creatinganewobject 135
11.6 Printingobjects 136
11.7 Operationsonobjects. 137
11.8 Purefunctions 137
119 Modi ers. e 140
11.10 Fill-inmethods 141
11.11 Incremental development and planning 142
11.12 Generalization o 143
11.13 Algorithms 144
11.14 GloSSary o o 144
11.15 EXErcCiSes o v v it e 145

12 Arrays 149
12.1 Accessing elements 150
12,2 Copying arrays v v i e e e e e e 151
12.3 Arraysand objects 151
124 for loOpS. . . .« o o 152
125 Arraylength 153
12.6 Random numbers 153
12.7 Array of random numberso 154
128 Counting e 155
129 Thehistogram 157
12.10 Assingle-pass solution L. 157
12,11 Glossary e 158
12.12 EXErCISES . . . o v v v e e e 158

Contents XV
13 Arrays of Objects 165
13.1 TheRoad Ahead 165
13.2 Cardobjects 165
13.3 The printCard method 167
13.4 The sameCard method 169
13.5 The compareCard method 170
13.6 Arraysofcards 171
13.7 The printDeck method 173
13.8 Searching 173
13.9 Decksandsubdecks oL 177
13.10 Glossary o 178
1311 EXErcCises o v v i e 178
14 Objects of Arrays 181
141 TheDeckclass. 181
142 Shu ing 183
143 Sorting 184
144 Subdecks 184
145 Shu inganddealing 185
146 Mergesort 186
14.7 Classvariables o oL 189
148 Glossary e 189
149 EXEICISES . . . o v v v i i e e e 190

xvi

Contents

15 Object-oriented programming

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

15.10

16 GridWorld: Part 3

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

16.9

Programming languages and styles
Object methods and class methods
The toString method
The equals method

Oddities and errors

Inheritance

The class hierarchy
Object-oriented design
Glossary

Exercises

ArraylList

Interfaces

public and private
Game of Life

LifeRunner

LifeRock

Simultaneous updates
Initial conditions

Exercises

193

Contents XVii

A Graphics 213
Al Java2D Graphics 213
A.2 Graphics methods 214
A3 Coordinates 215
A4 Color 216
A5 Mickey Mouse 216
Ab6 Glossary 217
AT EXercises 218

B Input and Output in Java 221
B.1 Systemobjects 221
B.2 Keyboardinput, 221
B.3 Fileinput 222
B.4 Catching exceptions 223

C Program development 225
C.1 Strategies e 225
C.2 FRailuremodes 226

D Debugging 229
D.1 Syntaxerrors 229
D.2 Run-timeerrors 233

D.3 LOQICErrors i i e 237

xXViii Contents

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. |
like the way computer scientists think because they combine some of the best
features of Mathematics, Engineering, and Natural Science. Like mathemati-
cians, computer scientists use formal languages to denote ideas (speci cally
computations). Like engineers, they design things, assembling components
into systems and evaluating tradeo s among alternatives. Like scientists,
they observe the behavior of complex systems, form hypotheses, and test
predictions.

The single most important skill for a computer scientist is problem-solving.
By that I mean the ability to formulate problems, think creatively about
solutions, and express a solution clearly and accurately. As it turns out,
the process of learning to program is an excellent opportunity to practice
problem-solving skills. That’s why this chapter is called \The way of the
program."

On one level, you will be learning to program, which is a useful skill by itself.
On another level you will use programming as a means to an end. As we go
along, that end will become clearer.

1.1 What is a programming language?

The programming language you will be learning is Java, which is relatively
new (Sun released the rst version in May, 1995). Java is an example of a

2 Chapter 1. The way of the program

high-level language; other high-level languages you might have heard of
are Python, C or C++, and Perl.

As you might infer from the name \high-level language," there are also low-
level languages, sometimes called machine language or assembly language.
Loosely-speaking, computers can only run programs written in low-level lan-
guages. Thus, programs written in a high-level language have to be trans-
lated before they can run. This translation takes time, which is a small
disadvantage of high-level languages.

The advantages are enormous. First, it is much easier to program in a high-
level language: the program takes less time to write, it’s shorter and easier
to read, and it’s more likely to be correct. Second, high-level languages are
portable, meaning that they can run on di erent kinds of computers with
few or no modi cations. Low-level programs can only run on one kind of
computer, and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level lan-
guages. Low-level languages are only used for a few special applications.

There are two ways to translate a program; interpreting and compiling.
An interpreter is a program that reads a high-level program and does what
it says. In e ect, it translates the program line-by-line, alternately reading
lines and carrying out commands.

A compiler is a program that reads a high-level program and translates it
all at once, before running any of the commands. Often you compile the
program as a separate step, and then run the compiled code later. In this
case, the high-level program is called the source code, and the translated
program is called the object code or the executable.

Java is both compiled and interpreted. Instead of translating programs into
machine language, the Java compiler generates byte code. Byte code is
easy (and fast) to interpret, like machine language, but it is also portable,
like a high-level language. Thus, it is possible to compile a program on one
machine, transfer the byte code to another machine, and then interpret the
byte code on the other machine. This ability is an advantage of Java over
many other high-level languages.

1.2. What is a program? 3

source byte

X.java x.class
The compiler ... and generates A Java interpreter ... and the result
reads the Java byte code. reads the byte appears on
source code... code... the screen.

Although this process may seem complicated, in most program development
environments these steps are automated for you. Usually you will only have
to write a program and press a button or type a single command to compile
and run it. On the other hand, it is useful to know what steps are happening
in the background, so if something goes wrong you can gure out what it is.

1.2 What is a program?

A program is a sequence of instructions that speci es how to perform a com-
putation'. The computation might be something mathematical, like solving
a system of equations or nding the roots of a polynomial, but it can also be
a symbolic computation, like searching and replacing text in a document or
(strangely enough) compiling a program.

The instructions, which we will call statements, look di erent in di erent
programming languages, but there are a few basic operations most languages
perform:

input: Get data from the keyboard, or a le, or some other device.
output: Display data on the screen or send data to a le or other device.

math: Perform basic mathematical operations like addition and multiplica-
tion.

testing: Check for certain conditions and run the appropriate sequence of
statements.

IThis definition does not apply to all programming languages; for alternatives, see
http://en.wikipedia.org/wiki/Declarative_programming.

http://en.wikipedia.org/wiki/Declarative_programming

4 Chapter 1. The way of the program

repetition: Perform some action repeatedly, usually with some variation.

That’s pretty much all there is to it. Every program you’ve ever used, no
matter how complicated, is made up of statements that perform these oper-
ations. Thus, one way to describe programming is the process of breaking a
large, complex task up into smaller and smaller subtasks until the subtasks
are simple enough to be performed with one of these basic operations.

1.3 What is debugging?

For whimsical reasons, programming errors are called bugs and the process
of tracking them down and correcting them is called debugging.

There are a three kinds of errors that can occur in a program, and it is useful
to distinguish them to track them down more quickly.

1.3.1 Syntax errors

The compiler can only translate a program if the program is syntactically
correct; otherwise, the compilation fails and you will not be able to run your
program. Syntax refers to the structure of your program and the rules about
that structure.

For example, in English, a sentence must begin with a capital letter and end
with a period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a signi cant problem, which is
why we can read the poetry of e e cummings without spewing error messages.

Compilers are not so forgiving. If there is a single syntax error anywhere in
your program, the compiler will print an error message and quit, and you
will not be able to run your program.

To make matters worse, there are more syntax rules in Java than there are in
English, and the error messages you get from the compiler are often not very
helpful. During the rst weeks of your programming career, you will probably
spend a lot of time tracking down syntax errors. As you gain experience, you
will make fewer errors and nd them faster.

1.3. What is debugging? 5

1.3.2 Run-time errors

The second type of error is a run-time error, so-called because the error does
not appear until you run the program. In Java, run-time errors occur when
the interpreter is running the byte code and something goes wrong.

Java tends to be a safe language, which means that the compiler catches a
lot of errors. So run-time errors are rare, especially for simple programs.

In Java, run-time errors are called exceptions, and in most environments
they appear as windows or dialog boxes that contain information about what
happened and what the program was doing when it happened. This infor-
mation is useful for debugging.

1.3.3 Logic errors and semantics

The third type of error is the logic or semantic error. If there is a logic error
in your program, it will compile and run without generating error messages,
but it will not do the right thing. It will do something else. Speci cally, it
will do what you told it to do.

The problem is that the program you wrote is not the program you wanted
to write. The semantics, or meaning of the program, are wrong. ldentifying
logic errors can be tricky because you have to work backwards, looking at
the output of the program and trying to gure out what it is doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire in this class is debugging.
Although debugging can be frustrating, it is one of the most interesting,
challenging, and valuable parts of programming.

Debugging is like detective work. You are confronted with clues and you
have to infer the processes and events that lead to the results you see.

Debugging is also like an experimental science. Once you have an idea what
is going wrong, you modify your program and try again. If your hypothesis
was correct, then you can predict the result of the modi cation, and you
take a step closer to a working program. If your hypothesis was wrong, you

6 Chapter 1. The way of the program

have to come up with a new one. As Sherlock Holmes pointed out, \When
you have eliminated the impossible, whatever remains, however improbable,
must be the truth.” (From A. Conan Doyle’s The Sign of Four.)

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does
what you want. The idea is that you should always start with a working
program that does something, and make small modi cations, debugging them
as you go, so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines
of code, but it started out as a simple program Linus Torvalds used to ex-
plore the Intel 80386 chip. According to Larry Green eld, \One of Linus’s
earlier projects was a program that would switch between printing AAAA
and BBBB. This later evolved to Linux™ (from The Linux Users’ Guide Beta
Version 1).

In later chapters I make more suggestions about debugging and other pro-
gramming practices.

1.4 Formal and natural languages

Natural languages are the languages that people speak, like English, Span-
ish, and French. They were not designed by people (although people try to
impose order on them); they evolved naturally.

Formal languages are languages designed by people for speci ¢ applica-
tions. For example, the notation that mathematicians use is a formal lan-
guage that is particularly good at denoting relationships among numbers and
symbols. Chemists use a formal language to represent the chemical structure
of molecules. And most importantly:

Programming languages are formal languages that have
been designed to express computations.

Formal languages have strict rules about syntax. For example, 3+3 =6 is
a syntactically correct mathematical statement, but 3% = is not. Also, H,O
is a syntactically correct chemical name, but ;7= is not.

1.4. Formal and natural languages 7

Syntax rules come in two avors, pertaining to tokens and structure. Tokens
are the basic elements of the language, like words and numbers and chemical
elements. One of the problems with 3$ = is that $ is not a legal token in
mathematics (at least as far as | know). Similarly, »Zz is not legal because
there is no element with the abbreviation Zz.

The second type of syntax rule pertains to the structure of a statement; that
is, the way the tokens are arranged. The statement 3$ = is structurally
illegal, because you can’t have an equals sign at the end of an equation.
Similarly, molecular formulas have to have subscripts after the element name,
not before.

When you read a sentence in English or a statement in a formal language,
you have to gure out what the structure of the sentence is (although in a
natural language you do this unconsciously). This process is called parsing.

Although formal and natural languages have features in common | tokens,
structure, syntax and semantics] there are di erences.

ambiguity: Natural languages are full of ambiguity, which people deal with
by using contextual clues and other information. Formal languages
are designed to be unambiguous, which means that any statement has
exactly one meaning, regardless of context.

redundancy: To make up for ambiguity and reduce misunderstandings, nat-
ural languages are often redundant. Formal languages are more concise.

literalness: Natural languages are full of idiom and metaphor. Formal lan-
guages mean exactly what they say.

People who grow up speaking a natural language (everyone) often have a
hard time adjusting to formal languages. In some ways the di erence between
formal and natural language is like the di erence between poetry and prose,
but more so:

Poetry: Words are used for their sounds as well as for their meaning, and
the whole poem together creates an e ect or emotional response. Am-
biguity is common and deliberate.

Prose: The literal meaning of words is more important and the structure
contributes more meaning.

8 Chapter 1. The way of the program

Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages).
First, remember that formal languages are much more dense than natural
languages, so it takes longer to read them. Also, the structure is important,
so it is usually not a good idea to read from top to bottom, left to right.
Instead, learn to parse the program in your head, identifying the tokens and
interpreting the structure. Finally, remember that the details matter. Little
things like spelling errors and bad punctuation, which you can get away with
in natural languages, can make a big di erence in a formal language.

1.5 The first program

Traditionally the rst program people write in a new language is called \hello
world™ because all it does is display the words \Hello, World." In Java, this
program looks like:

class Hello {
// main: generate some simple output

public static void main(Stringl[] args) {
System.out.println()
}
b

This program includes features that are hard to explain to beginners, but it
provides a preview of topics we will see in detail later.

Java programs are made up of class definitions, which have the form:
class CLASSNAME {

public static void main (Stringl[] args) {
STATEMENTS
}
}

1.6. Glossary 9

Here CLASSNAME indicates a name chosen by the programmer. The class
name in the example is Hello.

main IS @ method, which is a named collection of statements. The name
main is special; it marks the place in the program where execution begins.
When the program runs, it starts at the rst statement in main and ends
when it nishes the last statement.

main can have any number of statements, but the example has one. It is a
print statement, meaning that it displays a message on the screen. Confus-
ingly, \print” can mean \display something on the screen,” or \send some-
thing to the printer.” In this book | won’t say much about sending things
to the printer; we’ll do all our printing on the screen. The print statement
ends with a semi-colon (;).

System.out.println is a method provided by one of Java’s libraries. A
library is a collection of class and method de nitions.

Java uses squiggly-braces ({ and }) to group things together. The outermost
squiggly-braces (lines 1 and 8) contain the class de nition, and the inner
braces contain the de nition of main.

Line 3 begins with //. That means it’s a comment, which is a bit of English
text that you can put a program, usually to explain what it does. When the
compiler sees //, it ignores everything from there until the end of the line.

1.6 Glossary

problem-solving: The process of formulating a problem, nding a solution,
and expressing the solution.

high-level language: A programming language like Java that is designed
to be easy for humans to read and write.

low-level language: A programming language that is designed to be easy
for a computer to run. Also called \machine language™ or \assembly
language.”

formal language: Any of the languages people have designed for speci ¢
purposes, like representing mathematical ideas or computer programs.
All programming languages are formal languages.

10 Chapter 1. The way of the program

natural language: Any of the languages people speak that have evolved
naturally.

portability: A property of a program that can run on more than one kind
of computer.

interpret: To run a program in a high-level language by translating it one
line at a time.

compile: To translate a program in a high-level language into a low-level
language, all at once, in preparation for later execution.

source code: A program in a high-level language, before being compiled.
object code: The output of the compiler, after translating the program.
executable: Another name for object code that is ready to run.

byte code: A special kind of object code used for Java programs. Byte code
is similar to a low-level language, but it is portable, like a high-level
language.

statement: A part of a program that speci es a computation.

print statement: A statement that causes output to be displayed on the
screen.

comment: A part of a program that contains information about the pro-
gram, but that has no e ect when the program runs.

method: A named collection of statements.

library: A collection of class and method de nitions.

bug: An error in a program.

syntax: The structure of a program.

semantics: The meaning of a program.

parse: To examine a program and analyze the syntactic structure.

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to compile).

1.7. Exercises 11

exception: An error in a program that makes it fail at run-time. Also called
a run-time error.

logic error: An error in a program that makes it do something other than
what the programmer intended.

debugging: The process of nding and removing any of the three kinds of
errors.

1.7 Exercises

Exercise 1.1. Computer scientists have the annoying habit of using common
English words to mean something other than their common English meaning.
For example, in English, statements and comments are the same thing, but
in programs they are di erent.

The glossary at the end of each chapter is intended to highlight words and
phrases that have special meanings in computer science. When you see fa-
miliar words, don’t assume that you know what they mean!

1. In computer jargon, what’s the di erence between a statement and a
comment?

2. What does it mean to say that a program is portable?
3. What is an executable?

Exercise 1.2. Before you do anything else, nd out how to compile and run
a Java program in your environment. Some environments provide sample
programs similar to the example in Section 1.5.

1. Type in the \Hello, world"™ program, then compile and run it.

2. Add a print statement that prints a second message after the \Hello,
world!"". Something witty like, \How are you?" Compile and run the
program again.

3. Add a comment to the program (anywhere), recompile, and run it
again. The new comment should not a ect the result.

12 Chapter 1. The way of the program

This exercise may seem trivial, but it is the starting place for many of the
programs we will work with. To debug with con dence, you have to have
con dence in your programming environment. In some environments, it is
easy to lose track of which program is executing, and you might nd yourself
trying to debug one program while you are accidentally running another.
Adding (and changing) print statements is a simple way to be sure that the
program you are looking at is the program you are running.

Exercise 1.3. It is a good idea to commit as many errors as you can think
of, so that you see what error messages the compiler produces. Sometimes
the compiler tells you exactly what is wrong, and all you have to do is X it.
But sometimes the error messages are misleading. You will develop a sense
for when you can trust the compiler and when you have to gure things out
yourself.

1. Remove one of the open squiggly-braces.
2. Remove one of the close squiggly-braces.
3. Instead of main, write mian.

4. Remove the word static.

5. Remove the word public.

6. Remove the word System.

7. Replace println with Println.

8. Replace println with print. This one is tricky because it is a logic
error, not a syntax error. The statement System.out.print is legal,
but it may or may not do what you expect.

9. Delete one of the parentheses. Add an extra one.

Chapter 2

Variables and types

2.1 More printing

You can put as many statements as you want in main; for example, to print
more than one line:

class Hello {
// Generates some simple output.

public static void main(String[] args) {
System.out.println() // print one line
System.out.println() // print another
}
}

As this example demonstrates, you can put comments at the end of a line,
as well as on a line by themselves.

The phrases that appear in quotation marks are called strings, because
they are made up of a sequence (string) of characters. Strings can contain
any combination of letters, numbers, punctuation marks, and other special
characters.

println is short for \print line,” because after each line it adds a special
character, called a newline, that moves the cursor to the next line of the

14 Chapter 2. Variables and types

display. The next time println is invoked, the new text appears on the next
line.

To display the output from multiple print statements all on one line, use
print:

class Hello {
// Generates some simple output.

public static void main(String[] args) {
System.out.print();
System.out.println();
}
}

The output appears on a single line as Goodbye, cruel world!. There is
a space between the word \Goodbye™ and the second quotation mark. This
space appears in the output, so it a ects the behavior of the program.

Spaces that appear outside of quotation marks generally do not a ect the
behavior of the program. For example, | could have written:

class Hello {

public static void main(String[] args) {
System.out.print()
System.out.println();

}

}

This program would compile and run just as well as the original. The breaks
at the ends of lines (newlines) do not a ect the program’s behavior either,
so | could have written:

class Hello { public static void main(String[] args) {
System.out.print(); System.out.println
()5t}

That would work, too, but the program is getting harder and harder to read.
Newlines and spaces are useful for organizing your program visually, making
it easier to read the program and locate errors.

2.2. Variables 15

2.2 Variables

One of the most powerful features of a programming language is the ability
to manipulate variables. A variable is a named location that stores a value.
Values are things that can be printed, stored and (as we’ll see later) operated
on. The strings we have been printing ("Hello, World.", "Goodbye, ",
etc.) are values.

To store a value, you have to create a variable. Since the values we want to
store are strings, we declare that the new variable is a string:

String bob;

This statement is a declaration, because it declares that the variable named
bob has the type String. Each variable has a type that determines what
kind of values it can store. For example, the int type can store integers, and
the String type can store strings.

Some types begin with a capital letter and some with lower-case. We will
learn the signi cance of this distinction later, but for now you should take
care to get it right. There is no such type as Int or string, and the compiler
will object if you try to make one up.

To create an integer variable, the syntax is int bob;, where bob is the arbi-
trary name you made up for the variable. In general, you will want to make
up variable names that indicate what you plan to do with the variable. For
example, if you saw these variable declarations:

String firstName;
String lastName;
int hour, minute;

you could guess what values would be stored in them. This example also
demonstrates the syntax for declaring multiple variables with the same type:
hour and second are both integers (int type).

2.3 Assignment

Now that we have created variables, we want to store values. We do that
with an assignment statement.

16 Chapter 2. Variables and types

bob = ; // give bob the value "Hello."
hour = 11; // assign the value 11 to hour
minute = 59; // set minute to 59

This example shows three assignments, and the comments show three di er-
ent ways people sometimes talk about assignment statements. The vocabu-
lary can be confusing here, but the idea is straightforward:

e When you declare a variable, you create a named storage location.

e When you make an assignment to a variable, you give it a value.

A common way to represent variables on paper is to draw a box with the
name of the variable on the outside and the value of the variable on the
inside. This gure shows the e ect of the three assignment statements:

bob | "Hello."

hour | 11

minute | 59

As a general rule, a variable has to have the same type as the value you
assign it. You cannot store a String in minute or an integer in bob.

On the other hand, that rule can be confusing, because there are many ways
that you can convert values from one type to another, and Java sometimes
converts things automatically. For now you should remember the general
rule, and we’ll talk about exceptions later.

Another source of confusion is that some strings look like integers, but they
are not. For example, bob can contain the string "123", which is made up of
the characters 1, 2 and 3, but that is not the same thing as the number 123.

bob = ; // legal
bob = 123; // not legal

2.4 Printing variables

You can print the value of a variable using println or print:

2.4. Printing variables 17

class Hello {
public static void main(String[] args) {
String firstlLine;
firstlLine = ;
System.out.println(firstLine);
}
}

This program creates a variable named firstLine, assigns it the value
"Hello, again!" and then prints that value. When we talk about \print-
ing a variable,” we mean printing the walue of the variable. To print
the name of a variable, you have to put it in quotes. For example:
System.out.println("firstLine");

For example, you can write

String firstLline;

firstLine = ;

System.out.print()R
System.out.println(firstLine);

The output of this program is
The value of firstLine is Hello, again!

I am happy to report that the syntax for printing a variable is the same
regardless of the variable’s type.

int hour, minute;

hour = 11;

minute = 59;

System.out.print()R
System.out.print (hour) ;
System.out.print(":");

System.out.print (minute) ;
System.out.println(".");

The output of this program is The current time is 11:59.

WARNING: To put multiple values on the same line, is common to use
several print statements followed by a println. But you have to remember
the println at the end. In many environments, the output from print
is stored without being displayed until println is invoked, at which point

18 Chapter 2. Variables and types

the entire line is displayed at once. If you omit println, the program may
terminate without displaying the stored output!

2.5 Keywords

A few sections ago, | said that you can make up any name you want for your
variables, but that’s not quite true. There are certain words that are reserved
in Java because they are used by the compiler to parse the structure of your
program, and if you use them as variable names, it will get confused. These
words, called keywords, include public, class, void, int, and many more.

The complete list is available at http://download.oracle.com/javase/
tutorial/java/nutsandbolts/_keywords.html. This site, provided by
Oracle, includes Java documentation | refer to throughout the book.

Rather than memorize the list, | suggest you take advantage of a feature
provided in many Java development environments: code highlighting. As you
type, parts of your program should appear in di erent colors. For example,
keywords might be blue, strings red, and other code black. If you type a
variable name and it turns blue, watch out! You might get some strange
behavior from the compiler.

2.6 Operators

Operators are symbols used to represent computations like addition and
multiplication. Most operators in Java do what you expect them to do be-
cause they are common mathematical symbols. For example, the operator
for addition is +. Subtraction is -, multiplication is *, and division is /.

1+1 hour-1 hour*60 + minute minute/60
Expressions can contain both variable names and numbers. Variables are
replaced with their values before the computation is performed.

Addition, subtraction and multiplication all do what you expect, but you
might be surprised by division. For example, this program:

int hour, minute;
hour = 11;

http://download.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://download.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html

2.7. Order of operations 19

minute = 59;

System.out.print();
System.out.println(hour*60 + minute);

System.out.print()
System.out.println(minute/60) ;

generates this output:

Number of minutes since midnight: 719
Fraction of the hour that has passed: O

The rst line is expected, but the second line is odd. The value of minute
is 59, and 59 divided by 60 is 0.98333, not 0. The problem is that Java is
performing integer division.

When both operands are integers (operands are the things operators operate
on), the result is also an integer, and by convention integer division always
rounds down, even in cases like this where the next integer is so close.

An alternative is to calculate a percentage rather than a fraction:

System.out.print()
System.out.println(minute*100/60) ;

The result is:
Percentage of the hour that has passed: 98

Again the result is rounded down, but at least now the answer is approxi-
mately correct. To get a more accurate answer, we can use a di erent type
of variable, called oating-point, that can store fractional values. We’ll get
to that in the next chapter.

2.7 Order of operations

When more than one operator appears in an expression, the order of eval-
uation depends on the rules of precedence. A complete explanation of
precedence can get complicated, but just to get you started:

e Multiplication and division happen before addition and subtraction.
So 2x3-1 yields 5, not 4, and 2/3-1 yields -1, not 1 (remember that in
integer division 2/3 is 0).

20 Chapter 2. Variables and types

e If the operators have the same precedence they are evaluated from left
to right. So in the expression minute*100/60, the multiplication hap-
pens rst, yielding 5900/60, which in turn yields 98. If the operations
had gone from right to left, the result would be 59*1 which is 59, which
IS wrong.

e Any time you want to override the rules of precedence (or you are not
sure what they are) you can use parentheses. Expressions in parenthe-
ses are evaluated rst, so 2 *(3-1) is 4. You can also use parentheses
to make an expression easier to read, as in (minute * 100) / 60, even
though it doesn’t change the result.

2.8 Operators for Strings

In general you cannot perform mathematical operations on Strings, even if
the strings look like numbers. The following are illegal (if we know that bob
has type String)

bob - 1 "Hello"/123 bob * "Hello"

By the way, can you tell by looking at those expressions whether bob is an
integer or a string? Nope. The only way to tell the type of a variable is to
look at the place where it is declared.

Interestingly, the + operator does work with Strings, but it might not
do what you expect. For Strings, the + operator represents concatena-
tion, which means joining up the two operands by linking them end-to-end.
SO0 "Hello, " + "world." yields the string "Hello, world." and bob +
"ism" adds the su X ism to the end of whatever bob is, which is handy for
naming new forms of bigotry.

2.9 Composition

So far we have looked at the elements of a programming language | variables,
expressions, and statements | in isolation, without talking about how to com-
bine them.

One of the most useful features of programming languages is their ability to
take small building blocks and compose them. For example, we know how

2.10. Glossary 21

to multiply numbers and we know how to print; it turns out we can combine
them in a single statement:

System.out.println(17 * 3);

Any expression involving numbers, strings and variables, can be used inside
a print statement. We’ve already seen one example:

System.out.println(hour*60 + minute);

But you can also put arbitrary expressions on the right-hand side of an
assignment statement:

int percentage;

percentage = (minute * 100) / 60;

This ability may not seem impressive now, but we will see examples where
composition expresses complex computations neatly and concisely.

WARNING: The left side of an assignment has to be a variable name, not
an expression. That’s because the left side indicates the storage location
where the result will go. Expressions do not represent storage locations, only
values. So the following is illegal: minute+1 = hour;.

2.10 Glossary

variable: A named storage location for values. All variables have a type,
which is declared when the variable is created.

value: A number or string (or other thing to be named later) that can be
stored in a variable. Every value belongs to a type.

type: A set of values. The type of a variable determines which values can
be stored there. The types we have seen are integers (int in Java) and
strings (String in Java).

keyword: A reserved word used by the compiler to parse programs. You
cannot use keywords, like public, class and void as variable names.

declaration: A statement that creates a new variable and determines its

type.

assignment: A statement that assigns a value to a variable.

22 Chapter 2. Variables and types

expression: A combination of variables, operators and values that repre-
sents a single value. Expressions also have types, as determined by
their operators and operands.

operator: A symbol that represents a computation like addition, multipli-
cation or string concatenation.

operand: One of the values on which an operator operates.
precedence: The order in which operations are evaluated.
concatenate: To join two operands end-to-end.

composition: The ability to combine simple expressions and statements
into compound statements and expressions to represent complex com-
putations concisely.

2.11 Exercises

Exercise 2.1. If you are using this book in a class, you might enjoy this
exercise: nd a partner and play "Stump the Chump":

Start with a program that compiles and runs correctly. One player turns
away while the other player adds an error to the program. Then the rst
player tries to nd and X the error. You get two points if you nd the error
without compiling the program, one point if you nd it using the compiler,
and your opponent gets a point if you don’t nd it.

Exercise 2.2. 1. Create a new program named Date. java. Copy or type
in something like the \Hello, World" program and make sure you can
compile and run it.

2. Following the example in Section 2.4, write a program that creates
variables named day, date, month and year. day will contain the day
of the week and date will contain the day of the month. What type is
each variable? Assign values to those variables that represent today’s
date.

2.11.

Exercises 23

3.

Print the value of each variable on a line by itself. This is an inter-
mediate step that is useful for checking that everything is working so
far.

Modify the program so that it prints the date in standard American
form: Saturday, July 16, 2011.

Modify the program again so that the total output is:

American format:
Saturday, July 16, 2011
European format:
Saturday 16 July, 2011

The point of this exercise is to use string concatenation to display values
with di erent types (int and String), and to practice developing programs
gradually by adding a few statements at a time.

Exercise 2.3. 1. Create a new program called Time. java. From now on,

I won’t remind you to start with a small, working program, but you
should.

Following the example in Section 2.6, create variables named hour,
minute and second, and assign them values that are roughly the cur-
rent time. Use a 24-hour clock, so that at 2pm the value of hour is
14.

Make the program calculate and print the number of seconds since
midnight.

Make the program calculate and print the number of seconds remaining
in the day.

Make the program calculate and print the percentage of the day that
has passed.

Change the values of hour, minute and second to re ect the current
time (I assume that some time has elapsed), and check to make sure
that the program works correctly with di erent values.

24 Chapter 2. Variables and types

The point of this exercise is to use some of the arithmetic operations, and
to start thinking about compound entities like the time of day that that
are represented with multiple values. Also, you might run into problems
computing percentages with ints, which is the motivation for oating point
numbers in the next chapter.

HINT: you may want to use additional variables to hold values temporarily
during the computation. Variables like this, that are used in a computation
but never printed, are sometimes called intermediate or temporary variables.

Chapter 3

Void methods

3.1 Floating-point

In the last chapter we had some problems dealing with numbers that were not
integers. We worked around the problem by measuring percentages instead
of fractions, but a more general solution is to use oating-point numbers,
which can represent fractions as well as integers. In Java, the oating-point
type is called double, which is short for \double-precision.”

You can create oating-point variables and assign values to them using the
same syntax we used for the other types. For example:

double pi;
pi = 3.14159;
It is also legal to declare a variable and assign a value to it at the same time:
int x = 1;
String empty = ;
double pi = 3.14159;

This syntax is common; a combined declaration and assignment is sometimes
called an initialization.

Although oating-point numbers are useful, they are a source of confusion
because there seems to be an overlap between integers and oating-point
numbers. For example, if you have the value 1, is that an integer, a oating-
point number, or both?

26 Chapter 3. Void methods

Java distinguishes the integer value 1 from the oating-point value 1.0, even
though they seem to be the same number. They belong to di erent types, and
strictly speaking, you are not allowed to make assignments between types.
For example, the following is illegal:

int x = 1.1;

because the variable on the left is an int and the value on the right is a
double. But it is easy to forget this rule, especially because there are places
where Java will automatically convert from one type to another. For example:

double y = 1;

should technically not be legal, but Java allows it by converting the int to a
double automatically. This leniency is convenient, but it can cause problems;
for example:

double y = 1 / 3;

You might expect the variable y to get the value 0.333333, which is a legal
oating-point value, but in fact it gets 0.0. The reason is that the expression

on the right is the ratio of two integers, so Java does integer division, which

yields the integer value 0. Converted to oating-point, the result is 0.0.

One way to solve this problem (once you gure out what it is) is to make the
right-hand side a oating-point expression:

double y = 1.0 / 3.0;
This sets y to 0.333333, as expected.

The operations we have seen so far | addition, subtraction, multiplication,
and division | also work on oating-point values, although you might be in-
terested to know that the underlying mechanism is completely di erent. In
fact, most processors have special hardware just for performing oating-point
operations.

3.2 Converting from double to int

As | mentioned, Java converts ints to doubles automatically if necessary,
because no information is lost in the translation. On the other hand, going
from a double to an int requires rounding o . Java doesn’t perform this

3.3. Math methods 27

operation automatically, in order to make sure that you, as the programmer,
are aware of the loss of the fractional part of the number.

The simplest way to convert a oating-point value to an integer is to use a
typecast. Typecasting is so called because it allows you to take a value that
belongs to one type and \cast" it into another type (in the sense of molding
or reforming).

The syntax for typecasting is to put the name of the type in parentheses and
use it as an operator. For example,

double pi = 3.14159;

int x = (int) pi;
The (int) operator has the e ect of converting what follows into an integer,
SO x gets the value 3.

Typecasting takes precedence over arithmetic operations, so in the following
example, the value of pi gets converted to an integer rst, and the result is
60.0, not 62.

double pi = 3.14159;

double x = (int) pi * 20.0;
Converting to an integer always rounds down, even if the fraction part is
0.99999999. These behaviors (precedence and rounding) can make typecast-
ing error-prone.

3.3 Math methods

In mathematics, you have probably seen functions like sin and log, and you
have learned to evaluate expressions like sin(w/2) and log(1/x). First, you
evaluate the expression in parentheses, which is called the argument of the
function. Then you can evaluate the function itself, either by looking it up
in a table or by performing various computations.

This process can be applied repeatedly to evaluate more complicated expres-
sions like log(1/sin(r/2)). First we evaluate the argument of the innermost
function, then evaluate the function, and so on.

Java provides functions that perform the most common mathematical opera-
tions. These functions are called methods. The math methods are invoked
using a syntax that is similar to the print statements we have already seen:

28 Chapter 3. Void methods

double root = Math.sqrt(17.0);
double angle = 1.5;
double height = Math.sin(angle);

The rst example sets root to the square root of 17. The second example

nds the sine of the value of angle, which is 1.5. Java assumes that the
values you use with sin and the other trigonometric functions (cos, tan) are
in radians. To convert from degrees to radians, you can divide by 360 and
multiply by 27. Conveniently, Java provides Math.PI:

double degrees = 90;

double angle = degrees * 2 * Math.PI / 360.0;
Notice that PI is in all capital letters. Java does not recognize Pi, pi, or
pie.
Another useful method in the Math class is round, which rounds a oating-
point value 0 to the nearest integer and returns an int.

int x = Math.round(Math.PI * 20.0);

In this case the multiplication happens rst, before the method is invoked.
The result is 63 (rounded up from 62.8319).

3.4 Composition

Just as with mathematical functions, Java methods can be composed, mean-
ing that you use one expression as part of another. For example, you can use
any expression as an argument to a method:

double x = Math.cos(angle + Math.PI/2);

This statement takes the value Math.PI, divides it by two and adds the result
to the value of the variable angle. The sum is then passed as an argument to
cos. (PI is the name of a variable, not a method, so there are no arguments,
not even the empty argument ()).

You can also take the result of one method and pass it as an argument to
another:

double x = Math.exp(Math.log(10.0));

In Java, the log method always uses base e, so this statement nds the log
base e of 10 and then raises e to that power. The result gets assigned to x;
I hope you know what it is.

3.5. Adding new methods 29

3.5 Adding new methods

So far we have used methods from Java libraries, but it is also possible to
add new methods. We have already seen one method de nition: main. The
method named main is special, but the syntax is the same for other methods:

public static void NAME(LIST OF PARAMETERS) {
STATEMENTS
}

You can make up any name you want for your method, except that you
can’t call it main or any Java keyword. By convention, Java methods start
with a lower case letter and use \camel caps,”" which is a cute name for
jammingWordsTogetherLikeThis

The list of parameters speci es what information, if any, you have to provide
to use (or invoke) the new method.

The parameter for main is String[] args, which means that whoever in-
vokes main has to provide an array of Strings (we’ll get to arrays in Chap-
ter 12). The rst couple of methods we are going to write have no parameters,
so the syntax looks like this:

public static void newLine() {
System.out.println("");

}

This method is named newLine, and the empty parentheses mean that it
takes no parameters. It contains one statement, which prints an empty
String, indicated by "". Printing a String with no letters in it may not
seem all that useful, but println skips to the next line after it prints, so this
statement skips to the next line.

In main we invoke this new method the same way we invoke Java methods:

public static void main(String[] args) {
System.out.println()
newLine();
System.out.println();

}
The output of this program is

30 Chapter 3. Void methods

First line.

Second line.

Notice the extra space between the lines. What if we wanted more space
between the lines? We could invoke the same method repeatedly:

public static void main(Stringl[] args) {
System.out.println();
newLine () ;
newLine();
newLine () ;
System.out.println();

}

Or we could write a new method, named threeLine, that prints three new
lines:

public static void threeLine() {
newLine(); newLine(); newLine();

}

public static void main(String[] args) {
System.out.println();
threeLine();
System.out.println();

}
You should notice a few things about this program:

e You can invoke the same procedure more than once.

e You can have one method invoke another method. In this case, main
invokes threeLine and threeLine invokes newLine.

e In threeLine | wrote three statements all on the same line, which is
syntactically legal (remember that spaces and new lines usually don’t
change the meaning of a program). It is usually a good idea to put
each statement on its own line, but | sometimes break that rule.

You might wonder why it is worth the trouble to create all these new methods.
There are several reasons; this example demonstrates two:

3.6. Classes and methods 31

1. Creating a new method gives you an opportunity to give a name to
a group of statements. Methods can simplify a program by hiding
a complex computation behind a single statement, and by using En-
glish words in place of arcane code. Which is clearer, newLine or
System.out.println("")?

2. Creating a new method can make a program smaller by eliminating
repetitive code. For example, to print nine consecutive new lines, you
could invoke threeLine three times.

In Section 7.6 we will come back to this question and list some additional
bene ts of dividing programs into methods.

3.6 Classes and methods

Pulling together the code fragments from the previous section, the class def-
inition looks like this:

class NewLine {

public static void newLine() {
System.out.println("");
+

public static void threeLine() {
newLine(); newLine(); newLine();

}

public static void main(String[] args) {
System.out.println();
threeLine();
System.out.println();

+
}
The rst line indicates that this is the class de nition for a new class called
NewLine. A class is a collection of related methods. In this case, the class
named NewLine contains three methods, named newLine, threeLine, and
maln.

32 Chapter 3. Void methods

The other class we’ve seen is the Math class. It contains methods named
sqrt, sin, and others. When we invoke a mathematical method, we have to
specify the name of the class (Math) and the name of the method. That’s
why the syntax is slightly di erent for Java methods and the methods we
write:

Math.pow (2.0, 10.0);
newLine();

The rst statement invokes the pow method in the Math class (which raises
the rst argument to the power of the second argument). The second state-
ment invokes the newLine method, which Java assumes is in the class we are
writing (i.e., NewLine).

If you try to invoke a method from the wrong class, the compiler will generate
an error. For example, if you type:

pow(2.0, 10.0);

The compiler will say something like, \Can’t nd a method named pow in
class NewLine." If you have seen this message, you might have wondered
why it was looking for pow in your class de nition. Now you know.

3.7 Programs with multiple methods

When you look at a class de nition that contains several methods, it is
tempting to read it from top to bottom, but that is likely to be confusing,
because that is not the order of execution of the program.

Execution always begins at the rst statement of main, regardless of where
it is in the program (in this example | deliberately put it at the bottom).
Statements are executed one at a time, in order, until you reach a method
invocation. Method invocations are like a detour in the ow of execution.
Instead of going to the next statement, you go to the rst line of the invoked
method, execute all the statements there, and then come back and pick up
again where you left o .

That sounds simple enough, except that you have to remember that one
method can invoke another. Thus, while we are in the middle of main, we
might have to go o and execute the statements in threeLine. But while

3.8. Parameters and arguments 33

we are executing threeLine, we get interrupted three times to go o and
execute newLine.

For its part, newLine invokes println, which causes yet another detour.
Fortunately, Java is adept at keeping track of where it is, so when println
completes, it picks up where it left 0 in newLine, and then gets back to
threeLine, and then nally gets back to main so the program can terminate.

Technically, the program does not terminate at the end of main. Instead,
execution picks up where it left 0 in the program that invoked main, which
is the Java interpreter. The interpreter takes care of things like deleting
windows and general cleanup, and then the program terminates.

What'’s the moral of this sordid tale? When you read a program, don’t read
from top to bottom. Instead, follow the ow of execution.

3.8 Parameters and arguments

Some of the methods we have used require arguments, which are values
that you provide when you invoke the method. For example, to nd the sine
of a number, you have to provide the number. So sin takes a double as
an argument. To print a string, you have to provide the string, so println
takes a String as an argument.

Some methods take more than one argument; for example, pow takes two
doubles, the base and the exponent.

When you use a method, you provide arguments. When you write a method,
you specify a list of parameters. A parameter is a variable that stores an
argument. The parameter list indicates what arguments are required.

For example, printTwice Speci es a single parameter, s, that has type
String. | called it s to suggest that it is a String, but | could have given it
any legal variable name.

public static void printTwice(String s) {
System.out.println(s);
System.out.println(s);

34 Chapter 3. Void methods

When we invoke printTwice, we have to provide a single argument with
type String.

printTwice()5

When you invoke a method, the argument you provide are assigned to
the parameters. In this example, the argument "Don’t make me say this
twice!" is assigned to the parameter s. This processing is called parame-
ter passing because the value gets passed from outside the method to the
inside.

An argument can be any kind of expression, so if you have a String variable,
you can use it as an argument:

String argument = ;

printTwice (argument) ;

The value you provide as an argument must have the same type as the
parameter. For example, if you try this:

printTwice(17);

You get an error message like \cannot nd symbol,” which isn’t very helpful.
The reason is that Java is looking for a method named printTwice that can
take an integer argument. Since there isn’t one, it can’t nd such a \symbol."

System.out.println can accept any type as an argument. But that is an
exception; most methods are not so accommodating.

3.9 Stack diagrams

Parameters and other variables only exist inside their own methods. Within
the con nes of main, there is no such thing as s. If you try to use it, the
compiler will complain. Similarly, inside printTwice there is no such thing
as argument.

One way to keep track of where each variable is de ned is with a stack
diagram. The stack diagram for the previous example looks like this:

3.10. Methods with multiple parameters 35

main | argument | "Never say never."

printTwice s| "Never say never."

For each method there is a gray box called a frame that contains the
method’s parameters and variables. The name of the method appears out-
side the frame. As usual, the value of each variable is drawn inside a box
with the name of the variable beside it.

3.10 Methods with multiple parameters

The syntax for declaring and invoking methods with multiple parameters is
a common source of errors. First, remember that you have to declare the
type of every parameter. For example

public static void printTime(int hour, int minute) {
System.out.print (hour) ;
System.out.print(":");
System.out.println(minute);

}

It might be tempting to write int hour, minute, but that format is only
legal for variable declarations, not parameter lists.

Another common source of confusion is that you do not have to declare the
types of arguments. The following is wrong!

int hour = 11;
int minute = 59;
printTime(int hour, int minute); // WRONG!

In this case, Java can tell the type of hour and minute by looking at their
declarations. It is not necessary to include the type when you pass them as
arguments. The correct syntax is printTime (hour, minute).

36 Chapter 3. Void methods

3.11 Methods that return values

Some of the methods we are using, like the Math methods, return values.
Other methods, like println and newLine, perform an action but they don’t
return a value. That raises some questions:

e What happens if you invoke a method and you don’t do anything with
the result (i.e. you don’t assign it to a variable or use it as part of a
larger expression)?

e What happens if you use a print method as part of an expression, like
System.out.println("boo!") + 77

e Can we write methods that return values, or are we stuck with things
like newLine and printTwice?

The answer to the third question is \yes, you can write methods that return
values,” and we’ll see how in a couple of chapters. | leave it up to you to
answer the other two questions by trying them out. In fact, any time you
have a question about what is legal or illegal in Java, a good way to nd out
is to ask the compiler.

3.12 Glossary

initialization: A statement that declares a new variable and assigns a value
to it at the same time.

floating-point: A type of variable (or value) that can contain fractions as
well as integers. The oating-point type we will use is double.

class: A named collection of methods. So far, we have used the Math class
and the System class, and we have written classes named Hello and
NewLine.

method: A named sequence of statements that performs a useful function.
Methods may or may not take parameters, and may or may not return
a value.

parameter: A piece of information a method requires before it can run.
Parameters are variables: they contain values and have types.

3.13. Exercises 37

argument: A value that you provide when you invoke a method. This value
must have the same type as the corresponding parameter.

frame: A structure (represented by a gray box in stack diagrams) that con-
tains a method’s parameters and variables.

invoke: Cause a method to execute.

3.13 Exercises

Exercise 3.1. Draw a stack frame that shows the state of the program in
Section 3.10 when main invokes printTime with the arguments 11 and 59.

Exercise 3.2. The point of this exercise is to practice reading code and to
make sure that you understand the ow of execution through a program with
multiple methods.

1. What is the output of the following program? Be precise about where
there are spaces and where there are newlines.

HINT: Start by describing in words what ping and baffle do when
they are invoked.

2. Draw a stack diagram that shows the state of the program the rst
time ping is invoked.

public static void zoop() {
baffle();
System.out.print()
baffle();

}

public static void main(String[] args) {
System.out.print();
zoop() ;
System.out.print();
baffle();
}

38 Chapter 3. Void methods

public static void baffle() {
System.out.print();
ping) ;

}

public static void ping() {
System.out.println(".");
+

Exercise 3.3. The point of this exercise is to make sure you understand how
to write and invoke methods that take parameters.

1. Write the rst line of a method named zool that takes three parame-
ters: an int and two Strings.

2. Write a line of code that invokes zool, passing as arguments the value
11, the name of your rst pet, and the name of the street you grew up
on.

Exercise 3.4. The purpose of this exercise is to take code from a previous
exercise and encapsulate it in a method that takes parameters. You should
start with a working solution to Exercise 2.2.

1. Write a method called printAmerican that takes the day, date, month
and year as parameters and that prints them in American format.

2. Test your method by invoking it from main and passing appropriate
arguments. The output should look something like this (except that
the date might be di erent):

Saturday, July 16, 2011

3. Once you have debugged printAmerican, write another method called
printEuropean that prints the date in European format.

Chapter 4

Conditionals and recursion

4.1 The modulus operator

The modulus operator works on integers (and integer expressions) and yields
the remainder when the rst operand is divided by the second. In Java, the
modulus operator is a percent sign, %. The syntax is the same as for other
operators:

int quotient =7 / 3;

int remainder = 7 % 3;
The rst operator, integer division, yields 2. The second operator yields 1.
Thus, 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you
can check whether one number is divisible by another: if x % y is zero, then
x iIs divisible by y.

Also, you can use the modulus operator to extract the rightmost digit or
digits from a number. For example, x % 10 yields the rightmost digit of x
(in base 10). Similarly x % 100 yields the last two digits.

4.2 Conditional execution

To write useful programs, we almost always need to check conditions and
change the behavior of the program accordingly. Conditional statements

40 Chapter 4. Conditionals and recursion

give us this ability. The simplest form is the if statement:

if (x> 0) {
System.out.println()5
}

The expression in parentheses is called the condition. If it is true, then the
statements in brackets get executed. If the condition is not true, nothing
happens.

The condition can contain any of the comparison operators, sometimes called
relational operators:

X ==y // x equals y

x =y // x is not equal to y

X >y // x is greater than y

x <y // x is less than y

X >=y // x is greater than or equal to y
x <=y // x is less than or equal to y

Although these operations are probably familiar to you, the syntax Java uses
is a little di erent from mathematical symbols like =, # and <. A common
error is to use a single = instead of a double ==. Remember that = is the
assignment operator, and == is a comparison operator. Also, there is no such
thing as =< or =>.

The two sides of a condition operator have to be the same type. You can
only compare ints to ints and doubles to doubles.

The operators == and != work with Strings, but they don’t do what you
expect. And the other relational operators don’t do anything at all. We will
see how to compare strings Section 8.10.

4.3 Alternative execution

A second form of conditional execution is alternative execution, in which
there are two possibilities, and the condition determines which one gets exe-
cuted. The syntax looks like:

if (x%2 == 0) {
System.out.println()

4.4. Chained conditionals 41

} else {
System.out.println();
}

If the remainder when x is divided by 2 is zero, then we know that x is even,
and this code prints a message to that e ect. If the condition is false, the
second print statement is executed. Since the condition must be true or false,
exactly one of the alternatives will be executed.

As an aside, if you think you might want to check the parity (evenness or
oddness) of numbers often, you might want to \wrap™ this code up in a
method, as follows:

public static void printParity(int x) {
if (x%2 == 0) {
System.out.println();
} else {
System.out.println()
+
}

Now you have a method named printParity that will print an appropriate
message for any integer you care to provide. In main you would invoke this
method like this:

printParity(17);

Always remember that when you invoke a method, you do not have to declare
the types of the arguments you provide. Java can gure out what type they
are. You should resist the temptation to write things like:

int number = 17;
printParity(int number); // WRONG!!!

4.4 Chained conditionals

Sometimes you want to check for a number of related conditions and choose
one of several actions. One way to do this is by chaining a series of ifs and
elses:
if (x > 0) {
System.out.println()

42 Chapter 4. Conditionals and recursion

} else if (x < 0) {
System.out.println();
} else {
System.out.println();

}

These chains can be as long as you want, although they can be di cult to
read if they get out of hand. One way to make them easier to read is to use
standard indentation, as demonstrated in these examples. If you keep all the
statements and squiggly-brackets lined up, you are less likely to make syntax
errors and more likely to nd them if you do.

4.5 Nested conditionals

In addition to chaining, you can also nest one conditional within another.
We could have written the previous example as:

if (x == 0) {
System.out.println()
} else {
if (x> 0) {
System.out.println();
} else {
System.out.println();
}
}

There is now an outer conditional that contains two branches. The rst
branch contains a simple print statement, but the second branch contains
another conditional statement, which has two branches of its own. Those two
branches are both print statements, but they could have been conditional
statements as well.

Indentation helps make the structure apparent, but nevertheless, nested con-
ditionals get di cult to read very quickly. Avoid them when you can.

On the other hand, this kind of nested structure is common, and we will
see it again, so you better get used to it.

4.6. The return statement 43

4.6 The return statement

The return statement allows you to terminate the execution of a method
before you reach the end. One reason to use it is if you detect an error
condition:

public static void printLogarithm(double x) {
if (x <= 0.0) {
System.out.println()
return;

by

double result = Math.log(x);
System.out.println(+ result);

}

This de nes a method named printLogarithm that takes a double named
x as a parameter. It checks whether x is less than or equal to zero, in which
case it prints an error message and then uses return to exit the method.
The ow of execution immediately returns to the caller and the remaining
lines of the method are not executed.

| used a oating-point value on the right side of the condition because there
is a oating-point variable on the left.

4.7 Type conversion

You might wonder how you can get away with an expression like "The log
of x is " + result, since one of the operands is a String and the other
IS a double. In this case Java is being smart on our behalf, automatically
converting the double to a String before it does the string concatenation.

Whenever you try to \add" two expressions, if one of them is a String, Java

converts the other to a String and then perform string concatenation. What

do you think happens if you perform an operation between an integer and a
oating-point value?

44 Chapter 4. Conditionals and recursion

4.8 Recursion

I mentioned in the last chapter that it is legal for one method to invoke
another, and we have seen several examples. | neglected to mention that it
is also legal for a method to invoke itself. It may not be obvious why that is
a good thing, but it turns out to be one of the most magical and interesting
things a program can do.

For example, look at the following method:

public static void countdown(int n) {
if (n == 0) {
System.out.println()
} else {
System.out.println(n);
countdown(n-1) ;
}
}

The name of the method is countdown and it takes a single integer as a
parameter. If the parameter is zero, it prints the word \Blasto ." Otherwise,
it prints the number and then invokes a method named countdown | itself |
passing n-1 as an argument.

What happens if we invoke this method, in main, like this:
countdown(3) ;

The execution of countdown begins with n=3, and since n is not zero, it prints
the value 3, and then invokes itself...

The execution of countdown begins with n=2, and since n is not
zero, it prints the value 2, and then invokes itself...

The execution of countdown begins with n=1, and since
n is not zero, it prints the value 1, and then invokes
itself...

The execution of countdown begins with n=0,
and since n is zero, it prints the word
\Blasto !" and then returns.

The countdown that got n=1 returns.

4.8. Recursion 45

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you’re back in main. So the total output looks like:

3
2
1
Blastoff!

As a second example, let’s look again at the methods newLine and
threeline.

public static void newLine() {
System.out.println("");
+

public static void threeLine() {
newLine(); newLine(); newLine();

b

Although these work, they would not be much help if we wanted to print 2
newlines, or 106. A better alternative would be

public static void nLines(int n) {
if (m > 0) {
System.out.println("");
nLines(n-1);
}
+

This program similar to countdown; as long as n is greater than zero, it prints
a newline and then invokes itself to print n-1 additional newlines. The total
number of newlines that get printed is 1 +(n-1), which usually comes out
to roughly n.

When a method invokes itself, that’s called recursion, and such methods
are recursive.

46 Chapter 4. Conditionals and recursion

4.9 Stack diagrams for recursive methods

In the previous chapter we used a stack diagram to represent the state of a
program during a method invocation. The same kind of diagram can make
it easier to interpret a recursive method.

Remember that every time a method gets called it creates a new frame that
contains a new version of the method’s parameters and variables.

The following gure is a stack diagram for countdown, called withn = 3:

main

countdown | n

3
countdown | n i

countdown | n

1
countdown | n 2

There is one frame for main and four frames for countdown, each with a
di erent value for the parameter n. The bottom of the stack, countdown
with n=0 is called the base case. It does not make a recursive call, so there
are no more frames for countdown.

The frame for main is empty because main does not have any parameters or
variables.

4.10 Glossary

modulus: An operator that works on integers and yields the remainder
when one number is divided by another. In Java it is denoted with a
percent sign(’%).

conditional: A block of statements that may or may not be executed de-
pending on some condition.

4.11. Exercises 47

chaining: A way of joining several conditional statements in sequence.

nesting: Putting a conditional statement inside one or both branches of
another conditional statement.

typecast: An operator that converts from one type to another. In Java it
appears as a type name in parentheses, like (int).

recursion: The process of invoking the same method you are currently ex-
ecuting.

base case: A condition that causes a recursive method not to make a recur-
sive call.

4.11 Exercises

Exercise 4.1. Draw a stack diagram that shows the state of the program in
Section 4.8 after main invokes nLines with the parameter n=4, just before
the last invocation of nLines returns.

Exercise 4.2. This exercise reviews the ow of execution through a program
with multiple methods. Read the following code and answer the questions
below.

public class Buzz {

public static void baffle(String blimp) {
System.out.println(blimp) ;
zippo(» ~5);

public static void zippo(String quince, int flag) {
if (flag < 0) {

System.out.println(quince +)
} else {

System.out.println();

baffle(quince);

System.out.println();

48 Chapter 4. Conditionals and recursion

}

public static void main(Stringl[] args) {
zippo (» 13);
+

1. Write the number 1 next to the rst statement of this program that
will be executed. Be careful to distinguish things that are statements
from things that are not.

2. Write the number 2 next to the second statement, and so on until the
end of the program. If a statement is executed more than once, it might
end up with more than one number next to it.

3. What is the value of the parameter blimp when baffle gets invoked?

4. What is the output of this program?

Exercise 4.3. The rst verse of the song \99 Bottles of Beer" is:

99 bottles of beer on the wall, 99 bottles of beer, ya’ take one
down, ya’ pass it around, 98 bottles of beer on the wall.

Subsequent verses are identical except that the number of bottles gets smaller
by one in each verse, until the last verse:

No bottles of beer on the wall, no bottles of beer, ya’ can’t take
one down, ya’ can’t pass it around, ’cause there are no more
bottles of beer on the wall!

And then the song(nally) ends.

Write a program that prints the entire lyrics of \99 Bottles of Beer." Your
program should include a recursive method that does the hard part, but you
might want to write additional methods to separate the major functions of
the program.

As you develop your code, test it with a small number of verses, like \3
Bottles of Beer."

The purpose of this exercise is to take a problem and break it into smaller
problems, and to solve the smaller problems by writing simple methods.

4.11. Exercises 49

Exercise 4.4. What is the output of the following program?

public class Narf {

public static void zoop(String fred, int bob) {
System.out.println(fred);
if (bob == 5) {
ping()
} else {
System.out.println("!");

public static void main(String[] args) {
int bizz = b;
int buzz = 2;

zoop (, bizz);
clink (2¥buzz) ;
}
public static void clink(int fork) {
System.out.print()
zoop(, fork) ;

public static void ping(String strangStrung) {
System.out.println(+ strangStrung +)
}
}

Exercise 4.5. Fermat’s Last Theorem says that there are no integers a, b,
and ¢ such that
a+ " =c"

except in the case when n = 2.

Write a method named checkFermat that takes four integers as parameters |
a, b, c and n] and that checks to see if Fermat’s theorem holds. If n is greater
than 2 and it turns out to be true that o« +0" = ¢", the program should print

50 Chapter 4. Conditionals and recursion

\Holy smokes, Fermat was wrong!"" Otherwise the program should print \No,
that doesn’t work."

You should assume that there is a method named raiseToPow that takes two
integers as arguments and that raises the rst argument to the power of the
second. For example:

int x = raiseToPow(2, 3);

would assign the value 8 to x, because 23 = 8.

Chapter 5

GridWorld: Part 1

5.1 Getting started

Now is a good time to start working with the AP Computer Science
Case Study, which is a program called GridWorld. To get started, in-
stall GridWorld, which you can download from the College Board: http:
//www.collegeboard.com/student/testing/ap/compsci_a/case.html.

When you unpack this code, you should have a folder named GridWorldCode
that contains projects/firstProject, which contains BugRunner. java.

Make a copy of BugRunner.java in another folder and then import it
into your development environment. There are instructions here that
might help: http://www.collegeboard.com/prod_downloads/student/
testing/ap/compsci_a/ap07_gridworld_installation_guide.pdf.

Once you run BugRunner.java, download the GridWorld Student
Manual from http://www.collegeboard.com/prod_downloads/student/
testing/ap/compsci_a/ap07_gridworld_studmanual_appends_v3.pdf.

The Student Manual uses vocabulary | have not presented yet, so to get you
started, here is a quick preview:

e The components of GridWorld, including Bugs, Rocks and the Grid
itself, are objects.

http://www.collegeboard.com/student/testing/ap/compsci_a/case.html
http://www.collegeboard.com/student/testing/ap/compsci_a/case.html
http://www.collegeboard.com/prod_downloads/student/testing/ap/compsci_a/ap07_gridworld_installation_guide.pdf
http://www.collegeboard.com/prod_downloads/student/testing/ap/compsci_a/ap07_gridworld_installation_guide.pdf
http://www.collegeboard.com/prod_downloads/student/testing/ap/compsci_a/ap07_gridworld_studmanual_appends_v3.pdf
http://www.collegeboard.com/prod_downloads/student/testing/ap/compsci_a/ap07_gridworld_studmanual_appends_v3.pdf

52 Chapter 5. GridWorld: Part 1

A constructor is a special method that creates new objects.

A class is a set of objects; every object belongs to a class.

An object is also called an instance because it is a member, or instance,
of a class.

An attribute is a piece of information about an object, like its color
or location.

e An accessor method is a method that returns an attribute of an
object.

¢ A modifier method changes an attribute of an object.

Now you should be able to read Part 1 of the Student Manual and do the
exercises.

5.2 BugRunner

BugRunner . java contains this code:

import info.gridworld.actor.ActorWorld;
import info.gridworld.actor.Bug;
import info.gridworld.actor.Rock;

public class BugRunner

{
public static void main(String[] args)
{
ActorWorld world = new ActorWorld();
world.add(new Bug());
world.add (new Rock());
world.show();
}
}

The rst three lines are import statements; they list the classes from Grid-
World used in this program. You can nd the documentation for these classes
at http://www.greenteapress.com/thinkapjava/javadoc/gridworld/.

http://www.greenteapress.com/thinkapjava/javadoc/gridworld/

5.3. Exercises 53

Like the other programs we have seen, BugRunner de nes a class that pro-
vides a main method. The rst line of main creates an ActorWorld object.
new IS a Java keyword that creates new objects.

The next two lines create a Bug and a Rock, and add them to world. The
last line shows the world on the screen.
Open BugRunner . java for editing and replace this line:
world.add(new Bug());
with these lines:

Bug redBug = new Bug();
world.add(redBug) ;

The rst line assigns the Bug to a variable named redBug; we can use redBug
to invoke the Bug’s methods. Try this:

System.out.println(redBug.getLocation());

Note: If you run this before adding the Bug to the world, the result is null,
which means that the Bug doesn’t have a location yet.

Invoke the other accessor methods and print the bug’s attributes. Invoke the
methods canMove, move and turn and be sure you understand what they do.

5.3 Exercises

Exercise 5.1. 1. Write a method named moveBug that takes a bug as a
parameter and invokes move. Test your method by calling it from main.

2. Modify moveBug S0 that it invokes canMove and moves the bug only if
it can.

3. Modify moveBug so that it takes an integer, n, as a parameter, and
moves the bug n times (if it can).

4. Modify moveBug so that if the bug can’t move, it invokes turn instead.

Exercise 5.2. 1. The Math class provides a method named random that
returns a double between 0.0 and 1.0 (not including 1.0).

54 Chapter 5. GridWorld: Part 1

2. Write a method named randomBug that takes a Bug as a parameter
and sets the Bug’s direction to one of 0, 90, 180 or 270 with equal
probability, and then moves the bug if it can.

3. Modify randomBug to take an integer n and repeat n times.

The result is a random walk, which you can read about at http://en.
wikipedia.org/wiki/Random_walk.

4. To see a longer random walk, you can give ActorWorld a bigger stage.
At the top of BugRunner. java, add this import statement:

import info.gridworld.grid.UnboundedGrid;
Now replace the line that creates the ActorWorld with this:

ActorWorld world = new ActorWorld(new UnboundedGrid());
You should be able to run your random walk for a few thousand steps
(you might have to use the scrollbars to nd the Bug).

Exercise 5.3. GridWorld uses Color objects, which are de ned in a Java
library. You can read the documentation at http://download.oracle.com/
javase/6/docs/api/java/awt/Color.html.

To create Bugs with di erent colors, we have to import Color:

import java.awt.Color;

Then you can access the prede ned colors, like Color.blue, or create a new
color like this:

Color purple = new Color(148, 0, 211);

Make a few bugs with di erent colors. Then write a method named colorBug
that takes a Bug as a parameter, reads its location, and sets the color.

The Location object you get from getLocation has methods named getRow
and getCol that return integers. So you can get the x-coordinate of a Bug
like this:

int x = bug.getLocation().getCol();

Write a method named makeBugs that takes an ActorWorld and an integer n
and creates n bugs colored according to their location. Use the row number
to control the red level and the column to control the blue.

http://en.wikipedia.org/wiki/Random_walk
http://en.wikipedia.org/wiki/Random_walk
http://download.oracle.com/javase/6/docs/api/java/awt/Color.html
http://download.oracle.com/javase/6/docs/api/java/awt/Color.html

Chapter 6

Value methods

6.1 Return values

Some of the methods we have used, like the Math functions, produce results.
That is, the e ect of invoking the method is to generate a new value, which
we usually assign to a variable or use as part of an expression. For example:

double e = Math.exp(1.0);
double height = radius * Math.sin(angle);

But so far all our methods have been void; that is, methods that return no
value. When you invoke a void method, it is typically on a line by itself, with
no assignment:

countdown(3) ;
nLines(3);

In this chapter we write methods that return things, which I call value
methods. The rst example is area, which takes a double as a parameter,
and returns the area of a circle with the given radius:

public static double area(double radius) {
double area = Math.PI * radius * radius;
return area;

}

The rst thing you should notice is that the beginning of the method de -
nition is di erent. Instead of public static void, which indicates a void

56 Chapter 6. Value methods

method, we see public static double, which means that the return value
from this method is a double. I still haven’t explained what public static
means, but be patient.

The last line is a new form of the return statement that includes a return
value. This statement means, \return immediately from this method and use
the following expression as the return value.” The expression you provide
can be arbitrarily complicated, so we could have written this method more
concisely:

public static double area(double radius) {
return Math.PI * radius * radius;

}

On the other hand, temporary variables like area often make debugging
easier. In either case, the type of the expression in the return statement must
match the return type of the method. In other words, when you declare that
the return type is double, you are making a promise that this method will
eventually produce a double. If you try to return with no expression, or an
expression with the wrong type, the compiler will take you to task.

Sometimes it is useful to have multiple return statements, one in each branch
of a conditional:

public static double absoluteValue(double x) {
if (x < 0) {
return -x;
} else {
return Xx;
+
}

Since these return statements are in an alternative conditional, only one will
be executed. Although it is legal to have more than one return statement
in a method, you should keep in mind that as soon as one is executed, the
method terminates without executing any subsequent statements.

Code that appears after a return statement, or any place else where it can
never be executed, is called dead code. Some compilers warn you if part of
your code is dead.

If you put return statements inside a conditional, then you have to guarantee
that every possible path through the program hits a return statement. For

6.2. Program development 57

example:

public static double absoluteValue(double x) {
if (x < 0) {
return -Xx;
} else if (x > 0) {
return X;
} // WRONG!!
}

This program is not legal because if x is 0, neither condition is true and the
method ends without hitting a return statement. A typical compiler message
would be \return statement required in absoluteValue," which is a confusing
message since there are already two of them.

6.2 Program development

At this point you should be able to look at complete Java methods and tell
what they do. But it may not be clear yet how to go about writing them. |
am going to suggest a method called incremental development.

As an example, imagine you want to nd the distance between two points,
given by the coordinates (z1,y:) and (z2,y2). By the usual de nition,

distance = \/(332 —21)? + (y2 — 11)?

The rst step is to consider what a distance method should look like in
Java. In other words, what are the inputs (parameters) and what is the
output (return value)?

In this case, the two points are the parameters, and it is natural to represent
them using four doubles, although we will see later that there is a Point
object in Java that we could use. The return value is the distance, which
will have type double.

Already we can write an outline of the method:

public static double distance
(double x1, double y1, double x2, double y2) {
return 0.0;

b

58 Chapter 6. Value methods

The statement return 0.0; is a place-keeper that is necessary to compile the
program. Obviously, at this stage the program doesn’t do anything useful,
but it is worthwhile to try compiling it so we can identify any syntax errors
before we add more code.

To test the new method, we have to invoke it with sample values. Somewhere
in main | would add:

double dist = distance(1.0, 2.0, 4.0, 6.0);

I chose these values so that the horizontal distance is 3 and the vertical dis-
tance is 4; that way, the result will be 5 (the hypotenuse of a 3-4-5 triangle).
When you are testing a method, it is useful to know the right answer.

Once we have checked the syntax of the method de nition, we can start
adding lines of code one at a time. After each incremental change, we recom-
pile and run the program. If there is an error at any point, we have a good
idea where to look: in the last line we added.

The next step is to nd the di erences z; — z; and y, — y;. | store those
values in temporary variables named dx and dy.

public static double distance
(double x1, double y1, double x2, double y2) {
double dx = x2 - x1;
double dy = y2 - yi;

System.out.println(+ dx);
System.out.println(+ dy);
return 0.0;

3

| added print statements so we can check the intermediate values before
proceeding. They should be 3.0 and 4.0.

When the method is nished | remove the print statements. Code like that
is called scaffolding, because it is helpful for building the program, but it
is not part of the nal product.

The next step is to square dx and dy. We could use the Math.pow method,
but it is simpler to multiply each term by itself.

public static double distance
(double x1, double yl1, double x2, double y2) {

6.3. Composition 59

double dx x2 - x1;

double dy = y2 - yi;

double dsquared = dx*dx + dy*dy;
System.out.println(+ dsquared) ;
return 0.0;

3

Again, | would compile and run the program at this stage and check the
intermediate value (which should be 25.0).

Finally, we can use Math.sqrt to compute and return the result.

public static double distance
(double x1, double y1, double x2, double y2) {
double dx = x2 - x1;
double dy = y2 - yi;
double dsquared = dx*dx + dyx*dy;
double result = Math.sqrt(dsquared);
return result;

}
In main, we can print and check the value of the result.
As you gain more experience programming, you might write and debug more

than one line at a time. Nevertheless, incremental development can save you
a lot of time. The key aspects of the process are:

e Start with a working program and make small, incremental changes.
At any point, if there is an error, you will know exactly where it is.

e Use temporary variables to hold intermediate values so you can print
and check them.

e Once the program is working, you can remove sca olding and consoli-
date multiple statements into compound expressions, but only if it does
not make the program di cult to read.

6.3 Composition

Once you de ne a new method, you can use it as part of an expression, and
you can build new methods using existing methods. For example, what if

60 Chapter 6. Value methods

someone gave you two points, the center of the circle and a point on the
perimeter, and asked for the area of the circle?

Let’s say the center point is stored in the variables xc and yc, and the
perimeter point is in xp and yp. The rst step is to nd the radius of the
circle, which is the distance between the two points. Fortunately, we have a
method, distance that does that.

double radius = distance(xc, yc, xp, yp);
The second step is to nd the area of a circle with that radius, and return it.

double area = area(radius);
return area;

Wrapping that all up in a method, we get:

public static double circleArea
(double xc, double yc, double xp, double yp) {
double radius = distance(xc, yc, xp, yp);
double area = area(radius);
return area;

¥

The temporary variables radius and area are useful for development and
debugging, but once the program is working we can make it more concise by
composing the method invocations:

public static double circleArea
(double xc, double yc, double xp, double yp) {
return area(distance(xc, yc, xp, yp));

+

6.4 Overloading

You might have noticed that circleArea and area perform similar
functions | nding the area of a circle | but take di erent parameters. For
area, We have to provide the radius; for circleArea we provide two points.

If two methods do the same thing, it is natural to give them the same name.
Having more than one method with the same name, which is called over-
loading, is legal in Java as long as each version takes different parameters.
So we could rename circleArea:

6.5. Boolean expressions 61

public static double area
(double x1, double y1, double x2, double y2) {
return area(distance(xc, yc, xp, yp));

}

When you invoke an overloaded method, Java knows which version you want
by looking at the arguments that you provide. If you write:

double x = area(3.0);

Java goes looking for a method named area that takes one double as an
argument, and so it uses the rst version, which interprets the argument as
a radius. If you write:

double x = area(1.0, 2.0, 4.0, 6.0);

Java uses the second version of area. And notice that the second version of
area actually invokes the rst.

Many Java methods are overloaded, meaning that there are di erent versions
that accept di erent numbers or types of parameters. For example, there are
versions of print and println that accept a single parameter of any type.
In the Math class, there is a version of abs that works on doubles, and there
is also a version for ints.

Although overloading is a useful feature, it should be used with caution. You
might get yourself nicely confused if you are trying to debug one version of
a method while accidently invoking a di erent one.

And that reminds me of one of the cardinal rules of debugging: make sure
that the version of the program you are looking at is the version
of the program that is running!

Some day you may nd yourself making one change after another in your
program, and seeing the same thing every time you run it. This is a warning
sign that you are not running the version of the program you think you are.
To check, add a print statement (it doesn’t matter what you print) and
make sure the behavior of the program changes accordingly.

6.5 Boolean expressions

Most of the operations we have seen produce results that are the same type
as their operands. For example, the + operator takes two ints and produces

62 Chapter 6. Value methods

an int, or two doubles and produces a double, etc.

The exceptions we have seen are the relational operators, which compare
ints and floats and return either true or false. true and false are special
values in Java, and together they make up a type called boolean. You might
recall that when | de ned a type, | said it was a set of values. In the case of
ints, doubles and Strings, those sets are pretty big. For booleans, there
are only two values.

Boolean expressions and variables work just like other types of expressions
and variables:

boolean flag;
flag = true;
boolean testResult = false;

The rst example is a simple variable declaration; the second example is an
assignment, and the third example is an initialization.

The values true and false are keywords in Java, so they may appear in a
di erent color, depending on your development environment.

The result of a conditional operator is a boolean, so you can store the result
of a comparison in a variable:

boolean evenFlag = (n%2 == 0); // true if n is even
boolean positiveFlag = (x > 0); // true if x is positive

and then use it as part of a conditional statement later:
if (evenFlag) {

System.out.println();
}

A variable used in this way is called a flag because it ags the presence or
absence of some condition.

6.6 Logical operators

There are three logical operators in Java: AND, OR and NOT, which are
denoted by the symbols &&, || and !'. The semantics of these operators is
similar to their meaning in English. For example x > 0 && x < 10 is true
only if x is greater than zero AND less than 10.

6.7. Boolean methods 63

evenFlag || n%3 == 0 is true if either of the conditions is true, that is, if
evenFlag is true OR the number is divisible by 3.

Finally, the NOT operator inverts a boolean expression, so !evenFlag is true
if evenFlag is false] if the number is odd.

Logical operators can simplify nested conditional statements. For example,
can you re-write this code using a single conditional?

if (x> 0) {
if (x < 10) {
System.out.println()
}
}

6.7 Boolean methods

Methods can return boolean values just like any other type, which is often
convenient for hiding tests inside methods. For example:

public static boolean isSingleDigit(int x) {
if (x >= 0 && x < 10) {
return true;
} else {
return false;
}
+

The name of this method is isSingleDigit. It is common to give boolean
methods names that sound like yes/no questions. The return type is boolean,
which means that every return statement has to provide a boolean expression.

The code itself is straightforward, although it is longer than it needs to be.
Remember that the expression x >= 0 && x < 10 has type boolean, so there
is nothing wrong with returning it directly and avoiding the if statement
altogether:

public static boolean isSingleDigit(int x) {
return (x >= 0 && x < 10);
}

In main you can invoke this method in the usual ways:

64 Chapter 6. Value methods

boolean bigFlag = !isSingleDigit(17);
System.out.println(isSingleDigit(2));

The rst line sets bigFlag to true only if 17 is not a single-digit number.
The second line prints true because 2 is a single-digit number.

The most common use of boolean methods is inside conditional statements
if (isSingleDigit(x)) {
System.out.println();
} else {

System.out.println();
}

6.8 More recursion

Now that we have methods that return values, we have a Turing com-
plete programming language, which means that we can compute anything
computable, for any reasonable de nition of \computable.”" This idea was
developed by Alonzo Church and Alan Turing, so it is known as the Church-
Turing thesis. You can read more about it at http://en.wikipedia.org/
wiki/Turing_thesis

To give you an idea of what you can do with the tools we have learned,
let’s look at some methods for evaluating recursively-de ned mathematical
functions. A recursive de nition is similar to a circular de nition, in the
sense that the de nition contains a reference to the thing being de ned. A
truly circular de nition is not very useful:

recursive: an adjective used to describe a method that is recursive.

If you saw that de nition in the dictionary, you might be annoyed. On the
other hand, if you looked up the de nition of the mathematical function
factorial, you might get something like:

or=1
n'=n-(n-—1)!

(Factorial is usually denoted with the symbol !, which is not to be confused
with the logical operator ! which means NOT.) This de nition says that the

http://en.wikipedia.org/wiki/Turing_thesis
http://en.wikipedia.org/wiki/Turing_thesis

6.8. More recursion 65

factorial of 0 is 1, and the factorial of any other value, n, is n multiplied by
the factorial of n — 1. So 3! is 3 times 2!, which is 2 times 1!, which is 1
times 0!. Putting it all together, we get 3! equal to 3 times 2 times 1 times
1, which is 6.

If you can write a recursive de nition of something, you can usually write a
Java method to evaluate it. The rst step is to decide what the parameters
are and what the return type is. Since factorial is de ned for integers, the
method takes an integer as a parameter and returns an integer:

public static int factorial(int n) {

}
If the argument happens to be zero, return 1:

public static int factorial(int n) {
if (n == 0) {
return 1;
}
}

That’s the base case.

Otherwise, and this is the interesting part, we have to make a recursive call
to nd the factorial of n — 1, and then multiply it by n.

public static int factorial(int n) {
if (n == 0) {
return 1;
} else {
int recurse = factorial(n-1);
int result = n * recurse;
return result;
}
}

The ow of execution for this program is similar to countdown from Sec-
tion 4.8. If we invoke factorial with the value 3:

Since 3 is not zero, we take the second branch and calculate the factorial of
n—1..

Since 2 is not zero, we take the second branch and calculate the
factorial of n — 1...

66 Chapter 6. Value methods

Since 1 is not zero, we take the second branch and
calculate the factorial of n — 1...

Since 0 is zero, we take the rst branch and re-
turn the value 1 immediately without making
any more recursive invocations.

The return value (1) gets multiplied by n, which is 1,
and the result is returned.

The return value (1) gets multiplied by n, which is 2, and the
result is returned.

The return value (2) gets multiplied by n, which is 3, and the result, 6, is
returned to main, or whoever invoked factorial(3).

Here is what the stack diagram looks like for this sequence of method invo-
cations:

main

— = —)s
factorial | n|3 recurse | 2 result | 6

= = ==}}
factorial | n|2 recurse | 1 result | 2 >

— — — 1
factorial | n |1 recurse | 1 result | 1

— = =)
factorial | n i

The return values are shown being passed back up the stack.

Notice that in the last frame recurse and result do not exist because when
n=0 the branch that creates them does not execute.

6.9 Leap of faith

Following the ow of execution is one way to read programs, but it can quickly
become disorienting. An alternative is what I call the \leap of faith." When

6.10. One more example 67

you come to a method invocation, instead of following the ow of execution,
you assume that the method works correctly and returns the appropriate
value.

In fact, you are already practicing this leap of faith when you use Java
methods. When you invoke Math.cos Or System.out.println, you don’t
examine the implementations of those methods. You just assume that they
work.

You can apply the same logic to your own methods. For example, in Sec-
tion 6.7 we wrote a method called isSingleDigit that determines whether
a number is between 0 and 9. Once we convince ourselves that this method
is correct | by testing and examination of the code] we can use the method
without ever looking at the code again.

The same is true of recursive programs. When you get to the recursive
invocation, instead of following the ow of execution, you should assume
that the recursive invocation works, and then ask yourself, \Assuming that
I can nd the factorial of n — 1, can | compute the factorial of n?" Yes, you
can, by multiplying by n.

Of course, it is strange to assume that the method works correctly when you
have not even nished writing it, but that’s why it’s called a leap of faith!

6.10 One more example

The second most common example of a recursively-de ned mathematical
function is fibonacci, which has the following de nition:

fibonacci(0) =1
fibonacci(l) =1
fibonacci(n) = fibonacci(n — 1) + fibonacci(n — 2);

Translated into Java, this is
public static int fibonacci(int n) {
if (n==0 || n==1) {
return 1;
} else {

68 Chapter 6. Value methods

return fibonacci(n-1) + fibonacci(n-2);
+
+

If you try to follow the ow of execution here, even for small values of n,
your head explodes. But according to the leap of faith, if we assume that
the two recursive invocations work correctly, then it is clear that we get the
right result by adding them together.

6.11 Glossary

return type: The part of a method declaration that indicates what type of
value the method returns.

return value: The value provided as the result of a method invocation.

dead code: Part of a program that can never be executed, often because it
appears after a return statement.

scaffolding: Code that is used during program development but is not part
of the nal version.

void: A special return type that indicates a void method; that is, one that
does not return a value.

overloading: Having more than one method with the same name but di er-
ent parameters. When you invoke an overloaded method, Java knows
which version to use by looking at the arguments you provide.

boolean: A type of variable that can contain only the two values true and
false.

flag: A variable (usually boolean) that records a condition or status infor-
mation.

conditional operator: An operator that compares two values and produces
a boolean that indicates the relationship between the operands.

logical operator: An operator that combines boolean values and produces
boolean values.

6.12. Exercises 69

6.12 Exercises

Exercise 6.1. Write a method named isDivisible that takes two integers,
n and m and that returns true if n is divisible by m and false otherwise.

Exercise 6.2. Many computations can be expressed concisely using the
\multadd" operation, which takes three operands and computes a*b + c.
Some processors even provide a hardware implementation of this operation
for oating-point numbers.

1. Create a new program called Multadd. java.

2. Write a method called multadd that takes three doubles as parameters
and that returns their multadditionization.

3. Write a main method that tests multadd by invoking it with a few
simple parameters, like 1.0, 2.0, 3.0.

4. Also in main, use multadd to compute the following values:

us
Ccos 1

sinf + —
log 10 + log 20

5. Write a method called yikes that takes a double as a parameter and
that uses multadd to calculate

re P +1—e"
HINT: the Math method for raising e to a power is Math. exp.

In the last part, you get a chance to write a method that invokes a method
you wrote. Whenever you do that, it is a good idea to test the rst method
carefully before you start working on the second. Otherwise, you might nd
yourself debugging two methods at the same time, which can be di cult.

One of the purposes of this exercise is to practice pattern-matching: the
ability to recognize a speci ¢ problem as an instance of a general category of
problems.

70 Chapter 6. Value methods

Exercise 6.3. If you are given three sticks, you may or may not be able to
arrange them in a triangle. For example, if one of the sticks is 12 inches long
and the other two are one inch long, you will not be able to get the short
sticks to meet in the middle. For any three lengths, there is a simple test to
see if it is possible to form a triangle:

\If any of the three lengths is greater than the sum of the
other two, then you cannot form a triangle. Otherwise, you can."

Write a method named isTriangle that it takes three integers as arguments,
and that returns either true or false, depending on whether you can or
cannot form a triangle from sticks with the given lengths.

The point of this exercise is to use conditional statements to write a value
method.

Exercise 6.4. What is the output of the following program? The purpose
of this exercise is to make sure you understand logical operators and the ow
of execution through value methods.

public static void main(String[] args) {
boolean flagl = isHoopy(202);
boolean flag2 = isFrabjuous(202);
System.out.println(flagl);
System.out.println(flag2);
if (flagl && flag2) {

System.out.println();
}
if (flagl || flag2) {
System.out.println();
}

public static boolean isHoopy(int x) {
boolean hoopyFlag;
if (x%2 == 0) {
hoopyFlag = true;
} else {
hoopyFlag

false;

6.12. Exercises 71

}
return hoopyFlag;

public static boolean isFrabjuous(int x) {
boolean frabjuousFlag;

if (x> 0) {
frabjuousFlag = true;
} else {
frabjuousFlag = false;
}

return frabjuousFlag;

}
Exercise 6.5. The distance between two points (z1,y:) and (z2, ys) IS

Distance = \/(xg —21)? + (y2 — 11)?

Write a method named distance that takes four doubles as parameters | x1,
y1, x2 and y2] and that prints the distance between the points.

You should assume that there is a method named sumSquares that calculates
and returns the sum of the squares of its arguments. For example:
double x = sumSquares(3.0, 4.0);
would assign the value 25.0 to x.
The point of this exercise is to write a new method that uses an existing

one. You should write only one method: distance. You should not write
sumSquares Or main and you should not invoke distance.

Exercise 6.6. The point of this exercise is to use a stack diagram to under-
stand the execution of a recursive program.

public class Prod {
public static void main(String[] args) {
System.out.println(prod(1l, 4));
}

public static int prod(int m, int n) {

72 Chapter 6. Value methods

if (m == n) {
return n;

} else {
int recurse = prod(m, n-1);
int result = n * recurse;
return result;

1. Draw a stack diagram showing the state of the program just before the
last instance of prod completes. What is the output of this program?

2. Explain in a few words what prod does.

3. Rewrite prod without using the temporary variables recurse and
result.

Exercise 6.7. The purpose of this exercise is to translate a recursive de ni-
tion into a Java method. The Ackerman function is de ned for non-negative
integers as follows:

n+1 ifm=0
A(m,n) = ¢ A(m —1,1) if m>0andn=0 (6.1)
A(m —1,A(m,n—1)) ifm>0andn > 0.

Write a method called ack that takes two ints as parameters and that com-
putes and returns the value of the Ackerman function.

Test your implementation of Ackerman by invoking it from main and printing
the return value.

WARNING: the return value gets very big very quickly. You should try it
only for small values of m and n (not bigger than 2).

Exercise 6.8. 1. Create a program called Recurse. java and type in the
following methods:

// first: returns the first character of the given String
public static char first(String s) {

6.12. Exercises 73

return s.charAt(0);

// last: returns a new String that contains all but the
// first letter of the given String
public static String rest(String s) {
return s.substring(l, s.length());
}

// length: returns the length of the given String
public static int length(String s) {
return s.length(Q);

3

2. Write some code in main that tests each of these methods. Make sure
they work, and make sure you understand what they do.

3. Write a method called printString that takes a String as a parameter
and that prints the letters of the String, one on each line. It should be
a void method.

4. Write a method called printBackward that does the same thing as
printString but that prints the String backward (one character per
line).

5. Write a method called reverseString that takes a String as a param-
eter and that returns a new String as a return value. The new String
should contain the same letters as the parameter, but in reverse order.
For example, the output of the following code

String backwards = reverseString()
System.out.println(backwards) ;
should be

yenwoD nellA

Exercise 6.9. Write a recursive method called power that takes a double x
and an integer n and that returns z".

Hint: a recursive de nition of this operation is ™ = x-2"~*. Also, remember
that anything raised to the zeroeth power is 1.

74 Chapter 6. Value methods

Optional challengg: you can make this method more e cient, when n is even,
using z" = (2"/2)".

Exercise 6.10. (This exercise is based on page 44 of Ableson and Sussman’s
Structure and Interpretation of Computer Programs.)

The following technique is known as Euclid’s Algorithm because it appears
in Euclid’s Elements (Book 7, ca. 300 BC). It may be the oldest nontrivial
algorithm?,

The process is based on the observation that, if » is the remainder when «
is divided by b, then the common divisors of a and b are the same as the
common divisors of b and ». Thus we can use the equation

ged(a, b) = ged(b,)

to successively reduce the problem of computing a GCD to the problem of
computing the GCD of smaller and smaller pairs of integers. For example,

gcd(36,20) = ged(20,16) = ged(16,4) = ged(4,0) = 4

implies that the GCD of 36 and 20 is 4. It can be shown that for any two
starting numbers, this repeated reduction eventually produces a pair where
the second number is 0. Then the GCD is the other number in the pair.

Write a method called gcd that takes two integer parameters and that uses
Euclid’s algorithm to compute and return the greatest common divisor of the
two numbers.

'For a definition of “algorithm”, jump ahead to Section 11.13.

Chapter 7

Iteration and loops

7.1 Multiple assignment

You can make more than one assignment to the same variable; the e ect is
to replace the old value with the new.

int liz = 5;

System.out.print(1liz);

liz = 7;

System.out.println(liz);

The output of this program is 57, because the rst time we print 1iz her
value is 5, and the second time her value is 7.

This kind of multiple assignment is the reason | described variables as a
container for values. When you assign a value to a variable, you change the
contents of the container, as shown in the gure:

int liz = 5; liz| 5

liz = 7; liz| X 7

When there are multiple assignments to a variable, it is especially important
to distinguish between an assignment statement and a statement of equality.
Because Java uses the = symbol for assignment, it is tempting to interpret a
statement like a = b as a statement of equality. It is not!

76 Chapter 7. Iteration and loops

First of all, equality is commutative, and assignment is not. For example, in
mathematics if « =7 then 7 = a. But in Java a = 7; is a legal assignment
statement, and 7 = a; is not.

Furthermore, in mathematics, a statement of equality is true for all time. If
a = b now, then a will always equal 5. In Java, an assignment statement can
make two variables equal, but they don’t have to stay that way!

int a = 5;
int b = a; // a and b are now equal
a = 3; // a and b are no longer equal

The third line changes the value of a but it does not change the value of b, so
they are no longer equal. In some programming languages a di erent symbol
is used for assignment, such as <- or :=, to avoid this confusion.

Although multiple assignment is frequently useful, you should use it with
caution. If the values of variables change often, it can make the code di cult
to read and debug.

7.2 The while statement

Computers are often used to automate repetitive tasks. Repeating tasks
without making errors is something that computers do well and people do

poorly.

We have already seen methods like countdown and factorial that use re-
cursion to perform repetition. This process is also called iteration. Java
provides language features that make it easier to write these methods. In
this chapter we are going to look at the while statement. Later on (in
Section 12.4) will check out the for statement.

Using a while statement, we can rewrite countdown:

public static void countdown(int n) {
while (n > 0) {
System.out.println(n);
n = n-1;
}
System.out.println()
}

7.2. The while statement i

You can almost read a while statement like English. What this means is,
\While n is greater than zero, print the value of n and then reduce the value
of n by 1. When you get to zero, print the word ‘Blasto !'”

More formally, the ow of execution for a while statement is as follows:

1. Evaluate the condition in parentheses, yielding true or false.

2. If the condition is false, exit the while statement and continue execu-
tion at the next statement.

3. If the condition is true, execute the statements between the squiggly-
brackets, and then go back to step 1.

This type of ow is called a loop because the third step loops back around
to the top. The statements inside the loop are called the body of the loop.
If the condition is false the rst time through the loop, the statements inside
the loop are never executed.

The body of the loop should change the value of one or more variables so
that, eventually, the condition becomes false and the loop terminates. Oth-
erwise the loop will repeat forever, which is called an infinite loop. An
endless source of amusement for computer scientists is the observation that
the directions on shampoo, \Lather, rinse, repeat," are an in nite loop.

In the case of countdown, we can prove that the loop terminates if n is
positive. In other cases it is not so easy to tell:

public static void sequence(int n) {
while (n != 1) {
System.out.println(n);

if (n%2 == 0) { // n is even
n=mn/2;
} else { // n is odd
n = nx3 + 1;
}
}

}

The condition for this loop isn != 1, so the loop will continue until n is 1,
which will make the condition false.

78 Chapter 7. Iteration and loops

At each iteration, the program prints the value of n and then checks whether
it is even or odd. If it is even, the value of n is divided by two. If it is odd, the
value is replaced by 3n + 1. For example, if the starting value (the argument
passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious
proof that n will ever reach 1, or that the program will terminate. For some
particular values of n, we can prove termination. For example, if the starting
value is a power of two, then the value of n will be even every time through
the loop, until we get to 1. The previous example ends with such a sequence,
starting with 16.

Particular values aside, the interesting question is whether we can prove that
this program terminates for all values of n. So far, no one has been able to
prove it or disprove it! For more information, see http://en.wikipedia.
org/wiki/Collatz_conjecture.

7.3 Tables

One of the things loops are good for is generating and printing tabular data.
For example, before computers were readily available, people had to calculate
logarithms, sines and cosines, and other common mathematical functions by
hand.

To make that easier, there were books containing long tables where you
could nd the values of various functions. Creating these tables was slow
and boring, and the results were full of errors.

When computers appeared on the scene, one of the initial reactions was,
\This is great! We can use the computers to generate the tables, so there
will be no errors.” That turned out to be true (mostly), but shortsighted.
Soon thereafter computers were so pervasive that the tables became obsolete.

Well, almost. For some operations, computers use tables of values to get an
approximate answer, and then perform computations to improve the approxi-
mation. In some cases, there have been errors in the underlying tables, most
famously in the table the original Intel Pentium used to perform oating-
point division®.

1See http://en.wikipedia.org/wiki/Pentium_FDIV_bug.

http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Pentium_FDIV_bug

7.3. Tables 79

Although a \log table™ is not as useful as it once was, it still makes a good
example of iteration. The following program prints a sequence of values in
the left column and their logarithms in the right column:

double x = 1.0;

while (x < 10.0) {
System.out.println(x + + Math.log(x));
x =x + 1.0;

}

The output of this program is
1.0 0.0

2.0 0.6931471805599453
3.0 1.0986122886681098
4.0 1.3862943611198906
5.0 1.6094379124341003
6.0 1.791759469228055
7.0 1.9459101490553132
8.0 2.0794415416798357
9.0 2.1972245773362196

Looking at these values, can you tell what base the 1og method uses?

Since powers of two are important in computer science, we often want loga-
rithms with respect to base 2. To compute them, we can use the formula:

log, = = log.x/log.2

Changing the print statement to
System.out.println(x + + Math.log(x) / Math.log(2.0));
yields

o

0.0

1.0
1.5849625007211563
2.0
2.321928094887362
2.584962500721156
2.807354922057604
3.0
3.1699250014423126

© 00 NO O WN -
O O O O O O O O

80 Chapter 7. Iteration and loops

We can see that 1, 2, 4 and 8 are powers of two, because their logarithms base
2 are round numbers. If we wanted to nd the logarithms of other powers of
two, we could modify the program like this:

double x = 1.0;
while (x < 100.0) {
System.out.println(x + + Math.log(x) / Math.log(2.0));
x =x *x 2.0;
}
Now instead of adding something to x each time through the loop, which
yields an arithmetic sequence, we multiply x by something, yielding a geo-
metric sequence. The result is:

1.0
2.0
4.0
8.0
16.0 4.0

32.0 5.0

64.0 6.0

Log tables may not be useful any more, but for computer scientists, knowing
the powers of two is! When you have an idle moment, you should memorize
the powers of two up to 65536 (that’s 216).

w N = O
o O O O

7.4 Two-dimensional tables

A two-dimensional table consists of rows and columns that make it easy to
nd values at the intersections. A multiplication table is a good example.
Let’s say you want to print a multiplication table for the values from 1 to 6.

A good way to start is to write a simple loop that prints the multiples of 2,
all on one line.

int 1 = 1;

while (i <= 6) {
System.out.print (2*i +);
i=1+1;

}

System.out.println("");

7.5. Encapsulation and generalization 81

The rst line initializes a variable named i, which is going to act as a counter,
or loop variable. As the loop executes, the value of i increases from 1 to
6; when i is 7, the loop terminates. Each time through the loop, we print
the value 2xi and three spaces. Since we use System.out.print, the output
appears on a single line.

In some environments the output from print gets stored without being dis-
played until println is invoked. If the program terminates, and you forget
to invoke println, you may never see the stored output.

The output of this program is:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

7.5 Encapsulation and generalization

Encapsulation means taking a piece of code and wrapping it up in a method,
allowing you to take advantage of all the things methods are good for. We
have seen two examples of encapsulation, when we wrote printParity in
Section 4.3 and isSingleDigit in Section 6.7.

Generalization means taking something speci c, like printing multiples of 2,
and making it more general, like printing the multiples of any integer.

Here’s a method that encapsulates the loop from the previous section and
generalizes it to print multiples of n.

public static void printMultiples(int n) {

int i = 1;

while (i <= 6) {
System.out.print(n*i +);
i=1+1;

}

System.out.println("");

}

To encapsulate, all 1 had to do was add the rst line, which declares the
name, parameter, and return type. To generalize, all | had to do was replace
the value 2 with the parameter n.

82 Chapter 7. Iteration and loops

If I invoke this method with the argument 2, | get the same output as before.
With argument 3, the output is:

3 6 9 12 15 18
and with argument 4, the output is
4 8 12 16 20 24

By now you can probably guess how we are going to print a multiplication
table: we’ll invoke printMultiples repeatedly with di erent arguments. In
fact, we are going to use another loop to iterate through the rows.
int 1 = 1;
while (i <= 6) {
printMultiples(i);
i=1+1;
}

First of all, notice how similar this loop is to the one inside printMultiples.
All I did was replace the print statement with a method invocation.

The output of this program is

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24
5 10 15 20 25 30
6 1218 24 30 36

which is a (slightly sloppy) multiplication table. If the sloppiness bothers
you, Java provides methods that give you more control over the format of
the output, but I’m not going to get into that here.

7.6 Methods and encapsulation

In Section 3.5 | listed some of the reasons methods are useful. Here are
several more:

e By giving a name to a sequence of statements, you make your program
easier to read and debug.

7.7. Local variables 83

¢ Dividing a long program into methods allows you to separate parts of
the program, debug them in isolation, and then compose them into a
whole.

e Methods facilitate both recursion and iteration.

e \Well-designed methods are often useful for many programs. Once you
write and debug one, you can reuse it.

To demonstrate encapsulation again, I'll take the code from the previous
section and wrap it up in a method:

public static void printMultTable() {
int i = 1;
while (i <= 6) {
printMultiples(i);
i=1+1;
}
}

The development process | am demonstrating is called encapsulation and
generalization. You start by adding code to main or another method.
When you get it working, you extract it and wrap it up in a method. Then
you generalize the method by adding parameters.

Sometimes you don’t know when you start writing exactly how to divide the
program into methods. This process lets you design as you go along.

7.7 Local variables

You might wonder how we can use the same variable i in both
printMultiples and printMultTable. Didn’t | say that you can only de-
clare a variable once? And doesn’t it cause problems when one of the methods
changes the value of the variable?

The answer to both questions is \no," because the i in printMultiples and
the i in printMultTable are not the same variable. They have the same
name, but they do not refer to the same storage location, and changing the
value of one has no e ect on the other.

84 Chapter 7. Iteration and loops

Variables declared inside a method de nition are called local variables be-
cause they only exist inside the method. You cannot access a local variable
from outside its \home" method, and you are free to have multiple variables
with the same name, as long as they are not in the same method.

Although it can be confusing, there are good reasons to reuse names. For
example, it is common to use the names i, j and k as loop variables. If you
avoid using them in one method just because you used them somewhere else,
you make the program harder to read.

7.8 More generalization

As another example of generalization, imagine you wanted a program that
would print a multiplication table of any size, not just the 6x6 table. You
could add a parameter to printMultTable:

public static void printMultTable(int high) {
int i = 1;
while (i <= high) {
printMultiples(i);
i=1+1;
}
}

I replaced the value 6 with the parameter high. If I invoke printMultTable
with the argument 7, | get

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

which is ne, except that | probably want the table to be square (same

number of rows and columns), which means | have to add another parameter
to printMultiples, to specify how many columns the table should have.

I also call this parameter high, demonstrating that di erent methods can
have parameters with the same name (just like local variables):

7.8. More generalization 85

public static void printMultiples(int n, int high) {

int i = 1;
while (i <= high) {
System.out.print(n*i +)
i=1+1;
}
System.out.println("");
}

public static void printMultTable(int high) {
int 1 = 1;
while (i <= high) {
printMultiples(i, high);
i=1+1;
}
}

Notice that when | added a new parameter, | had to change the rstline, and |
also had to change the place where the method is invoked in printMultTable.
As expected, this program generates a square 7x7 table:

2 3 4 5 6 7

4 6 8 10 12 14

6 9 12 15 18 21

8 12 16 20 24 28
10 15 20 25 30 35
1218 24 30 36 42
14 21 28 35 42 49

~N O O WN e

When you generalize a method appropriately, you often nd that it has ca-
pabilities you did not plan. For example, you might notice that the multi-
plication table is symmetric, because ab = ba, so all the entries in the table
appear twice. You could save ink by printing only half the table. To do that,
you only have to change one line of printMultTable. Change

printMultiples(i, high);
to

printMultiples(i, i);
and you get

86 Chapter 7. Iteration and loops

1218 24 30 36
14 21 28 35 42 49

~N O Ok W

I’ll leave it up to you to gure out how it works.

7.9 Glossary

loop: A statement that executes repeatedly while some condition is satis ed.
infinite loop: A loop whose condition is always true.
body: The statements inside the loop.

iteration: One pass through (execution of) the body of the loop, including
the evaluation of the condition.

encapsulate: To divide a large complex program into components (like
methods) and isolate the components from each other (for example,
by using local variables).

local variable: A variable that is declared inside a method and that exists
only within that method. Local variables cannot be accessed from out-
side their home method, and do not interfere with any other methods.

generalize: To replace something unnecessarily speci ¢ (like a constant
value) with something appropriately general (like a variable or param-
eter). Generalization makes code more versatile, more likely to be
reused, and sometimes even easier to write.

program development: A process for writing programs. So far we have
seen \incremental development™ and \encapsulation and generaliza-
tion™.

7.10. Exercises 87

7.10 Exercises

Exercise 7.1. Consider the following code:

public static void main(Stringl[] args) {
loop(10);
}

public static void loop(int n) {
int i = n;
while (i > 0) {
System.out.println(i);
if (i%2 == 0) {

i=1/2;
} else {
i= i+l

3

1. Draw a table that shows the value of the variables i and n during
the execution of loop. The table should contain one column for each
variable and one line for each iteration.

2. What is the output of this program?

Exercise 7.2. Let’s say you are given a number, a, and you want to nd its
square root. One way to do that is to start with a very rough guess about
the answer, z(, and then improve the guess using the following formula:

x1 = (xo + a/xg)/2
For example, if we want to nd the square root of 9, and we start with z, = 6,
then z; = (6 +9/6)/2 = 15/4 = 3.75, which is closer.

We can repeat the procedure, using z; to calculate z,, and so on. In this
case, ro = 3.075 and x3 = 3.00091. So that is converging very quickly on the
right answer(which is 3).

Write a method called squareRoot that takes a double as a parameter and
that returns an approximation of the square root of the parameter, using this
technique. You may not use Math.sqrt.

88 Chapter 7. Iteration and loops

As your initial guess, you should use a/2. Your method should iterate until
it gets two consecutive estimates that di er by less than 0.0001; in other
words, until the absolute value of x,, — z,,_; is less than 0.0001. You can use
Math.abs to calculate the absolute value.

Exercise 7.3. In Exercise 6.9 we wrote a recursive version of power, which
takes a double x and an integer n and returns z. Now write an iterative
method to perform the same calculation.

Exercise 7.4. Section 6.8 presents a recursive method that computes the
factorial function. Write an iterative version of factorial.

Exercise 7.5. One way to calculate e is to use the in nite series expansion
" =1+x+27/2+2°/3 + 2t /4 + .
If the loop variable is named i, then the ith term is x/il.

1. Write a method called myexp that adds up the rst n terms of this
series. You can use the factorial method from Section 6.8 or your
iterative version from the previous exercise.

2. You can make this method much more e cient if you realize that in
each iteration the numerator of the term is the same as its predecessor
multiplied by x and the denominator is the same as its predecessor
multiplied by i. Use this observation to eliminate the use of Math.pow
and factorial, and check that you still get the same result.

3. Write a method called check that takes a single parameter, x, and that
prints the values of x, Math.exp(x) and myexp (x) for various values of
x. The output should look something like:

1.0 2.708333333333333 2.718281828459045

HINT: you can use the String "\t" to print a tab character between
columns of a table.

4. Vary the number of terms in the series (the second argument that check
sends to myexp) and see the e ect on the accuracy of the result. Adjust
this value until the estimated value agrees with the \correct™ answer
when x is 1.

7.10. Exercises 89

5. Write a loop in main that invokes check with the values 0.1, 1.0, 10.0,
and 100.0. How does the accuracy of the result vary as x varies? Com-
pare the number of digits of agreement rather than the di erence be-
tween the actual and estimated values.

6. Add a loop in main that checks myexp with the values -0.1, -1.0, -10.0,
and -100.0. Comment on the accuracy.

Exercise 7.6. One way to evaluate exp(—z?) is to use the in nite series
expansion
exp(—2?)=1—-2>+2*/2 - 2°/6+ ...

In other words, we need to add up a series of terms where the ith term is
equal to (—1)'a?/i!. Write a method named gauss that takes x and n as
arguments and that returns the sum of the rst n terms of the series. You
should not use factorial or pow.

90

Chapter 7.

Iteration and loops

Chapter 8

Strings and things

8.1 Characters

In Java and other object-oriented languages, objects are collections of re-
lated data that come with a set of methods. These methods operate on
the objects, performing computations and sometimes modifying the object’s
data.

Strings are objects, so you might ask \What is the data contained in a
String object?" and \What are the methods we can invoke on String ob-
jects?” The components of a String object are letters or, more generally,
characters. Not all characters are letters; some are numbers, symbols, and
other things. For simplicity I call them all letters. There are many meth-
ods, but | use only a few in this book. The rest are documented at http:
//download.oracle.com/javase/6/docs/api/java/lang/String.html.

The rst method we will look at is charAt, which allows you to extract letters
from a String. char is the variable type that can store individual characters
(as opposed to strings of them).

chars work just like the other types we have seen:

char ltr = ;

if (Ltr == '¢') {
System.out.println(ltr);

b

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

92 Chapter 8. Strings and things

Character values appear in single quotes, like >c’. Unlike string values
(which appear in double quotes), character values can contain only a sin-
gle letter or symbol.

Here’s how the charAt method is used:
String fruit = ;
char letter = fruit.charAt(1);
System.out.println(letter);

fruit.charAt () means that | am invoking the charAt method on the object
named fruit. | am passing the argument 1 to this method, which means
that | want to know the rst letter of the string. The result is a character,
which is stored in a char named letter. When | print the value of letter,
| get a surprise:

a

a is not the rst letter of "banana". Unless you are a computer scientist.
For technical reasons, computer scientists start counting from zero. The Oth
letter (\zeroeth™) of "banana" is b. The 1th letter (\oneth™) is a and the
2th (\twooth™) letter is n.

If you want the zereoth letter of a string, you have to pass 0 as an argument:

char letter = fruit.charAt(0);

8.2 Length

The next String method we’ll look at is length, which returns the number
of characters in the string. For example:

int length = fruit.length();

length takes no arguments and returns an integer, in this case 6. Notice
that it is legal to have a variable with the same name as a method (although
it can be confusing for human readers).

To nd the last letter of a string, you might be tempted to try something
like

int length = fruit.length();

char last = fruit.charAt(length); // WRONG!!

8.3. Traversal 93

That won’t work. The reason is that there is no 6th letter in "banana".
Since we started counting at 0, the 6 letters are numbered from 0 to 5. To
get the last character, you have to subtract 1 from length.

int length = fruit.length();
char last = fruit.charAt(length-1);

8.3 Traversal

A common thing to do with a string is start at the beginning, select each
character in turn, do some computation with it, and continue until the end.
This pattern of processing is called a traversal. A natural way to encode a
traversal is with a while statement:

int index = 0;

while (index < fruit.length()) {
char letter = fruit.charAt(index);
System.out.println(letter);
index = index + 1;

}

This loop traverses the string and prints each letter on a line by itself. Notice
that the condition is index < fruit.length(), which means that when
index is equal to the length of the string, the condition is false and the body
of the loop is not executed. The last character we access is the one with the
index fruit.length()-1.

The name of the loop variable is index. An index is a variable or value used
to specify a member of an ordered set, in this case the string of characters.
The index indicates (hence the name) which one you want.

8.4 Run-time errors

Way back in Section 1.3.2 | talked about run-time errors, which are errors
that don’t appear until a program has started running. In Java run-time
errors are called exceptions.

You probably haven’t seen many run-time errors, because we haven’t been do-
ing many things that can cause one. Well, now we are. If you use the charAt

94 Chapter 8. Strings and things

method and provide an index that is negative or greater than length-1, it
throws an exception. You can think of \throwing" an exception like throw-
ing a tantrum.

When that happens, Java prints an error message with the type of exception
and a stack trace, which shows the methods that were running when the
exception occurred. Here is an example:

public class BadString {

public static void main(String[] args) {
processWord ();

}

public static void processWord(String s) {
char ¢ = getLastLetter(s);
System.out.println(c);

+

public static char getLastLetter(String s) {
int index = s.length(); // WRONG!
char ¢ = s.charAt(index);
return c;

Notice the error in getLastLetter: the index of the last character should
be s.length()-1. Here’s what you get:

Exception in thread "main" java.lang.StringIndexOutOfBoundsException:
String index out of range: 6

at java.lang.String.charAt(String.java:694)

at BadString.getLastLetter(BadString.java:24)

at BadString.processWord(BadString. java:18)

at BadString.main(BadString.java:14)

Then the program ends. The stack trace can be hard to read, but it contains
a lot of information.

8.5. Reading documentation 95

8.5 Reading documentation

If you go to http://download.oracle.com/javase/6/docs/api/java/
lang/String.html. and click on charAt, you get the following documenta-
tion (or something like it):

public char charAt(int index)

Returns the char value at the specified index. An index ranges
from O to length() - 1. The first char value of the sequence is
at index O, the next at index 1, and so on, as for array indexing.

Parameters: index - the index of the char wvalue.

Returns: the char value at the specified index of this string.
The first char value is at index O.

Throws: IndexOutOfBoundsException - if the index argument is
negative or not less than the length of this string.

The rst line is the method’s prototype, which speci es the name of the
method, the type of the parameters, and the return type.

The next line describes what the method does. The following lines explain the
parameters and return values. In this case the explanations are redundant,
but the documentation is supposed to t a standard format. The last line
describes the exceptions this method might throw.

It might take some time to get comfortable with this kind of documentation,
but it is worth the e ort.

8.6 The index0f method

index0f is the inverse of charAt: charAt takes an index and returns the
character at that index; index0f takes a character and nds the index where
that character appears.

charAt fails if the index is out of range, and throws an exception. index0f
fails if the character does not appear in the string, and returns the value -1.

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

96 Chapter 8. Strings and things

String fruit = ;
int index = fruit.index0f ();

This nds the index of the letter >a’ in the string. In this case, the letter
appears three times, so it is not obvious what index0f should do. According
to the documentation, it returns the index of the first appearance.

To nd subsequent appearances, there is another version of index0f. It takes
a second argument that indicates where in the string to start looking. For
an explanation of this kind of overloading, see Section 6.4.

If we invoke:

int index = fruit.index0f(, 2);

it starts at the twoeth letter (the rst n) and nds the second a, which is at
index 3. If the letter happens to appear at the starting index, the starting
index is the answer. So

int index = fruit.indexO0f(, 5);

returns 5.

8.7 Looping and counting

The following program counts the number of times the letter >a’ appears in
a string:

String fruit = ;

int length = fruit.length();

int count = O;

int index = O;
while (index < length) {
if (fruit.charAt(index) ==) {
count = count + 1;
}
index = index + 1;
}

System.out.println(count);

8.8. Increment and decrement operators 97

This program demonstrates a common idiom, called a counter. The variable
count is initialized to zero and then incremented each time we nd an ’a’.
To increment is to increase by one; it is the opposite of decrement. When
we exit the loop, count contains the result: the total number of a’s.

8.8 Increment and decrement operators

Incrementing and decrementing are such common operations that Java pro-
vides special operators for them. The ++ operator adds one to the cur-
rent value of an int or char. -- subtracts one. Neither operator works on
doubleS, booleanS Or Strings.

Technically, it is legal to increment a variable and use it in an expression at
the same time. For example, you might see something like:

System.out.println(i++);

Looking at this, it is not clear whether the increment will take e ect before or
after the value is printed. Because expressions like this tend to be confusing,
I discourage you from using them. In fact, to discourage you even more, I’'m
not going to tell you what the result is. If you really want to know, you can
try it.

Using the increment operators, we can rewrite the letter-counter:

int index = O;
while (index < length) {

if (fruit.charAt(index) ==) o
count++;
}
index++;
}
It is a common error to write something like
index = index++; // WRONG!!

Unfortunately, this is syntactically legal, so the compiler will not warn you.
The e ect of this statement is to leave the value of index unchanged. This
is often a di cult bug to track down.

Remember, you can write index = index+1, Or you can write index++, but
you shouldn’t mix them.

98 Chapter 8. Strings and things

8.9 Strings are immutable

As you read the documentation of the String methods, you might notice
toUpperCase and toLowerCase. These methods are often a source of confu-
sion, because it sounds like they have the e ect of changing (or mutating) an
existing string. Actually, neither these methods nor any others can change a
string, because strings are immutable.

When you invoke toUpperCase on a String, you get a new String as a
return value. For example:

String name = ;

String upperName = name.toUpperCase();

After the second line is executed, upperName contains the value "ALAN
TURING", but name still contains "Alan Turing".

8.10 Strings are incomparable

It is often necessary to compare strings to see if they are the same, or to see
which comes rst in alphabetical order. It would be nice if we could use the
comparison operators, like == and >, but we can’t.

To compare Strings, we have to use the equals and compareTo methods.
For example:

String namel ;
String name2 ;

if (namel.equals (name2)) {
System.out.println();
+

int flag = namel.compareTo (name2);
if (flag == 0) {
System.out.println();
} else if (flag < 0) {
System.out.println();
} else if (flag > 0) {

8.11. Glossary 99

System.out.println()3
}

The syntax here is a little weird. To compare two Strings, you have to
invoke a method on one of them and pass the other as an argument.

The return value from equals is straightforward enough; true if the strings
contain the same characters, and false otherwise.

The return value from compareTo is a weird, too. It is the di erence between
the rst characters in the strings that di er. If the strings are equal, it is 0.
If the rst string (the one on which the method is invoked) comes rst in the
alphabet, the di erence is negative. Otherwise, the di erence is positive. In
this case the return value is positive 8, because the second letter of \Ada"
comes before the second letter of \Alan™ by 8 letters.

Just for completeness, | should admit that it is legal, but very seldom correct,
to use the == operator with Strings. | explain why in Section 13.4; for now,
don’t do it.

8.11 Glossary

object: A collection of related data that comes with a set of methods that
operate on it. The objects we have used so far are Strings, Bugs,
Rocks, and the other GridWorld objects.

index: A variable or value used to select one of the members of an ordered
set, like a character from a string.

exception: A run-time error.
throw: Cause an exception.

stack trace: A report that shows the state of a program when an exception
occurs.

prototype: The rst line of a method, which speci es the name, parameters
and return type.

traverse: To iterate through all the elements of a set performing a similar
operation on each.

100 Chapter 8. Strings and things

counter: A variable used to count something, usually initialized to zero and
then incremented.

increment: Increase the value of a variable by one. The increment operator
in Java is ++.

decrement: Decrease the value of a variable by one. The decrement oper-
ator in Java is --.

8.12 Exercises

Exercise 8.1. Write a method that takes a String as an argument and that
prints the letters backwards all on one line.

Exercise 8.2. Read the stack trace in Section 8.4 and answer these ques-
tions:

e What kind of Exception occurred, and what package is it de ned in?

What is the value of the index that caused the exception?

What method threw the exception, and where is that method de ned?

What method invoked charAt?

In BadString. java, what is the line number where charAt was in-
voked?

Exercise 8.3. Encapsulate the code in Section 8.7 in a method named
countLetters, and generalize it so that it accepts the string and the let-
ter as arguments.

Then rewrite the method so that it uses index0f to locate the a’s, rather
than checking the characters one by one.

Exercise 8.4. The purpose of this exercise is to review encapsulation and
generalization.

1. Encapsulate the following code fragment, transforming it into a method
that takes a String as an argument and that returns the nal value of
count.

8.12. Exercises 101

2. In a sentence or two, describe what the resulting method does (without
getting into the details of how).

3. Now that you have generalized the code so that it works on any String,
what could you do to generalize it more?

String s = ;
int len = s.lengthQ);

int i = 0;
int count = O;

while (i < len) {
char ¢ = s.charAt(i);

if (c ==) o
count = count + 1;
} else if (¢ ==) {

count = count - 1;

System.out.println(count);

Exercise 8.5. The point of this exercise is to explore Java types and Il in
some of the details that aren’t covered in the chapter.

1. Create a new program named Test . java and write a main method that
contains expressions that combine various types using the + operator.
For example, what happens when you \add" a String and a char?
Does it perform addition or concatenation? What is the type of the
result? (How can you determine the type of the result?)

2. Make a bigger copy of the following table and Il it in. At the intersec-
tion of each pair of types, you should indicate whether it is legal to use
the + operator with these types, what operation is performed (addition
or concatenation), and what the type of the result is.

102 Chapter 8. Strings and things
boolean | char | int | String
boolean
char
int
String
3. Think about some of the choices the designers of Java made when they
lled in this table. How many of the entries seem unavoidable, as if
there were no other choice? How many seem like arbitrary choices from
several equally reasonable possibilities? How many seem problematic?
4. Here’s a puzzler: normally, the statement x++ is exactly equivalent to

x = x + 1. Butif x is a char, it’s not! In that case, x++ is legal, but
x = x + 1 causes an error. Try it out and see what the error message
is, then see if you can gure out what is going on.

Exercise 8.6. What is the output of this program? Describe in a sentence
what mystery does (not how it works).

public class Mystery {

public static String mystery(String s) {
int i = s.length() - 1;
String total = ;

while (i >= 0) {
char ch = s.charAt(i);
System.out.println(i + + ch);

total = total + ch;
i--;
}

return total;

public static void main(String[] args) {
System.out.println(mystery());

}

8.12. Exercises 103

Exercise 8.7. A friend of yours shows you the following method and explains
that if number is any two-digit number, the program will output the number
backwards. He claims that if number is 17, the method will output 71.

Is he right? If not, explain what the program actually does and modify it so
that it does the right thing.

int number = 17;

int lastDigit = number%10;

int firstDigit = number/10;

System.out.println(lastDigit + firstDigit);
Exercise 8.8. What is the output of the following program?

public class Enigma {

public static void enigma(int x) {
if (x == 0) {
return;
} else {
enigma(x/2);

System.out.print (x%2) ;

public static void main(String[] args) {
enigma(5);
System.out.println("");

}
Explain in 4-5 words what the method enigma really does.

Exercise 8.9. 1. Create a new program named Palindrome. java.

2. Write a method named first that takes a String and returns the rst
letter, and one named last that returns the last letter.

3. Write a method named middle that takes a String and returns a sub-
string that contains everything exzcept the rst and last characters.

104 Chapter 8. Strings and things

Hint: read the documentation of the substring method in the String
class. Run a few tests to make sure you understand how substring
works before you try to write middle.

What happens if you invoke middle on a string that has only two
letters? One letter? No letters?

4. The usual de nition of a palindrome is a word that reads the same
both forward and backward, like \otto" and \palindromeemordnilap.”
An alternative way to de ne a property like this is to specify a way of
testing for the property. For example, we might say, \a single letter is
a palindrome, and a two-letter word is a palindrome if the letters are
the same, and any other word is a palindrome if the rst letter is the
same as the last and the middle is a palindrome."

Write a recursive method named isPalindrome that takes a String
and that returns a boolean indicating whether the word is a palindrome
or not.

5. Once you have a working palindrome checker, look for ways to simplify
it by reducing the number of conditions you check. Hint: it might be
useful to adopt the de nition that the empty string is a palindrome.

6. On a piece of paper, gure out a strategy for checking palindromes
iteratively. There are several possible approaches, so make sure you
have a solid plan before you start writing code.

7. Implement your strategy in a method called isPalindromeIter.

8. Optional: Appendix B provides code for reading a list of words from a
le. Read a list of words and print the palindromes.

Exercise 8.10. A word is said to be \abecedarian™ if the letters in the
word appear in alphabetical order. For example, the following are all 6-letter
English abecedarian words.

abdest, acknow, acorsy, adempt, adipsy, agnosy, be st, behint,
beknow, bijoux, biopsy, cestuy, chintz, de ux, dehors, dehort,
deinos, diluvy, dimpsy

8.12. Exercises 105

1. Describe a process for checking whether a given word (String) is
abecedarian, assuming that the word contains only lower-case letters.
Your process can be iterative or recursive.

2. Implement your process in a method called isAbecedarian.

Exercise 8.11. A dupledrome is a word that contains only double letters,
like \llaammaa" or \ssaabb". 1 conjecture that there are no dupledromes
in common English use. To test that conjecture, | would like a program
that reads words from the dictionary one at a time and checks them for
dupledromity.

Write a method called isDupledrome that takes a String and returns a
boolean indicating whether the word is a dupledrome.

Exercise 8.12. 1. The Captain Crunch decoder ring works by taking
each letter in a string and adding 13 to it. For example, 'a’ becomes
'n’ and 'b’ becomes ’0’. The letters \wrap around™ at the end, so 'z’
becomes 'm’.

Write a method that takes a String and that returns a new String
containing the encoded version. You should assume that the String
contains upper and lower case letters, and spaces, but no other punc-
tuation. Lower case letters should be tranformed into other lower case
letters; upper into upper. You should not encode the spaces.

2. Generalize the Captain Crunch method so that instead of adding 13
to the letters, it adds any given amount. Now you should be able to
encode things by adding 13 and decode them by adding -13. Try it.

Exercise 8.13. If you did the GridWorld exercises in Chapter 5, you might
enjoy this exercise. The goal is to use trigonometry to get the Bugs to chase
each other.

Make a copy of BugRunner. java named ChaseRunner.java and import it
into your development environment. Before you change anything, check that
you can compile and run it.

e Create two Bugs, one red and one blue.

106

Chapter 8. Strings and things

Write a method called distance that takes two Bugs and computes the
distance between them. Remember that you can get the x-coordinate
of a Bug like this:

int x = bug.getLocation().getCol();

Write a method called turnToward that takes two Bugs and turns one
to face the other. HINT: use Math.atan2, but remember that the
result is in radians, so you have to convert to degrees. Also, for Bugs,
0 degress is North, not East.

Write a method called moveToward that takes two Bugs, turns the rst
to face the second, and then moves the rst one, if it can.

Write a method called moveBugs that takes two Bugs and an integer
n, and moves each Bug toward the other n times. You can write this
method recursively, or use a while loop.

Test each of your methods as you develop them. When they are all
working, look for opportunities to improve them. For example, if you
have redundant code in distance and turnToward, you could encap-
sulate the repeated code in a method.

Chapter 9

Mutable objects

Strings are objects, but they are atypical objects because

e They are immutable.
e They have no attributes.

e You don’t have to use new to create one.

In this chapter, we use two objects from Java libraries, Point and Rectangle.
But rst, | want to make it clear that these points and rectangles are not
graphical objects that appear on the screen. They are values that contain
data, just like ints and doubles. Like other values, they are used internally
to perform computations.

9.1 Packages

The Java libraries are divided into packages, including java.lang, which
contains most of the classes we have used so far, and java.awt, the Ab-
stract Window Toolkit (AWT), which contains classes for windows, but-
tons, graphics, etc.

To use a class de ned in another package, you have to import it. Point and
Rectangle are in the java.awt package, so to import them like this:

108 Chapter 9. Mutable objects

import java.awt.Point;
import java.awt.Rectangle;

All import statements appear at the beginning of the program, outside the
class de nition.

The classes in java.lang, like Math and String, are imported automatically,
which is why we haven’t needed the import statement yet.

9.2 Point objects

A point is two numbers (coordinates) that we treat collectively as a single
object. In mathematical notation, points are often written in parentheses,
with a comma separating the coordinates. For example, (0, 0) indicates the
origin, and (x, y) indicates the point z units to the right and y units up from
the origin.

In Java, a point is represented by a Point object. To create a new point,
you have to use new:

Point blank;
blank = new Point (3, 4);

The rst line is a conventional variable declaration: blank has type Point.
The second line invokes new, speci es the type of the new object, and provides
arguments. The arguments are the coordinates of the new point, (3,4).

The result of new is a reference to the new point, so blank contains a
reference to the newly-created object. There is a standard way to diagram
this assignment, shown in the gure.

x[3]
y[4]

As usual, the name of the variable blank appears outside the box and its
value appears inside the box. In this case, that value is a reference, which
is shown graphically with an arrow. The arrow points to the object we’re
referring to.

blank [}—=

9.3. Instance variables 109

The big box shows the newly-created object with the two values in it. The
names x and y are the names of the instance variables.

Taken together, all the variables, values, and objects in a program are called
the state. Diagrams like this that show the state of the program are called
state diagrams. As the program runs, the state changes, so you should
think of a state diagram as a snapshot of a particular point in the execution.

9.3 Instance variables

The pieces of data that make up an object are called instance variables
because each object, which is an instance of its type, has its own copy of
the instance variables.

It’s like the glove compartment of a car. Each car is an instance of the type
\car,” and each car has its own glove compartment. If you ask me to get
something from the glove compartment of your car, you have to tell me which
car is yours.

Similarly, if you want to read a value from an instance variable, you have to
specify the object you want to get it from. In Java this is done using \dot
notation."

int x = blank.x;

The expression blank.x means \go to the object blank refers to, and get
the value of x." In this case we assign that value to a local variable named
x. There is no con ict between the local variable named x and the instance
variable named x. The purpose of dot notation is to identify which variable
you are referring to unambiguously.

You can use dot notation as part of any Java expression, so the following are
legal.

System.out.println(blank.x + + blank.y);
int distance = blank.x * blank.x + blank.y * blank.y;

The rst line prints 3, 4; the second line calculates the value 25.

110 Chapter 9. Mutable objects

9.4 Objects as parameters

You can pass objects as parameters in the usual way. For example:

public static void printPoint(Point p) {
System.out.println(+p.x + +p.y +);
}

This method takes a point as an argument and prints it in the stan-
dard format. If you invoke printPoint(blank), it prints (3, 4). Ac-
tually, Java already has a method for printing Points. If you invoke
System.out.println(blank), you get

java.awt.Point [x=3,y=4]

This is a standard format Java uses for printing objects. It prints the name
of the type, followed by the names and values of the instance variables.

As a second example, we can rewrite the distance method from Section 6.2
so that it takes two Points as parameters instead of four doubles.

public static double distance(Point pl, Point p2) {
double dx = (double) (p2.x - pl.x);
double dy = (double) (p2.y - pl.y);
return Math.sqrt(dx*dx + dy*dy);

}

The typecasts are not really necessary; | added them as a reminder that the
instance variables in a Point are integers.

9.5 Rectangles

Rectangles are similar to points, except that they have four instance vari-
ables: x, y, width and height. Other than that, everything is pretty much
the same.

This example creates a Rectangle object and makes box refer to it.
Rectangle box = new Rectangle(0, 0, 100, 200);

This gure shows the e ect of this assignment.

9.6. Objects as return types 111

X 0 width | 100

box [J—=

y 0 height | 200

If you print box, you get
java.awt.Rectangle[x=0,y=0,width=100,height=200]

Again, this is the result of a Java method that knows how to print Rectangle
objects.

9.6 Objects as return types

You can write methods that return objects. For example, findCenter takes a
Rectangle as an argument and returns a Point that contains the coordinates
of the center of the Rectangle:

public static Point findCenter (Rectangle box) {
int x = box.x + box.width/2;
int y = box.y + box.height/2;
return new Point(x, y);

b

Notice that you can use new to create a new object, and then immediately
use the result as the return value.

9.7 Objects are mutable

You can change the contents of an object by making an assignment to one of
its instance variables. For example, to \move" a rectangle without changing
its size, you can modify the x and y values:

box.x = box.x + 50;
box.y = box.y + 100;

The result is shown in the gure:

112 Chapter 9. Mutable objects

x| 50 width | 100

box [}—=

y | 100 height | 200

We can encapsulate this code in a method and generalize it to move the
rectangle by any amount:

public static void moveRect(Rectangle box, int dx, int dy) {
box.x = box.x + dx;
box.y = box.y + dy;

}

The variables dx and dy indicate how far to move the rectangle in each
direction. Invoking this method has the e ect of modifying the Rectangle
that is passed as an argument.

Rectangle box = new Rectangle(0, 0, 100, 200);

moveRect (box, 50, 100);
System.out.println(box);

prints java.awt.Rectangle [x=50,y=100,width=100,height=200].

Modifying objects by passing them as arguments to methods can be useful,
but it can also make debugging more di cult because it is not always clear
which method invocations do or do not modify their arguments. Later, I
discuss some pros and cons of this programming style.

Java provides methods that operate on Points and Rectangles. You can
read the documentation at http://download.oracle.com/javase/6/docs/
api/java/awt/Point.html and http://download.oracle.com/javase/6/
docs/api/java/awt/Rectangle.html.

For example, translate has the same e ect as moveRect, but instead of
passing the Rectangle as an argument, you use dot notation:

box.translate(50, 100);

9.8 Aliasing

Remember that when you assign an object to a variable, you are assigning a
reference t0 an object. It is possible to have multiple variables that refer to

http://download.oracle.com/javase/6/docs/api/java/awt/Point.html
http://download.oracle.com/javase/6/docs/api/java/awt/Point.html
http://download.oracle.com/javase/6/docs/api/java/awt/Rectangle.html
http://download.oracle.com/javase/6/docs/api/java/awt/Rectangle.html

9.8. Aliasing 113

the same object. For example, this code:

Rectangle boxl = new Rectangle(0, 0, 100, 200);
Rectangle box2 = boxl;

generates a state diagram that looks like this:

box1 [F—= x 0 width | 100

box2[(——= y| 0 height | 200

box1 and box2 refer to the same object. In other words, this object has two
names, box1 and box2. When a person uses two names, it’s called aliasing.
Same thing with objects.

When two variables are aliased, any changes that a ect one variable also
a ect the other. For example:

System.out.println(box2.width) ;
box1.grow(50, 50);
System.out.println(box2.width) ;

The rst line prints 100, which is the width of the Rectangle referred to by
box2. The second line invokes the grow method on box1, which expands the
Rectangle by 50 pixels in every direction (see the documentation for more
details). The e ect is shown in the gure:

box1 [F—=| x| -50 width | 200

box2 [}——=| y [-50 height | 300

Whatever changes are made to box1 also apply to box2. Thus, the value
printed by the third line is 200, the width of the expanded rectangle. (As an
aside, it is perfectly legal for the coordinates of a Rectangle to be negative.)

As you can tell even from this simple example, code that involves aliasing
can get confusing fast, and can be di cult to debug. In general, aliasing
should be avoided or used with care.

114 Chapter 9. Mutable objects

9.9 null

When you create an object variable, remember that you are creating a refer-
ence to an object. Until you make the variable point to an object, the value
of the variable is null. null is a special value (and a Java keyword) that
means \no object."

The declaration Point blank; is equivalent to this initialization
Point blank = null;

and is shown in the following state diagram:

blank []
The value null is represented by a small square with no arrow.

If you try to use a null object, either by accessing an instance variable or
invoking a method, Java throws a NullPointerException, prints an error
message and terminates the program.

Point blank = null;
int x = blank.x; // NullPointerException
blank.translate(50, 50); // NullPointerException

On the other hand, it is legal to pass a null object as an argument or receive
one as a return value. In fact, it is common to do so, for example to represent
an empty set or indicate an error condition.

9.10 Garbage collection

In Section 9.8 we talked about what happens when more than one variable
refers to the same object. What happens when no variable refers to an
object? For example:

Point blank = new Point (3, 4);
blank = null;

The rst line creates a new Point object and makes blank refer to it. The
second line changes blank so that instead of referring to the object, it refers
to nothing (the null object).

9.11. Objects and primitives 115

x[3]
y[4]

If no one refers to an object, then no one can read or write any of its values,
or invoke a method on it. In e ect, it ceases to exist. We could keep the
object in memory, but it would only waste space, so periodically as your
program runs, the system looks for stranded objects and reclaims them, in
a process called garbage collection. Later, the memory space occupied by
the object will be available to be used as part of a new object.

blank []

You don’t have to do anything to make garbage collection happen, and in
general you will not be aware of it. But you should know that it periodically
runs in the background.

9.11 Objects and primitives

There are two kinds of types in Java,