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Colon Cancer Cell Line Data
Microarrays of four cell lines

HCT116: Microsatellite Instability Model

HCT111 Plus 3: MSI plus a corrective gene

SW48: CIMP line (silencing of genes)

SW480: Chromosomal Instability (CIN) line

Four treatments to each line (including no treatment)

Two “control” cell lines (RKO & HT29)

Total of 18 microarrays
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Colon Cancer Cell Line Data
Microarrays of four cell lines

HCT116: Microsatellite Instability Model

HCT111 Plus 3: MSI plus a corrective gene

SW48: CIMP line (silencing of genes)

SW480: Chromosomal Instability (CIN) line

Four treatments to each line (including no treatment)

Two “control” cell lines (RKO & HT29)

Total of 18 microarrays

Question: What genes are differentially expressed among the
various cell lines?
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Two Cell Types

Cells are the fundamental working units of all organisms.

Prokaryotes vs. Eukaryotes

Image drawn by Thomas M. Terry for The Biology Place.
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Key Macromolecules

Lipids
Mostly structural in function
Construct compartments that separate inside from
outside

DNA
Encodes hereditary information

Proteins
Do most of the work in the cell
Form 3D structure and complexes critical for function
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DNA and Base Pairs

Image Courtesy of ExploreMore Television

SMU Seminar September 9, 2005 – p.7/42



Central Dogma of Biology

Image Courtesy of BioCoach
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Transcription

Image Courtesy of BioCoach

Movie of Complete Transcription
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http://www.phschool.com/science/biology_place/biocoach/transcription/complete.html


Measuring Gene Expression

Gene expression can be quantified by measuring either
mRNA or protein.

mRNA Measures
Quantitative Northern blot, qPCR, qrt-PCR, short or
long oligonucleotide arrays, cDNA arrays, EST
sequencing, SAGE, MPSS, MS, bead arrays, etc.

Protein Measures
Quantitative Western blots, ELISA, 2D-gels, gas or
liquid chromatography, mass-spec, etc.
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Why Microarray Analysis?

Large-scale study of biological processes

Activity in cell at a certain point in time

Account for differences in phenotypes on a large-scale
genetic level

Sequences are important, but genes have effect
through expression
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Why Microarray Analysis?

Large-scale study of biological processes

Activity in cell at a certain point in time

Account for differences in phenotypes on a large-scale
genetic level

Sequences are important, but genes have effect
through expression

Rough measurement on a grand scale which has utility
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Measuring Gene Expression

Basic idea: Quantify concentration of a gene’s mRNA
transcript in a cell at a given time
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Measuring Gene Expression

Basic idea: Quantify concentration of a gene’s mRNA
transcript in a cell at a given time

How?

Immobilize DNA probes onto glass (or other medium)

Hybridize labeled target mRNA with probes

Measure how much binds to each probe (i.e. forms
DNA)
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Microarray Measurements

All raw measurements are fluorescence intensities

Target cDNA (or mRNA) is radioactively labeled

Molecules in dye are excited using a laser

Measurement is a count of the photons emitted

Entire slide or chip is scanned, and the result is a digital
image

Image is processed to locate probes and assign
intensity measurements to each probe
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Microarray Technologies

Two Channel Spotted Arrays
Robotic Microspotting
Probes are 300 to 3000 base pairs in length
Long-oligo arrays: probes are uniformly 60 to 90 bp
Commerical arrays using inkjet technology

Single-channel Arrays
High-density short oligo (25 bp) arrays (Affymetrix,
Nimblegen)
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Spotted Arrays

Diagram courtesy of Columbia Department of Computer Science
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Yeast Array Image

Yeast Array courtesy of Russ Altman, Stanford University
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The Affymetrix Chip

Human Genome U133 Plus 2.0 Array

Courtesy of Affymetrix

Some Definitions

Probes = 25 bp
sequences

Probe sets = 11 to 20
probes corresponding to
a particular gene or EST

Chip contains 54K probe
sets
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In situ Synthesis of Probes

Image Courtesy of Affymetrix
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mRNA Hybridizes to Probes

Image Courtesy of Affymetrix
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Perfect Match vs. Mismatch

PM Probe = 25 bp probe perfectly complementary to a
specific region of a gene

MM Probe = 25 bp probe agreeing with a PM apart from
the middle base.

The middle base is a transition (A ⇐⇒ G, C ⇐⇒ G) of
that base
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Perfect Match vs. Mismatch

PM Probe = 25 bp probe perfectly complementary to a
specific region of a gene

MM Probe = 25 bp probe agreeing with a PM apart from
the middle base.

The middle base is a transition (A ⇐⇒ G, C ⇐⇒ G) of
that base

Image Courtesy of Affymetrix
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PM and MM Example
Target Transcript for Human recA gene:

ctcagcttaagtcatggaattctagaggatgtatctcacaagtaggatcaag

c t c a g c t t a a g t c a t g g a a t t c t a g PM1

c t c a g c t t a a g t g a t g g a a t t c t a g MM1

t c a g c t t a a g t c a t g g a a t t c t a g a PM2

t c a g c t t a a g t c t t g g a a t t c t a g a PM2

a t t c t a g a g g a t g t a t c t c a c a a g t PM3

a t t c t a g a g g a t c t a t c t c a c a a g t MM3

a g g a t g t a t c t c a c a a g t a g g a t c a PM4

a g g a t g t a t c t c t c a a g t a g g a t c a MM4

Source: Naef and Magnasco (2003). Solving the riddle of the bright mismatches:

Labeling and effective binding in oligonucleotide arrays. Physical Review, 68.
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Image of E. Coli Gene Chip

Image Courtesy of Lee Lab at Cornell University
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Analysis Tasks

Identify up- and down-regulated genes.

Find groups of genes with similar expression profiles.

Find groups of experiments (tissues) with similar
expression profiles.

Find genes that explain observed differences among
tissues (feature selection).
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Central Dogma of MA Analysis

Computing Expression Values for each probe set requires
three steps:

Background correction (image correction for cDNA)

Normalization

Summarization
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Central Dogma of MA Analysis

Computing Expression Values for each probe set requires
three steps:

Background correction (image correction for cDNA)

Normalization

Summarization

One Approach: Robust Multichip Analysis (RMA)
Irizarry et. al., Nucleic Acids Research, 2003
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Background Correction in RMA

X = S + Y

where

X = observed probe–level intensity

S ∼ E(α) = true signal

Y ∼ TN(µ, σ2) = background noise

Reference: Irizarry et. al., Biostatistics, 2003
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RMA for the Right–Brained ...

Image courtesy of Terry Speed
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Colon Cancer Cell Line Data
Microarrays of four cell lines

HCT116: Microsatellite Instability Model

HCT111 Plus 3: MSI plus a corrective gene

SW48: CIMP line (silencing of genes)

SW480: Chromosomal Instability (CIN) line

Four treatments to each line (including no treatment)

Two “control” cell lines (RKO & HT29)

Total of 18 microarrays
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Colon Cancer Cell Line Data
Microarrays of four cell lines

HCT116: Microsatellite Instability Model

HCT111 Plus 3: MSI plus a corrective gene

SW48: CIMP line (silencing of genes)

SW480: Chromosomal Instability (CIN) line

Four treatments to each line (including no treatment)

Two “control” cell lines (RKO & HT29)

Total of 18 microarrays

Question: What genes are differentially expressed among the
various cell lines?
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Log Base 2 SW 480 Intensities
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Exploratory Data Analysis

SMU Seminar September 9, 2005 – p.29/42



Exploratory Data Analysis (cont’d)

SMU Seminar September 9, 2005 – p.30/42



Parameter Estimation
Background Corrected intensity is Eij = E(Sij|Xij),
where i = 1 . . . G, and j = 1, . . . , J .

We need to estimate µ, σ, and α.
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Parameter Estimation
Background Corrected intensity is Eij = E(Sij|Xij),
where i = 1 . . . G, and j = 1, . . . , J .

We need to estimate µ, σ, and α.

How does RMA estimate the parameters?

µ = Mode of observations to the left of the overall mode

σ = Sample standard deviation for observations to left of
overall mode

α = Mode of observations to the right of the overall mode
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Simulation Experiment

100 replications for n = 100, 000.

True parameter values of µ = 50, 100, σ = 10, 20, and
α = 50, 250.

Estimate of σ is the same as RMA

Four methods for estimating α: Mean, Median, 75th

percentile, and 99.95th percentile of PM values larger
than overall mode

Five methods of estimating µ
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Estimating µ

Estimate µ with

Affy method

Overall mode (s) of PM intensities

Mode of data to the left of 2s

Either of the above plus a one-step correction, defined
by the formula:

φ

(

s − µ

σ
− ασ

)

= ασ

[

Φ

(

s − µ

σ
− ασ

)]
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Results

MSE for α, when µ = 50, σ = 10, α = 50

Using RMA: 1754
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Results

MSE for α, when µ = 50, σ = 10, α = 50

Using RMA: 1754

µ̂ α̂ Given By
Mean Median 75% 99.95%

s 0.413 1.117 71.45 3.111
s + 1 95.97 233.9 31.72 2.378
2s 0.163 0.457 103.2 4.124

2s + 1 58.69 185.3 18.18 1.926
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Performance of Estimates
PM intensities compared to original curve for µ̂ = 2s + 1 and
various estimates of α.

Data: SW 480 cell line with short term treatment.
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An Aside on RMA

RMA has been shown to give results which are

More precise

More accurate

compared to more principled approaches.

Hein, et. al. BGX: a fully Bayesian integrated approach to
the analysis of Affymetrix GeneChip data, Biostatistics,
2005
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Other Ideas Yet Untried

Fourier or Bootstrap Deconvolution
(Hall & Qiu 2005, Cordy & Thomas 1997)
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Other Ideas Yet Untried

Fourier or Bootstrap Deconvolution
(Hall & Qiu 2005, Cordy & Thomas 1997)

Nonparametric Approach
Find smallest k1% of PM intensities
Obtain k2% of corresponding MM intensities
MM intensities are an estimate of background noise

Model PM intensities as Nonstandard Mixtures
(Statistical Science, 1989)
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Other Ideas Yet Untried

Fourier or Bootstrap Deconvolution
(Hall & Qiu 2005, Cordy & Thomas 1997)

Nonparametric Approach
Find smallest k1% of PM intensities
Obtain k2% of corresponding MM intensities
MM intensities are an estimate of background noise

Model PM intensities as Nonstandard Mixtures
(Statistical Science, 1989)

X = S + Y, where S ∼ (1 − p)δ0 + pF (x)
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Some Preliminary Results
Nonparametric Correction with k1 = 0.005 and k2 = 0.975

vs. RMA Correction

Data: SW480 Cell Line with Short-Term Treatment
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More Work To Do ...

Does our background correction method result in the
“right” answers?

Analyze Spike-In Data
ROCs

Methods of Simulating Microarray Data

Estimating background with non-differentially expressed
(or control) genes

Spatial Correlation in Affymetrix GeneChip Arrays

Modeling Intensities with a Compound Mixture of
Normal Distributions

Creating pseudo-replicate arrays
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Unanswered Biological Questions

Gene function annotation
30,000 genes in human genome

Biological networks: protein interaction
Dynamic data of variable quality

Comparative genomics
Mapping concepts from organism to organism on a

large scale
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Statistical Challenges

Enormous amount of Data
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Statistical Challenges

Enormous amount of Data

Current methods are somewhat ad-hoc

Data integration and visualization

Data has variable specificity
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Statistical Challenges

Enormous amount of Data

Current methods are somewhat ad-hoc

Data integration and visualization

Data has variable specificity

Dynamic nature of data

Multiple Comparisons
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