Gene Expression Microarrays for Dummies What We Learned this Summer

Monnie McGee & Zhongxue Chen

Department of Statistical Science Southern Methodist University

Acknowledgments

SMU Microarray Analysis Group (SMUMAG)

Faculty

Jing Cao

Tony Ng

William Schucany

Xinlei Wang

Students

Zhongxue Chen

Kinfe Gedif

Drew Hardin

Jobayer Hossain

Ariful Islam

Julia Kozlitina

Data supplied by Boland Lab at Baylor.

Outline

- Motivation
- Central Dogma of Biology
- Types of Microarrays
- Central Dogma of Microarray Analysis
- Robust Multi-Chip Average
- Improvements (?) to RMA
- Future Work

Colon Cancer Cell Line Data

- Microarrays of four cell lines
 - HCT116: Microsatellite Instability Model
 - HCT111 Plus 3: MSI plus a corrective gene
 - SW48: CIMP line (silencing of genes)
 - SW480: Chromosomal Instability (CIN) line
- Four treatments to each line (including no treatment)
- Two "control" cell lines (RKO & HT29)
- Total of 18 microarrays

Colon Cancer Cell Line Data

- Microarrays of four cell lines
 - HCT116: Microsatellite Instability Model
 - HCT111 Plus 3: MSI plus a corrective gene
 - SW48: CIMP line (silencing of genes)
 - SW480: Chromosomal Instability (CIN) line
- Four treatments to each line (including no treatment)
- Two "control" cell lines (RKO & HT29)
- Total of 18 microarrays

Question: What genes are differentially expressed among the various cell lines?

Two Cell Types

Cells are the fundamental working units of all organisms.

Prokaryotes vs. Eukaryotes

Image drawn by Thomas M. Terry for The Biology Place.

Key Macromolecules

- Lipids
 - Mostly structural in function
 - Construct compartments that separate inside from outside
- DNA
 Encodes hereditary information
- Proteins
 - Do most of the work in the cell
 - Form 3D structure and complexes critical for function

DNA and Base Pairs

Image Courtesy of ExploreMore Television

Central Dogma of Biology

Image Courtesy of BioCoach

Transcription

Image Courtesy of BioCoach

Movie of Complete Transcription

Measuring Gene Expression

Gene expression can be quantified by measuring either mRNA or protein.

mRNA Measures

Quantitative Northern blot, qPCR, qrt-PCR, short or long oligonucleotide arrays, cDNA arrays, EST sequencing, SAGE, MPSS, MS, bead arrays, etc.

Protein Measures

Quantitative Western blots, ELISA, 2D-gels, gas or liquid chromatography, mass-spec, etc.

Why Microarray Analysis?

- Large-scale study of biological processes
- Activity in cell at a certain point in time
- Account for differences in phenotypes on a large-scale genetic level
- Sequences are important, but genes have effect through expression

Why Microarray Analysis?

- Large-scale study of biological processes
- Activity in cell at a certain point in time
- Account for differences in phenotypes on a large-scale genetic level
- Sequences are important, but genes have effect through expression

Rough measurement on a grand scale which has utility

Measuring Gene Expression

Basic idea: Quantify concentration of a gene's mRNA transcript in a cell at a given time

Measuring Gene Expression

Basic idea: Quantify concentration of a gene's mRNA transcript in a cell at a given time

How?

- Immobilize DNA probes onto glass (or other medium)
- Hybridize labeled target mRNA with probes
- Measure how much binds to each probe (i.e. forms DNA)

Microarray Measurements

All raw measurements are fluorescence intensities

- Target cDNA (or mRNA) is radioactively labeled
- Molecules in dye are excited using a laser
- Measurement is a count of the photons emitted
- Entire slide or chip is scanned, and the result is a digital image
- Image is processed to locate probes and assign intensity measurements to each probe

Microarray Technologies

- Two Channel Spotted Arrays
 - Robotic Microspotting
 - Probes are 300 to 3000 base pairs in length
 - Long-oligo arrays: probes are uniformly 60 to 90 bp
 - Commerical arrays using inkjet technology
- Single-channel Arrays
 - High-density short oligo (25 bp) arrays (Affymetrix, Nimblegen)

Spotted Arrays

Diagram courtesy of Columbia Department of Computer Science

Yeast Array Image

Yeast Array courtesy of Russ Altman, Stanford University

The Affymetrix Chip

Human Genome U133 Plus 2.0 Array Courtesy of Affymetrix

Some Definitions

- Probes = 25 bp sequences
- Probe sets = 11 to 20 probes corresponding to a particular gene or EST
- Chip contains 54K probe sets

In situ Synthesis of Probes

Image Courtesy of Affymetrix

mRNA Hybridizes to Probes

RNA fragments with fluorescent tags from sample to be tested

Image Courtesy of Affymetrix

Perfect Match vs. Mismatch

- PM Probe = 25 bp probe perfectly complementary to a specific region of a gene
- MM Probe = 25 bp probe agreeing with a PM apart from the middle base.
- The middle base is a transition (A ⇒ G, C ⇒ G) of that base

Perfect Match vs. Mismatch

- PM Probe = 25 bp probe perfectly complementary to a specific region of a gene
- MM Probe = 25 bp probe agreeing with a PM apart from the middle base.
- The middle base is a transition (A \iff G, C \iff G) of that base

Perfect Match sequence: CGTTGTCCCAGGGACCGCTACCGAC Mismatch sequence: CGTTGTCCCAGGCACCGCTACCGAC

Substitution of the complementary base in the 13th nucleotide

Image Courtesy of Affymetrix

PM and MM Example

Target Transcript for Human recA gene:

ctcagcttaagtcatggaattctagaggatgtatctcacaagtaggatcaag

```
ctcagcttaagtcatggaattctag

ctcagcttaagtgatggaattctag

tcagcttaagtcatggaattctaga

pM2

tcagcttaagtcttggaattctaga

pM2

attctagaggatgtatctcacaagt

pM3

attctagaggatctatctcacaagt

aggatgtatctcacaagt

aggatgtatctcacaagtaggatca

pM4

aggatgtatctctcacaagtaggatca

MM3
```

Source: Naef and Magnasco (2003). Solving the riddle of the bright mismatches:

Labeling and effective binding in oligonucleotide arrays. Physical Review, 68.

Image of *E. Coli* Gene Chip

Image Courtesy of Lee Lab at Cornell University

Analysis Tasks

- Identify up- and down-regulated genes.
- Find groups of genes with similar expression profiles.
- Find groups of experiments (tissues) with similar expression profiles.
- Find genes that explain observed differences among tissues (feature selection).

Central Dogma of MA Analysis

Computing Expression Values for each probe set requires three steps:

- Background correction (image correction for cDNA)
- Normalization
- Summarization

Central Dogma of MA Analysis

Computing Expression Values for each probe set requires three steps:

- Background correction (image correction for cDNA)
- Normalization
- Summarization

One Approach: Robust Multichip Analysis (RMA) Irizarry et. al., Nucleic Acids Research, 2003

Background Correction in RMA

$$X = S + Y$$

where

X =observed probe-level intensity

 $S \sim E(\alpha)$ = true signal

 $Y \sim TN(\mu, \sigma^2)$ = background noise

Reference: Irizarry et. al., Biostatistics, 2003

RMA for the Right-Brained ...

Image courtesy of Terry Speed

Colon Cancer Cell Line Data

- Microarrays of four cell lines
 - HCT116: Microsatellite Instability Model
 - HCT111 Plus 3: MSI plus a corrective gene
 - SW48: CIMP line (silencing of genes)
 - SW480: Chromosomal Instability (CIN) line
- Four treatments to each line (including no treatment)
- Two "control" cell lines (RKO & HT29)
- Total of 18 microarrays

Colon Cancer Cell Line Data

- Microarrays of four cell lines
 - HCT116: Microsatellite Instability Model
 - HCT111 Plus 3: MSI plus a corrective gene
 - SW48: CIMP line (silencing of genes)
 - SW480: Chromosomal Instability (CIN) line
- Four treatments to each line (including no treatment)
- Two "control" cell lines (RKO & HT29)
- Total of 18 microarrays

Question: What genes are differentially expressed among the various cell lines?

Log Base 2 SW 480 Intensities

Exploratory Data Analysis

Exploratory Data Analysis (cont'd)

SE of PM within probeset

Parameter Estimation

- Background Corrected intensity is $E_{ij} = E(S_{ij}|X_{ij})$, where i = 1 ... G, and j = 1, ..., J.
- We need to estimate μ , σ , and α .

Parameter Estimation

- Background Corrected intensity is $E_{ij} = E(S_{ij}|X_{ij})$, where i = 1 ... G, and j = 1, ..., J.
- We need to estimate μ , σ , and α .

How does RMA estimate the parameters?

- μ = Mode of observations to the left of the overall mode
- σ = Sample standard deviation for observations to left of overall mode
- \bullet α = Mode of observations to the right of the overall mode

Simulation Experiment

- 100 replications for n = 100,000.
- True parameter values of $\mu=50,100$, $\sigma=10,20$, and $\alpha=50,250$.
- Estimate of σ is the same as RMA
- Four methods for estimating α : Mean, Median, 75^{th} percentile, and 99.95^{th} percentile of PM values larger than overall mode
- ullet Five methods of estimating μ

Estimating μ

Estimate μ with

- Affy method
- Overall mode (s) of PM intensities
- Mode of data to the left of 2s
- Either of the above plus a one-step correction, defined by the formula:

$$\phi\left(\frac{s-\mu}{\sigma} - \alpha\sigma\right) = \alpha\sigma\left[\Phi\left(\frac{s-\mu}{\sigma} - \alpha\sigma\right)\right]$$

Results

MSE for α , when $\mu = 50$, $\sigma = 10$, $\alpha = 50$

Using RMA: 1754

Results

MSE for α , when $\mu = 50$, $\sigma = 10$, $\alpha = 50$

Using RMA: 1754

$\hat{\mu}$	\hat{lpha} Given By			
	Mean	Median	75%	99.95%
S	0.413	1.117	71.45	3.111
s+1	95.97	233.9	31.72	2.378
2s	0.163	0.457	103.2	4.124
2s+1	58.69	185.3	18.18	1.926

Performance of Estimates

PM intensities compared to original curve for $\hat{\mu} = 2s + 1$ and various estimates of α .

Data: SW 480 cell line with short term treatment.

An Aside on RMA

RMA has been shown to give results which are

- More precise
- More accurate

compared to more principled approaches.

Hein, et. al. BGX: a fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data, *Biostatistics*, 2005

 Fourier or Bootstrap Deconvolution (Hall & Qiu 2005, Cordy & Thomas 1997)

- Fourier or Bootstrap Deconvolution (Hall & Qiu 2005, Cordy & Thomas 1997)
- Nonparametric Approach

- Fourier or Bootstrap Deconvolution (Hall & Qiu 2005, Cordy & Thomas 1997)
- Nonparametric Approach
 - Find smallest k_1 % of PM intensities

- Fourier or Bootstrap Deconvolution (Hall & Qiu 2005, Cordy & Thomas 1997)
- Nonparametric Approach
 - Find smallest k_1 % of PM intensities
 - Obtain k_2 % of corresponding MM intensities

- Fourier or Bootstrap Deconvolution (Hall & Qiu 2005, Cordy & Thomas 1997)
- Nonparametric Approach
 - Find smallest k_1 % of PM intensities
 - Obtain k_2 % of corresponding MM intensities
 - MM intensities are an estimate of background noise

- Fourier or Bootstrap Deconvolution (Hall & Qiu 2005, Cordy & Thomas 1997)
- Nonparametric Approach
 - Find smallest k_1 % of PM intensities
 - Obtain k_2 % of corresponding MM intensities
 - MM intensities are an estimate of background noise
- Model PM intensities as Nonstandard Mixtures (Statistical Science, 1989)

- Fourier or Bootstrap Deconvolution (Hall & Qiu 2005, Cordy & Thomas 1997)
- Nonparametric Approach
 - Find smallest k_1 % of PM intensities
 - Obtain k_2 % of corresponding MM intensities
 - MM intensities are an estimate of background noise
- Model PM intensities as Nonstandard Mixtures (Statistical Science, 1989)

$$X = S + Y$$
, where $S \sim (1 - p)\delta_0 + pF(x)$

Some Preliminary Results

Nonparametric Correction with $k_1 = 0.005$ and $k_2 = 0.975$ vs. RMA Correction

Data: SW480 Cell Line with Short-Term Treatment

More Work To Do ...

- Does our background correction method result in the "right" answers?
 - Analyze Spike-In Data
 - ROCs
- Methods of Simulating Microarray Data
- Estimating background with non-differentially expressed (or control) genes
- Spatial Correlation in Affymetrix GeneChip Arrays
- Modeling Intensities with a Compound Mixture of Normal Distributions
- Creating pseudo-replicate arrays

Unanswered Biological Questions

- Gene function annotation 30,000 genes in human genome
- Biological networks: protein interaction Dynamic data of variable quality
- Comparative genomics
 Mapping concepts from organism to organism on a large scale

Enormous amount of Data

- Enormous amount of Data
- Current methods are somewhat ad-hoc

- Enormous amount of Data
- Current methods are somewhat ad-hoc
- Data integration and visualization

- Enormous amount of Data
- Current methods are somewhat ad-hoc
- Data integration and visualization
- Data has variable specificity

- Enormous amount of Data
- Current methods are somewhat ad-hoc
- Data integration and visualization
- Data has variable specificity
- Dynamic nature of data

- Enormous amount of Data
- Current methods are somewhat ad-hoc
- Data integration and visualization
- Data has variable specificity
- Dynamic nature of data
- Multiple Comparisons

References

- Affymetrix Technical Note: Design and Performance of the GeneChip Human Genome U133 Puls 2.0 and Human Genome U133A Plus 2.0 Arrays (2003). www.affymetrix.com.
- **2.** Cordy, C. B. and Thomas, D. R. (1997). Deconvolution of a distribution function. *Journal of the American Statistical Association*, **92**, 1459–65.
- 3. Hall, Peter and Qiu, Peihua (2005). Discrete-transform approach to deconvolution problems. *Biometrika*, 92, 135–148.
- 4. Hein, A. K., Richardson, S., Causton, H., Ambler, G. K., and Green, P. J. (2005). BGX: a fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data. *Biostatistics*, 6, 349–373.
- 5. Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., and Speed, T. P. (2003). Summaries of Affymetrix GeneChip probe level data. *Nucleic Acids Research*, 31 (4) e15.
- Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., and Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. *Biostatistics*, 4, 249–264.
- 7. Panel on Nonstandard Mixtures of Distributions (1989). Statistical Models and Analysis in Auditing. *Statistical Science*, 4, 2-33.