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HEP: Landscape and Frontiers
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Software Challenges for HL-LHC

Pile-up of Y200 = particularly a challenge for

charged particle reconstruction (superlinear scaling, “x30-50)
With a flat budget, improvements from hardware of “x6
(Moore’s Law) are the real maximum we can expect

Increased amount of data requires us to revise/evolve our computing and data

management approaches
o  We must be able to feed our applications with data efficiently at scale (end-to-end computing)
o  For analysis sheer volume of event data is a major factor - I/O bound workload

HEP software typically executes 1 instruction at a time (per thread)

o  Major re-engineering required to benefit from modern CPUs (can do 8 in theory, more like 2-4 for ‘real’
code)
o  Accelerators like GPUs are even more challenging

HL-LHC salvation will come from software improvements, not from hardware
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Guiding Strategy for the Future

e HEP faced many challenges before other communities and has

developed over the decades a lot of community-specific solutions
o Mainly for good reasons!
o  Several HEP-tools adopted by some other communities, e.g. GEANT4 and ROOT, and WLCG itself is a
model/driver for large-scale computing adopted by some other disciplines

e But the world changed: other scientific communities and industry facing some
similar challenges and HEP must be able to benefit from them

e Does not mean that we have drop-in replacements for our solutions

o Challenge: find the proper integration between our community tools and the available technologies
outside, maintain the necessary backward compatibility/continuity and long-term sustainability
o  This means we need HEP domain experts who are also well versed in new techniques

e We face an end-to-end optimisation problem and we need to tackle issues from
event generation right through to final histograms




Simulating Physics and Detectors

e Physics event generation starts our

simulation chain
o At Next-to-Leading Order (NLO) precision
used today, CPU consumption can become
significant
o Study of rare processes at the HL-LHC will
require the more demanding NNLO for more
analyses

e Generators are written by the theory

community
o Need expert help to achieve code
optimisation
o Even basic multi-thread safety is problematic
for many older, but still heavily used,
generators

Simulating our detectors consumes
huge resources
Improved physics models for higher

“io
[Tear

Machine learning

precision at higher energies simulated calorimiter

Adapting to new computing architectures
o Vectorised transport engine tested in a
realistic prototype - GeantV early releases
o Evolution and re-integration into Geant4

Faster simulation - develop a common
toolkit for tuning and validation of fast

simulation
o How can we best use Machine Learning
profitably here?
o Multi-level approach, from processes to
entire events
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Software Triggers and Real Time Analysis

Physics programs for LHCb and ALICE become very signal rich in Run 3
Classic binary triggers cut too much into physics when many events are interesting

e Use a full software trigger to be able to extract analysis quality outputs from collisions

o 30MHz pp collisions for LHCb
o 50kHz HI collisions for ALICE

e Challenge is to keep data volumes under control
o  The only way is to drop the RAW data and keep only the reconstructed outputs
o  Thisis a paradigm shift to ‘lossy’ compression of events

'Online’: Near-detector resources "Offline’
First Disk buffer Second
H:bmam t;‘lﬂger Software trigger Real-Time »Software trigger
' sl 1MHz — 100kHz Align + Calib 100kHz — 12kHz
ms

(Time from collision: us hours hours )
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LHCb Turbo Stream

LHCb Upgrade Trigger Diagram

30 MHz inelastic event rate
(full rate event building)

e |[fRAW is not to be saved long term, reconstruction

------------------------------------

needs to be final analysis quality from HLT ‘Software High Level Trigger
e ‘Real time’ alignment and calibration done in “hours [e,F;'.'L;‘(,Z“.ﬁiL‘:‘,?,Ziitc’}';';iﬁ,’:,’eit':fl"i};"cfiEf',sJ
e HLT 2 does a high quality properly calibrated : igH :
reconstruction Buffer events to disk, perform online
o  Reduced turbo format stored long term (flexible content) { add i
o RAW data deleted : e
® Run 2 turbo iS 25% Of trigger’ bUt Only 10% Of Add offline precision particle identification
. and track quality information to selections
ba ndW|dth Output full event information for inclusive
. . . . triggers, trigger candidates and related
e Run 3 will extend this, with no hardware trigger and primary vertices for exclusive triggers

HLT 1 running at full rate

< I b
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https://cds.cern.ch/record/2630473

ALICE IN RUN 3: POINT2

Asynchronous

Synchronous .
reconstructwn

reconstructwn

ALICE in Run 3
up to 500GB/s EPN / Grid
=3TB/s w0
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EPN / Grid

e Data reduction scheme very £ B3
similar in spirit to LHCb a | T—
e Innovative message passing o inpt dt g s e |

"timeframe": 23ms of continuous
readout data. ~10GB

fl’amework BEAM ON: data reduction I BEAM OFF: improved calibration
e Big data chunks based on timeframes of Y1000 bunch crossings

e Pioneered the use of analysis trains
o Train model is to read analysis inputs only once (the locomotive)
o Butto run many groups’ analysis code on the data (the carriages)
o Amortises the costs of reading large input data sets

e Current problem is that the grid is not very well setup for I/O heavy analysis
tasks - generic compute clusters doing simulation and reconstruction as well

1


https://indico.cern.ch/event/587955/contributions/2938144/attachments/1675256/2705832/2018-7-chep-framework.pdf

Analysis Clusters

GRID JOBS

Storage issues:

85% eff, 25 GB/s
user task 1 common readlng on 100k jobs

processing abstraction
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processing reading abstraction

e Dedicated clusters can provide the I/O needed for analysis
e Better compression algorithms and parallelisation

e Improve greatly the data model to ease loading the data into memory
o Flat data structures, cross references with offsets, no scattered memory
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Aside: Data Layout

Modern CPUs run much faster than
memory

Memory cache misses are hugely
expensive

o Many times more loss than gains from, e.g.,
vectorisation

Critical to layout data in a friendly way
for the CPU

o  Vectorisation friendly
o  Prerequisite to using GPUs

But present an interface to physicists

that looks more natural
o ATLAS xAOD, LHCb SOAContainer
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Analysis Data Reduction

e CMS full AOD weighs in at 450kB/evt (on disk)

O

O

But how much is really needed for analysis?
95% of Run 2 analysis on MiniAOD, 45kB/evt

e Up front decisions made as to what analysis will

need

O

This cannot work unless the detector is well understood
and the reconstruction robust

e nanoAOD aims to cover 50% with a format that is

O(1kB/ewvt)
o No tracks or individual particle candidates
o No detector details
o Precomputed object IDs
o No systematics (compute as needed)

O

Reduced precision (not even 32bit floats)

e Caveat Emptor: Not yet physics validated

PNG 600x330
430Kb

PNG 200x110
45Kb

PNG 25x14
1.2Kb (~300bytes header)
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https://indico.cern.ch/event/587955/contributions/2937531/attachments/1683536/2706024/rizzi-nanoaod-CHEP.pdf

APACHE

Next Generation Analysis Clusters Qf

e Even with improvements to input data size and formats the
process of skimming analysis data is heavy and quite slow

e Industry does not analyse their data like HEP \
o  Traditionally used SQL databases 3\
o Now facilities like Apache Spark clusters or Google BigQuery are now
common cloudera
o  Underlying structure is not based on files or filesystems now, but IMPALA
“objects”

APACHE

DRILL

e Allows data to be addressed more directly at column level
o  Filtering, computing derived data from selections supported
o  Workload is usually split our onto many processing nodes all looking at

the same object store
o Database-like (but of the NoSQL variety)

Big Query




For HEP data?

e .. .but HEP data isn’t flat
o events naturally have different content and is analysed in
sophisticated ways
e [or this reason HEP invented its own columnar data

format
o It’s a ROOT TTree - we know this is highly efficient and works
very well for our data
e Other options

o Use HDF5 (Hierarchical Data Format)
m Doesn’t perform as well for our data

o Flatten data in novel ways, spread on event across multiple
rows (such as the AwkwardArray library)

e Aot of R&D in this area (ENAL Spark Cluster), but
potential benefits would be large

8.18 -0.119 0.923

mu1l

P,
31l

5.27

4.72

8.59

mu1l
phi

-0.481
1.246
-0.207

-1.754

HEP data does
not map so
well into flat
tables

mu1l mu2 mu2 mu2
eta P, phi eta

0.882 9.76 -0.124 0.924
-0.991 n/a n/a n/a
0.953 n/a n/a n/a

-0.264 8714 0.185 0.629
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Declarative Analysis

Notable trend from industry is that
there is no event loop
User describes what they want to do,

not how to do it
o This is actually a big advantage - at the
moment analysts need to learn too much
boilerplate to run jobs
o  Strive for a simple programming model,
easy to use

Backend system then free to optimise

o  Scaling to 100 threads demonstrated
o  Future proofed for future hardware

ROOT: :EnableImplicitMT () ;
ROOT: :RDataFrame df (dataset);
auto df2 = df.Filter("x > 0")

This is for ROOT,
but also pure
python examples

.Define ("xr2", "x*x + y*y");
auto rHist = df2.HistolD("r2");
df2.Snapshot ("newtree", "out.root");

@O data

() transformation

data cleaning &
generic selections

alias systematic
variables

to normalized

column names

Y

cuts on variables
that depend on
systematics

correlations
and other
useful
quantities

A

write out S
processed %
ntuple ey 9 4 y

systematics #1 syst #2 syst #60

Scales up to real
ATLAS analysis



https://indico.cern.ch/event/587955/contributions/2937534/attachments/1683046/2704767/RDataframe__CHEP.pdf
https://indico.cern.ch/event/587955/contributions/2937579/attachments/1681008/2707182/BKrikler_CHEP_FAST-BinnedDataframes_16to9.pdf

Juypter Notebooks

e Web based technology for running
interactive scripts

e Better for training and reproducibility
(also reinterpretation)

e Can be used as a portal to large scale

resources
o E.g.,, Using CERN SWAN service to send jobs to
an Apache Spark cluster

e Can allow ‘interactive’ parts of analysis to
scale up significantly over laptop or

workstation resource
o But has to offer the same user experience

ssFormula + " >> invMass",cut,"hist")

CMS Opendata: yy mass

ss","CMS Opendata: #mu#mu mass;#mu#mu mass
+ E2)"2 - ((pxl + px2)"2 + (pyl

[GeV];Events",512, 2, 110)

+ py2)"2 + (pzl + pz2)*2))"

invMass

HII‘ IIIHHIl \HIIIH‘ IIIIIIIII

Entries 63946
Mean 9.966
StdDev  10.82

L
10

100
HH mass [GeV]

https://swan.cern.ch/
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https://swan.cern.ch/

Machine Learning

Probably the hottest topic in IT these days

O AlphaGo, Self Driving Cars, Language Processing, ...
Deep Neural Networks are enormous
non-linear functions, with huge numbers of

free parameters
o  Breakthrough is in being able to efficiently train these
networks to give a useful response

Toolkits to are generally very friendly to
modern hardware

Chihuahua or blueberry muffin?

Driving image
classification

19




T 35¢ Shallow networks Deep networks
. . . O 3ot
Machine Learning in HEP
E‘g‘ 2.0F
0n
e Techniques clearly work for our field 5 i:
o  Classifiers improving analysis today (Y+50% discovery e
power) |

Can reconstruct physics objects even ‘unsupervised’
Generative models very interesting for simulation
m  Even simulation straight to analysis output

e Moving beyond ‘naive’ applications to folding

H — 717 significance with
different NN setups and with/out
‘high-level’ variables (1410.3469)

in physics knowledge as field matures N || = e
: : : : © | — towers
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m But can run on accelerated devices, like EPGAs S owers TSRO T Droves
o  HEP software has to incorporate many networks - 5 images respults
memory consumption is a problem S
/ g ° (1609.00607)
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https://indico.cern.ch/event/587955/contributions/2937529/attachments/1683932/2706842/HLS4ML_CHEP2018_Ngadiuba.pdf
https://arxiv.org/abs/1410.3469
https://arxiv.org/abs/1609.00607

Accelerated Computing

e GPUs superb at delivering floating point operations
o  Often x10-20 higher than CPUs
o  But difficult to program against in many cases
m Don’t deal well with branchy code
o  GPGPU cards not cheap, not easy to measure efficiency of use

e Excel at training deep learning neural networks
e Data ingestion can be limiting factor for other uses

o Particularly when few calculations need done on the data
o E.g., cuts, filters, derived variables

e However, there are some cases where they can help

analysis a lot
o  Goofit and Hydra minimiser, very much applicable to analysis

with large numbers of toy models

Duration [ms]

1025—

10

X230 speed-up_%
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o
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https://goofit.github.io/
https://github.com/MultithreadCorner/Hydra

Conclusions

HEP Software Foundation

e Major challenges for software and computing come in the future
o  Run 3is almost upon us for ALICE and LHCb, HL-LHC for ATLAS and CMS

e Analysis requires software tooling that will deal with a huge increase in events,
driven by physics

e How to succeed:

o Reduce to the data you really need
o  Optimal layout for fast ingestion and processing
o  Declarative syntax for clarity, reproducibility and optimisation (concurrency and parallelisation)

m  Make the backend smart
o  Suitable infrastructure

m  Are dedicated facilities the future here?
o Take advantage of industry advances, adapted to our problems

m  Modern CPUs and GPUs are everyone’s concern here, Machine Learning is a game changer
o  Cooperation and recognition matter a lot

22
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