
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321992789
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321992789
https://plusone.google.com/share?url=http://www.informit.com/title/9780321992789
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321992789
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321992789/Free-Sample-Chapter

Programming
Second Edition

This page intentionally left blank

Programming
Principles and Practice

Using C++
Second Edition

Bjarne Stroustrup

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

A complete list of photo sources and credits appears on pages 1273–1274.

The author and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Stroustrup, Bjarne, author.
 Programming : principles and practice using C++ / Bjarne Stroustrup. — Second edition.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-321-99278-9 (pbk. : alk. paper)
1. C++ (Computer program language) I. Title.
 QA76.73.C153S82 2014
 005.13'3—dc23
 2014004197

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use ma-
terial from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

ISBN-13: 978-0-321-99278-9
ISBN-10: 0-321-99278-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
Second printing, January 2015

v

Contents

Preface xxv

Chapter 0 Notes to the Reader 1

0.1 The structure of this book 2
0.1.1 General approach 3
0.1.2 Drills, exercises, etc. 4
0.1.3 What comes after this book? 5

0.2 A philosophy of teaching and learning 6
0.2.1 The order of topics 9
0.2.2 Programming and programming language 10
0.2.3 Portability 11

0.3 Programming and computer science 12
0.4 Creativity and problem solving 12
0.5 Request for feedback 12
0.6 References 13
0.7 Biographies 13

Bjarne Stroustrup 14
Lawrence “Pete” Petersen 15

Chapter 1 Computers, People, and Programming 17

1.1 Introduction 18
1.2 Software 19
1.3 People 21
1.4 Computer science 24
1.5 Computers are everywhere 25

1.5.1 Screens and no screens 26
1.5.2 Shipping 26
1.5.3 Telecommunications 28
1.5.4 Medicine 30

CONTENTSvi

1.5.5 Information 31
1.5.6 A vertical view 33
1.5.7 So what? 34

1.6 Ideals for programmers 34

Part I The Basics 41

Chapter 2 Hello, World! 43

2.1 Programs 44
2.2 The classic first program 45
2.3 Compilation 47
2.4 Linking 51
2.5 Programming environments 52

Chapter 3 Objects, Types, and Values 59

3.1 Input 60
3.2 Variables 62
3.3 Input and type 64
3.4 Operations and operators 66
3.5 Assignment and initialization 69

3.5.1 An example: detect repeated words 71
3.6 Composite assignment operators 73

3.6.1 An example: find repeated words 73
3.7 Names 74
3.8 Types and objects 77
3.9 Type safety 78

3.9.1 Safe conversions 79
3.9.2 Unsafe conversions 80

Chapter 4 Computation 89

4.1 Computation 90
4.2 Objectives and tools 92
4.3 Expressions 94

4.3.1 Constant expressions 95
4.3.2 Operators 97
4.3.3 Conversions 99

4.4 Statements 100
4.4.1 Selection 102
4.4.2 Iteration 109

4.5 Functions 113
4.5.1 Why bother with functions? 115
4.5.2 Function declarations 117

CONTENTS vii

4.6 vector 117
4.6.1 Traversing a vector 119
4.6.2 Growing a vector 119
4.6.3 A numeric example 120
4.6.4 A text example 123

4.7 Language features 125

Chapter 5 Errors 133

5.1 Introduction 134
5.2 Sources of errors 136
5.3 Compile-time errors 136

5.3.1 Syntax errors 137
5.3.2 Type errors 138
5.3.3 Non-errors 139

5.4 Link-time errors 139
5.5 Run-time errors 140

5.5.1 The caller deals with errors 142
5.5.2 The callee deals with errors 143
5.5.3 Error reporting 145

5.6 Exceptions 146
5.6.1 Bad arguments 147
5.6.2 Range errors 148
5.6.3 Bad input 150
5.6.4 Narrowing errors 153

5.7 Logic errors 154
5.8 Estimation 157
5.9 Debugging 158

5.9.1 Practical debug advice 159
5.10 Pre- and post-conditions 163

5.10.1 Post-conditions 165
5.11 Testing 166

Chapter 6 Writing a Program 173

6.1 A problem 174
6.2 Thinking about the problem 175

6.2.1 Stages of development 176
6.2.2 Strategy 176

6.3 Back to the calculator! 178
6.3.1 First attempt 179
6.3.2 Tokens 181
6.3.3 Implementing tokens 183
6.3.4 Using tokens 185
6.3.5 Back to the drawing board 186

CONTENTSviii

6.4 Grammars 188
6.4.1 A detour: English grammar 193
6.4.2 Writing a grammar 194

6.5 Turning a grammar into code 195
6.5.1 Implementing grammar rules 196
6.5.2 Expressions 197
6.5.3 Terms 200
6.5.4 Primary expressions 202

6.6 Trying the first version 203
6.7 Trying the second version 208
6.8 Token streams 209

6.8.1 Implementing Token_stream 211
6.8.2 Reading tokens 212
6.8.3 Reading numbers 214

6.9 Program structure 215

Chapter 7 Completing a Program 221

7.1 Introduction 222
7.2 Input and output 222
7.3 Error handling 224
7.4 Negative numbers 229
7.5 Remainder: % 230
7.6 Cleaning up the code 232

7.6.1 Symbolic constants 232
7.6.2 Use of functions 234
7.6.3 Code layout 235
7.6.4 Commenting 237

7.7 Recovering from errors 239
7.8 Variables 242

7.8.1 Variables and definitions 242
7.8.2 Introducing names 247
7.8.3 Predefined names 250
7.8.4 Are we there yet? 250

Chapter 8 Technicalities: Functions, etc. 255

8.1 Technicalities 256
8.2 Declarations and definitions 257

8.2.1 Kinds of declarations 261
8.2.2 Variable and constant declarations 262
8.2.3 Default initialization 263

CONTENTS ix

8.3 Header files 264
8.4 Scope 266
8.5 Function call and return 272

8.5.1 Declaring arguments and return type 272
8.5.2 Returning a value 274
8.5.3 Pass-by-value 275
8.5.4 Pass-by-const-reference 276
8.5.5 Pass-by-reference 279
8.5.6 Pass-by-value vs. pass-by-reference 281
8.5.7 Argument checking and conversion 284
8.5.8 Function call implementation 285
8.5.9 constexpr functions 290

8.6 Order of evaluation 291
8.6.1 Expression evaluation 292
8.6.2 Global initialization 293

8.7 Namespaces 294
8.7.1 using declarations and using directives 296

Chapter 9 Technicalities: Classes, etc. 303

9.1 User-defined types 304
9.2 Classes and members 305
9.3 Interface and implementation 306
9.4 Evolving a class 308

9.4.1 struct and functions 308
9.4.2 Member functions and constructors 310
9.4.3 Keep details private 312
9.4.4 Defining member functions 314
9.4.5 Referring to the current object 317
9.4.6 Reporting errors 317

9.5 Enumerations 318
9.5.1 “Plain” enumerations 320

9.6 Operator overloading 321
9.7 Class interfaces 323

9.7.1 Argument types 324
9.7.2 Copying 326
9.7.3 Default constructors 327
9.7.4 const member functions 330
9.7.5 Members and “helper functions” 332

9.8 The Date class 334

CONTENTSx

Part II Input and Output 343

Chapter 10 Input and Output Streams 345

10.1 Input and output 346
10.2 The I/O stream model 347
10.3 Files 349
10.4 Opening a file 350
10.5 Reading and writing a file 352
10.6 I/O error handling 354
10.7 Reading a single value 358

10.7.1 Breaking the problem into manageable parts 359
10.7.2 Separating dialog from function 362

10.8 User-defined output operators 363
10.9 User-defined input operators 365
10.10 A standard input loop 365
10.11 Reading a structured file 367

10.11.1 In-memory representation 368
10.11.2 Reading structured values 370
10.11.3 Changing representations 374

Chapter 11 Customizing Input and Output 379

11.1 Regularity and irregularity 380
11.2 Output formatting 380

11.2.1 Integer output 381
11.2.2 Integer input 383
11.2.3 Floating-point output 384
11.2.4 Precision 385
11.2.5 Fields 387

11.3 File opening and positioning 388
11.3.1 File open modes 388
11.3.2 Binary files 390
11.3.3 Positioning in files 393

11.4 String streams 394
11.5 Line-oriented input 395
11.6 Character classification 396
11.7 Using nonstandard separators 398
11.8 And there is so much more 406

Chapter 12 A Display Model 411

12.1 Why graphics? 412
12.2 A display model 413
12.3 A first example 414

CONTENTS xi

12.4 Using a GUI library 418
12.5 Coordinates 419
12.6 Shapes 420
12.7 Using Shape primitives 421

12.7.1 Graphics headers and main 421
12.7.2 An almost blank window 422
12.7.3 Axis 424
12.7.4 Graphing a function 426
12.7.5 Polygons 427
12.7.6 Rectangles 428
12.7.7 Fill 431
12.7.8 Text 431
12.7.9 Images 433
12.7.10 And much more 434

12.8 Getting this to run 435
12.8.1 Source files 437

Chapter 13 Graphics Classes 441

13.1 Overview of graphics classes 442
13.2 Point and Line 444
13.3 Lines 447
13.4 Color 450
13.5 Line_style 452
13.6 Open_polyline 455
13.7 Closed_polyline 456
13.8 Polygon 458
13.9 Rectangle 460
13.10 Managing unnamed objects 465
13.11 Text 467
13.12 Circle 470
13.13 Ellipse 472
13.14 Marked_polyline 474
13.15 Marks 476
13.16 Mark 478
13.17 Images 479

Chapter 14 Graphics Class Design 487

14.1 Design principles 488
14.1.1 Types 488
14.1.2 Operations 490
14.1.3 Naming 491
14.1.4 Mutability 492

CONTENTSxii

14.2 Shape 493
14.2.1 An abstract class 495
14.2.2 Access control 496
14.2.3 Drawing shapes 500
14.2.4 Copying and mutability 503

14.3 Base and derived classes 504
14.3.1 Object layout 506
14.3.2 Deriving classes and defining virtual functions 507
14.3.3 Overriding 508
14.3.4 Access 511
14.3.5 Pure virtual functions 512

14.4 Benefits of object-oriented programming 513

Chapter 15 Graphing Functions and Data 519

15.1 Introduction 520
15.2 Graphing simple functions 520
15.3 Function 524

15.3.1 Default Arguments 525
15.3.2 More examples 527
15.3.3 Lambda expressions 528

15.4 Axis 529
15.5 Approximation 532
15.6 Graphing data 537

15.6.1 Reading a file 539
15.6.2 General layout 541
15.6.3 Scaling data 542
15.6.4 Building the graph 543

Chapter 16 Graphical User Interfaces 551

16.1 User interface alternatives 552
16.2 The “Next” button 553
16.3 A simple window 554

16.3.1 A callback function 556
16.3.2 A wait loop 559
16.3.3 A lambda expression as a callback 560

16.4 Button and other Widgets 561
16.4.1 Widgets 561
16.4.2 Buttons 563
16.4.3 In_box and Out_box 563
16.4.4 Menus 564

16.5 An example 565

CONTENTS xiii

16.6 Control inversion 569
16.7 Adding a menu 570
16.8 Debugging GUI code 575

Part III Data and Algorithms 581

Chapter 17 Vector and Free Store 583

17.1 Introduction 584
17.2 vector basics 586
17.3 Memory, addresses, and pointers 588

17.3.1 The sizeof operator 590
17.4 Free store and pointers 591

17.4.1 Free-store allocation 593
17.4.2 Access through pointers 594
17.4.3 Ranges 595
17.4.4 Initialization 596
17.4.5 The null pointer 598
17.4.6 Free-store deallocation 598

17.5 Destructors 601
17.5.1 Generated destructors 603
17.5.2 Destructors and free store 604

17.6 Access to elements 605
17.7 Pointers to class objects 606
17.8 Messing with types: void* and casts 608
17.9 Pointers and references 610

17.9.1 Pointer and reference parameters 611
17.9.2 Pointers, references, and inheritance 612
17.9.3 An example: lists 613
17.9.4 List operations 615
17.9.5 List use 616

17.10 The this pointer 618
17.10.1 More link use 620

Chapter 18 Vectors and Arrays 627

18.1 Introduction 628
18.2 Initialization 629
18.3 Copying 631

18.3.1 Copy constructors 633
18.3.2 Copy assignments 634
18.3.3 Copy terminology 636
18.3.4 Moving 637

CONTENTSxiv

18.4 Essential operations 640
18.4.1 Explicit constructors 642
18.4.2 Debugging constructors and destructors 643

18.5 Access to vector elements 646
18.5.1 Overloading on const 647

18.6 Arrays 648
18.6.1 Pointers to array elements 650
18.6.2 Pointers and arrays 652
18.6.3 Array initialization 654
18.6.4 Pointer problems 656

18.7 Examples: palindrome 659
18.7.1 Palindromes using string 659
18.7.2 Palindromes using arrays 660
18.7.3 Palindromes using pointers 661

Chapter 19 Vector, Templates, and Exceptions 667

19.1 The problems 668
19.2 Changing size 671

19.2.1 Representation 671
19.2.2 reserve and capacity 673
19.2.3 resize 674
19.2.4 push_back 674
19.2.5 Assignment 675
19.2.6 Our vector so far 677

19.3 Templates 678
19.3.1 Types as template parameters 679
19.3.2 Generic programming 681
19.3.3 Concepts 683
19.3.4 Containers and inheritance 686
19.3.5 Integers as template parameters 687
19.3.6 Template argument deduction 689
19.3.7 Generalizing vector 690

19.4 Range checking and exceptions 693
19.4.1 An aside: design considerations 694
19.4.2 A confession: macros 696

19.5 Resources and exceptions 697
19.5.1 Potential resource management problems 698
19.5.2 Resource acquisition is initialization 700
19.5.3 Guarantees 701
19.5.4 unique_ptr 703
19.5.5 Return by moving 704
19.5.6 RAII for vector 705

CONTENTS xv

Chapter 20 Containers and Iterators 711

20.1 Storing and processing data 712
20.1.1 Working with data 713
20.1.2 Generalizing code 714

20.2 STL ideals 717
20.3 Sequences and iterators 720

20.3.1 Back to the example 723
20.4 Linked lists 724

20.4.1 List operations 726
20.4.2 Iteration 727

20.5 Generalizing vector yet again 729
20.5.1 Container traversal 732
20.5.2 auto 732

20.6 An example: a simple text editor 734
20.6.1 Lines 736
20.6.2 Iteration 737

20.7 vector, list, and string 741
20.7.1 insert and erase 742

20.8 Adapting our vector to the STL 745
20.9 Adapting built-in arrays to the STL 747
20.10 Container overview 749

20.10.1 Iterator categories 751

Chapter 21 Algorithms and Maps 757

21.1 Standard library algorithms 758
21.2 The simplest algorithm: find() 759

21.2.1 Some generic uses 761
21.3 The general search: find_if() 763
21.4 Function objects 765

21.4.1 An abstract view of function objects 766
21.4.2 Predicates on class members 767
21.4.3 Lambda expressions 769

21.5 Numerical algorithms 770
21.5.1 Accumulate 770
21.5.2 Generalizing accumulate() 772
21.5.3 Inner product 774
21.5.4 Generalizing inner_product() 775

21.6 Associative containers 776
21.6.1 map 776
21.6.2 map overview 779
21.6.3 Another map example 782
21.6.4 unordered_map 785
21.6.5 set 787

CONTENTSxvi

21.7 Copying 789
21.7.1 Copy 789
21.7.2 Stream iterators 790
21.7.3 Using a set to keep order 793
21.7.4 copy_if 794

21.8 Sorting and searching 794
21.9 Container algorithms 797

Part IV Broadening the View 803

Chapter 22 Ideals and History 805

22.1 History, ideals, and professionalism 806
22.1.1 Programming language aims and philosophies 807
22.1.2 Programming ideals 808
22.1.3 Styles/paradigms 815

22.2 Programming language history overview 818
22.2.1 The earliest languages 819
22.2.2 The roots of modern languages 821
22.2.3 The Algol family 826
22.2.4 Simula 833
22.2.5 C 836
22.2.6 C++ 839
22.2.7 Today 842
22.2.8 Information sources 844

Chapter 23 Text Manipulation 849

23.1 Text 850
23.2 Strings 850
23.3 I/O streams 855
23.4 Maps 855

23.4.1 Implementation details 861
23.5 A problem 864
23.6 The idea of regular expressions 866

23.6.1 Raw string literals 868
23.7 Searching with regular expressions 869
23.8 Regular expression syntax 872

23.8.1 Characters and special characters 872
23.8.2 Character classes 873
23.8.3 Repeats 874
23.8.4 Grouping 876
23.8.5 Alternation 876
23.8.6 Character sets and ranges 877
23.8.7 Regular expression errors 878

CONTENTS xvii

23.9 Matching with regular expressions 880
23.10 References 885

Chapter 24 Numerics 889

24.1 Introduction 890
24.2 Size, precision, and overflow 890

24.2.1 Numeric limits 894
24.3 Arrays 895
24.4 C-style multidimensional arrays 896
24.5 The Matrix library 897

24.5.1 Dimensions and access 898
24.5.2 1D Matrix 901
24.5.3 2D Matrix 904
24.5.4 Matrix I/O 907
24.5.5 3D Matrix 907

24.6 An example: solving linear equations 908
24.6.1 Classical Gaussian elimination 910
24.6.2 Pivoting 911
24.6.3 Testing 912

24.7 Random numbers 914
24.8 The standard mathematical functions 917
24.9 Complex numbers 919
24.10 References 920

Chapter 25 Embedded Systems Programming 925

25.1 Embedded systems 926
25.2 Basic concepts 929

25.2.1 Predictability 932
25.2.2 Ideals 932
25.2.3 Living with failure 933

25.3 Memory management 935
25.3.1 Free-store problems 936
25.3.2 Alternatives to the general free store 939
25.3.3 Pool example 940
25.3.4 Stack example 942

25.4 Addresses, pointers, and arrays 943
25.4.1 Unchecked conversions 943
25.4.2 A problem: dysfunctional interfaces 944
25.4.3 A solution: an interface class 947
25.4.4 Inheritance and containers 951

25.5 Bits, bytes, and words 954
25.5.1 Bits and bit operations 955
25.5.2 bitset 959

CONTENTSxviii

25.5.3 Signed and unsigned 961
25.5.4 Bit manipulation 965
25.5.5 Bitfields 967
25.5.6 An example: simple encryption 969

25.6 Coding standards 974
25.6.1 What should a coding standard be? 975
25.6.2 Sample rules 977
25.6.3 Real coding standards 983

Chapter 26 Testing 989

26.1 What we want 990
26.1.1 Caveat 991

26.2 Proofs 992
26.3 Testing 992

26.3.1 Regression tests 993
26.3.2 Unit tests 994
26.3.3 Algorithms and non-algorithms 1001
26.3.4 System tests 1009
26.3.5 Finding assumptions that do not hold 1009

26.4 Design for testing 1011
26.5 Debugging 1012
26.6 Performance 1012

26.6.1 Timing 1015
26.7 References 1016

Chapter 27 The C Programming Language 1021

27.1 C and C++: siblings 1022
27.1.1 C/C++ compatibility 1024
27.1.2 C++ features missing from C 1025
27.1.3 The C standard library 1027

27.2 Functions 1028
27.2.1 No function name overloading 1028
27.2.2 Function argument type checking 1029
27.2.3 Function definitions 1031
27.2.4 Calling C from C++ and C++ from C 1032
27.2.5 Pointers to functions 1034

27.3 Minor language differences 1036
27.3.1 struct tag namespace 1036
27.3.2 Keywords 1037
27.3.3 Definitions 1038
27.3.4 C-style casts 1040

CONTENTS xix

27.3.5 Conversion of void* 1041
27.3.6 enum 1042
27.3.7 Namespaces 1042

27.4 Free store 1043
27.5 C-style strings 1045

27.5.1 C-style strings and const 1047
27.5.2 Byte operations 1048
27.5.3 An example: strcpy() 1049
27.5.4 A style issue 1049

27.6 Input/output: stdio 1050
27.6.1 Output 1050
27.6.2 Input 1052
27.6.3 Files 1053

27.7 Constants and macros 1054
27.8 Macros 1055

27.8.1 Function-like macros 1056
27.8.2 Syntax macros 1058
27.8.3 Conditional compilation 1058

27.9 An example: intrusive containers 1059

Part V Appendices 1071

Appendix A Language Summary 1073

A.1 General 1074
A.1.1 Terminology 1075
A.1.2 Program start and termination 1075
A.1.3 Comments 1076

A.2 Literals 1077
A.2.1 Integer literals 1077
A.2.2 Floating-point-literals 1079
A.2.3 Boolean literals 1079
A.2.4 Character literals 1079
A.2.5 String literals 1080
A.2.6 The pointer literal 1081

A.3 Identifiers 1081
A.3.1 Keywords 1081

A.4 Scope, storage class, and lifetime 1082
A.4.1 Scope 1082
A.4.2 Storage class 1083
A.4.3 Lifetime 1085

CONTENTSxx

A.5 Expressions 1086
A.5.1 User-defined operators 1091
A.5.2 Implicit type conversion 1091
A.5.3 Constant expressions 1093
A.5.4 sizeof 1093
A.5.5 Logical expressions 1094
A.5.6 new and delete 1094
A.5.7 Casts 1095

A.6 Statements 1096
A.7 Declarations 1098

A.7.1 Definitions 1098
A.8 Built-in types 1099

A.8.1 Pointers 1100
A.8.2 Arrays 1101
A.8.3 References 1102

A.9 Functions 1103
A.9.1 Overload resolution 1104
A.9.2 Default arguments 1105
A.9.3 Unspecified arguments 1105
A.9.4 Linkage specifications 1106

A.10 User-defined types 1106
A.10.1 Operator overloading 1107

A.11 Enumerations 1107
A.12 Classes 1108

A.12.1 Member access 1108
A.12.2 Class member definitions 1112
A.12.3 Construction, destruction, and copy 1112
A.12.4 Derived classes 1116
A.12.5 Bitfields 1120
A.12.6 Unions 1121

A.13 Templates 1121
A.13.1 Template arguments 1122
A.13.2 Template instantiation 1123
A.13.3 Template member types 1124

A.14 Exceptions 1125
A.15 Namespaces 1127
A.16 Aliases 1128
A.17 Preprocessor directives 1128

A.17.1 #include 1128
A.17.2 #define 1129

CONTENTS xxi

Appendix B Standard Library Summary 1131

B.1 Overview 1132
B.1.1 Header files 1133
B.1.2 Namespace std 1136
B.1.3 Description style 1136

B.2 Error handling 1137
B.2.1 Exceptions 1138

B.3 Iterators 1139
B.3.1 Iterator model 1140
B.3.2 Iterator categories 1142

B.4 Containers 1144
B.4.1 Overview 1146
B.4.2 Member types 1147
B.4.3 Constructors, destructors, and assignments 1148
B.4.4 Iterators 1148
B.4.5 Element access 1149
B.4.6 Stack and queue operations 1149
B.4.7 List operations 1150
B.4.8 Size and capacity 1150
B.4.9 Other operations 1151
B.4.10 Associative container operations 1151

B.5 Algorithms 1152
B.5.1 Nonmodifying sequence algorithms 1153
B.5.2 Modifying sequence algorithms 1154
B.5.3 Utility algorithms 1156
B.5.4 Sorting and searching 1157
B.5.5 Set algorithms 1159
B.5.6 Heaps 1160
B.5.7 Permutations 1160
B.5.8 min and max 1161

B.6 STL utilities 1162
B.6.1 Inserters 1162
B.6.2 Function objects 1163
B.6.3 pair and tuple 1165
B.6.4 initializer_list 1166
B.6.5 Resource management pointers 1167

B.7 I/O streams 1168
B.7.1 I/O streams hierarchy 1170
B.7.2 Error handling 1171
B.7.3 Input operations 1172

CONTENTSxxii

B.7.4 Output operations 1173
B.7.5 Formatting 1173
B.7.6 Standard manipulators 1173

B.8 String manipulation 1175
B.8.1 Character classification 1175
B.8.2 String 1176
B.8.3 Regular expression matching 1177

B.9 Numerics 1180
B.9.1 Numerical limits 1180
B.9.2 Standard mathematical functions 1181
B.9.3 Complex 1182
B.9.4 valarray 1183
B.9.5 Generalized numerical algorithms 1183
B.9.6 Random numbers 1184

B.10 Time 1185
B.11 C standard library functions 1185

B.11.1 Files 1186
B.11.2 The printf() family 1186
B.11.3 C-style strings 1191
B.11.4 Memory 1192
B.11.5 Date and time 1193
B.10.6 Etc. 1194

B.12 Other libraries 1195

Appendix C Getting Started with Visual Studio 1197

C.1 Getting a program to run 1198
C.2 Installing Visual Studio 1198
C.3 Creating and running a program 1199

C.3.1 Create a new project 1199
C.3.2 Use the std_lib_facilities.h header file 1199
C.3.3 Add a C++ source file to the project 1200
C.3.4 Enter your source code 1200
C.3.5 Build an executable program 1200
C.3.6 Execute the program 1201
C.3.7 Save the program 1201

C.4 Later 1201

Appendix D Installing FLTK 1203

D.1 Introduction 1204
D.2 Downloading FLTK 1204
D.3 Installing FLTK 1205
D.4 Using FLTK in Visual Studio 1205
D.5 Testing if it all worked 1206

CONTENTS xxiii

Appendix E GUI Implementation 1207

E.1 Callback implementation 1208
E.2 Widget implementation 1209
E.3 Window implementation 1210
E.4 Vector_ref 1212
E.5 An example: manipulating Widgets 1213

Glossary 1217
Bibliography 1223
Index 1227

This page intentionally left blank

xxv

Preface

“Damn the torpedoes!
Full speed ahead.”

—Admiral Farragut

Programming is the art of expressing solutions to problems so that a computer
can execute those solutions. Much of the effort in programming is spent finding
and refining solutions. Often, a problem is only fully understood through the
process of programming a solution for it.

This book is for someone who has never programmed before but is willing
to work hard to learn. It helps you understand the principles and acquire the
practical skills of programming using the C++ programming language. My aim
is for you to gain sufficient knowledge and experience to perform simple useful
programming tasks using the best up-to-date techniques. How long will that take?
As part of a first-year university course, you can work through this book in a se-
mester (assuming that you have a workload of four courses of average difficulty).
If you work by yourself, don’t expect to spend less time than that (maybe 15
hours a week for 14 weeks).

Three months may seem a long time, but there’s a lot to learn and you’ll
be writing your first simple programs after about an hour. Also, all learning is
gradual: each chapter introduces new useful concepts and illustrates them with
examples inspired by real-world uses. Your ability to express ideas in code — get-
ting a computer to do what you want it to do — gradually and steadily increases
as you go along. I never say, “Learn a month’s worth of theory and then see if
you can use it.”

PREFACExxvi

Why would you want to program? Our civilization runs on software. With-
out understanding software you are reduced to believing in “magic” and will be
locked out of many of the most interesting, profitable, and socially useful technical
fields of work. When I talk about programming, I think of the whole spectrum of
computer programs from personal computer applications with GUIs (graphical
user interfaces), through engineering calculations and embedded systems control
applications (such as digital cameras, cars, and cell phones), to text manipulation
applications as found in many humanities and business applications. Like math-
ematics, programming — when done well — is a valuable intellectual exercise that
sharpens our ability to think. However, thanks to feedback from the computer,
programming is more concrete than most forms of math, and therefore accessible
to more people. It is a way to reach out and change the world — ideally for the
better. Finally, programming can be great fun.

Why C++? You can’t learn to program without a programming language, and
C++ directly supports the key concepts and techniques used in real-world soft-
ware. C++ is one of the most widely used programming languages, found in an
unsurpassed range of application areas. You find C++ applications everywhere
from the bottom of the oceans to the surface of Mars. C++ is precisely and com-
prehensively defined by a nonproprietary international standard. Quality and/
or free implementations are available on every kind of computer. Most of the
programming concepts that you will learn using C++ can be used directly in
other languages, such as C, C#, Fortran, and Java. Finally, I simply like C++ as
a language for writing elegant and efficient code.

This is not the easiest book on beginning programming; it is not meant to
be. I just aim for it to be the easiest book from which you can learn the basics of
real-world programming. That’s quite an ambitious goal because much modern
software relies on techniques considered advanced just a few years ago.

My fundamental assumption is that you want to write programs for the use of
others, and to do so responsibly, providing a decent level of system quality; that is,
I assume that you want to achieve a level of professionalism. Consequently, I chose
the topics for this book to cover what is needed to get started with real-world pro-
gramming, not just what is easy to teach and learn. If you need a technique to get
basic work done right, I describe it, demonstrate concepts and language facilities
needed to support the technique, provide exercises for it, and expect you to work
on those exercises. If you just want to understand toy programs, you can get along
with far less than I present. On the other hand, I won’t waste your time with ma-
terial of marginal practical importance. If an idea is explained here, it’s because
you’ll almost certainly need it.

If your desire is to use the work of others without understanding how things
are done and without adding significantly to the code yourself, this book is not for
you. If so, please consider whether you would be better served by another book
and another language. If that is approximately your view of programming, please

PREFACE xxvii

also consider from where you got that view and whether it in fact is adequate for
your needs. People often underestimate the complexity of programming as well as
its value. I would hate for you to acquire a dislike for programming because of a
mismatch between what you need and the part of the software reality I describe.
There are many parts of the “information technology” world that do not require
knowledge of programming. This book is aimed to serve those who do want to
write or understand nontrivial programs.

Because of its structure and practical aims, this book can also be used as a
second book on programming for someone who already knows a bit of C++ or
for someone who programs in another language and wants to learn C++. If you
fit into one of those categories, I refrain from guessing how long it will take you to
read this book, but I do encourage you to do many of the exercises. This will help
you to counteract the common problem of writing programs in older, familiar
styles rather than adopting newer techniques where these are more appropriate. If
you have learned C++ in one of the more traditional ways, you’ll find something
surprising and useful before you reach Chapter 7. Unless your name is Strous-
trup, what I discuss here is not “your father’s C++.”

Programming is learned by writing programs. In this, programming is similar
to other endeavors with a practical component. You cannot learn to swim, to play
a musical instrument, or to drive a car just from reading a book — you must prac-
tice. Nor can you learn to program without reading and writing lots of code. This
book focuses on code examples closely tied to explanatory text and diagrams. You
need those to understand the ideals, concepts, and principles of programming and
to master the language constructs used to express them. That’s essential, but by
itself, it will not give you the practical skills of programming. For that, you need
to do the exercises and get used to the tools for writing, compiling, and running
programs. You need to make your own mistakes and learn to correct them. There
is no substitute for writing code. Besides, that’s where the fun is!

On the other hand, there is more to programming — much more — than fol-
lowing a few rules and reading the manual. This book is emphatically not focused
on “the syntax of C++.” Understanding the fundamental ideals, principles, and
techniques is the essence of a good programmer. Only well-designed code has a
chance of becoming part of a correct, reliable, and maintainable system. Also, “the
fundamentals” are what last: they will still be essential after today’s languages and
tools have evolved or been replaced.

What about computer science, software engineering, information technology,
etc.? Is that all programming? Of course not! Programming is one of the funda-
mental topics that underlie everything in computer-related fields, and it has a nat-
ural place in a balanced course of computer science. I provide brief introductions
to key concepts and techniques of algorithms, data structures, user interfaces, data
processing, and software engineering. However, this book is not a substitute for a
thorough and balanced study of those topics.

PREFACExxviii

Code can be beautiful as well as useful. This book is written to help you see
that, to understand what it means for code to be beautiful, and to help you to
master the principles and acquire the practical skills to create such code. Good
luck with programming!

A note to students
Of the many thousands of first-year students we have taught so far using this book
at Texas A&M University, about 60% had programmed before and about 40%
had never seen a line of code in their lives. Most succeeded, so you can do it, too.

You don’t have to read this book as part of a course. The book is widely
used for self-study. However, whether you work your way through as part of a
course or independently, try to work with others. Programming has an — unfair —
reputation as a lonely activity. Most people work better and learn faster when
they are part of a group with a common aim. Learning together and discussing
problems with friends is not cheating! It is the most efficient — as well as most
pleasant — way of making progress. If nothing else, working with friends forces
you to articulate your ideas, which is just about the most efficient way of testing
your understanding and making sure you remember. You don’t actually have to
personally discover the answer to every obscure language and programming en-
vironment problem. However, please don’t cheat yourself by not doing the drills
and a fair number of exercises (even if no teacher forces you to do them). Re-
member: programming is (among other things) a practical skill that you need to
practice to master. If you don’t write code (do several exercises for each chapter),
reading this book will be a pointless theoretical exercise.

Most students — especially thoughtful good students — face times when they
wonder whether their hard work is worthwhile. When (not if) this happens to
you, take a break, reread this Preface, and look at Chapter 1 (“Computers, Peo-
ple, and Programming”) and Chapter 22 (“Ideals and History”). There, I try to
articulate what I find exciting about programming and why I consider it a crucial
tool for making a positive contribution to the world. If you wonder about my
teaching philosophy and general approach, have a look at Chapter 0 (“Notes to
the Reader”).

You might find the weight of this book worrying, but it should reassure you
that part of the reason for the heft is that I prefer to repeat an explanation or add
an example rather than have you search for the one and only explanation. The
other major reason is that the second half of the book is reference material and
“additional material” presented for you to explore only if you are interested in
more information about a specific area of programming, such as embedded sys-
tems programming, text analysis, or numerical computation.

And please don’t be too impatient. Learning any major new and valuable skill
takes time and is worth it.

PREFACE xxix

A note to teachers
No. This is not a traditional Computer Science 101 course. It is a book about how
to construct working software. As such, it leaves out much of what a computer
science student is traditionally exposed to (Turing completeness, state machines,
discrete math, Chomsky grammars, etc.). Even hardware is ignored on the as-
sumption that students have used computers in various ways since kindergarten.
This book does not even try to mention most important CS topics. It is about
programming (or more generally about how to develop software), and as such it
goes into more detail about fewer topics than many traditional courses. It tries
to do just one thing well, and computer science is not a one-course topic. If this
book/course is used as part of a computer science, computer engineering, electri-
cal engineering (many of our first students were EE majors), information science,
or whatever program, I expect it to be taught alongside other courses as part of a
well-rounded introduction.

Please read Chapter 0 (“Notes to the Reader”) for an explanation of my teach-
ing philosophy, general approach, etc. Please try to convey those ideas to your
students along the way.

ISO standard C++
C++ is defined by an ISO standard. The first ISO C++ standard was ratified
in 1998, so that version of C++ is known as C++98. I wrote the first edition of
this book while working on the design of C++11. It was most frustrating not to
be able to use the novel features (such as uniform initialization, range-for-loops,
move semantics, lambdas, and concepts) to simplify the presentation of principles
and techniques. However, the book was designed with C++11 in mind, so it was
relatively easy to “drop in” the features in the contexts where they belonged. As of
this writing, the current standard is C++11 from 2011, and facilities from the up-
coming 2014 ISO standard, C++14, are finding their way into mainstream C++
implementations. The language used in this book is C++11 with a few C++14
features. For example, if your compiler complains about

vector<int> v1;
vector<int> v2 {v1}; // C++14-style copy construction

use

vector<int> v1;
vector<int> v2 = v1; // C++98-style copy construction

instead.

PREFACExxx

If your compiler does not support C++11, get a new compiler. Good,
 modern C++ compilers can be downloaded from a variety of suppliers; see
www.stroustrup.com/compilers.html. Learning to program using an earlier and
less supportive version of the language can be unnecessarily hard.

Support
The book’s support website, www.stroustrup.com/Programming, contains a va-
riety of material supporting the teaching and learning of programming using this
book. The material is likely to be improved with time, but for starters, you can find

• Slides for lectures based on the book
• An instructor’s guide
• Header fi les and implementations of libraries used in the book
• Code for examples in the book
• Solutions to selected exercises
• Potentially useful links
• Errata

Suggestions for improvements are always welcome.

Acknowledgments
I’d especially like to thank my late colleague and co-teacher Lawrence “Pete”
Petersen for encouraging me to tackle the task of teaching beginners long before
I’d otherwise have felt comfortable doing that, and for supplying the practical
teaching experience to make the course succeed. Without him, the first version
of the course would have been a failure. We worked together on the first versions
of the course for which this book was designed and together taught it repeatedly,
learning from our experiences, improving the course and the book. My use of
“we” in this book initially meant “Pete and me.”

Thanks to the students, teaching assistants, and peer teachers of ENGR 112,
ENGR 113, and CSCE 121 at Texas A&M University who directly and indirectly
helped us construct this book, and to Walter Daugherity, Hyunyoung Lee, Teresa
Leyk, Ronnie Ward, and Jennifer Welch, who have also taught the course. Also
thanks to Damian Dechev, Tracy Hammond, Arne Tolstrup Madsen, Gabriel
Dos Reis, Nicholas Stroustrup, J. C. van Winkel, Greg Versoonder, Ronnie Ward,
and Leor Zolman for constructive comments on drafts of this book. Thanks to
Mogens Hansen for explaining about engine control software. Thanks to Al Aho,
Stephen Edwards, Brian Kernighan, and Daisy Nguyen for helping me hide away
from distractions to get writing done during the summers.

http://www.stroustrup.com/compilers.html
http://www.stroustrup.com/Programming

PREFACE xxxi

Thanks to Art Werschulz for many constructive comments based on his use
of the first edition of this book in courses at Fordham University in New York
City and to Nick Maclaren for many detailed comments on the exercises based
on his use of the first edition of this book at Cambridge University. His students
had dramatically different backgrounds and professional needs from the TAMU
first-year students.

Thanks to the reviewers that Addison-Wesley found for me. Their comments,
mostly based on teaching either C++ or Computer Science 101 at the college
level, have been invaluable: Richard Enbody, David Gustafson, Ron McCarty,
and K. Narayanaswamy. Also thanks to my editor, Peter Gordon, for many useful
comments and (not least) for his patience. I’m very grateful to the production
team assembled by Addison-Wesley; they added much to the quality of the book:
Linda Begley (proofreader), Kim Arney (compositor), Rob Mauhar (illustrator),
Julie Nahil (production editor), and Barbara Wood (copy editor).

Thanks to the translators of the first edition, who found many problems and
helped clarify many points. In particular, Loïc Joly and Michel Michaud did a thor-
ough technical review of the French translation that led to many improvements.

I would also like to thank Brian Kernighan and Doug McIlroy for setting a
very high standard for writing about programming, and Dennis Ritchie and Kris-
ten Nygaard for providing valuable lessons in practical language design.

This page intentionally left blank

1

0

Notes to the Reader

“When the terrain disagrees with
the map, trust the terrain.”

—Swiss army proverb

This chapter is a grab bag of information; it aims to give you

an idea of what to expect from the rest of the book. Please

skim through it and read what you find interesting. A teacher

will find most parts immediately useful. If you are reading this

book without the benefit of a good teacher, please don’t try to

read and understand everything in this chapter; just look at “The

structure of this book” and the first part of the “A philosophy of

teaching and learning” sections. You may want to return and

reread this chapter once you feel comfortable writing and execut-

ing small programs.

CHAPTER 0 • NOTES TO THE READER2

0.1 The structure of this book
This book consists of four parts and a collection of appendices:

• Part I, “The Basics,” presents the fundamental concepts and techniques
of programming together with the C++ language and library facilities
needed to get started writing code. This includes the type system, arith-
metic operations, control structures, error handling, and the design, im-
plementation, and use of functions and user-defi ned types.

• Part II, “Input and Output,” describes how to get numeric and text data from
the keyboard and from fi les, and how to produce corresponding output
to the screen and to fi les. Then, it shows how to present numeric data,
text, and geometric shapes as graphical output, and how to get input into
a program from a graphical user interface (GUI).

• Part III, “Data and Algorithms,” focuses on the C++ standard library’s con-
tainers and algorithms framework (the STL, standard template library).
It shows how containers (such as vector, list, and map) are implemented
(using pointers, arrays, dynamic memory, exceptions, and templates) and
used. It also demonstrates the design and use of standard library algo-
rithms (such as sort, fi nd, and inner_product).

• Part IV, “Broadening the View,” offers a perspective on programming through
a discussion of ideals and history, through examples (such as matrix com-
putation, text manipulation, testing, and embedded systems program-
ming), and through a brief description of the C language.

• Appendices provide useful information that doesn’t fi t into a tutorial presen-
tation, such as surveys of C++ language and standard library facilities,
and descriptions of how to get started with an integrated development
environment (IDE) and a graphical user interface (GUI) library.

0.1 The structure of this book
0.1.1 General approach
0.1.2 Drills, exercises, etc.
0.1.3 What comes after this book?

0.2 A philosophy of teaching
and learning
0.2.1 The order of topics
0.2.2 Programming and programming

language
0.2.3 Portability

0.3 Programming and computer science

0.4 Creativity and problem solving

0.5 Request for feedback

0.6 References

0.7 Biographies

0.1 THE STRUCTURE OF THIS BOOK 3

Unfortunately, the world of programming doesn’t really fall into four cleanly
separated parts. Therefore, the “parts” of this book provide only a coarse classifi-
cation of topics. We consider it a useful classification (obviously, or we wouldn’t
have used it), but reality has a way of escaping neat classifications. For example,
we need to use input operations far sooner than we can give a thorough explana-
tion of C++ standard I/O streams (input/output streams). Where the set of topics
needed to present an idea conflicts with the overall classification, we explain the
minimum needed for a good presentation, rather than just referring to the com-
plete explanation elsewhere. Rigid classifications work much better for manuals
than for tutorials.

The order of topics is determined by programming techniques, rather than
programming language features; see §0.2. For a presentation organized around
language features, see Appendix A.

To ease review and to help you if you miss a key point during a first reading
where you have yet to discover which kind of information is crucial, we place
three kinds of “alert markers” in the margin:

• Blue: concepts and techniques (this paragraph is an example of that)
• Green: advice
• Red: warning

0.1.1 General approach
In this book, we address you directly. That is simpler and clearer than the conven-
tional “professional” indirect form of address, as found in most scientific papers.
By “you” we mean “you, the reader,” and by “we” we refer either to “ourselves,
the author and teachers,” or to you and us working together through a problem,
as we might have done had we been in the same room.

This book is designed to be read chapter by chapter from the beginning to
the end. Often, you’ll want to go back to look at something a second or a third
time. In fact, that’s the only sensible approach, as you’ll always dash past some
details that you don’t yet see the point in. In such cases, you’ll eventually go back
again. However, despite the index and the cross-references, this is not a book that
you can open to any page and start reading with any expectation of success. Each
section and each chapter assume understanding of what came before.

Each chapter is a reasonably self-contained unit, meant to be read in “one
sitting” (logically, if not always feasible on a student’s tight schedule). That’s one
major criterion for separating the text into chapters. Other criteria include that
a chapter is a suitable unit for drills and exercises and that each chapter presents
some specific concept, idea, or technique. This plurality of criteria has left a few
chapters uncomfortably long, so please don’t take “in one sitting” too literally. In
particular, once you have thought about the review questions, done the drill, and

CHAPTER 0 • NOTES TO THE READER4

worked on a few exercises, you’ll often find that you have to go back to reread a
few sections and that several days have gone by. We have clustered the chapters
into “parts” focused on a major topic, such as input/output. These parts make
good units of review.

Common praise for a textbook is “It answered all my questions just as I
thought of them!” That’s an ideal for minor technical questions, and early read-
ers have observed the phenomenon with this book. However, that cannot be the
whole ideal. We raise questions that a novice would probably not think of. We
aim to ask and answer questions that you need to consider when writing quality
software for the use of others. Learning to ask the right (often hard) questions
is an essential part of learning to think as a programmer. Asking only the easy
and obvious questions would make you feel good, but it wouldn’t help make
you a programmer.

We try to respect your intelligence and to be considerate about your time.
In our presentation, we aim for professionalism rather than cuteness, and we’d
rather understate a point than hype it. We try not to exaggerate the importance of
a programming technique or a language feature, but please don’t underestimate
a simple statement like “This is often useful.” If we quietly emphasize that some-
thing is important, we mean that you’ll sooner or later waste days if you don’t
master it. Our use of humor is more limited than we would have preferred, but
experience shows that people’s ideas of what is funny differ dramatically and that
a failed attempt at humor can be confusing.

We do not pretend that our ideas or the tools offered are perfect. No tool,
library, language, or technique is “the solution” to all of the many challenges
facing a programmer. At best, it can help you to develop and express your solu-
tion. We try hard to avoid “white lies”; that is, we refrain from oversimplified
explanations that are clear and easy to understand, but not true in the context
of real languages and real problems. On the other hand, this book is not a refer-
ence; for more precise and complete descriptions of C++, see Bjarne Stroustrup,
The C++ Programming Language, Fourth Edition (Addison-Wesley, 2013), and the
ISO C++ standard.

0.1.2 Drills, exercises, etc.
Programming is not just an intellectual activity, so writing programs is necessary
to master programming skills. We provide two levels of programming practice:

• Drills: A drill is a very simple exercise devised to develop practical, almost
mechanical skills. A drill usually consists of a sequence of modifi cations
of a single program. You should do every drill. A drill is not asking for
deep understanding, cleverness, or initiative. We consider the drills part
of the basic fabric of the book. If you haven’t done the drills, you have
not “done” the book.

0.1 THE STRUCTURE OF THIS BOOK 5

• Exercises: Some exercises are trivial and others are very hard, but most are
intended to leave some scope for initiative and imagination. If you are
serious, you’ll do quite a few exercises. At least do enough to know which
are diffi cult for you. Then do a few more of those. That’s how you’ll learn
the most. The exercises are meant to be manageable without exceptional
cleverness, rather than to be tricky puzzles. However, we hope that we
have provided exercises that are hard enough to challenge anybody and
enough exercises to exhaust even the best student’s available time. We do
not expect you to do them all, but feel free to try.

In addition, we recommend that you (every student) take part in a small project
(and more if time allows for it). A project is intended to produce a complete
useful program. Ideally, a project is done by a small group of people (e.g., three
people) working together for about a month while working through the chap-
ters in Part III. Most people find the projects the most fun and what ties every-
thing together.

Some people like to put the book aside and try some examples before reading
to the end of a chapter; others prefer to read ahead to the end before trying to get
code to run. To support readers with the former preference, we provide simple
suggestions for practical work labeled “Try this” at natural breaks in the text. A
Try this is generally in the nature of a drill focused narrowly on the topic that pre-
cedes it. If you pass a Try this without trying — maybe because you are not near a
computer or you find the text riveting — do return to it when you do the chapter
drill; a Try this either complements the chapter drill or is a part of it.

At the end of each chapter you’ll find a set of review questions. They are
intended to point you to the key ideas explained in the chapter. One way to look
at the review questions is as a complement to the exercises: the exercises focus on
the practical aspects of programming, whereas the review questions try to help you
articulate the ideas and concepts. In that, they resemble good interview questions.

The “Terms” section at the end of each chapter presents the basic vocabulary
of programming and of C++. If you want to understand what people say about
programming topics and to articulate your own ideas, you should know what
each means.

Learning involves repetition. Our ideal is to make every important point at
least twice and to reinforce it with exercises.

0.1.3 What comes after this book?
At the end of this book, will you be an expert at programming and at C++? Of
course not! When done well, programming is a subtle, deep, and highly skilled
art building on a variety of technical skills. You should no more expect to be an
expert at programming in four months than you should expect to be an expert in
biology, in math, in a natural language (such as Chinese, English, or Danish), or

CHAPTER 0 • NOTES TO THE READER6

at playing the violin in four months — or in half a year, or a year. What you should
hope for, and what you can expect if you approach this book seriously, is to have
a really good start that allows you to write relatively simple useful programs, to be
able to read more complex programs, and to have a good conceptual and practical
background for further work.

The best follow-up to this initial course is to work on a real project developing
code to be used by someone else. After that, or (even better) in parallel with a real
project, read either a professional-level general textbook (such as Stroustrup, The
C++ Programming Language), a more specialized book relating to the needs of your
project (such as Qt for GUI, or ACE for distributed programming), or a textbook
focusing on a particular aspect of C++ (such as Koenig and Moo, Accelerated C++;
Sutter’s Exceptional C++; or Gamma et al., Design Patterns). For more references, see
§0.6 or the Bibliography section at the back of the book.

Eventually, you should learn another programming language. We don’t con-
sider it possible to be a professional in the realm of software — even if you are not
primarily a programmer — without knowing more than one language.

0.2 A philosophy of teaching and learning
What are we trying to help you learn? And how are we approaching the process
of teaching? We try to present the minimal concepts, techniques, and tools for you
to do effective practical programs, including

• Program organization
• Debugging and testing
• Class design
• Computation
• Function and algorithm design
• Graphics (two-dimensional only)
• Graphical user interfaces (GUIs)
• Text manipulation
• Regular expression matching
• Files and stream input and output (I/O)
• Memory management
• Scientifi c/numerical/engineering calculations
• Design and programming ideals
• The C++ standard library
• Software development strategies
• C-language programming techniques

0.2 A PHILOSOPHY OF TEACHING AND LEARNING 7

Working our way through these topics, we cover the programming techniques
called procedural programming (as with the C programming language), data
abstraction, object-oriented programming, and generic programming. The main
topic of this book is programming, that is, the ideals, techniques, and tools of ex-
pressing ideas in code. The C++ programming language is our main tool, so we
describe many of C++’s facilities in some detail. But please remember that C++
is just a tool, rather than the main topic of this book. This is “programming using
C++,” not “C++ with a bit of programming theory.”

Each topic we address serves at least two purposes: it presents a technique,
concept, or principle and also a practical language or library feature. For example,
we use the interface to a two-dimensional graphics system to illustrate the use of
classes and inheritance. This allows us to be economical with space (and your
time) and also to emphasize that programming is more than simply slinging code
together to get a result as quickly as possible. The C++ standard library is a major
source of such “double duty” examples — many even do triple duty. For example,
we introduce the standard library vector, use it to illustrate widely useful design
techniques, and show many of the programming techniques used to implement it.
One of our aims is to show you how major library facilities are implemented and
how they map to hardware. We insist that craftsmen must understand their tools,
not just consider them “magical.”

Some topics will be of greater interest to some programmers than to others.
However, we encourage you not to prejudge your needs (how would you know
what you’ll need in the future?) and at least look at every chapter. If you read this
book as part of a course, your teacher will guide your selection.

We characterize our approach as “depth-first.” It is also “concrete-first” and
“concept-based.” First, we quickly (well, relatively quickly, Chapters 1–11) assem-
ble a set of skills needed for writing small practical programs. In doing so, we pre-
sent a lot of tools and techniques in minimal detail. We focus on simple concrete
code examples because people grasp the concrete faster than the abstract. That’s
simply the way most humans learn. At this initial stage, you should not expect
to understand every little detail. In particular, you’ll find that trying something
slightly different from what just worked can have “mysterious” effects. Do try,
though! And please do the drills and exercises we provide. Just remember that
early on you just don’t have the concepts and skills to accurately estimate what’s
simple and what’s complicated; expect surprises and learn from them.

We move fast in this initial phase — we want to get you to the point where you
can write interesting programs as fast as possible. Someone will argue, “We must
move slowly and carefully; we must walk before we can run!” But have you ever
watched a baby learning to walk? Babies really do run by themselves before they
learn the finer skills of slow, controlled walking. Similarly, you will dash ahead,
occasionally stumbling, to get a feel of programming before slowing down to gain
the necessary finer control and understanding. You must run before you can walk!

CHAPTER 0 • NOTES TO THE READER8

It is essential that you don’t get stuck in an attempt to learn “everything”
about some language detail or technique. For example, you could memorize all
of C++’s built-in types and all the rules for their use. Of course you could, and
doing so might make you feel knowledgeable. However, it would not make you
a programmer. Skipping details will get you “burned” occasionally for lack of
knowledge, but it is the fastest way to gain the perspective needed to write good
programs. Note that our approach is essentially the one used by children learning
their native language and also the most effective approach used to teach foreign
languages. We encourage you to seek help from teachers, friends, colleagues, in-
structors, Mentors, etc. on the inevitable occasions when you are stuck. Be as-
sured that nothing in these early chapters is fundamentally difficult. However,
much will be unfamiliar and might therefore feel difficult at first.

Later, we build on the initial skills to broaden your base of knowledge and
skills. We use examples and exercises to solidify your understanding, and to pro-
vide a conceptual base for programming.

We place a heavy emphasis on ideals and reasons. You need ideals to guide
you when you look for practical solutions — to know when a solution is good and
principled. You need to understand the reasons behind those ideals to understand
why they should be your ideals, why aiming for them will help you and the users
of your code. Nobody should be satisfied with “because that’s the way it is” as
an explanation. More importantly, an understanding of ideals and reasons allows
you to generalize from what you know to new situations and to combine ideas
and tools in novel ways to address new problems. Knowing “why” is an essential
part of acquiring programming skills. Conversely, just memorizing lots of poorly
understood rules and language facilities is limiting, a source of errors, and a mas-
sive waste of time. We consider your time precious and try not to waste it.

Many C++ language-technical details are banished to appendices and man-
uals, where you can look them up when needed. We assume that you have the
initiative to search out information when needed. Use the index and the table of
contents. Don’t forget the online help facilities of your compiler, and the web.
Remember, though, to consider every web resource highly suspect until you have
reason to believe better of it. Many an authoritative-looking website is put up by
a programming novice or someone with something to sell. Others are simply out-
dated. We provide a collection of links and information on our support website:
www.stroustrup.com/Programming.

Please don’t be too impatient for “realistic” examples. Our ideal example is
the shortest and simplest code that directly illustrates a language facility, a con-
cept, or a technique. Most real-world examples are far messier than ours, yet
do not consist of more than a combination of what we demonstrate. Successful
commercial programs with hundreds of thousands of lines of code are based on
techniques that we illustrate in a dozen 50-line programs. The fastest way to un-
derstand real-world code is through a good understanding of the fundamentals.

http://www.stroustrup.com/Programming

0.2 A PHILOSOPHY OF TEACHING AND LEARNING 9

On the other hand, we do not use “cute examples involving cuddly animals”
to illustrate our points. We assume that you aim to write real programs to be used
by real people, so every example that is not presented as language-technical is
taken from a real-world use. Our basic tone is that of professionals addressing
(future) professionals.

0.2.1 The order of topics
There are many ways to teach people how to program. Clearly, we don’t sub-
scribe to the popular “the way I learned to program is the best way to learn” theo-
ries. To ease learning, we early on present topics that would have been considered
advanced only a few years ago. Our ideal is for the topics we present to be driven
by problems you meet as you learn to program, to flow smoothly from topic to
topic as you increase your understanding and practical skills. The major flow of
this book is more like a story than a dictionary or a hierarchical order.

It is impossible to learn all the principles, techniques, and language facilities
needed to write a program at once. Consequently, we have to choose a subset of
principles, techniques, and features to start with. More generally, a textbook or a
course must lead students through a series of subsets. We consider it our respon-
sibility to select topics and to provide emphasis. We can’t just present everything,
so we must choose; what we leave out is at least as important as what we leave
in — at each stage of the journey.

For contrast, it may be useful for you to see a list of (severely abbreviated)
characterizations of approaches that we decided not to take:

• “C fi rst”: This approach to learning C++ is wasteful of students’ time
and leads to poor programming practices by forcing students to approach
problems with fewer facilities, techniques, and libraries than necessary.
C++ provides stronger type checking than C, a standard library with
better support for novices, and exceptions for error handling.

• Bottom-up: This approach distracts from learning good and effective pro-
gramming practices. By forcing students to solve problems with insuf-
fi cient support from the language and libraries, it promotes poor and
wasteful programming practices.

• “If you present something, you must present it fully”: This approach implies a bot-
tom-up approach (by drilling deeper and deeper into every topic touched).
It bores novices with technical details they have no interest in and quite
likely will not need for years to come. Once you can program, you can
look up technical details in a manual. Manuals are good at that, whereas
they are awful for initial learning of concepts.

• Top-down: This approach, working from fi rst principles toward details,
tends to distract readers from the practical aspects of programming and

CHAPTER 0 • NOTES TO THE READER10

force them to concentrate on high-level concepts before they have any
chance of appreciating their importance. For example, you simply can’t
appreciate proper software development principles before you have
learned how easy it is to make a mistake in a program and how hard it
can be to correct it.

• “Abstract fi rst”: Focusing on general principles and protecting the student
from nasty real-world constraints can lead to a disdain for real-world prob-
lems, languages, tools, and hardware constraints. Often, this approach is
supported by “teaching languages” that cannot be used later and (deliber-
ately) insulate students from hardware and system concerns.

• “Software engineering principles fi rst”: This approach and the abstract-fi rst ap-
proach tend to share the problems of the top-down approach: without
concrete examples and practical experience, you simply cannot appreciate
the value of abstraction and proper software development practices.

• “Object-oriented from day one”: Object-oriented programming is one of the
best ways of organizing code and programming efforts, but it is not the
only effective way. In particular, we feel that a grounding in the basics of
types and algorithmic code is a prerequisite for appreciation of the de-
sign of classes and class hierarchies. We do use user-defi ned types (what
some people would call “objects”) from day one, but we don’t show how
to design a class until Chapter 6 and don’t show a class hierarchy until
Chapter 12.

• “Just believe in magic”: This approach relies on demonstrations of powerful
tools and techniques without introducing the novice to the underlying
techniques and facilities. This leaves the student guessing — and usually
guessing wrong — about why things are the way they are, what it costs
to use them, and where they can be reasonably applied. This can lead to
overrigid following of familiar patterns of work and become a barrier to
further learning.

Naturally, we do not claim that these other approaches are never useful. In fact,
we use several of these for specific subtopics where their strengths can be ap-
preciated. However, as general approaches to learning programming aimed
at real-world use, we reject them and apply our alternative: concrete-first and
depth-first with an emphasis on concepts and techniques.

0.2.2 Programming and programming language
We teach programming first and treat our chosen programming language as sec-
ondary, as a tool. Our general approach can be used with any general-purpose pro-
gramming language. Our primary aim is to help you learn general concepts,

0.2 A PHILOSOPHY OF TEACHING AND LEARNING 11

principles, and techniques. However, those cannot be appreciated in isolation. For
example, details of syntax, the kinds of ideas that can be directly expressed, and
tool support differ from programming language to programming language. How-
ever, many of the fundamental techniques for producing bug-free code, such as
writing logically simple code (Chapters 5 and 6), establishing invariants (§9.4.3),
and separating interfaces from implementation details (§9.7 and §14.1–2), vary
little from programming language to programming language.

Programming and design techniques must be learned using a programming
language. Design, code organization, and debugging are not skills you can acquire
in the abstract. You need to write code in some programming language and gain
practical experience with that. This implies that you must learn the basics of a
programming language. We say “the basics” because the days when you could
learn all of a major industrial language in a few weeks are gone for good. The
parts of C++ we present were chosen as the subset that most directly supports
the production of good code. Also, we present C++ features that you can’t avoid
encountering either because they are necessary for logical completeness or are
common in the C++ community.

0.2.3 Portability
It is common to write C++ to run on a variety of machines. Major C++ applica-
tions run on machines we haven’t ever heard of! We consider portability and the
use of a variety of machine architectures and operating systems most important.
Essentially every example in this book is not only ISO Standard C++, but also
portable. Unless specifically stated, the code we present should work on every C++
implementation and has been tested on several machines and operating systems.

The details of how to compile, link, and run a C++ program differ from sys-
tem to system. It would be tedious to mention the details of every system and ev-
ery compiler each time we need to refer to an implementation issue. In Appendix
C, we give the most basic information about getting started using Visual Studio
and Microsoft C++ on a Windows machine.

If you have trouble with one of the popular, but rather elaborate, IDEs (in-
tegrated development environments), we suggest you try working from the com-
mand line; it’s surprisingly simple. For example, here is the full set of commands
needed to compile, link, and execute a simple program consisting of two source
files, my_file1.cpp and my_file2.cpp, using the GNU C++ compiler on a Unix
or Linux system:

c++ –o my_program my_file1.cpp my_file2.cpp
./my_program

Yes, that really is all it takes.

CHAPTER 0 • NOTES TO THE READER12

0.3 Programming and computer science
Is programming all that there is to computer science? Of course not! The only
reason we raise this question is that people have been known to be confused about
this. We touch upon major topics from computer science, such as algorithms and
data structures, but our aim is to teach programming: the design and implemen-
tation of programs. That is both more and less than most accepted notions of
computer science:

• More, because programming involves many technical skills that are not
usually considered part of any science

• Less, because we do not systematically present the foundation for the parts
of computer science we use

The aim of this book is to be part of a course in computer science (if becoming a
computer scientist is your aim), to be the foundation for the first of many courses
in software construction and maintenance (if your aim is to become a program-
mer or a software engineer), and in general to be part of a greater whole.

We rely on computer science throughout and we emphasize principles, but
we teach programming as a practical skill based on theory and experience, rather
than as a science.

0.4 Creativity and problem solving
The primary aim of this book is to help you to express your ideas in code, not
to teach you how to get those ideas. Along the way, we give many examples of
how we can address a problem, usually through analysis of a problem followed
by gradual refinement of a solution. We consider programming itself a form of
problem solving: only through complete understanding of a problem and its solu-
tion can you express a correct program for it, and only through constructing and
testing a program can you be certain that your understanding is complete. Thus,
programming is inherently part of an effort to gain understanding. However, we
aim to demonstrate this through examples, rather than through “preaching” or
presentation of detailed prescriptions for problem solving.

0.5 Request for feedback
We don’t think that the perfect textbook can exist; the needs of individuals differ
too much for that. However, we’d like to make this book and its supporting mate-
rials as good as we can make them. For that, we need feedback; a good textbook
cannot be written in isolation from its readers. Please send us reports on errors,
typos, unclear text, missing explanations, etc. We’d also appreciate suggestions

0.7 BIOGRAPHIES 13

for better exercises, better examples, and topics to add, topics to delete, etc. Con-
structive comments will help future readers and we’ll post errata on our support
website: www.stroustrup.com/Programming.

0.6 References
Along with listing the publications mentioned in this chapter, this section also
includes publications you might find helpful.

Becker, Pete, ed. The C++ Standard. ISO/IEC 14882:2011.
Blanchette, Jasmin, and Mark Summerfield. C++ GUI Programming with Qt 4, Sec-

ond Edition. Prentice Hall, 2008. ISBN 0132354160.
Koenig, Andrew, and Barbara E. Moo. Accelerated C++: Practical Programming by

Example. Addison-Wesley, 2000. ISBN 020170353X.
Meyers, Scott. Effective C++: 55 Specific Ways to Improve Your Programs and Designs,

Third Edition. Addison-Wesley, 2005. ISBN 0321334876.
Schmidt, Douglas C., and Stephen D. Huston. C++ Network Programming, Vol-

ume 1: Mastering Complexity with ACE and Patterns. Addison-Wesley, 2001. ISBN
0201604647.

Schmidt, Douglas C., and Stephen D. Huston. C++ Network Programming, Vol-
ume 2: Systematic Reuse with ACE and Frameworks. Addison-Wesley, 2002. ISBN
0201795256.

Stroustrup, Bjarne. The Design and Evolution of C++. Addison-Wesley, 1994. ISBN
0201543303.

Stroustrup, Bjarne. “Learning Standard C++ as a New Language.” C/C++ Users
Journal, May 1999.

Stroustrup, Bjarne. The C++ Programming Language, Fourth Edition. Addison-Wesley,
2013. ISBN 0321563840.

Stroustrup, Bjarne. A Tour of C++. Addison-Wesley, 2013. ISBN 0321958314.
Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solu-

tions. Addison-Wesley, 1999. ISBN 0201615622.

A more comprehensive list of references can be found in the Bibliography section
at the back of the book.

0.7 Biographies
You might reasonably ask, “Who are these guys who want to teach me how to
program?” So here is some biographical information. I, Bjarne Stroustrup, wrote
this book, and together with Lawrence “Pete” Petersen, I designed and taught
the university-level beginner’s (first-year) course that was developed concurrently
with the book, using drafts of the book.

http://www.stroustrup.com/Programming

CHAPTER 0 • NOTES TO THE READER14

Bjarne Stroustrup
I’m the designer and original implementer of the
C++ programming language. I have used the lan-
guage, and many other programming languages,
for a wide variety of programming tasks over the
last 40 years or so. I just love elegant and efficient
code used in challenging applications, such as ro-
bot control, graphics, games, text analysis, and
networking. I have taught design, programming,
and C++ to people of essentially all abilities and
interests. I’m a founding member of the ISO stan-
dards committee for C++ where I serve as the
chair of the working group for language evolution.

This is my first introductory book. My other books, such as The C++ Pro-
gramming Language and The Design and Evolution of C++, were written for experi-
enced programmers.

I was born into a blue-collar (working-class) family in Århus, Denmark, and
got my master’s degree in mathematics with computer science in my hometown
university. My Ph.D. in computer science is from Cambridge University, En-
gland. I worked for AT&T for about 25 years, first in the famous Computer
Science Research Center of Bell Labs — where Unix, C, C++, and so much more
was invented — and later in AT&T Labs–Research.

I’m a member of the U.S. National Academy of Engineering, a Fellow of the
ACM, and an IEEE Fellow. As the first computer scientist ever, I received the
2005 William Procter Prize for Scientific Achievement from Sigma Xi (the scien-
tific research society). In 2010, I received the University of Åarhus’s oldest and
most prestigious honor for contributions to science by a person associated with
the university, the Rigmor og Carl Holst-Knudsens Videnskapspris. In 2013, I was made
Honorary Doctor of Computer Science from the National Research University,
ITMO, St. Petersburg, Russia.

I do have a life outside work. I’m married and have two children, one a medi-
cal doctor and one a Post-doctoral Research Fellow. I read a lot (including history,
science fiction, crime, and current affairs) and like most kinds of music (including
classical, rock, blues, and country). Good food with friends is an essential part of
life, and I enjoy visiting interesting places and people, all over the world. To be
able to enjoy the good food, I run.

For more information, see my home pages: www.stroustrup.com. In particu-
lar, there you can find out how to pronounce my name.

http://www.stroustrup.com

0.7 BIOGRAPHIES 15

Lawrence “Pete” Petersen
In late 2006, Pete introduced himself as follows: “I
am a teacher. For almost 20 years, I have taught
programming languages at Texas A&M. I have
been selected by students for Teaching Excellence
Awards five times and in 1996 received the Dis-
tinguished Teaching Award from the Alumni As-
sociation for the College of Engineering. I am a
Fellow of the Wakonse Program for Teaching Ex-
cellence and a Fellow of the Academy for Educator
Development.

“As the son of an army officer, I was raised on
the move. After completing a degree in philosophy

at the University of Washington, I served in the army for 22 years as a Field Ar-
tillery Officer and as a Research Analyst for Operational Testing. I taught at the
Field Artillery Officers’ Advanced Course at Fort Sill, Oklahoma, from 1971 to
1973. In 1979 I helped organize a Test Officers’ Training Course and taught it as
lead instructor at nine different locations across the United States from 1978 to
1981 and from 1985 to 1989.

“In 1991 I formed a small software company that produced management
software for university departments until 1999. My interests are in teaching, de-
signing, and programming software that real people can use. I completed master’s
degrees in industrial engineering at Georgia Tech and in education curriculum
and instruction at Texas A&M. I also completed a master’s program in microcom-
puters from NTS. My Ph.D. is in information and operations management from
Texas A&M.

“My wife, Barbara, and I live in Bryan, Texas. We like to travel, garden, and
entertain; and we spend as much time as we can with our sons and their families,
and especially with our grandchildren, Angelina, Carlos, Tess, Avery, Nicholas,
and Jordan.”

Sadly, Pete died of lung cancer in 2007. Without him, the course would never
have succeeded.

CHAPTER 0 • NOTES TO THE READER16

Postscript
Most chapters p rovide a short “postscript” that attempts to give some perspective
on the information presented in the chapter. We do that with the realization that
the information can be — and often is — daunting and will only be fully compre-
hended after doing exercises, reading further chapters (which apply the ideas of
the chapter), and a later review. Don’t panic! Relax; this is natural and expected.
You won’t become an expert in a day, but you can become a reasonably compe-
tent programmer as you work your way through the book. On the way, you’ll
encounter much information, many examples, and many techniques that lots of
programmers have found stimulating and fun.

This page intentionally left blank

627

18

Vectors and Arrays

“Caveat emptor!”

—Good advice

This chapter describes how vectors are copied and accessed

through subscripting. To do that, we discuss copying in

general and consider vector’s relation to the lower-level notion of

arrays. We present arrays’ relation to pointers and consider the

problems arising from their use. We also present the five essential

operations that must be considered for every type: construction,

default construction, copy construction, copy assignment, and

destruction. In addition, a container needs a move constructor

and a move assignment.

CHAPTER 18 • VECTORS AND ARRAYS628

18.1 Introduction
To get into the air, a plane has to accelerate along the runway until it moves fast
enough to “jump” into the air. While the plane is lumbering along the runway,
it is little more than a particularly heavy and awkward truck. Once in the air, it
soars to become an altogether different, elegant, and efficient vehicle. It is in its
true element.

In this chapter, we are in the middle of a “run” to gather enough program-
ming language features and techniques to get away from the constraints and dif-
ficulties of plain computer memory. We want to get to the point where we can
program using types that provide exactly the properties we want based on logical
needs. To “get there” we have to overcome a number of fundamental constraints
related to access to the bare machine, such as the following:

• An object in memory is of fi xed size.
• An object in memory is in one specifi c place.
• The computer provides only a few fundamental operations on such ob-

jects (such as copying a word, adding the values from two words, etc.).

Basically, those are the constraints on the built-in types and operations of C++ (as
inherited through C from hardware; see §22.2.5 and Chapter 27). In Chapter 17,
we saw the beginnings of a vector type that controls all access to its elements and
provides us with operations that seem “natural” from the point of view of a user,
rather than from the point of view of hardware.

This chapter focuses on the notion of copying. This is an important but rather
technical point: What do we mean by copying a nontrivial object? To what extent

 18.1 Introduction

 18.2 Initialization

 18.3 Copying
 18.3.1 Copy constructors
 18.3.2 Copy assignments
 18.3.3 Copy terminology
 18.3.4 Moving

 18.4 Essential operations
 18.4.1 Explicit constructors
 18.4.2 Debugging constructors and

destructors

 18.5 Access to vector elements
 18.5.1 Overloading on const

 18.6 Arrays
 18.6.1 Pointers to array elements
 18.6.2 Pointers and arrays
 18.6.3 Array initialization
 18.6.4 Pointer problems

 18.7 Examples: palindrome
 18.7.1 Palindromes using string
 18.7.2 Palindromes using arrays
 18.7.3 Palindromes using pointers

18.2 INITIALIZATION 629

are the copies independent after a copy operation? What copy operations are
there? How do we specify them? And how do they relate to other fundamental
operations, such as initialization and cleanup?

Inevitably, we get to discuss how memory is manipulated when we don’t
have higher-level types such as vector and string. We examine arrays and point-
ers, their relationship, their use, and the traps and pitfalls of their use. This is
essential information to anyone who gets to work with low-level uses of C++
or C code.

Please note that the details of vector are peculiar to vectors and the C++
ways of building new higher-level types from lower-level ones. However, every
“higher-level” type (string, vector, list, map, etc.) in every language is somehow
built from the same machine primitives and reflects a variety of resolutions to the
fundamental problems described here.

18.2 Initialization
Consider our vector as it was at the end of Chapter 17:

class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 vector(int s) // constructor
 :sz{s}, elem{new double[s]} { /* . . . */ } // allocates memory
 ~vector() // destructor
 { delete[] elem; } // deallocates memory
 // . . .
};

That’s fine, but what if we want to initialize a vector to a set of values that are not
defaults? For example:

vector v1 = {1.2, 7.89, 12.34 };

We can do that, and it is much better than initializing to default values and then
assigning the values we really want:

vector v2(2); // tedious and error-prone
v2[0] = 1.2;
v2[1] = 7.89;
v2[2] = 12.34;

CHAPTER 18 • VECTORS AND ARRAYS630

Compared to v1, the “initialization” of v2 is tedious and error-prone (we delib-
erately got the number of elements wrong in that code fragment). Using push_
back() can save us from mentioning the size:

vector v3; // tedious and repetitive
v2.push_back(1.2);
v2.push_back(7.89);
v2.push_back(12.34);

But this is still repetitive, so how do we write a constructor that accepts an initial-
izer list as its argument? A { }-delimited list of elements of type T is presented to
the programmer as an object of the standard library type initializer_list<T>, a list
of Ts, so we can write

class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 vector(int s) // constructor (s is the element count)
 :sz{s}, elem{new double[sz]} // uninitialized memory for elements
 {
 for (int i = 0; i<sz; ++i) elem[i] = 0.0; // initialize
 }

 vector(initializer_list<double> lst) // initializer-list constructor
 :sz{lst.size()}, elem{new double[sz]} // uninitialized memory
 // for elements
 {
 copy(lst.begin(),lst.end(),elem); // initialize (using std::copy(); §B.5.2)
 }
 // . . .
};

We used the standard library copy algorithm (§B.5.2). It copies a sequence of ele-
ments specified by its first two arguments (here, the beginning and the end of the
initializer_list) to a sequence of elements starting with its third argument (here,
the vector’s elements starting at elem).

Now we can write

vector v1 = {1,2,3}; // three elements 1.0, 2.0, 3.0
vector v2(3); // three elements each with the (default) value 0.0

18.3 COPYING 631

Note how we use () for an element count and { } for element lists. We need a
notation to distinguish them. For example:

vector v1 {3}; // one element with the value 3.0
vector v2(3); // three elements each with the (default) value 0.0

This is not very elegant, but it is effective. If there is a choice, the compiler will in-
terpret a value in a { } list as an element value and pass it to the initializer-list con-
structor as an element of an initializer_list.

In most cases — including all cases we will encounter in this book — the =
before an { } initializer list is optional, so we can write

vector v11 = {1,2,3}; // three elements 1.0, 2.0, 3.0
vector v12 {1,2,3}; // three elements 1.0, 2.0, 3.0

The difference is purely one of style.
Note that we pass initializer_list<double> by value. That was deliberate and

required by the language rules: an initializer_list is simply a handle to elements
allocated “elsewhere” (see §B.6.4).

18.3 Copying
Consider again our incomplete vector:

class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 vector(int s) // constructor
 :sz{s}, elem{new double[s]} { /* . . . */ } // allocates memory
 ~vector() // destructor
 { delete[] elem; } // deallocates memory
 // . . .
};

Let’s try to copy one of these vectors:

void f(int n)
{
 vector v(3); // define a vector of 3 elements
 v.set(2,2.2); // set v[2] to 2.2

CHAPTER 18 • VECTORS AND ARRAYS632

 vector v2 = v; // what happens here?
 // . . .
}

Ideally, v2 becomes a copy of v (that is, = makes copies); that is, v2.size()==v.size()
and v2[i]==v[i] for all is in the range [0:v.size()). Furthermore, all memory is re-
turned to the free store upon exit from f(). That’s what the standard library vector
does (of course), but it’s not what happens for our still-far-too-simple vector. Our
task is to improve our vector to get it to handle such examples correctly, but first
let’s figure out what our current version actually does. Exactly what does it do
wrong? How? And why? Once we know that, we can probably fix the problems.
More importantly, we have a chance to recognize and avoid similar problems
when we see them in other contexts.

The default meaning of copying for a class is “Copy all the data members.”
That often makes perfect sense. For example, we copy a Point by copying its co-
ordinates. But for a pointer member, just copying the members causes problems.
In particular, for the vectors in our example, it means that after the copy, we have
v.sz==v2.sz and v.elem==v2.elem so that our vectors look like this:

3 2.2 v:

3 v2:

0.00.0

That is, v2 doesn’t have a copy of v’s elements; it shares v’s elements. We could
write

v.set(1,99); // set v[1] to 99
v2.set(0,88); // set v2[0] to 88
cout << v.get(0) << ' ' << v2.get(1);

The result would be the output 88 99. That wasn’t what we wanted. Had there
been no “hidden” connection between v and v2, we would have gotten the output
0 0, because we never wrote to v[0] or to v2[1]. You could argue that the behavior
we got is “interesting,” “neat!” or “sometimes useful,” but that is not what we
intended or what the standard library vector provides. Also, what happens when
we return from f() is an unmitigated disaster. Then, the destructors for v and v2
are implicitly called; v’s destructor frees the storage used for the elements using

delete[] elem;

and so does v2’s destructor. Since elem points to the same memory location in both
v and v2, that memory will be freed twice with likely disastrous results (§17.4.6).

18.3 COPYING 633

18.3.1 Copy constructors
So, what do we do? We’ll do the obvious: provide a copy operation that copies
the elements and make sure that this copy operation gets called when we initialize
one vector with another.

Initialization of objects of a class is done by a constructor. So, we need a con-
structor that copies. Unsurprisingly, such a constructor is called a copy constructor.
It is defined to take as its argument a reference to the object from which to copy.
So, for class vector we need

vector(const vector&);

This constructor will be called when we try to initialize one vector with another.
We pass by reference because we (obviously) don’t want to copy the argument of
the constructor that defines copying. We pass by const reference because we don’t
want to modify our argument (§8.5.6). So we refine vector like this:

class vector {
 int sz;
 double* elem;
public:
 vector(const vector&) ; // copy constructor: define copy
 // . . .
};

The copy constructor sets the number of elements (sz) and allocates memory for
the elements (initializing elem) before copying element values from the argument
vector:

vector:: vector(const vector& arg)
// allocate elements, then initialize them by copying
 :sz{arg.sz}, elem{new double[arg.sz]}
{
 copy(arg,arg+sz,elem); // std::copy(); see §B.5.2
}

Given this copy constructor, consider again our example:

vector v2 = v;

This definition will initialize v2 by a call of vector’s copy constructor with v as its
argument. Again given a vector with three elements, we now get

3 2.2v:

3 2.2v2:

CHAPTER 18 • VECTORS AND ARRAYS634

Given that, the destructor can do the right thing. Each set of elements is correctly
freed. Obviously, the two vectors are now independent so that we can change the
value of elements in v without affecting v2 and vice versa. For example:

v.set(1,99); // set v[1] to 99
v2.set(0,88); // set v2[0] to 88
cout << v.get(0) << ' ' << v2.get(1);

This will output 0 0.
Instead of saying

vector v2 = v;

we could equally well have said

vector v2 {v};

When v (the initializer) and v2 (the variable being initialized) are of the same type
and that type has copying conventionally defined, those two notations mean ex-
actly the same thing and you can use whichever notation you like better.

18.3.2 Copy assignments
We handle copy construction (initialization), but we can also copy vectors by as-
signment. As with copy initialization, the default meaning of copy assignment is
memberwise copy, so with vector as defined so far, assignment will cause a double
deletion (exactly as shown for copy constructors in §18.3.1) plus a memory leak.
For example:

void f2(int n)
{
 vector v(3); // define a vector
 v.set(2,2.2);
 vector v2(4);
 v2 = v; // assignment: what happens here?
 // . . .
}

We would like v2 to be a copy of v (and that’s what the standard library vector
does), but since we have said nothing about the meaning of assignment of our
vector, the default assignment is used; that is, the assignment is a memberwise
copy so that v2’s sz and elem become identical to v’s sz and elem, respectively.
We can illustrate that like this:

18.3 COPYING 635

3 2.2v:
2nd

1st

3v2:

When we leave f2(), we have the same disaster as we had when leaving f() in §18.3
before we added the copy constructor: the elements pointed to by both v and v2
are freed twice (using delete[]). In addition, we have leaked the memory initially
allocated for v2’s four elements. We “forgot” to free those. The remedy for this
copy assignment is fundamentally the same as for the copy initialization (§18.3.1).
We define an assignment that copies properly:

class vector {
 int sz;
 double* elem;
public:
 vector& operator=(const vector&) ; // copy assignment
 // . . .
};

vector& vector::operator=(const vector& a)
 // make this vector a copy of a
{
 double* p = new double[a.sz]; // allocate new space
 copy(a.elem,a.elem+a.sz,elem); // copy elements
 delete[] elem; // deallocate old space
 elem = p; // now we can reset elem
 sz = a.sz;
 return *this; // return a self-reference (see §17.10)
}

Assignment is a bit more complicated than construction because we must deal
with the old elements. Our basic strategy is to make a copy of the elements from
the source vector:

 double* p = new double[a.sz]; // allocate new space
 copy(a.elem,a.elem+a.sz,elem); // copy elements

Then we free the old elements from the target vector:

delete[] elem; // deallocate old space

CHAPTER 18 • VECTORS AND ARRAYS636

Finally, we let elem point to the new elements:

elem = p; // now we can reset elem
sz = a.sz;

We can represent the result graphically like this:

3 2.2

2.2

v:
Given back to
the free store by
delete[]

2nd

1st

3v2:

We now have a vector that doesn’t leak memory and doesn’t free (delete[]) any
memory twice.

When implementing the assignment, you could consider simplifying the code
by freeing the memory for the old elements before creating the copy, but it is usu-
ally a very good idea not to throw away information before you know that you
can replace it. Also, if you did that, strange things would happen if you assigned
a vector to itself:

vector v(10);
 v = v; // self-assignment

Please check that our implementation handles that case correctly (if not with op-
timal efficiency).

18.3.3 Copy terminology
Copying is an issue in most programs and in most programming languages. The
basic issue is whether you copy a pointer (or reference) or copy the information
pointed to (referred to):

• Shallow copy copies only a pointer so that the two pointers now refer to the
same object. That’s what pointers and references do.

• Deep copy copies what a pointer points to so that the two pointers now refer
to distinct objects. That’s what vectors, strings, etc. do. We defi ne copy
constructors and copy assignments when we want deep copy for objects
of our classes.

Here is an example of shallow copy:

18.3 COPYING 637

int* p = new int{77};
int* q = p; // copy the pointer p
*p = 88; // change the value of the int pointed to by p and q

We can illustrate that like this:

p: q:
(copy of p)

88

In contrast, we can do a deep copy:

int* p = new int{77};
int* q = new int{*p}; // allocate a new int, then copy the value pointed to by p
*p = 88; // change the value of the int pointed to by p

We can illustrate that like this:

p: q:

88 77

Using this terminology, we can say that the problem with our original vector was
that it did a shallow copy, rather than copying the elements pointed to by its elem
pointer. Our improved vector, like the standard library vector, does a deep copy
by allocating new space for the elements and copying their values. Types that
provide shallow copy (like pointers and references) are said to have pointer seman-
tics or reference semantics (they copy addresses). Types that provide deep copy (like
string and vector) are said to have value semantics (they copy the values pointed to).
From a user perspective, types with value semantics behave as if no pointers were
involved — just values that can be copied. One way of thinking of types with value
semantics is that they “work just like integers” as far as copying is concerned.

18.3.4 Moving
If a vector has a lot of elements, it can be expensive to copy. So, we should copy
vectors only when we need to. Consider an example:

vector fill(istream& is)
{

CHAPTER 18 • VECTORS AND ARRAYS638

 vector res;
 for (double x; is>>x;) res.push_back(x);
 return res;
}

void use()
{
 vector vec = fill(cin);
 // … use vec …
}

Here, we fill the local vector res from the input stream and return it to use().
Copying res out of fill() and into vec could be expensive. But why copy? We don’t
want a copy! We can never use the original (res) after the return. In fact, res is de-
stroyed as part of the return from fill(). So how can we avoid the copy? Consider
again how a vector is represented in memory:

res:

elements

100000

We would like to “steal” the representation of res to use for vec. In other words,
we would like vec to refer to the elements of res without any copy.

After moving res’s element pointer and element count to vec, res holds no
elements. We have successfully moved the value from res out of fill() to vec. Now,
res can be destroyed (simply and efficiently) without any undesirable side effects:

We have successfully moved 100,000 doubles out of fill() and into its caller at the
cost of four single-word assignments.

How do we express such a move in C++ code? We define move operations
to complement the copy operations:

class vector {
 int sz;
 double* elem;

18.3 COPYING 639

public:
 vector(vector&& a); // move constructor
 vector& operator=(vector&&); // move assignment
 // . . .
 };

The funny && notation is called an “rvalue reference.” We use it for defining
move operations. Note that move operations do not take const arguments; that
is, we write (vector&&) and not (const vector&&). Part of the purpose of a move
operation is to modify the source, to make it “empty.” The definitions of move
operations tend to be simple. They tend to be simpler and more efficient than
their copy equivalents. For vector, we get

vector::vector(vector&& a)
 :sz{a.sz}, elem{a.elem} // copy a’s elem and sz
{
 a.sz = 0; // make a the empty vector
 a.elem = nullptr;
}

vector& vector::operator=(vector&& a) // move a to this vector
{
 delete[] elem; // deallocate old space
 elem = a.elem; // copy a’s elem and sz
 sz = a.sz;
 a.elem = nullptr; // make a the empty vector
 a.sz = 0;
 return *this; // return a self-reference (see §17.10)
}

By defining a move constructor, we make it easy and cheap to move around large
amounts of information, such as a vector with many elements. Consider again:

vector fill(istream& is)
{
 vector res;
 for (double x; is>>x;) res.push_back(x);
 return res;
}

The move constructor is implicitly used to implement the return. The compiler
knows that the local value returned (res) is about to go out of scope, so it can
move from it, rather than copying.

CHAPTER 18 • VECTORS AND ARRAYS640

The importance of move constructors is that we do not have to deal with
pointers or references to get large amounts of information out of a function. Con-
sider this flawed (but conventional) alternative:

vector* fill2(istream& is)
{
 vector* res = new vector;
 for (double x; is>>x;) res->push_back(x);
 return res;
}

void use2()
{
 vector* vec = fill(cin);
 // … use vec …
 delete vec;
}

Now we have to remember to delete the vector. As described in §17.4.6, deleting
objects placed on the free store is not as easy to do consistently and correctly as
it might seem.

18.4 Essential operations
We have now reached the point where we can discuss how to decide which con-
structors a class should have, whether it should have a destructor, and whether
you need to provide copy and move operations. There are seven essential opera-
tions to consider:

• Constructors from one or more arguments
• Default constructor
• Copy constructor (copy object of same type)
• Copy assignment (copy object of same type)
• Move constructor (move object of same type)
• Move assignment (move object of same type)
• Destructor

Usually we need one or more constructors that take arguments needed to initial-
ize an object. For example:

18.4 ESSENTIAL OPERATIONS 641

string s {"cat.jpg"}; // initialize s to the character string “cat.jpg”
Image ii {Point{200,300},"cat.jpg"}; // initialize a Point with the

// coordinates{200,300},
 // then display the contents of file

// cat.jpg at that Point

The meaning/use of an initializer is completely up to the constructor. The stan-
dard string’s constructor uses a character string as an initial value, whereas Im-
age’s constructor uses the string as the name of a file to open. Usually we use a
constructor to establish an invariant (§9.4.3). If we can’t define a good invariant
for a class that its constructors can establish, we probably have a poorly designed
class or a plain data structure.

Constructors that take arguments are as varied as the classes they serve. The
remaining operations have more regular patterns.

How do we know if a class needs a default constructor? We need a default
constructor if we want to be able to make objects of the class without specifying
an initializer. The most common example is when we want to put objects of a class
into a standard library vector. The following works only because we have default
values for int, string, and vector<int>:

vector<double> vi(10); // vector of 10 doubles, each initialized to 0.0
vector<string> vs(10); // vector of 10 strings, each initialized to “”
vector<vector<int>> vvi(10); // vector of 10 vectors, each initialized to vector{}

So, having a default constructor is often useful. The question then becomes:
“When does it make sense to have a default constructor?” An answer is: “When
we can establish the invariant for the class with a meaningful and obvious default
value.” For value types, such as int and double, the obvious value is 0 (for double,
that becomes 0.0). For string, the empty string, "", is the obvious choice. For
 vector, the empty vector serves well. For every type T, T{} is the default value, if
a default exists. For example, double{} is 0.0, string{} is "", and vector<int>{} is
the empty vector of ints.

A class needs a destructor if it acquires resources. A resource is something
you “get from somewhere” and that you must give back once you have finished
using it. The obvious example is memory that you get from the free store (using
new) and have to give back to the free store (using delete or delete[]). Our vec-
tor acquires memory to hold its elements, so it has to give that memory back;
therefore, it needs a destructor. Other resources that you might encounter as your
programs increase in ambition and sophistication are files (if you open one, you
also have to close it), locks, thread handles, and sockets (for communication with
processes and remote computers).

CHAPTER 18 • VECTORS AND ARRAYS642

Another sign that a class needs a destructor is simply that it has members that
are pointers or references. If a class has a pointer or a reference member, it often
needs a destructor and copy operations.

A class that needs a destructor almost always also needs a copy constructor
and a copy assignment. The reason is simply that if an object has acquired a
resource (and has a pointer member pointing to it), the default meaning of copy
(shallow, memberwise copy) is almost certainly wrong. Again, vector is the clas-
sic example.

Similarly, a class that needs a destructor almost always also needs a move
constructor and a move assignment. The reason is simply that if an object has ac-
quired a resource (and has a pointer member pointing to it), the default meaning
of copy (shallow, memberwise copy) is almost certainly wrong and the usual rem-
edy (copy operations that duplicate the complete object state) can be expensive.
Again, vector is the classic example.

In addition, a base class for which a derived class may have a destructor needs
a virtual destructor (§17.5.2).

18.4.1 Explicit constructors
A constructor that takes a single argument defines a conversion from its argument
type to its class. This can be most useful. For example:

class complex {
public:
 complex(double); // defines double-to-complex conversion
 complex(double,double);
 // . . .
};

complex z1 = 3.14; // OK: convert 3.14 to (3.14,0)
complex z2 = complex{1.2, 3.4};

However, implicit conversions should be used sparingly and with caution, be-
cause they can cause unexpected and undesirable effects. For example, our vector,
as defined so far, has a constructor that takes an int. This implies that it defines a
conversion from int to vector. For example:

class vector {
 // . . .
 vector(int);
 // . . .
};

18.4 ESSENTIAL OPERATIONS 643

vector v = 10; // odd: makes a vector of 10 doubles
v = 20; // eh? Assigns a new vector of 20 doubles to v

void f(const vector&);
f(10); // eh? Calls f with a new vector of 10 doubles

It seems we are getting more than we have bargained for. Fortunately, it is simple
to suppress this use of a constructor as an implicit conversion. A constructor-
defined explicit provides only the usual construction semantics and not the im-
plicit conversions. For example:

class vector {
 // . . .
 explicit vector(int);
 // . . .
};

vector v = 10; // error: no int-to-vector conversion
v = 20; // error: no int-to-vector conversion
vector v0(10); // OK

void f(const vector&);
f(10); // error: no int-to-vector<double> conversion
f(vector(10)); // OK

To avoid surprising conversions, we — and the standard — define vector’s single-
argument constructors to be explicit. It’s a pity that constructors are not explicit
by default; if in doubt, make any constructor that can be invoked with a single
argument explicit.

18.4.2 Debugging constructors and destructors
Constructors and destructors are invoked at well-defined and predictable points
of a program’s execution. However, we don’t always write explicit calls, such as
vector(2); rather we do something, such as declaring a vector, passing a vector
as a by-value argument, or creating a vector on the free store using new. This
can cause confusion for people who think in terms of syntax. There is not just a
single syntax that triggers a constructor. It is simpler to think of constructors and
destructors this way:

• Whenever an object of type X is created, one of X’s constructors is invoked.
• Whenever an object of type X is destroyed, X’s destructor is invoked.

CHAPTER 18 • VECTORS AND ARRAYS644

A destructor is called whenever an object of its class is destroyed; that happens
when names go out of scope, the program terminates, or delete is used on a
pointer to an object. A constructor (some appropriate constructor) is invoked
whenever an object of its class is created; that happens when a variable is initial-
ized, when an object is created using new (except for built-in types), and whenever
an object is copied.

But when does that happen? A good way to get a feel for that is to add print
statements to constructors, assignment operations, and destructors and then just
try. For example:

struct X { // simple test class
 int val;

 void out(const string& s, int nv)
 { cerr << this << "–>" << s << ": " << val << " (" << nv << ")\n"; }

 X(){ out("X()",0); val=0; } // default constructor
 X(int v) { val=v; out("X(int)",v); }
 X(const X& x){ val=x.val; out("X(X&) ",x.val); } // copy constructor
 X& operator=(const X& a) // copy assignment
 { out("X::operator=()",a.val); val=a.val; return *this; }
 ~X() { out("~X()",0); } // destructor
};

Anything we do with this X will leave a trace that we can study. For example:

X glob(2); // a global variable

X copy(X a) { return a; }

X copy2(X a) { X aa = a; return aa; }

X& ref_to(X& a) { return a; }

X* make(int i) { X a(i); return new X(a); }

struct XX { X a; X b; };

int main()
{
 X loc {4}; // local variable
 X loc2 {loc}; // copy construction

18.4 ESSENTIAL OPERATIONS 645

 loc = X{5}; // copy assignment
 loc2 = copy(loc); // call by value and return
 loc2 = copy2(loc);
 X loc3 {6};
 X& r = ref_to(loc); // call by reference and return
 delete make(7);
 delete make(8);
 vector<X> v(4); // default values
 XX loc4;
 X* p = new X{9}; // an X on the free store
 delete p;
 X* pp = new X[5]; // an array of Xs on the free store
 delete[] pp;
}

Try executing that.

TRY THIS

We really mean it: do run this example and make sure you understand the
result. If you do, you’ll understand most of what there is to know about
construction and destruction of objects.

Depending on the quality of your compiler, you may note some “missing
copies” relating to our calls of copy() and copy2(). We (humans) can see that those
functions do nothing: they just copy a value unmodified from input to output. If
a compiler is smart enough to notice that, it is allowed to eliminate the calls to the
copy constructor. In other words, a compiler is allowed to assume that a copy con-
structor copies and does nothing but copy. Some compilers are smart enough to
eliminate many spurious copies. However, compilers are not guaranteed to be that
smart, so if you want portable performance, consider move operations (§18.3.4).

Now consider: Why should we bother with this “silly class X”? It’s a bit like
the finger exercises that musicians have to do. After doing them, other things —
things that matter — become easier. Also, if you have problems with constructors
and destructors, you can insert such print statements in constructors for your real
classes to see that they work as intended. For larger programs, this exact kind
of tracing becomes tedious, but similar techniques apply. For example, you can
determine whether you have a memory leak by seeing if the number of construc-
tions minus the number of destructions equals zero. Forgetting to define copy con-
structors and copy assignments for classes that allocate memory or hold pointers
to objects is a common — and easily avoidable — source of problems.

T

CHAPTER 18 • VECTORS AND ARRAYS646

If your problems get too big to handle by such simple means, you will have
learned enough to be able to start using the professional tools for finding such
problems; they are often referred to as “leak detectors.” The ideal, of course, is not
to leak memory by using techniques that avoid such leaks.

18.5 Access to vector elements
So far (§17.6), we have used set() and get() member functions to access elements.
Such uses are verbose and ugly. We want our usual subscript notation: v[i]. The
way to get that is to define a member function called operator[] . Here is our first
(naive) try:

class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 // . . .
 double operator[](int n) { return elem[n]; } // return element
};

That looks good and especially it looks simple, but unfortunately it is too simple.
Letting the subscript operator (operator[]()) return a value enables reading but
not writing of elements:

vector v(10);
double x = v[2]; // fine
v[3] = x; // error: v[3] is not an lvalue

Here, v[i] is interpreted as a call v.operator[](i), and that call returns the value of
v’s element number i. For this overly naive vector, v[3] is a floating-point value,
not a floating-point variable.

TRY THIS

Make a version of this vector that is complete enough to compile and see
what error message your compiler produces for v[3]=x;.

Our next try is to let operator[] return a pointer to the appropriate element:

class vector {
 int sz; // the size
 double* elem; // a pointer to the elements

T

18.5 ACCESS TO VECTOR ELEMENTS 647

public:
 // . . .
 double* operator[](int n) { return &elem[n]; } // return pointer
};

Given that definition, we can write

vector v(10);
for (int i=0; i<v.size(); ++i) { // works, but still too ugly
 *v[i] = i;
 cout << *v[i];
}

Here, v[i] is interpreted as a call v.operator[](i), and that call returns a pointer to
v’s element number i. The problem is that we have to write * to dereference that
pointer to get to the element. That’s almost as bad as having to write set() and
get(). Returning a reference from the subscript operator solves this problem:

class vector {
 // . . .
 double& operator[](int n) { return elem[n]; } // return reference
};

Now we can write

vector v(10);
for (int i=0; i<v.size(); ++i) { // works!
 v[i] = i; // v[i] returns a reference element i
 cout << v[i];
}

We have achieved the conventional notation: v[i] is interpreted as a call v.operator[]
(i), and that returns a reference to v’s element number i.

18.5.1 Overloading on const
The operator[]() defined so far has a problem: it cannot be invoked for a const
vector. For example:

void f(const vector& cv)
{
 double d = cv[1]; // error, but should be fine
 cv[1] = 2.0; // error (as it should be)
}

CHAPTER 18 • VECTORS AND ARRAYS648

The reason is that our vector::operator[]() could potentially change a vector. It
doesn’t, but the compiler doesn’t know that because we “forgot” to tell it. The
solution is to provide a version that is a const member function (see §9.7.4). That’s
easily done:

class vector {
 // . . .
 double& operator[](int n); // for non-const vectors
 double operator[](int n) const; // for const vectors
};

We obviously couldn’t return a double& from the const version, so we re-
turned a double value. We could equally well have returned a const double&, but
since a double is a small object there would be no point in returning a reference
(§8.5.6), so we decided to pass it back by value. We can now write

void ff(const vector& cv, vector& v)
{
 double d = cv[1]; // fine (uses the const [])
 cv[1] = 2.0; // error (uses the const [])
 double d = v[1]; // fine (uses the non-const [])
 v[1] = 2.0; // fine (uses the non-const [])
}

Since vectors are often passed by const reference, this const version of operator[]
() is an essential addition.

18.6 Arrays
For a while, we have used array to refer to a sequence of objects allocated on the
free store. We can also allocate arrays elsewhere as named variables. In fact, they
are common

• As global variables (but global variables are most often a bad idea)
• As local variables (but arrays have serious limitations there)
• As function arguments (but an array doesn’t know its own size)
• As class members (but member arrays can be hard to initialize)

Now, you might have detected that we have a not-so-subtle bias in favor of vectors
over arrays. Use std::vector where you have a choice — and you have a choice
in most contexts. However, arrays existed long before vectors and are roughly
equivalent to what is offered in other languages (notably C), so you must know

18.6 ARRAYS 649

arrays, and know them well, to be able to cope with older code and with code
written by people who don’t appreciate the advantages of vector.

So, what is an array? How do we define an array? How do we use an array?
An array is a homogeneous sequence of objects allocated in contiguous memory;
that is, all elements of an array have the same type and there are no gaps between
the objects of the sequence. The elements of an array are numbered from 0 up-
ward. In a declaration, an array is indicated by “square brackets”:

const int max = 100;
int gai[max]; // a global array (of 100 ints); “lives forever”

void f(int n)
{
 char lac[20]; // local array; “lives” until the end of scope
 int lai[60];
 double lad[n]; // error: array size not a constant
 // . . .
}

Note the limitation: the number of elements of a named array must be known at
compile time. If you want the number of elements to be a variable, you must put
it on the free store and access it through a pointer. That’s what vector does with
its array of elements.

Just like the arrays on the free store, we access named arrays using the sub-
script and dereference operators ([] and *). For example:

void f2()
{
 char lac[20]; // local array; “lives” until the end of scope

 lac[7] = 'a';
 *lac = 'b'; // equivalent to lac[0]='b'

 lac[–2] = 'b'; // huh?
 lac[200] = 'c'; // huh?
}

This function compiles, but we know that “compiles” doesn’t mean “works cor-
rectly.” The use of [] is obvious, but there is no range checking, so f2() compiles,
and the result of writing to lac[–2] and lac[200] is (as for all out-of-range access)
usually disastrous. Don’t do it. Arrays do not range check. Again, we are dealing
directly with physical memory here; don’t expect “system support.”

CHAPTER 18 • VECTORS AND ARRAYS650

But couldn’t the compiler see that lac has just 20 elements so that lac[200] is
an error? A compiler could, but as far as we know no production compiler does.
The problem is that keeping track of array bounds at compile time is impossible
in general, and catching errors in the simplest cases (like the one above) only is
not very helpful.

18.6.1 Pointers to array elements
A pointer can point to an element of an array. Consider:

double ad[10];
double* p = &ad[5]; // point to ad[5]

We now have a pointer p to the double known as ad[5]:

p:

ad:

We can subscript and dereference that pointer:

*p =7;
p[2] = 6;
p[–3] = 9;

We get

p:

ad: 9 7 6

That is, we can subscript the pointer with both positive and negative numbers.
As long as the resulting element is in range, all is well. However, access outside
the range of the array pointed into is illegal (as with free-store-allocated arrays;
see §17.4.3). Typically, access outside an array is not detected by the compiler and
(sooner or later) is disastrous.

18.6 ARRAYS 651

Once a pointer points into an array, addition and subscripting can be used to
make it point to another element of the array. For example:

p += 2; // move p 2 elements to the right

We get

p:

ad: 9 7 6

And

p –= 5; // move p 5 elements to the left

We get

p:

ad: 9 7 6

Using +, – , +=, and –= to move pointers around is called pointer arithmetic. Obvi-
ously, if we do that, we have to take great care to ensure that the result is not a
pointer to memory outside the array:

p += 1000; // insane: p points into an array with just 10 elements
double d = *p; // illegal: probably a bad value
 // (definitely an unpredictable value)
*p = 12.34; // illegal: probably scrambles some unknown data

Unfortunately, not all bad bugs involving pointer arithmetic are that easy to spot.
The best policy is usually simply to avoid pointer arithmetic.

The most common use of pointer arithmetic is incrementing a pointer (using
++) to point to the next element and decrementing a pointer (using ––) to point

CHAPTER 18 • VECTORS AND ARRAYS652

to the previous element. For example, we could print the value of ad’s elements
like this:

for (double* p = &ad[0]; p<&ad[10]; ++p) cout << *p << '\n';

Or backward:

for (double* p = &ad[9]; p>=&ad[0]; ––p) cout << *p << '\n';

This use of pointer arithmetic is not uncommon. However, we find the last (“back-
ward”) example quite easy to get wrong. Why &ad[9] and not &ad[10]? Why >=
and not >? These examples could equally well (and equally efficiently) be done
using subscripting. Such examples could be done equally well using subscripting
into a vector, which is more easily range checked.

Note that most real-world uses of pointer arithmetic involve a pointer passed
as a function argument. In that case, the compiler doesn’t have a clue how many
elements are in the array pointed into: you are on your own. That is a situation
we prefer to stay away from whenever we can.

Why does C++ have (allow) pointer arithmetic at all? It can be such a bother
and doesn’t provide anything new once we have subscripting. For example:

double* p1 = &ad[0];
double* p2 = p1+7;
double* p3 = &p1[7];
if (p2 != p3) cout << "impossible!\n";

Mainly, the reason is historical. These rules were crafted for C decades ago and
can’t be removed without breaking a lot of code. Partly, there can be some con-
venience gained by using pointer arithmetic in some important low-level applica-
tions, such as memory managers.

18.6.2 Pointers and arrays
The name of an array refers to all the elements of the array. Consider:

char ch[100];

The size of ch, sizeof(ch), is 100. However, the name of an array turns into (“de-
cays to”) a pointer with the slightest excuse. For example:

char* p = ch;

Here p is initialized to &ch[0] and sizeof(p) is something like 4 (not 100).

18.6 ARRAYS 653

This can be useful. For example, consider a function strlen() that counts the
number of characters in a zero-terminated array of characters:

int strlen(const char* p) // similar to the standard library strlen()
{
 int count = 0;
 while (*p) { ++count; ++p; }
 return count;
}

We can now call this with strlen(ch) as well as strlen(&ch[0]). You might point out
that this is a very minor notational advantage, and we’d have to agree.

One reason for having array names convert to pointers is to avoid acciden-
tally passing large amounts of data by value. Consider:

int strlen(const char a[]) // similar to the standard library strlen()
{
 int count = 0;
 while (a[count]) { ++count; }
 return count;
}

char lots [100000];

void f()
{
 int nchar = strlen(lots);
 // . . .
}

Naively (and quite reasonably), you might expect this call to copy the 100,000
characters specified as the argument to strlen(), but that’s not what happens. In-
stead, the argument declaration char p[] is considered equivalent to char* p, and
the call strlen(lots) is considered equivalent to strlen(&lots[0]). This saves you
from an expensive copy operation, but it should surprise you. Why should it sur-
prise you? Because in every other case, when you pass an object and don’t explic-
itly declare an argument to be passed by reference (§8.5.3–6), that object is copied.

Note that the pointer you get from treating the name of an array as a pointer
to its first element is a value and not a variable, so you cannot assign to it:

char ac[10];
ac = new char [20]; // error: no assignment to array name
&ac[0] = new char [20]; // error: no assignment to pointer value

CHAPTER 18 • VECTORS AND ARRAYS654

Finally! A problem that the compiler will catch!
As a consequence of this implicit array-name-to-pointer conversion, you can’t

even copy arrays using assignment:

int x[100];
int y[100];
// . . .
x = y; // error
int z[100] = y; // error

This is consistent, but often a bother. If you need to copy an array, you must write
some more elaborate code to do so. For example:

for (int i=0; i<100; ++i) x[i]=y[i]; // copy 100 ints
memcpy(x,y,100*sizeof(int)); // copy 100*sizeof(int) bytes
copy(y,y+100, x); // copy 100 ints

Note that the C language doesn’t support anything like vector, so in C, you must
use arrays extensively. This implies that a lot of C++ code uses arrays (§27.1.2).
In particular, C-style strings (zero-terminated arrays of characters; see §27.5) are
very common.

If we want assignment, we have to use something like the standard library
vector. The vector equivalent to the copying code above is

vector<int> x(100);
vector<int> y(100);
// . . .
x = y; // copy 100 ints

18.6.3 Array initialization
An array of chars can be initialized with a string literal. For example:

char ac[] = "Beorn"; // array of 6 chars

Count those characters. There are five, but ac becomes an array of six characters
because the compiler adds a terminating zero character at the end of a string
literal:

'B' 'e' 'o' 'r' 'n' 0 ac:

18.6 ARRAYS 655

A zero-terminated string is the norm in C and many systems. We call such a zero-
terminated array of characters a C-style string. All string literals are C-style strings.
For example:

char* pc = "Howdy"; // pc points to an array of 6 chars

Graphically:

'H' 'o' 'w' 'd' 'y' 0

pc:

Note that the char with the numeric value 0 is not the character '0' or any other
letter or digit. The purpose of that terminating zero is to allow functions to find
the end of the string. Remember: An array does not know its size. Relying on the
terminating zero convention, we can write

int strlen(const char* p) // similar to the standard library strlen()
{
 int n = 0;
 while (p[n]) ++n;
 return n;
}

Actually, we don’t have to define strlen() because it is a standard library function
defined in the <string.h> header (§27.5, §B.11.3). Note that strlen() counts the
characters, but not the terminating 0; that is, you need n+1 chars to store n char-
acters in a C-style string.

Only character arrays can be initialized by literal strings, but all arrays can be
initialized by a list of values of their element type. For example:

int ai[] = { 1, 2, 3, 4, 5, 6 }; // array of 6 ints
int ai2[100] = {0,1,2,3,4,5,6,7,8,9}; // the last 90 elements are initialized to 0
double ad[100] = { }; // all elements initialized to 0.0
char chars[] = {'a', 'b', 'c'}; // no terminating 0!

Note that the number of elements of ai is six (not seven) and the number of el-
ements for chars is three (not four) — the “add a 0 at the end” rule is for literal
character strings only. If an array isn’t given a size, that size is deduced from the
initializer list. That’s a rather useful feature. If there are fewer initializer values

CHAPTER 18 • VECTORS AND ARRAYS656

than array elements (as in the definitions of ai2 and ad), the remaining elements
are initialized by the element type’s default value.

18.6.4 Pointer problems
Like arrays, pointers are often overused and misused. Often, the problems people
get themselves into involve both pointers and arrays, so we’ll summarize the prob-
lems here. In particular, all serious problems with pointers involve trying to access
something that isn’t an object of the expected type, and many of those problems
involve access outside the bounds of an array. Here we will consider

• Access through the null pointer
• Access through an uninitialized pointer
• Access off the end of an array
• Access to a deallocated object
• Access to an object that has gone out of scope

In all cases, the practical problem for the programmer is that the actual access
looks perfectly innocent; it is “just” that the pointer hasn’t been given a value that
makes the use valid. Worse (in the case of a write through the pointer), the prob-
lem may manifest itself only a long time later when some apparently unrelated
object has been corrupted. Let’s consider examples:

Don’t access through the null pointer:

int* p = nullptr;
*p = 7; // ouch!

Obviously, in real-world programs, this typically occurs when there is some code
in between the initialization and the use. In particular, passing p to a function and
receiving it as the result from a function are common examples. We prefer not to
pass null pointers around, but if you have to, test for the null pointer before use:

int* p = fct_that_can_return_a_nullptr();

if (p == nullptr) {
 // do something
}
else {
 // use p
 *p = 7;
}

18.6 ARRAYS 657

and

void fct_that_can_receive_a_nullptr(int* p)
{
 if (p == nullptr) {
 // do something
 }
 else {
 // use p
 *p = 7;
 }
}

Using references (§17.9.1) and using exceptions to signal errors (§5.6 and §19.5)
are the main tools for avoiding null pointers.

Do initialize your pointers:

int* p;
*p = 9; // ouch!

In particular, don’t forget to initialize pointers that are class members.
Don’t access nonexistent array elements:

int a[10];
int* p = &a[10];
*p = 11; // ouch!
a[10] = 12; // ouch!

Be careful with the first and last elements of a loop, and try not to pass arrays
around as pointers to their first elements. Instead use vectors. If you really must
use an array in more than one function (passing it as an argument), then be extra
careful and pass its size along.

Don’t access through a deleted pointer:

int* p = new int{7};
// . . .
delete p;
// . . .
*p = 13; // ouch!

The delete p or the code after it may have scribbled all over *p or used it for
something else. Of all of these problems, we consider this one the hardest to

CHAPTER 18 • VECTORS AND ARRAYS658

systematically avoid. The most effective defense against this problem is not to have
“naked” news that require “naked” deletes: use new and delete in constructors
and destructors or use a container, such as Vector_ref (§E.4), to handle deletes.

Don’t return a pointer to a local variable:

int* f()
{
 int x = 7;
 // . . .
 return &x;
}

// . . .

int* p = f();
// . . .
*p = 15; // ouch!

The return from f() or the code after it may have scribbled all over *p or used it
for something else. The reason for that is that the local variables of a function are
allocated (on the stack) upon entry to the function and deallocated again at the
exit from the function. In particular, destructors are called for local variables of
classes with destructors (§17.5.1). Compilers could catch most problems related to
returning pointers to local variables, but few do.

Consider a logically equivalent example:

vector& ff()
{
 vector x(7); // 7 elements
 // . . .
 return x;
} // the vector x is destroyed here

// . . .

vector& p = ff();
// . . .
p[4] = 15; // ouch!

Quite a few compilers catch this variant of the return problem.
It is common for programmers to underestimate these problems. However,

many experienced programmers have been defeated by the innumerable varia-

18.7 EXAMPLES: PALINDROME 659

tions and combinations of these simple array and pointer problems. The solution
is not to litter your code with pointers, arrays, news, and deletes. If you do,
“being careful” simply isn’t enough in realistically sized programs. Instead, rely
on vectors, RAII (“Resource Acquisition Is Initialization”; see §19.5), and other
systematic approaches to the management of memory and other resources.

18.7 Examples: palindrome
Enough technical examples! Let’s try a little puzzle. A palindrome is a word that is
spelled the same from both ends. For example, anna, petep, and malayalam are palin-
dromes, whereas ida and homesick are not. There are two basic ways of determining
whether a word is a palindrome:

• Make a copy of the letters in reverse order and compare that copy to the
original.

• See if the fi rst letter is the same as the last, then see if the second letter is
the same as the second to last, and keep going until you reach the middle.

Here, we’ll take the second approach. There are many ways of expressing this
idea in code depending on how we represent the word and how we keep track
of how far we have come with the comparison of characters. We’ll write a little
program that tests whether words are palindromes in a few different ways just to
see how different language features affect the way the code looks and works.

18.7.1 Palindromes using string
First, we try a version using the standard library string with int indices to keep
track of how far we have come with our comparison:

bool is_palindrome(const string& s)
{
 int first = 0; // index of first letter
 int last = s.length()–1; // index of last letter
 while (first < last) { // we haven’t reached the middle
 if (s[first]!=s[last]) return false;
 ++first; // move forward

–– last; // move backward
 }
 return true;
}

We return true if we reach the middle without finding a difference. We suggest
that you look at this code to convince yourself that it is correct when there are no

CHAPTER 18 • VECTORS AND ARRAYS660

letters in the string, just one letter in the string, an even number of letters in the
string, and an odd number of letters in the string. Of course, we should not just
rely on logic to see that our code is correct. We should also test. We can exercise
is_palindrome() like this:

int main()
{
 for (string s; cin>>s;) {
 cout << s << " is";
 if (!is_palindrome(s)) cout << " not";
 cout << " a palindrome\n";
 }
}

Basically, the reason we are using a string is that “strings are good for dealing with
words.” It is simple to read a whitespace-separated word into a string, and a string
knows its size. Had we wanted to test is_palindrome() with strings containing
whitespace, we could have read using getline() (§11.5). That would have shown
ah ha and as df fd sa to be palindromes.

18.7.2 Palindromes using arrays
What if we didn’t have strings (or vectors), so that we had to use an array to store
the characters? Let’s see:

bool is_palindrome(const char s[], int n)
 // s points to the first character of an array of n characters
{
 int first = 0; // index of first letter
 int last = n–1; // index of last letter
 while (first < last) { // we haven’t reached the middle
 if (s[first]!=s[last]) return false;
 ++first; // move forward
 –– last; // move backward
 }
 return true;
}

To exercise is_palindrome(), we first have to get characters read into the array.
One way to do that safely (i.e., without risk of overflowing the array) is like this:

istream& read_word(istream& is, char* buffer, int max)
 // read at most max–1 characters from is into buffer

18.7 EXAMPLES: PALINDROME 661

{
 is.width(max); // read at most max–1 characters in the next >>
 is >> buffer; // read whitespace-terminated word,
 // add zero after the last character read into buffer
 return is;
}

Setting the istream’s width appropriately prevents buffer overflow for the next >>
operation. Unfortunately, it also means that we don’t know if the read terminated
by whitespace or by the buffer being full (so that we need to read more charac-
ters). Also, who remembers the details of the behavior of width() for input? The
standard library string and vector are really better as input buffers because they
expand to fit the amount of input. The terminating 0 character is needed because
most popular operations on arrays of characters (C-style strings) assume 0 termi-
nation. Using read_word() we can write

int main()
{
 constexpr int max = 128;
 for (char s[max]; read_word(cin,s,max);) {
 cout << s << " is";
 if (!is_palindrome(s,strlen(s))) cout << " not";
 cout << " a palindrome\n";
 }
}

The strlen(s) call returns the number of characters in the array after the call of read_
word(), and cout<<s outputs the characters in the array up to the terminating 0.

We consider this “array solution” significantly messier than the “string solu-
tion,” and it gets much worse if we try to seriously deal with the possibility of long
strings. See exercise 10.

18.7.3 Palindromes using pointers
Instead of using indices to identify characters, we could use pointers:

bool is_palindrome(const char* first, const char* last)
 // first points to the first letter, last to the last letter
{
 while (first < last) { // we haven’t reached the middle
 if (*first!=*last) return false;
 ++first; // move forward
 –– last; // move backward

CHAPTER 18 • VECTORS AND ARRAYS662

 }
 return true;
}

Note that we can actually increment and decrement pointers. Increment makes
a pointer point to the next element of an array and decrement makes a pointer
point to the previous element. If the array doesn’t have such a next element or
previous element, you have a serious uncaught out-of-range error. That’s another
problem with pointers.

We call this is_palindrome() like this:

int main()
{
 const int max = 128;
 for (char s[max]; read_word(cin,s,max);) {
 cout << s << " is";
 if (!is_palindrome(&s[0],&s[strlen(s)–1])) cout << " not";
 cout << " a palindrome\n";
 }
}

Just for fun, we rewrite is_palindrome() like this:

bool is_palindrome(const char* first, const char* last)
 // first points to the first letter, last to the last letter
{
 if (first<last) {
 if (*first!=*last) return false;
 return is_palindrome(first+1,last–1);
 }
 return true;
}

This code becomes obvious when we rephrase the definition of palindrome: a word
is a palindrome if the first and the last characters are the same and if the substring
you get by removing the first and the last characters is a palindrome.

CHAPTER 18 DRILL 663

Drill
In this chapter, we have two drills: one to exercise arrays and one to exercise vectors
in roughly the same manner. Do both and compare the effort involved in each.

Array drill:

 1. Define a global int array ga of ten ints initialized to 1, 2, 4, 8, 16, etc.
 2. Define a function f() taking an int array argument and an int argument

indicating the number of elements in the array.
 3. In f():
 a. Define a local int array la of ten ints.
 b. Copy the values from ga into la.
 c. Print out the elements of la.
 d. Define a pointer p to int and initialize it with an array allocated on the

free store with the same number of elements as the argument array.
 e. Copy the values from the argument array into the free-store array.
 f. Print out the elements of the free-store array.
 g. Deallocate the free-store array.
 4. In main():
 a. Call f() with ga as its argument.
 b. Define an array aa with ten elements, and initialize it with the first ten

factorial values (1, 2*1, 3*2*1, 4*3*2*1, etc.).
 c. Call f() with aa as its argument.

Standard library vector drill:

 1. Define a global vector<int> gv; initialize it with ten ints, 1, 2, 4, 8, 16, etc.
 2. Define a function f() taking a vector<int> argument.
 3. In f():
 a. Define a local vector<int> lv with the same number of elements as the

argument vector.
 b. Copy the values from gv into lv.
 c. Print out the elements of lv.
 d. Define a local vector<int> lv2; initialize it to be a copy of the argument

vector.
 e. Print out the elements of lv2.
 4. In main():
 a. Call f() with gv as its argument.
 b. Define a vector<int> vv, and initialize it with the first ten factorial val-

ues (1, 2*1, 3*2*1, 4*3*2*1, etc.).
 c. Call f() with vv as its argument.

CHAPTER 18 • VECTORS AND ARRAYS664

Review
 1. What does “Caveat emptor!” mean?
 2. What is the default meaning of copying for class objects?
 3. When is the default meaning of copying of class objects appropriate?

When is it inappropriate?
 4. What is a copy constructor?
 5. What is a copy assignment?
 6. What is the difference between copy assignment and copy initialization?
 7. What is shallow copy? What is deep copy?
 8. How does the copy of a vector compare to its source?
 9. What are the five “essential operations” for a class?
 10. What is an explicit constructor? Where would you prefer one over the

(default) alternative?
 11. What operations may be invoked implicitly for a class object?
 12. What is an array?
 13. How do you copy an array?
 14. How do you initialize an array?
 15. When should you prefer a pointer argument over a reference argument?

Why?
 16. What is a C-style string?
 17. What is a palindrome?

Terms
array deep copy move assignment
array initialization default constructor move construction
copy assignment essential operations palindrome
copy constructor explicit constructor shallow copy

Exercises
 1. Write a function, char* strdup(const char*), that copies a C-style string

into memory it allocates on the free store. Do not use any standard li-
brary functions. Do not use subscripting; use the dereference operator *
instead.

 2. Write a function, char* findx(const char* s, const char* x), that finds the
first occurrence of the C-style string x in s. Do not use any standard li-
brary functions. Do not use subscripting; use the dereference operator *
instead.

 3. Write a function, int strcmp(const char* s1, const char* s2), that compares
C-style strings. Let it return a negative number if s1 is lexicographically

CHAPTER 18 EXERCISES 665

before s2, zero if s1 equals s2, and a positive number if s1 is lexicograph-
ically after s2. Do not use any standard library functions. Do not use
subscripting; use the dereference operator * instead.

 4. Consider what happens if you give strdup(), findx(), and strcmp() an argu-
ment that is not a C-style string. Try it! First figure out how to get a char*
that doesn’t point to a zero-terminated array of characters and then use
it (never do this in real — non-experimental — code; it can create havoc).
Try it with free-store-allocated and stack-allocated “fake C-style strings.”
If the results still look reasonable, turn off debug mode. Redesign and
re-implement those three functions so that they take another argument
giving the maximum number of elements allowed in argument strings.
Then, test that with correct C-style strings and “bad” strings.

 5. Write a function, string cat_dot(const string& s1, const string& s2),
that concatenates two strings with a dot in between. For example, cat_
dot("Niels", "Bohr") will return a string containing Niels.Bohr.

 6. Modify cat_dot() from the previous exercise to take a string to be used as
the separator (rather than dot) as its third argument.

 7. Write versions of the cat_dot()s from the previous exercises to take
C-style strings as arguments and return a free-store-allocated C-style string
as the result. Do not use standard library functions or types in the im-
plementation. Test these functions with several strings. Be sure to free
(using delete) all the memory you allocated from free store (using new).
Compare the effort involved in this exercise with the effort involved for
exercises 5 and 6.

 8. Rewrite all the functions in §18.7 to use the approach of making a back-
ward copy of the string and then comparing; for example, take "home",
generate "emoh", and compare those two strings to see that they are
different, so home isn’t a palindrome.

 9. Consider the memory layout in §17.4. Write a program that tells the order
in which static storage, the stack, and the free store are laid out in memory.
In which direction does the stack grow: upward toward higher addresses
or downward toward lower addresses? In an array on the free store, are
elements with higher indices allocated at higher or lower addresses?

 10. Look at the “array solution” to the palindrome problem in §18.7.2. Fix it
to deal with long strings by (a) reporting if an input string was too long
and (b) allowing an arbitrarily long string. Comment on the complexity
of the two versions.

 11. Look up (e.g., on the web) skip list and implement that kind of list. This is
not an easy exercise.

 12. Implement a version of the game “Hunt the Wumpus.” “Hunt the Wum-
pus” (or just “Wump”) is a simple (non-graphical) computer game origi-
nally invented by Gregory Yob. The basic premise is that a rather smelly

CHAPTER 18 • VECTORS AND ARRAYS666

monster lives in a dark cave consisting of connected rooms. Your job is to
slay the wumpus using bow and arrow. In addition to the wumpus, the
cave has two hazards: bottomless pits and giant bats. If you enter a room
with a bottomless pit, it’s the end of the game for you. If you enter a room
with a bat, the bat picks you up and drops you into another room. If you
enter the room with the wumpus or he enters yours, he eats you. When
you enter a room you will be told if a hazard is nearby:

“I smell the wumpus”: It’s in an adjoining room.
“I feel a breeze”: One of the adjoining rooms is a bottomless pit.
“I hear a bat”: A giant bat is in an adjoining room.

 For your convenience, rooms are numbered. Every room is con-
nected by tunnels to three other rooms. When entering a room, you are
told something like “You are in room 12; there are tunnels to rooms 1, 13,
and 4; move or shoot?” Possible answers are m13 (“Move to room 13”)
and s13–4–3 (“Shoot an arrow through rooms 13, 4, and 3”). The range
of an arrow is three rooms. At the start of the game, you have five arrows.
The snag about shooting is that it wakes up the wumpus and he moves to
a room adjoining the one he was in — that could be your room.

 Probably the trickiest part of the exercise is to make the cave by
selecting which rooms are connected with which other rooms. You’ll
probably want to use a random number generator (e.g., randint() from
std_lib_facilities.h) to make different runs of the program use different
caves and to move around the bats and the wumpus. Hint: Be sure to
have a way to produce a debug output of the state of the cave.

Postscript
The standard library vector is built from lower-level memory management fa-
cilities, such as pointers and arrays, and its primary role is to help us avoid the
complexities of those facilities. Whenever we design a class, we must consider
initialization, copying, and destruction.

This page intentionally left blank

1227

Index

!. See Not, 1087
!=. See Not equal (inequality), 67, 1088, 1101
"...". See String literal, 62
#. See Preprocessor directives, 1129
$. See End of line, 873, 1178
%. See

Output format specifier, 1187
Remainder (modulo), 68

%=. See Remainder and assign, 1090
&. See

Address of, 588, 1087
Bitwise logical operations (and), 956, 1089, 1094
Reference to (in declarations), 276–279, 1099

&&. See Logical and, 1089, 1094
&=. See Bitwise logical operations (and and

assign), 1090
.'. .'. See Character literals, 161, 1079–1080
(). See

Expression (grouping), 95, 867, 873, 876
Function call, 285, 766
Function of (in declarations), 113–115, 1099
Regular expression (grouping), 1178

*. See

Contents of (dereference), 594
Multiply, 1088
Pointer to (in declarations), 587, 1099
Repetition (in regex), 868, 873–874, 1178

*/ end of block comment, 238
*=. See Multiply and assign (scale), 67
+. See

Add, 66, 1088
Concatenation (of strings), 68–69, 851, 1176
Repetition in regex, 873–875, 1178

++. See Increment, 66, 721
+=. See

Add and assign, 1089
Move forward, 1101
string (add at end), 851, 1176

, (comma). See

Comma operator, 1090
List separator, 1103, 1122–1123

–. See

Minus (substraction), 66, 1088
Regular expression (range), 877

–– . See Decrement, 66, 1087, 1141
–> (arrow). See Member access, 608, 1087, 1109,

1141
–= See

Move backward, 1101, 1142
Subtract and assign, 67, 1090

. (dot). See

Member access, 306, 607–608, 1086–1087
Regular expression, 872, 1178

… (ellipsis). See

Arguments (unchecked), 1105–1106
Catch all exceptions, 152

/. See Divide, 66, 1088
//. See Line comment, 45
/*. . .*/. See Block comment, 238
/=. See Divide and assign, 67, 1090
: (colon). See

Base and member initializers, 315, 477, 555
Conditional expression, 268
Label, 106–108, 306, 511, 1096

::. See Scope (resolution), 295, 314, 1083, 1086
; (semicolon). See Statement (terminator), 50, 100

INDEX1228

<. See Less than, 67, 1088
<<. See

Bitwise logical operations (left shift), 956, 1088
Output, 363–365, 1173

<=. See Less than or equal, 67, 1088
<<=. See Bitwise logical operations (shift left and

assign), 1090
<. . .>. See Template (arguments and parameters),

153, 678–679
=. See

Assignment, 66, 1090
Initialization, 69–73, 1219

==. See Equal, 67, 1088
>. See

Greater than, 67, 1088
Input prompt, 223
Template (argument-list terminator), 679

>=. See Greater than or equal, 67, 1088
>>. See

Bitwise logical operations (right shift), 956,
1088

Input, 61, 365
>>=. See Bitwise logical operations (shift right and

assign), 1090
?. See

Conditional expression, 268, 1089
Regular expression, 867–868, 873, 874–875,

1178
[]. See

Array of (in declaration), 649, 1099
Regular expression (character class), 872,

1178
Subscripting, 594, 649, 1101

\ (backslash). See

Character literal, 1079–1080
Escape character, 1178
Regular expression (escape character), 866–867,

873, 877
^. See

Bitwise logical operations (exclusive or), 956,
1089, 1094

Regular expression (not), 873, 1178
^=. See Bitwise logical operations (xor and assign),

1090
_. See Underscore, 75, 76, 1081
{}. See

Block delimiter, 47, 111
Initialization, 83
List, 83
Regular expression (range), 867, 873–875, 1178

|. See

Bitwise logical operations (bitwise or), 956,
1089, 1094

Regular expression (or), 867–868, 873, 876,
1178

|=. See Bitwise logical operations (or and assign),
1090

||. See Logical or, 1089, 1094
~. See

Bitwise logical operations (complement), 956,
1087

Destructors, 601–603
0 (zero). See

Null pointer, 598
Prefix, 382, 384
printf() format specifier, 1188–1189

0x. See Prefix, 382, 384

A
a, append file mode, 1186
\a alert, character literal, 1079
abort(), 1194–1195
abs(), absolute value, 917, 1181

complex, 920, 1183
Abstract classes, 495, 1217

class hierarchies, 512
creating, 495, 512, 1118–1119
Shape example, 495–496

Abstract-first approach to programming, 10
Abstraction, 92–93, 1217

level, ideals, 812–813
Access control, 306, 505, 511

base classes, 511
encapsulation, 505
members, 492–493
private, 505, 511
private by default, 306–307
private: label, 306
private vs. public, 306–308
protected, 505, 511
protected: label, 511
public, 306, 505, 511
public by default, 307–308. See also struct

public: label, 306
Shape example, 496–499

accumulate(), 759, 770–772, 1183
accumulator, 770
generalizing, 772–774

acos(), arccosine, 917, 1182

INDEX 1229

Action, 47
Activation record, 287. See also Stacks
Ada language, 832–833
Adaptors

bind(), 1164
container, 1144
function objects, 1164
mem_fn(), 1164
not1(), 1164
not2(), 1164
priority_queue, 1144
queue, 1144
stack, 1144

add(), 449–450, 491–492, 615–617
Add (plus) +, 66, 1088
Add and assign +=, 66, 73, 1090
Additive operators, 1088
Address, 588, 1217

unchecked conversions, 943–944
Address of (unary) &, 588, 1087
Ad hoc polymorphism, 682–683
adjacent_difference(), 770, 1184
adjacent_find(), 1153
advance(), 615–617, 739, 1142
Affordability, software, 34
Age distribution example, 538–539
Alert markers, 3
Algol60 language, 827–829
Algol family of languages, 826–829
<algorithm>, 759, 1133
Algorithms, 1217

and containers, 722
header files, 1133–1134
numerical, 1183–1184
passing arguments to. See Function objects

Algorithms, numerical, 770, 1183–1184
accumulate(), 759, 770–774, 1183
adjacent_difference(), 770, 1184
inner_product(), 759, 770, 774–776, 1184
partial_sum(), 770, 1184

Algorithms, STL, 1152–1153
<algorithm>, 759
binary_search(), 796
comparing elements, 759
copy(), 758, 789–790
copy_if(), 789
copying elements, 758
count(), 758
count_if(), 758
equal(), 759

equal_range(), 758, 796
find(), 758, 759–763
find_if(), 758, 763–764
heap, 1160
lower_bound(), 796
max(), 1161
merge(), 758
merging sorted sequences, 758
min(), 1161
modifying sequence, 1154–1156
mutating sequence, 1154–1156
nonmodifying sequence, 1153–1154
numerical. See Algorithms, numerical
permutations, 1160–1161
search(), 795–796
searching, 1157–1159. See also find_if(); find()

set, 1159–1160
shuffle(), 1155–1156
sort(), 758, 794–796
sorting, 758, 794–796, 1157–1159
summing elements, 759
testing, 1001–1008
unique_copy(), 758, 789, 792–793
upper_bound(), 796
utility, 1157
value comparisons, 1161–1162

Aliases, 1128, 1217. See also References
Allocating memory. See also Deallocating memory;

Memory
allocator_type, 1147
bad_alloc exception, 1094
C++ and C, 1043–1044
calloc(), 1193
embedded systems, 935–936, 940–942
free store, 593–594
malloc(), 1043–1044, 1193
new, 1094–1095
pools, 940–941
realloc(), 1045
stacks, 942–943

allocator_type, 1147
Almost containers, 751, 1145
alnum, regex character class, 878, 1179
alpha, regex character class, 878, 1179
Alternation

patterns, 194
regular expressions, 876

Ambiguous function call, 1104
Analysis, 35, 176, 179
and, synonym for &, 1037, 1038

INDEX1230

and_eq, synonym for &=, 1037, 1038
app mode, 389, 1170
append(), 851, 1177
Append

files, 389, 1186
string +=, 851

Application
collection of programs, 1218
operator (), 766

Approximation, 532–537, 1218
Arccosine, acos(), 917
Arcsine, asin(), 918
Arctangent, atan(), 918
arg(), of complex number, theta, 920, 1183
Argument deduction, 689–690
Argument errors

callee responsibility, 143–145
caller responsibility, 142–143
reasons for, 144–145

Arguments, 272, 1218
formal. See Parameters
functions, 1105–1106
passing. See Passing arguments
program input, 91
source of exceptions, 147–148
templates, 1122–1123
types, class interfaces, 324–326
unchecked, 1029–1030, 1105–1106
unexpected, 136

Arithmetic if ?:, 268. See also Conditional
expression ?:

Arithmetic operations. See Numerics
<array>, 1133
Arrays, 648–650, 1218. See also Containers; v

ector

[] declaration, 649
[] dereferencing, 649
accessing elements, 649, 899–901
assignment, 653–654
associative. See Associative containers
built-in, 747–749
copying, 653–654
C-style strings, 654–655
dereferencing, 649
element numbering, 649
initializing, 596–598, 654–656
multidimensional, 895–897, 1102
palindrome example, 660–661
passing pointers to arrays, 944–951
pointers to elements, 650–652

range checking, 649
subscripting [], 649
terminating zero, 654–655
vector alternative, 947–951

Arrays and pointers, 651–658
debugging, 656–659

array standard library class, 747–749, 1144
asin(), arcsine, 918, 1182
asm(), assembler insert, 1037
Assemblers, 820
Assertions

assert(), 1061
<cassert>, 1135
debugging, 163
definition, 1218

assign(), 1148
Assignment =, 69–73

arrays, 653–654
assignment and initialization, 69–73
composite assignment operators, 73–74
containers, 1148
Date example, 309–310
enumerators, 318–319
expressions, 1089–1090
string, 851
vector, resizing, 675–677

Assignment operators (composite), 66
%=, 73, 1090
&=, 1090
*=, 73, 1089
+=, 73, 1090, 1141
–=, 73, 1090, 1142
/=, 73, 1090
<<=, 1090
>>=, 1090
^=, 1090
|=, 1090

Associative arrays. See Associative containers
Associative containers, 776, 1144

email example, 856–860
header files, 776
map, 776
multimap, 776, 860–861
multiset, 776
operations, 1151–1152
set, 776
unordered_map, 776
unordered_multimap, 776
unordered_multiset, 776
unordered_set, 776

INDEX 1231

Assumptions, testing, 1009–1011
at(), range-checked subscripting, 693–694,

1149
atan(), arctangent, 918, 1182
ate mode, 389, 1170
atof(), string to double, 1192
atoi(), string to int, 1192
atol(), string to long, 1192
AT&T Bell Labs, 838
AT&T Labs, 838
attach() vs. add() example, 491–492
auto, 732–734, 760
Automatic storage, 591–592, 1083. See also

Stack storage
Axis example, 424–426, 443, 529–532,

543–546

B
b, binary file mode, 1186
Babbage, Charles, 832
back(), last element, 737, 1149
back_inserter(), 1162
Backus, John, 823
Backus-Naur (BNF) Form, 823, 828
bad_alloc exception, 1094
bad() stream state, 355, 1171
Base-2 number system (binary), 1078–1079
Base-8 number system (octal), 1077–1078
Base-10

logarithms, 918
number system (decimal), 1077–1078

Base-16 number system (hexadecimal),
1077–1078

Balanced trees, 780–782
Base and member initializers, 315, 477, 555
Base classes, 493–496, 504–507, 1218

abstract classes, 495, 512–513, 1118–1119
access control, 511
derived classes, 1116–1117
description, 504–506
initialization of, 477, 555, 1113, 1117
interface, 513–514
object layout, 506–507
overriding, 508–511
Shape example, 495–496
virtual function calls, 501, 506–507
vptr, 506
vtbl, 506

Base-e exponentials, 918

basic_string, 852
Basic guarantee, 702
BCPL language, 838
begin()

iterator, 1148
string, 851, 1177
vector, 721

Bell Telephone Laboratories (Bell Labs), 836,
838–842, 1022–1023

Bentley, John, 933, 966
Bidirectional iterator, 1142
bidirectional iterators, 752
Big-O notation, complexity, 785
Binary I/O, 390–393
binary mode, 389, 1170
Binary number system, 1078–1079
Binary search, 758, 779, 795–796
binary_search(), 796, 1158
bind() adaptor, 1164
bitand, synonym for &, 1037, 1038
Bitfields, 956–957, 967–969, 1120–1121
bitor, synonym for |, 1038
Bits, 78, 954, 1218

bitfields, 956–957
bool, 955
char, 955
enumerations, 956
integer types, 955
manipulating, 965–967
signed, 961–965
size, 955–956
unsigned, 961–965

<bitset>, 1133
bitset, 959–961

bitwise logical operations, 960
construction, 959
exceptions, 1138
I/O, 960

Bitwise logical operations, 956–959, 1094
and &, 956–957, 1089, 1094
or |, 956, 1089, 1094
or and assign, |=, 966
and and assign &=, 1090
complement ~, 956
exclusive or ^, 956, 1089, 1094
exclusive or and assign ^=, 1089
left shift <<, 956
left shift and assign <<=, 1089
right shift >>, 956
right shift and assign >>=, 1089

INDEX1232

Blackboard, 36
Black-box testing, 992–993
blank, character class, regex, 878, 1179
Block, 111

debugging, 161
delimiter, 47, 111
nesting within functions, 271
try block, 146–147

Block comment /*. . .*/, 238
Blue marginal alerts, 3
BNF (Backus-Naur) Form, 823, 828
Body, functions, 114
bool, 63, 66–67, 1099

bits in memory, 78
bit space, 955
C++ and C, 1026, 1038
size, 78

boolalpha, manipulator, 1173
Boolean conversions, 1092
Borland, 831
Bottom-up approach, 9, 811
Bounds error, 149
Branching, testing, 1006–1008. See also

Conditional statements
break, case label termination, 106–108
Broadcast functions, 903
bsearch(), 1194–1195
Buffer, 348

flushing, 240–241
iostream, 406
overflow, 661, 792, 1006. See also gets(), scanf()

Bugs, 158, 1218. See also Debugging; Testing
finding the last, 166–167
first documented, 824–825
regression tests, 993

Built-in types, 304, 1099
arrays, 747–749, 1101–1102
bool, 77, 1100
characters, 77, 891, 1100
default constructors, 328
exceptions, 1126
floating-point, 77, 891–895, 1100
integers, 77, 891–895, 961–965, 1100
pointers, 588–590, 1100–1101
references, 279–280, 1102–1103

Button example, 443, 561–563
attaching to menus, 571
detecting a click, 557

Byte, 78, 1218
operations, C-style strings, 1048–1049

C
.c suffix, 1029
.cpp, suffix, 48, 1200
C# language, 831
C++ language, 839–842. See also Programming;

Programs; Software
coding standards, list of, 983
portability, 11
use for teaching, xxiv, 6–9

C++ and C, 1022–1024
C functions, 1028–1032
C linkage convention, 1033
C missing features, 1025–1027
calling one from the other, 1032–1034
casts, 1040–1041
compatibility, 1024–1025
const, 1054–1055
constants, 1054–1055
container example, 1059–1065
definitions, 1038–1040
enum, 1042
family tree, 1023
free-store, 1043–1045
input/output, 1050–1054
keywords, 1037–1038
layout rules, 1034
macros, 1054–1059
malloc(), 1043–1044
namespaces, 1042–1043
nesting structs, 1037
old-style casts, 1040
opaque types, 1060
performance, 1024
realloc(), 1045
structure tags, 1036–1037
type checking, 1032–1033
void, 1030
void*, 1041–1042

“C first” approach to programming, 9
C language, 836–839. See also C standard

library
C++ compatibility, 1022–1024. See also

C++ and C
K&R, 838, 1022–1023
linkage convention, 1033
missing features, 1025–1027

C standard library
C-style strings, 1191
header files, 1135

INDEX 1233

input/output. See C-style I/O (stdio)
memory, 1192–1193

C-style casts, 1040–1041, 1087, 1095
C-style I/O (stdio)

%, conversion specification, 1187
conversion specifications, 1188–1189
file modes, 1186
files, opening and closing, 1186
fprintf(), 1051–1052, 1187
getc(), 1052, 1191
getchar(), 1045, 1052–1053, 1191
gets(), 1052, 1190–1191
output formats, user-defined types, 1189–1190
padding, 1188
printf(), 1050–1051, 1187
scanf(), 1052–1053, 1190
stderr, 1189
stdin, 1189
stdout, 1189
truncation, 1189

C-style strings, 654–655, 1045–1047, 1191
byte operations, 1048–1049
const, 1047–1048
copying, 1046–1047, 1049
executing as a command, system(), 1194
lexicographical comparison, 1046
operations, 1191–1192
pointer declaration, 1049–1050
strcat(), concatenate, 1047
strchr(), find character, 1048
strcmp(), compare, 1046
strcpy(), copy, 1047, 1049
from string, c_str(), 350, 851
strlen(), length of, 1046
strncat(), 1047
strncmp(), 1047
strncpy(), 1047
three-way comparison, 1046

CAD/CAM, 27, 34
Calculator example, 174, 186–188

analysis and design, 176–179
expression(), 197–200
get_token(), 196
grammars and programming, 188–195
parsing, 190–193
primary(), 196, 208
symbol table, 247
term(), 196, 197–202, 206–207
Token, 185–186
Token_stream, 206–214, 240–241

Call stack, 290
Callback functions, 556–559
Callback implementation, 1208–1209
Calling functions. See Function calls
calloc(), 1193
Cambridge University, 839
capacity(), 673–674, 1151
Capital letters. See Case (of characters)
Case (of characters)

formatting, 397–398
identifying, 397
islower(), 397, 1175
map container, 782
in names, 74–77
sensitivity, 397–398
tolower(), changing case, 398, 1176
toupper(), changing case, 398, 1176

case labels, 106–108
<cassert>, 1135
Casting away const, 609–610
Casts. See also Type conversion

C++ and C, 1026, 1038
casting away const, 609
const_cast, 1095
C-style casts, 1040–1041
dynamic_cast, 932, 1095
lexical_cast example, 855
narrow_cast example, 153
reinterpret_cast, 609
static_cast, 609, 944, 1095
unrelated types, 609

CAT scans, 30
catch, 147, 1038
Catch all exceptions ., 152
Catching exceptions, 146–153, 239–241, 1126
cb_next() example, 556–559
<cctype>, 1135, 1175
ceil(), 917, 1181
cerr, 151, 1169, 1189
<cerrno>, 1135
<cfloat>, 1135
Chaining operations, 180–181
Character classes

list of, 1179
in regular expressions, 873–874, 878

Character classification, 397–398, 1175–1176
Character literals, 161, 1079–1080
CHAR_BIT limit macro, 1181
CHAR_MAX limit macro, 1181
CHAR_MIN limit macro, 1181

INDEX1234

char type, 63, 66–67, 78
bits, 955
built-in, 1099
properties, 741–742
signed vs. unsigned, 894, 964

cin, 61
C equivalent. See stdin

standard character input, 61, 347, 1169
Circle example, 469–472, 497

vs. Ellipse, 474
Circular reference. See Reference (circular)
class, 183, 1036–1037
Class

abstract, 495, 512–513, 1118–1119. See also
Abstract classes

base, 504–506
coding standards, 981
concrete, 495–496, 1218
const member functions, 1110
constructors, 1112–1114, 1119–1120
copying, 1115, 1119
creating objects. See Concrete classes
default constructors, 327–330
defining, 212, 305, 1108, 1218
derived, 504
destructors, 1114–1115, 1119
encapsulation, 505
friend declaration, 1111
generated operations, 1119–1120
grouping related, 512
hierarchies, 512
history of, 834
implementation, 306–308
inheritance, 504–505, 513–514
interface, 513–514
member access. See Access control
naming. See Namespaces
nesting, 270
object layout, 506–507
organizing. See Namespaces
parameterized, 682–683. See also Template
private, 306–308, 505, 511, 1108–1109
protected, 495, 505, 511
public, 306–308, 505, 511, 1108–1109
run-time polymorphism, 504–505
subclasses, 504. See also Derived classes
superclasses, 504. See also Base classes
templates, 681–683
this pointer, 1110

types as parameters. See Template
union, 1121
unqualified name, 1110
uses for, 305

Class interfaces, 323, 1108
argument types, 324–326
const member functions, 330–332
constants, 330–332. See also const

copying, 326–327
helper functions, 332–334
immutable values, 330–332
initializing objects, 327–330
members, 332–334
mutable values, 332–334
public vs. private, 306–308
symbolic constants, defining, 326
uninitialized variables, 327–330

Class members, 305, 1108
. (dot), 306, 1109
:: (scope resolution), 1109
accessing, 306. See also Access control
allocated at same address, 1121
bitfields, 1120–1121
in-class definition, 1112
class interfaces, 332–334
data, 305
definitions, 1112
function, 314–316
out-of-class definition, 1112
Token_stream example, 212
Token example, 183–184

Class scope, 267, 1083
Class template

parameterized class, 682–683
parameterized type, 682–683
specialization, 681
type generators, 681

classic_elimination() example, 910–911
Cleaning up code

comments, 237–238
functions, 234–235
layout, 235–236
logical separations, 234–235
revision history, 237–238
scaffolding, 234–235
symbolic constants, 232–234

clear(), 355–358, 1150
<climits>, 1135
<clocale>, 1135

INDEX 1235

clock(), 1015–1016, 1193
clock_t, 1193
clone() example, 504
Closed_polyline example, 456–458

vs. Polygon, 458
close() file, 352
<cmath>, 918, 1135, 1182
cntrl, 878, 1179
COBOL language, 823–825
Code

definition, 1218
layout, cleaning up, 235–236
libraries, uses for, 177
storage, 591–592
structure, ideals, 810–811
test coverage, 1008

Coding standards, 974–975
C++, list of, 983
complexity, sources of, 975
ideals, 976–977
sample rules, 977–983

Color example, 425–426, 450–452
color chat example, 465–467
fill, 431–432, 462–464, 500
transparency, 451

Columns, matrices, 900–901, 906
Command-line, 47
Comments, 45–46

block /*. . .*/, 238, 1076
C++ and C, 1026
cleaning up, 237–238
vs. code, 238
line //, 45–46, 1076
role in debugging, 159–160

Common Lisp language, 825
Communication skills, programmers, 22
Compacting garbage collection, 938–939
Comparison, 67. See also <; ==

C-style strings, 1045–1047
characters, 740
containers, 1151
key_compare, 1147
lexicographical, C-style strings, 1046
lexicographical_compare(), 1162
min/max algorithms, 1161–1162
string, 851
three-way, 1046

Compatibility. See C++ and C
Compile-time errors. See Errors, compile-time

Compiled languages, 47–48
Compilers, 48, 1218

compile-time errors, 51
conditional compilation, 1058–1059
syntax checking, 48–50

compl, synonym for ~, 1037, 1082
complex

*, multiply, 919, 1183
+, add (plus), 919, 1183
<<, output, 1183
!=, not equal (inequality), 919, 1183
==, equal, 919, 1183
>>, input, 920, 1183
/, divide, 919, 1183
<<, output, 920
abs(), absolute value, 920, 1183
conj(), conjugate, 920
Fortran language, 920
imag(), imaginary part, 920
norm(), square of abs(), 919
number types, 1182–1183
polar(), polar coordinate, 920
real(), real part, 920
rho, 920
square of abs(), 919
theta, 920

<complex>, 1134
complex operators, 919–920, 1183
standard math functions, 1181

Complex numbers, 919–920
Complexity, 1218

sources of, 975
Composite assignment operators, 73–74
Compound statements, 111
Computation, 91. See also Programs; Software

correctness, 92–94
data structures, 90–91
efficiency, 92–94
input/output, 91
objectives, 92–94
organizing programs, 92–94
programmer ideals, 92–94
simplicity, 92–94
state, definition, 90–91

Computation vs. data, 717–720
Computer-assisted surgery, 30
Computers

CAT scans, 30
computer-assisted surgery, 30

INDEX1236

Computers, continued

in daily life, 19–21
information processing, 32
Mars Rover, 33
medicine, 30
pervasiveness of, 19–21
server farms, 31–32
shipping, 26–28
space exploration, 33
telecommunications, 28–29
timekeeping, 26
world total, 19

Computer science, 12, 24–25
Concatenation of strings, 66

+, 68–69, 851, 1176
+=, 68–69, 851, 1176

Concept-based approach to programming, 6
Concrete classes, 495–496, 1218
Concrete-first approach to programming, 6
Concurrency, 932
Conditional compilation, 1058–1059
Conditional expression ?:, 268, 1089
Conditional statements. See also Branching,

testing
for, 111–113
if, 102–104
switch, 105–109
while, 109–111

Conforming programs, 1075
Confusing variable names, 77
conj(), complex conjugate, 920, 1183
Conjugate, 920
Consistency, ideals, 814–815
Console, as user interface, 552
Console input/output, 552
Console window, displaying, 162
const, 95–97. See also Constant; Static storage,

static const

C++ and C, 1026, 1054–1055
class interfaces, 330–332
C-style strings, 1047–1048
declarations, 262–263
initializing, 262
member functions, 330–332, 1110
overloading on, 647–648
passing arguments by, 276–278, 281–284
type, 1099

*const, immutable pointer, 1099
Constant. See also const, expressions, 1093
const_cast, casting away const, 609, 1095

const_iterator, 1147
constexpr, 96-97, 290-291, 1093, 1104
Constraints, vector range checking, 695
Constructors, 310–312, 1112–1114. See also

Destructors; Initialization
containers, 1148
copy, 633–634, 640–646
Date example, 311
Date example 307, 324–326
debugging, 643–646
default, 327–330, 1119
error handling, 313, 700–702
essential operations, 640–646
exceptions, 700–702
explicit, 642–643
implicit conversions, 642–643
initialization of bases and members, 315, 477,

555
invariant, 313–314, 701–702
move, 637–640
need for default, 641
Token example, 184

Container adaptors, 1144
Containers, 148, 749–751, 1218. See also Arrays;

list; map, associative array; vector

and algorithms, 722
almost containers, 751, 1145
assignments, 1148
associative, 1144, 1151–1152
capacity(), 1150–1151
of characters. See string

comparing, 1151
constructors, 1148
contiguous storage, 741
copying, 1151
destructors, 1148
element access, 1149
embedded systems, 951–954
header files, 1133–1134
information sources about, 750
iterator categories, 752
iterators, 1148
list operations, 1150
member types, 1147
operations overview, 1146–1147
queue operations, 1149
sequence, 1144
size(), 1150
stack operations, 1149
standard library, 1144–1152

INDEX 1237

swapping, 1151
templates, 686–687

Contents of * (dereference, indirection), 594
Contiguous storage, 741
Control characters, iscntrl(), 397
Control inversion, GUIs, 569–570
Control variables, 110
Controls. See Widget example
Conversion specifications, printf(), 1188–1189
Conversion. See also Type conversion

character case, 398
representation, 374–376
unchecked, 943–944

Coordinates. See also Point example
computer screens, 419–420
graphs, 426–427

copy(), 789–790, 1154
Copy assignments, 634–636, 640–646
Copy constructors, 633–634, 640–646
copy_backward(), 1154
copy_if(), 789
Copying, 631–637

arrays, 653–654
class interfaces, 326–327
containers, 1151
C-style strings, 1046–1047, 1049
I/O streams, 790–793
objects, 503–504
sequences, 758, 789–794
vector, 631–636, 1148

Correctness
definition, 1218
ideals, 92–94, 810
importance of, 929–930
software, 34

cos(), cosine, 527–528, 917, 1181
cosh(), hyperbolic cosine, 1182
Cost, definition, 1219
count(), 758, 1154
count_if(), 758, 1154
cout, 45

C equivalent. See stdout

printing error messages, 151. See also cerr

standard output, 347, 1169
Critical systems, coding standards, 982–983
<cstddef>, 1136
<cstdio>, 1135
<cstdlib>, 1135, 1193, 1194
c_str(), 1177
<cstring>, 1135, 1175, 1193

<ctime>, 1135, 1193
Ctrl D, 124
Ctrl Z, 124
Current object, 317. See also this pointer
Cursor, definition, 45
<cwchar>, 1136
<cwctype>, 1136

D
d, any decimal digit, regex, 878, 1179
\d, decimal digit, regex, 873, 1179
\D, not a decimal digit, regex, 873, 1179
d suffix, 1079
Dahl, Ole-Johan, 833–835
Data. See also Containers; Sequences; list; map,

associative array; vector

abstraction, 816
collections. See Containers
vs. computation, 717–720
generalizing code, 714–716
in memory. See Free store (heap sotrage)
processing, overview, 712–716
separating from algorithms, 722
storing. See Containers
structure. See Containers; class; struct

traversing. See Iteration; Iterators
uniform access and manipulation, 714–716. See

also STL (Standard Template Library)
Data member, 305, 492–493
Data structure. See Data; struct

Data type. See Type
Date and time, 1193–1194
Date example, See Chapters 6–7

Deallocating memory, 598–600, 1094–1095. See

also delete[]; delete

Debugging, 52, 158, 1219. See also Errors; Testing
arrays and pointers, 656–659
assertions, 163
block termination, 161
bugs, 158
character literal termination, 161
commenting code, 159–160
compile-time errors, 161
consistent code layout, 160
constructors, 643–646
declaring names, 161
displaying the console window, 162
expression termination, 161
finding the last bug, 166–167

INDEX1238

Debugging, continued

function size, 160
GUIs, 575–577
input data, 166
invariants, 162–163
keeping it simple, 160
logic errors, 154–156
matching parentheses, 161
naming conventions, 160
post-conditions, 165–166
pre-conditions, 163–165
process description, 158–159
reporting errors, 159
stepping through code, 162
string literal termination, 161
systematic approach, 166–167
test cases, 166, 227
testing, 1012
tracing code execution, 162–163
transient bugs, 595
using library facilities, 160
widgets, 576–577

dec manipulator, 382–383, 1174
Decimal digits, isdigit(), 397
Decimal integer literals, 1077
Decimal number system, 381–383, 1077–1078
Deciphering (decryption), example, 969–974
Declaration operators, 1099

& reference to, 276–279, 1099
* pointer to, 587, 1099
[] array of, 649, 1099
() function of, 113–115, 1099

Declarations, 51, 1098–1099
C++ and C, 1026
classes, 306
collections of. See Header files
constants, 262–263
definition, 51, 77, 257, 1098–1099, 1219
vs. definitions, 259–260
entities used for, 261
extern keyword, 259
forward, 261
function, 257–258, 1103
function arguments, 272–273
function return type, 272–273
grouping. See Namespaces
managing. See Header files
need for, 261
order of, 215

parts of, 1098
subdividing programs, 260–261
uses for, 1098
variables, 260, 262–263

Decrementing –– , 97
iterator, 1141–1142
pointer, 652

Deep copy, 636
Default constructors, 328–329

alternatives for, 329–330
for built-in types, 328
initializing objects, 327
need for, identifying, 641
uses for, 328–329

#define, 1129
Definitions, 77, 258–259, 1219. See also

Declarations
C++ and C, 1038–1040
vs. declarations, 259–260
function, 113–115, 272–273

delete

C++ and C, 1026, 1037
deallocating free store, 1094–1095
destructors, 601–605
embedded systems, 932, 936–940
free-store deallocation, 598–600
in unary expressions, 1087

delete[], 599, 1087, 1094–1095
Delphi language, 831
Dependencies, testing, 1002–1003
Depth-first approach to programming, 6
deque, double ended queue, 1144
<deque>, 1133
Dereference/indirection

*, 594. See also Contents of
[], 118. See also Subscripting

Derivation, classes, 505
Derived classes, 505, 1219

access control, 511
base classes, 1116–1117
inheritance, 1116–1117
multiple inheritance, 1117
object layout, 506–507
overview, 504–506, 1116–1117
private bases and members, 511
protected bases and members, 511
public bases and members, 511
specifying, 507–508
virtual functions, 1117–1118

INDEX 1239

Design, 35, 176, 179, 1219
Design for testing, 1011–1012
Destructors, 601–603, 1114–1115, 1219. See also

Constructors
containers, 1148
debugging, 643–646
default, 1119
essential operations, 640–646
exceptions, 700–702
freeing resources, 323, 700–702
and free store, 604–605
generated, 603
RAII, 700–702
virtual, 604–605
where needed, 641–642

Device drivers, 346
Dictionary examples, 123–125, 788
difference_type, 1147
digit, character class, 878, 1179
Digit, word origin, 1077
Dijkstra, Edsger, 827–828, 992
Dimensions, matrices, 898–901
Direct expression of ideas, ideals, 811–812
Dispatch, 504–505
Display model, 413–414
distance(), 1142
Divide /, 66, 1088
Divide and assign /=, 67, 1090
Divide and conquer, 93
Divide-by-zero error, 201–202
divides(), 1164
Domain knowledge, 934
Dot product. See inner_product()

double floating-point type, 63, 66–67, 78,
1099

Doubly-linked lists, 613, 725. See also list

draw() example
fill color, 500
line visibility, 500
Shape, 500–502

draw_lines() example. See also draw() example
Closed_polyline, 458
Marked_polyline, 475–476
Open_polyline, 456
Polygon, 459
Rectangle, 465
Shape, 500–502

duration…, 1016, 1185
duration_cast, 1016, 1185

Dynamic dispatch, 504–505. See also Virtual
functions

Dynamic memory, 935-936, 1094. See also Free
store (heap storage)

dynamic_cast, type conversion, 1095
exceptions, 1138
predictability, 932

E
Efficiency

ideals, 92–94, 810
vector range checking, 695

Einstein, Albert, 815
Elements. See also vector

numbering, 649
pointers to, 650–652
variable number of, 649

Ellipse example, 472–474
vs. Circle, 474

Ellipsis ...
arguments (unchecked), 1105–1106
catch all exceptions, 152

else, in if-statements, 102–104
Email example, 855–865
Embedded systems

coding standards, 975–977, 983
concurrency, 932
containers, 951–954
correctness, 929–930
delete operator, 932
domain knowledge, 934
dynamic_cast, 932
error handling, 933–935
examples of, 926–928
exceptions, 932
fault tolerance, 930
fragmentation, 936, 937
free-store, 936–940
hard real time, 931
ideals, 932–933
maintenance, 929
memory management, 940–942
new operator, 932
predictability, 931, 932
real-time constraints, 931
real-time response, 928
reliability, 928
resource leaks, 931

INDEX1240

Embedded systems, continued

resource limitations, 928
soft real time, 931
special concerns, 928–929

Empty
empty(), is container empty? 1150
lists, 729
sequences, 729
statements, 101

Empty statement, 1035–1036
Encapsulation, 505
Enciphering (Encryption), example, 969–974
end()

iterator, 1148
string, 851, 1177
vector, 722

End of file
eof(), 355, 1171
file streams, 366
I/O error, 355
stringstream, 395

End of input, 124
End of line $ (in regular expressions), 873, 1178
Ending programs. See Termination
endl manipulator, 1174
ends manipulator, 1174
English grammar vs. programming grammar,

193–194
enum, 318–321, 1042. See also Enumerations
Enumerations, 318–321, 1107–1108

enum, 318–321, 1042
enumerators, 318–321, 1107–1108

EOF macro, 1053–1054
eof() stream state, 355, 1171
equal(), 759, 1153
Equal ==, 67, 1088
Equality operators, expressions, 1088
equal_range(), 758, 796
equal_to(), 1163
erase()

list, 742–745, 1150
list operations, 615–617
string, 851, 1177
vector, 745–747

errno, error indicator, 918–919, 1182
error() example, 142–143

passing multiple strings, 152
Error diagnostics, templates, 683
Error handling. See also Errors; Exceptions

% for floating-point numbers, 230–231
catching exceptions, 239–241

files fail to open, 389
GUIs, 576
hardware replication, 934
I/O errors. See I/O errors
I/O streams, 1171
mathematical errors, 918–919
modular systems, 934–935
monitoring subsystems, 935
negative numbers, 229–230
positioning in files, 393–394
predictable errors, 933
recovering from errors, 239–241
regular expressions, 878–880
resource leaks, 934
self-checking, 934
STL (Standard Template Library), 1137–1138
testing for errors, 225–229
transient errors, 934
vector resource exceptions, 702

Error messages. See also Reporting errors; error()
example; runtime_error

exceptions, printing, 150–151
templates, 683
writing your own, 142

Errors, 1219. See also Debugging; Testing
classifying, 134
compile-time, 48–50, 134, 136–137
detection ideal, 135
error(), 142–143
estimating results, 157–158
incomplete programs, 136
input format, 64–65
link-time, 134, 139–140
logic, 134, 154–156
poor specifications, 136
recovering from, 239–241. See also Exceptions
sources of, 136
syntax, 137–138
translation units, 139–140
type mismatch, 138–139
undeclared identifier, 258
unexpected arguments, 136
unexpected input, 136
unexpected state, 136

Errors, run-time, 134, 140–142. See also
Exceptions

callee responsibility, 143–145
caller responsibility, 142–143
hardware violations, 141
reasons for, 144–145
reporting, 145–146

INDEX 1241

Essential operations, 640–646
Estimating development resources, 177
Estimating results, 157–158
Examples

age distribution, 538–539
calculator. See Calculator example
Date. See Date example
deciphering, 969–974
deleting repeated words, 71–73
dictionary, 123–125, 788
Dow Jones tracking, 782–785
email analysis, 855–865
embedded systems, 926–928
enciphering (encryption), 969–974
exponential function, 527–528
finding largest element, 713–716, 723–724
fruits, 779–782
Gaussian elimination, 910–911
graphics, 414–418, 436
graphing data, 537–539
graphing functions, 527–528
GUI (graphical user interface), 565–569,

573–574, 576–577
Hello, World! 45–46
intrusive containers, 1059–1065
Lines_window, 565–569, 573–574, 576–577
Link, 613–622
list (doubly linked), 613–622
map container, 779–785
Matrix, 908–914
palindromes, 659–662
Pool allocator, 940–941
Punct_stream, 401–405
reading a single value, 359–363
reading a structured file, 367–376
regular expressions, 880–885
school table, 880–885
searching, 864–872
sequences, 723–724
Stack allocator, 942–943
TEA (Tiny Encryption Algorithm),

969–974
text editor, 734–741
vector. See vector example
Widget manipulation, 565–569,

1213–1216
windows, 565–569
word frequency, 777–779
writing a program. See Calculator example
writing files, 352–354
ZIP code detection, 864–872

<exception>, 1135
Exceptions, 146–150, 1125–1126. See also Error

handling; Errors
bounds error, 149
C++ and C, 1026
catch, 147, 239–241, 1125–1126
cerr, 151–152
cout, 151–152
destructors, 1126
embedded systems, 932
error messages, printing, 150–151
exception, 152, 1138–1139
failure to catch, 153
GUIs, 576
input, 150–153
narrow_cast example, 153
off-by-one error, 149
out_of_range, 149–150, 152
overview, 146–147
RAII (Resource Acquisition Is Initialization),

1125
range errors, 148–150
re-throwing, 702, 1126
runtime_error, 142, 151, 153
stack unwinding, 1126
standard library exceptions, 1138–1139
terminating a program, 142
throw, 147, 1125
truncation, 153
type conversion, 153
uncaught exception, 153
user-defined types, 1126
vector range checking, 693–694
vector resources. See vector

Executable code, 48, 1219
Executing a program, 11, 1200–1201
exit(), terminating a program, 1194–1195
explicit constructor, 642–643, 1038
Expression, 94–95, 1086–1090

coding standards, 980–981
constant expressions, 1093
conversions, 1091–1093
debugging, 161
grouping (), 95, 867, 873, 876
lvalue, 94–95, 1090
magic constants, 96, 143, 232–234, 723
memory management, 1094–1095
mixing types, 99
non-obvious literals, 96
operator precedence, 95
operators, 97–99, 1086–1095

INDEX1242

Expression, continued

order of operations, 181
precedence, 1090
preserving values, 1091
promotions, 99, 1091
rvalue, 94–95, 1090
scope resolution, 1086
type conversion, 99–100, 1095
usual arithmetic conversions, 1092

Expression statement, 100
extern, 259, 1033
Extracting text from files, 856–861, 864–865

F
f/F suffix, 1079
fail() stream state, 355, 1171
Falling through end of functions, 274
false, 1038
Fault tolerance, 930
fclose(), 1053–1054, 1186
Feature creep, 188, 201, 1219
Feedback, programming, 36
Fields, formatting, 387–388
FILE, 1053–1054
File I/O, 349–350

binary I/O, 391
close(), 352
closing files, 352, 1186
converting representations, 374–376
modes, 1186
open(), 352
opening files. See Opening files
positioning in files, 393–394
reading. See Reading files
writing. See Writing files

Files, 1219. See also File I/O
C++ and C, 1053–1054
opening and closing, C-style I/O, 1186

fill(), 1157
fill_n(), 1157
Fill color example, 462–465, 500
find(), 758–761

associative container operations, 1151
finding links, 615–617
generic use, 761–763
nonmodifying sequence algorithms, 1153
string operations, 851, 1177

find_end(), 1153
find_first_of(), 1153

find_if(), 758, 763–764
Finding. See also Matching; Searching

associative container operations, 1151
elements, 758
links, 615–617
patterns, 864–865, 869–872
strings, 851, 1177

fixed format, 387
fixed manipulator, 385, 1174
<float.h>, 894, 1181
Floating-point, 63, 891, 1219

% remainder (modulo), 201
assigning integers to, 892–893
assigning to integers, 893
conversions, 1092
fixed format, 387
general format, 387
input, 182, 201–202
integral conversions, 1091–1092
literals, 182, 1079
mantissa, 893
output, formatting, 384–385
precision, 386–387
and real numbers, 891
rounding, 386
scientific format, 387
truncation, 893
vector example, 120–123

float type, 1099
floor(), 917, 1181
FLTK (Fast Light Toolkit), 418, 1204

code portability, 418
color, 451, 465–467
current style, obtaining, 500
downloading, 1204
fill, 465
in graphics code, 436
installing, 1205
lines, drawing, 454, 458
outlines, 465
rectangles, drawing, 465
testing, 1206
in Visual Studio, 1205–1206
waiting for user action, 559–560, 569–570

flush manipulator, 1174
Flushing a buffer, 240–241
Fonts for Graphics example, 468–470
fopen(), 1053–1054, 1186
for-statement, 111–113

vs. while, 122

INDEX 1243

for_each(), 119, 1153
Ford, Henry, 806
Formal arguments. See Parameters
Formatting. See also C-style I/O; I/O streams;

Manipulators
See also C-style I/O, 1050–1054
See also I/O streams, 1172–1173
case, 397–398
See also Manipulators, 1173–1175
fields, 387–388
precision, 386–387
whitespace, 397

Fortran language, 821–823
array indexing, 899
complex, 920
subscripting, 899

Forward declarations, 261
Forward iterators, 752, 1142
fprintf(), 1051–1052, 1187
Fragmentation, embedded systems, 936, 937
free(), deallocate, 1043–1044, 1193
Free store (heap storage)

allocation, 593–594
C++ and C, 1043–1045
deallocation, 598–600
delete, 598–600, 601–605
and destructors. See Destructors
embedded systems, 936–940
garbage collection, 600
leaks, 598–600, 601–605
new, 593–594
object lifetime, 1085

Freeing memory. See Deallocating memory
friend, 1038, 1111
from_string() example, 853–854
front(), first element, 1149
front_inserter(), 1162
fstream(), 1170
<fstream>, 1134
fstream type, 350–352
Fully qualified names, 295–297
Function example, 443, 525–528
Function , 47, 113–117. See also Member functions

accessing class members, 1111
arguments. See Function arguments
in base classes, 504
body, 47, 114
C++ and C, 1028–1032
callback, GUIs, 556–559
calling, 1103

cleaning up, 234–235
coding standards, 980–981
common style, 490–491
debugging, 160
declarations, 117, 1103
definition, 113–115, 272, 1219
in derived classes, 501, 505
falling through, 274
formal arguments. See Function parameter

(formal argument)
friend declaration, 1111
generic code, 491
global variables, modifying, 269
graphing. See Function example
inline, 316, 1026
linkage specifications, 1106
naming. See Namespaces
nesting, 270
organizing. See Namespaces
overloading, 321–323, 526, 1026
overload resolution, 1104–1105
parameter, 115. See also Function parameter

(formal argument)
pointer to, 1034–1036
post-conditions, 165–166
pre-conditions, 163–165
pure virtual, 1221
requirements, 153. See also Pre-conditions
return, 113–115, 272–273, 1103
return type, 47, 272–273
standard mathematical, 528, 1181–1182
types as parameters. See Template
uses for, 115–116
virtual, 1034–1036. See also Virtual functions

Function activation record, 287
Function argument. See also Function parameter

(formal argument); Parameters
checking, 284–285
conversion, 284–285
declaring, 272–273
formal. See Parameters
naming, 273
omitting, 273
passing. See Function call

Function call, 285
call stack, 290
expression() call example, 287–290
function activation record, 287
history of, 820
memory for, 591–592

INDEX1244

Function call, continued

() operator, 766
pass by const reference, 276–278, 281–284
pass by non-const reference, 281–284
pass by reference, 279–284
pass by value, 276, 281–284
recursive, 289
stack growth, 287–290. See also Function

activation record
temporary objects, 282

Function-like macros, 1056–1058
Function member

definition, 305–306
same name as class. See Constructors

Function objects, 765–767
() function call operator, 766
abstract view, 766–767
adaptors, 1164
arithmetic operations, 1164
parameterization, 767
predicates, 767–768, 1163

Function parameter (formal argument)
... ellipsis, unchecked arguments, 1105–1106
pass by const reference, 276–278, 281–284
pass by non-const reference, 281–284
pass by reference, 279–284
pass by value, 276, 281–284
temporary objects, 282
unused, 272

Function template
algorithms, 682–683
argument deduction, 689–690
parameterized functions, 682–683

<functional>, 1133, 1163
Functional cast, 1095
Functional programming, 823
Fused multiply-add, 904

G
Gadgets. See Embedded systems
Garbage collection, 600, 938–939
Gaussian elimination, 910–911
gcount(), 1172
general format, 387
general manipulator, 385
generate(), 1157
generate_n(), 1157
Generic code, 491
Generic programming, 682–683, 816, 1219
Geometric shapes, 427

get(), 1172
getc(), 1052, 1191
getchar(), 1053, 1191
getline(), 395–396, 851, 855, 1172
gets(), 1052

C++ alternative >>, 1053
dangerous, 1052
scanf(), 1190

get_token() example, 196
GIF images, 480–482
Global scope, 267, 270, 1082
Global variables

functions modifying, 269
memory for, 591–592
order of initialization, 292–294

Going out of scope, 268–269, 291
good() stream state, 355, 1171
GP. See Generic programming
Grammar example

alternation, patterns, 194
English grammar, 193–194
Expression example, 197–200, 202–203
parsing, 190–193
repetition, patterns, 194
rules vs. tokens, 194
sequencing rules, 195
terminals. See Tokens
writing, 189, 194–195

Graph example. See also Grids, drawing
Axis, 424–426
coordinates, 426–427
drawing, 426–427
points, labeling, 474–476

Graph.h, 421–422
Graphical user interfaces. See GUIs (graphical

user interfaces)
Graphics, 412. See also Graphics example; Color

example; Shape example
displaying, 479–482
display model, 413–414
drawing on screen, 423–424
encoding, 480
filling shapes, 431
formats, 480
geometric shapes, 427
GIF, 480–482
graphics libraries, 481–482
graphs, 426–427
images from files, 433–434
importance of, 412–413
JPEG, 480–482

INDEX 1245

line style, 431
loading from files, 433–434
screen coordinates, 419–420
selecting a sub-picture from, 480
user interface. See GUIs (graphical user

interfaces)
Graphics example

Graph.h, 421–422
GUI system, giving control to, 423
header files, 421–422
main(), 421–422
Point.h, 444
points, 426–427
Simple_window.h, 444
wait_for_button(), 423
Window.h, 444

Graphics example, design principles
access control. See Access control
attach() vs. add(), 491–492
class diagram, 505
class size, 489–490
common style, 490–491
data modification access, 492–493
generic code, 491
inheritance, interface, 513–514
inheritances, implementation, 513–514
mutability, 492–493
naming, 491–492
object-oriented programming, benefits of,

513–514
operations, 490–491
private data members, 492–493
protected data, 492–493
public data, 492–493
types, 488–490
width/height, specifying, 490

Graphics example, GUI classes, 442–444. See also
Graphics example, interfaces

Button, 443
In_box, 443
Menu, 443
Out_box, 443
Simple_window, 422–424, 443
Widget, 561–563, 1209–1210
Window, 443, 1210–1212

Graphics example, interfaces, 442–443. See also
Graphics example, GUI classes

Axis, 424–426, 443, 529–532
Circle, 469–472, 497
Closed_polyline, 456–458
Color, 450

Ellipse, 472–474
Function, 443, 524–528
Image, 443, 479–482
Line, 445–448
Line_style, 452–455
Lines, 448–450, 497
Mark, 478–479
Marked_polyline, 474–476
Marks, 476–477, 497
Open_polyline, 455–456, 497
Point, 426–427, 445
Polygon, 427–428, 458–460, 497
Rectangle, 428–431, 460–465, 497
Shape, 444–445, 449, 493–494, 513–514
Text, 431–433, 467–470

Graphing data example, 538–546
Graphing functions example, 520–524,

532–537
Graph_lib namespace, 421–422
greater(), 1163
Greater than >, 67, 1088
Greater than or equal >=, 1088
greater_equal(), 1163
Green marginal alerts, 3
Grids, drawing, 448–449, 452–455
Grouping regular expressions, 867, 873, 876
Guarantees, 701–702
Guidelines. See Ideals
GUIs (graphical user interfaces), 552–553. See also

Graphics example, GUI classes
callback functions, 556–559
callback implementation, 1208–1209
cb_next() example, 556–559
common problems, 575–577
control inversion, 569–570
controls. See Widget example
coordinates, computer screens, 419–420
debugging, 575–577
error handling, 576
examples, 565–569, 573–574, 576–577
exceptions, 576
FLTK (Fast Light Toolkit), 418
layers of code, 557
next() example, 558–559
pixels, 419–420
portability, 418
standard library, 418–419
toolkit, 418
vector_ref example, 1212–1213
vector of references, simulating,

1212–1213

INDEX1246

GUIs (graphical user interfaces), continued

wait loops, 559–560
wait_for_button() example, 559–560
waiting for user action, 559–560,

569–570
Widget example, 561–569, 1209–1210,

1213–1216
Window example, 565–569, 1210–1212

GUI system, giving control to, 423

H
.h file suffix, 46
Half open sequences, 119, 721
Hard real-time, 931, 981–982
Hardware replication, error handling, 934
Hardware violations, 141
Hashed container. See unordered_map

Hash function, 785–786
Hashing, 785
Hash tables, 785
Hash values, 785
Header files, 46, 1219

C standard library, 1135–1136
declarations, managing, 264
definitions, managing, 264
graphics example, 421–422
including in source files, 264–266, 1129
multiple inclusion, 1059
standard library, 1133–1134

Headers. See Header files
Heap algorithm, 1160
Heap memory, 592, 935–936, 1084, 1160. See also

Free store (heap storage)
Hejlsberg, Anders, 831
“Hello, World!” program, 45–47
Helper functions

== equality, 333
!= inequality, 333
class interfaces, 332–334
Date example, 309–310, 332–333
namespaces, 333
validity checking date values, 310

hex manipulator, 382–383, 1174
Hexadecimal digits, 397
Hexadecimal number system, 381–383,

1077–1078
Hiding information, 1220
Hopper, Grace Murray, 824–825
Hyperbolic cosine, cosh(), 918

Hyperbolic sine, sinh(), 918, 1182
Hyperbolic tangent, tanh(), 917

I
I/O errors

bad() stream state, 355
clear(), 355–358
end of file, 355
eof() stream state, 355
error handling, 1171
fail() stream state, 355
good() stream state, 355
ios_base, 357
recovering from, 355–358
stream states, 355
unexpected errors, 355
unget(), 355–358

I/O streams, 1168–1169
>> input operator, 855
<< output operator, 855
cerr, standard error output stream, 151–152,

1169, 1189
cin standard input, 347
class hierarchy, 855, 1170–1171
cout standard output, 347
error handling, 1171
formatting, 1172–1173
fstream, 388–390, 393, 1170
get(), 855
getline(), 855
header files, 1134
ifstream, 388–390, 1170
input operations, 1172
input streams, 347–349
iostream library, 347–349, 1168–1169
istream, 347–349, 1169–1170
istringstream, 1170
ofstream, 388–390, 1170
ostream, 347–349, 1168–1169
ostringstream, 388–390, 1170
output operations, 1173
output streams, 347–349
standard manipulators, 382, 1173–1174
standard streams, 1169
states, 1171
stream behavior, changing, 382
stream buffers, streambufs, 1169
stream modes, 1170
string, 855

INDEX 1247

stringstream, 395, 1170
throwing exceptions, 1171
unformatted input, 1172

IBM, 823
Ichbiah, Jean, 832
IDE (interactive development environment),

52
Ideals

abstraction level, 812–813
bottom-up approach, 811
class interfaces, 323
code structure, 810–811
coding standards, 976–977
consistency, 814–815
correct approaches, 811
correctness, 810
definition, 1219
direct expression of ideas, 811–812
efficiency, 810
embedded systems, 932–933
importance of, 8
KISS, 815
maintainability, 810
minimalism, 814–815
modularity, 813–814
overview, 808–809
performance, 810
software, 34–37
on-time delivery, 810
top-down approach, 811

Identifiers, 1081. See also Names
reserved, 75–76. See also Keywords

if-statements, 102–104
#ifdef, 1058–1059
#ifndef, 1058–1059
ifstream type, 350–352
imag(), imaginary part, 920, 1183
Image example, 443, 479–482
Images. See Graphics
Imaginary part, 920
Immutable values, class interfaces, 330–332
Implementation, 1219

class, 306–308
inheritance, 513–514
programs, 36

Implementation-defined feature, 1075
Implicit conversions, 642–643
in mode, 389, 1170
In_box example, 443, 563–564
In-class member definition, 1112

#include, 46, 264–266, 1128–1129
Include guard, 1059
includes(), 1159
Including headers, 1129. See also #include

Incrementing ++, 66, 721
iterators, 721, 750, 1140–1141
pointers, 651–652
variables, 73–74, 97–98

Indenting nested code, 271
Inequality != (not equal), 67, 1088, 1101

complex, 919, 1183
containers, 1151
helper function, 333
iterators, 721, 1141
string, 67, 851, 1176

Infinite loop, 1219
Infinite recursion, 198, 1220
Information hiding, 1220
Information processing, 32
Inheritance

class diagram, 505
definition, 504
derived classes, 1116–1117
embedded systems, 951–954
history of, 834
implementation, 513–514
interface, 513–514
multiple, 1117
pointers vs. references, 612–613
templates, 686–687

Initialization, 69–73, 1220
{} initialization notation, 83
arrays, 596–598, 654–656
constants, 262, 329–330, 1099
constructors, 310–312
Date example, 309–312
default, 263, 327, 1085
invariants, 313–314, 701–702
menus, 571
pointers, 596–598, 657
pointer targets, 596–598
Token example, 184

initializer_list, 630
inline, 1037
Inline

functions, 1026
member functions, 316

inner_product(), 759. See also Dot product
description, 774–775
generalizing, 775–776

INDEX1248

inner_product(), continued

matrices, 904
multiplying sequences, 1184
standard library, 759, 770

inplace_merge(), 1158
Input, 60–62. See also Input >>; I/O streams

binary I/O, 390–393
C++ and C, 1052–1053
calculator example, 179, 182, 185, 201–202,

206–208
case sensitivity, 64
cin, standard input stream, 61
dividing functions logically, 359–362
files. See File I/O
format errors, 64–65
individual characters, 396–398
integers, 383–384
istringstream, 394
line-oriented input, 395–396
newline character \n, 61–62, 64
potential problems, 358–363
prompting for, 61, 179
separating dialog from function, 362–363
a series of values, 356–358
a single value, 358–363
source of exceptions, 150–153
stringstream, 395
tab character \t, 64
terminating, 61–62
type sensitivity, 64–65
whitespace, 64

Input >>, 61
case sensitivity, 64
complex, 920, 1183
formatted input, 1172
multiple values per statement, 65
strings, 851, 1177
text input, 851, 855
user-defined, 365
whitespace, ignoring, 64

Input devices, 346–347
Input iterators, 752, 1142
Input loops, 365–367
Input/output, 347–349. See also Input; Output

buffering, 348, 406
C++ and C. See stdio
computation overview, 91
device drivers, 346
errors. See I/O errors
files. See File I/O
formatting. See Manipulators; printf()

irregularity, 380
istream, 347–354
natural language differences, 406
ostream, 347–354
regularity, 380
streams. See I/O streams
strings, 855
text in GUIs, 563–564
whitespace, 397, 398–405

Input prompt >, 223
Inputs, testing, 1001
Input streams, 347–349. See also I/O streams
insert()

list, 615–617, 742–745
map container, 782
string, 851, 1150, 1177
vector, 745–747

inserter(), 1162
Inserters, 1162–1163
Inserting

list elements, 742–745
into strings, 851, 1150, 1177
vector elements, 745–747

Installing
FLTK (Fast Light Toolkit), 1205
Visual Studio, 1198

Instantiation, templates, 681, 1123–1124
int, integer type, 66–67, 78, 1099

bits in memory, 78, 955
Integers, 77–78, 890–891, 1220

assigning floating-point numbers to, 893
assigning to floating-point numbers, 892–893
decimal, 381–383
input, formatting, 383–384
largest, finding, 917
literals, 1077
number bases, 381–383
octal, 381–383
output, formatting, 381–383
reading, 383–384
smallest, finding, 917

Integral conversions, 1091–1092
Integral promotion, 1091
Interactive development environment (IDE), 52
Interface classes. See Graphics example, interfaces
Interfaces, 1220

classes. See Class interfaces
inheritance, 513–514
user. See User interfaces

internal manipulator, 1174
Intrusive containers, example, 1059–1065

INDEX 1249

Invariants, 313–314, 1220. See also Post-conditions;
Pre-conditions

assertions, 163
Date example, 313–314
debugging, 162–163
default constructors, 641
documenting, 815
invention of, 828
Polygon example, 460

Invisible. See Transparency
<iomanip>, 1134, 1173
<ios>, 1134, 1173
<iosfwd>, 1134
iostream

buffers, 406
C++ and C, 1050
exceptions, 1138
library, 347–349

<iostream>, 1134, 1173
Irregularity, 380
is_open(), 1170
isalnum() classify character, 397, 1175
isalpha() classify character, 247, 397, 1175
iscntrl() classify character, 397, 1175
isdigit() classify character, 397, 1175
isgraph() classify character, 397, 1175
islower() classify character, 397, 1175
isprint() classify character, 397, 1175
ispunct() classify character, 397, 1175
isspace() classify character, 397, 1175
istream, 347–349, 1169–1170

>>, text input, 851, 1172
>>, user-defined, 365
binary I/O, 390–393
connecting to input device, 1170
file I/O, fstream, 349–354, 1170
get(), get a single character, 397
getline(), 395–396, 1172
stringstreams, 395
unformatted input, 395–396, 1172
using together with stdio, 1050

<istream>, 1134, 1168–1169, 1173
istream_iterator type, 790–793
istringstream, 394
isupper() classify character, 397, 1175
isxdigit() classify character, 397, 1175
Iteration. See also Iterators

control variables, 110
definition, 1220
example, 737–741
linked lists, 727–729, 737–741

loop variables, 110–111
for-statements, 111–113
strings, 851
through values. See vector

while-statements, 109–111
iterator, 1147
<iterator>, 1133, 1162
Iterators, 721–722, 1139–1140, 1220. See also STL

iterators
bidirectional iterator, 752
category, 752, 1142–1143
containers, 1143–1145, 1148
empty list, 729
example, 737–741
forward iterator, 752
header files, 1133–1134
input iterator, 752
operations, 721, 1141–1142
output iterator, 752
vs. pointers, 1140
random-access iterator, 752
sequence of elements, 1140–1141

iter_swap(), 1157

J
Japanese age distribution example, 538–539
JPEG images, 480–482

K
Kernighan, Brian, 838–839, 1022–1023
key_comp(), 1152
key_compare, 1147
key_type, 1147
Key, value pairs, containers for, 776
Keywords, 1037–1038, 1081–1082
KISS, 815
Knuth, Don, 808
K&R, 838, 1022

L
l/L suffix, 1077
\l, “lowercase character,” regex, 873, 1179
\L, “not lowercase character,” regex, 874, 1179
Label

access control, 306, 511
case, 106–108
graph example, 529–532
of statement, 1096

INDEX1250

Lambda expression, 560–561
Largest integer, finding, 917
Laws of optimization, 931
Layers of code, GUIs, 557
Layout rules, 979, 1034
Leaks, memory, 598–600, 601–605, 937
Leap year, 309
left manipulator, 1174
Legal programs, 1075
length(), 851, 1176
Length of strings, finding, 851, 1046, 1176
less(), 1163
Less than <, 1088
Less than or equal <=, 67, 1088
less_equal(), 1163
Letters, identifying, 247, 397
lexical_cast, 855
Lexicographical comparison

<= comparison, 1176
< comparison, 1176
>= comparison, 1176
> comparison, 1176
< comparison, 851
C-style strings, 1046
lexicographical_compare(), 1162

Libraries, 51, 1220. See also Standard library
role in debugging, 160
uses for, 177

Lifetime, objects, 1085–1086, 1220
Limit macros, 1181
<limits>, 894, 1135, 1180
Limits, 894–895
<limits.h>, 894, 1181
Linear equations example, 908–914

back_substitution(), 910–911
classic_elimination(), 910–911
Gaussian elimination, 910–911
pivoting, 911–912
testing, 912–914

Line comment //, 45
Line example, 445–447

vs. Lines, 448
Line-oriented input, 395–396
Lines example, 448–450, 497

vs. Line, 448
Lines (graphic), drawing. See also Graphics;

draw_lines()

on graphs, 529–532
line styles, 452–455
multiple lines, 448–450
single lines, 445–447

styles, 431, 454
visibility, 500

Lines (of text), identifying, 736–737
Line_style example, 452–455
Lines_window example, 565–569, 573–574, 576–577
Link example, 613–622
Link-time errors. See Errors, link-time
Linkage convention, C, 1033
Linkage specifications, 1106
Linked lists, 725. See also Lists
Linkers, 51, 1220
Linking programs, 51
Links, 613–615, 620–622, 725
Lint, consistency checking program, 836
Lisp language, 825–826
list, 727, 1146–1151

{} initialization notation, 83
add(), 615–617
advance(), 615–617
back(), 737
erase(), 615–617, 742–745
find(), 615–617
insert(), 615–617, 742–745
operations, 615–617
properties, 741–742
referencing last element, 737
sequence containers, 1144
subscripting, 727

<list>, 1133
Lists

containers, 1150
doubly linked, 613, 725
empty, 729
erasing elements, 742–745
examples, 613–615, 734–741
finding links, 615–617
getting the nth element, 615–617
inserting elements, 615–617, 742–745
iteration, 727–729, 737–741
link manipulation, 615–617
links, examples, 613–615, 620–622, 726
operations, 726–727
removing elements, 615–617
singly linked, 612–613, 725
this pointer, 618–620

Literals, 62, 1077, 1220
character, 161, 1079–1080
decimal integer, 1077
in expressions, 96
f/F suffix, 1079
floating-point, 1079

INDEX 1251

hexadecimal integer, 1077
integer, 1077
l/L suffix, 1077
magic constants, 96, 143, 232–234, 723
non-obvious, 96
null pointer, 0, 1081
number systems, 1077–1079
octal integer, 1077
special characters, 1079–1080
string, 161, 1080
termination, debugging, 161
for types, 63
u/U suffix, 1077
unsigned, 1077

Local (automatic) objects, lifetime, 1085
Local classes, nesting, 270
Local functions, nesting, 270
Local scope, 267, 1083
Local variables, array pointers, 658
Locale, 406
<locale>, 1135
log(), 918, 1182
log10(), 918, 1182
Logic errors. See Errors, logic
Logical and &&, 1089, 1094
Logical operations, 1094
Logical or ||, 1089, 1094
logical_and(), 1163
logical_not(), 1163
logical_or(), 1163
Logs, graphing, 528
long integer, 955, 1099
Look-ahead problem, 204–209
Loop, 110–111, 112, 1220

examples, parser, 200
infinite, 198, 1219
testing, 1005–1006
variable, 110–111, 112

Lovelace, Augusta Ada, 832
lower, 878, 1179
lower_bound(), 796, 1152, 1158
Lower case. See Case (of characters)
Lucent Bell Labs, 838
Lvalue, 94–95, 1090

M
Machine code. See Executable code
Macros, 1055–1056

conditional compilation, 1058–1059
#define, 1056–1058, 1129

function-like, 1056–1058
#ifdef, 1058–1059
#ifndef, 1059
#include, 1058, 1128–1129
include guard, 1059
naming conventions, 1055
syntax, 1058
uses for, 1056

Macro substitution, 1129
Maddock, John, 865
Magic constants, 96, 143, 232–234, 723
Magical approach to programming, 10
main(), 46–47

arguments to, 1076
global objects, 1076
return values, 47, 1075–1076
starting a program, 1075–1076

Maintainability, software, 35, 810
Maintenance, 929
make_heap(), 1160
make_pair(), 782, 1165–1166
make_unique(), 1167
make_vec(), 702
malloc(), 1043–1044, 1193
Manipulators, 382, 1173–1174

complete list of, 1173–1174
dec, 1174
endl, 1174
fixed, 1174
hex, 1174
noskipws, 1174
oct, 1174
resetiosflags(), 1174
scientific, 1174
setiosflags(), 1174
setprecision(), 1174
skipws, 1174

Mantissa, 893
map, associative array, 776–782. See also set;

unordered_map

[], subscripting, 777, 1151
balanced trees, 780–782
binary search trees, 779
case sensitivity, No_case example, 795
counting words example, 777–779
Dow Jones example, 782–785
email example, 855–872
erase(), 781, 1150
finding elements in, 776–777, 781,

1151–1152
fruits example, 779–782

INDEX1252

map, associative array, continued

insert(), 782, 1150
iterators, 1144
key storage, 776
make_pair(), 782
No_case example, 782, 795
Node example, 779–782
red-black trees, 779
vs. set, 788
standard library, 1146–1152
tree structure, 779–782
without values. See set

<map>, 776, 1133
mapped_type, 1147
Marginal alerts, 3
Mark example, 478–479
Marked_polyline example, 474–476
Marks example, 476–477, 497
Mars Rover, 33
Matching. See also Finding; Searching

regular expressions, regex, 1177–1179
text patterns. See Regular expressions

Math functions, 528, 1181–1182
Mathematics. See Numerics
Mathematical functions, standard

abs(), absolute value, 917
acos(), arccosine, 917
asin(), arcsine, 918
atan(), arctangent, 918
ceil(), 917
<cmath>, 918, 1135
<complex>, 919–920
cos(), cosine, 917
cosh(), hyperbolic cosine, 918
errno, error indicator, 918–919
error handling, 918–919
exp(), natural exponent, 918
floor(), 917
log(), natural logarithm, 918
log10(), base-10 logarithm, 918
sin(), sine, 917
sinh(), hyperbolic sine, 918
sqrt(), square root, 917
tan(), tangent, 917
tanh(), hyperbolic tangent, 917

Matrices, 899–901, 905–906
Matrix library example, 899–901, 905

[], subscripting (C style), 897, 899
(), subscripting (Fortran style), 899
accessing array elements, 899–901

apply(), 903
broadcast functions, 903
clear_row, 906
columns, 900–901, 906
dimensions, 898–901
dot product, 904
fused multiply-add, 904
initializing, 906
inner_product, 904
input/output, 907
linear equations example, 910–914
multidimensional matrices, 898–908
rows, 900–901, 906
scale_and_add(), 904
slice(), 901–902, 905
start_row, 906
subscripting, 899–901, 905
swap_columns(), 906
swap_rows(), 906

max(), 1161
max_element(), 1162
max_size(), 1151
McCarthy, John, 825–826
McIlroy, Doug, 837, 1032
Medicine, computer use, 30
Member, 305–307. See also Class

allocated at same address, 1121
class, nesting, 270
in-class definition, 1112
definition, 1108
definitions, 1112
out-of-class definition, 1112

Member access. See also Access control
. (dot), 1109
:: scope resolution, 315, 1109
notation, 184
operators, 608
this pointer, 1110
by unqualified name, 1110

Member function. See also Class members;
Constructors; Destructors; Date example

calls, 120
nesting, 270
Token example, 184

Member initializer list, 184
Member selection, expressions, 1087
Member types

containers, 1147
templates, 1124

memchr(), 1193

INDEX 1253

memcmp(), 1192
memcpy(), 1192
mem_fn() adaptor, 1164
memmove(), 1192
Memory, 588–590

addresses, 588
allocating. See Allocating memory
automatic storage, 591–592
bad_alloc exception, 1094
for code, 591–592
C standard library functions, 1192–1193
deallocating, 598–600
embedded systems, 940–942
exhausting, 1094
freeing. See Deallocating memory
free store, 592–594
for function calls, 591–592
for global variables, 591–592
heap. See Free store (heap sotrage)
layout, 591–592
object layout, 506–507
object size, getting, 590–591
pointers to, 588–590
sizeof, 590–591
stack storage, 591–592
static storage, 591–592
text storage, 591–592

<memory>, 1134
memset(), 1193
Menu example, 443, 564–565, 570–575
merge(), 758, 1158
Messages to the user, 564
min(), 1161
min_element(), 1162
Minimalism, ideals, 814–815
minus(), 1164
Missing copies, 645
MIT, 825–826, 838
Modifying sequence algorithms, 1154–1156
Modularity, ideals, 813–814
Modular systems, error handling, 934–935
Modulo (remainder) %, 66. See also Remainder
modulus(), 1164
Monitoring subsystems, error handling, 935
move(), 502, 562
Move assignments, 637–640
Move backward –=, 1101
Move forward +=, 1101
Move constructors, 637–640
Moving, 637–640

Multi-paradigm programming languages, 818
Multidimensional matrices, 898–908
multimap, 776, 860–861, 1144
<multimap>, 776
Multiplicative operators, expressions, 1088
multiplies(), 1164
Multiply *, 66, 1088
Multiply and assign *=, 67
multiset, 776, 1144
<multiset>, 776
Mutability, 492–493, 1220

class interfaces, 332–334
and copying, 503–504

mutable, 1037
Mutating sequence algorithms, 1154–1156

N
\n newline, character literal, 61–62, 64, 1079
Named character classes, in regular expressions,

877–878
Names, 74–77

_ (underscore), 75, 76
capital letters, 76–77
case sensitivity, 75
confusing, 77
conventions, 74–75
declarations, 257–258
descriptive, 76
function, 47
length, 76
overloaded, 140, 508–509, 1104–1105
reserved, 75–76. See also Keywords

namespace, 271, 1037
Namespaces, 294, 1127. See also Scope

:: scope resolution, 295–296
C++ and C, 1042–1043
fully qualified names, 295–297
helper functions, 333
objects, lifetime, 1085
scope, 267, 1082
std, 296–297
for the STL, 1136
using declarations, 296–297
using directives, 296–297, 1127
variables, order of initialization, 292–294

Naming conventions, 74–77
coding standards, 979–980
functions, 491–492
macros, 1055

INDEX1254

Naming conventions, continued

role in debugging, 160
scope, 269

narrow_cast example, 153
Narrowing conversions, 80–83
Narrowing errors, 153
Natural language differences, 406
Natural logarithms, 918
Naur, Peter, 827–828
negate(), 1164
Negative numbers, 229–230
Nested blocks, 271
Nested classes, 270
Nested functions, 270
Nesting

blocks within functions, 271
classes within classes, 270
classes within functions, 270
functions within classes, 270
functions within functions, 271
indenting nested code, 271
local classes, 270
local functions, 271
member classes, 270
member functions, 270
structs, 1037

new, 592, 596–598
C++ and C, 1026, 1037
and delete, 1094–1095
embedded systems, 932, 936–940
example, 593–594
exceptions, 1138
types, constructing, 1087

<new>, 1135
New-style casts, 1040
next_permutation(), 1161
No-throw guarantee, 702
noboolalpha, 1173
No_case example, 782
Node example, 779–782
Non-algorithms, testing, 1001–1008
Non-errors, 139
Non-intrusive containers, 1059
Nonmodifying sequence algorithm, 1153–1154
Non-narrowing initialization, 83
Nonstandard separators, 398–405
norm(), 919, 1183
Norwegian Computing Center, 833–835
noshowbase, 383, 1173
noshowpoint, 1173

noshowpos, 1173
noskipws, 1174
not, synonym for ! 1037, 1038
Not ! 1087
not1() adaptor, 1164
not2() adaptor, 1164
Notches, graphing data example, 529–532,

543–546
Not-conforming constructs, 1075
Not equal != (inequality), 67, 1088, 1101
not_eq, synonym for !=, 1038
not_equal_to(), 1163
nouppercase manipulator, 1174
now(), 1016, 1185
nth_element(), 1158
Null pointer, 598, 656–657, 1081
nullptr, 598
Number example, 189
Number systems

base-2, binary, 1078–1079
base-8, octal, 381–384, 1077–1078
base-10, decimal, 381–384, 1077–1078
base-16, hexadecimal, 381–384, 1077–1078

<numeric>, 1135, 1183
Numerical algorithms. See Algorithms, numerical
Numerics, 890–891

absolute values, 917
arithmetic function objects, 1164
arrays. See Matrix library example
<cmath>, 918
columns, 895–896
complex, 919–920, 1182–1183
<complex>, 919–920
floating-point rounding errors, 892–893
header files, 1134
integer and floating-point, 892–893
integer overflow, 891–893
largest integer, finding, 917
limit macros, 1181
limits, 894
mantissa, 893
mathematical functions, 917–918
Matrix library example, 897–908
multi-dimensional array, 895–897
numeric_limits, 1180
numerical algorithms, 1183–1184
overflow, 891–895
precision, 891–895
random numbers, 914–917
real numbers, 891. See also Floating-point

INDEX 1255

results, plausibility checking, 891
rounding errors, 891
rows, 895–896
size, 891–895
sizeof(), 892
smallest integer, finding, 917
standard mathematical functions, 917–918,

1181–1182
truncation, 893
valarray, 1183
whole numbers. See Integers

Nygaard, Kristen, 833–835

O
.obj file suffix, 48
Object, 60, 1220

aliases. See References
behaving like a function. See Function object
constructing, 184
copying, 1115, 1119
current (this), 317
Date example, 334–338
initializing, 327–330. See also Constructors
layout in memory, 308–309, 506–507
lifetime, 1085–1086
named. See Variables
Shape example, 495
sizeof(), 590–591
state, 2, 305
type, 77–78
value. See Values

Object code, 48, 1220. See also Executable code
Object-oriented programming, 1220

“from day one,” 10
vs. generic programming, 682
for graphics, benefits of, 513–514
history of, 816, 834

oct manipulator, 382–383, 1174
Octal number system, 381–383, 1077–1078
Off-by-one error, 149
ofstream, 351–352
Old-style casts, 1040
One-dimensional (1D) matrices, 901–904
On-time delivery, ideals, 810
\ooo octal, character literal, 1080
OOP. See Object-oriented programming
Opaque types, 1060
open(), 352, 1170
Open modes, 389–390

Open shapes, 455–456
Opening files, 350–352. See also File I/O

binary files, 390–393
binary mode, 389
C-style I/O, 1186
failure to open, 389
file streams, 350–352
nonexistent files, 389
open modes, 389–390
testing after opening, 352

Open_polyline example, 455–456, 497
Operations, 66–69, 305, 1220

chaining, 180–181
graphics classes, 490–491

operator, 1038
Operator overloading, 321

C++ standard operators, 322–323
restrictions, 322
user-defined operators, 322
uses for, 321–323

Operator, 97–99
! not, 1087
!= not-equal (inequality), 1088
& (unary) address of, 588, 1087
& (binary) bitwise and, 956, 1089, 1094
&& logical and, 1089, 1094
&= and and assign, 1090
% remainder (modulo), 1088
%= remainder (modulo) and assign, 1090
* (binary) multiply, 1088
* (unary) object contents, pointing to, 1087
*= multiply and assign, 1089
+ add (plus), 1088
++ increment, 1087
+= add and assign, 1090
– substract (minus), 65, 1088
–– decrement, 66, 1087, 1141
–> (arrow) member access, 608, 1087, 1109,

1141
. (dot) member access, 1086–1087
/ divide, 1088
/= divide and assign, 1090
:: scope resolution, 1086
< less than, 1088
<< shift left, 1088. See also ostream

<<= shift left and assign, 1090
<= less than or equal, 1088
= assign, 1089
== equal, 1088
> greater than, 1088

INDEX1256

Operator, continued

>= greater than or equal, 1088
>> shift right, 1088. See also istream

>>= shift right and assign, 1090
?: conditional expression (arithmetic if),

1089
[] subscript, 1086
^ bitwise exclusive or, 1089, 1094
^= xor and assign, 1090
| bitwise or, 1089, 1094
|= or and assign, 1090
|| logical or, 1089, 1094
~ complement, 1087
additive operators, 1088
const_cast, 1086, 1095
delete, 1087, 1094–1095
delete[], 1087, 1094–1095
dereference. See Contents of
dynamic_cast, 1086, 1095
expressions, 1086–1095
new, 1087, 1094–1095
reinterpret_cast, 1086, 1095
sizeof, 1087, 1094
static_cast, 1086, 1095
throw, 1090
typeid, 1086

Optimization, laws of, 931
or, synonym for |, 1038
Order of evaluation, 291–292
or_eq, synonym for |=, 1038
ostream, 347–349, 1168–1169

<<, text output, 851, 855
<<, user-defined, 363–365
binary I/O, 390–393
connecting to output device, 1170
file I/O, fstream, 349–354, 1170
stringstreams, 395
using together with stdio, 1050

<ostream>, 1134, 1168–1169, 1173
ostream_iterator type, 790–793
ostringstream, 394–395
out mode, 389, 1170
Out-of-class member definition, 1112
Out-of-range conditions, 595–596
Out_box example, 443, 563–564
out_of_range, 149–150, 152
Output, 1220. See also Input/output; I/O streams

devices, 346–347
to file. See File I/O, writing files
floating-point values, 384–385

format specifier %, 1187
formatting. See Input/output, formatting
integers, 381–383
iterator, 752, 1142
operations, 1173
streams. See I/O streams
to string. See stringstream

testing, 1001
Output <<, 47, 67, 1173

complex, 920, 1183
string, 851
text output, 851, 855
user-defined, 363–365

Overflow, 891–895, 1220
Overloading, 1104–1105, 1221

alternative to, 526
C++ and C, 1026
on const, 647–648
linkage, 140
operators. See Operator overloading
and overriding, 508–511
resolution, 1104–1105

Override, 508–511, 1221

P
Padding, C-style I/O, 1188
pair, 1165–1166

reading sequence elements, 1152–1153
searching, 1158
sorting, 1158

Palindromes, example, 659–660
Paradigm, 815–818, 1221
Parameterization, function objects, 767
Parameterized type, 682–683
Parameters, 1221

functions, 47, 115
list, 115
naming, 273
omitting, 273
templates, 679–681, 687–689

Parametric polymorphism, 682–683
Parsers, 190, 195

Expression example, 190, 197–200, 202–203
functions required, 196
grammar rules, 194–195
rules vs. tokens, 194

Parsing
expressions, 190–193
grammar, English, 193–194

INDEX 1257

grammar, programming, 190–193
tokens, 190–193

partial_sort(), 1157
partial_sort_copy(), 1158
partial_sum(), 770, 1184
partition(), 1158
Pascal language, 829–831
Passing arguments

by const reference, 276–278, 281–284
copies of, 276
modified arguments, 278
by non-const reference, 281–284
by reference, 279–284
temporary objects, 282
unmodified arguments, 277
by value, 276, 281–284

Patterns. See Regular expressions
Performance

C++ and C, 1024
ideals, 810
testing, 1012–1014
timing, 1015–1016

Permutations, 1160–1161
Petersen, Lawrence, 15
Pictures. See Graphics
Pivoting, 911–912
Pixels, 419–420
plus(), 1164
Point example, 445–447
pointer, 1147
Pointers, 594. See also Arrays; Iterators; Memory

* contents of, 594
* pointer to (in declarations), 587, 1099
[] subscripting, 594
arithmetic, 651–652
array. See Pointers and arrays
casting. See Type conversion
to class objects, 606–608
conversion. See Type conversion
to current object, this, 618–620
debugging, 656–659
declaration, C-style strings, 1049–1050
decrementing, 651–652
definition, 587–588, 1221
deleted, 657–658
explicit type conversion. See Type conversion
to functions, 1034–1036
incrementing, 651–652
initializing, 596–598, 657
vs. iterators, 1140

literal (0), 1081
to local variables, 658
moving around, 651
to nonexistent elements, 657–658
null, 0, 598, 656–657, 1081
NULL macro, 1190
vs. objects pointed to, 593–594
out-of-range conditions, 595–596
palindromes, example, 661–662
ranges, 595–596
reading and writing through, 594–596
semantics, 637
size, getting, 590–591
subscripting [], 594
this, 676–677
unknown, 608–610
void*, 608–610

Pointers and arrays
converting array names to, 653–654
pointers to array elements, 650–652

Pointers and inheritance
polymorphism, 951–954
a problem, 944–948
a solution, 947–951
user-defined interface class, 947–951
vector alternative, 947–951

Pointers and references
differences, 610–611
inheritance, 612–613
list example, 613–622
parameters, 611–612
this pointer, 618–620

polar(), 920, 1183
Polar coordinates, 920, 1183
Polygon example, 427–428, 458–460, 497

vs. Closed_polyline, 458
invariants, 460

Polyline example
closed, 456–458
marked, 474–476
open, 455–456
vs. rectangles, 429–431

Polymorphism
ad hoc, 682–683
embedded systems, 951–954
parametric, 682–683
run-time, 504–505
templates, 682–683

Pools, embedded systems, 940–941
Pop-up menus, 572

INDEX1258

pop_back(), 1149
pop_front(), 1149
pop_heap(), 1160
Portability, 11

C++, 1075
FLTK, 418, 1204

Positioning in files, 393–394
Post-conditions, 165–166, 1001–1002, 1221. See

also Invariants
Post-decrement –– , 1086, 1101
Post-increment ++, 1086, 1101
Postfix expressions, 1086
Pre-conditions, 163–165, 1001–1002, 1221. See

also Invariants
Pre-decrement –– , 1087, 1101
Pre-increment ++, 1087, 1101
Precedence, in expressions, 1090
Precision, numeric, 386–387, 891–895
Predicates, 763

on class members, 767–768
function objects, 1163
passing. See Function objects
searching, 763–764

Predictability, 931
error handling, 933–934
features to avoid, 932
memory allocation, 936, 940

Preprocessing, 265
Preprocessor directives

#define, macro substitution, 1129
#ifdef, 1058–1059
#ifndef, 1059
#include, including headers, 1129

Preprocessor, 1128
coding standards, 978–979

prev_permutation(), 1161
Princeton University, 838
print, character class, 878, 1179
Printable characters, identifying, 397
printf() family

%, conversion specification, 1187
conversion specifications, 1188–1189
gets(), 1052, 1190–1191
output formats, user-defined types, 1189–1190
padding, 1188
printf(), 1050–1051, 1187
scanf(), 1052–1053, 1190
stderr, 1189
stdin, 1189
stdio, 1190–1191
stdout, 1189

synchronizing with I/O streams, 1050–1051
truncation, 1189

Printing
error messages, 150–151
variable values, 246

priority_queue container adaptor, 1144
Private, 312

base classes, 511
implementation details, 210, 306–308, 312–313
members, 492–493, 505, 511
private: label, 306, 1037

Problem analysis, 175
development stages, 176
estimating resources, 177
problem statement, 176–177
prototyping, 178
strategy, 176–178

Problem statement, 176–177
Procedural programming languages, 815–816
Programmers. See also Programming

communication skills, 22
computation ideals, 92–94
skills requirements, 22–23
stereotypes of, 21–22
worldwide numbers of, 843

Programming, xxiii, 1221. See also Computation;
Software

abstract-first approach, 10
analysis stage, 35
bottom-up approach, 9
C first approach, 9
concept-based approach, 6
concrete-first approach, 6
depth-first approach, 6
design stage, 35
environments, 52
feedback, 36
generic, 1219
implementation, 36
magical approach, 10
object-oriented, 10, 1220
programming stage, 36
software engineering principles first approach,

10
stages of, 35–36
testing stage, 36
top-down approach, 9–10
writing a program. See Calculator example

Programming languages, 818–819, 821, 843
Ada, 832–833
Algol60, 827–829

INDEX 1259

Algol family, 826–829
assemblers, 820
auto codes, 820
BCPL, 838–839
C, 836–839
C#, 831
C++, 839–842
COBOL, 823–825
Common Lisp, 825
Delphi, 831
Fortran, 821–823
Lisp, 825–826
Pascal, 829–831
Scheme, 825
Simula, 833–835
Turbo Pascal, 831

Programming philosophy, 807, 1221. See also C++
and C; Programming ideals; Programming
languages

Programming ideals
abstraction level, 812–813
aims, 807–809
bottom-up approach, 811
code structure, 810–811
consistency, 814–815
correct approaches, 811
correctness, 810
data abstraction, 816
desirable properties, 807–808
direct expression of ideas, 811–812
efficiency, 810
generic programming, 816
KISS, 815
maintainability, 810
minimalism, 814–815
modularity, 813–814
multi-paradigm, 818
object-oriented programming, 815–818
overview, 808–809
paradigms, 815–818
performance, 810
philosophies, 807–809
procedural, 815–816
styles, 815–818
on-time delivery, 810
top-down approach, 811

Programming, history, 818–819. See also
Programming languages

BNF (Backus-Naur) Form, 823, 828
classes, 834
CODASYL committee, 824

early languages, 819–821
first documented bug, 824–825
first modern stored program, 819–821
first programming book, 820
functional programming, 823
function calls, 820
inheritance, 834
K&R, 838
lint, 836
object-oriented design, 834
STL (Standard Template Library), 841
virtual functions, 834

Programs, 44, 1221. See also Computation; Software
audiences for, 46
compiling. See Compilers
computing values. See Expression
conforming, 1075
experimental. See Prototyping
flow, tracing, 72
implementation defined, 1075
legal, 1075
linking, 51
not-conforming constructs, 1075
run. See Command line; Visual Studio, 52
starting execution, 46–47, 1075–1076
stored on a computer, 109
subdividing, 177–178
terminating, 208–209, 1075–1076
text of. See Source code
translation units, 51
troubleshooting. See Debugging
unspecified constructs, 1075
valid, 1075
writing, example. See Calculator example
writing your first, 45–47

Program organization. See also Programming ideals
abstraction, 92–93
divide and conquer, 93

Projects, Visual Studio, 1199–1200
Promotions, 99, 1091
Prompting for input, 61

>, input prompt, 223
calculator example, 179
sample code, 223–224

Proofs, testing, 992
protected, 492–493, 505, 511, 1037
Prototyping, 178
Pseudo code, 179, 1221
Public, 306, 1037

base class, 508
interface, 210, 496–499

INDEX1260

Public, continued

member, 306
public by default, struct, 307–308
public: label, 306

punct, punctuation character class, 878, 1179
Punct_stream example, 401–405
Pure virtual functions, 495, 1221
push_back()

growing a vector, 119–120
queue operations, 1149
resizing vector, 674–675
stack operations, 1149
string operations, 1177

push_front(), 1149
push_heap(), 1160
put(), 1173
putback()

naming convention, 211
putting tokens back, 206–207
return value, disabling, 211–212

putc(), 1191
putchar(), 1191
Putting back input, 206–208

Q
qsort(), 1194–1195
<queue>, 1134
queue container adaptor, 1144
Queue operations, 1149

R
\r carriage return, character literal, 1079
r, reading file mode, 1186
r+, reading and writing file mode, 1186
RAII (Resource Acquisition Is Initialization)

definition, 1221
exceptions, 700–701, 1125
testing, 1004–1005
for vector, 705–707

<random>, 1134
Random numbers, 914–917
Random-access iterators, 752, 1142
Range

definition, 1221
errors, 148–150
pointers, 595–596
regular expressions, 877–878

Range checking
at(), 693–694
[], 650–652, 693–696
arrays, 650–652
compatibility, 695
constraints, 695
design considerations, 694–696
efficiency, 695
exceptions, 693–694
macros, 696–697
optional checking, 695–696
overview, 693–694
pointer, 650–652
vector, 693–696

range-for, 119
rbegin(), 1148
Re-throwing exceptions, 702, 1126
read(), unformatted input, 1172
Readability

expressions, 95
indenting nested code, 271
nested code, 271

Reading
dividing functions logically, 359–362
files. See Reading files
with iterators, 1140–1141
numbers, 214–215
potential problems, 358–363
separating dialog from function, 362–363
a series of values, 356–358
a single value, 358–363
into strings, 851
tokens, 185

Reading files
binary I/O, 391
converting representations, 374–376
to end of file, 366
example, 352–354
fstream type, 350–352
ifstream type, 350–352
input loops, 365–367
istream type, 349–354, 391
in-memory representation, 368–370
ostream type, 391
process steps, 350
structured files, 367–376
structured values, 370–374
symbolic representations, 374–376
terminator character, specifying, 366

INDEX 1261

real(), 920, 1183
Real numbers, 891
Real part, 920
Real-time constraints, 931
Real-time response, 928
realloc(), 1045, 1193
Recovering from errors, 239–241, 355–358. See

also Error handling; Exceptions
Rectangle example, 428–431, 460–465, 497
Recursion

definition, 1221
infinite, 198, 1220
looping, 200

Recursive function calls, 289
Red-black trees, 779. See also Associative

containers; map, associative array
Red margin alerts, 3
Reference semantics, 637
References, 1221. See also Aliases

& in declarations, 276–279
to arguments, 277–278
circular. See Circular reference
to last vector element, back(), 737
vs. pointers. See Pointers and references

<regex>, 1134, 1175
regex. See Regular expressions
regex_error exception, 1138
regex_match(), 1177

vs. regex_search(), 883
regex_search(), 1177

vs. regex_match(), 883
regex pattern matching, 866–868

$ end of line, 873, 1178
() grouping, 867, 873, 876
* zero or more occurrences, 868, 873–874
[] character class, 873
\ escape character, 866–867, 873
\ as literal, 877
^ negation, 873
^ start of line, 873
{} count, 867, 873–875
| alternative (or), 867–868, 873, 876
+ one or more occurrences, 873, 874–875
. wildcard, 873
? optional occurrence, 867–868, 873,

874–875
alternation, 876
character classes. See regex character

classes

character sets, 877–878
definition, 870
grouping, 876
matches, 870
pattern matching, 872–873
ranges, 877–878
regex operators, 873, 1177–1179
regex_match(), 1177
regex_search(), 1177
repeating patterns, 874–876
searching with, 869–872, 880
smatch, 870
sub-patterns, 867, 870

regex character classes, 877–878
alnum, 878
alpha, 878
blank, 878
cntrl, 878
d, 878
\d, 873
\D, 873
digit, 878
graph, 878
\l, 873
\L, 874
lower, 878
print, 878
punct, 878
regex_match() vs. regex_search(), 883
s, 878
\s, 873
\S, 874
space, 878
\u, 873
\U, 874
upper, 878
w, 878
\w, 873
\W, 873
xdigit, 878

Regression tests, 993
Regular expressions, 866–868, 872, 1221.

See also regex pattern matching
character classes, 873–874
error handling, 878–880
grouping, 867, 873, 876
uses for, 865
ZIP code example, 880–885

Regularity, 380

INDEX1262

reinterpret_cast, 609–610, 1095
casting unrelated types, 609
hardware access, 944

Relational operators, 1088
Reliability, software, 34, 928
Remainder and assign %=, 1090
Remainder % (modulo), 66, 1088

correspondence to * and /, 68
floating-point, 201, 230–231
integer and floating-point, 66

remove(), 1155
remove_copy(), 1155
remove_copy_if(), 1155
rend(), 1148
Repeated words examples, 71–74
Repeating patterns, 194
Repetition, 1178. See also Iteration; regex

replace(), 1155
replace_copy(), 1155
Reporting errors

Date example, 317–318
debugging, 159
error(), 142–143
run-time, 145–146
syntax errors, 137–138

Representation, 305, 671–673
Requirements, 1221. See also Invariants; Post-

conditions; Pre-conditions
for functions, 153

reserve(), 673–674, 691, 747, 1151
Reserved names, 75–76. See also Keywords
resetiosflags() manipulator, 1174
resize(), 674, 1151
Resource, 1221

leaks, 931, 934
limitations, 928
management. See Resource management
testing, 1001–1002
vector example, 697–698

Resource Acquisition Is Initialization (RAII), 1221
exceptions, 700–701, 1125
testing, 1004–1005
for vector, 705–707

Resource management, 697–702. See also vector
example

basic guarantee, 702
error handling, 702
guarantees, 701–702
make_vec(), 702
no-throw guarantee, 702

problems, 698–700
RAII, 700–701, 705–707
resources, examples, 697–698
strong guarantee, 702
testing, 1004–1005

Results, 91. See also Return values
return and move, 704–705
return statement, 272–273
Return types, functions, 47, 272–273
Return values, 113–115

functions, 1103
no return value, void, 212
omitting, 115
returning, 272–273

reverse(), 1155
reverse_copy(), 1155
reverse_iterator, 1147
Revision history, 237–238
Rho, 920
Richards, Martin, 838
right manipulator, 1174
Ritchie, Dennis, 836, 837, 842, 1022–1023, 1032
Robot-assisted surgery, 30
rotate(), 1155
rotate_copy(), 1155
Rounding, 386, 1221. See also Truncation

errors, 891
floating-point values, 386

Rows, matrices, 900–901, 906
Rules, for programming. See Ideals
Rules, grammatical, 194–195
Run-time dispatch, 504–505. See also Virtual

functions
Run-time errors. See Errors, run-time
Run-time polymorphism, 504–505
runtime_error, 142, 151, 153
rvalue reference, 639
Rvalues, 94–95, 1090

S
s, character class, 878, 1179
\S, “not space,” regex, 874
\s, “space,” regex, 873
Safe conversions, 79–80
Safety, type. See Type, safety
Scaffolding, cleaning up, 234–235
scale_and_add() example, 904
scale_and_multiply() example, 912
Scaling data, 542–543

INDEX 1263

scanf(), 1052, 1190
Scenarios. See Use cases
Scheme language, 825
scientific format, 387
scientific manipulator, 385, 1174
Scope, 266–267, 1082–1083, 1221

class, 267, 1082
enumerators, 320–321
global, 267, 270, 1082
going out of, 268–269
kinds of, 267
local, 267, 1083
namespace, 267, 271, 1082
resolution ::, 295–296, 1086
statement, 267, 1083

Scope and nesting
blocks within functions, 271
classes within classes, 270
classes within functions, 270
functions within classes, 270
functions within functions, 271
indenting nested code, 271
local classes, 270
local functions, 270
member classes, 270
member functions, 270
nested blocks, 271
nested classes, 270
nested functions, 270

Scope and object lifetime, 1085–1086
free-store objects, 1085
local (automatic) objects, 1085
namespace objects, 1085
static class members, 1085
temporary objects, 1085

Scope and storage class, 1083–1084
automatic storage, 1083–1084
free store (heap), 1084
static storage, 1084

Screens. See also GUIs (graphical user interfaces)
data graph layout, 541–542
drawing on, 423–424
labeling, 425

search(), 795–796, 1153
Searching. See also Finding; Matching; find_if();

find()

algorithms for, 1157–1159
binary searches, 779, 795–796
in C, 1194–1195
for characters, 740

(key,value) pairs, by key. See Associative
containers

for links, 615–617
map elements. See unordered_map

predicates, 763
with regular expressions, 869–872, 880–885,

1177–1179
search_n(), 1153
Self reference. See this pointer
Self assignment, 676–677
Self-checking, error handling, 934
Separators, nonstandard, 398–405
Sequence containers, 1144
Sequences, 720, 1221

algorithms. See Algorithms, STL
differences between adjacent elements, 770
empty, 729
example, 723–724
half open, 721

Sequencing rules, 195
Server farms, 31–32
set, 776, 787–789

iterators, 1144
vs. map, 788
subscripting, 788

set(), 605–606
<set>, 776, 1134
Set algorithms, 1159–1160
set_difference(), 1160
set_intersection(), 1159
set_symmetric_difference(), 1160
set_union(), 1159
setbase() manipulator, 1174
setfill() manipulator, 1174
setiosflags() manipulator, 1174
setprecision() manipulator, 386–387, 1174
setw() manipulator, 1174
Shallow copies, 636
Shape example, 493–494

abstract classes, 495–496
access control, 496–499
attaching to Window, 545–546
as base class, 445, 495–496
clone(), 504
copying objects, 503–504
draw(), 500–502
draw_lines(), 500–502
fill color, 500
implementation inheritance, 513–514
interface inheritance, 513–514

INDEX1264

Shape example, continued

line visibility, 500
move(), 502
mutability, 503–504
number_of_points(), 449
object layout, 506–507
object-oriented programming, 513–514
point(), 449
slicing shapes, 504
virtual function calls, 501, 506–507

Shift operators, 1088
Shipping, computer use, 26–28
short, 955, 1099
Shorthand notation, regular expressions, 1179
showbase, manipulator, 383, 1173
showpoint, manipulator, 1173
showpos, manipulator, 1173
Shuffle algorithm, 1155–1156
Signed and unsigned integers, 961–965
signed type, 1099
Simple_window, 422–424, 443
Simplicity ideal, 92–94
Simula language, 833–835
sin(), sine, 917, 1182
Singly-linked lists, 613, 725
sinh(), hyperbolic sine, 918, 1182
Size

bit strings, 955–956
containers, 1150–1151
getting, sizeof(), 590–591
of numbers, 891–895
vectors, getting, 119–120

size()

container capacity, 1150
number of elements, 120, 851
string length, 851, 1176
vectors, 120, 122–123

sizeof(), 590–591, 1094
object size, 1087
value size, 892

size_type, 730, 1147
skipws, 1174
slice(), 901–902, 905
Slicing

matrices, 901–902, 905
objects, 504

Smallest integer, finding, 917
smatch, 870
Soft real-time, 931

Software, 19, 1222. See also Programming; Programs
affordability, 34
correctness, 34
ideals, 34–37
maintainability, 35
reliability, 34
troubleshooting. See Debugging
useful design, 34
uses for, 19–33

Software layers, GUIs, 557
sort(), 758, 794–796, 1157
sort_heap(), 1160
Sorting

algorithms for, 1157–1159
in C, qsort(), 1194
sort(), 758, 794–796, 1157

Source code
definition, 48, 1222
entering, 1200

Source files, 48, 1222
adding to projects, 1200

space, 878, 1179
Space exploration, computer use, 33
Special characters, 1079–1080

regular expressions, 1178
Specialization, 681, 1123
Specifications

definition, 1221
source of errors, 136

Speed of light, 96
sprintf(), 1187
sqrt(), square root, 917, 1181
Square of abs(), norm, 919
<sstream>, 1134
stable_partition(), 1158
stable_sort(), 1157
<stack>, 1134
stack container adaptor, 1144
Stack of activation records, 287
Stack storage, 591–592
Stacks

container operations, 1149
embedded systems, 935–936, 940, 942–943
growth, 287–290
unwinding, 1126

Stages of programming, 35–36
Standard

conformance, 836, 974, 1075
ISO, 1075, 1222

INDEX 1265

manipulators. See Manipulators
mathematical functions, 917–918

Standard library. See also C standard library; STL
(Standard Template Library)

algorithms. See Algorithms
complex. See complex

containers. See Containers
C-style I/O. See printf() family
C-style strings. See C-style strings
date and time, 1193–1194
function objects. See Function objects
I/O streams. See Input; Input/output;

Output
iterators. See Iterators
mathematical functions. See Mathematical

functions (standard)
numerical algorithms. See Algorithms,

numerical; Numerics
string. See string

time, 1015–1016, 1193
valarray. See valarray

Standard library header files, 1133–1136
algorithms, 1133–1134
containers, 1133–1134
C standard libraries, 1135–1136
I/O streams, 1134
iterators, 1133–1134
numerics, 1134–1135
string manipulation, 1134
utility and language support, 1135

Standard library I/O streams, 1168–1169. See also
I/O streams

Standard library string manipulation
character classification, 1175–1176
containers. See map, associative array; set;

unordered_map; vector

input/output. See I/O streams
regular expressions. See regex

string manipulation. See string

Stanford University, 826
Starting programs, 1075–1076. See also main()

State, 90–91, 1222
I/O stream, 1171
of objects, 305
source of errors, 136
testing, 1001
validity checking, 313
valid state, 313

Statement scope, 267, 1083

Statements, 47
grammar, 1096–1097
named sequence of. See Function
terminator ; (semicolon), 50, 100

Static storage, 591–592, 1084
class members, lifetime, 1085
embedded systems, 935–936, 944
static, 1084
static const, 326. See also const

static local variables, order of initialization, 294
std namespace, 296–297, 1136
stderr, 1189
<stdexcept>, 1135
stdin, 1050, 1189. See also stdio
stdio, standard C I/O, 1050, 1190–1191

EOF macro, 1053–1054
errno, error indicator, 918–919
fclose(), 1053–1054
FILE, 1053–1054
fopen(), 1053–1054
getchar(), 1052–1053, 1191
gets(), 1052, 1190–1191
input, 1052–1053
output, 1050–1051
printf(), 1050–1051, 1188–1191
scanf(), 1052, 1190
stderr, cerr equivalent, 1189
stdin, cin equivalent, 1050, 1189
stdout, 1050, 1189. See also stdio
stdout, cout equivalent, 1050, 1189

std_lib_facilities.h header file, 1199–1200
stdout, 1050, 1189. See also stdio
Stepanov, Alexander, 720, 722, 841
Stepping through code, 162
Stereotypes of programmers, 21–22
STL (Standard Template Library), 717, 1149–

1168 (large range, not sure this is correct). See

also C standard library; Standard library
algorithms. See STL algorithms
containers. See STL containers
function objects. See STL function objects
history of, 841
ideals, 717–720
iterators. See STL iterators
namespace, std, 1136

STL algorithms, 1152–1162
See Algorithms, STL.
alternatives to, 1195
built-in arrays, 747–749

INDEX1266

STL algorithms, continued

computation vs. data, 717–720
heap, 1160
max(), 1161
min(), 1161
modifying sequence, 1154–1156
mutating sequence, 1154–1156
nonmodifying sequence, 1153–1154
permutations, 1160–1161
searching, 1157–1159
set, 1159–1160
shuffle, 1155–1156
sorting, 1157–1159
utility, 1157
value comparisons, 1161–1162

STL containers, 749–751, 1144–1152
almost, 751, 1145
assignments, 1148
associative, 1144, 1151–1152
capacity, 1150–1151
comparing, 1151
constructors, 1148
container adaptors, 1144
copying, 1151
destructors, 1148
element access, 1149
information sources about, 750
iterator categories for, 752, 1143–1145,

1148
list operations, 1150
member types, 1147
operations overview, 1146–1147
queue operations, 1149
sequence, 1144
size, 1150–1151
stack operations, 1149
swapping, 1151

STL function objects, 1163
adaptors, 1164
arithmetic operations, 1164
inserters, 1162–1163
predicates, 767–768, 1163

STL iterators, 1139–1140
basic operations, 721
categories, 1142–1143
definition, 721, 1139
description, 721–722
empty lists, 729
example, 737–741

operations, 1141–1142
vs. pointers, 1140
sequence of elements, 1140–1141

Storage class, 1083–1084
automatic storage, 1083–1084
free store (heap), 1084
static storage, 1084

Storing data. See Containers
str(), string extractor, 395
strcat(), 1047, 1191
strchr(), 1048, 1192
strcmp(), 1047, 1192
strcpy(), 1047, 1049, 1192
Stream

buffers, 1169
iterators, 790–793
modes, 1170
states, 355
types, 1170

streambuf, 406, 1169
<streambuf>, 1134
<string>, 1134, 1172
string, 66, 851, 1222. See also Text

[] subscripting, 851
+ concatenation, 68–69, 851, 1176
+= append, 851
< lexicographical comparison, 851
== equal, 851
= assign, 851
>> input, 851
<< output, 851
almost container, 1145
append(), 851
basic_string, 852
C++ to C-style conversion, 851
c_str(), C++ to C-style conversion, 851
erase(), removing characters, 851
exceptions, 1138
find(), 851
from_string(), 853–854
getline(), 851
input terminator (whitespace), 65
Insert(), adding characters, 851
length(), number of characters, 851
lexical_cast example, 855
literals, debugging, 161
operations, 851, 1176–1177
operators, 66–67, 68
palindromes, example, 659–660

INDEX 1267

pattern matching. See Regular expressions
properties, 741–742
size, 78
size(), number of characters, 851
standard library, 852
stringstream, 852–854
string to value conversion, 853–854
subscripting [], 851
to_string() example, 852–854
values to string conversion, 852
vs. vector, 745
whitespace, 854

String literal, 62, 1080
stringstream, 395, 852–854, 1170
strlen(), 1046, 1191
strncat(), 1047, 1192
strncmp(), 1047, 1192
strncpy(), 1047, 1192
Strong guarantee, 702
Stroustrup, Bjarne

advisor, 820
Bell Labs colleagues, 836–839, 1023
biography, 13–14
education on invariants, 828
inventor of C++, 839–842
Kristen Nygaard, 834

strpbrk(), 1192
strrchr(), 1192
strstr(), 1192
strtod(), 1192
strtol(), 1192
strtoul(), 1192
struct, 307–308. See also Data
struct tag namespace, 1036–1037
Structure

of data. See Data
of programs, 215–216

Structured files, 367–376
Style, definition, 1222
Sub-patterns, 867, 870
Subclasses, 504. See also Derived classes
Subdividing programs, 177–178
Subscripting, 118

() Fortran style, 899
[] C Style, 694, 899
arrays, 649, 899
at(), checked subscripting, 694, 1149
Matrix example, 899–901, 905
pointers, 1101

string, 851, 1176
vector, 594, 607–608, 646–647

Substrings, 863
Subtraction – (minus)

complex, 919, 1183
definition, 1088
integers, 1101
iterators, 1141–1142
pointers, 1101

Subtype, definition, 1222
Summing values. See accumulate()

Superclasses, 504, 1222. See also Base classes
swap(), 281, 1151, 1157
Swapping

columns, 906
containers, 1151
ranges, 1157
rows, 906, 912

swap_ranges(), 1157
switch-statements

break, case termination, 106–108
case labels, 106–108
most common error, 108
vs. string-based selection, 106

Symbol tables, 247
Symbolic constants. See also Enumerations

cleaning up, 232–234
defining, with static const, 326

Symbolic names, tokens, 233
Symbolic representations, reading, 374–376
Syntax analyzers, 190
Syntax checking, 48–50
Syntax errors

examples, 48–50
overview, 137–138
reporting, 137–138

Syntax macros, 1058
system(), 1194
system_clock, 1016, 1185
System, definition, 1222
System tests, 1009–1011

T
\t tab character, 109, 1079
tan(), tangent, 917, 1182
tanh(), hyperbolic tangent, 917, 1182
TEA (Tiny Encryption Algorithm), 820, 969–974
Technical University of Copenhagen, 828

INDEX1268

Telecommunications, 28–29
Temperature data, example, 120–123
template, 1038
Template, 678–679, 1121–1122, 1222

arguments, 1122–1123
class, 681–683. See also Class template
compiling, 684
containers, 686–687
error diagnostics, 683
function, 682–690. See also Function template
generic programming, 682–683
inheritance, 686–687
instantiation, 681, 1123–1124
integer parameters, 687–689
member types, 1124
parameters, 679–681, 687–689
parametric polymorphism, 682–683
specialization, 1123
typename, 1124
type parameters, 679–681
weaknesses, 683

Template-style casts, 1040
Temporary objects, 282, 1085
Terminals, in grammars. See Tokens
Termination

abort() a program, 1194
on exceptions, 142
exit() a program, 1194
input, 61–62, 179
normal program termination, 1075–1076
for string input, 65
zero, for C-style strings, 654–655

Terminator character, specifying, 366
Testing, 992–993, 1222. See also Debugging

algorithms, 1001–1008
for bad input, 103
black box, 992–993
branching, 1006–1008
bug reports, retention period, 993
calculator example, 225
code coverage, 1008
debugging, 1012
dependencies, 1002–1003
designing for, 1011–1012
faulty assumptions, 1009–1011
files, after opening, 352
FLTK, 1206
inputs, 1001
loops, 1005–1006
non-algorithms, 1001–1008

outputs, 1001
performance, 1012–1014
pre- and post-conditions, 1001–1002
proofs, 992
RAII, 1004–1005
regression tests, 993
resource management, 1004–1005
resources, 1001–1002
stage of programming, 36
state, 1001
system tests, 1009–1011
test cases, definition, 166
test harness, 997–999
timing, 1015–1016
white box, 992–993

Testing units
formal specification, 994–995
random sequences, 999–1001
strategy for, 995–997
systematic testing, 994–995
test harness, 997–999

Text
character strings. See C-style strings; string

email example, 856–861, 864–865
extracting text from files, 855–861, 864–865
finding patterns, 864–865, 869–872
in graphics. See Text
implementation details, 861–864
input/output, GUIs, 563–564
maps. See map

storage, 591–592
substrings, 863
vector example, 123–125
words frequency example, 777–779

Text example, 431–433, 467–470
Text editor example, 737–741
Theta, 920
this pointer, 618–620, 676–677
Thompson, Ken, 836–838
Three-way comparison, 1046
Throwing exceptions, 147, 1125

I/O stream, 1171
re-throwing, 702
standard library, 1138–1139
throw, 147, 1090, 1125–1126
vector, 697–698

Time
date and time, 1193–1194
measuring, 1015–1016

Timekeeping, computer use, 26

INDEX 1269

time_point, 1016
time_t, 1193
Tiny Encryption Algorithm (TEA), 820, 969–974
tm, 1193
Token example, 183–184
Token_stream example, 206–214
tolower(), 398, 1176
Top-down approach, 9–10, 811
to_string() example, 852–854
toupper(), 398, 1176
Tracing code execution, 162–163
Trade-off, definition, 1222
transform(), 1154
Transient errors, handling, 934
Translation units, 51, 139–140
Transparency, 451, 463
Tree structure, map container, 779–782
true, 1037, 1038
trunc mode, 389, 1170
Truncation, 82, 1222

C-style I/O, 1189
exceptions, 153
floating-point numbers, 893

try-catch, 146–153, 693–694, 1037
Turbo Pascal language, 831
Two-dimensional matrices, 904–906
Two’s complement, 961
Type, 60, 77, 1222

aliases, 730
built-in. See Built-in types
checking, C++ and C, 1032–1033
generators, 681
graphics classes, 488–490
mismatch errors, 138–139
mixing in expressions, 99
naming. See Namespaces
objects, 77–78
operations, 305
organizing. See Namespaces
parameterized, 682–683. See also Template
as parameters. See Template
pointers. See Pointer
promotion, 99
representation of object, 308–309, 506–507
safety, 78–79, 82
subtype, 1222
supertype, 1222
truncation, 82
user-defined. See UDTs (user-defined types)
uses for, 304

values, 77
variables. See Variables

Type conversion
casting, 609–610
const_cast, casting away const, 609–610
exceptions, 153
explicit, 609
in expressions, 99–100
function arguments, 284–285
implicit, 642–643
int to pointer, 590
operators, 1095
pointers, 590, 609–610
reinterpret_cast, 609
safety, 79–83
static_cast, 609
string to value, 853–854
truncation, 82
value to string, 852

Type conversion, implicit, 642–643
bool, 1092
compiler warnings, 1091
floating-point and integral, 1091–1092
integral promotion, 1091
pointer and reference, 1092
preserving values, 1091
promotions, 1091
user-defined, 1091
usual arithmetic, 1092

Type safety, 78–79
implicit conversions, 80–83
narrowing conversions, 80–83
pointers, 596–598, 656–659
range error, 148–150, 595–596
safe conversions, 79–80
unsafe conversions, 80–83

typedef, 730
typeid, 1037, 1087, 1138
<typeinfo>, 1135
typename, 1037, 1124

U
u/U suffix, 1077
\U, “not uppercase,” regex, 874
\u, “uppercase character,” regex, 873, 1179
UDTs (user-defined types). See Class;

Enumerations
Unary expressions, 1087
“Uncaught exception” error, 153

INDEX1270

Unchecked conversions, 943–944
“Undeclared identifier” error, 258
Undefined order of evaluation, 263
unget(), 355–358
ungetc(), 1191
Uninitialized variables, 327–330, 1222
uninitialized_copy(), 1157
uninitialized_fill(), 1157
union, 1121
unique(), 1155
unique_copy(), 758, 789, 792–793, 1155
unique_ptr, 703–704
Unit tests

formal specification, 994–995
random sequences, 999–1001
strategy for, 995–997
systematic testing, 994–995
test harness, 997–999

Universal and uniform initialization, 83
Unnamed objects, 465–467
<unordered_map>, 776, 1134
unordered_map, 776. See also map, associative

array
finding elements, 785–787
hashing, 785
hash tables, 785
hash values, 785
iterators, 1144

unordered_multimap, 776, 1144
unordered_multiset, 776, 1144
<unordered_set>, 776, 1134
unordered_set, 776, 1144
Unsafe conversions, 80–83
unsetf(), 384
Unsigned and signed, 961–965
unsigned type, 1099
Unspecified constructs, 1075
upper, character class, 878, 1179
upper_bound(), 796, 1152, 1158
Uppercase. See Case (of characters)
uppercase, 1174
U.S. Department of Defense, 832
U.S. Navy, 824
Use cases, 179, 1222
User-defined conversions, 1091
User-defined operators, 1091
User-defined types (UDTs), 304. See also Class;

Enumerations
exceptions, 1126
operator overloading, 1107

operators, 1107
standard library types, 304

User interfaces
console input/output, 552
graphical. See GUIs (graphical user interfaces)
web browser, 552–553

using declarations, 296–297
using directives, 296–297, 1127
Usual arithmetic conversions, 1092
Utilities, STL

function objects, 1163–1164
inserters, 1162–1163
make_pair(), 1165–1166
pair, 1165–1166

<utility>, 1134, 1165–1166
Utility algorithms, 1157
Utility and language support, header files,

1135

V
\v vertical tab, character literal, 1079
valarray, 1145, 1183
<valarray>, 1135
Valid pointer, 598
Valid programs, 1075
Valid state, 313
Validity checking, 313

constructors, 313
enumerations, 320
invariants, 313
rules for, 313

Value semantics, 637
value_comp(), 1152
Values, 77–78, 1222

symbolic constants for. See Enumerations
and variables, 62, 73–74, 243

value_type, 1147
Variables, 62–63, 1083

++ increment, 73–74
= assignment, 69–73
changing values, 73–74
composite assignment operators, 73–74
constructing, 291–292
declarations, 260, 262–263
going out of scope, 291
incrementing ++, 73–74
initialization, 69–73
input, 60
naming, 74–77

INDEX 1271

type of, 66–67
uninitialized, class interfaces, 327–330
value of, 73–74

<vector>, 1134
vector example, 584–587, 629–636, 668–679

[] subscripting, 646, 693–697
= assignment, 675–677
. (dot) access, 607–608
allocators, 691
changing size, 668–679
at(), checked subscripting, 694
copying, 631–636
destructor, 601–605
element type as parameter, 679–681
erase() (removing elements), 745–747
exceptions, 693–694, 705–707
explicit constructors, 642–643
inheritance, 686–687
insert() (adding elements), 745–747
overloading on const, 647–648
push_back(), 674–675, 692
representation, 671–673
reserve(), 673, 691, 704–705
resize(), 674, 692
subscripting, 594, 607–608, 646–647

vector, standard library, 1146–1151
[] subscripting, 1149
= assignment, 1148
== equality, 1151
< less than, 1151
assign(), 1148
back(), reference to last element, 1149
begin(), iterator to first element, 1148
capacity(), 1151
at(), checked subscripting, 1149
const_iterator, 1147
constructors, 1148
destructor, 1148
difference_type, 1147
end(), one beyond last element, 1148
erase(), removing elements, 1150
front(), reference to first element, 1149
insert(), adding elements, 1150
iterator, 1147
member functions, lists of, 1147–1151
member types, list of, 1147
push_back(), add element at end, 1149
size(), number of elements, 1151
size_type, 1147
value_type, 1147

vector of references, simulating, 1212–1213
Vector_ref example, 444, 1212–1213
vector_size(), 119
virtual, 1037
Virtual destructors, 604–605. See also Destructors
Virtual functions, 501, 506–507

declaring, 508
definition, 501, 1222
history of, 834
object layout, 506–507
overriding, 508–511
pure, 512–513
Shape example, 501, 506–507
vptr, 506–507
vtbl, 506

Visibility. See also Scope; Transparency
menus, 573–574
of names, 266–272, 294–297
widgets, 562

Visual Studio
FLTK (Fast Light Toolkit), 1205–1206
installing, 1198
running programs, 1199–1200

void, 115
function results, 115, 273, 275
pointer to, 608–610
putback(), 212

void*, 608–610, 1041–1042, 1099
vptr, virtual function pointer, 506–507
vtbl, virtual function table, 506

W
w, writing file mode, 878, 1179, 1186
w+, writing and reading file mode, 1186
\W, “not word character,” regex, 874, 1179
\w, “word character,” regex, 873, 1179
wait(), 559–560, 569–570
Wait loops, 559–560
wait_for_button() example, 559–560
Waiting for user action, 559–560, 569–570
wchar_t, 1038
Web browser, as user interface, 552–553
Wheeler, David, 109, 820, 954, 969
while-statements, 109–111

vs. for, 122
White-box testing, 992–993
Whitespace

formatting, 397, 398–405
identifying, 397

INDEX1272

Whitespace
in input, 64
string, 854

Widget example, 561–563
Button, 422–424, 553–561
control inversion, 569–570
debugging, 576–577
hide(), 562
implementation, 1209–1210
In_box(), 563–564
line drawing example, 565–569
Menu, 564–565, 570–575
move(), 562
Out_box(), 563–564
put_on_top(), 1211
show(), 562
technical example, 1213–12116
text input/output, 563–564
visibility, 562

Wild cards, regular expressions, 1178
Wilkes, Maurice, 820
Window example, 420, 443

canvas, 420
creating, 422–424, 554–556
disappearing, 576
drawing area, 420
implementation, 1210–1212

line drawing example, 565–569
put_on_top(), 1211

Window.h example, 421–422
Wirth, Niklaus, 830–831
Word frequency, example, 777
Words (of memory), 1222
write(), unformatted output, 1173
Writing files, 350. See also File I/O

appending to, 389
binary I/O, 391
example, 352–354
fstream type, 350–352
ofstream type, 351–352
ostream type, 349–354, 391

ws manipulator, 1174

X
xdigit, 878, 1179
\xhhh, hexadecimal character literal, 1080
xor, synonym for ^, 1038
xor_eq, synonym for ^=, 1038

Z
zero-terminated array, 1045. See also C-style strings
ZIP code example, 880–885

	Contents
	Preface
	Chapter 0 Notes to the Reader
	0.1 The structure of this book
	0.1.1 General approach
	0.1.2 Drills, exercises, etc.
	0.1.3 What comes after this book?

	0.2 A philosophy of teaching and learning
	0.2.1 The order of topics
	0.2.2 Programming and programming language
	0.2.3 Portability

	0.3 Programming and computer science
	0.4 Creativity and problem solving
	0.5 Request for feedback
	0.6 References
	0.7 Biographies
	Bjarne Stroustrup
	Lawrence “Pete” Petersen

	Chapter 18 Vectors and Arrays
	18.1 Introduction
	18.2 Initialization
	18.3 Copying
	18.4 Essential operations
	18.5 Access to vector elements
	18.6 Arrays
	18.7 Examples: palindrome

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

