ATTUNE

Getting Started with NodelJS.

By Juned Laliwala

Short description of NodeJS version-5.9.0

e Installation on Windows

e Working with NPM.

Contents
I Y 7= 3
I Y o Yo YU A I 1 £ U T [P 3
1.2, INteNded AUAIENCE .iviiiiiiii e a e e e s e e s e e raneans 3
1.3. REVISION HISLOIY wuiiuiiiiiiiiiiiiiii s ss s s s s e s s s a s s s s an s ea s nassansens 3
2. INtroduction tO NOAEJS.. i i s s a s a s a s a s e s e ranranss 4
2.1 FEatures Of NOUE JS. vttt e s e s e s e s e s e s e s e ranss 4
2.2 Where 10 UsSe FrameEWOrK? i s an s e s s e s s e s s e saranenns 4
2.3 Where NOt 10 USE 72 1ttt a e s e e s e e r e e raneans 5
2.4. Installation 0N WINAOWS OS ...t rsrsarasnsasarans 5
P2 SR =SS T T = T LT [P 5
O T =] [O o o= 0] KPP 7
3.1 FIrSt EXAmMIPLE. iiu i e 7
3.2 SeCONd EXAMPLE . iiuiiiiiiiiiii i 8
GG T I 11 e = 1] 0] L P 9
3.4, FOUh EXamMPLe. i ea e 10
4. Handling MULltiple REQUESTiivuiiiiiiii s s 13
5. Understanding References to ObJECES ..uuuuiiiiiiiiiiiiiicii i e 15
G T I 16
7. PrOtOtY P ciriii i 18
7.1 Example without Prototype ... e 18
7.2 Example wWith Prototype ... e 19
7.3 0N€ MOIe ProtOtYPe. iuuiiiiiiiiiiiiii i 20
S TR 17 Y L N 22
L T 141 T =30 174 L T [24
10. Shared State Of MOAULES ...iviiiiii e e e a e eans 25
11. OBJECE FACLONY wuuiiiiiiiiiiiiniiii i 27
B2 O 1= 17 L Yo [N 29
2350 PPN 29
12,2 PalN. i e a e raes 32
12.2.1 Some More Examples of Path ..o 32
13. Creating @ DaSIC SEIVET ... 34
14. SIMpPLle Web File SErVer ..o s 37
1 TR 0 11151 39
B G YU T a'a = Y PP 43

Node.js 5.9.0 Last Updated: April 2016 Page 2 of 43

ATTUNE

1. Preface

1.1. About This Guide

NodelJS is a powerful Javascript which is being built on Google Chrome’s Javascript
Engine. So the main intense of this guide is to cover up the basic ideas about the node to
the readers. The readers at the end of this guide will definitely being able to make
different and innovative projects. Nowadays technology is increasing day by day and as
a result more powerful script is needed, so we are here to make and understand different
aspects of nodeJS. We will also come across various features of nodeJS including the
usage area of the framework.

1.2. Intended Audience

This guide is basically for all the students who are currently just introduced into the IT
environment. This is also for the developers of various languages which are in current
demand. With the help of this guide all will be able to make various web sites and also
subsequently various applications.

1.3. Revision History

This is the primary version of NodeJs. This version will cover up installation, features,
advantages, disadvantages and also various functionalities of the nodeJS.

ATTUNE

2. Introduction to NodeJS

Node.js is a powerful framework which is based on JavaScript. This was built by Google
Chrome’s Javascript v8 Engine. With the help of node.js we can make various
applications including video streaming websites, Single-Page Applications (SPA), and
also other Web Applications. Node.js is completely available for free and it is being used
by thousands of developers all around the world.

The JavaScript is becoming MUST for all the developers nowadays. Front-End
developers use this script for the various purposes like adding user interface
enhancements, adding interactivity and talking back to back for various interactions
with the clients.

Whenever you install node.js into your system, you will come across against one of the
most important part of this framework that is “Node Package Manager (NPM)”. NPM is
nothing but the tools to install various packages that are being needed into our project.
We will study more about npm in the future sections of this guide.

2.1 Features of Node.js

e Asynchronous and Event Driven: Non-blocking of the data occurs when we
are referring to node.js framework. In other words, we can say that the server
which has been made by node.js will never wait for an API to return the data.
This asynchronous way is being handled by the events subsequently and
accordingly returns the event that the intended work is done.

e Speed is Fast: Node.js which is built up by Chrome’s v8 engine is very super
fast.

e Single Threaded but Highly Scalable: Node.js uses a single threaded
program and the same program can provide service to a much larger number of
requests than traditional servers like Apache HTTP Server.

e License: Node.js is released under the MIT license

2.2 Where to Use Framework?

I/0 bound Applications

Data Streaming Applications

Data Intensive Real time Applications (DIRT)

JSON APIs based Applications and Single Page Applications

ATTUNE

2.3 Where not to use??

. CPU Intensive Applications

2.4. Installation on Windows OS.

Nodejs can be easily downloaded from the official website of nodejs (nodejs.org).
Download the nodejs which is particularly for the windows that we are using. When you
install the software you will see the “Custom Setup” in which npm will be installed along
with node.js.

i MNode.js Setup = =
Custom Setup
Select the way you want features to be installed. n . d c rf—;l

Click the icons in the tree below to change the way features will be installed.

"""" =3 ~ | Mode.js runtime Install npm, the recommended

Online documentation shortouts
Add to PATH

2] package manager for Node.Js.

This feature requires 10ME on your
hard drive.

Browse...

Reset Il Disk Usage [Back Il Mext || cance

Figure 1 Node.js Setup

2.5 Testing a Node

This section deals with the testing a node after node.js has been successfully installed
into your machine. Testing is generally to check for the version of the node and npm
that we have installed.

1 IR RS B AR E 0 RR RN AN %0 RRER” RRRAI-RERRNE sl D0 ISP B OF

BN Command Prompt

Cunele

tunele

ATTUNE

3. Basic Concepts

This section will include the file structure of the node.js framework. Along with file
structure you will come across the basic examples for running the node.js programs.

3.1. First Example

To start with our basic example, we are making a folder named “Attunelnfo” into
our root directory. Inside the Attunelnfo, we are making our new file named
“app.js”. This app.js is nothing but the javascript file that will be running through
node.js.

File Edit Search View Epcoding Language Seftings Macro Run Plugins Windew 1
JOEE L@ LMD deing|leax BE = 1[E0EH @ =0 EE

[Happjs 21

1 Civar person = {

2 firstName: "Juned”,
3 lastName: "Laliwala",
4 Age: 27
5
€
1

Y
console.log (person) ;

Figure 3 First Example
As you can see from the above figure that we have included one variable “person”
person which are holding the three parameters namely firstname, lastname and
age.
Console.log () is the function through which we will see the message in our
command prompt whenever our program is running.
Now we will run the program:

To run a program the following command is required: node app.js

o | Command Prompt - o HEl|

node app.js
ne: “Laliwala’, Ag

As we can see from the above example that we have made one javascript file in
which we have included a person variable with some parameters. After applying
some parameters we have run the program using “node” and the parameters that
we have passed are easily seen in our specific output.

3.2 Second Example

In the first example we have seen the way to display the person. Now in the
second example we are going to add two numbers using function.

C\xampp\htdocsiAttunelnfo\app.js - Notepad+ +
File Edit Search View Encoding Lenguage Settings Macro Run Plugins Window 2

s & olle @ 2 B x| BE 1 EREA®
Dauuisd‘

1 function addNumbers (x,y) {

2 T return x + y;

3 L)
4 console.log (addNumbers (10,20)) ;

As you can seen from the fig:6 that we have made a function named “addNumbers”.
With the help of this function we are passing two values inside the function. The
addition of this two numbers takes place and then we run the program using node.

Command Prompt

mppihtdocs \AttuneInfornode app.js

mppihtdo AttuneInfo>

3.3. Third Example

In this example we will not pass any parameters with our function. So let us see
what’s the output. The function is having nothing in it so we have named a
function as “Worthless”.

w7 s - Notepad
fesf C: \app.js - p:
Fle Edt Search View Fncoding Lengusge Setiings Macro Run Pluging Window 2

) 2@ Mm% s BE| S [EDBH @ W

Eawio 1]
Cfunction worthless () {

,

console.log(worthless()) ;

Here we have defined one function named “worthless” with not a single
parameter. This function is totally blank. So the desired output is as follows:

| Command Prompt

xampp\htdocs\Attunelnfo :::-I

The output is “undefined” which means that whenever the compiler does not find
anything inside the function it will return “undefined”.

3.4. Fourth Example

Here we will make one variable as a function and inside that function we will pass
some value. After passing some value we will at the end calls that function.

& *Ciwampp Ppjs - N
Ele Edit Search Yiew Encoding Langusge Settings Macra Fun Plugine Window [
ol H®& 5z &] ih | % 18| = K@ @ E | =]
Eeppie & |

fvar attunestatus = function(){

console.log (" ")z
b
attunestatus () ;

In the above diagram we can see that we have made one variable named
“attuneStatus” and we have made it a function with a parameter passing the
information. After that, we have called that function (attuneStatus()).

=N Command Prompt

In our example we are adding one more functionality. This functionality is to
setTimeOut() which means that after a periodic interval of 5 seconds output will
be regenerated as follows:

[*C\xampp\htdocs\Attunelnfo\app,js - Notepad++
File Edit Sesrch View Encoding Language Settings Macro Run Plugins Window
cHBBRLE| 45 2 higlasx BEI=TEEER|E)
Eappjs J}
wvar attuneStatus = function() {
console.log()
};

;
attuneStatus () ;

setTimeout (attunestatus,):

o Command Prompt

Attune Infocom Pvt. Ltd. ,

uneInfo>»

So the desired output is above. The second line of the output will be displayed

successfully after a period of about 5 seconds.
So these were the basic concepts of nodeJS. Now we will move forward to handle

the request from the server.

ATTUNE

4. Handling Multiple Request

Handling multiple request means the request which is being made by one
function is being used by another function then we can say it as multiple handling
request. In a simple term we have made a good example to review the request.
We will explain this with a function named “placeanEmployee” with a parameter
“TechName”.

File Edit Search View Encoding Language Settings Macre Run Plugins Window 7

JHHRRLA| ik o an|ax BE(SI1IEZERDENER
Eappjs B3

1

T

function placeAnEmployee (TechName) {
console.log ("Employee Technology:", TechName) ;

placedEmployee (function() {
console.log("Congratulations You have being Selected for:", TechName) ;

1

}

//simulate a 5 seconds operation
function placedEmployee (interest) {
setTimeout (interest,5000) ;

}

//simulate web user Requests.

placeAnEmployee ("Java");
placeAnEmployee ("FHE") ;
placeAnEmployee ("NET") ;
placeAnEmployee ("Java") ;
placeAnEmployee ("PHE") ;
placeAnEmployee ("PHE") ;

Figure 13 Handling Multiple Request

Looking at the above example it seems tedious. But Hold on. We will make it
simple. We have made one function named “placeanEmployee” in which this
function will pass one parameter named “TechName” which is nothing but the
name of the technology in which he is interested.

In the next line we are just passing the information in which the employee is
interested. We have defined one more function named “placedEmployee” which
will place the employee in his own interested area, so we have passed a parameter
named “interest”. Now we are calling “placedEmployee” inside the
“placeanEmployee”.

13 of 43

e Command Prompt

\AttuneInfo>node app.js
EVE!

PHP

have being

\ttunelnfor

As we can see from the output that we have passed different values in
placeanEmployee() function and as a result we can see that all the values have
been successfully posted to the employee list as defined in placedEmployee().

Reference to object is in simple term is to link one function or variable to another. So in
our examples also we are going to reference one object to another. This object can be
either function, variable, files and so on.

2 C: \ =Nl
Eile Edit Search Yiew Epcoding Language Seitings Macro Run Plugins Window 1
: L o fg | % 1B = 1@ mEAl® 3]

o = >
Hoppn |
Hvar Juned ={
Technology: "
Framework: "

Y

var Person = Juned;
person.Technology = " ;i
console.log (Juned.Technology) ;\

From the above diagram we can see that there is a variable named “Juned” and inside it
there are two parameters namely “Technology” and “Framework”. Now this variable
“Juned” is being now referenced to another variable named “Person”. So now “Person”
will now handle all the values that “Juned” was holding.

To make it clear, we have changed the parameter of “Technology” in “Person” and in the
next line we are consoling “Technology of “Juned”.

The Output of the above example is as follows:

] Command Prompt = =

\ttuneInfornode app.js

xamppihtdocs .ttuneInFG}I

In JavaScript, the thing called this, is the object that "owns" the JavaScript code. The
value of this, when used in a function, is the object that "owns" the function. The value
of this, when used in an object, is the object itself.

The this keyword in an object constructor does not have a value. It is only a substitute
for the new object. The value of this will become the new object when the constructor is
used to create an object.

var Juned ={
printFirstName: function(){
console.log (" "
console.log (this === Juned) ;
}
y:

Juned.printFirstName () ;

In the above diagram we can see that inside the Juned variable we have made a
function named “printFirstName”.

Inside that we have made one statement.

Now we are passing “this” parameter to check the value. Remember that whatever
value you pass in this parameter will be checked against the output.

To make it clear see the last line “Juned.printFirstName();” so this Juned will be
checked and the desired output will be:

With the help of this keyword, we can give reference to same function or variable.

o Command Prompt - _-

AttuneInfo>node app.js

Z:Exampphhtdccsh&ttunEInFc}l

So first line is nothing but the console.log information

The second line interprets this as “TRUE” because the value “Juned” is same in both
the cases.

17 of 43

ATTUNE

7. Prototype

Before we start to understand the concept of prototype, let us make one example to
demonstrate the use of prototype. We are making one user function and inside that
function we are passing two parameters namely “this.name” and “targetplayer.name”.
This example is regarding giving age life to another person.

7.1 Example without Prototype
L Camidosneniowpls-Notpadee

File Edit Search View Encoding Lenguage Seftings Macro Run Plugins Window 2

cHHERLE | sMik e nyax BE ST EpERurBE
Happss B

1 Hfunctien User(){

2 this.name =""

3

4 this.life= ©0;

5

[

7 o this.givelife= function givelife (targetPlayer){
8 targetPlayer.life +=1;

9 console.log(this.name + "donated CONE LIfe to " + targetPlayer.name);
10

T - }

12

13

14 }

17 var Rajesh = new User();
18 var Suresh = new pser();

20 Rajesh.name = "Rajesh";
21 Suresh.name = "Suresh”;

23 Rajesh.givelife(Suresh) ;
24 console.log("Rajesh:", + Rajesh.life);
25 console.log("Suresh™, + Suresh.life);

Figure 19 Example without Prototype
From the above diagram we can see that the current user has been assigned a
value of life to be 50, and in the next line we can see that the current user is
giving his life to another user. This value is incremented by one. So last we are
passing the console information that the current user has given his one life to
another user.
The Current user is Rajesh and the target user is Suresh.

Below diagram shows the output of the above example. Rajesh life is 50 and
Suresh life is 51.

18 of 43

EX Command Prompt - Il

ttunelnfornode app.js
[E LIfe to Suresh

ttUﬂEIﬂfG}l

7.2 Example with Prototype

Now we will see the definition of prototype and subsequently we will demonstrate
the example of prototype.

PROTOTYPE: Prototype is nothing but an object. All the JavaScript objects are
inheriting their properties and method from the prototypes.

Now in our case we are making one prototype named “cutter” which is reducing
the life of the current user as shown in the figure below:

| C:\xampp\htdocs\Attunelnfo\app.js - Notepad++
File Edit Search View Encoding Lenguage Settings Macro Run Plugins Window 2
o & 23 & B2 hylac BE=1ERERN @ w

DEDDJSJ‘
9 var Suresh = new User();

Rajesh.name = "F
Suresh.name = "Sur

Rajesh.givelife (Suresh):

console.log("Rajesh:", + Rajesh.life);
console.log("Suresh”, + Suresh.life);

User.prototype.cutter = function cutter(targetPlayer){

32 targetPlayer.life -=4;
33 console.log(this.name + "Cutted life to " + targetPlayer.name);

Suresh.cutter(Rajesh) ;
console.log (" h:", + Rajesh.life);
console.log(" h", + Sureah.life)ﬂ

X Command Prompt

Attunelnfornode app.j-
E LIfe to Suresh

7.3 One more Prototype.

Here we will see one more example of prototype. In this prototype, we will add a

specific value to both the users and will display it in the output.

[C\xampp\htdocs\Attunelnfo\app s - Notepad ++
File Edt Serch View Encoding Langusge Seffings Msco Run Plugins Window 2
P=] ih@lshb|loehylax BEIZT | EZERD ®

uapwsJ‘
//You can add function to all objects.
User.prototype.cutter = function cutter(targetpPlayer)({

32 targetPlayer.life -=4;
33 console.log(this.name + "Cutted life to " + targetPlayer.name);

suresh.cutter (Rajesh) ;

console.log ("R
console. log("sur

1", + Rajesh.life);
1", + Suresh.life);

//¥ou can add properties to all cbjects.
User.prototype.magic =
console.log(Rajesh.magic) ;
console.log(Suresh.magic) ;

In the above diagram, we can see that we have made one prototype named
“magic”. Inside this magic we are assigning the default value to 70, so when we

run the above example the output will be as follows:

ttunelnfornode app.js
LIfe to Suresh

ittunelnfor

Command Prompt

ATTUNE

8. Modules

Modules are the core part of the node.js framework. In simple language we can say that
files and modules are in one-to-one correspondence. When one file is going to use
another file or function then we can say that we have to make a module.

This important part can be easily understood by an example.

In our example, we are now working with the “employee.js”. This file will basically
handle two main functions namely “AddEmployee” and “LeaveEmployee”. Inside this
both function we are passing some information to check the functionality of both the
functions.

Eile Edit Search View Encoding Language Settin Window 7
o HE W W Enl-rlshl‘\\acln"a\-i -ﬂrﬂﬁﬂ —-.u!I_ElDEFWIEIEIII!EE
B app s 04 [employees js E3

Hfunction AddEmployee () {

console.log("Welcome to Page of Add An Employee") :
¥

console.log("Leave an Employes) ;

il
2
3
4
5 [function LeaveEmployee () {
(3
7 3}

8

9

5]

1 module.exports.addEmp = AddEmployee;
11

Figure 25 Employee Module
Now the main part is that we have to bind these modules into our main “app.js” file.
This app.js file will now be solely responsible for handling all the activities of the
employees.

wvar employvees = require('./cmployees')

employees .addEmp () ;

Figure 26 app.js in Module
From the figure 26 we can say that we have made a variable named “employees” and we
are linking that variable to our employees.js file using require parameter. Now we are
calling addEmp() function which is in turn responsible for adding the employees details
as stated in figure 25.
In the figure 25, in the last line we are exporting the module to the app.js file. In other
words we can say that we are including the modules into our app.js file. This app.js file
will be the core part of our project.
Now when we run the program we get the following output:

22 of 43

X Command Prompt

\AttuneInfol\publi ode app.js
Welcome to Page of Add An Employee

ampp’\htdoc ;&ttuneInFthuhlic}l

So this was the basic about the understanding of the modules. Now we will see some
more examples about how to use modules in our project to make a great success.

In our simple terminology, we are referring to the short cuts. There are different ways to
make an application look and perform in different ways. In our scenario also we are
making a small change in our “employee.js” file as shown in the below figure.

L]

o
E o5

View En
} s s &
S| D employeesis 8|

C:\xampp\htdocs\Attunelnfo\public\employeesjs - Notepad-+-+
Plugins Window ?

TEA|®

g
L
H
=4
=
]
H

r &% | @ 5| = =

| @ & | BE|S 1 [E

1 Bmodule.exports = {

HaddEmp :

function () {

4 console.log("Welcome to Page of Add An Employee™) ;

S I},

b,

=] leaveEmp:

Company: "Attune

function () {
console.log{"Leave an Employee™) ;

H

In the previous section we have seen that we have included the module. exports in the
last line but the modification that we have included in our js file is that we have made it
a function and inside it we have included our two functionalities.

We do not have to make a change in our app.js file. So the desired output for the
program will be as follows:

Command Prompt -

Info\publi
An Empl

de app.js

AttuneInfol\public>

ATTUNE

10. Shared State Of Modules

In the previous sections we seen the basic and overall understanding of the modules.
Now in this section, we will focus onto the activities in which one or more modules will
share each other’s state. In other words, they will use each other’s functionalities.

Here we will make two different files namely “rajesh.js” and “suresh.js”.

FEile Edit Search View Epcoding Language Settings Macro Bun Plugins Window I
G s @ 4Rk e mw| = BR = (EEA =0 E @
SRR [amployesss £

module.exports = {

TechName: "

}:

[NV

Figure 30 Shared States Employee.js
This diagram shows that we are currently working on only one parameter named
“TechName”. This “TechName” will hold the value of the technology that the employee
is using.

File Edit Search View Encoding Language Settings Macro Run Plugins Window 2

ch 3l Ri I
cHdEBR LBl smk o aylax BF |1 [EE@H @ =0EBR
Bz | B wpioyeesis 1 s » 63 |Eliacehi]

var employees = require('./employees');

employees.TechName = "Java';

console.log("Suresh is Working on:" +employees.TechName) ;

o U WN

Figure 31 suresh.js
Figure 31 is handling the details of the employee named “suresh”. His current

technology that he is working on is “Java”. So in the last line we have passed the
information that the particular user is working on particular technology.

25 of 43

C:wampp\htdocs\Attunelnfo\public\rajeshjs - Notepad+ +

wlEd

le Edit Search View Encoding Language Settings Macro Run Plugins Window 2
Py 220 & ~1 mipg|a x| EBFE| = EoER @
B =pp.s 3| B employees js (3| B sursshis 3 Elrieshis &
1 var employees = require('./employees') ;
console.log("Rajesh is working on:" + employees.TechName) ;

Figure 31 is handling the details of the employee named “rajesh”. His current technology
that he is working on not mentioned. So in the last line we have passed the information
that the particular user is working on particular technology. So in this case the value
that we have passed will be the same as that of the suresh as we can easily see in the
output of it.

= Command Prompt = =

on:

xampphhtdoc ttuneInfolpublic>

ATTUNE

11. Object Factory

Object factory is something like we are making a module a function and accordingly we
are running that function. This is the same function that we have seen in the previous
section. It is responding with the name of the technology of the employee.

File Edit Search View Encoding Lenguage Settings Macro Run Plugins Window

sHH® wrauﬁh\ac\n&l:x\tﬁ@\,ﬂl.mll\@@mma

(Bl 3 5 emporecs i 3 | S i 3] s]
1
2
3
4 module.exports = function() {
5 return{
6 TechName: "
7 }
8 |1},
£l |

Figure 34 Object Factory (OF)

File Edit Search View Epcoding Language Settings Macro Run Plugins Window
.alaamaummacmau:\@a_vﬂlml@\@@mma
S| et e 3 |l |

var employees = require('./employees');

1

2

3 wvar SureshTech = employees();
4 SureshTech.TechName = "PHE";
5
6
7

console.log("Suresh is working on :" + SureshTech.TechName) ;

Figure 35 OF suresh.js

Here in this example we can see that suresh is working on the “PHP” technology.
N T L

File Edit Search View Encoding Language Seitings Macro Run Plugins Window 2

cHH® eﬁalkﬁiﬂiﬁ\ac\ﬂ%\&J\EE\J'II.EII\@@E‘EE
o008 5| Ef e | Ef A Ef o B
1 var employees = require('./employees');
2
2 wvar RajeshTech = employees();
4 RajeshTech.TechName = "JAVA";
5 console.log("Rajesh is working on :" + RajeshTech.TechName) ;
3]
7
8

Figure 36 OF rajesh.js

27 of 43

Whereas in this example we can see that rajesh is working on “JAVA” technology.
So when we run this particular program the output will be:

= Command Prompt = = “

‘\public»node app.js

H

on :PHP

\xamppihtdoc 1&ttunelﬂfn&puhlic}l

Clearly we can see that both the employees are working on their respective technology

Core module is the concept which is in-built module. So we just have to include it into
our function without installing it from outside part. There are various core modules but
in this section we will discuss the two main core modules namely (1) FS and (2) PATH.

12.1fs

Fs is a module which is mainly responsible for handling the file-related activities.
We can easily create a text file using javascript file and accordingly this file will be
automatically saved into out desired folder.

= C: js - Notepad++
File c ge Setings Macro Bun Pluging Window

3 Y e R =1 Er®a® B
Eapos &3 | =] =] |
var fs = require(’)

fs.writeFileSync (" . "L ! "y ;

In the above diagram we can see that we have made a variable named “fs” and
with the help of “fs” we are making a text file named “attune.txt”. This
“attune.txt” file is having a value that is being included after a file name in

“fs.writeFileSync()” function. So the desired output will be as follows:
o | Command Prompt - B

C:\xamppi\htdocs\AttuneInfo\public>node app.js

Z:hxamppHhtdo:sh&ttunelﬂfa&puhli:}l

When you run the program you will see that it will be moved to the specific folder
as shown in the above diagram.

ATTUNE

“ Home Share View

@ + 4 | « Local Disk (C:) » xampp » htdocs » Attunelnfo » public v & Search public
5-.\{ Favorites Mame - Date modified Type Size
B0 Desktop m 3/30/2016 12245 PM JavaScript File 1KB
j Downloads gaﬂul\eﬁ 3/30/2016 12:46 PM TXT File 1KB
“Cl Recent places employees 3/30/2016 12:34 PM JavaScript File 1KB
| htdocs rajesh 3/30/2016 12:39 PM JavaScript File 1KB
suresh 3/30/2016 12:36 PM JavaScript File 1KB
[Libraries
@ Docurnents
JF Music
[E=] Pictures

Figure 40 Folder Structure

Clearly we can see that “attune.txt” file has been made into the folder.

File Edit Search View Encoding Language Settings Macro Run Plugins Window 7
cHHUERLB kP ey 22 BEIS1IEIERIE0NEE
a1 e 3 i |) oo]

1 lﬁello 'l Welcome to Attune Infocom

Figure 41 attune.txt
So when we open the “attune.txt” file we will see the content that we have passed
into our fs.write() parameter as mentioned in the figure 38.

Now suppose we want to read the information that is contained inside our text file then
we can also do with the help of “fs.readFileSync()” as shown below:

File Edit Search View Encoding Language Settings Macre Run Plugins Window 2

HHERGR| 4Dk ek xx B2 1[EREAIENE B

1 var fs = require('fs'");

=W N

fs.writeFileSync("attune.txt","Hello !! Welcome to Attune Infocom");

Figure 42 fs-Read a file

30 of 43

In the above diagram we can see that we are referring to “attune.txt” file and passing in
the last “.tostring()” which will return the information that has been contained inside
the “attune.txt”.

N Command Prompt = B “-

AttuneInfoipublic»node app.js
toc Attune Infocom

mppi\htdo ﬂttunEInFa&puhlic}l

12.2 Path

Path is nothing but the location where our file is situated, so that we can also find
the path. Let us see how?. With the help of the path module we can easily check
the location of the file, directory name where our file is located and so on.

[Cixampp\htdocs\Attunelnfo\public\app,js - Notepad++
File Edit Search View Encoding Language Settings Macro Run Plugine Window 2
Py 3 iz & m 2 iyl x| BES1|EEERL @ B
Dauuisdluf ployees js (3| F suresh s (3] B eshs 3]
1 var path = require('path’);

var AttuneHome = '
4 war AttuneBRbout =

console.log(path.normalize (AttuneHome)) ;

In this section, we are making two variables and passing globally values into it.
After passing the values we are passing “path.normalize ()” to see the basic path
of the file.

o Command Prompt = =

12.2.1 Some More Examples of Path

[t C:\xampp\htdocs\Attunelnfo\public\app.js - Notepad++
File Edit Search View Encoding Language Settings Macre Run Plugins Window 2

o [3 s & 2 iy %% E = EEEL @]
Uappjg_ﬂur ees s }u:,r:-: ‘u zjesh js]
var path = require('path');

3 var AttuneHome = "cC:
4 war AttuneAbout = "c

console.log(path.normalize (AttuneHome)) ;

console.log(path.dirname (AttunelAbout)) ;
console.log(path.basename (AttunelAbout)) ;
10 console.log(path.extname (AttunelAbout)) ;

In the above example we can see that we have included some more functionalities
regarding path. “dirname” will be responsible for giving the path of file where our file is
located, “basename” will return the filename along with the extension and “extname”
will return the extension of the file as shown in the output in figure below.

= Command Prompt = =

tunelnfolpubli ode app.js
uneInfo\Home . html
‘ttunelnfo

AttuneInfol\public>

ATTUNE

13. Creating a basic server

As we know that server is nothing but the service provider to computer programs in the
same computer or other computer. So in our node.js application, we are going to make a
server and run the server to get the effective response from the output.

File Edit Search View Encoding Language Settings Macro Run Plugins Windew 7
cHHERLB| sk Ay 23 BEH IS 1EIEAIENBE
Bl=opis 3| B srploysesis] Bl suseh e 3| Hlrmesns (1 Hlssrvers 3 |

1 wvar http = require("http");

function onRequest (request,response) {

console.log ("A user Made a request" + request.url) H
response.writeHead (200, {"Context-Type™: "text/plain”});
response.write ("Welcome to Attunel!!!!1™);

response.end() ;

}

http.createServer(onRequest) .listen(5000) ;
console.log("Server 1s Running on LocalHost:BOOO")ﬂ

H O w oo bWl

B

Figure 48 Example of basic server

Let us see hot this server works. As we know that server is always compatible with http,
so we are including http in our server.js file. Simultaneously we are making a function to
request some of the functions with two parameter one for requesting and one for
responding.. First line of the function will display the url of the file that we are
requesting and this information will be displayed in our command prompt whenever we
will reflect or change the url. In this scenario we are only sending and requesting the
text, so we are including the content-type as text/plain. “200” is the success message of
the requested file. Finally we are running a text which will be displayed on to our
browser.

The last two lines of the server.js file is the creating a server on the port number “8000”
and displaying the text message that will be on the command prompt whenever we will
run a success program.

34 of 43

oo Command Prompt - node server.js

This is running a basic server. Whenever we will run our server.js file and if our program
is without any specific error then the command prompt will respond with a success
message as shown in the above diagram.

LCE S| () http://localhost:8000/ |T|
. B - Googie

Welcome to Attunel!!l

So when we open the browser and give the url as http://localhost:8000 our output will
be displayed as shown in the above diagram.

http://localhost:8000/

X Command Prompt - node server.js

mpp\htdocs\AttuneInfo\public>node server.js

As we have declared in our server.js file that whenever we make a request to any of the
url then that message will be displayed in to our command prompt. So when we run a
first page then we will see a message that “ A user made a request /”.”/” is nothing but
the default page that we are seeing in our browser.

ATTUNE

14. Simple Web File Server

In the previous section we have seen a basic server which was responding only a text.
Now we will make a web page and with the help of server.js we will make a change into
our web page file.

So first of all we will make one simple html file and will include that html file into our

server file.

File Edit S

il

g

View Ence

Lsnguage Settings M

rch oding Macro Run Plugins Window 2
shalsmBoe dn ea BRI EIENE @B

Blep e 5| B empioyees e 8] Blaurechis &3] Elwisshis @] Blzerverss £ B rdexhiml 5

HOoOww~-o o d Wl H

B

<html>
<head>
</head>

<body>

 A Warm Welcome to Attune Infocom Pvt. Ltd, Ahmedabad.</strong:
</body>

</html>

Figure 52 index.html

So here we have made a simple html file which will be displaying a message as depicted
in html file. Remember we are just demonstrating the basic html file.

File Edit Search View Encoding Language Settings Macro Run Plugins Window 1
cHHE LA 4l e s x| BE%1 B0 @& D EG
Sl app o 3] B smoloyees s (1] Bl auresh o 3] B rteshis 3 (= serverte 3 | indexhimi 3]

LRI U WN

NRNNNNRNERH SRS
NP WNROOVURNOU S WNHO

N
o

var http = require('http');
var fs = require('fa');

//404 Error Response...
Ffunction send404Response (response) {
response.writeHead (404, {"Content-Type": "text/plain"})
response.write ("OOPS!! PAGE NOT FOUND....");:
response.end () ;

//Handle a User request....

Ffunction onRequest (request,response) {

=] if (request.method == 'GET' && request.url == '/"){
response.writeHead (200, {"Content-Type": “"text/[HEill"}) :
fs.createReadStream("”./index.html") .pipe (response) ;
}
else
{
send404Response (response) ;
}
H

http.createServer (onRequest) .listen (1000) ;
console.log{"Server is Running on LocalHost:8000") ;

Figure 53 server.js

So we have here included a core module which is “fs” because we are now working with
the files. We have included one function named “send404Response” which is nothing
but the error that will be displayed whenever url does not find a page that has been

requested.

Now we are making another request through a function to get a call to our html file.
First of all we are checking with the requested method with “GET” and the url that we

37 of 43

ATTUNE

want to display. So the default page that will be displayed in depicted in the last line of
the function with the help of “fs.createReadStream()” . so in this function we are calling
our “index.html” file.

The rest of the thing remains the same as we have discussed in the previous section.
mijm'mn[-

((; @ localhost:2000 77 v | [B- coogie 5

A Warm Welcome to Attune Infocom Pvt. Ltd, Ahmedabad.

Figure 54 Output of web file server
\BSEGERa| rwap1ocotnest 000 hetio. et e |

@ localhost:2000/hello.htmi y v e | ~ Google
p. j

©OPS!! PAGE NOT FOUND....

Figure 55 404 Error response Page

38 of 43

Connect is nothing but the module package that can be downloaded using our Node
package Manager as discussed in the previous sections. With the help of connect module
we are going to call different functions and run our specific server.

Let us see how to install connect module into our server. First of all move to the folder
where our project is running. Give the specific command “npm install connect” to install
connect module into our server.

=N Command Prompt = B

AttuneInfo»npm install connect
ttunelnfo

As we have successfully installed connect module, now we are going to use the connect
module as a function and we will run the specific function of our project with the help of
connect. Whenever we will install any of the packages “node_module” folder will be
made into the project location and inside that “connect” folder will be available to verify
that connect has been installed successful.

S c htdocs\ \server js - Notep

File Edit Search View Encoding Language Settings Macro Run Plugins Window 2

PREs] s [& =1 g d x| BE|= EEEAl =

BHappjs 3] B employeesis 3| B suresnjs 3] B missnis
1 var connect = require(’'
2 var http = require('http');

var app = connect();

http.createServer (app) .listen()

console.log("Attune Server is Running......");

ATTUNE

As from the above figure we can see that we have included connect as a variable and we
have used that variable to call it as a function with “app” variable. Now when we will run
the “server.js” file the output will be:

S S - —

':;\ti. @' localhos

Cannot GET

Figure 58 Connect with no Function
Now let us include some functions into our connect module. We will make two functions
including “taskOne” and “taskTwo”. This two functions will import some message to

display specific tasks.
b Crampp\htdocs\atunelnfolpubiiciserverjs - Notepad+=

File Edit Search Yiew Encoding Language Seffings Macro Run Plugins Window ?

 HEHERLA| sk o a2 BE|ST1EELEr BB
T | | S e B e 0 ||

var connect = require('connect');

var http = require('http');

var app = connect () :

function taskone(request,response) {
T console.log("task One is running"):
}

functien tasktwo(request, response) {
T console.log("task two is running"):

}

app.use (taskone) ;
app.use (tasktwo) ;

http.createServer (app) .listen(2000) ;

1
2
3
4
5
&
7
8
<l
10
11
12
13
14
15
16
17
18 console.log("Attune Server is Running...... ")

Figure 59 Connect with functions
As we can clearly see that we have included two simple functions, and we are using that
functions with the help of “app.use()” with the name of the functions as a parameter.

40 of 43

X Command Prompt - node server,s

Attunelnfo
lunning. ..

Now we are including one more parameter named next() which will execute the next
function after running the current function.

o C:\xampp\htdocs\Attunelnfo\public\server.js - Notepad++
File Edit Search View Encoding Langusge Settings Macro Run Plugins Window 2
o sloa| & 0 2 i g % s|lg = EEEER|E b
E] [E] =] =] Hevers G |H |
var connect = regquire()
var http = require()

var app = connect();

function taskone (request,response,next)
console.log()

next () ;

}

function tasktwo (request,response,next)
console.log()
next () ;
H

app.use (taskone) ;

app.use (tasktwo) ;

http.createServer (app) .listen()
console.log()

As we can see that we have included next() in both the functions, so whenever we will
run a server we will get a desired output as:

=N Command Prompt - node serverjs

tuneInfolpubli
Running
runnir
running

ATTUNE

16. Summary

So we have seen how to install the Nodels framework and subsequently we have seen
the different examples of Nodejs. We can easily make different web pages based on the
server files. This guide was the intensive measure to understand the basics of Nodels.

Node.js 5.9.0 Last Updated: April 2016 Page 43 of 43

