

@2015 Attune World Wide All right reserved.
www.attuneww.com

Getting Started with NodeJS.
By Juned Laliwala

Short description of NodeJS version-5.9.0

● Installation on Windows

● Working with NPM.

Node.js 5.9.0 Last Updated: April 2016 | Page 2 of 43

Contents

1. Preface ... 3

1.1. About This Guide ... 3

1.2. Intended Audience ... 3

1.3. Revision History .. 3

2. Introduction to NodeJS ... 4

2.1 Features of Node.js .. 4

2.2 Where to Use Framework? .. 4

2.3 Where not to use?? ... 5

2.4. Installation on Windows OS. .. 5

2.5 Testing a Node .. 5

3. Basic Concepts .. 7

3.1. First Example ... 7

3.2 Second Example .. 8

3.3. Third Example ... 9

3.4. Fourth Example ... 10

4. Handling Multiple Request ... 13

5. Understanding References to Objects .. 15

6. This .. 16

7. Prototype ... 18

7.1 Example without Prototype .. 18

7.2 Example with Prototype ... 19

7.3 One more Prototype. .. 20

8. Modules ... 22

9. More Modules .. 24

10. Shared State Of Modules .. 25

11. Object Factory .. 27

12. Core Modules ... 29

12.1 fs .. 29

12.2 Path.. 32

12.2.1 Some More Examples of Path ... 32

13. Creating a basic server .. 34

14. Simple Web File Server .. 37

15. Connect .. 39

16. Summary .. 43

Node.js 5.9.0 Last Updated: April 2016 | Page 3 of 43

1. Preface

1.1. About This Guide

NodeJS is a powerful Javascript which is being built on Google Chrome’s Javascript

Engine. So the main intense of this guide is to cover up the basic ideas about the node to

the readers. The readers at the end of this guide will definitely being able to make

different and innovative projects. Nowadays technology is increasing day by day and as

a result more powerful script is needed, so we are here to make and understand different

aspects of nodeJS. We will also come across various features of nodeJS including the

usage area of the framework.

1.2. Intended Audience

This guide is basically for all the students who are currently just introduced into the IT

environment. This is also for the developers of various languages which are in current

demand. With the help of this guide all will be able to make various web sites and also

subsequently various applications.

1.3. Revision History

This is the primary version of NodeJs. This version will cover up installation, features,

advantages, disadvantages and also various functionalities of the nodeJS.

Node.js 5.9.0 Last Updated: April 2016 | Page 4 of 43

2. Introduction to NodeJS

Node.js is a powerful framework which is based on JavaScript. This was built by Google

Chrome’s Javascript v8 Engine. With the help of node.js we can make various

applications including video streaming websites, Single-Page Applications (SPA), and

also other Web Applications. Node.js is completely available for free and it is being used

by thousands of developers all around the world.

The JavaScript is becoming MUST for all the developers nowadays. Front-End

developers use this script for the various purposes like adding user interface

enhancements, adding interactivity and talking back to back for various interactions

with the clients.

Whenever you install node.js into your system, you will come across against one of the

most important part of this framework that is “Node Package Manager (NPM)”. NPM is

nothing but the tools to install various packages that are being needed into our project.

We will study more about npm in the future sections of this guide.

2.1 Features of Node.js

 Asynchronous and Event Driven: Non-blocking of the data occurs when we

are referring to node.js framework. In other words, we can say that the server

which has been made by node.js will never wait for an API to return the data.

This asynchronous way is being handled by the events subsequently and

accordingly returns the event that the intended work is done.

 Speed is Fast: Node.js which is built up by Chrome’s v8 engine is very super

fast.

 Single Threaded but Highly Scalable: Node.js uses a single threaded

program and the same program can provide service to a much larger number of

requests than traditional servers like Apache HTTP Server.

 License: Node.js is released under the MIT license

2.2 Where to Use Framework?

 I/O bound Applications

 Data Streaming Applications

 Data Intensive Real time Applications (DIRT)

 JSON APIs based Applications and Single Page Applications

Node.js 5.9.0 Last Updated: April 2016 | Page 5 of 43

2.3 Where not to use??

. CPU Intensive Applications

2.4. Installation on Windows OS.

Nodejs can be easily downloaded from the official website of nodejs (nodejs.org).

Download the nodejs which is particularly for the windows that we are using. When you

install the software you will see the “Custom Setup” in which npm will be installed along

with node.js.

Figure 1 Node.js Setup

2.5 Testing a Node

This section deals with the testing a node after node.js has been successfully installed

into your machine. Testing is generally to check for the version of the node and npm

that we have installed.

Node.js 5.9.0 Last Updated: April 2016 | Page 6 of 43

Figure 2 node -v and npm -v

Node.js 5.9.0 Last Updated: April 2016 | Page 7 of 43

3. Basic Concepts
This section will include the file structure of the node.js framework. Along with file

structure you will come across the basic examples for running the node.js programs.

3.1. First Example

To start with our basic example, we are making a folder named “AttuneInfo” into

our root directory. Inside the AttuneInfo, we are making our new file named

“app.js”. This app.js is nothing but the javascript file that will be running through

node.js.

Figure 3 First Example

As you can see from the above figure that we have included one variable “person”

person which are holding the three parameters namely firstname, lastname and

age.

Console.log () is the function through which we will see the message in our

command prompt whenever our program is running.

Now we will run the program:

To run a program the following command is required: node app.js

Node.js 5.9.0 Last Updated: April 2016 | Page 8 of 43

Figure 4 Output of the first example

As we can see from the above example that we have made one javascript file in

which we have included a person variable with some parameters. After applying

some parameters we have run the program using “node” and the parameters that

we have passed are easily seen in our specific output.

3.2 Second Example

In the first example we have seen the way to display the person. Now in the

second example we are going to add two numbers using function.

Figure 5 Second Example

As you can seen from the fig:6 that we have made a function named “addNumbers”.
With the help of this function we are passing two values inside the function. The
addition of this two numbers takes place and then we run the program using node.

Node.js 5.9.0 Last Updated: April 2016 | Page 9 of 43

Figure 6 Output of Second Example

3.3. Third Example

In this example we will not pass any parameters with our function. So let us see

what’s the output. The function is having nothing in it so we have named a

function as “Worthless”.

Figure 7 Third Example

Here we have defined one function named “worthless” with not a single

parameter. This function is totally blank. So the desired output is as follows:

Node.js 5.9.0 Last Updated: April 2016 | Page 10 of 43

Figure 8 Output of Third Example

The output is “undefined” which means that whenever the compiler does not find

anything inside the function it will return “undefined”.

3.4. Fourth Example

Here we will make one variable as a function and inside that function we will pass

some value. After passing some value we will at the end calls that function.

Figure 9 Fourth Example

In the above diagram we can see that we have made one variable named

“attuneStatus” and we have made it a function with a parameter passing the

information. After that, we have called that function (attuneStatus()).

Node.js 5.9.0 Last Updated: April 2016 | Page 11 of 43

Figure 10 Output of Fourth Example

In our example we are adding one more functionality. This functionality is to

setTimeOut() which means that after a periodic interval of 5 seconds output will

be regenerated as follows:

Figure 11 Fifth Example

Node.js 5.9.0 Last Updated: April 2016 | Page 12 of 43

Figure 12 Output fifth Example

So the desired output is above. The second line of the output will be displayed

successfully after a period of about 5 seconds.

So these were the basic concepts of nodeJS. Now we will move forward to handle

the request from the server.

Node.js 5.9.0 Last Updated: April 2016 | Page 13 of 43

4. Handling Multiple Request
Handling multiple request means the request which is being made by one

function is being used by another function then we can say it as multiple handling

request. In a simple term we have made a good example to review the request.

We will explain this with a function named “placeanEmployee” with a parameter

“TechName”.

Figure 13 Handling Multiple Request

Looking at the above example it seems tedious. But Hold on. We will make it

simple. We have made one function named “placeanEmployee” in which this

function will pass one parameter named “TechName” which is nothing but the

name of the technology in which he is interested.

In the next line we are just passing the information in which the employee is

interested. We have defined one more function named “placedEmployee” which

will place the employee in his own interested area, so we have passed a parameter

named “interest”. Now we are calling “placedEmployee” inside the

“placeanEmployee”.

Node.js 5.9.0 Last Updated: April 2016 | Page 14 of 43

Figure 14 Output Handling Multiple Request

As we can see from the output that we have passed different values in

placeanEmployee() function and as a result we can see that all the values have

been successfully posted to the employee list as defined in placedEmployee().

Node.js 5.9.0 Last Updated: April 2016 | Page 15 of 43

5. Understanding References to Objects
Reference to object is in simple term is to link one function or variable to another. So in

our examples also we are going to reference one object to another. This object can be

either function, variable, files and so on.

Figure 15 References to objects

From the above diagram we can see that there is a variable named “Juned” and inside it

there are two parameters namely “Technology” and “Framework”. Now this variable

“Juned” is being now referenced to another variable named “Person”. So now “Person”

will now handle all the values that “Juned” was holding.

To make it clear, we have changed the parameter of “Technology” in “Person” and in the

next line we are consoling “Technology of “Juned”.

The Output of the above example is as follows:

Figure 16 Output References to Objects

Node.js 5.9.0 Last Updated: April 2016 | Page 16 of 43

6. This

In JavaScript, the thing called this, is the object that "owns" the JavaScript code. The

value of this, when used in a function, is the object that "owns" the function. The value

of this, when used in an object, is the object itself.

The this keyword in an object constructor does not have a value. It is only a substitute

for the new object. The value of this will become the new object when the constructor is

used to create an object.

Figure 17 This

In the above diagram we can see that inside the Juned variable we have made a

function named “printFirstName”.

Inside that we have made one statement.

Now we are passing “this” parameter to check the value. Remember that whatever

value you pass in this parameter will be checked against the output.

To make it clear see the last line “Juned.printFirstName();” so this Juned will be

checked and the desired output will be:

With the help of this keyword, we can give reference to same function or variable.

Figure 18 Output This

Node.js 5.9.0 Last Updated: April 2016 | Page 17 of 43

So first line is nothing but the console.log information

The second line interprets this as “TRUE” because the value “Juned” is same in both

the cases.

Node.js 5.9.0 Last Updated: April 2016 | Page 18 of 43

7. Prototype
Before we start to understand the concept of prototype, let us make one example to

demonstrate the use of prototype. We are making one user function and inside that

function we are passing two parameters namely “this.name” and “targetplayer.name”.

This example is regarding giving age life to another person.

7.1 Example without Prototype

Figure 19 Example without Prototype

From the above diagram we can see that the current user has been assigned a

value of life to be 50, and in the next line we can see that the current user is

giving his life to another user. This value is incremented by one. So last we are

passing the console information that the current user has given his one life to

another user.

The Current user is Rajesh and the target user is Suresh.

Below diagram shows the output of the above example. Rajesh life is 50 and

Suresh life is 51.

Node.js 5.9.0 Last Updated: April 2016 | Page 19 of 43

Figure 20 Output without Prototype

7.2 Example with Prototype

Now we will see the definition of prototype and subsequently we will demonstrate

the example of prototype.

PROTOTYPE: Prototype is nothing but an object. All the JavaScript objects are

inheriting their properties and method from the prototypes.

Now in our case we are making one prototype named “cutter” which is reducing

the life of the current user as shown in the figure below:

Figure 21 Example of Prototype

Node.js 5.9.0 Last Updated: April 2016 | Page 20 of 43

Figure 22 Output with Prototype

7.3 One more Prototype.

Here we will see one more example of prototype. In this prototype, we will add a

specific value to both the users and will display it in the output.

Figure 23 One More Prototype

In the above diagram, we can see that we have made one prototype named

“magic”. Inside this magic we are assigning the default value to 70, so when we

run the above example the output will be as follows:

Node.js 5.9.0 Last Updated: April 2016 | Page 21 of 43

Figure 24 Output One more prototype

Node.js 5.9.0 Last Updated: April 2016 | Page 22 of 43

8. Modules
Modules are the core part of the node.js framework. In simple language we can say that

files and modules are in one-to-one correspondence. When one file is going to use

another file or function then we can say that we have to make a module.

This important part can be easily understood by an example.

In our example, we are now working with the “employee.js”. This file will basically

handle two main functions namely “AddEmployee” and “LeaveEmployee”. Inside this

both function we are passing some information to check the functionality of both the

functions.

Figure 25 Employee Module

Now the main part is that we have to bind these modules into our main “app.js” file.

This app.js file will now be solely responsible for handling all the activities of the

employees.

Figure 26 app.js in Module

From the figure 26 we can say that we have made a variable named “employees” and we

are linking that variable to our employees.js file using require parameter. Now we are

calling addEmp() function which is in turn responsible for adding the employees details

as stated in figure 25.

 In the figure 25, in the last line we are exporting the module to the app.js file. In other

words we can say that we are including the modules into our app.js file. This app.js file

will be the core part of our project.

Now when we run the program we get the following output:

Node.js 5.9.0 Last Updated: April 2016 | Page 23 of 43

Figure 27 Output Employee Module

So this was the basic about the understanding of the modules. Now we will see some

more examples about how to use modules in our project to make a great success.

Node.js 5.9.0 Last Updated: April 2016 | Page 24 of 43

9. More Modules

In our simple terminology, we are referring to the short cuts. There are different ways to

make an application look and perform in different ways. In our scenario also we are

making a small change in our “employee.js” file as shown in the below figure.

Figure 28 Modified Employee.js

In the previous section we have seen that we have included the module. exports in the

last line but the modification that we have included in our js file is that we have made it

a function and inside it we have included our two functionalities.

 We do not have to make a change in our app.js file. So the desired output for the

program will be as follows:

Figure 29 Output Modified Employee.js

Node.js 5.9.0 Last Updated: April 2016 | Page 25 of 43

10. Shared State Of Modules
In the previous sections we seen the basic and overall understanding of the modules.

Now in this section, we will focus onto the activities in which one or more modules will

share each other’s state. In other words, they will use each other’s functionalities.

Here we will make two different files namely “rajesh.js” and “suresh.js”.

Figure 30 Shared States Employee.js

This diagram shows that we are currently working on only one parameter named

“TechName”. This “TechName” will hold the value of the technology that the employee

is using.

Figure 31 suresh.js

Figure 31 is handling the details of the employee named “suresh”. His current

technology that he is working on is “Java”. So in the last line we have passed the

information that the particular user is working on particular technology.

Node.js 5.9.0 Last Updated: April 2016 | Page 26 of 43

Figure 32 rajesh.js

Figure 31 is handling the details of the employee named “rajesh”. His current technology

that he is working on not mentioned. So in the last line we have passed the information

that the particular user is working on particular technology. So in this case the value

that we have passed will be the same as that of the suresh as we can easily see in the

output of it.

Figure 33 Output Shared State

Node.js 5.9.0 Last Updated: April 2016 | Page 27 of 43

11. Object Factory
Object factory is something like we are making a module a function and accordingly we

are running that function. This is the same function that we have seen in the previous

section. It is responding with the name of the technology of the employee.

Figure 34 Object Factory (OF)

Figure 35 OF suresh.js

Here in this example we can see that suresh is working on the “PHP” technology.

Figure 36 OF rajesh.js

Node.js 5.9.0 Last Updated: April 2016 | Page 28 of 43

Whereas in this example we can see that rajesh is working on “JAVA” technology.

So when we run this particular program the output will be:

Figure 37 OF Output

Clearly we can see that both the employees are working on their respective technology.

Node.js 5.9.0 Last Updated: April 2016 | Page 29 of 43

12. Core Modules
Core module is the concept which is in-built module. So we just have to include it into

our function without installing it from outside part. There are various core modules but

in this section we will discuss the two main core modules namely (1) FS and (2) PATH.

12.1 fs

Fs is a module which is mainly responsible for handling the file-related activities.

We can easily create a text file using javascript file and accordingly this file will be

automatically saved into out desired folder.

Figure 38 app.js

In the above diagram we can see that we have made a variable named “fs” and

with the help of “fs” we are making a text file named “attune.txt”. This

“attune.txt” file is having a value that is being included after a file name in

“fs.writeFileSync()” function. So the desired output will be as follows:

Figure 39 Running fs Program

When you run the program you will see that it will be moved to the specific folder

as shown in the above diagram.

Node.js 5.9.0 Last Updated: April 2016 | Page 30 of 43

Figure 40 Folder Structure

Clearly we can see that “attune.txt” file has been made into the folder.

Figure 41 attune.txt

So when we open the “attune.txt” file we will see the content that we have passed

into our fs.write() parameter as mentioned in the figure 38.

Now suppose we want to read the information that is contained inside our text file then

we can also do with the help of “fs.readFileSync()” as shown below:

Figure 42 fs-Read a file

Node.js 5.9.0 Last Updated: April 2016 | Page 31 of 43

In the above diagram we can see that we are referring to “attune.txt” file and passing in

the last “.tostring()” which will return the information that has been contained inside

the “attune.txt”.

Figure 43 fs-Read Output

Node.js 5.9.0 Last Updated: April 2016 | Page 32 of 43

12.2 Path

Path is nothing but the location where our file is situated, so that we can also find

the path. Let us see how?. With the help of the path module we can easily check

the location of the file, directory name where our file is located and so on.

Figure 44 path

In this section, we are making two variables and passing globally values into it.

After passing the values we are passing “path.normalize ()” to see the basic path

of the file.

Figure 45 Output path

12.2.1 Some More Examples of Path

Node.js 5.9.0 Last Updated: April 2016 | Page 33 of 43

Figure 46 Example of Path

In the above example we can see that we have included some more functionalities

regarding path. “dirname” will be responsible for giving the path of file where our file is

located, “basename” will return the filename along with the extension and “extname”

will return the extension of the file as shown in the output in figure below.

Figure 47 Output of path

Node.js 5.9.0 Last Updated: April 2016 | Page 34 of 43

13. Creating a basic server
As we know that server is nothing but the service provider to computer programs in the

same computer or other computer. So in our node.js application, we are going to make a

server and run the server to get the effective response from the output.

Figure 48 Example of basic server

Let us see hot this server works. As we know that server is always compatible with http,

so we are including http in our server.js file. Simultaneously we are making a function to

request some of the functions with two parameter one for requesting and one for

responding.. First line of the function will display the url of the file that we are

requesting and this information will be displayed in our command prompt whenever we

will reflect or change the url. In this scenario we are only sending and requesting the

text, so we are including the content-type as text/plain. “200” is the success message of

the requested file. Finally we are running a text which will be displayed on to our

browser.

The last two lines of the server.js file is the creating a server on the port number “8000”

and displaying the text message that will be on the command prompt whenever we will

run a success program.

Node.js 5.9.0 Last Updated: April 2016 | Page 35 of 43

Figure 49 Running a basic server

This is running a basic server. Whenever we will run our server.js file and if our program

is without any specific error then the command prompt will respond with a success

message as shown in the above diagram.

Figure 50 : Output of basic server

So when we open the browser and give the url as http://localhost:8000 our output will

be displayed as shown in the above diagram.

http://localhost:8000/

Node.js 5.9.0 Last Updated: April 2016 | Page 36 of 43

Figure 51 Output with Response

As we have declared in our server.js file that whenever we make a request to any of the

url then that message will be displayed in to our command prompt. So when we run a

first page then we will see a message that “ A user made a request /” .”/” is nothing but

the default page that we are seeing in our browser.

Node.js 5.9.0 Last Updated: April 2016 | Page 37 of 43

14. Simple Web File Server
In the previous section we have seen a basic server which was responding only a text.

Now we will make a web page and with the help of server.js we will make a change into

our web page file.

So first of all we will make one simple html file and will include that html file into our

server file.

Figure 52 index.html

So here we have made a simple html file which will be displaying a message as depicted

in html file. Remember we are just demonstrating the basic html file.

Figure 53 server.js

So we have here included a core module which is “fs” because we are now working with

the files. We have included one function named “send404Response” which is nothing

but the error that will be displayed whenever url does not find a page that has been

requested.

Now we are making another request through a function to get a call to our html file.

First of all we are checking with the requested method with “GET” and the url that we

Node.js 5.9.0 Last Updated: April 2016 | Page 38 of 43

want to display. So the default page that will be displayed in depicted in the last line of

the function with the help of “fs.createReadStream()” . so in this function we are calling

our “index.html” file.

The rest of the thing remains the same as we have discussed in the previous section.

Figure 54 Output of web file server

Figure 55 404 Error response Page

Node.js 5.9.0 Last Updated: April 2016 | Page 39 of 43

15. Connect
Connect is nothing but the module package that can be downloaded using our Node

package Manager as discussed in the previous sections. With the help of connect module

we are going to call different functions and run our specific server.

Let us see how to install connect module into our server. First of all move to the folder

where our project is running. Give the specific command “npm install connect” to install

connect module into our server.

Figure 56 npm install connect

As we have successfully installed connect module, now we are going to use the connect

module as a function and we will run the specific function of our project with the help of

connect. Whenever we will install any of the packages “node_module” folder will be

made into the project location and inside that “connect” folder will be available to verify

that connect has been installed successful.

Figure 57 connect with no functions

Node.js 5.9.0 Last Updated: April 2016 | Page 40 of 43

As from the above figure we can see that we have included connect as a variable and we

have used that variable to call it as a function with “app” variable. Now when we will run

the “server.js” file the output will be:

Figure 58 Connect with no Function

Now let us include some functions into our connect module. We will make two functions

including “taskOne” and “taskTwo”. This two functions will import some message to

display specific tasks.

Figure 59 Connect with functions

As we can clearly see that we have included two simple functions, and we are using that

functions with the help of “app.use()” with the name of the functions as a parameter.

Node.js 5.9.0 Last Updated: April 2016 | Page 41 of 43

Figure 60 Output with functions

Now we are including one more parameter named next() which will execute the next

function after running the current function.

Figure 61 Connect with next()

As we can see that we have included next() in both the functions, so whenever we will

run a server we will get a desired output as:

Node.js 5.9.0 Last Updated: April 2016 | Page 42 of 43

Figure 62 Output with next ()

Node.js 5.9.0 Last Updated: April 2016 | Page 43 of 43

16. Summary
So we have seen how to install the NodeJs framework and subsequently we have seen

the different examples of Nodejs. We can easily make different web pages based on the

server files. This guide was the intensive measure to understand the basics of NodeJs.

