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ABSTRACT
We study answer selection for question answering, in which
given a question and a set of candidate answer sentences,
the goal is to identify the subset that contains the answer.
Unlike previous work which treats this task as a straightfor-
ward pointwise classification problem, we model this prob-
lem as a ranking task and propose a pairwise ranking ap-
proach that can directly exploit existing pointwise neural
network models as base components. We extend the Noise-
Contrastive Estimation approach with a triplet ranking loss
function to exploit interactions in triplet inputs over the
question paired with positive and negative examples. Ex-
periments on TrecQA and WikiQA datasets show that our
approach achieves state-of-the-art effectiveness without the
need for external knowledge sources or feature engineering.

1. INTRODUCTION
Answer selection is an important component of an overall
question answering system: given a question q and a candi-
date set of sentences {c1, c2, . . . cn}, the task is to identify
sentences that contain the answer. In a standard pipeline
architecture [11], answer selection is applied to the output
of a module that performs textual retrieval or lightweight
term-based matching. Selected sentences can then be di-
rectly presented to users or serve as input to subsequent
stages that identify “exact” answers [12].

Although answer selection is formally considered a point-
wise classification problem, in reality candidate sentences
are ranked in decreasing probability of containing the an-
swer, and results are evaluated using similarity measurement
metrics on ranked lists. The nature of the task inspired us
to formalize it as a ranking problem.

In this work, we develop a novel pairwise ranking ap-
proach to learn the relative order of answer pairs. Given
a question sentence, our approach takes a pair of candidate
answer sentences as input and learns to predict which answer
is more relevant to the question. We use Noise-Contrastive
Estimation to learn joint representations of the triplet input
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(question, positive answer, negative answer) directly, then
stack a triplet ranking loss function on top to learn nonlin-
ear feature correlations from the joint representations. The
objective is to minimize the total number of inversions in
the rankings.

Our approach is flexible in that it can take advantage
of existing pointwise models as base components. We use
two recent pointwise neural networks that perform either
sentence-level [3] or word-level modeling [4], both of which
are competitive in various text processing tasks. We demon-
strate the effectiveness of our approach against competitive
pointwise baselines [4, 3, 20, 22, 10, 6, 16, 9] for the answer
selection task. We show that joint representation learning
from triplets comprising the question and both positive and
negative answers is superior than learning a pointwise rep-
resentation on (question, positive answer) pairs. Experi-
ments on both TrecQA and WikiQA datasets show that our
approach achieves state-of-the-art effectiveness without us-
ing sparse features, syntactic parsers, or external knowledge
sources like WordNet.

2. RELATED WORK
There has been much recent work on applying neural net-
works to answer selection [3, 4, 5, 22, 14, 13, 10]. Previ-
ous work has been based on pointwise neural network mod-
els. For example, He et al. [3] developed a multi-perspective
convolutional neural network model that incorporates fine-
grained sentence representations. He and Lin [4] developed a
19-layer deep convolutional neural network model and a sim-
ilarity focus layer to encourage comparisons between word
contexts across sentences. Other researchers [5, 21] have also
adopted attention mechanisms for convolutional neural net-
works to better model interactions between input sentences.
Another research direction is the use of extra sparse features
(e.g., BM25) [10, 14].

In contrast to previous work, we propose a pairwise rank-
ing approach that takes advantage of Noise-Contrastive Es-
timation (NCE) for model training. The basic idea behind
NCE is that a good model should be able to discriminate a
good sample from its neighboring bad samples. Given pairs
of positive and negative samples, the model should learn dif-
ferentiable representations to distinguish positive and nega-
tive samples. This idea has been studied for word represen-
tation learning [7].

3. MODEL ARCHITECTURE
We show the overall architecture of our pairwise ranking
model in Figure 1, consisting of two major components.
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Figure 1: Architecture of our pairwise ranking model, which
is trained on triplets comprised of (question, positive answer,
negative answer).

The base component is comprised of two pointwise neural
network models, each of which takes a pair of (question,
answer) sentences and produces a similarity score to repre-
sent the semantic distance of the pair. Our pairwise ranking
model is expected to output a larger similarity score given
the positive pair and a smaller score given the negative pair.
On top, we evaluate a triplet ranking loss function (see be-
low) to learn the joint representation of answer pairs.

Our model has a “Siamese” structure [2], which consists
of two parallel pointwise models, each processing a pair of
question and answer sentences. Parameters of the two base
models are shared during training. In testing, we take one
of the two base models to produce the feature representa-
tion of a (question, answer) pair, and then feed those fea-
tures into the fully-connected layer for computing a rele-
vance score. Although many previous pointwise models also
use the “Siamese” structure, there are important differences:
each base component of a typical pointwise model only takes
one input sentence, whereas each base component of our
pairwise model takes a (question, answer) pair as input and
explores features interactions between the sentence pairs.

In this work we use existing published work [3, 4] as the
base pointwise models; these have achieved state-of-the-art
effectiveness on multiple tasks, i.e., paraphrase identifica-
tion, semantic textual similarity measurements, and ques-
tion answering. More importantly, these two models repre-
sent different approaches to model design. He et al. [3] focus
on sentence-level modeling, which tries to capture semantic
similarities from multiple perspectives by applying different
types of similarity metrics, convolutional filters, poolings,
and window sizes on input sentences. This model also in-
corporates a structured similarity layer over sentence rep-
resentations for fine-grained comparisons. He and Lin [4]
propose a word-level model and develop a pairwise word in-
teraction layer to explicitly identify word pairs across input
sentences, a similarity focus layer to guide model attention
onto important word pairs, and a 19-layer deep ConvNet
for classification. Due to limited space, we elide technical
details of both and refer readers to the original papers.

Experimental results in Section 4 show that our pairwise
ranking approach, when paired with each as the base com-
ponent, is able to make further effectiveness improvements
for both types of models.

3.1 Triplet Ranking Loss Function
Both word-level and sentence-level base components take

input sentence pairs of (question, answer) and produce a
score through a representation function f(·). This score cap-
tures how semantically similar the two input sentences are.
Our goal is to learn a representation function f(·) such that

given some question q, positive pairs (q, p+) are assigned
larger similarity scores than negative pairs (q, p−):

f(q, p+) > f(q, p−), ∀q, p+, p−

where q, p+, p− denote the question, positive answer, and
negative answer, respectively. We then use a triplet rank-
ing loss, which minimizes the distance between the ques-
tion q and a positive answer p+, and maximizes the dis-
tance between the q and a negative answer p−, summed
over positive pairs (q, p+) and the corresponding negative
pool p− ∈ N(q, p+):

min
W

∑
(q,p+)

∑
p−∈N

max(0, 1− (f(q, p+)− f(q, p−)) + λ‖W‖2

where λ is a regularization parameter, and W is the param-
eters of neural network model f(·).

3.2 Sampling Strategy
To counter overfitting, it is common practice to train a

model with a large variety of samples. However, due to its
pairwise nature, our pairwise ranking model requires O(N2)
time complexity to enumerate all pairs, which is compu-
tationally impractical. Therefore, it is essential to balance
the coverage of training samples and limit computational re-
sources. We use three negative sampling strategies to select
the most informative negative samples.

Random Sampling. We randomly select a number of neg-
ative samples for each positive answer.

Max Sampling. We select the most difficult negative sam-
ples. In each epoch, we compute the similarities between
all (p+, p−) pairs using the trained model from the previ-
ous training epoch. Then we select the negative answers by
maximizing their similarities to the positive answer:

maxNegi(p−) = arg max
p−

sim(f i−1(q, p+), f i−1(q, p−))

wheremaxNegi(p−) is the selected negative sample in epoch
i, f i−1(·, ·) is the trained model in epoch i − 1, and sim is
the cosine distance. In the first epoch, we randomly select
negative samples.

Mix Sampling. We take advantages of both random sam-
pling and max sampling by selecting half of the samples from
each strategy.

4. EXPERIMENTAL SETUP
We evaluated our ranking model on two question answering
datasets. Relevant statistics are shown in Table 1.

TrecQA. The TrecQA dataset [15] is a widely-used bench-
mark for question answering, collected from the TREC Ques-
tion Answering tracks and packaged by Yao et al. [19]. In
the literature [20, 22, 10, 6, 16, 9], we observe two versions
of TrecQA: both have the same training set but their devel-
opment and test sets differ due to different pre-processing.

Previous work [22, 10, 6, 4] used the version that has
82 questions in the development set and 100 questions in
the test set (what we call “Raw TrecQA”). However, there
exists questions that have no answer sentences.1 More re-
cent work [16, 9] further cleaned the dataset by removing
1MAP and MRR scores computed with the official trec_eval
scorer do not change if questions with empty answer sets are
removed, since the scorer will ignore questions with empty answer
set.



Dataset Split #Questions #Pairs %PosRate

Raw TrecQA
TRAIN 1229 53417 12.0

DEV 82 1148 19.3

TEST 100 1517 18.7

Clean TrecQA
DEV 65 1117 18.4

TEST 68 1442 17.2

WikiQA
TRAIN 873 8672 12.0

DEV 126 1130 12.4

TEST 243 2351 12.5

Table 1: Statistics of TrecQA and WikiQA datasets

questions that have only positive/negative answers or no
answers, resulting in only 65 questions in the development
set and 68 questions in the test set (what we call “Clean
TrecQA”). We evaluated our model on both versions for a
fair comparison against previous work, and we show that
the MAP/MRR scores reported on both TrecQA versions
are not comparable.

WikiQA. The open domain question-answering WikiQA
data was collected from Bing query logs [18]. For each ques-
tion, the authors selected Wikipedia pages and used sen-
tences in the summary paragraph as candidates, which were
then annotated on a crowdsourcing platform. We follow the
same pre-processing steps as Yang et al. [18], where ques-
tions with no correct candidate answers are excluded and
answer sentences are truncated to 40 tokens.

We conducted experiments with two base components, each
with its own settings. We used the GloVe word embed-
dings [8] for the sentence-level model [3] and paragram-
phrase word embeddings [17] for the word-level model [4].
Both word embeddings have 300 dimensions. Words not
found in the vocabulary were initialized randomly with val-
ues uniformly sampled from [−.05, .05]. We did not update
word embeddings in all experiments. SGD with a learning
rate of 10−3 for the sentence-level base component and RMS-
PROP with a learning rate of 10−4 for the word-level base
component were used for training. We chose these different
word embeddings and optimizers in order to keep experi-
mental settings the same as in previous work [3, 4]. We
used the tanh function as the non-linear activation function
and a dropout layer (p = 0.5) in the fully-connected layer,
plus parameter regularization (λ = 10−4). Our code and
data are available online.2

Effectiveness is measured in terms of Mean Average Pre-
cision (MAP) and Mean Reciprocal Rank (MRR). In all ex-
periments, we selected training models that obtain the best
MRR scores on the development set for testing.

5. RESULTS
The results of our experiments on the three different test
sets are shown in Table 2. SentLevel denotes the multi-
perspective model [3] and WordLevel denotes the pairwise
word interaction model [4]. The rows with PairwiseRank
show our pairwise ranking approach with the use of the two
different base components (either the WordLevel or SentLevel
model). We compare our results to others reported in the
literature on an ACL wiki site [1].

Our best results for all the three datasets in Table 2 were
obtained from max sampling. On both the raw and clean

2https://github.com/Jeffyrao/pairwise-neural-network

Reference MAP MRR
Wang et al. [14] s(2015) 0.713 0.791
Miao et al. [6] (2015) 0.734 0.812
Severyn et al. [10] (2015) 0.746 0.808
SentLevel [3] (2015) 0.762 0.830
WordLevel [4] (2016) 0.755 0.825
PairwiseRank+SentLevel 0.780 0.834
PairwiseRank+WordLevel 0.764 0.827

(a) Raw TrecQA

Reference MAP MRR
Santos et al. [9] (2016) 0.753 0.851
Wang et al. [16] (2016) 0.771 0.845
SentLevel [3] (2015) 0.777 0.836
WordLevel [4] (2016) 0.738 0.827
PairwiseRank+SentLevel 0.801 0.877
PairwiseRank+WordLevel 0.762 0.854

(b) Clean TrecQA

Reference MAP MRR
Miao et al. [6] (2015) 0.689 0.707
Santos et al. [9] (2016) 0.689 0.696
Wang et al. [16] (2016) 0.706 0.723
SentLevel [3] (2015) 0.693 0.709
WordLevel [4] (2016) 0.709 0.723
PairwiseRank+SentLevel 0.701 0.718
PairwiseRank+WordLevel 0.693 0.710

(c) WikiQA

Table 2: Results on TrecQA and WikiQA.

versions of the TrecQA data, our PairwiseRank+SentLevel
model achieves MAP and MRR scores that are among the
best reported in the literature. The models achieve better
effectiveness on clean TrecQA than on raw TrecQA. This is
because the clean version removes questions with only neg-
ative answers: these questions will always have zero values
when computing MAP and MRR scores, thereby degrading
the overall effectiveness. Thus, numbers reported on raw
and clean TrecQA data should not be compared.

In terms of the comparison between the original models
and our pairwise ranking models, the two original base mod-
els (WordLevel and SentLevel) achieve competitive effec-
tiveness, while our pairwise ranking models (PairwiseRank
+SentLevel/WordLevel) can still improve on them in most
cases. On the clean TrecQA data, this improvement is quite
large. On the WikiQA data, the WordLevel model remains
the best, but PairwiseRank+SentLevel improves over the
base SentLevel model, bringing its effectiveness up to being
on par with our best model.

Overall, these empirical results show that the joint repre-
sentations learned from the triplet inputs are effective, and
that our pairwise ranking approach is able to exploit such
joint information.

We also studied the effects of the three different sampling
strategies. Figures 2 and 3 show the effectiveness of differ-
ent sampling strategies with the PairwiseRank+SentLevel
and PairwiseRank+WordLevel models. We set the num-
ber of negative samples to six and eight. We only show
the MAP figures here due to space limitations, but the pat-
terns for MRR scores are generally similar. For the Pair-
wiseRank+SentLevel and PairwiseRank+WordLevel mod-
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Figure 2: Comparison of sampling strategies for PairwiseRank+SentLevel.

(a) Raw TrecQA (b) Clean TrecQA (c) WikiQA

Figure 3: Comparison of sampling strategies for PairwiseRank+WordLevel.

els, max and mix sampling consistently outperforms random
sampling. In most settings, max sampling obtains the best
performance. This shows that more “challenging” negative
training samples are beneficial for training a better model
in our pairwise ranking approach.

6. CONCLUSION
In this work, we proposed and evaluated a novel contrastive
learning approach to answer selection that can use existing
deep neural network models as plug-in components. Ex-
periments show that our contrastive learning approach can
improve upon the component models under competitive set-
tings on standard QA datasets. We present three strategies
for selecting negative samples and demonstrate the effec-
tiveness of selecting the most “difficult” training examples
to distinguish between good and bad answers.
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