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The pa
kage elast provides a set of programs and s
ripts that allows

elasti
 tensor 
al
ulations for 
ubi
 phases (primitive, body-
entered, or fa
e


entered) by using WIEN. Given a starting 
ubi
 stru
ture, the pa
kage

� generates WIEN input �les simulating strained stru
tures,

� generates s
ripts to make WIEN 
al
ulate these stru
tures,

� analyze the results, plot them, and derive the linear elasti
 parameters.

1 Theoreti
al ba
kground and notations.

Let E

0

tot

be the total energy of an initial 
rystal, and V

0

its volume. By

bending this 
rystal, the energy, E

tot

, of the resulting strained state 
an be

expressed as:

E

tot

= E

0

tot

+ P (V � V

0

) + �

elast

; (1)

where V is the volume of the strained latti
e, �

elast

the elasti
 energy, and

P the pressure de�ned by:

P = �

 

�E

0

tot

�V

!

(V

0

)

To �rst order, the strained latti
e (latti
e ve
tors

$

a

) is related to the un-

strained latti
e (

$

a

0

) by

$

a

= (I + �):

$

a

0

, where I is the identity matrix and

� the strain tensor. A

ording to Hooke's law, the linear elasti
 
onstants

(C

ijkl

) are then de�ned by using the se
ond order development of the elasti


energy:

�

elast

=

V

2

:C

ijkl

�

ij

�

kl

(i; j; k; l = 1; 2; 3)

or , in the Voigt's two-su�x notation:

�

elast

=

V

2

:C

ij

�

i

�

j

(i; j = 1; 2; 3; 4; 5; 6) (2)

The (V �V

0

) term in equation (1) is linear with respe
t to strain: V �V

0

=

V

0

:T r(�) = V

0

:

P

3

i=1

�

i

. Thus, it is possible to derive elasti
 
onstants from

the se
ond-order derivatives of E

tot

:

C

ij

=

1

V

0

:

�

2

E

tot

��

i

��

j

(3)
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2 Implementation.

A 
ubi
 
rystal has only three independent elasti
 
onstants, C

11

, C

12

, and

C

44

leading to an e�e
tive elasti
 tensor (in two-su�x notation):

C =

0

B

B

B

B

B

B

B

�

C

11

C

12

C

12

C

12

C

11

C

12

C

12

C

12

C

11

C

44

C

44

C

44

1

C

C

C

C

C

C

C

A

As a result, a set of three equations is needed to determine all the 
onstants.

This means that three types of strain must be applied to the starting 
rys-

tal. To a
hieve that, and in order to save 
omputation time, we have 
hosen

three highly symetri
al types of deformation:

� The �rst type involves 
al
ulating the bulk modulus (K), whi
h is

related to the elasti
 
onstants by K =

1

3

:(C

11

+ 2C

12

). The pa
kage

elast 
al
ulates K by 
omputing the 
urve E

tot

(V ) for several user-

supplied values of V . The 
urve is then �tted with the third-order

Bir
h-Murnaghan [1℄ equation of state (E

tot

= a+ b:V

�2=3

+ 
:V

�4=3

+

d:V

�2

). K is �nally derived using:

K(V

0

) =

1

3

:(C

11

+ 2C

12

) = V

0

:

 

�

2

E

tot

�V

2

!

(V

0

) (4)

� The se
ond type involves performing volume-
onservative tetragonal

strains. We vary the ratio 
=a = (1 + e) for several user-supplied

values of e leading to the strain tensor:

� =

0

B

�

�

1

�

1

1

(1+�

1

)

2

� 1

1

C

A

or in Voigt notation:

0

B

B

B

B

B

B

B

B

�

�

1

�

1

1

(1+�

1

)

2

� 1

0

0

0

1

C

C

C

C

C

C

C

C

A

;

where �

1

= (1 + e)

�1=3

� 1. From equation (2), we then derive, to

se
ond order in �

1

:

�

tetra

V

0

= 3:(C

11

� C

12

):�

2

1

+ o(�

3

1

)

In pra
ti
e, E

tot

(�

1

) is �tted to a polynom P , of degree N . Thes N is

limited by the number of stru
ture 
hanges (N � (Number of data)-1).
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Within that limitation, N is optimized to give the better least-square

�t. The value of (C

11

� C

12

) is then simply 
omputed from the value

of the se
ond derivative of P :

P

00

(�

1

= 0) = 6:V

0

:(C

11

� C

12

) (5)

� Finally, the last type of deformation we have 
hosen is rhombohedral

distortion. For that kind of strain, we vary the length of the great

diagonal of the 
ubi
 
ell. First, we have to de�ne the rhombohedral

unit 
ell ve
tors,

$

a

r

, with respe
t to the initial 
ubi
 ve
tors,

$

a

0

. We

have:

0

B

�

~a

r

~

b

r

~


r

1

C

A

=

0

B

�

0 1=2 1=2

1=2 0 1=2

1=2 1=2 0

1

C

A

:

0

B

�

~a

0

~

b

0

~


0

1

C

A

for fa
e-
entered latti
es

=

0

B

�

�1=2 1=2 1=2

1=2 �1=2 1=2

1=2 1=2 �1=2

1

C

A

:

0

B

�

~a

0

~

b

0

~


0

1

C

A

for body-
entered latti
es

and for primitive 
ubi
 latti
es,

$

a

r

=

$

a

0

. In fa
t, the resulting rhom-

bohedral latti
e is de�ned by using its related hexagonal ve
tors,

$

a

H

:

0

B

�

~a

H

~

b

H

~


H

1

C

A

=

0

B

�

1 �1 0

0 1 �1

1 1 1

1

C

A

:

0

B

�

~a

r

~

b

r

~


r

1

C

A

Then, we vary ~


H

= ~


H0

:(1 + e) by using several user-supplied values

for e. For all 
ubi
 latti
es, the resulting strain tensor is:

� =

e

3

0

B

�

1 1 1

1 1 1

1 1 1

1

C

A

;

and the 
orresponding elasti
 energy:

�

tetra

V

0

=

e

2

3

:(

C

11

+ 2C

12

2

+ 2C

44

) + o(e

3

)

To extra
t elasti
 parameters, we pro
eed as for tetragonal strain.

E

tot

(e) is �tted to a polynom, P , and we �nally obtain:

P

00

(e = 0) =

1

3

:(C

11

+ 2C

12

+ 4C

44

) (6)

Equations (4), (5) and (6) form the set of equations needed to determine

the full elasti
 tensor.
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3 S
ripts and programs.

Three s
ripts drive the program �ow:

� init_elast

This s
ript prepares the whole 
al
ulation. It must be run in a di-

re
tory that 
ontains valid '
ase.stru
t' and '
ase.inst' �les. First,

init_elast 
reates the following dire
tories and sub-dire
tories: ./elast

(the main dire
tory), ./elast/eos (dire
tory where the 
al
ulations lead-

ing to K will take pla
e), ./elast/tetra (tetragonal distortion 
al
ula-

tions dire
tory), ./elast/rhomb (rhombohedral distortion 
al
ulations

dire
tory) and ./elast/result where all the 
al
ulation results will be

stored. The �le '
ase.stru
t' is taken as the initial unstrained state.

This �le is stored as 'init.stru
t' in the ./elast dire
tory. Then, the tem-

plate 'stru
t' �les are generated (./elast/eos.templ, ./elast/tetra.templ,

./elast/rhomb.templ), and the s
ript 'init_lapw' is laun
hed in ea
h of

the 
al
ulation dire
tories.

� elast_setup

This s
ript must be run in the 
reated previously elast dire
tory. The

s
ript generates all the input �les for the 
al
ulation using init.stru
t

and the �.templ �les. The �.stru
t �les thus 
reated are all stored in

the elast dire
tory. elast_setup 
an be run several times to 
hange

the number and the type of stru
ture 
hanges. To 
hange the volume

of the unstrained state, remove all the elast/�.stru
t �les, move the


ontent of elast/result elsewhere, set the proper elast/init.stru
t and

re-run elast_setup. Finally, elast_setup provides three s
ripts (eos.job,

rhomb.job and tetra.job) that make WIEN 
al
ulate the entire set of

stru
ture 
hanges automati
ally. These s
ripts must be adapted to

your needs before running them.

� ana_elast

On
e the 
al
ulations are done, all the results are normally stored in

the elast/result dire
tory. Go to that dire
tory and run ana_elast.

This s
ript will analyze all the 
al
ulated total energies a

ording to

equations (4), (5) and (6), extra
t the elasti
 
onstants and pressure,

plot the results, and generate number of output �les stored in the

result/outputs dire
tory.
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To validate this pro
edure, we provide results obtained for MgO-B1 at

zero pressure using LDA fun
tional. From these low pre
ision 
al
ulations,

we obtained:

P = 0:018 GPa at volume = 121:80976 a.u. per formula

K = 171:772GPa

C

11

= 329:088GPa

C

12

= 93:114GPa

C

44

= 150:882GPa

These results di�er by 10% from the 
omputed values given in referen
e [2℄.

Other results reviewed in [2℄ are in better agreement.
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