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The package elast provides a set of programs and scripts that allows
elastic tensor calculations for cubic phases (primitive, body-centered, or face
centered) by using WIEN. Given a starting cubic structure, the package

e generates WIEN input files simulating strained structures,
e generates scripts to make WIEN calculate these structures,

e analyze the results, plot them, and derive the linear elastic parameters.

1 Theoretical background and notations.

Let EY, be the total energy of an initial crystal, and Vj its volume. By
bending this crystal, the energy, Fyy, of the resulting strained state can be
expressed as:

Etot = E?ot + P(V - VO) + Qbelasta (1)

where V' is the volume of the strained lattice, ¢eiqs¢ the elastic energy, and

P the pressure defined by:
OE!
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To first order, the strained lattice (lattice vectors <C_I,>) is related to the un-
strained lattice (20) by a= (T +©). ag, where T is the identity matrix and
€ the strain tensor. According to Hooke’s law, the linear elastic constants
(Cijri) are then defined by using the second order development of the elastic
energy:
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or , in the Voigt’s two-suffix notation:

¢elast =
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The (V —V}) term in equation (1) is linear with respect to strain: V —Vp =
Vo.Tr(e) = V. 2;’;1 €;. Thus, it is possible to derive elastic constants from
the second-order derivatives of Eyu;:
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(3)



2 Implementation.

A cubic crystal has only three independent elastic constants, Ci1, C12, and

C44 leading to an effective elastic tensor (in two-suffix notation):
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As a result, a set of three equations is needed to determine all the constants.
This means that three types of strain must be applied to the starting crys-
tal. To achieve that, and in order to save computation time, we have chosen

three highly symetrical types of deformation:

e The first type involves calculating the bulk modulus (K), which is

related to the elastic constants by K = %.(CH + 2C12). The package
elast calculates K by computing the curve Ejy (V) for several user-
supplied values of V. The curve is then fitted with the third-order
Birch-Murnaghan [1]| equation of state (Ejo = a+bV 23434
d.V=2). K is finally derived using:

K (Vo) = %.(c11 +200) = Vi, (825';“) (Vo) (@)

The second type involves performing volume-conservative tetragonal
strains. We vary the ratio ¢/a = (1 + e) for several user-supplied
values of e leading to the strain tensor:
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where ¢; = (14 €)'/ — 1. From equation (2), we then derive, to
second order in €;:

th‘e/tra = 3.(011 - 012).6% + 0(6:{’)
0

In practice, Eyy(€1) is fitted to a polynom P, of degree N. Thes N is
limited by the number of structure changes (N < (Number of data)-1).



Within that limitation, IV is optimized to give the better least-square
fit. The value of (Cy; — C12) is then simply computed from the value
of the second derivative of P:

P"(e1 = 0) = 6.V5.(C11 — Cha) (5)

e Finally, the last type of deformation we have chosen is rhombohedral
distortion. For that kind of strain, we vary the length of the great
diagonal of the cubic cell. First, we have to define the rhombohedral
unit cell vectors, Z’r, with respect to the initial cubic vectors, <C_I,>0. We

have:
@, 0 1/2 1/2 &
by, = 1/2 0 1/2 |.| by | for face-centered lattices
g, 1/2 1/2 0 &
12 12 1)2 a
= 1/2 —-1/2 1/2 |.| by | for body-centered lattices
12 12 —1/)2 &

and for primitive cubic lattices, E’r:go. In fact, the resulting rhom-
bohedral lattice is defined by using its related hexagonal vectors, a f:

an 1 -1 0 a,
by =10 1 -1 b,
Cu 1 1 1 g,

Then, we vary ¢g = Cro.(1 + €) by using several user-supplied values
for e. For all cubic lattices, the resulting strain tensor is:
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and the corresponding elastic energy:

Gretra €% C11 +2Ch2

AR

+ 2044) + 0(63)

To extract elastic parameters, we proceed as for tetragonal strain.
Eypi(e) is fitted to a polynom, P, and we finally obtain:

1
P'(e=0)= §'(Cll +2C12 + 4C4) (6)

Equations (4), (5) and (6) form the set of equations needed to determine
the full elastic tensor.



3 Scripts and programs.

Three scripts drive the program flow:

o inil_elast

This script prepares the whole calculation. It must be run in a di-
rectory that contains valid ’case.struct’ and ’case.inst’ files. First,
init_elast creates the following directories and sub-directories: ./elast
(the main directory), ./elast/eos (directory where the calculations lead-
ing to K will take place), ./elast/tetra (tetragonal distortion calcula-
tions directory), ./elast/rhomb (rhombohedral distortion calculations
directory) and ./elast/result where all the calculation results will be
stored. The file ’case.struct’ is taken as the initial unstrained state.
This file is stored as “init.struct’ in the ./elast directory. Then, the tem-
plate “struct’ files are generated (./elast/eos.templ, ./elast/tetra.templ,
./elast /rhomb.templ), and the script “init_lapw’ is launched in each of
the calculation directories.

o clast setup

This script must be run in the created previously elast directory. The
script generates all the input files for the calculation using init.struct
and the *.templ files. The *.struct files thus created are all stored in
the elast directory. elast setup can be run several times to change
the number and the type of structure changes. To change the volume
of the unstrained state, remove all the elast/*.struct files, move the
content of elast/result elsewhere, set the proper elast/init.struct and
re-run elast_ setup. Finally, elast setup provides three scripts (eos.job,
rhomb.job and tetra.job) that make WIEN calculate the entire set of
structure changes automatically. These scripts must be adapted to
your needs before running them.

e ana_elast
Once the calculations are done, all the results are normally stored in
the elast/result directory. Go to that directory and run ana_ elast.
This script will analyze all the calculated total energies according to
equations (4), (5) and (6), extract the elastic constants and pressure,
plot the results, and generate number of output files stored in the
result/outputs directory.



To validate this procedure, we provide results obtained for MgO-B1 at
zero pressure using LDA functional. From these low precision calculations,

we obtained:

P
K
Cn
Cr2
Cu

0.018 GPa at volume = 121.80976 a.u. per formula
171.772GPa

329.088GPa

93.114GPa

150.882GPa

These results differ by 10% from the computed values given in reference |2].
Other results reviewed in [2] are in better agreement.
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