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Tutorial on Geometric Calculus 
David Hestenes 

Arizona State University 
 

The book Clifford Algebra to Geometric Calculus is the first and still the most 
complete exposition of Geometric Calculus (GC). But it is more of a reference 
book than a textbook, so can it be a difficult read for beginners. This tutorial is a 
guide for serious students who want to dig deeply into the subject. It presents 
helpful background and aims to clarify objectives, important results and methods 
in the book. It is supplemented by a hot-linked annotated bibliography of papers 
elaborating on various aspects of Geometric Algebra and Calculus. 

 
Objectives of this Tutorial 
 
Only a handful of people have mastered Clifford Algebra to Geometric Calculus [2] to the point 
of using it in their research. Among the first are Chris Doran, Steve Gull and Anthony Lasenby. I 
am proud to say that it helped them produce some truly innovative theoretical physics, most 
notably, an improvement of General Relativity called Gauge Theory Gravity [4, 5]. The book [2] 
has many ideas and results that remain to be exploited, but first it is necessary to master the core 
concepts and mathematical tools. 

Readers of this tutorial are presumed to be familiar with the basics of Geometric Algebra 
(GA), so we can concentrate on more ambitious objectives. The tutorial emphasizes the 
following fundamental concepts of Geometric Calculus, explaining their unique features and 
advantages: 

• Universal Geometric Algebra – arbitrary dimension and signature 
• Linear and multilinear algebra (tensors, determinants) 
• Vector manifolds – for representing any manifold 
• Directed integrals and differential forms 
• Vector derivative and the fundamental theorem of calculus 
• Differentials and codifferentials for mappings and fields 
• Coordinate-free differential geometry 
• Lie groups as Spin groups 

Origins of the Geometric Calculus book 
 
Though Geometric Calculus (GC) had important precursors [6], its systematic development as 
a unified language for mathematics and physics began in 1966 with publication of the book 
SpaceTime Algebra (STA) [1]. That book shows how STA provides compact, coordinate-free 
formulations for basic equations of physics that provide new insights into their geometric 
structure. Specifically,  

• Maxwell’s four electromagnetic equations are reduced to a single equation: !F = J  
• Dirac’s electron equation is given a new manifestly geometrical form. 
• Einstein’s General Relativity is formulated with a spinor form of the Principle of Local 

Relativity. 
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However, to solve and apply these equations by standard mathematical methods at the time, it 
was necessary to translate them into standard formulations, which detracted from their compact 
and elegant structure. To take full advantage of the new formulations, new computational tools 
and methods or, at least, coordinate-free reformulations and adaptations of old methods were 
needed. 

Creation of new and more powerful mathematical tools began immediately with 
extraction of the concepts of vector derivative and directed integral from [1] and further 
development in mathematical papers in {3, 4}. [Note: Papers available for direct online access 
are numbered in curly brackets {…} and commented on below before the references, while book 
references are numbered in square brackets […]. ] 

This led immediately to reduction of the integral theorems of Gauss, Stokes, Green and 
Cauchy into a single formula, and, more remarkably, to generalization of Cauchy’s integral 
theorem to arbitrary dimension. In this way, it unified real and complex variable theory. 
Moreover, it raised the questions about how GC relates to the Calculus of Differential forms, in 
particular, with respect to transformations (change of variables) in integrals. I was fortunate to 
have a capable student, Garret Sobczyk [7] to help me answer this. 

When Sobczyk completed his thesis in 1971, I combined it with ideas of my own into a 
series of three papers submitted for publication in mathematics journals. He went off on his own, 
ending up as a postdoc in Poland.  The papers were rejected by three different journals in three 
successive years, but each with the recommendation that they be published as a book. As I had a 
lot more to say on the subject, I was not averse to writing a book, though I thought it was 
premature. Clifford Truesdell directed me to Mario Bunge, then editor of an advanced book 
series published by D. Reidel Company, who accepted my book plan immediately. That was the 
easy part. Little did I know that it would take a decade to get the book in print. 

Writing was the easy part. In those days before desktop publishing technical manuscripts 
were written by hand and then typed by a secretary. Arizona State University had only one 
technical typist for the departments of physics, mathematics and chemistry, so it took three years 
to get my manuscript typed. Anyway, the manuscript was finished by 1976 and shipped off to 
Reidel for publication, only to be rejected by the publisher some six months later. I had made the 
mistake of submitting directly to the publisher instead of going through the editor Bunge. Back 
to square one! I wasn’t worried though, because I was confident of the book’s quality.  

In 1978 I was pleased to get a letter from the distinguished mathematician Gian-Carlo 
Rota requesting a copy of my book SpaceTime Algebra [1]. I looked him up shortly thereafter 
when I attended a Maximum Entropy Conference at MIT and asked him why he was interested.  
He gave me copies of several papers of his on Invariant Theory. I was astounded by how close it 
was to my treatment of GA identities in the GC book, so in just a few days I was able to work it 
into my treatment of determinants in Chap.1. That was the last change made to the manuscript. It 
opened up rich opportunities for integrating GA with Invariant Theory that are yet to be fully 
exploited.  

Rota agreed to consider my manuscript for publication by Addison-Wesley, for which he 
was editor of the Encyclopedia of Mathematics series.  He requested six copies of the manuscript 
to be sent to reviewers. What happened thereafter is too involved to recount in detail. The net 
result was many delays. After several years, Rota surprised me one Saturday morning with the 
most gratifying phone call of my life: First, he explained that I had been unable to reach him 
because he had been in the hospital for the better part of a year, but he had already strongly 
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recommended that my book be published. Then, he spent the better part of an hour praising the 
book in great detail! 
 On the strength of Rota’s recommendation, I was awarded a signed contract. But that 
hardly mattered! When I contacted Addison-Wesley expecting immediate publication, I was told 
that the manuscript had been sent out for further review, which took two years and turned out to 
be a fiasco, because the publisher did not have sufficient mathematical competence to evaluate 
the results. Shortly thereafter, all my queries about the status of my book were ignored. In 
desperation, after more than a year of that, I asked Rota to find out what was going on. He 
reported that Addison-Wesley had hired a new publisher for mathematics, and “He has 
something against you!”  Then I realized that he was the guy who had rejected my book for 
Reidel years earlier. So I resubmitted my book to Reidel, where it was reviewed favorably by 
Asim Barut and published, all within six months. The delay due to the publisher had been eight 
years. 

Now we turn to brief commentaries on each chapter of the book, with slides from my 
lecture summarizing important definitions and results. 
 
Chapter 1: Geometric Algebra 

This chapter presents basic definitions and derives a large number of useful algebraic 
identities involving inner and outer products. See Fig. 1 for a selective summary. Careful readers 
have noticed a circularity in the definitions, but that is easily rectified by choice of starting point. 
In fact, several alternative definitions are presented, each with its distinct advantages, but that is 
of little consequence to the whole system.  And slightly different notations are used in the slides. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 
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Readers need not go through all the calculations in Chap. 1; it is advisable just to sample the 
calculations and proofs to see how they work. The rest can be left for reference as needed. Some 
years after writing this chapter, when Grassmann’s original work was translated into English, I 
learned that he had derived the main identities a hundred years before. 

An important feature of Universal Geometric Algebra defined in the book is that it is 
generated by an infinite dimensional vector space. All finite dimensional vector spaces and their 
geometric algebras are then defined by choice of a pseudoscalar, as indicated in the next to last 
line of Fig. 1. The linear structure of such algebras is schematized in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 
 
The book starts out by assuming a Euclidean signature for the algebra, because that was done in 
the three original mathematical papers from which Chap. 1 is mostly composed. I wasn’t sure 
that all the proofs would carry over to non-Euclidean signatures, and I didn’t want to take the 
trouble to check, so I introduced non-Euclidean signatures only at the end of Chap. 1. 
 This brings up a common misconception about GA, namely, that use of an inner product 
limits its applicability to metric spaces. On the contrary, as shown in Fig. 3, the inner product can 
serve as a contraction without any notion of metric.  Thus it can be seen that the infinite 
dimensional GA is equivalent to the algebra of fermion operators in quantum field theory. The 
formulation of finite dimensional GA with all possible signatures is schematized in Fig. 4.  
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Fig. 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 
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Not only does GA enable calculations without matrices, it facilitates calculations with matrices, 
as shown in Fig. 5.  

 
Fig. 5 

 
There is very much more to the theory of GA identities than determinants. Subsequent 

research suggests that some, if not all, theorems of classical geometry can be formulated as GA 
identities, so their proofs can be reduced to proofs of algebraic identities. Hongbo Li has pushed 
this subject a long way [8,9], with intriguing results and great promise for more. I regard this as 
an extension of classical Invariant Theory.  
 
Chapter 2:  Differentiation 
 The vector derivative is the central object in geometric calculus. It can be defined in 
terms of the conventional partial derivative, as shown in Fig. 6. As in standard scalar calculus, 
one does not refer to the definition of derivative for calculations. Rather, one has in hand a small 
catalog of elementary derivatives and formulas, from which more complex derivatives can be 
calculated. Such a catalog for the vector derivative is given in Fig. 6.  To make contact with 
standard vector calculus, a term in one formula is expressed in terms of the vector cross product, 
so it applies only in the case n = 3. With an easy extension to include delta functions, this catalog 
suffices for calculating all derivatives in classical electrodynamics. 
 Chap. 2 generalizes the vector derivative to define the derivative with respect to any 
multivector variable and derives many formulas for applications. At the time, I thought this 
concept was too esoteric to be of much interest, so I avoided it in subsequent work.  Much to my 
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surprise a few years later, the Cambridge group used it for elegant derivations of conservation 
laws in Lagrangian field theory. More recently, it has been applied to robotics by Lasenby and 
Doran as well as Valkenburg and Alwesh in [9]. 
 Chap. 2 also introduces a concept of  “simplcial derivative,” but my current opinion is 
that its applications are better done by other means. 

 
Fig. 6 

 
Chapter 3: Linear and Multilinear Functions 
 Geometric Algebra introduces the powerful new concept of “outermorphism” to the field 
of linear algebra.  The outermorphism of a linear function defined on a vector space is a unique 
linear extension to the entire geometric algebra of the vector space (as defined in Fig. 2).  In 
Chap. 3 the simplicial derivative is used to define it, but I now prefer the alternative approach 
used in {6}, which also extends the treatment of linear algebra. This material deserves to be 
extended to a complete book on linear algebra. The typical reader is advised to peruse the 
chapter to get a sense of the approach, and then to refer back to it for details as needed.  
 
Chapter 4: Calculus on Vector Manifolds  
 The preceding definition of vector derivative presumes the vector variable is defined on a 
vector space. This chapter removes that restriction by defining the concept of vector manifold, 
and that enables us in subsequent chapters to create a completely coordinate-free approach to 
differential geometry. The concept of vector manifold is schematized in Fig. 7, and its relation to 
the use of coordinates is outlined in Fig. 8. 
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Fig. 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 

–– a set on which differential and integral calculus is well-defined!

 M
mWhat is a manifold?         of dimension m

  R
m
= R !R!!R     • Calculus done indirectly by local mapping to

     • Proofs required to establish results independent of coordinates.

Geometric Calculus defines a manifold as any set

isomorphic to a vector manifold

 M
m
= {x}Vector manifold                   is a set of vectors in GA that generates

 at each point x a tangent space with pseudoscalar I
m
(x)

Advantages:

     • Manifestly coordinate-free vs. nominally coordinate-free!

     • Calculus done directly with algebraic operations on points

     • Geometry completely determined by derivatives of I
m
(x).

 M
mRemark: It is unnecessary to assume that          is embedded in a

        vector space, though embedding theorems can be proved.  

 



 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Fig. 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Fig. 10 
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As illustrated in Fig. 9, a diffeomorphism (map) on a vector manifold induces a transformation of 
the tangent space at each point called the differential  (also called the “push-forward”).  The 
adjoint of this transformation (also called the “pull-back”) goes in the opposite direction. Note 
that the differential and adjoint are defined, respectively, by the directional derivative and the 
gradient of the map.  As indicated in Fig. 10, the differential and adjoint transformations of 
tangent vectors are extended to the entire tangent algebra by outermorphism. The outermorphism 
of the pseudoscalar gives the Jacobian of the map, notably, without introducing a local 
coordinate system.   
 This coordinate-free treatment of diffeormorphism has been applied to great effect in 
defining the concept of position gauge transformation, a keystone in the Gauge Theory of 
Gravity of Lasenby, Doran and Gull [4,5].  That resolves a longstanding problem of providing a 
precise definition of Einstein’s General Relativity Principle [5]. 
 Note that the whole apparatus of differential outermorphism applies equally well to linear 
algebra. Indeed, a map is linear if it is equal to its differential. 
 
Chapters 5 & 6: Differential Geometry 
 Now we have the necessary tools for addressing coordinate-free differential geometry.  
There are two distinct methods, each with distinct advantages. The method of mobiles (comoving 
frames in Chap. 6 is originated in the 19th century, but GA greatly enhances it with a spinor 
treatment of rotations and their derivatives. The method of sliding pseudoscalar in Chap. 5 is 
reviewed in {9} and summarized in Fig. 11.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 
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Chapter 7: Directed Integration Theory 
 The directed integral is defined in Fig. 12 in terms of the more familiar multiple integral.  
Its power is shown by the formulation of the Fundamental Theorem of Geometric Calculus in 
Fig. 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 
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As shown in Fig. 14, the fundamental Theorem in GC unifies many different integral theorems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Fig. 15 
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The most general form of the Fundamental Theorem is given in Fig. 15. It reduces precisely to 
the standard theory of differential forms when the integrands are scalar-valued. But non-scalar 
integrands lead to Cauchy’s Theorem and Cauchy’s Integral Theorem in complex variable theory 
and their generalizations to higher dimensions, as first demonstrated in {4}.  This is illustrated in 
Fig. 16, which gives the integral form of Maxwell’s equation !E = "  for a static electric field 
with charge density ! = !(x) .  This, of course, is a solution of Maxwell’s equation if the charge 
density inside the region and the electric field on the boundary are given. Note that in the 2D 
case  the formula reduces to a generalization of Cauchy’s integral formula that includes an area 
integral.  That generalization was first given by Pompieu in 1910,  but is seldom mentioned in 
books on complex variable theory, which are hung up on the notion that complex line integrals 
are something special. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig 16 
 
 
 
A more detailed discussion of differential forms in Geometric Calculus is given in {7}, and a 
valuable alternative approach is given in {8}. 
 
Chapter 8: Lie Groups and Lie Algebras 
 This chapter is a prospectus for incorporating the theory of Lie Groups and Lie Algebras. 
It was originally proposed as a doctoral thesis for a student of mine, but he got engaged in other 
things, so I wrote it up myself.  Incomplete as it is, it has served well as a stimulus for further 
developments. For example, I worked out an explicit representation for the conformal group, 
which has played a key role in developing Conformal Geometric Algebra [6,9].  In another 
direction, it stimulated me to represent generators of the symplectic group as bivectors in phase 
space, and Chris Doran extended that to a complete treatment of the classical groups {10}. The 
general idea is summarized in Fig. 17.  The crystallographic point groups and space groups are 
fully worked out in {11,12}. 
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Fig. 17 
 

Selected online papers 
 
Here is a brief description of selected papers available online that elaborate the fundamental 
concepts of GA or treat them at a more elementary level. The first two papers {1, 2} develop the 
fundamentals for undergraduate physics majors. The first published papers on Geometric Calculus 
{3, 4} referred to the subject more modestly as Multivector Calculus, because development was 
not yet sufficient to claim it as a universal mathematical language. That claim could be confidently 
made in {5}, because adequate foundations had been laid in the books [1, 2, 3].  
 Of the remaining papers listed below, the most recent {9} reviews the powerful approach 
to differential geometry using the Shape Operator and suggests directions for further research. 
Comments on the other papers are given in the chapter discussions above. 
 (Note: titles are linked to web pages on which the papers can be found.) 
 
{1} Synopsis of Geometric Algebra 
 Summarizes and extends some of the basic ideas and results of GA. To make the 
summary self-contained, all essential definitions and notations are explained, and geometric 
interpretations of algebraic expressions are reviewed. 
 
{2} Geometric Calculus (Fundamentals) 
 A thorough treatment of differentiation and integration with respect to vector variables 

 

http://geocalc.clas.asu.edu/html/NFMP.html
http://geocalc.clas.asu.edu/html/NFMP.html
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sufficient for most applications in undergraduate physics and engineering.  
 
{3} Multivector Calculus 

Shows how differential and integral calculus in many dimensions can be greatly 
simplified by using geometric algebra. The necessary notations, definitions, and fundamental 
theorems are developed to make the calculus ready for use.  
 
{4} Multivector Functions 

Employs geometric calculus to derive some powerful theorems that generalize well-
known theorems of potential theory and the theory of functions of a complex variable. Analytic 
multivector functions on Euclidean n-space are defined and shown to be appropriate 
generalizations of analytic functions of a complex variable. Some of their basic properties are 
pointed out. These results have important applications to physics. 

 
{5} A Unified Language for Mathematics and Physics 
 Makes the case for adopting Geometric Calculus as a unified language. That case has 
been abundantly validated and strengthened by many publications to the present day. 
  
{6} The Design of Linear Algebra and Geometry 
 Improves and extends the treatment of linear algebra in Ref. [2]. 
  
{7} Differential Forms in Geometric Calculus  
 Reviews the rationale for embedding differential forms in the more comprehensive 
system of Geometric Calculus. The most significant application of the system is to relativistic 
physics where it is referred to as Spacetime Calculus. The fundamental integral theorems are 
discussed along with applications to physics, especially electrodynamics. 
 
{8} Simplicial calculus with geometric algebra 
 Develops geometric calculus on an oriented k-surface embedded in Euclidean space by 
utilizing the notion of an oriented k-surface as the limit set of a sequence of k-chains. This 
method provides insight into the relationship between the vector derivative, and the Fundamental 
Theorem of Calculus and Residue Theorem. It should be of practical value in numerical finite 
difference calculations with integral and differential equations in Clifford algebra. 
 
{9} The Shape of Differential Geometry in Geometric Calculus.  
 Reviews foundations for coordinate-free differential geometry in Geometric Calculus. In 
particular, it shows how both extrinsic and intrinsic geometry of a manifold can be characterized 
by a single bivector-valued one-form called the Shape Operator. 
 
{10} Lie Groups as Spin Groups 
 Shows how the computational power of Geometric Algebra simplifies analysis and 
applications of Lie groups and Lie algebras. Representation of Lie algebras as bivector algebras 
enables representation of Lie groups as spin groups. Spin representations of the classical groups 
are worked out. 
 

http://geocalc.clas.asu.edu/html/GeoCalc.html
http://geocalc.clas.asu.edu/html/GeoCalc.html
http://geocalc.clas.asu.edu/html/GeoCalc.html
http://geocalc.clas.asu.edu/html/GeoCalc.html
http://geocalc.clas.asu.edu/html/GeoCalc.html
http://geocalc.clas.asu.edu/html/GeoCalc.html
http://geocalc.clas.asu.edu/html/GeoAlg.html
http://geocalc.clas.asu.edu/html/GeoAlg.html
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{11} Point and Space Groups in Geometric Algebra 
 A detailed treatment of the 3D point groups and crystal classes with GA. Minimal 
background with GA required. 
 
{12} The Crystallographic Space Groups in Geometric Algebra 
 Complete treatment of the 17 different 2D space groups and 230 different 3D space 
groups demonstrating the considerable advantages of formulation with Conformal GA.  
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