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Preface

The term “hybrid system” has many meanings, one of which is: a dynamical
system whose evolution depends on a coupling between variables that take
values in a continuum and variables that take values in a finite or countable set.
For a typical example of a hybrid system in this sense, consider a temperature
control system consisting of a heater and a thermostat. Variables that would in
all likelihood be included in a model of such a system are the room temperature
and the operating mode of the heater (on or off). It is natural to model the
first variable as real-valued and the second as Boolean. Obviously, for the
temperature control system to be effective there needs to be a coupling between
the continuous and discrete variables, so that for instance the operating mode
will be switched to on if the room temperature decreases below a certain value.

Actually most of the dynamical systems that we have around us may rea-
sonably be described in hybrid terms: cars, computers, airplanes, washing
machines—there is no lack of examples. Nevertheless, most of the literature
on dynamic modeling is concerned with systems that are either completely
continuous or completely discrete. There are good reasons for choosing a
description in either the continuous or the discrete domain. Indeed, it is a
platitude that it is not necessary or even advisable to include all aspects of a
given physical system into a model that is intended to answer certain types
of questions. The engineering solution to a hybrid system problem therefore
has often been to look for a formulation that is primarily continuous or dis-
crete, and to deal with aspects from the other domain, if necessary, in an ad
hoc manner. As a consequence, the field of hybrid system modeling has been
dominated by patches and workarounds.

Indications are, however, that the interaction between discrete and con-
tinuous systems in today’s technological problems has become so important
that more systematic ways of dealing with hybrid systems are called for. For
a dramatic example, consider the loss of the Ariane 5 launcher that went into
self-destruction mode 37 seconds after liftoff on June 4, 1996. Investigators
have put the blame for the costly failure on a software error. Nevertheless,
the program that went astray was the same as the one that had worked per-
fectly in Ariane 4; in fact, it was copied from Ariane 4 to Ariane 5 for exactly
that reason. What had changed was the continuous dynamical system around
the software, embodied in the physical structure of the new launcher which
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had been sized up considerably compared to its predecessor. Within the new
physical environment, the trusted code quickly led into a catastrophe.

Although the increasing role of the computer in the control of physical
processes may be cited as one of the reasons for the increased interest in hybrid
systems, there are also other sources of inspiration. In fact a number of recent
developments all revolve in some way around the combination of continuous
and discrete aspects. The following is a sample of these developments, which
are connected in ways that are still largely unexplored:

- computer science: verification of correctness of programs interacting with
continuous environments (embedded systems);

- control theory: hierarchical control, interaction of data streams and
physical processes, stabilization of nonlinear systems by switching con-
trol;

- dynamical systems: discontinuous systems show new types of bifurca-
tions and provide relatively tractable examples of chaos;

- mathematical programming: optimization and equilibrium problems
with inequality constraints can fruitfully be placed within a regime-
switching dynamic framework;

- simulation languages: element libraries contain both continuous and dis-
crete elements, so that the numerical simulation routines behind the
languages must take both aspects into account.

It is a major challenge to advance and systematize the knowledge about hybrid
systems that comes from such a large variety of fields, which nevertheless from
a historical point of view have many concepts in common.

Even though the overall area of hybrid systems has not yet crystallized,
we believe that it is meaningful at this time to take stock of a number of
related developments in an introductory text, and to describe these from a
more unified point of view. We have not tried to be encyclopaedic, and in
any case we consider the present text as an intermediate product. Our own
background is clearly reflected in the choice of the developments covered, and
without doubt the reader will recognize a definite emphasis on aspects that are
of interest from the point of view of continuous dynamics and mathematical
systems theory. The title that we have chosen is intended to reflect this choice.
We trust that others who are more qualified to do so will write books on hybrid
systems emphasizing different aspects.

This text is an expanded and revised version of course notes that we have
written for the course in Hybrid Systems that we taught in the spring of 1998
as part of the national graduate course program of the Dutch Institute of Sys-
tems and Control. We would like to thank the board of DISC for giving us
the opportunity to present this course, and we are grateful to the course par-
ticipants for their comments. In some parts of the book we have relied heavily
on work that we have done jointly with Kanat Camlibel, Gerardo Escobar,
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Maurice Heemels, Jun-Ichi Imura, Yvonne Lootsma, Romeo Ortega, and Siep
Weiland; it is a pleasure to acknowledge their contributions. The second au-
thor would in particular like to thank Gjerrit Meinsma for his patient guidance
on the intricacies of IWTEX. Finally, for their comments on preliminary ver-
sions of this text and helpful remarks, we would like to thank René Boel, Peter
Breedveld, Ed Brinksma, Bernard Brogliato, Domine Leenaerts, John Lygeros,
Oded Maler, Sven-Erik Mattson, Gjerrit Meinsma, Manuel Monteiro Marques,
Andrew Paice, Shankar Sastry, David Stewart, and Jan Willems. Of course,
all remaining faults and fallacies are entirely our own.

Enschede/Amsterdam, September 1999

Arjan van der Schaft
Hans Schumacher
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Chapter 1

Modeling of hybrid systems

1.1 Introduction

The aim of this chapter is to make more precise what we want to understand by
a “hybrid system”. This will be done in a somewhat tentative manner, without
actually ending up with a single final definition of a hybrid system. Partly, this
is due to the fact that the area of hybrid systems is still in its infancy and that
a general theory of hybrid systems seems premature. More inherently, hybrid
systems is such a wide notion that sticking to a single definition shall be too
restrictive (at least at this moment) for our purposes. Moreover, the choice of
hybrid models crucially depends on their purpose, e.g. for theoretical purposes
or for specification purposes, or as a simulation language. Nevertheless, we
hope to make reasonably clear what should be the main ingredients in any
definition of a hybrid system, by proposing and discussing in Section 1.2 a
number of definitions of hybrid systems. Subsequently, Chapter 2 will present
a series of examples of hybrid systems illustrating the main ingredients of these
definitions in more detail.

Generally speaking, hybrid systems are mixtures of real-time (continuous)
dynamics and discrete events. These continuous and discrete dynamics not
only coexist, but interact and changes occur both in response to discrete,
instantaneous, events and in response to dynamics as described by differential
or difference equations in time.

One of the main difficulties in the discussion of hybrid systems is that
the term “hybrid” is not restrictive—the interpretation of the term could
be stretched to include virtually any dynamical system we can think of. A
reasonably general definition of hybrid systems can therefore only serve as a
framework, to indicate the main issues and to fix the terminology. Within
such a general framework one necessarily has to restrict to special subclasses
of hybrid systems in order to derive useful generally valid propositions.

Another difficulty in discussing hybrid systems is that various scientific
communities with their own approaches have contributed (and are still con-
tributing) to the area. At least the following three communities can be distin-
guished.

First there is the computer science community that looks at a hybrid sys-
tem primarily as a discrete (computer) program interacting with an analog
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environment. (In this context also the terminology embedded systems is being
used.) A leading objective is to extend standard program analysis techniques
to systems which incorporate some kind of continuous dynamics. The empha-
sis is often on the discrete event dynamics, whereas the continuous dynamics
is frequently of a relatively simple form. One of the key issues is verification.

Another community involved in the study of hybrid systems is the model-
ing and simulation community. Physical systems can often operate in different
modes, and the transition from one mode to another sometimes can be idealized
as an instantaneous, discrete, transition. Examples include electrical circuits
with switching devices such as (ideal) diodes and transistors, and mechanical
systems subject to inequality constraints as encountered e.g. in robotics. Since
the time scale of the transition from one mode to another is often much faster
than the time scale of the dynamics of the individual modes, it may be advan-
tageous to model the transitions as being instantaneous. The time instant at
which the transition takes place is called an event time. Basic issues then con-
cern the well-posedness of the resulting hybrid system, e.g. the existence and
uniqueness of solutions, and the ability to efficiently simulate the multi-modal
physical system.

Yet another community contributing to the area of hybrid systems is the
systems and control community. Within this community additional motiva-
tion for the study of hybrid systems is actually provided from different angles.
One can think of hierarchical systems with a discrete decision layer and a con-
tinuous implementation layer (e.g. supervisory control or multi-agent control).
Also switching control schemes and relay control immediately lead to hybrid
systems. For nonlinear control systems it is known that in some important
cases there does not exist a continuous stabilizing state feedback, but that nev-
ertheless the system can be stabilized by a switching control. Finally, discrete
event systems theory can be seen as a special case of hybrid systems theory. In
many areas of control, e.g. in power converters and in motion control, control
strategies are inherently hybrid in nature.

From a general system-theoretic point of view one can look at hybrid sys-
tems as systems having two different types of ports through which they interact
with their environment. One type of ports consists of the communication ports.
The variables associated with these ports are symbolic in nature, and represent
“data flow”. The strings of symbols at these communication ports in general
are not directly related with real (physical) time; there is only a sequential
ordering. The second type of ports consists of the physical ports, where the
term “physical” interpreted in a broad sense; perhaps “analog” would be a
more appropriate terminology. The variables at these ports are usually con-
tinuous variables, and are related to physical measurement. Also, the flow of
these variables is directly related to physical time. In principle the signals at
the physical ports may be discrete-time signals (or sampled-data signals), but
in most cases they will ultimately be continuous-time signals.

Thus a hybrid system can be regarded as a combination of discrete or sym-
bolic dynamics and continuous dynamics. The main problem in the definition
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and representation of a hybrid system is precisely to specify the interaction
between this symbolic and continuous dynamics.

A key issue in the formulation of hybrid systems is the often required mod-
ularity of the hybrid system description. Indeed, because we are inherently
dealing with the modeling of complex systems, it is very important to model a
complex hybrid system as the interconnection of simpler (hybrid) subsystems.
This implies that the hybrid models that we are going to discuss are prefer-
ably of a form that admits easy interconnection and composition. Besides
this notion of compositionality other important (related) notions are those of
“reusability” and “hierarchy”. These terms arise in the context of “object-
oriented modeling”.

1.2 Towards a definition of hybrid systems

In our opinion, from a conceptual point of view the most basic definition of
a hybrid system is to immediately specify its behavior, that is, the set of all
possible trajectories of the continuous and discrete variables associated with
the system. On the other hand, such a behavioral definition tends to be very
general and far from an operational specification of hybrid systems. Instead we
shall start with a reasonably generally accepted “working definition” of hybrid
systems, which already has proved its usefulness. This definition, called the
hybrid automaton model, will already provide the framework and terminology
to discuss a range of typical features of hybrid systems. At the end of this
chapter we are then prepared to return to the issues that enter into a behavioral
definition of hybrid systems, and to discuss an alternative way of modeling
hybrid systems by means of equations.

1.2.1 Continuous and symbolic dynamics

In order to motivate the hybrid automaton definition, we recall the
“paradigms” of continuous and symbolic dynamics; namely, state space mod-
els described by differential equations for continuous dynamics, and finite au-
tomata for symbolic dynamics. Indeed, the definition of a hybrid automaton
basically combines these two paradigms. Note that both in the continuous
domain and in the discrete domain one can think of more general settings;
for instance partial differential equations and stochastic differential equations
on the continuous side, pushdown automata and Turing machines on the dis-
crete side. The framework we shall discuss however is already suitable for the
modeling of many applications, as will be shown in the next chapter.

Definition 1.2.1 (Continuous-time state-space models).

A continuous-time state-space system is described by a set of state variables
x taking values in R™ (or, more generally, in an n-dimensional state space
manifold X), and a set of external variables w taking values in R?, related by
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a mixed set of differential and algebraic equations of the form
F(z,&,w) =0. (1.1)

Here ¢ denotes the derivative of & with respect to time. Solutions of (1.1) are
all (sufficiently smooth) time functions z(t) and w(¢) satisfying

F(x(t), 2(t), w(t)) =0
for (almost) all times ¢t € R (the continuous-time axis).

Of course, the above definition encompasses the more common definition
of a continuous-time input-state-output system

= f(xau)
y = hiz,u)

(1.2)

where we have split the vector of external variables w into a subvector u taking
values in R™ and a subvector y taking values in R? (with m + p = ¢), called
respectively the vector of input variables and the vector of output variables.
The only algebraic equations in (1.2) are those relating the output variables y
to z and w, while generally in (1.1) there are additional algebraic constraints
on the state space variables x.

One of the main advantages of general continuous-time state space systems
(1.1) over continuous-time input-state-output systems (1.2) is the fact that the
first class is closed under interconnection, while the second class in general is
not. In fact, modeling approaches that are based on modularity (viewing the
system as the interconnection of smaller subsystems) almost invariably lead
to a mixed set of differential and algebraic equations. Of course, in a number
of cases it may be relatively easy to eliminate the algebraic equations in the
state space variables, in which case (if we can also easily split w into u and y)
we can convert (1.1) into (1.2).

We note that Definition 1.2.1 does not yet completely specify the
continuous-time system, since (on purpose) we have been rather vague about
the precise solution concept of the differential-algebraic equations (1.1). For
example, a reasonable choice (but not the only possible one!) is to require
w(t) to be piecewise continuous (allowing for discontinuities in the “inputs”)
and z(t) to be continuous and piecewise differentiable, with (1.1) being sat-
isfied for almost all ¢ (except for the points of discontinuity of w(t) and non-
differentiability of x(t)).

Next we give the standard definition of a finite automaton (or finite state
machine, or labeled transition system).

Definition 1.2.2 (Finite automaton). A finite automaton is described by
a triple (L, A, E). Here L is a finite set called the state space, A is a finite set
called the alphabet whose elements are called symbols. E is the transition rule;
it is a subset of L x A x L and its elements are called edges (or transitions, or
events). A sequence (lo,ap,l1,a1,...,ln—1,an_1,0,) with (l;,a;,1;41) € E for
t=1,2,...,n—1is called a trajectory or path.
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Figure 1.1: Finite automaton

The usual way of depicting an automaton is by a graph with vertices given
by the elements of L, and edges given by the elements of E, see Figure 1.1.
Then A can be seen as a set of labels labeling the edges. Sometimes these are
called synchronization labels, since interconnection with other automata takes
place via these (shared) symbols. One can also specialize Definition 1.2.2 to
input-output automata by associating with every edge two symbols, namely
an input symbol ¢ and an output symbol o, and by requiring that for every
input symbol there is only one edge originating from the given state with
this input symbol. (Sometimes such automata are called deterministic input-
output automata.) Deterministic input-output automata can be represented
by equations of the following form:

(1.3)

where [! denotes the new value of the discrete state after the event takes place,
resulting from the old discrete state value [ and the input 1.

Often the definition of a finite automaton also includes the explicit speci-
fication of a subset I C L of initial states and a subset F' C L of final states.
A path (lp,a0,l1,a1,...,ln—1,an_1,15) is then called a successful path if in
addition lp € I and [,, € F.

In contrast with the continuous-time systems defined in Definition 1.2.1 the
solution concept (or semantics) of a finite automaton (with or without initial
and final states) is completely specified: the behavior of the finite automaton
consists of all (successful) paths. In theoretical computer science parlance the
definition of a finite automaton is said to entail an “operational semantics”,
completely specifying the formal language generated by the finite automaton.
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Note that the definition of a finite automaton is conceptually not very dif-
ferent from the definition of a continuous-time state space system. Indeed
we may relate the state space L with the state space X, the symbol alpha-
bet A with the space W (where the external variables take their values), and
the transition rule E with the set of differential-algebraic equations given by
(1.1). Furthermore the paths of the f{inite automaton correspond to the so-
lutions of the set of differential-algebraic equations. The analogy between
continuous-time input-state-output systems (1.2) and input-output automata
(1.3) is obvious, with the differentiation operator 4 replaced by the “next
state” operator !.

A (minor) difference is that in finite automata one usually considers (as in
Definition 1.2.2) paths of finite length, while for continuous-time state space
systems the emphasis is on solutions over the whole time axis R. This could be
remedied by adding to the finite automaton a source state and a sink state and
a blank label, and by considering solutions defined over the whole time axis Z
which “start” at minus infinity in the source state and “end” at plus infinity
in the sink state, while producing the blank symbol when remaining in the
source or sink state. Also the set I of initial states and the set F' of final states
in some definitions of a finite automaton do not have a direct analogon in the
definition of a continuous-time state space system. In some sense, however,
they could be viewed as a formulation of performance specifications of the
automaton.

Summarizing, the basic differences between Definition 1.2.1 and Definition
1.2.2 are the following.

- The spaces L and A are finite sets instead of continuous spaces such as
X and W. (In some extensions one allows for countable sets L and A.)

- The time axis in Definition 1.2.1 is R, while the time axis in Definition
1.2.2 is Z. Here, to be precise, Z is understood without any structure of
addition (only sequential ordering).

- In the finite automaton model the set of possible transitions (events) is
specified explicitly, while the evolution of a continuous-time state-space
system is only implicitly given by the set of differential and algebraic
equations (one still needs to solve these equations).

1.2.2 Hybrid automaton

Combining Definitions 1.2.1 and 1.2.2 leads to the following type of definition
of a hybrid system.

Definition 1.2.3 (Hybrid automaton). A hybrid automaton is described
by a septuple (L, X, A, W, E, Inv, Act) where the symbols have the following
meanings.

- L is a finite set, called the set of discrete states or locations. They are
the vertices of a graph.
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- X is the continuous state space of the hybrid automaton in which the
continuous state variables x take their values. For our purposes X C R"
or X is an n-dimensional manifold.

- A is a finite set of symbols which serve to label the edges.

- W = R? is the continuous communication space in which the continuous
external variables w take their values.

- E is a finite set of edges called transitions (or events). Every edge is
defined by a five-tuple (I, a, Guardy, Jumpy:,l'), where [,I' € L, a € A,
Guardyy is a subset of X and Jumpyy is a relation defined by a subset
of X x X. The transition from the discrete state [ to I’ is enabled when
the continuous state z is in Guard;, while during the transition the
continuous state x jumps to a value z' given by the relation (z,z') €
Jump”/.

- Inv is a mapping from the locations L to the set of subsets of X, that
is Inv(l) C X for all I € L. Whenever the system is at location I, the
continuous state x must satisfy z € Inv(l). The subset Inv(l) for l € L
is called the location invariant of location [.

- Act is a mapping that assigns to each location [ € L a set of differential-
algebraic equations Fj, relating the continuous state variables x with
their time-derivatives 2 and the continuous external variables w:

F(z,,w)=0. (1.4)

The solutions of these differential-algebraic equations are called the ac-
tivities of the location.

Clearly, the above definition draws strongly upon Definition 1.2.2, the dis-
crete state space L now being called the space of locations. (Note that the
set of edges E in Definition 1.2.3 also defines a subset of L x A x L.) In
fact, Definition 1.2.3 extends Definition 1.2.2 by associating with every vertex
(location) a continuous dynamics whose solutions are the activities, and by
associating with every transition | — I’ also a possible jump in the continuous
state.

Note that the state of a hybrid automaton consists of a discrete part [ € L
and a continuous part in X. Furthermore, the external variables consist of a
discrete part taking their values a in A and a continuous part w taking their
values in R?. Also, the dynamics consists of discrete transitions (from one
location to another), together with a continuous part evolving in the location
invariant.

It should be remarked that the above definition of a hybrid automaton has
the same ambiguity as the definition of a continuous-time state-space system,
since it still has to be complemented by a precise specification of the solutions
(activities) of the differential-algebraic equations associated with every loca-
tion. In fact, in the original definitions of a hybrid automaton (see e.g. [1]) the
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activities of every location are assumed to be explicitly given rather than gen-
erated implicitly as the solutions to the differential-algebraic equations. On
the other hand, somebody acquainted with differential equations would not
find it convenient in general to have to specify continuous dynamics immedi-
ately by time functions from R™ to X. Indeed, continuous time dynamics is
almost always described by sets of differential or differential-algebraic equa-
tions, and only in exceptional cases (such as linear dynamical systems) one can
obtain explicit solutions. The description of a hybrid automaton is illustrated
in Figure 1.2.

z(t) € Inv(ls)

{3

I

[Fy, (z, &, w) =0
z(t) € Imv(£s)

Fr(z, 2, w)=0
z(t) € Inv(f2)

12

Figure 1.2: Hybrid automaton

A reasonable definition of the trajectories (or solutions, or in computer
science terminology, the runs or executions) of a hybrid automaton can be
formulated as follows. A continuous trajectory (I,4d,z,w) associated with a
location I consists of a nonnegative time § (the duration of the continuous
trajectory), a piecewise continuous function w : [0,d] — W, and a continuous
and piecewise differentiable function z : [0, ] — X such that
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- x(t) € Inv(l) for all ¢t € (0,9),

- Fy(z(t),z(t),w(t)) = 0 for all t € (0,9) except for points of discontinuity
of w.

A trajectory of the hybrid automaton is an (infinite) sequence of continuous
trajectories

(10,5075130;100) 4 (11,5175131;101) 4 (12,5275132;102) 3.
such that at the event times
to =dg, t1 =08 +6, 1y =200+ +0,...

the following inclusions hold for the discrete transitions:

J:](tj) € Guardljl]‘+1 fOI‘ all] _ 0 1 2

(xj (tj): Tj+1 (tj)) € Jumpljlj+1

Furthermore, to the j-th arrow — in the above sequence (with j starting at
0) one associates a symbol (label) a;, representing the value of the discrete
“signal” at the j-th discrete transition.

1.2.3 Features of hybrid dynamics

Note that the trajectories of a hybrid automaton exhibit the following features.
Starting at a given location the continuous part of the state evolves according
to the continuous dynamics associated with this location, provided it remains
in the location invariant. Then, at some time instant in R, called an event
time, an event occurs and the discrete part of the state (the location) switches
to another location. This is an instantaneous transition which is guarded, that
is, a necessary condition for this transition to take place is that the guard of
this transition is satisfied. Moreover in general this transition will also involve
a jump in the continuous part of the state. Then, after the instantaneous
transition has taken place, the continuous part of the state, starting from
this new continuous state, will in principle evolve according to the continuous
dynamics of the new location. Thus there are two phenomena associated with
every event, a switch and a jump, describing the instantaneous transition of,
respectively, the discrete and the continuous part of the state at such an event
time.

A basic issue in the specification of a hybrid system is the specification
of the events and event times. First, the events may be externally induced
via the labels (symbols) a € A; this leads to controlled switchings and jumps.
Secondly, the events may be internally induced; this leads to what is called au-
tonomous switchings and jumps. The occurrence of internally induced events
is determined by the guards and the location invariants. Whenever violation
of the location invariants becomes imminent, the hybrid automation has to
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switch to a new location, with possibly a reset of the continuous state. At
such an event time the guards will determine to which locations the transition
is possible. (There may be more than one; furthermore, it may be possible to
switch to the same location.)

If violation of the location invariants is not imminent then still discrete
transitions may take place if the corresponding guards are satisfied. That is,
if at a certain time instant the guard of a discrete transition is satisfied then
this may cause an event to take place. As a result one may obtain a large
class of trajectories of the hybrid automaton, and a tighter specification of the
behavior of the hybrid automaton will critically depend on a more restrictive
definition of the guards. Intuitively the location invariants provide enforcing
conditions whereas the guards provide enabling conditions.

Many issues naturally come up in connection with the analysis of the tra-
jectories of a hybrid automaton. We list a number of these.

- It could happen that, after some time ¢, the system ends up in a state
(I,z(t)) from which there is no continuation, that is, there is no pos-
sible continuous trajectory from z(t) and no possible transition to an-
other location. In the computer science literature this is usually called
“deadlock”. Usually this will be considered an undesirable phenomenon,
because it means that the system is “stuck”.

- The set of durations §; may get smaller and smaller for increasing ¢ even
to such an extent that > ._° d; is finite, say 7. This means that 7 is an
accumulation point of event times. In the computer science literature
this is called Zeno behavior (referring to Zeno’s paradox of Achilles and
the turtle). This need not always be an undesirable behavior of the
hybrid system. In fact, as long as the continuous and discrete parts of
the state will converge to a unique value at the accumulation point 7,
then we can re-initialize the hybrid system at 7 using these limits, and
let the system run as before starting from the initial time 7. In fact, in
Subsection 2.2.3 (the bouncing ball) we will encounter a situation like
this.

- In principle the durations of the continuous trajectories are allowed to be
zero; in this way one may cover the occurrence of multiple events. In this
case the underlying time axis of the hybrid trajectory has a structure
which is more complicated than R containing a set of event times: a
certain time instant t € R may correspond to a sequence of sequentially
ordered transitions, all happening at the same time instant ¢ which is
then called a multiple event time. We refer e.g. to Subsection 2.2.6 where
we also provide an example of an event with multiplicity oc.

- It may happen that the hybrid system gets stuck at such a multiple
event time by switching indefinitely between different locations (and not
proceeding in time). This is sometimes called livelock. Such a situation
occurs if a location invariant tends to be violated and a guarded transi-
tion takes place to a new location in such a way that the new continuous
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state does not satisfy the location invariants of the new location, while
the guard for the transition to the old location is satisfied. In some cases
this problem can be resolved by creating a new location, with a continu-
ous dynamics that “averages” the continuous dynamics of the locations
between which the infinite switching occurs. Filippov’s notions of so-
lutions of discontinuous vector fields can be interpreted in this way, cf.
Subsection 2.2.7 and Chapter 3.

In general the set of trajectories (runs) of the hybrid automaton may
be very large, especially if the guards are not very strict. For certain
purposes (e.g. verification) this may not be a problem, but in other cases
one may wish the hybrid system to be deterministic or well-posed, in
the sense of having unique solutions for given discrete and continuous
“inputs” (assuming that we have split the vector w of continuous external
variables into a vector of continuous inputs and outputs, and that every
label a actually consists of an input label and an output label). Especially
for simulation purposes this may be very desirable, and in this context
one would often dismiss a hybrid model as inappropriate if it does not
have this well-posedness property. On the other hand, nondeterministic
discrete-event systems are very common in computer science. A simple
example of a hybrid system not having unique solutions, at least from a
certain point of view, is provided by the integrator dynamics

y=u
in conjunction with the relay element

u =41, y>0
u=-1, y <0
-1<u<l1, y=0.

The resulting hybrid system (without external inputs) has three loca-
tions corresponding to the three segments of the ideal relay element. It
is directly seen that for initial condition y(0) = 0 the system can evolve
in either of these three locations, yielding the three solutions (i) y(t) = t,
u(t) =1, (i) y(t) = —t, u(t) = —1, and (iii) y(¢) = 0, u(¢) = 0. Hence, if
we specify the initial condition of this hybrid system only by its continu-
ous state, which is not unreasonable in physical systems, then there are
three solutions starting from the zero initial condition. More involved
examples of the same type will be given in Chapter 4. A “physical”
example of the same type exhibiting non-uniqueness of solutions is the
classical example, due to Painlevé, of a stick that slides with one end
on a table and that is subject to Coulomb friction acting at the contact
point; see e.g. [31, p. 154].

The continuous dynamics associated to a location may have “finite escape
time”, in the sense that the solution of the differential equations, or of the
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differential-algebraic equations, for some initial state goes to “infinity”
(or to the boundary of the state space X) in finite time. This is a
well-known phenomenon in nonlinear differential equations. A simple
example is provided by the differential equation

@(t) =1+ 2%(t), z(0) =0,

a solution of which is z(¢) = tant. (The framework of hybrid systems

allows one, in principle, to model this as an event, by letting the “explo-

sion time” (% in the above example) be an event time, where the system
may switch to a new location and jump to a new continuous state.)

- The solution concept of the continuous-time dynamics associated to a
location may itself be problematic, especially because of the possible
presence of algebraic constraints. In particular, in some situations one
may want to associate jump behavior with these continuous-time dynam-
ics (see e.g. Subsection 2.2.15). Within the hybrid framework this can
be incorporated as internally induced events, where the system switches
to the same location but is subject to a reset of the continuous state.

Remark 1.2.4. Of course, the definition of a hybrid automaton can still be
generalized in a number of directions. A particularly interesting extension is to
consider stochastic hybrid systems, such as the systems described by piecewise-
deterministic Markov processes, see e.g. [40]. In this notion the event times are
determined by the system reaching certain boundaries in the continuous state
space (similar to the notion of location invariants), and/or by an underlying
probability distribution. Furthermore, also the resulting discrete transitions
together with their jump relations are assumed to be governed by a probability
distribution.

1.2.4 Generalized hybrid automaton

In Definition 1.2.3 of a hybrid automaton there is still an apparent asymmetry
between the continuous and the symbolic (discrete) part of the dynamics.
Furthermore, the location invariants and the guards play strongly related roles
in the specification of the discrete transitions. The following generalization of
Definition 1.2.3 takes the location invariants and the set of edges E together,
and symmetrizes the definition of a hybrid automaton. (The input-output
version of this definition is due to [98].)

Definition 1.2.5 (Generalized hybrid automaton). A generalized hy-
brid automaton is described by a sixtuple (L,X,A,W,R, Act) where
L, X, A, W and Act are as in Definition 1.2.3, and R is a subset of (L x X) x
(Ax W) x (L xX).

A continuous trajectory (I, a,d,x,w) associated with a location | and a
discrete external symbol a consists of a nonnegative time ¢ (the duration of
the continuous trajectory), a piecewise continuous function w : [0,6] — W,
and a continuous and piecewise differentiable function z : [0,0] — X such that
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- (Lz(t),a,w(t),l,2(t)) € R for all ¢ € (0,9),

- Fi(z(t),(t),w(t)) = 0 for almost all ¢ € (0,0) (exceptions include the
points of discontinuity of w).

A trajectory of the generalized hybrid automaton is an (infinite) sequence
(lo, ao, %o, o, wo) — (I1,a1, 61,21, w1) = (l2,as, 02, T2, w2) — ...
such that at the event times
to = 8g,t1 = 8¢ + 01,ta = 0 + 61 + o, . ..
the following relations hold:

(j, 2j(t5), a5, wi(t;), v, 2541 (t5)) € R, for all j =0,1,2, ...

The subset R incorporates the notions of the location invariants, guards, and
jumps of Definition 1.2.3 in the following way. To each location ! we associate
the location invariant

Inv(l) = {(z,a,w) € X x Ax W | (I,z,a,w,l,x) € R}.

(With an abuse of notation, 2 and w denote here elements of X, respectively
W, instead of wvariables taking their values in these spaces.) Furthermore,
given two locations [,!’ we obtain the following guard for the transition from
[ tol"

Guardy = {(r,a,w) € X x Ax W |3z' € X, (l,z,a,w,l',x") € R}

with the interpretation that the transition from [ to !’ can take place if and
only if (z,a,w) € Guardyy . Finally, the associated jump relation is given by

Jumpy (z,0,w) = {z' € X | (I, z,a,w,l',z") € R}.

Note that the resulting location invariants, guards as well as jump relations
are in principle of a more general type than in Definition 1.2.3, since they all
may depend on the continuous and discrete external variables. (In Subsection
2.2.13 of Chapter 2 we shall see that this is actually an appropriate generaliza-
tion.) Conversely, it can be readily seen that any set E of edges and location
invariants as in Definition 1.2.3 can be recovered from a suitably chosen set
R as in Definition 1.2.5. Therefore, Definition 1.2.5 does indeed generalize
Definition 1.2.3.

A further generalization of the definition of a hybrid automaton would be
to allow different continuous state spaces associated with different locations.
(This is now to some extent captured in the location invariants or the subset
R.) In fact, some of the examples that we will present in Chapter 2 do motivate
such a generalization.
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The definition of a (generalized) hybrid automaton admits compositionality
in the following sense (cf. [1]). For simplicity we shall only give the definitions
for the generalized hybrid automaton model (Definition 1.2.5). Consider two
generalized hybrid automata ¥; = (L;, X;, A;, Wy, Ry, Act;), i = 1,2, and sup-
pose that

Wi =Ws, A =4,

(This is the case of shared external variables.) We define the synchronous par-
allel composition or interconnection ¥ = %4 || Lo of the two generalized hybrid
automata X;,¢ = 1, 2, as the generalized hybrid automaton (L, X, A, W, R, Act)
given by

L=1LxLy
X=X x X5
A=A = A,
W =W, =W, (1.5)

R= {((llvl2): (xlaxZ):avwa(lllleQ)v(xll:x‘lz)) € (L x X)
X(AxW)x (LxX)| U,z a,w,l,z;) € Rjyi =1,2}
Act = Acty x Acts.

This corresponds to the full synchronous parallel composition or interconnec-
tion of the two generalized hybrid automata. We may also consider partial
synchronous parallel compositions by synchronizing only a part of the discrete
external variables a; and in as in Ay, respectively As, and by considering more
general relations between the continuous external variables w; and w,. Fur-
thermore, we may also define the interleaving parallel composition ¥ = X1|||Xo
by taking A = A1 x Ay and W = Wy xWs in (1.5), and by defining R = Ry X R».

1.2.5 Hybrid time evolutions and hybrid behavior

A conceptual problem in Definitions 1.2.3 and 1.2.5 is the formalization of
the notion of the time evolution corresponding to a hybrid trajectory, and in
particular the embedding of the event times in the continuous time axis R.
In Def. 1.2.5 time is broken up into a sequence of closed intervals, which may
reduce to single points. Effectively a counting label is added to time points
which indicates to which element of the sequence the point belongs; this is
necessary to make it possible that state variables have different values at the
“same” event time. A similar labeling procedure has been used for instance
in [162], where the authors speak of a “time space”. These notions of time
are not able to cover situations in which the event times of a trajectory have
an accumulation point but still the trajectory does progress in time after this
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accumulation point. Examples of such a situation are provided in Subsections
2.2.3 and 2.2.6. Therefore we propose here a somewhat more general notion.

Let R be the continuous time axis. The time evolution corresponding to a
hybrid trajectory will be specified by a set £ of time events. A time event in
& consists of an event time t € R together with a multiplicity m(t), which is
an element of N U oo, where N is the set of natural numbers 1,2,3,.... The
time event will be denoted by the sequence

(0% 1 25 gm D8

specifying the sequentially ordered “discrete transition times” at the same
continuous time instant ¢ € R (the event time). For simplicity of notation we

will sometimes write ¢f, ¢4 ¢4 . for ¢1% ¢28 3% .
A time event with multiplicity equal to 1 is just given by a pair
(1%, #)

with the interpretation of denoting the time instants “just before” and “just
after” the event has taken place (a more formal description will be given in
a moment). If the multiplicity of the time event is larger than 1 (a multiple
time event) then there are some “intermediate time instants” (“all at the same
event time t”) ordering the sequence of discrete transitions taking place at t.

The “embedding” of the discrete dynamics into the continuous dynamics
will be performed by the compatibility conditions

z(tt) = z@m®h)
o(t7) = (),
where, in a usual notation,

z(tT) = lim, ; z(7)
z(t™) = lim 4 2(7).

Note that events are allowed to have multiplicity equal to oo, in which case
there are an infinite number of discrete transitions taking place at the same
continuous time instant ¢. It seems natural to require that in such a situation
the sequence of locations I1,1s,13,... at this time ¢ converges to a single lo-
cation, and that lim_,o, z(t**) exists (or, perhaps, has only a finite number
of accumulation points). An example of such a situation will be provided in
Subsection 2.2.6.

The set of event times corresponding to a set of time events £ will be
denoted by £ C R. Hence the set £ of time events can be written as

£ = Usee, (1%, 11, 1m (02},

For the moment we will allow £7 to be an arbitrary subset of R, but later
on (when dealing with the solution concept of a hybrid system) we will put
restrictions on E7.
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The time evolution T¢ corresponding to a time event set £ is defined to be
the set

re = (R\EF)UE.

The union of all time evolutions 7¢ for all time event sets £ will be denoted
by 7. The notion of a time evolution is illustrated in Figure 1.3.

1
A A
-t .t .t
t ty ts |
I I I
e oz 0

Figure 1.3: Time evolution

We now formalize the notion of a trajectory of a generalized hybrid au-
tomaton using the concept of time evolutions. For clarity of notation, we will
distinguish the elements | € L and a € A from the variables P, respectively
S, taking their values in L, respectively A.

A trajectory of the generalized hybrid automaton is then defined by a time
event set &£, together with the corresponding time evolution 7¢, and functions
P:te—»L, z:17¢e > X, S:&£—- A w:71e—> W, such that

- discrete dynamics: for every time event (0% ¢'F 2% .. tm(tw)

(P(tF), 2 (t¥), S(tH), w(t"), PR FD%) 2 (¢ HD0) € R,
k=0,1,...,m(t) — 1

Furthermore P(#) = P(t™®%) for all £ > ¢ up to the next event time #',
as well as P(#'%) = P(tm®%) and S(¢'™) = s(tm®)¥).

(Here it is assumed that for all event times ¢ the multiplicity m(t) is either
finite, or, in case m(t) = oo, that limj_, . (%) and limy_, o, P(t**) both
exist, in which case we denote these limits by z(t"(V%), respectively
P(tm®1) )

- continuous dynamics: for all event times ¢1,¢> such that the interval
(t1,t2) has zero intersection with &7 the function w(¢) is piecewise con-
tinuous and the function z is continuous and piecewise differentiable on
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(t1,12) and satisfies

Fiy(2(t),2(t),w(t)) = 0, for almost all ¢ € (t1,t2)
2(tf) = o(t"" )

x(ty) = z(ty")
whereas

(PEPDE), 2(1), SEPDH, w(t), PV, 2(t)) € R,
for all ¢t € (tl,tg).

(Here, as before, z(t]") := limy;, 2(¢) and z(t5 ) := limyqy, (t).)

The above formalization of time evolutions of trajectories of hybrid systems
also enables us to state a behavioral definition of a hybrid system, as follows.

Definition 1.2.6 (Hybrid behavior). Let W = R? be a continuous com-
munication space and let A be a finite communication space. Define the uni-
versum U of all possible trajectories given by triples (7¢,a,w), with 7¢ the
time evolution corresponding to some time event set £, and functions

S:&E—- A

w:te - W

with the property that at all event times ¢ € £7 with finite multiplicity m(¢)
the discrete variables satisfy S(t™®*%) = S((#)°%) where #' is the subsequent
event time. A hybrid system with continuous variables taking values in W and
discrete variables taking values in A is now defined to be a subset B of U, and
is denoted by (W, A, B).

For many purposes one will actually adapt the above definition by shrinking
the universum . In particular one may want to restrict to functions w which
have some regularity properties like continuity or (piecewise) differentiability.
Furthermore, one may wish to restrict the admissible sets of event times 7.
An easy choice is to restrict to sets £ consisting only of isolated points having
no accumulation points. This excludes however examples like the bouncing
ball in the next chapter (Subsection 2.2.3). Allowing for accumulation points,
on the other hand, creates some problems for the compositionality of hybrid
behaviors (because the accumulation points are removed from the continuous
time axis). We come back to these issues later on.

Remark 1.2.7. The projection of the hybrid behavior on the behav-
ior of the discrete variables S is is given by the wvalues taken by
the discrete variables at the time events, that is, on the set of
time instants ..., ¢0% ¢ 8 gm(0F 08 48 s ()i 408 48 where
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<oyt ta,ts, ... are event times. Moreover, if m(¢;) is finite, then S(t?ﬁ_l) =

S(t;n(t")ﬁ). This defines the behavior of a discrete-event system.

Note, however, that in general the set of “discrete time in-
stants” ... 0F ¢ 5F L gm(E07 08 gb ke gmit)E 408 Wb of this result-
ing discrete-event system may have a very complicated structure.

Analogously, the projection of the hybrid behavior on the behavior of the
continuous variables defines a continuous-time behavior defined on the time
axis R minus the event times and their accumulation points.

1.2.6 Event-flow formulas

In this section we provide an alternative framework for modeling hybrid sys-
tems, which is equation-based and which is therefore in some sense closer to the
usual modeling frameworks for continuous systems than to the graph-related
representations that are often used for discrete systems. Guards, invariants
and discrete transitions are summarized in Definition 1.2.5 in one abstract set
R. Such a formulation has the advantage of being general, but in practice the
set R will usually be described by equations (taken in a general sense to include
also inequalities). Adjoining these equations to the usual sets of differential
and algebraic equations leads to a description in terms of what we shall call
event-flow formulas. Such an equation-based framework may be an attractive
way of modeling hybrid systems with a substantial continuous-time dynamics;
see also the discussion in Subsection 1.2.8.

The style of description in the methodology of event-flow formulas is some-
what similar to the way in which “sentences” are described in model theory.
We begin by listing the types of variables that may occur. A precise semantics
will be given later, but we already indicate the intended meaning of the sym-
bols in order to facilitate the exposition. We use the word “variable” below
to denote symbols that will be subject to evaluation at time points ¢ in the
semantics to be given below. We consider expressions formed from variables
of the following types:

- continuous state variables, denoted by x1,z2,... T,
- discrete state variables, denoted by Py, P, ..., Py
- continuous communication variables, denoted by wi,ws,... ,w,
- discrete communication variables, denoted by S1,S53,...,S;.
The vector (z1,...,x;) will be abbreviated by z, and a similar notational

convention will be used for the other collections of variables. In the semantics,
we will associate to the symbol z a vector of real-valued functions of time
taking values in a space X. Likewise, the continuous communication variables
w will take values in a space W. Each of the discrete state variables P; will
take values in a finite set L;; the product L := L X --- X Ly is the set of
“locations”. Finally, the discrete communication variables S; takes values in
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an alphabet A;, and the product A; x -+ x A, will be denoted by A. As a
simple mnemonic device, the discrete variables are denoted by capital letters
P and S, while the continuous variables z and w are in lowercase. As noted
before, the notation also serves to emphasize the nature of a “discrete variable”
taking values in the discrete spaces L and A, rather than being an element of
these discrete spaces.

The communication variables may be used to link several parts of a system
description to each other. One may also consider “open” systems in which the
behavior of the communication variables is not completely determined by the
system description itself; in such cases the communication variables may be
thought of as providing a link to the (unmodeled) outside world.

To the symbols introduced above we associate certain other symbols,
namely:

- for each continuous state variable z;, there is also a variable Z; (the
derivative of x;)

- for each continuous state variable z; and each discrete state variable P;
there are variables xg and PZ.ti (the next value).

We consider expressions in all the above mentioned variables, which are
Boolean combinations of what we call flow clauses and event clauses. For
our purposes it seems enough to consider flow clauses which are either of the
form

o, ,w, P) = 0 (1.6)
(equality type) or of the form
o, w, P) > 0 (1.7)

(inequality type), where in both cases ¢ is a real-valued function defined on
the appropriate domain. Furthermore, we consider event clauses which are of
the form

¢(z*, P!z, P,S) > 0 (1.8)

where again ¢ is a real-valued function defined on the appropriate domain.
The following definition expresses the notion that at each time the systems
that we consider are subject either to a flow or to an event.

Definition 1.2.8. An event-flow formula, or EFF, is a Boolean formula whose
terms are clauses, and which can be written in the form F' V E where F is a
Boolean combination of flow clauses and E is a Boolean combination of event
clauses.

Remark 1.2.9. Comparing with the definition of a generalized hybrid au-
tomaton (Definition 1.2.5), we see that the flow clauses determine the
differential-algebraic equations describing the activities together with “a part”
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of the subset R (namely, the part involved in the specification of the continu-
ous dynamics), while the event clauses determine the part of R specifying the
discrete dynamics.

Remark 1.2.10. We shall freely use alternative notations in cases when it is
clear how these can be fitted in the above framework. For instance, we write
down equalities in event conditions even when the above formulation gives
only inequalities, since an equality can be constructed from two inequalities.
Also, when for instance P is a discrete variable that may take the values on
and off, we write “P = on” rather than first defining a function ¢ from the
two-element set {on,off} to R that takes the value 0 on on and 1 on off, and
then writing “¢(P) =07.

Remark 1.2.11. For events with multiplicity 1 it is often notationally easier
to use the variables z; (the left-hand limit) and x (the right-hand limit),
and analogously P~ and P, to express the values before and after the event
has taken place. This means that we also use instead of (1.8) event clauses of
the form

p(xt, Pt 27, P7,S) > 0. (1.9)

Remark 1.2.12. To further lighten the notation we shall often use a comma
to represent conjunction, which is a standard convention actually. We use a
vertical bar to denote disjunction between successive lines, so that

clause;

clauses
is read as
clause; V clauses.

We shall also use indexed disjunctions, writing “|;c1,... xyclause;” rather than
“clause; V --- V clauseg”.

For the description of complex systems, it is essential that a composition
operation is available which makes it possible to combine subsystems into
larger systems. For flow conditions, such a composition may be based simply
on conjunction (logical “and”), to express the intuition that the time we are
dealing with here is physical time so that it should be common to all sub-
systems. Things are different however in the case of event conditions. If an
event occurs in one subsystem, there are not necessarily events in all other
subsystems; or it may happen that at the same physical time instant there are
unrelated events, perhaps of different multiplicities, in several subsystems. It
is therefore useful to introduce the notion of an “empty event”, which is de-
fined as follows. All of the alphabets A; are extended with an element blank
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that is different from the existing elements; the interpretation of this value is
“no signal”. The empty event is given by the clause

zt =2z, Pt=P7, wt=w", S=blank (1.10)

We now consider the composition of a number of EFFs. So we start with a
number of event-flow formulas F; V E; (i =1,...,£), which are thought of as
descriptions of subsystems. All of these subsystems have their own collections
of symbols which however need not be disjoint. The disjunction of E; with
the empty event will be denoted by E]. The parallel composition (or just
composition) of the subsystems given by F; V E; is now defined as the EFF

(FLVE)[|[(FaVE) | - || (FeV Ey) =
= (FIANFRAN---ANF)V(E{NESN---ANE}). (1.11)

In this description of composition, communication between subsystems may
take place by shared variables as well as by shared actions.

Event-flow formulas may be used for describing hybrid systems in a similar
way as differential equations are used for describing smooth dynamical systems.
As in the latter case, an exact interpretation of the equations requires the
concept of a solution. In continuous systems, a choice has to be made here
as to what function space will be used. In the hybrid system context, we still
have this question but we also face a few more: in particular, to what extent
will event times be allowed to accumulate, and may multiple events occur at
the same time instant? Already in the case of smooth dynamical systems,
there is no such thing as a “correct” answer to the question to what space the
solutions of a given differential equation should belong; although some spaces
are more popular than others, there is no unique choice that is good for all
purposes and so in practice choices may vary depending on context. There
is no reason to expect that the situation will be different for hybrid systems.
We list a few choices that may turn out to be useful. In each case, we use
a continuous state space X, a continuous communication space W, a discrete
state space L, and a discrete communication space A. It is convenient to use
some topological concepts.

Recall that a “time evolution” is a set of the form

e = (R\EF)UE

with
E = Uee, {(t% 11 ¢m(D))

where 7 is a subset of R and m is a function from &7 to NU {cc}. We say
that the time evolution 7¢ and the set of time events £ are specified by the
pair (£7,m). In order to ease the exposition we restrict throughout to sets Er
which are closed and nowhere dense subsets of R. As before, we sometimes
write ¢f,¢8 ... for ¢14 ¢ ... Furthermore, instead of t° and ¢™()? we also

sometimes write ¢~ and ¢+ respectively. Sets of the form (¢ —4d,¢)U{t"} (with
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t € &7 and 6 > 0) will be written as (¢ — 6,¢7], and likewise we will write
[tT,t+ §) instead of (¢,¢+ ) U{tT}. A time evolution 7¢ specified by a pair
(E7,m) is equipped with a topology generated by subsets of the following four
forms: (t1,t2) C R\E7; (t—4,t7 | witht € E7 and (t—0,t) C R\ Er; [tH,t+0)
with ¢ € &7 and (¢,t +6) C R\ E7; {t/*} with ¢ € £7 and 0 < j < m(t). (For
the fundamental mathematical notion of “topology”, see for instance [79].)
The state spaces X and L and the communication spaces W and A are given
their usual topologies; in the case of the discrete spaces this means the discrete
topology, so that all points of these spaces are viewed as being isolated.

We now first define a space of trajectories that is about as large as one can
have if one wants to be able to give a meaning to the expressions in an EFF.

Definition 1.2.13. The space Z/oo/C' /L{. . consists of tuples (¢, z, w, P, S),
where

- Tg¢ is a time evolution specified by a pair (£, m)

- x is a continuous function from 7¢ to X which is continuously differen-
tiable on R\ &7

w is a locally integrable function from R\ &7 to W having lefthand and
righthand limits at all points of &

- P is a continuous function from 7¢ to L
- S is a function from £ to A.

Remark 1.2.14. Since L is endowed with the discrete topology, continuity of
P means that P is constant outside the event times.

Remark 1.2.15. The letter Z (for Zeno) refers to the fact that in the defi-
nition the set of event times &7 is allowed to have accumulation points; for
instance &7 = {1 | n € Z\ {0}} U{0}, or even the Cantor set, could be sets of
event times. Nevertheless, since &7 is assumed to be closed, these accumula-
tion points are necessarily elements of E7. (If certain accumulation points are
not in £7, e.g. if we would exclude the accumulation point {0} from the above
example of £, then problems come up in defining the continuous dynamics
starting at such an accumulation point.) The symbol co indicates that event
times can be of arbitrarily high or even infinite multiplicity. The symbols C!
and L11OC indicate the degree of smoothness that is required for the trajectories
of the continuous state variables and the continuous communication variables
on the open set R\ £7. The requirement concerning the existence of lefthand
and righthand limits at event times (for the state variables this follows from
the continuity requirement) is not made explicit in the notation since we will
always impose such a condition.

Remark 1.2.16. Note that the definition allows the communication variables
w to jump at event times, i.e. we do not necessarily have w(t~) = w(t™) for
teér.
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The space we have just introduced is very general; however, we shall often
want to work with smaller and more manageable spaces. An example of such
a space is the following.

Definition 1.2.17. The space NZ/1/C'/°/C® consists of tuples
(te,x,w, P,S), where

- T¢ is a time evolution specified by a pair (£7,m) where £ is a set of
isolated points in R, and m(t) =1 for all t € £

- x is a continuous function from 7¢ to X which is continuously differen-
tiable on R \ &7 and which satisfies z(t*) = z(¢) for all ¢t € &7

- w is a continuous function from R\ &7 to W

P is a continuous function from 7¢ to L
- S is a function from & to A.

Remark 1.2.18. The acronym NZ in the above notation stands for non-Zeno;
it refers to the condition that the points of £ are isolated, i.e. there are no
accumulation points. The number 1 indicates that events have multiplicity
one so there is no necessity to define intermediate states. The notation C''/0
indicates that the continuous state variables are differentiable between events
and continuous across events. Note that in this solution concept discontinuities
in the external variables w (for instance in the input «) necessarily correspond
to events.

We also define a third space, which is in some aspects more restricted and
in other aspects more general than the previous one. The abbreviation RZ
used below stands for “right-Zeno”.

Definition 1.2.19. The space RZ/1/C'/° consists of tuples (1, z, P), where

- T¢ is a time evolution specified by a pair (£7,m) where E7 is a set of
right isolated points in R, i.e. for every t € £ there is a 6 > 0 such that
(t,t+0)NEr=0,and m(t) =1forallt € Er

- z is a continuous function from 7¢ to X which is continuously differen-
tiable on R\ &7

- P is a continuous function from 7¢ to L.

Remark 1.2.20. This function class incorporates no communication vari-
ables, so as a space for system specification it is suitable only for “monolithic”
systems (i.e. systems that are described as one closed whole, without use of
subsystems and without communication to an outside world). The “bouncing
ball” discussed in Subsection 2.2.3 is an example of a system that has solu-
tions in the space RZ/1/C'/; the analogous space NZ/1/C'/° would not be
suitable for this example.
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Various other function spaces might be defined. Since any attempt at
completeness would be futile, we do not list any further examples, but we
shall feel free to use variants below.

At this point we can discuss the notion of solution for EFFs. The notion
of solution is based on the evaluation of the elementary clauses in an EFF
at specific time points. To be precise, a clause of the form ¢(z,z,w,P) =0
will be said to evaluate to TRUE for an element of Z/oo/C'/L],. at a time
teR\Erif

p(&(t), z(t), w(t), P(t)) = 0.

Likewise, a clause ¢(x,w, P) > 0 evaluates to TRUE at ¢t € R\ &7 if
o(z(t), w(t), P(t)) = 0.
An event clause ¢(zf, P, z, P|S) > 0 evaluates to TRUE at a time t/# € & if
either j < m(t) and
¢(:1:(t(j+1)ﬁ) p(t(j-%l)ﬁ)’x(tjﬁ) P(t%), S(#7%) > 0,

or j = m(t). Clearly, when clauses have well-defined truth values then any
Boolean combination also has a well-defined truth value. After these prepara-
tions, the notion of solution can be defined as follows.

Definition 1.2.21. An element (¢, z,w, P,S) of Z/oo/C'/L{ . is said to be
a solution of a given event-flow formula if the flow condition evaluates to TRUE

for all t € R\ &7 and the event condition evaluates to TRUE for all #/¢ € £.

Similar definitions can be formulated for other time/trajectory spaces. The
fact that in principle different definitions have to be given for different function
spaces is already common in the theory of ordinary differential equations.

Remark 1.2.22. Sometimes a system description can be considerably sim-
plified by using what might be called a persistent-mode convention, which en-
forces that mode changes will occur only when they are necessary to prevent
violation of flow conditions. Typically the involved conditions are expressed
as inequality constraints on the continuous state variables. In the mechanics
literature the persistent-mode convention is sometimes known as “Kilmister’s
principle” [86], [31]. Formally, a PMC solution for a given event-flow formula
is a solution having the property that, for each tq, there is no solution of the
same EFF that coincides with the given solution for ¢ < ty, that is defined for
t <ty for some ¢; > tg, and that has no event at tg.

1.2.7 Simulation of hybrid systems

After specifying a complete model for a hybrid system, that is, a syntactically
correct model together with a univocal semantics, it can be used for analysis,
simulation and control.

For simulation purposes it is natural to require that the hybrid model under
consideration has unique solutions for every initial state and every external
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“input” signal. Such hybrid systems have been called “well-posed”, and it is
important to derive verifiable conditions which ensure well-posedness.

Once it has been established that a particular system is well-posed in the
sense that trajectories are uniquely defined at least on some interval, the next
question arises of actually computing the solutions. Although in principle any
constructive existence proof for solutions might be used as a basis for calcu-
lation, the requirements imposed by numerical efficiency and theoretical rigor
are quite different and so methods of computation may differ from methods
of proof. This is certainly the case for smooth dynamical systems, where for
instance a Picard iteration may be used for a proof of existence (which ob-
tains the solution as a limit of a provably converging sequence of functions),
whereas for simulation purposes one would typically use a stepping algorithm
in which the difference between the value of the state vector at some time and
its value at the next time step is approximated on the basis of a few computed
function values. In the same way, the simulation of hybrid systems is not nec-
essarily tied to the theory of well-posedness of such systems. Nevertheless the
well-posedness theory does provide a starting point, and the combination of
algorithms for mode selection and jump determination with standard methods
for the simulation of smooth dynamics may already lead to workable simula-
tion routines. Much remains to be worked out in this area however and in this
subsection we will only give a very brief outline.

Basically there are three different approaches to the simulation of hybrid
systems, which each may be worked out in many different ways. The three
approaches may be briefly described as follows (cf. [114]).

1. The smoothing method. In this method, one tries to replace the hybrid
model by a smooth model which is in some sense close to it. For instance,
diodes in an electrical network may be described as ideal diodes (possibly plus
some other elements), which will give rise to regime-switching dynamics, or as
strongly nonlinear resistors, which gives rise to smooth dynamics. Similarly,
in a mechanical system with unilateral constraints one might describe colli-
sions as instantaneous, and then one must allow jumps in velocities; or one
might describe them in terms of a compression and a decompression phase,
and in that case jumps in velocities may be avoided. In a similar way, unilat-
eral constraints in an optimization problem may be replaced by penalty func-
tions. Taking an extreme point of view, one might argue that even switches
in computer-controlled processes may be described by smooth dynamical sys-
tems; indeed, the transistors inside the computer that physically carry out the
switching can be described for instance in terms of the Ebers-Moll differential
equations (see e.g. [46, p. 724]). Reasoning in this way, a point could be made
that it is almost always possible to provide a smooth model that is “closer to
reality” than a competing hybrid model.

Nevertheless, one can easily come up with examples that would be relatively
awkward to describe on the basis of smoothing. If one looks at a bouncing
ping-pong ball on a flat table, then the nonsmooth model comes to mind
immediately since the time during which the ball is in contact with the table
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is very short in comparison with the flight phases. In a smooth model one
would be forced to spend considerable effort in specifying various parameters
which in the nonsmooth model are all captured by one dominant and easily
observable parameter, namely the restitution coefficient. Indeed, the strength
of a hybrid model as opposed to a smooth model is usually the simplicity of
the first.

Obviously the discussion about whether to use smooth or nonsmooth mod-
els should be related to the actual purpose of modeling. If a model for a
bouncing ball is formulated with the aim of predicting the number of bounces
that will occur, then the simple nonsmooth model with a constant coefficient
of restitution is not of much use, since it predicts an infinite number of bounces
— an answer which is incorrect and, even worse, not informative. At a general
level of discussion one cannot make an argument for one or the other. But one
can say that at least for certain problems nonsmooth models are more conve-
nient than smooth models. Since in this book we are interested in nonsmooth
modeling, we shall further limit the discussion to that case. We shall not even
spend much attention to the interesting questions around the convergence of
solutions of smooth models to solutions of nonsmooth models.

2. The event-tracking method. The most common way of generating trajec-
tories of hybrid systems seems to be the one that is based on the following
sequence:

(

(ii) event detection;

)
)
)
)

i) simulation of the smooth dynamics within a given mode (discrete state);

(iii) determination of a new discrete state (new mode);
(iv
The idea is to simulate the motion in some given mode using a time-stepping
method until an event is detected, either by some external signal (a discrete
input, such as the turning of a switch) or by violation of some constraints
on the continuous state. If such an event occurs, a search is made to find
accurately the time of the event and the corresponding state values, and then
the integration is restarted from the new initial time and initial condition in
the “correct” mode; possibly a search has to be performed to find the correct

mode.

In general one should expect that the behavior within a given mode is
actually given by a mixture of differential and algebraic equations; for instance
in the simulation of a sliding mode one has such a situation, cf. Chapter 3. The
numerical integration of systems of DAEs has received considerable attention
in recent years, see for instance the books by Brenan et al. [28] and by Hairer
and Wanner [61] for more information. In the context of hybrid systems,
start-up procedures for DAE solvers should receive particular attention since
re-initializations are expected to occur frequently.

determination of a new continuous state (re-initialization).
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Events within hybrid system simulation can be distinguished in what we
called externally induced events and internally induced events. Externally in-
duced events force a change of mode at a certain time known in advance, such
as when switches are turned in an electrical network according to a prede-
termined schedule. Internally induced (or state) events are more difficult to
handle; these are the events that occur for internal reasons, such as when an
inequality constraint becomes active. To catch the internally induced events,
a hybrid system simulator needs to be equipped with an event detection mod-
ule. Such a module will monitor the sign of certain functions of the state to
see if the required inequality constraints are still satisfied. In the combination
with a time stepping algorithm for the simulation of continuous dynamics, one
has to take into account that the time at which an event takes place will in
general not coincide with one of the grid points that the continuous simula-
tor has placed on the time axis. Both the event time itself and the value of
the continuous state at the time of the event will have to be found by some
interpolation method.

The problem of finding the next discrete state is called the mode selection
problem. The problem may be easy in some cases, for instance in a system
in which buffers are emptied in a fixed order. There are other cases though
in which the problem can be quite complicated. Consider for instance a pile
of boxes whose relative motion is subject to a Coulomb friction law. Suppose
that support on one side is suddenly removed so that the pile will tumble
under the force of gravity. It is nontrivial to determine which boxes will start
sliding with respect to each other and which ones will not. In the case of linear
complementarity systems it will be shown in Chapter 4 how the next mode can
be actually determined by solving an algebraic problem, and one can use this
as a starting point to look for efficient numerical methods. In cases in which
the new mode has to be selected partly on the basis of information from the
continuous state, one is dealing with a nonconstant mapping from a continuous
domain to a discrete domain. Such a mapping can never be continuous and
so one will have to live with the fact that in some cases decisions will be very
sensitive. In such situations the simulation software should provide a warning
to the user, and if it is difficult to make a definitive choice between several
possibilities perhaps the solver should even work out all reasonable options in
parallel.

In many hybrid systems the trajectories of continuous variables can be
expected to be continuous functions, and in these cases the problem of re-
initialization comes down to determining the value of the continuous state
at the event time so that the simulation of the smooth dynamics in the new
regime can start from an initial state that is correct up to the specified tol-
erance. In some cases however, such as in mechanical systems subject to
unilateral constraints, jumps need to be calculated, see e.g. the examples pro-
vided in Chapter 2. Theoretically, the state after the jump should satisfy
certain constraints exactly; finite word length effects however will cause small
deviations in the order of the machine precision. Such deviations may cause
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an interaction with the mode selection module; in particular it may appear
that a certain constraint is violated so that a new event is detected. In this
way it may happen that a cycling between different modes occurs (“livelock”),
and the simulator does not return to a situation in which motion according
to some continuous dynamics is generated, so that effectively the simulation
stops.

3. The timestepping method. In a number of papers (see for instance
[111, 124, 146] it has been suggested that in fact it may not be necessary
to track events in order to obtain approximate trajectories of hybrid systems.
Moreover, such methods have already been used to implement simulators for
demanding applications like the simulation of integrated circuits with thou-
sands of transistors [93]. The term “timestepping methods” has been used to
refer to methods that not aim to determine event times; we shall use this term
as well, even though of course also the event-tracking methods use time dis-
cretization. Rather than giving a formal discussion of timestepping methods,
let us illustrate the idea in an example.

Consider the following system, which is actually a time-reversed version of
an example of Filippov [54, p. 116]. Let a relay system be given by

Z1(t) —sgnxy(t) + 2sgn sy (t)

2(t) = —2sgnz(t) —sgnxa(t)

(1.12)

where the signum function (or relay element) sgn is actually not a function
but a relation (or multi-valued function) specified by

(x>0 Asgnz=1)V (<0 A sgnz=-1) V
(x=0A —1<sgnz <1). (1.13)

The system (1.12) may be described as a piecewise constant system; in each
quadrant of the (x1,zs)-plane the right hand side is a constant vector. The
interpretation of systems containing relay elements will be further discussed
in Chapter 3. In the case of the simple example above it is strongly suggested
that solutions should be as pictured in Fig.1.4. The solutions are spiraling
towards the origin, which is an equilibrium point. It can be verified that
4 (|lz1(t)| + |z2(t)]) = —2 which means that solutions starting at (z19,220)
cannot stay away from the origin for longer than 3 (|z19| + |220]) units of time.
However, solutions cannot arrive at the origin without going through an infinite
number of mode switches; since these mode switches would have to occur in a
finite time interval, there must be an accumulation of events.

Clearly an event-tracking method is in principle not able to carry out sim-
ulation across the accumulation point. The simplest fixed-step discretization
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Figure 1.4: Solutions of Filippov’s example (1.12)

scheme for (1.12) is the forward Euler scheme

Tretl ZT0k sgnxy r +2sgnTo g

h ' (1.14)

T2 k+1 — T2k

B — = —2sgnxip —SgNTo
where h denotes the size of the time step and the variable z;; (i = 1,2) is
intended to be an approximation to x;(t) for t = kh. With the interpretation
(1.13) of the signum function this discrete-time system is not deterministic,
however. An alternative is to use an implicit scheme. The simplest choice of
such a scheme is the following:

T1,k+1 — L1,k
———— = —SgnTi pt1 +25GNT2 41

h (1.15)

T2 k+1 — T2k

= —25gNn %1 p41 — SEL T2 ky1-
At each step, 1 and za are given and (1.15) is to be solved for z; y+1 and
T g+1. The equations (1.15) may be written as a system of equalities and
inequalities by introducing some extra variables. Simplifying notation a bit by
writing simply z; instead of z; 41 and x? for z; 1, we obtain the following set
of equations and inequalities:

T = :1:? — hui + 2hus (1.16a)

To = :1:3 — 2huy — hus (1.16b)

(21 >0Au1 =1)V(z1 <0Aup =—-1)V(z; =0A-1<u; <1)
(1.16c)
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(22 >0Aus=1)V(za <0Aus=-1)V(z2 =0A-1<uzs <1).
(1.16d)

This system is to be solved in the unknowns 1, 2, uy, and wuy for arbitrary
given :1:? and :1:3; h is a parameter. It can be verified directly that for each
positive value of h and for each given (z,23) the above system has a unique
solution; alternatively, one may recognize the system (1.16) as an instance of
the Linear Complementarity Problem of mathematical programming and infer
the same result from general facts about the LCP. In Figure (1.5) we show the
partitioning of the (x?,xg) plane that corresponds to the nine possible ways
in which the disjunctions in (1.16¢-1.16d) can be satisfied. For instance, the
solution that has z; = 0 and x5 = 0 is obtained for the values of (z},z3) such
that the solution (uj,us) of

EA NN T e 117)
Lo ] L2 ] lw] o]

satisfies Ju1| < 1 and |ua| < 1. A simple matrix inversion shows that this
happens when

—5h < @} 4 2z} < bh, —bh < —2z) 4+ % < 5h (1.18)

which corresponds to the central area in Fig.1.5. The solution of the dis-
cretized system behaves like that of the original continuous system except in
the narrow strips which do not influence the solution very much, and except in
the central area where the discretized solution jumps to zero whereas the con-
tinuous system continues to go through mode changes at a higher and higher
pace. Although we do not present a formal proof here, it is plausible from the
figure that, when the step size h tends to zero, the solution of the discretized
system converges to the solution of the original system, including the contin-
uation of this solution by z(t) = 0 beyond the accumulation of event times.
This happens in spite of the fact that the discretized system only goes through
finitely many mode changes. Note also that the explicit scheme (1.14) shows
a rather different and much less satisfactory behavior.

The discussion of the example suggests that at least in some cases and by
using suitably selected discretization schemes it is possible to get an accurate
approximation of the trajectories of a hybrid systems without tracking events.
Obviously there are many questions to be asked, such as under what conditions
it is possible to use a timestepping method, which discretization methods are
most suitable, which orders of convergence can one get, and what can be gained
by using a variable step size rather than a fixed step size. These matters are
to a large extent a matter of future research.

1.2.8 Representations of hybrid systems

In general, the quality and effectiveness of any mathematical model depends
crucially on the purpose one wants to use it for. This is particularly true for
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Figure 1.5: Partitioning of the plane induced by (1.15)

models of complex systems, and thus for most hybrid systems. Furthermore,
mathematical models of the same system, which are exactly equivalent, may
have very different properties from the user’s point of view. Also, the math-
ematical model (or language) describing the functioning of the system may
not be the same as the appropriate language formulating the requirements
which the system is expected to satisfy (the specifications). These features
are particularly present in the field of discrete-event systems (or distributed or
concurrent systems) where one finds in the literature a wealth of different de-
scriptions, from process-algebraic formalisms such as CCS, CSP, ACP, LOTOS
and logical theories such as temporal logic to graphically oriented approaches
(net theories) such as Petri nets and automata, all with their own advantages
and disadvantages.

As aresult, it is to be expected that mathematically equivalent descriptions
of a hybrid system, that is, different representations of the same hybrid system,
have very different properties, depending on the purpose one wants to use it
for. Also, it is clear that certain representations are better suited for treating a
specific subclass of the wealth of hybrid systems than others. Finally, since the
representation formalism often defines the starting point for the development
of tools for automatically checking certain system properties, the resulting
algorithmic properties of different representations may differ considerably.

In conclusion, different representations of hybrid systems have their own
pros and cons, and one cannot hope for a single representation that will be
suitable in all cases and for all purposes. Let us briefly and tentatively discuss
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some of the expected merits of the hybrid system representations we have seen
so far.

It may seem clear that the behavioral definition of a hybrid system (Def-
inition 1.2.6) is useful from a conceptual point of view and for theoretical
purposes, but for most other purposes will not yield a convenient descrip-
tion. Instead, in order to carry out algorithms, one will usually need a more
manageable and compact hybrid system representation.

Definitions 1.2.3 and 1.2.5 of a (generalized) hybrid automaton do provide
workable representations of hybrid systems for various aims. First of all, they
offer a clear picture of hybrid dynamics, which is very useful for exposition
and theoretical analysis. A favorable feature of the hybrid automaton model
is that the semantics of the model is quite explicit, as we have seen above.
Furthermore, for a certain type of hybrid systems and for certain applications,
the hybrid automaton representation can be quite effective.

Nevertheless, a drawback of the hybrid automaton representation is its
tendency to become rather complicated, as we shall see already in some of the
examples provided in the next chapter. This is foremost due to the fact that
in the hybrid automaton model it is necessary to specify all the locations and
all the transitions from one location to another, together with all their guards
and jumps (or to completely specify the subset R of Definition 1.2.5). If the
number of locations grows, this usually becomes an enormous and error-prone
task. Other related types of (graphical) representations of hybrid systems
that have been proposed in the literature, such as differential (or dynamically
colored) Petri nets, may be more efficient than the hybrid automaton model
in certain cases but have similar features.

For hybrid systems arising in a “physical domain” it seems natural to use
representation formalisms such as event-flow formulas, which are closer to first
principles physical modeling. First principles modeling of dynamical systems
almost invariably leads to sets of equations, differential or algebraic. Further-
more, the hybrid nature of such systems is usually in first instance described
by “if-then” or “either-or”statements, in the sense that in one location of the
hybrid system a particular subset of the total set of differential and algebraic
equations has to be satisfied, while in another location a different subset of
equations should hold. Thus, while in the (generalized) hybrid automaton
model the dynamics associated with every location are in principle completely
independent, in most “physical” examples (as we will see in Chapter 2) the set
of equations describing the various activities or modes (continuous dynamics
associated to the locations) will remain almost the same, replacing one or more
equations by some others.

Seen from this perspective, the (generalized) hybrid automaton model (and
other similar descriptions of hybrid systems) may be quite far from the kind of
model one obtains from physical first principles modeling, and the translation
of the modeling information provided by equations, inequalities and logical
statements into a complete specification of all the locations of the hybrid au-
tomaton together with all the possible discrete transitions and the complete
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continuous-time dynamics of every location may be a very tedious operation
for the user. This becomes especially clear in an object-oriented modeling ap-
proach, where the interconnection (or composition) of hybrid automata may
easily lead to a rapid growth in number of locations, and a rather elaborate
(re-)specification of the resulting hybrid automaton model obtained by inter-
connection. Thus from the user’s point of view an interesting alternative for
efficiently specifying “physical” hybrid systems is to look for possibilities of
specifying such systems primarily by means of equations, as in the framework
of event-flow formulas. The setting of event-flow formulas is close to that of
simulation languages such as Modelica™ [50]. Some of the modeling con-
structs in Modelica relating to hybrid systems do in fact have the form of
event-flow formulas. Synchronous languages like LUSTRE [62] and SIGNAL
[19] are also related, be it more distantly since these languages operate in dis-
crete time; see [18] for an approach to general hybrid systems inspired by the
SIGNAL language.

The formalism of event-flow formulas results in rather implicit representa-
tions of a hybrid system, as opposed to the almost completely explicit repre-
sentations provided by the (generalized) hybrid automaton model. The price
that has to be paid for the use of more implicit representations is that some
of the problems in specifying the hybrid system are shifted to the definition of
its solutions (the semantics).

Within the framework of event-flow formulas one still strives for complete
specifications of the hybrid system under consideration. In some examples
(e.g. the two-carts example, the power-converter example and the variable-
structure systems example in Chapter 2) the initial description of the hybrid
system obtained from first principles modeling is incomplete, especially with
regard to the specification of the discrete dynamics. In fact, one would like
to automatically generate a complete event-flow formula description based on
this initial, incomplete, description, together with some additional information,
like the assumption of elastic or non-elastic collisions in Subsection 2.2.9. In
Chapter 4 we will in fact work out such a framework for a special class of
hybrid systems, called complementarity hybrid systems (including some of the
examples given in Chapter 2).

A wealth of different formalisms for describing hybrid systems have been
proposed and are beginning to emerge in the literature. Most of them are ex-
tensions of formalisms for describing concurrent systems (extended duration
calculus, hybrid CSP, hybrid state charts, TLA+, Z and duration calculus,
VDM++, etc.), and are efficient only for relatively simple continuous dynam-
ics, such as clock time evolution (£ = 1 or £ = ¢, where ¢ is some constant) or
continuous dynamics which can be reasonably approximated in this way. From
a general point of view it seems natural to try to combine process-algebraic for-
malisms with the description of continuous dynamics by differential-algebraic
equations; but no general theory has emerged so far in this direction.
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1.3 Notes and References for Chapter 1

A broad view on the research activities in the area of hybrid systems during the
last decade can be obtained from the conference proceedings [58], [5], [3], [100],
[6], [137], [153], as well as the journal special issues [7] and [116]. Needless to
say that many valuable aspects and/or approaches covered in the literature
will not be addressed in the presentation of hybrid systems in this text. The
terminology “hybrid systems” for this class of systems seems to have been first
used by Witsenhausen [159]. A recent introduction to various approaches in
the theory of concurrent processes, in particular CSP, can be found in [133];
see this book for further references. For temporal logic we refer to [104] and
[105]. For an interesting discussion on the similarities and differences between
the view points of on the one hand computer science and discrete event systems
(automata) and on the other hand systems and control theory we refer to [101].

There are several useful approaches to hybrid systems that we have not dis-
cussed here. Often these approaches have been developed with an eye towards
specific applications or techniques. We mention two directions in particular.
In the study of discrete-event systems, Petri nets enjoy great popularity be-
cause many situations can be modeled much more efficiently by a Petri net
than by a finite automaton with no special structure. For proposals concerning
extensions of Petri nets with continuous dynamics, see for instance [43, 119].
In contrast, the approach based on mixed logical dynamical (MLD) systems
introduced in [16] is a discrete extension of a continuous framework. In this
approach a class of hybrid systems is described by linear dynamic equations
subject to linear inequalities, on the basis of the correspondence that can be
constructed between propositional logic and linear inequalities in real and in-
teger variables (see e.g. [157]).



Chapter 2

Examples of hybrid
dynamical systems

2.1 Introduction

In this chapter we treat various (rather simple) examples of hybrid systems
from different application areas, with the aim of illustrating the notions of
hybrid models and dynamics discussed in the previous chapter. Some of the
examples will also return in the developments of the following chapters.

In order to formalize the examples as hybrid systems we primarily use the
notion of a hybrid automaton (Definition 1.2.3), or the framework of event-flow
formulas as introduced in Subsection 1.2.6 of the previous chapter. A number
of notational conventions will be used to facilitate the presentation of event-
flow formulas; these have partly already been mentioned in Subsection 1.2.6.
A comma is used to indicate logical conjunction between several expressions
on one line, a vertical bar is used to indicate logical disjunction between several
expressions on one line or between successive lines, and a left curly bracket is
used to indicate logical conjunction between successive lines. Furthermore, ||
indicates parallel composition between two subsystems. The symbols associ-
ated with a given subsystem are not listed explicitly but are understood as
being the symbols that occur in the Boolean expressions in the EFF for that
subsystem. Variables are understood to be continuous across events by de-
fault, so we do not explicitly write conditions of the type m;" = x;; likewise,
conditions of the form S = blank are not written explicitly. Also the empty
event that goes with each subsystem is not written explicitly.

2.2 Examples

2.2.1 Hysteresis

Consider a control system with a hysteresis element in the feedback loop (cf.
[26]):

t=H(z)+u (2.1)

35
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Figure 2.1: Hysteresis

where the multi-valued function H is shown in Figure 2.1. Note that this
system is not just a differential equation whose right-hand side is piecewise
continuous. There is “memory” in the system, which affects the right-hand
side of the differential equation. Indeed, the hysteresis function H has an
automaton naturally associated to it, and the system (2.1) can be formalized
as the hybrid automaton depicted in Figure 2.2.

Guard: z > A
— T
Loc. inv Loc.inv.
r <A > —A
Guard: z < A

Figure 2.2: Control system with hysteresis as a hybrid automaton

In Figure 2.2 the location invariants are written inside the two circles rep-
resenting the two locations, and the transitions (events) are labeled with their
guards. Note that this is a hybrid system involving internally induced switch-
ings, but no jumps.

If we follow the “persistent-mode convention” of Remark 1.2.22; then an
event-flow formula for this system is simply given by

t=14u, <A
(2.2)
t=-14wu, z>-A.
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2.2.2 Manual transmission

Consider a simple model of a manual transmission [30]:

.i'l = X2
—a.x2 +u

= 1+wv

where v is the gear shift position v € {1,2,3,4}, u is the acceleration and
a is a parameter of the system. Clearly, this is a hybrid system having four
locations and a two-dimensional continuous state, with controlled transitions
(switchings) and no jumps.

2.2.3 Bouncing ball

Consider a ball bouncing on a table; the bounces are modeled as being in-
stantaneous, with restitution coefficient e assumed to be in the open interval
(0,1). There are no discrete variables (there is only one location), and there
is one continuous variable, denoted by ¢; this variable indicates the distance
between the table and the ball.

In the hybrid automaton model of this system the system switches from the
single location back to the same location while an (autonomous) jump occurs
in the continuous state given by the position ¢ and the velocity ¢, since the
velocity changes at an event (impact) time ¢ from ¢(t°!) into g(t*) = —eq(t"%).
The guard of this transition (event) is given by ¢ = 0, ¢ < 0.

The dynamics of the system can be summarized by the differential equation
(after normalization of all constants)

i=—1 (2.3)
if ¢ > 0, together with the discrete transition (impact rule) at an event time 7

q(7%) = —eq(r™) (2.4)

which occurs if ¢ = 0 and ¢ < 0.

Furthermore the connection between the dynamics at “ordinary” time in-
stants and the discrete transition at an event time 7 is provided by the com-
patibility conditions

limgyr q(t) = q(7%) = q(7%) = limy,- (2)
limyy7 g(t) = G(r%) (2.5)
q(t%) = limy, 4(t).

Using the convention that state variables are continuous across events un-
less indicated otherwise, one may write equations (2.3) and (2.4) in an alter-
native and more compact form as the event-flow formula (in the continuous
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state vector x = (g, ¢))
(2.6)

It is clear that the system can be consistently initialized by prescribing ¢(07)
and ¢(07), with ¢(0~) > 0. In general it can be a nontrivial question for an
event-flow formula to determine the data one has to provide at 0~ in order to
ensure the existence of a unique solution with these initial data. Prescribing
data at 0~ rather than at 0 allows 0 to be an event time.

In this example, event times must actually have accumulation points; for
instance if we set ¢(0~) = 0 and ¢(0~) = 1, then it is easily verified that
bounces take place at times 2, 2 4+ 2e, 2 + 2e + 2¢2, ..., so that we have an
accumulation point at 12: Nevertheless we are still able to define a solution:

Er = (2X55¢ ke N u{Z}
— k 1 k—1 i\92 k—1 k .
q(t) = et—g(t—23 0¢) forte (23 55, €,23 5 0¢%),
k=0,1,2,...
=0 for t > 2

2.7)

(we have used the standard convention that a summation over an empty set
produces zero). One easily verifies that this is the only piecewise differentiable
solution to (2.6) that is continuous in the sense that the left- and right-hand
limits of ¢(t) exist and are equal to each other for all t. Note that in the
present example the hybrid trajectory can be naturally extended after the
accumulation point t = 2(1 — e)~! of event times, since both the continuous
state and the discrete state (there is only one!) converge at the accumulation
point. In the present case the extension is just the zero trajectory, but it is
easy to modify the example in such a way that the extension is more involved.
For some examples of hybrid systems having more than one location, where
the existence of an extension after the accumulation point is more problematic,
we refer to [82].

2.2.4 Temperature control system

In a simple model to be used in temperature control of a room (cf. [1]), we
have one continuous variable (room temperature, denoted by 6(t), and taking
values in R) and one discrete variable (status of the heater, denoted by H (¢)
and taking values in {on, off}). The continuous dynamics in the system may
be described by an equation of the form

&= f(z,w, H), 0=g(x) (2.8)
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where f(-,-) is a (sufficiently smooth) function of the continuous state z, the
discrete state H, and the continuous external variable w, which may for ex-
ample contain the outside temperature. The hybrid automaton model of this
system is given by two locations with the obvious location invariants, as given
in Figure 2.3. Note that the specification of the guards is crucial for the set of

6 <19

Figure 2.3: Temperature-thermostat system as a hybrid automaton

trajectories of the hybrid automaton. For example, if we take the guards to
be 6 > 19, respectively 8 < 20, then transition from one location to another is
permitted while the temperature 6 is between 19 and 20, and the temperature-
thermostat system will behave non-deterministically. This specification may
be appropriate in particular when the thermostat is actually a human con-
troller, or in other circumstances in which the thermostat takes other factors
into consideration than just the one that is explicitly specified in the model. A
more detailed specification may not be worth the effort for some applications.
A more restrictive specification of the guards would be 8 = 20, respectively
# = 19; note however that this is still not quite enough to obtain unique state
trajectories for all input trajectories.

In an event-flow description the system is explicitly modeled as a com-
position of two subsystems, namely the heater and the thermostat. So we
write

system = heater || thermostat (2.9)

where the subsystem “heater” is given by (2.8) in which H now acts as a
discrete communication variable, and the subsystem “thermostat” is given by

# <20, H=on

6 >19, H = off
6 <20, H™ =on
6>19, HT = off.

(2.10)

If it is desired to specify for instance that the heating can only be turned on
when the temperature is exactly 19 degrees, then the first event condition in
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(2.10) should be replaced by
=19, H =off, H' =on. (2.11)

Alternatively we can impose the “persistent-mode convention” discussed in
Remark 1.2.22.

2.2.5 Water-level monitor

Our next example (taken from [1]) is somewhat more elaborate than the ones
that we discussed before. The example concerns the modeling of a water-level
control system. There are two continuous variables, denoted by y(t) (the water
level) and z(t) (time elapsed since last signal was sent by the monitor). There
are also two discrete variables, denoted by P(t) (the status of the pump, taking
values in {on, off}) and S(t) (the nature of the signal last sent by the monitor,
also taking values in {on,0ff}). The dynamics of the system is given in [1] as
follows. The water level rises one unit per second when the pump is on and
falls two units per second when the pump is off. When the water level rises
to 10 units, the monitor sends a switch-off signal, which after a delay of two
seconds results in the pump turning off. When the water level falls to 5 units,
the monitor sends a switch-on signal, which after a delay of again two seconds
causes the pump to switch on.

There are several ways in which one may write down equations to describe
the system, which may be related to various ways in which the controller may
be implemented. For instance the monitor should send a switch-off signal when
the water level reaches 10 units and is rising, but not when the level reaches 10
units on its way down. This may be implemented by the sign of the derivative
of y, by looking at the status of the pump, or by looking at the signal last sent
by the monitor. Under the assumptions of the model these methods are all
equivalent in the sense that they produce the same behavior; however there can
be differences in robustness with respect to unmodeled effects. The solution
proposed in [1] is based on the signal last sent by the monitor. The hybrid
automaton model of this system is given in Figure 2.4.

For a description by means of event-flow formulas it seems natural to use
parallel composition. One has to spell out in which way the monitor knows
whether the water level is rising or falling when one of the critical levels is
observed. Here we shall assume that the monitor remembers which signal it
has last sent. For that purpose the monitor needs to have a discrete state
variable. We can then write the system as follows:

system = tank || pump || monitor || delay (2.12a)
with

P=on, gy=1
tank (2.12b)

P =off, y=-2
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Figure 2.4: Water-level monitor

y=>5
_—
z:=0

S'=swon, P'=on
pump (2.12c)
S' = sw_off, P = off

y <10, @ =req off
. | y>5 Q=reqon
monitor
y =10, @~ =reqg_on, Q7 =req_off, S = sw_off
Yy =9, (Q~ = req_off, Qt =req_on, S =sw_on
(2.12d)
D = inactive, 7=0
D # inactive, 7=1, 7<2
(2.12e)
Dt=5 1t =0

=2, S'=D", 17 =0, D' =inactive.

delay

Remark 2.2.1. When active, the delay needs a clock (implemented by the
variable 7) in order to tell when two units of time have passed. When the
delay is inactive it doesn’t need the clock, however; therefore it would perhaps
be better to say that during these periods the clock is “nonexistent” rather
than to give it some arbitrary dynamics. This would require a modification of
the setting described here in the spirit of the “presences” of [18].
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2.2.6 Multiple collisions

The area of mechanical collisions offers a wealth of examples for hybrid systems
modeling, see e.g. [31] and the references quoted therein. We will only consider
the following seemingly simple case, which is sometimes known as Newton’s
cradle (with three balls). Consider three point masses with unit mass, mov-
ing on a straight line. The positions of the three masses will be denoted by
q1,q2,q3, with ¢; < g2 < g3. When no collisions take place the dynamics of
the three masses is described by the second-order differential equations

G = v

for i = 1,2,3, with F; some prespecified force functions (e.g., gravitational
forces).

Collisions (events) take place whenever the positions ¢; and the velocities
v; satisfy relations of the form

9 = gj

v > U5

for some i € {1,2,3} with j =i+ 1.
The usual impact rule for two rigid bodies a and b with masses m,,, respec-
tively my, specifying the velocities v, vg after the impact, is given by

vh — vg = —e(vy — Vg) (2.13a)
mavg + mbvg = MyVq + Mpp (2.13b)
where e € [0, 1] denotes the restitution coeflicient. Of course, the impact rule
(2.13) constitutes already an event idealization of the “real” physical collision
phenomenon, which includes a fast dynamical transition phase. Also note
that (2.13b) expresses conservation of momentum for simple impacts. Below
we shall apply this rule in a situation where multiple impact occurs (as it was
done in [63]); of course one may debate whether such an extension is “correct”.
Let us now consider Newton’s cradle with three balls, and suppose that at
some given time instant ¢ € R we have

g =q=qg=0
v=1 (2.14)

UQZU3:0.

How do we model this case with the above impact rule? The problem is that
not only the left mass is colliding with the middle mass, but that also the
middle mass is in contact with the right mass; we thus encounter a multiple
collision.
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There are at least two ways to model this multiple collision based on the
impact rule (2.13) for single collisions, and these two ways lead to different
answers! One option is to regard the middle and the right mass at the moment
of collision as a single mass, with mass equal to 2. Application of the impact
rule (2.13) then yields

T = 1(1-2e)

(1+e€)

v

Wl W

+ —
Ve =

where v. denotes the velocity of the (combined) middle and right mass. For
e = 1 (perfectly elastic collision) this yields the outcome v = —%,vF = 2,
while for e = 0 (perfectly inelastic collision) we obtain the outcome v;” = v} =
%. Another way of modeling the multiple impact based on the single impact
rule (2.13) (cf. [63]) is to imagine that the collision of the left mass with the
middle mass takes place just before the collision of the middle mass with the
right mass, leading to an event with multiplicity at least equal to 2.

For e = 1 this alternative modeling leads to the following different descrip-

tion. The impact rule (2.13) specializes for e = 1 to the event-clause

= ’Uj

R

= U;.

Hence, we obtain for the initial condition (2.14) an event with multiplicity 2,
representing the transfer of the velocity v; = 1 of the first mass to the second
and then to the third mass, with the velocities of the first and second mass
being equal to zero after the collision. This behavior is definitely different from
the behavior for e = 1 derived above, but seems to be reasonably close, at least
for small time, to what one observes experimentally for “Newton’s cradle”.

On the other hand, for e = 0 (perfectly inelastic collision), we obtain in
the second approach from (2.13) the event clause

1
Uf = E(v2 +v;) = v?.
With the same initial conditions (2.14) as above, this gives rise to an event
with multiplicity equal to oco. In fact, we obtain the following distribution of
velocities at the subsequents stages t%%, 4, t# 8% of the time event at time
t:

U1 V2 U3

1% 1 0 0
# 1 1

i 1 1 1

t 2 4 4
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b 3 3 1
t 8 8 1
+ + +

# 1 1 1
£ 3 3 3

Hence the outcome of this event with multiplicity oo is the same as the outcome
derived by the first method, with an event of multiplicity 1.

Interesting variations of both modeling approaches may be obtained by
considering e. g. four unit masses, with initial conditions

G =q =g =q=0
v =vg =1 (215)

U3:U4:O.

Another interesting issue which may be studied in the context of this example
concerns the continuous dependence of solutions on initial conditions. For a
brief discussion of this subject in an example with inelastic collisions, see also
Remark 4.5.2 below.

2.2.7 Variable-structure system

Consider a control system described by equations of the form #(t) =
f(z(t), u(t)), where u(t) is the scalar control input. Suppose that a switching
control scheme is employed that uses a state feedback law u(t) = ¢ (z(t)) when
the scalar variable y(t) defined by y(t) = h(z(t)) is positive and a feedback
u(t) = ¢2(x(t)) when y(t) is negative. Writing f;(z) = f(z, ¢;(x)) for i = 1,2,
we obtain the dynamical system

&= fi(z) if h(z)>0 (2.16)
0.

Such a system is sometimes called a wvariable-structure system. The precise
interpretation of the above equations, which are in principle ambiguous since
there is no requirement that fi(z) = fo(z) when h(z) = 0, will be discussed
briefly here and more extensively in Chapter 3.

A variable-structure system can be considered as a hybrid system with two
locations having different activities; the expressions h(z) > 0 and h(z) < 0
serve as location invariants. The problem in specifying this hybrid system is
to define the trajectories of the system, starting from initial conditions on the
surface h(z) = 0. The combined vector field f(z) defined by f(z) := fi(z)
for h(z) > 0 and f(x) := fa(z) for h(z) < 0 is in general discontinuous on
the switching surface h(z) = 0. Hence the standard theory for existence and
uniqueness of solutions of differential equations does not apply, and, indeed, it
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Figure 2.5: Collision to an elastic wall

is easy to come up with examples exhibiting multiple solutions for the contin-
uous state z. Furthermore, it cannot be expected that state trajectories z(t)
are differentiable at points where the switching surface is crossed, so it would
be too much to require that solutions satisfy (2.16) for all . One possible way
out is to replace the equation (2.16) by the integral form

() = x(0)+/0 F((s))ds (2.17)

which doesn’t require the trajectory z(-) to be differentiable. A solution of
(2.17) is called a solution of (2.16) in the sense of Carathéodory. The interpre-
tation (2.17) also obviates the need for specifying the value of f on the surface
{z| h(z) = 0}, at least for cases in which solutions arrive at this surface from
one side and leave it immediately on the other side.

As an example consider the following model of an elastic collision, taken
from [80]. Consider a mass colliding with an elastic wall; the elasticity of the
wall is modeled as a (linear) spring-damper system, as shown in Figure 2.5.
The system is described as a system with two locations (or modes):

o] _ o) [=], [0],
mode 0: [ # | Lo ofa | |1]

y =[10} s

T

|-
i | |k —d

| —

mode 1:
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Note that for d # 0 the overall dynamics is not continuous on the surface y =
x1 = 0, so that the standard theory of existence and uniqueness of solutions of
differential equations does not apply. Nevertheless, it can be readily checked
that the system has unique solutions for every initial condition (as we expect).
On the other hand, modification of the equations may easily lead to a hybrid
system exhibiting multiple solutions. Necessary and sufficient conditions for
uniqueness of solutions in the sense of Carathéodory have been derived in
[80, 81].

If in the general formulation the vector fi(zo) points inside the set
{z|h(z) < 0} and the vector fa(zo) points inside {z|h(z) > 0} for a cer-
tain zo on the switching surface h(z) = 0, then clearly there does not exist a
solution in the sense of Carathéodory. For this case another solution concept
has been defined by Filippov, by averaging in a certain sense the “chattering
behavior” around the switching surface {z | h(z) = 0}. From a hybrid systems
point of view this can be interpreted as the creation of a new location whose
continuous-time dynamics is given by this averaged dynamics on the switching
surface. See for further discussion Chapter 3.

2.2.8 Supervisor model

The following model has been proposed for controlling a continuous-time input-
state-output system (1.2) by means of an (input-output) finite automaton (see
Definition 1.2.2); see [8, 120, 26] for further discussion. The model consists
of three basic parts: continuous-time plant, finite control automaton, and
interface. The interface in turn consist of two parts, viz. an analog-to-digital
(AD) converter and digital-to-analog (DA) converter. The supervisor model
is illustrated in Figure 2.6.

symbol symbol
1 €1 Controller o€ 0
automaton
AD DA Interface

Continuous-time
measurement plant control
yey u(-) € PU

Figure 2.6: Supervisor model

Associated to the plant are an input space U, a state space X, and an output
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space Y, while the controller automaton has a (finite) input space I, a state
space @ and an output space O. The controller automaton may be given as
an input-output automaton as in (1.3)

¢ = vigi)
o = n(g1).

The AD converter is given by a map AD : Y x Q — I. The values of this map
(the discrete input symbols) are determined by a partition of the output space
Y, which may depend on the current value of the state of the finite automaton.
The DA converter is given by a map DA : O — PU, where PU denotes the
set of piecewise right-continuous input functions for the plant.

The dynamics can be described as follows. Assume that the state of the
plant is evolving and that the controller automaton is in state g. Then AD(-, q)
assigns to output y(t) a symbol from the input alphabet I. When this symbol
changes, the controller automaton carries out the associated state transition,
causing a corresponding change in the output symbol o € O. Associated to
this symbol is a control input D A(0) that is applied as input to the plant until
the input symbol of the controller automaton changes again.

In the literature the design of the supervisor is often based on a quantization
(also sometimes called abstraction) of the continuous plant to a discrete event
system. In this case one considers e.g. an appropriate (fixed) partition of the
state space and the output space of the continuous time plant, together with a
fixed set of input functions, and one constructs a (not necessarily deterministic)
discrete-event system covering the quantized continuous-time dynamics. The
events are then determined by the crossing of the boundaries defined by the
partition of the state space.

2.2.9 Two carts

The logical disjunction (the “or” between propositions) historically has not
been entirely absent from the study of continuous dynamical systems; in par-
ticular, disjunctions arise in the study of mechanical systems with unilateral
constraints.

In the simplest case of a one-dimensional constraint, consider a nonnegative
slack variable which is positive when the system is away from the constraint
and zero when the system is at the constraint. The dynamics of the system
will involve the disjunction of two possibilities: the slack variable is zero and
the corresponding constraint force is nonnegative, or the constraint force is
zero and the slack variable is nonnegative. This alternative occurs in classical
textbooks on mechanics such as [125] and [86], and for the static case goes back
to Fourier (cf. [92]). For a concrete example, consider the two-carts example
that was discussed in [138] and [140]. Two carts are connected to each other
and to a wall by springs; the motion of the left cart is constrained by a stop
(see Fig. 2.7). It is assumed that the springs are linear, and all constants
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Figure 2.7: Two carts

are set equal to 1; moreover, the stop is placed at the equilibrium position of
the left cart. There are three continuous variables: ¢q(t), which denotes the
position of the left cart measured with respect to its equilibrium position, so
that ¢ (t) also serves as a slack variable; ¢o(t), which is the position of the
right cart with respect to its equilibrium position; and A(¢), which denotes the
constraint force. The dynamics of the system can be succinctly written by the
following event-flow formula, where e € [0, 1] is the restitution coefficient and
the notation

r—y = (2.18)

(for scalar variables z and y) is used:

=20 +q+ A
Go=q1 — @2
0<g—A>0 (2.19)

q1 = 0: ql_ < 07 qr = _eql_

Classically the relation 0 < ¢ — A > 0 is written as ¢t > 0, A > 0, and
q1A = 0, which indeed comes down to the same thing and avoids the explicit
use of disjunctions.

The dynamics of the above system may also be given in a more explicit
condition-event form, with the dynamics in each mode given in the form of
ordinary differential equations, rather than differential-algebraic equations as
in the mode descriptions that can be derived directly from (2.19). Since the
differential equations are linear, they can even be solved explicitly so that one
can obtain a full description as a hybrid system in the sense of [1]. This de-
scription however would be much longer than the one given above (see [141]
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Figure 2.8: Coulomb friction characteristic

where part of the description has been worked out). In general, a system
with k unilateral constraints can be described by & disjunctions as in (2.19),
whereas the number of different locations (discrete states) following from the
constraints is 2*. In this sense the description by means of event-flow formu-
las represents an exponential saving in description length with respect to a
formulation based on enumeration of the discrete states.

The trajectories g1(-) may be taken as continuous and piecewise differen-
tiable, but not as piecewise continuously differentiable since we have to allow
jumps in the derivative. In particular, if the stop is assumed to be completely
inelastic (e = 0) then the velocity of the left cart will be reduced to zero
immediately when it hits the block.

In the present example, the specification of the jump rule (the event clause)
is quite simple. However, in higher-dimensional examples of this type, espe-
cially when multiple collisions are involved, a complete a priori specification
of the jumps may not be so easy. In fact, in many cases one would like to
avoid an a priori complete specification of the event clauses, and an attractive
alternative would be to automatically generate the event-clauses on the basis
of inequality constraints of the type ¢ > 0, A > 0, and g\ = 0 as above, and
physical information concerning the nature of the collisions, such as the resti-
tition coefficient e (see also [31] for a discussion). In Chapter 4 we shall come
back to this issue in the general context of complementarity hybrid systems,
including the present example.

2.2.10 Coulomb friction

An element representing Coulomb friction can be constructed from two con-
tinuous variables, say y(t) and u(t), which are related in the following way (see
Figure 2.8):
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y20, u=c
Coulomb| y =0, —c<u<e¢ (2.20)

y<0, u=-c

Here ¢ is some non-negative constant, while y(¢) denotes the welocity of a
mass and u(t) denotes the frictional force applied to this mass, due to the
Coulomb friction. The friction element above can be coupled to another system
description (consisting for instance of a continuous system with inputs wu(¢)
(frictional forces) and outputs y(t) (velocities) by conjunction. Whether or not
the complete system will have solutions defined for arbitrarily large ¢ depends
on the nature of the system added. Notice also that it is not natural to assume
a priori that the frictional forces u(t) are continuous; imagine for example a
heavy mass sliding subject to Coulomb friction along an upwards inclined
plane, which after coming to rest will immediately slide down subject to the
reversed frictional force. Hence we cannot a priori require the functions w(¢)
and y(t) appearing in (2.20) to be continuous. For the case in which the added
system is a linear finite-dimensional time-invariant input-output system of the
type usually studied in control theory, sufficient conditions for well-posedness
(in the sense of existence and uniqueness of solutions) have been given in [95];
see also Chapter 4. The determination of the location in systems with multiple
Coulomb friction elements is a nontrivial problem, cf. [129] and the comments
in [50].

In many cases the constant ¢ appearing in the Coulomb friction is a function
of the normal force applied to the moving mass due to an imposed geometric
inequality constraint of the type appearing in Subsection 2.2.9. In this way,
by combining the characteristics of Subsection 2.2.9 with those of the present
one, we can describe general multi-body systems with geometric inequality
constraints and multiple Coulomb friction as hybrid systems; see e.g. [129, 31]
for a more extensive discussion.

2.2.11 Systems with piecewise linear elements

Note that the Coulomb friction characteristic depicted in Figure 2.8 can be
also interpreted as an ideal relay element (without deadzone). In this case,
the third mode (or location) corresponding to the wvertical segment of the
characteristic is usually interpreted in the sense of an equivalent control as
defined by Filippov; see Chapter 3.

More general piecewise linear characteristics can be modeled in a similar
way. In this way, any dynamical input-state-output system with piecewise lin-
ear characteristics in the feedback loop can be represented as a hybrid system,
with the locations corresponding to the different segments of the piecewise
linear characteristics. For more information, especially with respect to well-
posedness questions we refer to [33] and the references quoted there; see also
Subsection 4.1.5.
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2.2.12 Railroad crossing

Consider the railroad crossing from [2]. The system can be described as a
conjunction of three subsystems, named ‘train’, ‘gate’, and ‘controller’. The
train sends a signal to the controller at least two minutes before it enters
the crossing. Within one minute, the controller then sends a signal to the
gate which is then closed within another minute. At most five minutes after
it has announced its approach, the train has left the crossing and sends a
corresponding signal to the controller. Within one minute the controller then
provides a raise signal to the gate, which after receiving this signal takes one
to two minutes to revert to the open position. Below a formal description
is given in the form of an EFF in which expressions from the propositional
calculus are freely used. Several variants are possible depending on the precise
interpretation that one wants to give to the verbal description. The system is
naturally described as a parallel composition of three subsystems:

system = train || gate || controller (2.21a)
with

Pr =out, St = approach, zt =0, =1
! T approsch Or (2.21b)

train
z>2, Pp =out, P;:in

P, = in, Pi,'i' =out, S = exit, Q; =0
y=1, {Qai=1= y<1}, {Qea=1 = y<2}
Sc = lower, y'™ =0, le =1
gate| P, = open, Pg = closed, le =0
Sc = raise, yt =0, ng =1
y>1, P; =closed, Pg = open, ng =0
(2.21c)
=1, {Qe=1= 2<1}
St = approach, 2T =0, Qg =1
controller | S = lower, Qg =0 (2.21d)

St = exit, 2zt =0, ng =1

Sc = raise, Q;ﬁ =0.

The system above is nondeterministic. Note how enabling conditions are for-
mulated in the event conditions, and enforcing conditions are placed in the
flow conditions.
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An important line of research consists in the development of software tools
which can help in studying safety and liveness properties on the basis of formal
descriptions like the one above for more complicated systems. Often such
properties can be expressed as reachability properties; for instance, to use the
examples given in [2], in the train-gate-controller system one may want to
verify that the sets {Pr = in, Pg = open} and {Pg = closed, y > 10} are
not reachable.

2.2.13 Power converter

Consider the power converter in Figure 2.9 (cf. [51]). The circuit in Figure 2.9

s=1

Figure 2.9: Boost circuit with clamping diode

consists of an inductor L with magnetic flux linkage ¢, a capacitor C' with
electric charge go and a resistance load R, together with a diode and an ideal
switch, with switch positions s = 1 (switch closed) and s = 0 (switch open).
The diode is modeled as an ideal diode with voltage-current characteristic given
by Figure 2.10. The constitutive relation of an ideal diode can be succinctly

It

Figure 2.10: Ideal diode
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expressed as follows:
vpip =0, vp <0, ip>0. (2.22)

The circuit is used to obtain a voltage at the resistance load (the output
voltage) that is higher than the voltage E of the input source; therefore it is
commonly called a step-up converter.

Intuitively it is clear that the system can be represented as a hybrid system
with four locations (or modes), corresponding to the two segments of the diode
characteristic and the two switch positions. Furthermore, the transitions from
a location with open switch to a location with closed switch, and vice versa, are
controlled (externally induced), while the transitions corresponding to a change
from one segment of the diode characteristic to another are autonomous.

Taking as continuous state (energy) variables the electric charge go and the
magnetic flux ¢, and as stored energy the quadratic function %q% + %qﬁi
we obtain the following dynamical equations of the circuit:

. 1 lIC .

qc —= 1-35 i< 0 Sip

: - R <+ E+

b1 s—1 0 & 1 (s = 1)vp

(2.23)

Here s = 0,1 denotes the switch, E is the voltage of the input source, and
ip,vp, are respectively the current through the diode, and the voltage across
the ideal diode. The dynamics of the circuit is completely specified by (2.23)
together with the switch position (a discrete variable) and the constitutive
relation of the ideal diode given by (2.22).

The separate dynamics of the four locations are obtained by substituting
the following equalities into (2.23).

Location1: s=0, vp =0

- Location2: s=1,ip =0

Location 3: s =0, ip =0

Location4: s=1, vp =0

This yields for each of the four locations the following continuous dynamics:

o = —1¢L— pedc
o -&qc +E

. _ 1

gc = —godc

¢ = E
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¢ = —psdc
¢r = 0
go = 0
¢ = E

In order to find the currently active location, we first observe the position
of the switch. For s = 0 we have the locations 1 and 3. The location 1 is
determined by vp = 0 and ip = % > 0. The latter inequality yields the

location invariant ¢y > 0. The location 3 is given by ip = (%L = 0 and
vp = E — 45 < 0. This yields the location invariants ¢;, = 0 and g — £ > 0.
Similarly, if s = 1 then the system is in location 2 for ip = 0 and the voltage
vp = —4%& < 0, giving the location invariant gc > 0, and in location 4 if
vp = %C =0 and ip > 0, leading to the location invariant go = 0.

Furthermore, it is straightforward (but tedious!) to write down all the
transition guards, and the jump relations. In fact, it can be seen that in
“normal operation”, that means, if we start from an initial continuous state
with ¢r > 0 and gq¢ > 0 and — very importantly — with the input voltage
E > 0, then no jumps will occur and ¢, (t) > 0 and g (¢) > 0 for all ¢ > 0.

Let us note that one of the two location invariants of location 3, namely
gc — E > 0 explicitly depends on the external continuous variable E. Thus
the example fits into the generalized hybrid automaton model, but not in the
hybrid automaton model of Definition 1.2.3. Also, note that it makes sense
to define the continuous state space of locations 3 and 4 to be given by the
one-dimensional spaces {(gc, ¢1) | ¢ = 0}, respectively {(gc, ¢1) |qc = 0},
in accordance with the remark made before that in some cases it is natural to
allow in the (generalized) hybrid automaton model for different state spaces
for the various locations.

Equations (2.23) and (2.22) provide an (incomplete) event-flow formula
description of the system; incomplete because the event-clauses corresponding
to the diode have not been specified. The example demonstrates that the
(generalized) hybrid automaton model may be far from an efficient description
of a hybrid system: while the event-flow model given by (2.23) and (2.22)
follows immediately from modeling, the hybrid automaton representation of
this simple example already becomes involved.

2.2.14 Constrained pendulum

This example, which has been extensively discussed in [27], is used here to
illustrate that the choice of state space variables may be crucial for the com-
plexity of the resulting hybrid system description.! Consider a mathematical
pendulum with length ! that hits a pin such that the constrained pendulum
has length [., cf. Figure 2.11. Taking as continuous state space variables

IThis point was kindly brought to our attention by P.C. Breedveld.
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Figure 2.11: Pendulum constrained by a pin

x = (¢,v), where v is the angular velocity of the end of the pendulum, we
obtain a hybrid system with two locations (unconstrained and constrained).
The unconstrained dynamics, valid for ¢ > ¢p;y, is given by

Q‘S:

v = —gsing —av

[

! (2.24)

for some friction coefficient . The constrained dynamics, valid for ¢ < ¢pip,
is given by the same equations with [ replaced by l.. It is immediately seen
that there are no jumps in the continuous state vector x at the event times.
Instead there is only a discontinuity in the righthand side of the differential
equation caused by the change from [ to [, or vice versa.

On the other hand, if we would take as continuous state space variables ¢
and ¢, then at the moment that the swinging pendulum hits the pin, there is
a jump in the second state space variable from gf) to %d), and conversely, if the
pendulum swings back from the constrained movement to the unconstrained
movement there is a jump from ¢ to ZT¢

Clearly the resulting hybrid description is more complex from the hybrid
systems point of view than the (equivalent!) description given before. On the
other hand, from a physical modeling point of view the occurrence of jumps due
to the “collision” of the rope with the pin is rather natural, while the “smart”
choice of the continuous state variables in the first description eliminates in
some way these jumps.

2.2.15 Degenerate Van der Pol oscillator

In this example (taken from [136]) we indicate that systems described by
differential-algebraic equations may exhibit jump features, which could mo-
tivate a description as a hybrid system. Consider a degenerate form of the
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van der Pol oscillator consisting of a 1-F capacitor in parallel with a nonlinear
resistor with a specific characteristic:

Vo= 1
L (2.25)
vo= —3z1"+

These equations are interpreted as an implicitly defined dynamics on the one-
dimensional constraint submanifold C in (v,%) space given by

C={(v,i)|v= —%F +i}.

Difficulties in this interpretation arise in the points (—1,—2) and (1,2). At
these points © is negative, respectively positive, while the corresponding time-
derivative of i in these points is positive, respectively negative. Hence, because
of the form of the constraint manifold C it is not possible to “integrate” the
dynamics from these points in a continuous manner along C.

Instead it has been suggested in [136] (see this paper for other related
references) that a suitable interpretation of the dynamics from these singular
points is given by the folowing jump rules:

(2.26)

~—

Wit Wl
~—

Alternatively, the resulting system can be described as a hybrid system with
two locations with continuous state spaces both given by C' and dynamics
described by (2.25), with location invariants ¢ < —1, respectively ¢ > 1, and
jump relations given by (2.26).

2.3 Notes and References for Chapter 2

The choice of the examples in this chapter clearly reflects the interests and bias
of the authors of this text. A wealth of different examples of hybrid systems
can be found in the literature, see in particular the proceedings [58], [5], [3],
[100], [6], [137], [153], as well as the journal special issues [7] and [116]. For
further examples and references in the context of mechanical problems, an
excellent source is [31].



Chapter 3

Variable-structure systems

Discontinuous dynamical systems have been an object of systematic study in
the former Soviet Union and other Eastern European countries for a long pe-
riod starting in the late 1940s. Much of the theory has been developed in close
connection with control theory, which has provided many motivating exam-
ples such as relay controls and bang-bang controls in shortest-time problems.
Systematic expositions of the results of this research are available in a num-
ber of textbooks, for instance the ones by Andronov et al. [4], Tsypkin [150],
Utkin [152], and Filippov [54]. Here we shall not attempt to summarize all this
work; instead we concentrate on the solution concept for discontinuous dynam-
ical systems, and more specifically on the so-called “sliding mode”. We follow
mainly Filippov’s book. We do not aim for the greatest possible generality; in
particular we limit ourselves to systems with constant parameters.

3.1 Discontinuous dynamical systems

A typical example of the type of systems considered by Filippov can be con-
structed as follows. Let Sy be a surface in n-dimensional space, by which we
mean that Sp is a (n — 1)-dimensional differentiable manifold determined as
the null set of a smooth real-valued function ¢ on R™. The set of all z for
which ¢(x) is positive (negative) will be denoted by Sy (S_). Let fi be a
continuous function defined on S; USy, let f_ be a continuous function defined
on S_U Sy, and let f be the function defined on S; U S_ by f(z) = f+(z)
for z € S; and f(z) = f_(z) for z € S_. Tt is not required that the functions
f+ and f_ agree on Sy, so that in general the function f cannot be extended
to a continuous function defined on all of R". Now consider the differential
equation

&(t) = f(2(t)). 3.1)

Here we have a dynamic system whose dynamics changes abruptly when the
state vector crosses the switching surface Sg. In a control context, such a sit-
uation could occur as a result of a gain scheduling control law which switches
from one feedback to another when a certain function of the state variables
crosses a certain threshold. In general it cannot be expected that state tra-
jectories are differentiable at points where the boundary is crossed, and so it

57
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would be too much to require the validity of (3.1) for all ¢. One possible way
out is to replace the equation (3.1) by the integral form

() = x(0)+/0 F((s))ds (3.2)

which doesn’t require the trajectory z(-) to be differentiable. When differential
equations are interpreted in this way they are sometimes called Carathéodory
equations. The interpretation (3.2) also obviates the need for specifying the
value of f on the surface Sy, at least for cases in which solutions arrive at this
surface from one side and leave it immediately on the other side.

Whether or not we do have solutions that cross the switching surface instan-
taneously depends on the vector fields determined by f; and f_. Consider a
point zo on the switching surface Sp. At this point we have two vectors f (o)
and f_(zg). In terms of these vectors and their relation to the tangent space
of the surface Sy at the point zg we can distinguish the following four main
cases.

(i) Both vectors point inside S;. In this case, state trajectories can only
arrive at xg from S_, and will continue in S;. The Carathéodory inter-
pretation is sufficient.

(ii) Both vectors point inside S_; this is analogous to case (i).

(iii) The vector fi(xo) points inside S; and the vector f_(zo) points inside
S_. In this case zp cannot be reached by trajectories of (3.1). If 2 is
taken as an initial condition, there are two possible solutions to (3.2).

(iv) The vector fy(zo) points inside S_ and the vector f_(x¢) points inside
St. In this case the Carathéodory interpretation does not give us a
usable solution concept.

Filippov is mainly concerned with situations in which case (iv) occurs. It
can be argued that it is physically meaningful to try to develop also a solution
concept for this case. For instance, it may be that the function f is a simplified
version of another function f that is not actually discontinuous across the
switching surface, but that changes in a steep gradient from f, on one side to
f— on the other side of Sy. The solutions of the differential equation & = f(x)
will in case (iv) tend to follow the switching surface since they are “pushed”
onto Sy from both sides. In another interpretation, suppose that the transition
from the regime described by fi to the one described by f_ is caused by
a switching controller that monitors the sign of ¢(x(¢)). For a number of
practical reasons, switching will not occur exactly when ¢(z(t)) crosses the
zero value, but at some nearby instant of time. In case (iv) the result will be a
“chattering” behavior in which the system switches quickly from one dynamics
to the other and back again. Also in this way a motion will result which will
take place more or less along the switching surface. So on the one hand there
are good reasons to allow for solutions along the switching surface in cases
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of type (iv), on the other hand several different physical mechanisms may be
at work, and one can also say that the situation is perhaps not completely
specified by the two functions fy on Sy and f_ on S_. Therefore Filippov
actually discusses several different solution concepts.

3.2 Solution concepts

Let us first look at what Filippov calls the simplest convex definition. Take
the situation of case (iv); so consider a point zo on the switching surface, and
suppose that the vectors fy(xzg) and f_(zo) point inside S_ and Sy respec-
tively. Since these two vectors are at different sides of the tangent space of
So at xg, there must be a convex combination of them which lies in the tan-
gent space. Denote the vector obtained in this way by fo(zo). Repeating the
construction for points x on Sy in a neighborhood of xg, we obtain a function
fo(z) defined on Sy at least in a neighborhood of x, and having the property
that the vector fo(z) always points in the tangent space of Sy at . Therefore,
the differential equation & = fo(z) can be used to define a motion on Sy which
is called a sliding motion. The concept of solution is now extended to include
this type of motion as well.

The second notion of solution discussed by Filippov uses the so-called equiv-
alent control method. For the application of this method, the function f is
supposed to be of the form f(z,u(z)) where u(z) is a multivalued function
that is in fact single-valued on S; US_ but that has a range of values U (z) for
x € Sp. The set U(x) is a closed interval. In the situation of case (iv) above,
an “equivalent control” wueq(z) is sought for z € Sy such that f(z,ueq(x)) is
tangent to Sp and ueq(x) € U(x). The motion given by & = f(, ueq(z)), which
is a motion along the sliding surface as in the case of the simplest convex def-
inition, is then used to define a notion of solution. The resulting motion may
be quite different from the one produced by the first definition; see Examples
3.2.1 and 3.2.2 below.

Filippov also considers a third definition. This definition again starts from
the formulation & = f(x,u(x)) with u(z) € U(x), where U(z) is a single point
for x € S US_ and is a closed interval for x € Sy. For given zq, let F(xg)
denote the smallest convex set containing { f(xg,u) | u € U(zg)}. We can now
consider the differential inclusion #(t) € F(z(t)). Away from the switching
surface, this inclusion is in fact a standard differential equation since F(x)
then consists of only a single point. On the switching surface, the requirement
%(t) € F(x(t)) leaves considerable latitude; however, solution trajectories must
still follow the switching manifold in the neighborhood of points where case
(iv) applies, because solutions that enter either Sy or S_ are not possible.

In case f(x,u) depends affinely on u and the interval U(zo) is [u4, u_] with
Ug = limges, o2, u(r) and u_ defined likewise, all solution concepts are the
same. In other cases however, the third definition does not uniquely determine
the velocity of the motion along the switching surface. The indeterminism
that is introduced this way may be viewed as a way of avoiding the choice
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between the other two solution concepts. Such a conservative stance can be
well-motivated in a verification analysis in which one would like to build in a
degree of robustness against model misspecification. From a point of view of
simulation however, one would rather work with uniquely defined trajectories.

It might be taken as an objection against the equivalent control method
that it requires the modeler to specify a function f(z,u) and a function u(z)
on S; US_ together with a closed interval U(z) for & € Sp; in this way, the
modeler is forced into decisions that he or she would perhaps prefer to avoid.
The simple convex definition only requires the specification of functions fy on
Sy USy and f_ on S_ USy. It may be argued however that assuming the
simple definition comes down to making a particular choice for the functions
f(z,u) and u(z) that are used in the equivalent control method. For this
purpose, assume that the continuous functions f; and f_ defined on S. U Sy
and S_ U Sy respectively are extended in some arbitrary way to continuous
functions to all of R*. If we now define f(z,u) by

fle,u) = (1 +u)fr(2) + 5(1 - u) f-(2) (3.3)

then f is continuous as a function of z and w. Furthermore define u(z) =
sgn(¢(x)), where sgn is the multivalued function defined by (1.13). Note that
f(z,u) is affine in z. Tt is easily verified that the equivalent control method
and the third definition now both generate solutions that coincide with the
ones obtained from the simple convex definition.

To illustrate the difference between the equivalent control method and the
simplest convex definition, we present the following two examples.

Example 3.2.1. This example is taken from [109]. Let a system be given by
1 =cosbu, &g = —sinfu, y =12, u=sgny. (3.4)

Both for z» > 0 and for z2 < 0 the right hand side is constant and so the
system above could be called a “piecewise constant system”. The trajectories
are straight lines impinging on the x;-axis at an angle determined by the
parameter 6 which is chosen from (0, 7). Along the z;-axis, a sliding mode is
possible. The equivalent control method applied to (3.4) determines u such
that ©» = —sinfu = 0; obviously this requires u = 0 so that the sliding
mode is given by #; = 1. If one would take the simplest convex definition,
one would look for a convex combination of the vectors col(cosf, — sin §) and
col(cosd,sin @) such that the second component vanishes. There is one such
convex combination, namely

col(cos 8, 0) = 1col(cos B, —sinf) + Lcol(cosf, sinb).

In this case the sliding mode is given by #; = cosf. The question which of
the two sliding modes is the “correct” one has no general answer; different
approximations of the relay characteristic may lead to different sliding modes.
The third definition leads to the differential inclusion 4 € [cos#, 1].
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Let us now consider a smooth approximation as well as a chattering ap-
proximation to the sliding mode. In the smooth approximation, we assume
that there is a very quick but continuous transition from the vector field on
one side of the switching surface to the vector field on the other side. This
may be effectuated by replacing the relation © = sgny by a sigmoid-type
function, for instance

u = tanh(y/e) (3.5)

where ¢ is a small positive number. Doing this for (3.4) we get the smooth
dynamical system

1 = cos(ftanhxs), &2 = —sin(ftanhzs) (3.6)

whose trajectories are very similar to those of (3.4) at least outside a small band
along the switching curve z2 = 0. The system (3.6) has solutions z1 () = t+¢,
z2(t) = 0 which satisfy the equations of the sliding mode according to the
equivalent control definition.

Consider next the chattering approximation. Again we choose a small
positive number ¢, and we define a “chattering system” by the event-flow
formula

P=up, &1 = cosf, zo = —sginfh, x> —¢
P =down, &; = cosf, Z9 = sinf, xz9<c¢
(3.7)
xs = —¢, P~ =up, P =down
zo = &, P~ =down, Pt= up.

The trajectories of this system are exactly the same as those of the original
system (3.4) except in a band of width 2¢ around the switching curve. For
small ¢ the system (3.7) has solutions that are close to trajectories of the form
z1(t) = tcosh + ¢, z2(t) = 0. These trajectories satisfy the equations of the
sliding mode according to the simplest convex definition.

It may be noted that (3.6) is not the only possible smooth approximation
to (3.4); another possibility is for instance

&1 = cosf, Zo = —tanh(za/e)sind. (3.8)

The trajectories of this system are arbitrarily close to those of (3.4) outside a
band around the switching curve if £ is taken small enough. The system (3.8)
has solutions of the form z;(t) = tcosf + ¢, z2(t) = 0 which conform to the
equations of the sliding mode according to the simplest convex definition.

The solution according to the simplest convex definition can be obtained
as an equivalent control solution if we replace the equations (3.4) by

1 =cosf, &o=—usinh, y=1xzo, u=sgny. (3.9)

Actually in this case the smooth approximation according to the recipe (3.5)
leads to the system (3.8).
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Example 3.2.2. Consider now the system

1(t) = —a1(t) +aa2(t) —ull) (3.10)
() = 2xa(t)(u?(t) —u(t) — 1) (3.11)
u(t) = sgnzi(t). (3.12)

The system has a sliding mode on the interval z; = 0, —1 < 25 < 1. According
to the simplest convex definition, the sliding mode is given by

iy = —213 (3.13)

wheras according to the equivalent control method the sliding mode is given
by

By = 2x9(23 — 22 — 1). (3.14)

The two dynamics (3.13) and (3.14) are quite different; (3.13) has an unstable
11

equilibrium at 0 whereas (3.14) has two equilibria, of which the one at 5 —5v/5
is unstable and the one at 0 is stable. In particular, solutions of the system
(3.10) in the “simplest convex” interpretation and in the “equivalent control”
interpretation that are identical until they reach a point on the zs-axis with
1 —1V6 < x5 < 0 will after this point follow entirely different paths. The
equivalent control solution will be recovered by a smoothing approximation
such as u = tanh(z; /), whereas other methods that are based on some type

of sampling will follow the solution according to the simplest convex definition.

3.3 Reformulations

The generality in the formulation of the equivalent control method may be
reduced somewhat without loss of expressive power. As above, let u; and u_
be extended arbitrarily to continuous functions on all of R". Introduce a new
variable v, and define a continuous function f of the two variables  and v by

F,0) = f(z, 51— v)u_ (@) + 51+ v)us (@),

Given that f is continuous as a function of # and w, the function f will be
continuous as a function of & and v. Moreover, we have f(z,1) = f(z,uy(x))
and f(x,—1) = f(z,u_(z)). In the most important special case in which the
end points of the interval U(x) for 2 € Sy are u4 () and u_ (), we can simply
define v(z) = sgn(¢(x)) to get the same solutions to & = f(z,v(z)) as one
would get from & = f(x,u(x)) according to the equivalent control method.

In Filippov’s treatment, the word mode is used (in the term “sliding mode”)
but discontinuous systems are not modeled explicitly as hybrid systems. By
rewriting the equations in terms of event-flow formulas, more emphasis is
placed on the multimodal aspects. In the equivalent control method, we
are given a function f(x,u) and a multivalued function u(z). On S; and
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S_, u is single-valued; denote the corresponding functions on S, and S_ by
uy and u_ respectively. For z € Sy, u can take values in a closed interval
U(z) =: [ay(x),u—_(x)]. It seems reasonable to conjecture (but of course it
needs proof) that, under fairly general circumstances, Filippov’s solutions ac-
cording to the equivalent control definition correspond to the continuous state
traces of the solutions in Z/1/C'/°/C° of the EFF

&= f(z,u), y=¢)

y>0, u=uy(x) (3.15)
y<0, u=u_(x)

y=0, u_(z)<u<uy(z)

For the solution concept corresponding to the simple convex definition one
would rather use the following EFF:

o= 5(1+u)fi(@)+501-uf(2), y=d()

y>0, u=1 (3.16)
y<0, u=-1
y=0, —-1<u<l1

The three-term disjunction in the parts corresponding to non-event times in-
dicates a system with three modes, one corresponding to motion inside S,
another corresponding to motion inside S_, and a sliding mode. In the sliding
mode, trajectories must move along the switching manifold characterized by
y = 0, and this motion must take place along a vector of the form f(x,u) with
u € U(z) = [u—(z),u4(x)] or along a suitable convex combination of vectors
fi(x) and f_(x). The motion on S; and S_ follows the differential equations
& = fi(z) and & = f_(z) respectively. All this is expressed in (3.15) and
3.16).

It should be emphasized that, although the definitions have been designed
to avoid some obvious cases of nonexistence of solutions, neither existence nor
uniqueness of solutions to the type of systems considered in this section is
automatic. We shall come back to this issue below.

3.4 Systems with many regimes

So far we have been discussing situations in which there is one surface that
determines the various regimes under which the system can evolve. Such a
situation occurs for instance when friction at one point in a mechanical system
is modeled by the Coulomb friction law. Of course we can easily have situations
in which there are many points of friction and then the space through which
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the continuous state variables of the system move will be divided in many
parts each with their own dynamical regime. Suppose that we have k surfaces
determined by functions ¢1, ... , ¢y from R™ to R. In principle, one should now
allow sliding modes not just along each of the surfaces S§ := {z | ¢;(z) = 0}
but also along the intersection S§ N S} of two surfaces, which will in general
be a manifold of dimension n — 2, as well as along the intersection of three
surfaces and so on. To create these sliding modes, one will in general need k
independent control variables, so the given dynamics should be of the form

T = flx,u1,...,u)

with r > k; moreover, there should be enough freedom in the variables u;(z)
when z is in the intersection of several surfaces S§ to allow motion along
these intersections. If one wants to ensure uniqueness of solutions, then it
is natural to let r be equal to k£ and also to establish a one-one connection
between control variables and surfaces. The existence of such a connection,
which ties each input variable u; to a corresponding “output variable” defined
by y; = ¢i(z), is anyway natural in applications such as relay systems and
Coulomb friction. An event-flow formula may be written down as follows:

= f(x,u) ||;c5l v = 0i(®), (yi >0, u; = ui(v)) |
(yi <0, uj = ui—(2)) [ (yi = 0, Ti—(2) <w; <uip(x))} (3.17)

where k denotes the set {1, ..., k}; solutions are sought in a space with continu-
ous state trajectories. As above, in case Uy (z) = u;4 (x) and @, (z) = u;— (z)
for all ¢ and all z € Sy, it is possible to rewrite the system in such a way that
the control variables are related to the output variables ¢;(x) by the signum
function sgn. The discontinuous system is then rewritten as a relay system.
In the case of several control variables the relation between the equiva-
lent control method and the simplest convex definition can be more compli-
cated than in the case of a single control variable. Consider the example
T = f(x,u1,us) with u; = sgn(d;(z)) for i = 1,2. If ¢1(x) = ¢o(x) the
state space is actually divided into two parts, and the dynamics is given by
& = f(x,1,1) on one side and by & = f(z,—1,—1) on the other side of the
dividing surface. The simple convex definition would require a sliding motion
along the surface to be generated by some convex combination of the two vec-
tors f(x,1,1) and f(x,—1,—1), whereas the equivalent control method would
allow the motion to be generated by an arbitrary vector of the form f(xz,u1,us)
with —1 < wu; < 1 and —1 < uy < 1. Even in the case in which f depends
linearly on u; and us the allowed motions according to the two definitions are
in general different. The example is perhaps artificial though; in fact with the
simple convex definition there is little reason to consider the system as one
having two control variables. In case the system is interpreted as having two
control variables and the equivalent control method is used to define solutions,
it is likely that the solutions are not uniquely determined since in the sliding
mode there are two control variables available to satisfy only one constraint.
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3.5 The Vidale-Wolfe advertizing model

As an example of a situation in which multimodality arises in a natural way,
let us consider the following optimization problem which was suggested in 1957
by Vidale and Wolfe as a simple model for supporting decisions on marketing
expenditures. The problem is:

T
maximize /0 (2(t) — cu(t))dt (3.18a)
subject to E(t) = —ax(t) + (1 —2(t))u(t) (3.18b)
z(0) = z € (0,1) (3.18c)
0<u(t) <1. (3.18d)

The state variable z(t) represents market share, whereas the control variable
u(t) represents marketing effort, normalized in such a way that saturation
occurs at the value 1. The constant ¢ expresses cost of advertizing, and a
indicates the rate at which sales will decrease when no marketing is done. A
standard application of the maximum principle (see for instance [142]) suggests
the following procedure for finding candidate optimal solutions. First define
the Hamiltonian

H(z,u,\) = 2 —cu+ A—az + (1 — z)u). (3.19)

According to the maximum principle, necessary conditions for optimality are
given (in the “normal” case) by the equations (in shorthand notation)

. OH 0H
T= o /\——%, z(0) =xzo, AT)=0, u=argmax,H
(3.20)

where A(+) is an adjoint variable. Since the Hamiltonian is linear in the control
variable u, maximization over u leads to a relay-like characteristic:

u=0, —-c+Al-2)<0
u=1, —c+AX1-2)>0 (3.21)
0<u<l, —-c+Xl-x)=0.
It will be convenient to introduce a function C' by
C(z,\) == —c+ X1 —2x). (3.22)
The relay characteristic is connected to the differential equations

& = —ar+(1-2)u (3.23)
A= —1+(a+u) (3.24)
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which we may also write in vector form

d T —ax 11—z
— = + u. (3.25)
dt |\ aX —1 A

In the phase plane we clearly have a switching curve given by the equation
C(x,A) = 0. In the region defined by (1 — z)A < ¢ we have the dynamics

& =-—axr, A=al—1 (3.26)
whereas in the region (1 —z)A > ¢ we have
i=—(a+Dz+1, A=(a+1A—1. (3.27)

We have to determine the relation of the two vector fields that are defined
in this way to the switching curve. For this purpose we compute the time
derivative of the function y(t) := C(z(t), A(t)) along the trajectories of each of
the two dynamics given by (3.26) and (3.27). Actually it turns out that the
result is the same in both cases and in fact doesn’t even depend on u, since
the gradient of C' which is given by

oc oc
oxr O\
is orthogonal to the input vector field in (3.25). We get

= [-) 1-1] (3.28)

j = ar+z—1. (3.29)

So the mode selected at a given point on the switching curve is determined by
the sign of the quantity aA+ 2 —1. If aA+ 2 — 1 > 0, then we enter the region
(I —2)X > c corresponding to the mode u = 1. If aA + 2z — 1 < 0 then the
selected mode is the one in which 4 = 0. Since both dynamics agree on the
sign of g the sliding mode cannot occur as long as aA +z — 1 # 0.

We still have to consider the possibility of a sliding mode at the point on the
switching curve at which a4+ 2z —1 = 0, if such a point does exist. It is easily
verified that there is indeed such a point in the region of interest (0 < z < 1)
if ac < 1. Because we already know that a sliding mode cannot exist at other
points in the (z, A)-plane, a sliding regime must create an equilibrium. Since
at the intersection point of the curves y = 0 and y = 0 the gradient of C
annihilates not only the input vector in (3.25) but also the drift vector, these
two vectors are linearly dependent. This means that the two tangent vectors
corresponding to u = 0 and u = 1 are also linearly dependent. If these vectors
point in opposite directions, we can indeed create a sliding mode by choosing
u € [0,1] such that the right hand side in (3.25) vanishes. The three equations
in three unknowns given by

—az+(1—z)u = 0
aX— 1+ du 0
AMl—-2) = ¢
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are solved in the region 0 < z <1 by

r=1-+ac, A=+/c/a, u=+/ajc—a. (3.30)
So the sliding mode exists when 0 < \/a/c —a < 1, that is, when

a

1
—<c< -, .
(a+1)2_c_a (3:31)

Assume now that this condition holds, and consider the dynamics (3.21-3.25)
with the initial condition

20 =1—+ac, I =+/c/a. (3.32)

By computing § it can be verified that from this initial conditions there are
three possible continuations, corresponding to the three choices u = 0, u =1
and u = \/%—a. This actually means that there are infinitely many solutions
that have initial condition (3.32), since one can take u(t) = \/a/c— a for some
arbitrary positive time and then continue with either « = 0 or u = 1. Some of
the trajectories of the system (3.21-3.25) for the parameter values a = % and
¢ =1 are illustrated in Fig. 3.1.

We conclude that the system (3.21-3.25) is not well-posed as an initial-
value problem if the parameters a and ¢ satisfy (3.31). However it should be
noted that the necessary conditions for the original optimization problem do
not have the form of an initial-value problem but rather of a mixed boundary
value problem, since we have the mixed boundary conditions z(0) = z¢ and
A(T) = 0. As such the problem is well-posed and the option of “lying still” at
the equilibrium point created by the sliding mode is crucial. Also, the meaning
of this equilibrium point and the corresponding value of u is clear: apart from
“initial” and “final” effects, this value of u is the one that indicates optimal
advertizing expenditures. Note that it would be easy to rewrite the suggested
optimal policy as a feedback policy, with a feedback mapping that depends
discontinuously on z and ¢, and that assumes only three different values.

3.6 Notes and references for Chapter 3

This chapter obviously leans heavily on the work by Filippov as described in
his book [54]. The book, which appeared first in Russian in 1985, fits into
a tradition of research in non-smooth dynamical systems that spans several
decades. The solution concept proposed by Filippov originally in 1960 [53]
uses the theory of differential inclusions, which is already in itself an important
branch of mathematical analysis; see for instance [12]. In the present book our
point of view is somewhat different. Rather than trying to infer in some way
the behavior of the sliding mode which takes place on a lower-dimensional
manifold from the system’s behavior in the “main” modes which take place
on full-dimensional regions, we consider all modes in principle on the same
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12

101

0.7 0.8 0.9 1

Figure 3.1: Trajectories for Vidale-Wolfe example. Horizontal: x, vertical: A.
Dotted: switching curve, with 4 = 0 to the right and u = 1 to the left. Dashed:
trajectories leading to and from the equilibrium point
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footing. We believe that this “hybrid” perspective is natural in many cases
and can also be used effectively for the type of systems considered by Filippov
and other authors in the same tradition. The hybrid point of view will be
worked out further in the following chapters.
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Chapter 4

Complementarity systems

We have already seen several examples of situations in which modes are deter-
mined by pairs of so-called “complementary variables”. Two scalar variables
are said to be complementary if they are both subject to an inequality con-
straint, and if at all times at least one of these constraints is satisfied with
equality. The most obvious example is that of the ideal diode. In this case
the complementary variables are the voltage across the diode and the current
through it. When the voltage drop across the diode is negative the current
must be zero, and the diode is said to be in nonconducting mode; when the cur-
rent is positive the voltage must be zero, and the diode is in conducting mode.
There are many more examples of hybrid systems in which mode switching is
determined by complementarity conditions. We call such systems complemen-
tarity systems. As we shall see, complementarity conditions arise naturally
in a number of applications; moreover, in several other applications one may
rewrite a given system of equations and inequalities in complementarity form
by a judicious choice of variables.

As a matter of convention, we shall always normalize complementary vari-
ables in such a way that both variables in the pair are constrained to be non-
negative; note that this deviates from standard sign conventions for diodes. So
a pair of variables (u,y) is said to be subject to a complementarity condition
if the following holds:

u>0, y>0, (4.1)

Often we will be working with several pairs of complementary variables. For
such situations it is useful to have a vector notation available. We shall say
that two vectors of variables (of equal length) are complementary if for all i
the pair of variables (u;,y;) is subject to a complementarity condition. In the
mathematical programming literature, the notation

0<y—u>0 (4.2)

is often used to indicate that two vectors are complementary. Note that the
inequalities are taken in a componentwise sense, and that the usual interpre-
tation of the “perp” symbol (namely ), y;u; = 0) does indeed, in conjunction

71
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with the inequality constraints, lead to the condition {y; = 0} V {u; = 0}
for all 4. Alternatively, one might say that the “perp” relation is also taken
componentwise.

Therefore, complementarity systems are systems whose flow conditions can
be written in the form

f(:r:ry,u) =0 (43&)
0<y—-u=>0 (4.3b)

In this formulation, the variables y; and u; play completely symmetric roles.
Often it is possible to choose the denotations y; and u; in such a way that the
conditions actually appear in the convenient “semi-explicit” form

T = f(z,u) (4.4a)
y = h(z,u) (4.4D)
0<y—u=>0. (4.4¢)

The flow conditions (4.3) or (4.4) still have to be supplemented by appropriate
event conditions which describe what happens when there is a switch between
modes. In some applications it will be enough to work with the default event
conditions that require continuity across events; in other applications one needs
more elaborate conditions.

Additional continuous input (or “control”) variables may of course easily
be added to a system description such as (4.4); discrete input variables might
be added as well. In this chapter, however, we shall mainly be concerned with
closed systems in which such additional inputs do not appear. The motivation
for doing this is that we need an understanding of the dynamics of closed
systems before we can discuss systems with inputs. It may be noted, though,
that the dynamical system (4.3a) (or (4.4a—4.4b)) taken as such is an open
system, which is “closed” by adding the complementarity conditions (4.4c).
Therefore, the theory of open (or “input-output”) dynamical systems will still
play an important role in this chapter.

In the mathematical programming literature, the so-called linear comple-
mentarity problem (LCP) has received much attention; see the book [39] for
an extensive survey. The LCP takes as data a real k-vector ¢ and a real k X k
matrix M, and asks whether it is possible to find k-vectors u and y such that

y=q+Mu, 0 < y—u > 0. (4.5)

The main result on the linear complementarity problem that will be used below
is the following [135], [39, Thm. 3.3.7]: the LCP (4.5) is uniquely solvable for
all data vectors ¢ if and only if all principal minors of the matrix M are
positive. (Given a matrix M of size k x k and two nonempty subsets I and
Jof {1,...,k} of equal cardinality, the (I, .J)-minor of M is the determinant
of the square submatrix M7y := (m;j)ier, jes. The principal minors are those
with I = J [55, p.2].) A matrix all of whose minors are positive is said to be
a P-matriz.
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4.1 Examples
4.1.1 Circuits with ideal diodes

A large amount of electrical network modeling is carried out on the basis of
ideal lumped elements: resistors, inductors, capacitors, diodes, and so on.
There is not necessarily a one-to-one relation between the elements in a model
and the parts of the actual circuit; for instance, a resistor may under some
circumstances be better modeled by a parallel connection of an ideal resistor
and an ideal capacitor than by an ideal resistor alone. The standard ideal
elements should rather be looked at as forming a construction kit from which
one can quickly build a variety of models.

Among the standard elements the ideal diode has a special position because
of the nonsmoothness of its characteristic. In circuit simulation software that
has no ability to cope with mode changes, the ideal diode cannot be admitted
as a building block and will have to be replaced for instance by a heavily
nonlinear resistor; a price will have to be paid in terms of speed of simulation.
The alternative is to work with a hybrid system simulator; more specifically,
the software will have to be able to deal with complementarity systems.

To write the equations of a network with (say) k ideal diodes in complemen-
tarity form, first extract the diodes so that the network appears as a k-port.
For each port, we have a choice between denoting voltage by u; and current by
y; or vice versa (with the appropriate sign conventions). Often it is possible
to make these choices in such a way that the dynamics of the k-port can be
written as

T = f(xau)a Yy = h(.’L’,U)

For linear networks, one can actually show that it is always possible to write
the dynamics in this form. To achieve this, it may be necessary to let wu;
denote voltage at some ports and current at some other ports; in that case
one sometimes speaks of a “hybrid” representation, where of course the term
is used in a different sense than the one used in this book. Replacing the ports
by diodes, we obtain a representation in the semi-explicit complementarity
form (4.4).

For electrical networks it is often reasonable to assume that there are no
jumps in the continuous state variables, so that there is no need to specify
event conditions in addition to the flow conditions (4.4). Complementarity
systems in general do not always have continuous solutions, so if one wants
to prove that electrical networks with ideal diodes do indeed have continuous
solutions, one will have to make a connection with certain specific properties
of electrical networks. The passivity property is one that immediately comes
to mind, and indeed there are certain conclusions that can be drawn from
passivity and that are relevant in the study of properies of complementarity
systems. To illustrate this, consider the specific case of a linear passive system
coupled to a number of ideal diodes. The system is described by equations of
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the form
z = Az + Bu
y = Cx+ Du (4.6)

0<y—u > 0.

Under the assumption that the system representation is minimal, the passivity
property implies (see [155]) that there exists a positive definite matrix @) such
that

ATQ+QA @B-CT

< 0. (4.7)
BTQ-C —(D+ D7)

If now for instance the matrix D is nonsingular, then it follows that D is
actually positive definite. Under this condition one can prove that the com-
plementarity system (4.6) has continuous solutions. If on the other hand D is
equal to zero, then the passivity condition (4.7) implies that C' = BT Q so that
in this case the matrix CB = BT QB is positive definite (assuming that B has
full column rank). Under this condition the system (4.6) has solutions with
continuous state trajectories, if the system is consistently initialized, i.e. the
initial condition zg satisfies C'xg > 0. See [34] for proofs and additional infor-
mation on the nature of solutions to linear passive complementarity systems.
The importance of the matrices D and CB is related to the fact that they
appear in the power series expansion of the transfer matrix C(sI — A)~'B+ D
around infinity:

C(sI—A)™'"B+D = D4+CBs™ '+ CABs™> + - -.

We will return to this when we discuss linear complementarity systems.

4.1.2 Mechanical systems with unilateral constraints

Mechanical systems with geometric inequality constraints (i. e. inequality con-
straints on the position variables, such as in the simple example of Figure 2.7)
are given by equations of the following form (see [138]), in which %—f and %—ZI
denote column vectors of partial derivatives, and the time arguments of ¢, p,
y, and u have been omitted for brevity:

q = %(q,p) geR”, peR (4.8a)
. OH ocT .

p = —%(q,p) + 8—q(q)u, u e RF (4.8b)
y = Clq), y € R (4.8c)

0 <y —u>0. (4.8d)
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Here, C'(g) > 0 is the column vector of geometric inequality constraints, and
u > 0 is the vector of Lagrange multipliers producing the constraint force
vector (9C/0q)T (q)u. (The expression CT /0q denotes an n x k matrix whose
i-th column is given by 9C;/dq.) The perpendicularity condition expresses
in particular that the i-th component of u; can only be non-zero if the i-th
constraint is active, that is, y; = C;(¢) = 0. The appearance of the reaction
force in the above form, with u; > 0, can be derived from the principle that
the reaction forces do not exert any work along virtual displacements that are
compatible with the constraints. This basic principle of handling geometric
inequality constraints can be found e.g. in [125, 86], and dates back to Fourier
and Farkas.

The Hamiltonian H (g, p) denotes the total energy, generally given as the
sum of a kinetic energy $p” M ~!(q)p (where M(q) denotes the mass matrix,
depending on the configuration vector ¢) and a potential energy V(q). The
semi-explicit complementarity system (4.8) is called a Hamiltonian comple-
mentarity system, since the dynamics of every mode is Hamiltonian [138]. In
particular, every mode is energy-conserving, since the constraint forces are
workless. It should be noted though that the model could be easily extended
to mechanical systems with dissipation by replacing the second set of equations
of (4.8) by

0H OR,.. oCT

p= —8—(](%10) - a—q.(Q) + 8—q(Q)U (4.9)

where R(q) denotes a Rayleigh dissipation function.

4.1.3 Optimal control with state constraints

The purpose of this subsection is to indicate in which way one may relate opti-
mal control problems with state constraints to complementarity systems. The
study of this subject is far from being complete; we will offer some suggestions
rather than present a rigorous treatment. Consider the problem of maximizing
a functional of the form

T
/ F(t,z(t),u(t))dt + Fr(z(T)) (4.10)

over a collection of trajectories described by

&(t) = f(t,z(t),u(t)), (0)=mo (4.11)
together with the constraints

g(t, z(t),u(t)) > 0. (4.12)

In the above, g may be a vector-valued function, and then the inequalities
are taken componentwise. Under suitable conditions (see [65] for much more
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detailed information), candidates for optimal solutions can be found by solving
a system of equations that is obtained as follows. Let A be a vector variable
of the same length as x, and define the Hamiltonian H(t,z,u,\) by

H(t,z,u,\) = F(t,z,u) + AT f(t,2,u). (4.13)

Also, let n be a vector of the same length as g, and define the Lagrangian
L(t7 x? u’ >\7 n) by

L(t,x,u,A\,n) = H(t,x,u,/\)—f-nTg(t,x,u). (4.14)

The system referred to before is now the following:

(t) = f(t,z(t),u(t)) (4.15a)
5O = ~ 221,20, u(t), M0), n(0) (1.151)
u(t) = arg {u‘g(tgl(:%))fu)zo}L(t,aj(t),u,k(t),n(t)) (4.15¢)
0 < gt z(t),ut)) — n(t) > 0 (4.15d)

with initial conditions
z(0) = zq (4.16)

and final conditions

AT = aa%(x(T)) (4.17)
Suppose that u(t) can be solved from (4.15¢) so that

u(t) = u*(t,w(), A(B), n(t)) (4.18)
where u*(t,z,\,n) is a certain function. Then define g* (¢, z, A, 1) by

g (t,z, A ) = g(t,z,u"(t,z,\,n)) (4.19)
and introduce a variable y(t) by

y(t) = g*(t,z(t), AM(t),n(1))- (4.20)

The system (4.15) can now be rewritten as

w(t) = f(t,2(t),u"(t,(t), Mt),n(t)))
/\(t) = _g_é(tux(t)a’l"*(tux(t)a/\(t)an(t))a/\(t)an(t)) (421)
y(t) = g*(t:x(t):A(t)an(t))

0 < ylt) —n) >0
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Here we have a (time-inhomogeneous) complementarity system with state vari-
ables z and A and complementary variables y and 1. The system has mixed
boundary conditions (4.16-4.17); therefore one will have existence and unique-
ness of solutions under conditions that in general will be different from the ones
that hold for initial-value problems.

A case of special interest is the one in which a quadratic criterion is op-
timized for a linear time-invariant system, subject to linear inequality con-
straints on the state. Consider for instance the following problem: minimize

T
F[ @7 Qa0 + uo) ute)a (4.22)
subject to
i) = Aa(t)+ Bu(®), 2(0)=aq (4.23)
Ca(t) =2 0 (4.24)

where A, B, and C are matrices of appropriate sizes, and @ is a nonnegative
definite matrix. Following the scheme above leads to the system

& = Az + Bu, z(0)=u10 (4.25a)
AN=Qz—ATX\-CTy, XNT)=0 (4.25b)
u = arg max[—%uTu—i—/\TBu] (4.25¢)
0<Ces — >0 (4.25d)

where we have omitted the time arguments for brevity. Solving for u from
(4.25¢) leads to the equations

YO B PR TS I IV I
la] Lo —ar[a] [ o]

y = [C 0}{i} (4.26b)
0<y—n >0 (4.26¢)

Not surprisingly, this is a linear Hamiltonian complementarity system.

The study of optimal control problems subject to state constraints is
fraught with difficulties; see Hartl et al. [65] for a discussion. The setting
of complementarity systems may be of help in overcoming part of these diffi-
culties.

4.1.4 Variable-structure systems

Consider a nonlinear input-output system of the form

&= f(z,u), §=h(za) (4.27)
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in which the input and output variables are adorned with a bar for reasons
that will become clear in a moment. Suppose that the system is in feedback
coupling with a relay element given by

a=1, §>0
~1<ua<l, §=0 (4.28)
i=-1, §<0.

As we have seen above, many of the systems considered in the well-known book
by Filippov on discontinuous dynamical systems [54] can be rewritten in this
form. At first sight, relay systems do not seem to fit in the complementarity
framework. However, let us introduce new variables y1, y2, u1, and us, together
with the following new equations:

Uy = %(1 — ﬂ)
u; = (1+a) (4.29)
Yy = Yy1—Y2

Instead of considering (4.27) together with (4.28), we can also consider (4.27)
together with the standard complementarity conditions for the vectors y =
col(y1,y2) and u = col(uy,us):

=0, u; >0 =0, wu22>0
Y1 12 Y2 2 (4.30)

y1 >0, ur =0 y2 >0, wuz=0

It can be verified easily that the trajectories of (4.27-4.29-4.30) are the same
as those of (4.27-4.28). Note in particular that, although (4.30) in principle
allows four modes, the conditions (4.29) imply that u; + us = 1 so that the
mode in which both u; and us vanish is excluded, and the actual number of
modes is three.

So it turns out that we can rewrite a relay system as a complementarity
system, at least if we are willing to accept that some algebraic equations appear
in the system description. It is possible to eliminate the variables § and @ and
obtain equations in the form

T = f(lU,’LLQ - ul)
yi—y2 = hz,uz —w) (4.31)
U +uys = 1

together with the complementarity conditions (4.30), but (4.31) is not in stan-
dard input-state-output form but rather in a DAE type of form

F(i,z,y,u) =0. (4.32)
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If the relay is a part of a model whose equations are built up from submodels
then it is likely anyway that the system description will already be in terms
of both differential and algebraic equations, and then it may not be much of
a problem to have a few algebraic equations added (depending on how the
“index” [28] of the system is affected). Alternatively however one may replace
the equations (4.29) by

uy = %(1 — ﬂ)
v = $(1+4q) (4.33)
Yy = Y1 —u

which are the same as (4.29) except that y» and us have traded places. The
equations (4.31) can now be rewritten as

& = flz,1—-2u)
y1 = h(z,1—2uy) + us (4.34)
y2 = 1—u

and this system does appear in standard input-output form. The only conces-
sion one has to make here is that (4.34) will have a feedthrough term (i.e. the
output y depends directly on the input u) even when this is not the case in
the original system (4.27).

4.1.5 A class of piecewise linear systems

Suppose that a linear system is coupled to a control device which switches
between several linear low-level controllers depending on the state of the con-
trolled system, as is the case for instance in many gain scheduling controllers;
then the closed-loop system may be described as a piecewise linear system.
Another way in which piecewise linear systems may arise is as approximations
to nonlinear systems. Modeling by means of piecewise linear systems is at-
tractive because it combines the relative tractability of linear dynamics with
a flexibility that is often needed for a precise description of dynamics over a
range of operating conditions.

There exist definitions of piecewise linear systems at various levels of gen-
erality. Here we shall limit ourselves to systems of the following form (time
arguments omitted for brevity):

t = Az+ Bu (4.35a)
= Cz+ Du (4.35b)
(yi;ui) € graph(fi) (i=1,...,k) (4.35¢)

where, for each i, f; is a piecewise linear function from R to R?. As is common
usage, we use the term “piecewise linear” to refer to functions that would in
fact be more accurately described as being piecewise affine. We shall consider
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functions f; that are continuous, although from some points of view it would
be natural to include also discontinuous functions; for instance systems in
which the dynamics is described by means of piecewise constant functions
have attracted attention in hybrid systems theory.

The model (4.35) is natural for instance as a description of electrical net-
works with a number of piecewise linear resistors. Descriptions of this form
are quite common in circuit theory (cf. [93]). Linear relay systems are also
covered by (4.35); note that the “sliding mode” corresponding to the verti-
cal part of the relay characteristic is automatically included. Piecewise linear
friction models are often used in mechanics (for instance Coulomb friction),
which again leads to models like (4.35); see Subsections 2.2.10 and 2.2.11.

One needs to define a solution concept for (4.35); in particular, one has to
say in what function space one will be looking for solutions. With an eye on
the intended applications, it seems reasonable to require that the trajectories
of the variable z should be continuous and piecewise diffentiable. As for the
variable u, some applications suggest that it may also be too much to require
continuity for this variable. For example, take a mass point that is connected
by a linear spring to a fixed wall, and that can move in one direction subject to
Coulomb friction. In a model for this situation the variable v would play the
role of the friction force which, according to the Coulomb model, has constant
magnitude as long as the mass point is moving, and has sign opposite to the
direction of motion. If the mass point is given a sufficiently large initial velocity
away from the fixed wall, it will come to a standstill after some time and then
immediately be pulled back towards the wall, so that in this case the friction
force jumps instantaneously from one end of its interval of possible values to
the other. Even allowing jumps in the variable u, we can still define a solution
of (4.35) to be a triple (z,u,y) such that (4.35b) and (4.35c) hold for almost
all ¢, and (4.35a) is satisfied in the sense of Carathéodory, that is to say

x(t) = x(O)—f—/O [Az(T) + Bu(r)]dr (4.36)

for all ¢.

The first question that should be answered in connection with the system
(4.35) is whether solutions exist and are unique. For this, one should first of
all find conditions under which, for a given initial condition z(0) = zo, there
exists a unique continuation in one of the possible “modes” of the systems
(corresponding to all possible combinations of the different branches of the
piecewise linear characteristics of the system). This can be a highly nontrivial
problem; for instance in a mechanical system with many friction points, it may
not be so easy to say at which points sliding will take place and at which points
stick will occur. It turns out to be possible to address the problem on the basis
of the theory of the linear complementarity problem and extensions of it. For
the case of Coulomb friction, also in combination with nonlinear dynamics,
this is worked out in [129]. The general case can be developed on the basis
of a theorem by Kaneko and Pang [85], which states that any piecewise linear
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characteristic can be described by means of the so-called Extended Horizontal
Linear Complementarity Problem. On this basis, the piecewise linear system
(4.35) may also be described as an extended horizontal linear complementarity
system. Results on the solvability of the EHLCP have been given by Sznajder
and Gowda [148]. Using these results, one can obtain sufficient conditions for
the existence of unique solution starting at a given initial state; see [33] for
details.

4.1.6 Projected dynamical systems

The concept of equilibrium is central to mathematical economics. For instance,
one may consider an oligopolistic market in which several competitors deter-
mine their production levels so as to maximize their profits; it is of interest to
study the equilibria that may exist in such a situation. On a wider scale, one
may discuss general economic equilibrium involving production, consumption,
and prices of commodities. In fact in all kinds of competitive systems the
notion of equilibrium is important.

The term “equilibrium” can actually be understood in several ways. For
instance, the celebrated Nash equilibrium concept of game theory is defined as
a situation in which no player can gain by unilaterally changing his position.
Similar notions in mathematical economics lead to concepts of equilibria that
can be characterized in terms of systems of algebraic equations and inequalities.
On the other hand, we have the classical notion of equilibrium in the theory
of dynamical systems, where the concept is defined in terms of a given set of
differential equations. It is natural to expect, though, that certain relations
can be found between the static and dynamic equilibrium concepts.

In [49], Dupuis and Nagurney have proposed a general strategy for em-
bedding a given static equilibrium problem into a dynamic system. Dupuis
and Nagurney assume that the static equilibrium problem can be formulated
in terms of a wvariational equality; that is to say, the problem is specified by
giving a closed convex subset K of R¥ and a function F from K to R¥, and
Z € K is an equilibrium if

(F(z),z—z) > 0 (4.37)

for all z € K. The formulation in such terms is standard within mathematical
programming. With the variational problem they associate a discontinuous
dynamical system that is defined by & = —F'(z) on the interior of K but that
is defined differently on the boundary of K in such a way as to make sure that
solutions will not leave the convex set K. They then prove that the stationary
points of the so defined dynamical system coincide with the solutions of the
variational equality.

In some more detail, the construction proposed by Dupuis and Nagurney
can be described as follows. The space R* in which state vectors take their
values is taken as a Euclidean space with the usual inner product. Let P denote
the mapping that assigns to a given point z in R* the (uniquely defined) point
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in K that is closest to x; that is to say,

P(z) = arg min llz — z||. (4.38)

For x € K and a velocity vector v € R¥, let

7(z,0) = lim w

d—0 0 (4.39)

If  is in the interior of K, then clearly n(z,v) = v; however if z is on the
boundary of K and v points outwards then 7(z,v) is a modification of v. The
dynamical system considered by Dupuis and Nagurney is now defined by

t = w(zx,—F(z)) (4.40)

with initial condition z¢ in K. The right hand side of this equation is in general
subject to a discontinuous change when the state vector reaches the boundary
of K. The state may then follow the boundary along a (k — 1)-dimensional
surface or a part of the boundary characterized by more than one constraint,
and after some time it may re-enter the interior of K after which it may again
reach the boundary, and so on.

In addition to the expression (4.39) Dupuis and Nagurney also employ a
different formulation which has been used in [48]. For this, first introduce the
set of inward normals which is defined, for a boundary point x of K, by

n(z) = {v[Ihll =1, and (y,2 —y) <0, Vy € K}. (4.41)

If K is a convex polyhedron then the vector defined in (4.39) may equivalently
be described by

m(z,v) = v+ {v,—y")y" (4.42)

where 7* is defined by

~4* = arg max (v, —7). (4.43)
y€en(z)

A further reformulation is possible by introducing the “cone of admissi-
ble velocities”. To formulate this concept, first recall that a curve in R* is a
smooth mapping from an interval, say (—1,1), to R¥. An admissible velocity
at a point  with respect to the closed convex set K C RF is any vector that
appears as a directional derivative at 0 of a C°° function f(t) that satisfies
f(0) = z and f(t) € K for t > 0. One can show that the set of admissible
velocities is a closed convex cone for any = in the boundary of K; of course,
the set of admissible velocities is empty when z ¢ K and coincides with RF
if = belongs to the interior of K. One can furthermore show (see [71]) that
the mapping defined in (4.42) for given x is in fact just the projection to the
cone of admissible velocities. In this way we get an alternative definition of
projected dynamical systems. The new formulation is more “intrinsic” in a
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differential-geometric sense than the original one which is based on the stan-
dard coordinatization of k-dimensional Euclidean space. Indeed it would be
possible in this way to formulate projected dynamics for systems defined on
Riemannian manifolds; the inner product on tangent spaces that is provided
by the Riemannian structure makes it possible to define the required projec-
tion. One possible application would be the use of projected gradient flows to
find minima subject to constraints; cf. for instance [75] for the unconstrained
case.

Assume now that the set K is given as an intersection of convex sets of
the form {z | h;(x) > 0} where the functions h; are smooth. This is actually
the situation that one typically finds in applications. It is then possible to
reformulate the projected dynamical system as a complementarity system.
The construction is described in [71] and we summarize it briefly here. Let
H(z) denote the gradient matrix defined by the functions h;(x); that is to say,
the (i,7)-th element of H(x) is

Oh;

(HE@)y = 5, @), (4.44)

For z € K, let I(z) be the set of “active” indices, that is,
I(z) = {i| hy(z) =0}. (4.45)

We denote by H(,), the matrix formed by the rows of H () whose indices are
active; it will be assumed that this matrix has full row rank for all x in the
boundary of K (“independent constraints”). One can then show that for each
x € K the cone of admissible velocities is given by {v | H(;)ev > 0}. Moreover,
the set of inward normals as defined in (4.41) is given by {7 | ||7|| =1 and v =
HIT(m).u for some u > 0}. Consequently, the projection of an arbitrary vector
vp to the cone of admissible velocities is obtained by solving the minimization
problem

mvin{Hvo — || | Hy(z)ev > 0}.
By standard methods, one finds that the minimizer is given by H}F(I).u where
u is the (unique) solution of the complementarity problem

0 < Hievo + Hl(m).HIT(w).u —u > 0. (4.46)

Now, compare the projected dynamical system (4.40) to the complementarity
system defined by

& = —F(z) + H (2)u (4.47a)
y = h(z) (4.47b)
0<y-u>0 (4.47¢)

where h(z) is a vector defined in the obvious manner by (h(z)); = h;(x), and
where the trajectories of all variables are required to be continuous. Suppose
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that the system is initialized at ¢ = 0 at a point zg in K. For indices ¢ such
that h;(zg) > 0, the complementarity conditions imply that we must have
u;(0) = 0. For indices that are active at xo we have y;(0) = 0; to satisfy
the inequality constraints also for positive ¢ we need g;(0) > 0. Moreover,
it follows from the complementarity conditions and the continuity conditions
that we must have u;(0) = 0 for indices 4 such that ¢;(0) = 0, and, vice versa,
9:(0) = 0 for indices 7 such that u;(0) > 0. Since

yl(mo)(o) = HI(wo)-(_F(xo) + HTU(O))
= HI(.’to)'(_F(:EO) + H}E,’to)-u"(.’to)(o))

the vector u;(,,)(0) must be a solution of the complementarity problem (4.46).
It follows that HTu(0) is of the form appearing in (4.42). The reverse con-
clusion follows as well, and moreover one can show that “local” equality of
solutions as just shown implies “global” equality [71].

4.1.7 Diffusion with a free boundary

In this subsection we consider a situation in which a complementarity system
arises as an approximation to a partial differential equation with a free bound-
ary. We shall take a specific example which arises in the theory of option
pricing. For this we first need to introduce some terminology. A European put
option is a contract that gives the holder the right, but not the obligation, to
sell a certain asset to the counterparty in the contract for a specified price (the
“exercise price”) at a specified time in the future (“time of maturity”). The
underlying asset can for instance be a certain amount of stocks, or a certain
amount of foreign currency. For a concrete example, consider an investor who
has stocks that are worth 100 now and who would like to turn these stocks
into cash in one year’s time. Of course it is hard to predict what the value of
the stocks will be at that time; to make sure that the proceeds will be at least
90, the investor may buy a put option with exercise price 90 that matures in
one year. In this way the investor is sure that she can sell the stocks for at
least 90.

Of course one has to pay a price to buy such protection, and it is the purpose
of option theory to determine “reasonable” option prices. The modern theory
of option pricing started in the early seventies with the seminal work by Black,
Scholes, and Merton. This theory is not based on the law of large numbers,
but rather on the observation that the risk that goes with conferring an option
contract is not as big as it would seem to be at first sight. By following an
active trading strategy in the underlying asset, the seller (“writer”) of the
option will be able to reduce the risk. Under suitable model assumptions the
risk can even be completely eliminated; that is to say, the cost of providing
protection becomes independent of the evolution of the value of the underlying
asset and hence can be predicted in advance. The “no-arbitrage” argument
then states that this fixed cost must, by the force of competition, be the market
price of the option. The model assumptions under which one can show that
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the risk of writing an option can be eliminated are too strong to be completely
realistic; nevertheless, they provide a good guideline for devising strategies
that at least are able to reduce risk substantially.

One of the assumptions made in the original work of Black and Scholes [20]
is that the price paths of the underlying asset may be described by a stochastic
differential equation of the form

dS(t) = pS(t)dt + oS(t)dw(t) (4.48)

where w(t) denotes a standard Wiener process. (See any textbook on SDEs, for
instance [122], for the meaning of the above.) Under a number of additional
assumptions (for instance: the underlying asset can be traded continuously
and without transaction costs, and there is one fixed interest rate r which
holds both for borrowing and for lending), Black and Scholes derived a partial
differential equation that describes the price of the option at any time before
maturity as a function of two variables, namely time ¢ and the price S of the
underlying asset. The Black-Scholes equation for the option price C(S,1) is
(with omission of the arguments)

2
C s PS5 o = o

with end condition for time of maturity 7" and exercise price K
C(S,T) = max(K — S,0) (4.50)
and boundary conditions

C0,t) = e"T-UK  lim C(S,t) = 0. (4.51)
S—o0
It turns out that the “drift” parameter u in the equation (4.48) is immaterial,
whereas the “volatility” parameter ¢ is very important since it determines the
diffusion coefficient in the PDE (4.49).

So far we have been discussing a Furopean put option. An American put
option is the same except that the option may be exercised at any time until
the maturity date, rather than only at the time of maturity. (The terms
“European” and “American” just serve as a way of distinction; both types of
options are traded in both continents.) The possibility of early exercise brings
a discrete element into the discussion, since at any time the option may be in
two states: “alive” or “exercised”. For American options, the Black-Scholes
equation (4.49) is replaced by an inequality

2
%—f + 50252% + rSg—g —rC <0 (4.52)
in which equality holds if the option is not exercised, that is, if its value exceeds
the revenues of exercise. For the put option, this is expressed by the inequality

C(S,t) > max(K — S,0). (4.53)
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The Black-Scholes equation (4.49) is a nonlinear partial differential equation.
A simple substitution, however, will transform it to a linear PDE. To this end,
express the price of the underlying asset S in terms of a new (dimensionless)
independent variable x by

S = Ke".

To make the option price dimensionless as well, introduce v := C/K. We
also change the final value problem (4.49-4.50) to an initial value problem by
setting set 7 = T — t. After some computation, we find that the equation
(4.49) is replaced by

82

—%+§a2a—;§+(r—502)2—;—m = 0. (4.54)
with the inital and boundary conditions (for the European put option)

v(z,0) = max(l —€",0), mgrzlocv(x, T) = e 7, tli}ngo v(z,7) = 0.

(4.55)

For the American put option, we get the set of inequalities

2_3_5022272—(7«—%02)2—;“7)20 (4.56)

v > max(1l—e%,0) (4.57)
with the boundary conditions

IILH;O v(z,7) =0 (4.58)
and

v(z,7) = 1—¢€° fora <zp(r) (4.59)

where z;(7) is the location at time 7 of the free boundary which should be
determined as part of the problem on the basis of the so-called “smooth past-
ing” or “high contact” conditions which require that v and dv/dz should be
continuous as functions of z across the free boundary.

Define the function g(z) by

g(x) = max(l—e€°,0). (4.60)

The partial differential inequality (4.56) and its associated boundary condi-
tions may then be written in the following form which is implicit with respect
to the free boundary:

ov | ,0% 1 9,0V _

(5. = 5055 — (r—30%) 5 +r0)(v —9) =0 (4.61a)
ov | ,0% L
ar 20 gy gzl vog 20 (461b)
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This already suggests a complementarity formulation. Indeed, the above might
be considered as an example of an infinite-dimensional complementarity sys-
tem, both in the sense that the state space dimension is infinite and in the
sense that there are infinitely many complementarity relations to be satisfied.
A complementarity system of the type that we usually study in this chap-
ter is obtained by approximating the infinite-dimensional system by a finite-
dimensional system. For the current application it seems reasonable to carry
out the approximation by what is known in numerical analysis as the “method
of lines”. In this approach there is a first stage in which the space variable
is discretized but the time variable is not. Specifically, take a grid of, say, NV
points in the space variable (in our case this is the dimensionless price variable
x), and associate to each grid point z; a variable z;(t) which is intended to be
an approximation to v(z;,t). The action of the linear differential operator
2y 5. OV

v o %02%—1—(7"—%02)2—33—7"1) (4.62)
can be approximated by a linear mapping acting on the space spanned by the
variables z1, ... ,zn. For instance, on an evenly spaced grid an approximation
to the first-order differential operator 8/0x is given by

_2 2 0 0

-1 0 1 0
1 0O -1 0 1 .

A = — (4.63)
2h : .. .. : ..
0
0 -1 0 1
0 -« - 0 =2 2|

where h is the mesh size, and the second-order differential operator 82 /9x? is
approximated by

A : (4.64)

0 - .- 0 1 =2

The mapping (4.62) is then approximated by the matrix

A = %O'QAQ +(r— %az)Al —rl. (4.65)
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The function g(x) is represented by the vector g with entries g; = g(x;).
Consider now the linear complementary system with N + 1 state variables and
N pairs of complementary variables given by

A0 1
T = x + u (4.66a)
0 0 0
y = [I —g]x (4.66]3)
0<y —u>0. (4.66¢)
The system is initialized at
zi(0)=g; (i=1,...,N), zyn(0)=1 (4.67)

The complementarity system defined in this way is a natural candidate for pro-
viding an approximate solution to the diffusion equation with a free boundary
that corresponds to the Black-Scholes equation for an American put option.

A natural idea for generating approximate solutions of complementarity
systems is to use an implicit Euler method. For linear complementarity sys-
tems of the form

z = Az + Bu
0<y—u>20

the method may be written as follows:

Thtl ZOk g1 + Bugss (4.69a)
At

Yrt1 = Cxppr + Dugpa (4.69b)

0 < Yp41 — ug41 > 0 (4.69c¢)

where zj is intended to be an approximation to z(kAt), and similarly for
y and u. At each step this gives rise to a complementarity problem which
under suitable assumptions has a unique solution. The results of applying
this method above to the equations for an American put option are shown in
Fig.4.1; the figure shows solutions for various times before expiry as a function
of the value of the underlying asset (the variable S).

A more standard numerical method for dealing with the American-style
Black-Scholes equation is the finite-difference method in which both the time
and space variables are discretized; see for instance [158]. In general, an advan-
tage of a “semidiscretization” approach over an approach in which all variables
are discretized simultaneously is that one may make use of the highly devel-
oped theory of step size control for numerical solutions of ODEs, rather than
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Figure 4.1: Value of an American put option at different times before expiry.

using a uniform grid. We are of course working here with a complementar-
ity system rather than an ODE, and it must be said that the theory of step
size control for complementarity systems is at an early stage of development.
Moreover, the theory of approximation of free-boundary problems by comple-
mentarity systems has been presented here only for a special case and on the
basis of plausibility rather than formal proof, and much further work on this
topic is needed.

4.1.8 Max-plus systems
From the fact that the relation

z = max(z,y) (4.70)
may also be written in the form
z=z4+a=y+b 0<a—-5b2>0 (4.71)

it follows that any system that can be written in terms of linear operations
and the “max” operation can also be written as a complementarity system.
In particular it follows that the so-called max-plus systems (see [13]), which
are closely related to timed Petri nets, can be written as complementarity
systems. The resulting equations appear in discrete time, as opposed to the
other examples in this section which are all in continuous time; note however



90 Chapter 4. Complementarity systems

that the “time” parameter in a max-plus system is in the standard applications
a cycle counter rather than actual time. For further discussion of the relation
between the max algebra and the complementarity problem see [44].

4.2 Existence and uniqueness of solutions

Hybrid systems provide a rather wide modeling context, so that there are
no easily verifiable necessary and sufficient conditions for well-posedness of
general hybrid dynamical systems. It is already of interest to give sufficient
conditions for well-posedness of particular classes of hybrid systems, such as
complementarity systems. The advantage of considering special classes is that
one can hope for conditions that are relatively easy to verify. In a number of
special cases, such as mechanical systems or electrical network models, there
are moreover natural candidates for such sufficient conditions.

Uniqueness of solutions will below always be understood in the sense of
what is sometimes called right uniqueness, that is, uniqueness of solutions
defined on an interval [tg,¢;) given an initial state at ¢g. It can easily happen in
general hybrid systems, and even in complementarity systems, that uniqueness
holds in one direction of time but not in the other; take for instance the two-
carts example of Subsection 2.2.9 with zero restitution coefficient. We have
here one of the points in which discontinuous dynamical systems differ from
smooth systems. To allow for the possibility of an initial jump, one may let
the initial condition be given at ¢, .

We have to distinguish between local and global existence and uniqueness.
Local existence and uniqueness, for solutions starting at g, holds if there exists
an € > 0 such that on [tg, tg+¢) there is a unique solution starting at the given
initial condition. For global existence and uniqueness, we require that for
given initial condition there is a unique solution on [tg, 00). If local uniqueness
holds for all initial conditions and existence holds globally, then uniqueness
must also hold globally since there is no point at which solutions can split.
However local existence does not imply global existence. This phenomenon is
already well-known in the theory of smooth dynamical systems; for instance
the differential equation @(t) = x?(¢) with z(0) = zo has the unique solution
x(t) = xo(1 — x9t)~! which for positive xq is defined only on the interval
[0,75 ). Some growth conditions have to be imposed to prevent this “escape to
infinity”. In hybrid systems, there are additional reasons why global existence
may fail; in particular we may have an accumulation of mode switches. An
example where such an accumulation occurs was already discussed in Chapter
1 (see (1.12)). Another example comes from the so-called Fuller phenomenon
in optimal control theory [106]. For the problem given by the equations % () =
x2(t), £2(t) = u(t) with end constraint z(T") = 0, control constraints |u(t)| < 1,
and cost functional fOT x?(t)dt, it turns out that the optimal control is bang-
bang (i..e. it takes on only the two extreme values 1 and —1) and has an
infinite number of switches. As shown in [90], the phenomenon is not at all
rare.



4.3. The mode selection problem 91

4.3 The mode selection problem

As noted in [138] it is not difficult to find examples of complementarity systems
that exhibit nonuniqueness of smooth continuations. For a simple example of
this phenomenon within a switching control framework, consider the plant

1 = o9, =z
1 2 Y 2 (4.72)
fz = —Tr1 —u
in closed-loop with a switching control scheme of relay type
u(t) =1, if y(t)>0
—1<u(®) <1, if yt)=0 (4.73)
u(t) = —1, it yt) <0

(This could be interpreted as a mass-spring system subject to a “reversed”
— and therefore non-physical — Coulomb friction.) It was shown in Sub-
section 4.1.4 that such a variable-structure system can be modeled as a com-
plementarity system. Note that from any initial (continuous) state z(0) =
(21(0),22(0)) = (¢,0), with |¢| < 1, there are three possible smooth continua-
tions for £ > 0 that are allowed by the equations and inequalities above:

(i) z1(t) = 21(0), x2(t) =0, w(t)=-z1(0), —1<u(t)<1,
y(t) = z2(t) =0
(ii) z1(t) = =14 (21(0) + 1) cost, xa(t) = —(21(0) 4+ 1)sint,
u(t) =1, y()==z2(t) <0
(iii) z1(t) =14 (x1(0) — 1) cost, ma(t) = —(x1(0) —1)sint,
u(t) = =1, y(t) = z2(t) > 0.
So the above closed-loop system is not well-posed as a dynamical system. If
the sign of the feedback coupling is reversed, however, there is only one smooth
continuation from each initial state. This shows that well-posedness is a non-
trivial issue to decide upon in a hybrid system, and in particular is a meaningful
performance characteristic for hybrid systems arising from switching control
schemes.

In this section we follow the treatment of [140] and consider systems of the
form

i(t) = flz(t),u(t), z€R', uecRF (4.74a)
y(t) = h(z(t),u(t)), yeRE (4.74b)

with the additional complementarity conditions

0 < y(t) — ut) > 0. (4.75)
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The functions f and h will always be assumed to be smooth.
The complementarity conditions (4.75) imply that for some index set I C
{1,...,k} one has the algebraic constraints

yi)=0 G el), w(t)=0 (igI). (4.76)

Note that (4.76) always represents k constraints which are to be taken in
conjunction with the system of n differential equations in n 4+ k variables
appearing in (4.74). The problem of determining which index set I has the
property that the solution of (4.74-4.76) coincides with that of (4.74-4.75),
at least on an initial time interval, is called the mode selection problem. The
index set I represents the mode of the system.

One approach to solving the mode selection problem would simply be to
try all possibilities: solve (4.74) together with (4.76) for some chosen candidate
index set I, and see whether the computed solution is such that the inequality
constraints y(t) > 0 and wu(t) > 0 are satisfied on some interval [0,e]. Un-
der the assumption that smooth continuation is possible from xg, there must
at least be one index set for which the constraints will indeed be satisfied.
This method requires in the worst case the integration of 2% systems of n + k
differential /algebraic equations in n + k unknowns.

In order to develop an alternative approach which leads to an algebraic
problem formulation, let us note first that we can derive from (4.74) a number
of relations between the successive time derivatives of y(-), evaluated at ¢ = 0,
and the same quantities derived from w(-). By successively differentiating
(4.74b) and using (4.74a), we get

y(t) = h(=z(t),u(d)),

90 = () u) ), u(®) + o), u(t))idr)

= Fl(w(t)vu(t)aa(t))v
and in general
y\) (t) = Fj(z(t),u?),... ,ul) (1) (4.77)

where F} is a function that can be specified explicitly in terms of f and h.
From the complementarity conditions (4.75), it follows moreover that for each
index 4 either

(yi(0),9:(0),...) = 0 and (u;(0),7%:(0),...)

1Y
o

(4.78)
(y5(0),5:(0),...) = 0 and (us(0),@;(0),...) = 0 (4.79)

(or both), where we use the symbol > to denote lexicographic nonnegativity.
(A sequence (ag,ay,...) of real numbers is said to be lexicographically non-
negative if either all a; are zero or the first nonzero element is positive.) This
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suggests the formulation of the following “dynamic complementarity problem.”

Problem DCP. Given smooth functions Fj : R0k 5 RF (j=10,1,...)
that are constructed from smooth functions f : R* — R” and h : R* — R*
via (4.77), find, for given zg € R", sequences (y°,y*,...) and (u®, u',...) of

k-vectors such that for all 7 we have

Yy = Fj(wo,u’,...,ud) (4.80)
and for each index i € {1,...,k} at least one of the following is true:
W0uh) = 0 and  (Wul,...) = 0 (4.81)

¥, yi,...) = 0 and (u},ui,...) 0. (4.82)
We shall also consider truncated versions where j only takes on the values
from 0 up to some integer ¢; the corresponding problem will be denoted
by DCP({). Tt follows from the triangular structure of the equations that
if ((y°,...,9%,°, ... ,u%)) is a solution of DCP({), then, for any ¢' < ¢,
(0, ... ,y"), (u0, ... ,u")) is a solution of DCP(¢'). We call this the nesting
property of solutions. We define the active index set at stage £, denoted by Iy,
as the set of indices i for which (u?,...,u¢) = 0 in all solutions of DCP(¥), so
that necessarily ylj = 0 for all j in any solution of DCP (if one exists). Likewise
we define the inactive index set at stage £, denoted by Jy, as the set of indices i
for which (y?,...,yf) = 0in all solutions of DCP(£), so that necessarily u} = 0
for all j in any solution of DCP. Finally we define K; as the complementary
index set {1,...,k}\(I,UJ;). It follows from the nesting property of solutions
that the index sets I; and J; are nondecreasing as functions of £. Since both
sequences are obviously bounded above, there must exist an index £* such that
Iy = Iy« and Jy = Jp« for all £ > £*. We finally note that all index sets defined
here of course depend on xg; we suppress this dependence however to alleviate
the notation.

The problem DCP is a generalization of the nonlinear complementarity
problem (NLCP) (see for instance [39]), which can be formulated as follows:
given a smooth function F : R¥ — R*, find k-vectors y and u such that
y = F(z,u) and 0 <y — u > 0. For this reason the term “dynamic comple-
mentarity problem” as used above seems natural. Apologies are due however
to Chen and Mandelbaum who have used the same term in [37] to denote a
different although related problem.

Computational methods for the NLCP form a highly active research subject
(see [64] for a survey), due to the many applications in particular in equilib-
rium programming. The DCP is a generalized and parametrized form of the
NLCP and given the fact that the latter problem is already considered a major
computational challenge, one may wonder whether the approach taken in the
previous paragraphs can be viewed as promising from a computational point
of view. Fortunately, it turns out that under fairly mild assumptions the DCP
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can be reduced to a series of linear complementarity problems. In the context
of mechanical systems this idea is due to Lotstedt [96].

To get a reduction to a sequence of LCPs, assume that the dynamics (4.74)
can be written in the affine form

F(8) + iy 9o (t))ui(t)
y() = h(=z(1)).

IS0
—~
-
~—
I

(4.83)

Extensive information on systems of this type is given for instance in [121]. In
particular we need the following terminology. The relative degree of the i-th
output y; is the number of times one has to differentiate y; to get a result
that depends explicitly on the inputs u. The system is said to have constant
uniform relative degree at xg if the relative degrees of all outputs are the same
and are constant in a neighborhood of xg.

We can now state the following theorem, in which we use the notation
DCP(¥) to indicate explicitly the dependence of the dynamic complementarity
problem on the number £ of differentiation steps. For a proof see [140]. Recall
that L¢h denotes the Lie derivative of h along the vector field given by f; that
is, Lgh(x) = (0h/0x)(x)f(x). Also, the k-th Lie derivative L%h is defined
inductively for £ = 2,3,... by L’Jih = Lf(L’;_lh) with L}h :=L;h.

Theorem 4.3.1. Consider the system of equations (4.83) together with the
complementarity conditions (4.75), and suppose that the system (4.83) has
constant uniform relative degree p at a point xg € R". Suppose that zq is such
that

(h(ao), - L h(ao)) = 0 (4.84)

(with componentwise interpretation of the lexicographic inequality), and such
that all principal minors of the decoupling matriz LgLﬁflh(xo) at xo are posi-
tive. For such xo, the dynamic complementarity problem DCP({) has for each
 a solution ((y°,...,y"), (W’ ..., ub)) which can be found by solving a se-
quence of LCPs. Moreover this solution is unique, except for the values of u}
with i &€ Jy and j > 0 — p.

This result is algebraic in nature. We now return to differential equations;
again the proof of the statement below is in [140].

Theorem 4.3.2. Assume that the functions f, g;, and h appearing in (4.83)
are analytic. Under the conditions of Thm. 4.3.1, there exists an ¢ > 0
such that (4.83-4.75) has a smooth solution with initial condition xo on [0,¢].
Moreover, this solution is unique and corresponds to any mode I such that
Iy« CT C Iy UKps.
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Example 4.3.3. Consider the following nonlinear complementarity system:

21 = 1— 291 (4.85a)
2 = 1—x1u (4.85b)
Yy = —I1x9 (4.85c¢)
0<y—u>0. (4.85d)

The feasible set consists of the second and fourth quadrants of the plane. In
the mode in which u = 0, the dynamics is obviously given by

1 =1, @&y = 1. (4.86)
In the other mode, it follows from g = 0 that u must satisfy the equation
(2 +xd)u = o1 + 29 (4.87)

which determines uw as a function of z; and zs except in the origin. The
dynamics in the mode y = 0 is given for (z1,z2) # (0,0) by
r1 + x2 i _1_x331—|—332
22422 TP T Y22 a2

i = 1—-x (4.88)
However, this can be simplified considerably because when y = 0 we must have
21 = 0 or o = 0; in the first case we have

T =0, 39 =1 (4.89)
and in the second case
¥ =1, a9 = 0. (4.90)

The system (4.85a—4.85¢) has uniform relative degree 1 everywhere except at
the origin, where the relative degree is 3. The decoupling matrix is in this case
just a scalar and is given by 7 + z3. By Thm. 4.3.2, we find that everywhere
except possibly at the origin a unique smooth continuation is possible. The
situation at the origin needs to be considered separately. Thm.4.3.2 does
not apply, but we can use a direct argument. Whatever choice we make for
u, if 1(0) = 0 and 22(0) = 0 then the equations (4.85a-4.85b) show that
#1(0) = 1 and 42(0) = 1, so that any solution starting from the origin must
leave the feasible set. The same conclusion could be drawn from the DCP,
since computation show that for trajectories starting from the origin we have
y(0) = 0, y(0) = 0, and 4(0) = —2 so that the DCP is not solvable. We
conclude that the system (4.85) as a whole is not well-posed.

Example 4.3.4 (Passive systems). A system (4.83) is called passive (see
[155]) if there exists a function V(x) > 0 (a storage function) such that
LV(z)<0

(4.91)
Ly, V(z)=hi(z), i=1,---,k.
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Let us assume the following non-degeneracy condition on the storage function

V:

rank [Ly, Ly, V(z)] . =k, for all z with h(z) > 0. (4.92)

j=1,,
Since Ly, h; = Ly, L,V it follows that the system has uniform relative de-
gree 1, with decoupling matrix D(z) given by the matrix in (4.92). If the
principal minors of D(z) are all positive, then well-posedness follows. Note
that the condition of D(z) having positive principal minors corresponds to an
additional positivity condition on the storage function V. In fact, it can be
checked that for a linear system with quadratic storage function V(z) and no
direct feedthorugh from inputs to outputs, the decoupling matrix D(z) will
be positive definite if V(z) > 0 for x # 0. Hence, if the equations (4.83-4.75)
represent a linear passive electrical network containing ideal diodes, then this
system is well-posed.

4.4 Linear complementarity systems

4.4.1 Specification

Consider the following system of linear differential and algebraic equations and
inequalities

(t) = Ax(t) + Bu(t) (4.93a)
y(t) = Cx(t) + Du(t) (4.93b)
0 < y(t) — u(t) > 0. (4.93c)

The equations (4.93a) and (4.93b) constitute a linear system in state space
form; the number of inputs is assumed to be equal to the number of outputs.
The relations (4.93c) are the usual complementarity conditions. The set of in-
dices for which y;(t) = 0 will be referred to as the active index set; defining the
active index set in this way rather than by the condition w;(¢) > 0 used in the
previous section allows us to write the inequality constraints corresponding to
a given active index set as nonstrict inequalities rather than strict inequalities.
The active index set is in general not constant in time, so that the system
switches from one “operating mode” to another. To define the dynamics of
(4.93) completely, we will have to specify when these mode switches occur,
what their effect will be on the state variables, and how a new mode will be
selected. A proposal for answering these questions (cf. [69]) will be explained
below. The specification of the complete dynamics of (4.93) defines a class of
dynamical systems called linear complementarity systems.

Let n denote the length of the vector z(¢) in the equations (4.93a-4.93b)
and let k& denote the number of inputs and outputs. There are then 2* possible
choices for the active index set. The equations of motion when the active index
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set is I are given by

#(t) = Axz(t) + Bul(t)

y(t) = Cz(t) + Du(t) (4.94)
yi(t) = 0, 1€l

Ui(t) = 0, 1€l

where I¢ denotes the index set that is complementary to I, that is, I¢ = {i €
{1,... ,k} | i ¢ I}. We shall say that the above equations represent the system
in mode I. An equivalent and somewhat more explicit form is given by the
(generalized) state equations

%(t) Az(t) + Beruy(t)

(4.95)
0 = C[.x(t) +D11U1(t)
together with the output equations
() = Creex(t) + Dyeyus(t
yre(t) ree(t) + Dyeyuy(t) (4.96)
ure(t) = 0.

Here and below, the notation Mer, where M is a matrix of size m x k and [
is a subset of {1,... k}, denotes the submatrix of M formed by taking the
columns of M whose indices are in I. The notation M/, denotes the submatrix
obtained by taking the rows with indices in the index set I.

The system (4.95) will in general not have solutions in a classical sense for
all possible initial conditions. The initial values of the variable x for which
there does exist a continuously differentiable solution are called consistent
states. Under conditions that will be specified below, each consistent initial
state gives rise to a unique solution of (4.95). The system (4.93) follows the
path of such a solution (it “stays in mode I”) as long as the variables u;(¢)
defined implicitly by (4.95) and the variables y(t) defined by (4.96) are all
nonnegative. As soon as continuation in mode I would lead to a violation
of these inequality constraints, a switch to a different mode has to occur. In
case the value of the variable z(¢) at which violation of the constraints has
become imminent is not a consistent state for the new mode, a state jump is
called for. So both concerning the dynamics in a given mode and concerning
the transitions between different modes there are a number of questions to be
answered. For this we shall rely on the geometric theory of linear systems (see
[160, 15, 89] for the general background).

Denote by Vi the consistent subspace of mode I, i.e. the set of initial
conditions xo for which there exist smooth functions x(-) and us(-), with z(0) =
Zg, such that (4.95) is satisfied. The space Vi can be computed as the limit of
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the sequence defined by
VIO — R"
Vitt ={z eV} |Fue R s.t. Ax + Baju € Vi, Crox + Dyyu = 0}.
(4.97)

There exists a linear mapping F; such that (4.95) will be satisfied for z¢ € V;
by taking ur(t) = Frz(t). The mapping Fy is uniquely determined, and more
generally the function uy(-) that satisfies (4.95) for given zo9 € V7 is uniquely
determined, if the full-column-rank condition

B"} = {0} (4.98)

Dy
holds and moreover we have

VinT; = {0}, (4.99)

ker {

where T} is the subspace that can be computed as the limit of the following
sequence:

T} = {0}

Tl ={zeR |3z T} aecRst.
x = AZ + B.st, C[.f-f—D[[ﬂ:O}. (4100)

As will be indicated below, the subspace Ty is best thought of as the jump
space associated to mode I, that is, as the space along which fast motions
will occur that take an inconsistent initial state instantaneously to a point in
the consistent space Vy; note that under the condition (4.99) this projection is
uniquely determined. The projection can be used to define a jump rule. How-
ever, there are 2% possible projections, corresponding to all possible subsets
of {1,...,k}; which one of these to choose should be determined by a mode
selection rule.

For the formulation of a mode selection rule we have to relate in some way
index sets to continuous states. Such a relation can be established on the basis
of the so-called rational complementarity problem (RCP). The RCP is defined
as follows. Let a rational vector ¢(s) of length k£ and a rational matrix M (s)
of size k x k be given. The rational complementarity problem is to find a pair
of rational vectors y(s) and u(s) (both of length k) such that

y(s) = als) + M(s)u(s) (4.101)

and moreover for all indices 1 < i < k we have either y;(s) = 0 and u;(s) > 0
for all sufficiently large s, or u;(s) = 0 and y;(s) > 0 for all sufficiently large
5.1 The vector g(s) and the matrix M(s) are called the data of the RCP, and

INote the abuse of notation: we use q(s) both to denote the function s — ¢(s) and the
value of that function at a specific point s € C. On a few occasions we shall also denote
rational functions and rational vectors by single symbols without an argument, which is in
principle the proper notation.
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we write RCP(q(s),M(s)). We shall also consider an RCP whose data are a
quadruple of constant matrices (A, B,C, D) (such as could be used to define
(4.93a-4.93b)) and a constant vector o, namely by setting

q(s) =C(sI — A)'xg and M(s)=C(sI — A)"'B+D.

We say that an index set I C {1,... ,k} solves the RCP (4.101) if there exists
a solution (y(s),u(s)) with y;(s) = 0 for i € I and u;(s) = 0 for i ¢ I. The
collection of index sets I that solve RCP(A, B,C, D;xo) will be denoted by
S(A, B,C, D;xq) or simply by S(xo) if the quadruple (A, B, C, D) is given by
the context.

It is convenient to introduce an ordering relation on the field of rational
functions R(s). Given a rational function f(s), we shall say that f(s) is non-
negative, and we write f = 0, if

dog e RYo € R {0 > 09 = f(o) >0}.

An ordering relation between rational functions can now be defined by f > g
if and only if f —g > 0. Note that this defines a total ordering on R(s) so that
with this relation R(s) becomes an ordered field. Extending the conventions
that we already have used for the real field we shall say that a rational vector
is nonnegative if and only if all its entries are nonnegative, and we shall write
f(s) — g(s), where f(s) and g(s) are rational vectors, if for each index i at
least one of the component functions f;(s) and g;(s) is identically zero. With
these conventions, the rational complementarity problem may be written in
the form

(4.102)
0 < y(s) — u(s) = 0.

After these preparations, we can now proceed to a specification of the
complete dynamics of linear complementarity systems. We assume that a
quadruple (A, B, C, D) is given whose transfer matrix G(s) = C(sI — A)"!B+
D is totally invertible, i.e. for each index set I the k x k matrix Gyy(s) is
nonsingular. Under this condition (see Thm.4.4.1 below), the two subspaces
Vi and Tt as defined above form for all I a direct sum decomposition of the
state space R”, so that the projection along 77 onto V; is well-defined. We
denote this projection by Pr. The interpretation that we give to the equations
(4.93) is the following:

£ =Ax+ Bu, y=Czx+ Du
ur>0, yr=0, upe=0, yr>0 (4.103)
It € S(z), 2= Ppz.

Below we shall always consider the system (4.93) in the interpretation (4.103).
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4.4.2 A distributional interpretation

The interpretation of 77 as a jump space can be made precise by introducing
the class of impulsive-smooth distributions that was studied by Hautus [66]
(see also [67, 57]). The general form of an impulsive-smooth distribution ¢ is

¢ = p(F)o + f (4.104)

where p(-) is a polynomial, % denotes the distributional derivative, § is the

delta distribution with support at zero, and f is a distribution that can be
identified with the restriction to (0,00) of some function in C*°(R). The
class of such distributions will be denoted by Cipp. For an element of Cimp
of the form (4.104), we write ¢(07) for the limit value lim;o f(¢). Having
introduced the class Cimp, we can replace the system of equations (4.95) by
its distributional version

d
Lx = Az + Berur + 00
at R (4.105)

= Crex + Djjuy

in which the initial condition zy appears explicitly, and we can look for a
solution of (4.105) in the class of vector-valued impulsive-smooth distributions.
It was shown in [67] that if the conditions (4.98) and (4.99) are satisfied, then

there exists a unique solution (z,ur) € CQTTD‘I‘ to (4.105) for each zg € Vi +T7;
moreover, the solution is such that z(0%) is equal to Pyxg, the projection of
xo onto Vj along Tj. The solution is most easily written down in terms of its

Laplace transform:

#(s) = (sI—A)7'zg + (s — A)~'Beris(s) (4.106)

ar(s) = -G/ (s)Cre(sI — A) 'y, (4.107)
where

Gri(s) = C].(SI—A)ilB.[-f—DH. (4.108)

Note that the notation is consistent in the sense that G;(s) can also be viewed
as the (I, I)-submatrix of the transfer matrix G(s) := C(sI — A)"'B + D. It
is shown in [67] (see also [117]) that the transfer matrix Gr(s) associated to
the system parameters in (4.95) is left invertible when (4.98) and (4.99) are
satisfied. Since the transfer matrices Grr(s) that we consider are square, left
invertibility is enough to imply invertibility, and so (by duality) we also have
Vi + T7 = R*. Summarizing, we can list the following equivalent conditions.

Theorem 4.4.1. Consider a time-invariant linear system with k inputs and k
outputs, given by standard state space parameters (A, B,C, D). The following
conditions are equivalent.

1. For each index set I C k, the associated system (4.95) admits for each
zo € Vi a unique smooth solution (x,u) such that z(0) = xo.
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2. For each index set I C k, the associated distributional system (4.105)
admits for each initial condition xo a unique impulsive-smooth solution
(x,u).

3. The conditions (4.98) and (4.99) are satisfied for all I C k.

4. The transfer matriz G(s) = C(sI — A)™'B + D is totally invertible (as
a matriz over the field of rational functions).

In connection with the system (4.93) it makes sense to introduce the following
definitions.

Definition 4.4.2. An impulsive-smooth distribution ¢ = p(%)é + f as in
(4.104) will be called initially nonnegative if the leading coefficient of the
polynomial p(-) is positive, or, in case p = 0, the smooth function f is non-
negative on some interval of the form (0,¢) with ¢ > 0. A vector-valued
impulsive-smooth distribution will be called initially nonnegative if each of its
components is initially nonnegative in the above sense.

Definition 4.4.3. A triple of vector-valued impulsive-smooth distributions

(u,z,y) will be called an initial solution to (4.93) with initial state xo and
solution mode I if

1. the triple (u,z,y) satisfies the distributional equations

%t = Az + Bu+ o6
y = Czx+ Du

2. both u and y are initially nonnegative

3.y;=0foralli el and u; =0 for all i ¢ I.

For an impulsive-smooth distribution w that has a rational Laplace trans-
form w(s) (such as in (4.106) and (4.107)), we have that w is initially nonneg-
ative if and only if w(s) is nonnegative for all sufficiently large real values of
s. From this it follows that the collection of index sets I for which there exists
an initial solution to (4.93) with initial state zo and solution mode I is exactly
S(zo) as we defined this set before in terms of the rational complementarity
problem.

An alternative approach to the construction of initial solutions for linear
complementarity systems proceeds through the linear version of the dynamic
complementarity problem that was discussed in Section 4.3. It has been shown
by De Schutter and De Moor that the dynamic linear complementarity prob-
lem can be rewritten as a version of the LCP known as the “extended linear
complementarity problem” (see [45] for details).
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4.4.3 Well-posedness

Most of the well-posedness results that are available for linear complemen-
tarity systems provide only sufficient conditions. For the case of bimodal
linear complementarity systems, i.e. systems with only two modes (k = 1),
well-posedness has been completely characterized however (see [73]; cf. also
[138] for an earlier result with a slightly different notion of well-posedness).
Note that a system of the form (4.93a-4.93b) has a transfer function g(s) =
C(sI — A)™! B + D which is a rational function. In this case the conditions of
Thm. 4.4.1 apply if g(s) is nonzero. The Markov parameters of the system are
the coefficients of the expansion of g(s) around infinity,

9(s) =go+ g5 " g5 P4+

The leading Markov parameter is the first parameter in the sequence gg, g1, . . .
that is nonzero. In the theorem below it is assumed that the output matrix C'is
nonzero; note that if C' =0 and D # 0 the system (4.93) is just a complicated
way of representing the equations £ = Az, so that in that case we do not really
have a bimodal system.

Theorem 4.4.4. Consider the linear complimentarity system (4.93) under
the assumptions that k = 1 (only one pair of complementary variables) and
C # 0; also assume that the transfer function g(s) = C(sI — A)"'B+ D is not
identically zero. Under these conditions, the system (4.93) has for all initial
conditions a unique piecewise differentiable right-Zeno solution if and only if
the leading Markov parameter is positive.

It is typical to find that well-posedness of complementarity systems is linked
to a positivity condition. If the number of pairs of complementary variables is
larger than one, an appropriate matrix version of the positivity condition has
to be used. As might be expected, the type of positivity that we need is the
“P-matrix” property from the theory of the LCP. Recall (see the end of the
Introduction of this chapter) that a square real matrix is said to be a P-matrix
if all its principal minors are positive.

To state a result on well-posedness for multivariable linear complementarity
systems, we again need some concepts form linear system theory. Recall (see
for instance [84, p.384] or [89, p.24]) that a square rational matrix G(s) is
said to be row proper if it can be written in the form

G(s) = A(s)B(s) (4.109)

where A(s) is a diagonal matrix whose diagonal entries are of the form s* for
some integer k that may be different for different entries, and B(s) is a proper
rational matrix that has a proper rational inverse (i.e. B(s) is bicausal). A
proper rational matrix B(s) = By + Bys~! +--- has a proper rational inverse
if and only if the constant matrix By is invertible. This constant matrix
is uniquely determined in a factorization of the above form; it is called the
leading row coefficient matriz of G(s). In a completely similar way one defines
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the notions of column properness and of the leading column coefficient matrix.
We can now state the following result [69, Thm. 6.3].

Theorem 4.4.5. The linear complementarity system (4.93) is well-posed if
the associated transfer matriz G(s) = C(sI—A)~ ' B+D is both row and column
proper, and if both the leading row coefficient matriz and the leading column
coefficient matrixz are P-matrices. Moreover, in this case the multiplicity of
events is at most one, i.e. at most one reinitialization takes place at times
when a mode change occurs.

An alternative sufficient condition for well-posedness can be based on the
rational complementarity problem (RCP) that was already used above (section
4.4). For a given set of linear system parameters (4, B, C, D), we denote by
RCP(zg) the rational complementarity problem RCP(q(s),M(s)) with data
q(s) = C(sI — A)tzg and M(s) = C(sI — A)"*B + D. For the purposes of
simplicity, the following result is stated under somewhat stronger hypotheses
than were used in the original paper [70, Thm.5.10, 5.16].

Theorem 4.4.6. Consider the linear complementarity system (4.93), and as-
sume that the associated transfer matriz is totally invertible. The system (4.93)
is well-posed if the problem RCP(xzy) has a unique solution for all xy.

A connection between the rational complementarity problem and the stan-
dard linear complementarity problem can be established in the following way
[70, Thm. 4.1, Cor.4.10].

Theorem 4.4.7. For given q(s) € R¥(s) and M(s) € RE¥E(s), the problem
RCP(q(s), M(s)) is uniquely solvable if and only if there exists u € R such
that for all A > p the problem LCP(q(X), M (X)) is uniquely solvable.

The above theorem provides a convenient way of proving well-posedness for
several classes of linear complementarity systems. The following example is
taken from [70].

Example 4.4.8. A linear mechanical system may be described by equations
of the form

Mi+Dj+Kqg=0 (4.110)

where ¢ is the vector of generalized coordinates, M is the generalized mass
matrix, D contains damping and gyroscopic terms, and K is the elasticity
matrix. The mass matrix M is positive definite. Suppose now that we subject
the above system to unilateral constraints of the form

Fq>0 (4.111)

where F' is a given matrix. Under the assumption of inelastic collisions, the
dynamics of the resulting system may be described by

Mi+Dj+ Kq=F'u, y=TFq (4.112)
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together with complementarity conditions between y and u. The associated
RCP is the following:

y(s) = F(s°M + sD + K) ™' [(sM + D)go + Mol
+ F(s*M +sD + K) 'FTu(s). (4.113)

If F has full row rank, then the matrix F(s?M + sD + K)~'FT is positive
definite (although not necessarily symmetric) for all sufficiently large s because
the term associated to s> becomes dominant. By combining the standard result
on solvability of LCPs with Thm. 4.4.7, it follows that RCP is solvable and we
can use this to prove the well-posedness of the constrained mechanical system.
This provides some confirmation for the validity of the model that has been
used, since physical intuition certainly suggests that a unique solution should
exist.

In the above example, one can easily imagine cases in which the matrix F'
does not have full row rank so that the fulfillment of some constraints already
implies that some other constraints will also be satisfied; think for instance of a
chair having four legs on the ground. In such cases the basic result on solvabil-
ity of LCPs does not provide enough information, but there are alternatives
available that make use of the special structure that is present in equations like
(4.113). On the basis of this, one can still prove well-posedness; in particular
the trajectories of the coordinate vector ¢(t) are uniquely determined, even
though the trajectories of the constraint force u(t) are not.

4.5 Mechanical complementarity systems

Mechanical systems with unilateral constraints can be represented as semi-
explicit complementarity systems (cf. [138]):

i = Flap geR", pe R

b= ~5@p) - G+ G (u ue R (4.1142)
y = Clo), y R
0 <y —u>0. (4.114b)

The presentation here is the same as in (4.8) except that we have added a
Rayleigh dissipation function R. Assume that the system (4.114a) is real-
analytic, and that the unilateral constraints are independent, that is

ocT

rank 8_q(q) =k, for all ¢ with C(q) > 0. (4.115)

Since the Hamiltonian is of the form (kinetic energy plus potential energy)

H(q,p) = %pTM‘l(q)er Vig), M(q)=M"(q)>0 (4.116)
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where M (q) is the generalized mass matrix, it follows that the system (4.114a)
has uniform relative degree 2 with decoupling matrix

T T T
Do) = | %] 0% (a.117)

Hence, from M(q) > 0 and (4.115) it follows that D(q) is positive definite for
all ¢ with C(q) > 0. Since the principal minors of a positive definite matrix
are all positive, all conditions of Thm. 4.3.1 and Thm. 4.3.2 are satisfied, and
we establish well-posedness for smooth continuations. We have essentially
followed an argument in [96].

A switch rule for mechanical complementarity systems can be formulated
as follows. Let us consider a mechanical system with n degrees of freedom
q=(q1, - ,qn) having kinetic energy $¢7 M (g)q, where M(g) > 0 is the gen-
eralized mass matrix. Suppose the system is subject to k geometric inequality
constraints

Y; = Ci(q) >0, 1e K= {1,- .- ,k} (4.118)

If the i-th inequality constraint is active, that is C;(q) = 0, then the system
will experience a constraint force of the form 88—%(q)ui, where aa—cq"(q) is the
column vector of partial derivatives of C; and u; a Lagrange multiplier.

Let us now consider an arbitrary initial continuous state (¢g~,¢~). Define

the vector of generalized velocities

0k
vTo= 34 (¢7)d (4.119)

where I denotes the set of active indices at ¢—. In order to describe the
inelastic collision we consider the system of equalities and inequalities (in the
unknowns v, A)

+ = v+ 28 (VM (™) 2L (g )A
vt =0 (a7)M~"(a7) %5 (a7) (4.120)

Here A can be interpreted as a vector of Lagrange multipliers related to im-
pulsive forces. The system (4.120) is in the form of a linear complementarity
problem (LCP). The general form of an LCP can be written as

y=z+Mu, 0<y—u>0 (4.121)

where the vector x and the square matrix M are given, and the vectors y and
u are the unknowns. As already noted in the Introduction of this chapter, it
is a classical result that the LCP (4.121) has a unique solution (y,u) for each
z if and only if the matrix M is a P-matrix, that is to say, if and only if all
principal minors of the matrix M are positive. This holds in particular if M
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. . . . . o=\ af—1(.—YOCT /1 —
is a positive definite matrix. Since 880(1’ (g7 )M~1(q )75 (g7) > 0, the LCP

(4.120) has a unique solution. The jump rule is now given by

(ad) = (a".d"),

with
—L (g )A. (4.122)

The new velocity vector ¢T may equivalently be characterized as the solution
of the quadratic programming problem

min (T —¢7)"M(q)(¢" — ™ 4.123
{q‘+\0(q>q+zo}2(q G7) M(q)(d" —47) (4.123)

where ¢ := ¢~ = ¢T. This formulation is sometimes taken as a basic principle
for describing multiple inelastic collisions; see [31, 112]. Note that there is a
simple interpretation to the quadratic programming problem (4.123): in the
tangent space at the configuration g, the problems calls for the determination of
the admissible velocity that is closest to the impact velocity, where “closest” is
interpreted in the sense of the metric given by the kinetic energy. An appealing
feature of the transition rule above is that the energy of the mechanical system
will always decrease at the switching instant. One may take this as a starting
point for stability analysis.

Example 4.5.1 (Two carts with stop and hook). As an example of the
switching rule described above, let us again consider the two-carts system of
Subsection 2.2.9. To make things more interesting, we add a second constraint
which might be realized as a hook (see Fig.4.2). The equations of motion are

Z1(t) = —2x1(t) + x2(t) + w1 (t) + ua2(t) (4.124a)
Ba(t) = 1(t) — 22(t) — ua(t) (4.124D)
yi(t) = x1(t) (4.124c)
y2(t) = 21(t) — 22(2) (4.124d)
0 < wyi(t) — w(t) >0 (4.124¢)
0 < y2(t) — w2(t) > 0. (4.124f)

Consider now the multiple-impact point (z1,72) = (0,0). The two-
dimensional tangent space at this point contains several regions of interest
which are indicated in Fig.4.3. In the figure, the horizontal axis is used for
vy := &1 and the vertical axis for vs := &3. The cone of admissible post-impact
velocities is given by the conditions v; > 0 and vy —vs > 0; this region has been
labeled A in the figure. The opposite cone contains all possible pre-impact ve-
locities, and consists of three regions which have been labeled B, C and D.
According to the jump rule specified above, a given pre-impact velocity will
be mapped to the post-impact velocity that is closest to it in the sense of the
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Figure 4.2: Two carts with stop and hook
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Figure 4.3: Tangent plane

kinetic metric, which in this case is just the standard Fuclidean metric since
the masses of both carts are assumed to be 1. (We leave it to the reader to
work out the jump condition in other cases, for instance when the mass of the
right cart is twice the mass of the left cart.) Therefore, a pre-impact velocity
in region B will be mapped to a post-impact velocity on the halfline v; = 0,
vg < 0, so that the left cart will remain in contact with the stop whereas the
hook contact is not active. For pre-impact velocities in region C, the origin is
the closest point in the cone of admissible velocities. This means that if the
pre-impact velocities are such that v; < 0 and 0 < vo < —wy, the impact will
bring the system to an instantaneous standstill. Finally if v; < 0 and vy > —v;
just before impact (region D), then the hook contact will be maintained, so
the two carts remain at a constant distance, whereas the contact at the stop is
released (except in the trivial case in which the pre-impact velocities are zero,
so that in fact there is no impact at all).

Since the system in our example is linear, we may also treat it by the
methods of Section 4.4; in particular we may apply the RCP-based switching
rule (4.103). In the present case, the rational complementarity problem (4.102)
takes the following form, for general initial conditions z;(0) = x;0, 4;(0) = v
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(s' +35° + Dyi(s) =
= (82 4 1)s@10 + ST20 + (82 + 1)v1g + vag +
+ (8% + Dug(s) + s%uz(s)  (4.125a)

(s* 4+ 35% + Dya(s) =
= 5%210 — (82 + 1)s2a0 + s%v10 — (82 + 1)vag +

+ s%up (s) + (257 4+ Dua(s). (4.125b)

We are interested in particular in the situation in which x19 = 0 and x4 = 0.

To find out under what conditions the rule (4.103) allows for instance a jump

to the stop-constrained mode, we have to solve the above rational equations for

y2(s) and wuy(s) under the conditions y;(s) = 0 and us(s) = 0. The resulting
equations are

0 = (s% + Dwig 4+ vao + (8% + Dus(s) (4.126a)

(s* + 352 + D)ya(s) = s2v10 — (82 + Dwag + s%u(s). (4.126Db)

These equations can be readily solved, and one obtains

1
y2(s) = =57V (4.127a)
1
= —v10 — ——— . 4.127h
uy(s) vio = 3 v20 ( )

These functions are nonnegative in the ordering we have put on rational func-
tions if and only if v1g < 0 and w9 < 05 so it follows that the jump to the
stop-constrained mode is possible according to the RCP rule if and only if
these conditions are satisfied. Moreover, the re-initialization that takes place
is determined by (4.127b) and consists of the mapping (v1g,v20) — (0,v20).
Note that these results are in full agreement with the projection rule based
on the kinetic metric. This concludes the computations for the jump to the
stop-constrained mode. In the same way one can verify that actually in all
cases the RCP rule leads to the same results as the projection rule. It can
be proved for linear Hamiltonian complementarity systems in general that the
RCP rule and the projection rule lead to the same jumps; see [69].

It should be noted that in the above example we consider only some of
the first elements of impact theory. In applied mechanics one needs to deal
with much more complicated impacts in which also frictional effects and elastic
deformations may play a role. In any given particular situation, one needs to
look for impact models that contain enough freedom to allow a satisfactory
description of a range of observed phenomena, and that at the same time are
reasonably identifiable in the sense that parameter values can be obtained to
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good accuracy from experiments. In addition to the modeling problems, one
also faces very substantial computational problems in situations where there
are many contact points, such as for instance in the study of granular material.

Remark 4.5.2. If in the example above one replaces the initial data
(z10,20) = (0,0) by (210,220) = (£,0) or (210,220) = (0,—¢), then one
obtains quite different solutions. The system in the example therefore dis-
plays discontinuous dependence on inital conditions. We see that such a phe-
nomenon, which is quite rare for ordinary differential equations, occurs already
in quite simple examples of hybrid dynamical systems. This again indicates
that there are fundamental diffences between smooth dynamical systems and
hybrid dynamical systems; we already noted before that in simple examples of
hybrid systems one may have right uniqueness of solutions but no left unique-
ness, which is also a phenomenon that normally doesn’t occur in systems
described by ordinary differential equations.

The discontinuous dependence on initial conditions may be viewed as a
result of an idealization, reflecting a very sensitive dependence on initial con-
ditions in a corresponding smooth model. Certainly the fact that such discon-
tinuities appear is a problem in numerical simulation, but numerical problems
would also occur when for instance the strict unilateral constraints in the ex-
ample above would be replaced by very stiff springs. So the hybrid model
in itself cannot be held responsible for the (near-)discontinuity problem; one
should rather say that it clearly exposes this problem.

4.6 Relay systems

For piecewise linear relay systems of the form
t=Ax+ Bu, y=Czx+ Du, wu;=-sgny;, (i=1,...,k) (4.128)

one may apply Thm.4.4.7, but the application is not straightforward for the
following reason. As noted above, it is possible to rewrite a relay system
as a complementarity system (in several ways actually). Using the method
(4.29), one arrives at a relation between the new inputs col(uy, us) and the
new outputs col(y, y2) that may be written in the frequency domain as follows
(I denotes the vector all of whose entries are 1, and G(s) denotes the transfer

matrix C(sI — A)~'B + D):

u1(s) _ —~G71(s)C(sT — A)~tag +5711 N
us(s) G 1(s)C(sI — A) oy +s5 11

et o e ]
—GUs) Gs) | | wes)

The matrix that appears on the right hand side is singular for all s and so
the corresponding LCP does not always have a unique solution. However the
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expression at the right hand side is of a special form and we only need to
ensure existence of a unique solution for LCPs of this particular form. On the
basis of this observation, the following result is obtained.

Theorem 4.6.1. [95, 70] The piecewise linear relay system (4.128) is well-
posed if the transfer matriz G(s) is a P-matriz for all sufficiently large s.

In particular the theorem may be used to verify that the system in the example
at the beginning of Section 4.3, with the “right” sign of the relay feedback, is
well-posed.

The above result gives a criterion that is straightforward to verify (compute
the determinants of all principal minors of G(s), and check the signs of the
leading Markov parameters), but that is restricted to piecewise linear systems.
Filippov [54, §2.10] gives a criterion for well-posedness which works for general
nonlinear systems, but needs to be verified on a point-by-point basis.

4.7 Notes and references for Chapter 4

Complementarity problems have been studied intensively since the mid-sixties,
and much attention has in particular been given to the linear complementar-
ity problem. The book [39] by Cottle, Pang, and Stone provides a rich source
of information on the LCP. The general formulation of input-output dynami-
cal systems as in (4.4a—4.4b) has been popular in particular in control theory
since the early sixties. See for instance [121] for a discussion of nonlinear
systems, and [84] for linear systems. The combination of complementarity
conditions and differential equations has been used for mechanical problems
by Lotstedt [96]; related work has been done by Moreau who used a some-
what different formulation (the “sweeping process”) [113]. In the mechanical
context, complementarity conditions have not only been used for the descrip-
tion of unilateral constraints but also for the modeling of dry friction; see for
instance [129, 146, 145]. Another area where the combination of complemen-
tarity conditions and differential equations arises naturally is electrical circuit
simulation; early work in the simulation of piecewise linear electrical networks
has been done by Van Bokhoven [23]. The idea of combining complementarity
conditions with general input-output dynamical systems seems to have been
proposed first in [138].2 Further information about complementarity systems
is available in [33, 34, 68, 69, 70, 71, 72, 73, 95, 139, 140, 141].

2In the cited paper the term “complementary-slackness system” was used. In later work
this has been changed to “complementarity system” because this term is shorter and connects
more closely to the complementarity problem, and also because the English word slackness
seems to be hard to translate into other languages such as Dutch.



Chapter 5

Analysis of hybrid systems

Typical properties studied for smooth dynamical systems include the nature of
equilibria, stability, reachability, the presence of limit cycles, and the effects of
parameter changes. In the domain of finite automata, one may be interested
for instance in the occurrence of deadlock, the correctness of programs, inclu-
sion relations between languages recognized by different automata, and issues
of complexity and decidability. In the context of hybrid systems, one may ex-
pect to encounter properties both from the continuous and from the discrete
domain, with some interaction between them. In this chapter we discuss a
number of examples.

5.1 Correctness and reachability

Over the past three centuries, the investigation of properties of smooth dynam-
ical systems has been a subject of intense research. Ingenious methods have
been used to obtain many results of interest and of practical relevance, but of
course the subject is too wide to be ever completely understood. The typical
approach is to look for properties that can be proven to hold for suitably de-
fined subclasses; there is no general proof method, and usually considerable
ingenuity is needed to arrive at interesting conclusions. In the theory of finite
automata however we encounter a situation that is radically different. Since
the number of states is finite, certain properties can be verified in principle
by checking all possible states. The catch is in the words “in principle”; the
number of states to visit may indeed be huge in situations of practical interest,
and so one should be concerned with the complexity of algorithms and various
heuristics.

5.1.1 Formal verification

The term formal verification (or computer-aided verification) is used for the
methods that have been developed in computer science to analyze the prop-
erties of discrete systems. Of particular interest is to prove the correctness
of programs (understood in a wide sense to include software but also com-
munication protocols and hardware descriptions). To find bugs in a complex
software system is a highly nontrivial matter, as is well-known, and given the

111
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size of the software industry there is a major interest in automated tools that
can help in the verification process.

There are two types of formal verification methods, known as theorem prov-
ing and model checking. In theorem proving, one starts with a representation
of the program to be analyzed and attempts to arrive at a proof of correct-
ness by applying a set of inference rules. Theorem provers often need some
human guidance to complete their task in a reasonable amount of time. More-
over, when the proof of correctness fails, a theorem prover often provides little
indication of what is wrong in the design. Model checking is in principle a
brute-force approach, building on the finiteness of the state space. By search-
ing all possibilities, the method either proves a design to be correct or finds a
counterexample. The ability of model checkers to find bugs is of course very
important to system designers. The time needed to do an exhaustive search
is however exponential in terms of the number of variables in the system, and
so considerable attention has gone into the development of methods that can
combat complexity.

Program properties to be specified are often expressed in terms of temporal
logic formulas; these are able to express properties like “if the variable P is
reset to zero, then eventually the variable @ is reset to zero as well”. More gen-
erally, correctness can be viewed as an implementation relation in which the
specifications are expressed in some language, the design is expressed in pos-
sibly a different language, and it is to be proven that the design “implements”
the specification. There can actually be several stages of such relations; then
one has a hierarchy of models, each of which is proved to be an implementation
of the one on the next higher level. A structure of this type is obtained by the
design method of stepwise refinement, in which one starts on an abstract level
that allows relatively easy verification, and then proceeds in steps to more and
more refined designs which are verified to be specific ways of carrying out the
operations on the previous level. Conversely, given a fully specified model, one
can try to simplify the model for the purpose of checking a particular property
by leaving out detail that is believed to be irrelevant in connection with that
property. Typically one then gets a nondeterministic model, in which a pre-
cise but complicated description of a part of the system is replaced by some
coarse information which nevertheless may still be enough to establish the de-
sired property. This process is sometimes called abstraction. Some reduction
of complexity may also be achieved by choosing suitable representations of
sets of states; in particular it is often useful to work with Boolean expressions
which can describe certain sets of states in a compact way. Methods that use
such expressions come under the heading of symbolic model checking. In ad-
dition to model checkers there are also equivalence checkers which verify the
correctness of a design after modification on the assumption that the original
design was correct. Of course the feasibility of various methods to overcome
the complexity barrier also depends on the way that programs are formed, and
in this context the idea of modular programming is important.

A general caveat that should be kept in mind is that formal verification
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can never give absolute certainty about the functioning of a piece of computer
equipment. The reason for this is that verification methods operate on a formal
model, which relates to the real world through a formalization step that may
contain mistakes. For instance, if a design is formally proved correct but the
implementation routine which takes the design to chip circuitry contains an
error, then the result may still be faulty. Reportedly this is what happened in
the case of the infamous Pentium division bug.

In spite of such incidents, formal verification methods and in particular
model checking constitute one of the success stories of computer science, es-
pecially in the area of verification of hardware descriptions. All of the major
computer firms have developed their own automated verification tools, and
commercial tools are finding their way to the marketplace. It is no surprise,
therefore, that a large part of the interest of computer scientists who work
with hybrid systems goes to verification. Although a general formulation of
correctness for hybrid systems should be in terms of language inclusion (and
one might discuss which languages are suitable for this purpose), certain prop-
erties of interest can be expressed more simply as reachability properties, so
that the legal trajectories are those in which certain discrete states are not
reached. This is illustrated in the next subsection.

5.1.2 An audio protocol

Example 5.1.1. A certain protocol for communication between the subsys-
tems of a consumer audio systems was suggested as a benchmark in [24]. The
problem is to verify that the protocol is correct in the sense that is ensures
that no communication errors occur between the subsystems. Without going
into the details of the actual implementation (see [24] for a more elaborate
description), the protocol can be described as follows. The purpose of the
protocol is to allow the components of a consumer audio system to exchange
messages. A certain coding scheme is used which depends on time intervals
between events, an “event” being the voltage on a bus interface going from
low to high. A basic time interval is chosen and the coding can be described
as follows:

- the first event always signifies a 1 (messages always start with a 1);

- if a 1 has last been read, the next event signifies 1 if 4 basic time intervals
have passed, 0 if 6 intervals have passed, and 01 if 8 intervals have passed;

- if a 0 has last been read, the next event signifies 0 if 4 intervals have
passed, and 01 if 6 intervals have passed;

- if more than 9 intervals pass after a 1 has been read, or more than 7
after a 0 has been read, the message is assumed to have ended.

Due to clock drift and priority scheduling, the timing of events is uncertain
and the design specifications call for a 5% tolerance in timing. Clocks are reset
with each event.
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To describe the protocol using event-flow formulas, it is convenient to model
the sender and the receiver separately. Let us begin with the description of the
sender. We use two continuous variables, namely clock time denoted by x4, and
an offset signal denoted by us. There are two discrete state variables A and
L. The variable A, takes the value 1 if currently a message is being sent and 0
otherwise. The variable L; denotes the last symbol that has been sent, which
is either 0 or 1. There is also a discrete communication variable denoted by S,
representing the signal to be sent to the receiver; this signal is prescribed from
outside in a way that is not modeled. Because in the definition of event-flow
formulas we have taken as a default that events are not synchronized, we must
also introduce a communication variable between sender and receiver which
we denote by C. Technically this corresponds to the fact that both sender and
receiver are aware of voltage surges on the connecting bus. The operation of
the sender can now be described as follows:

sender : clock_sender || events_sender (5.1a)
clock sender : 3 =1+ wu,, —0.05<wu; <0.05 (5.1b)
A; =0, wakeup_s
events_sender : C =1, xj =0, L, =0, eventO_s
At =1, £
L, =1, eventl s
(5.1¢)
wakeup s : Sy =1, A7 =1, LI=1 (5.1d)
xs =4, Ss =1, Li=1
zs =06, Ss =0, LY=0
event0_s (5.1e)
z,=8, S,=01, Lf=1
zs>9, Al =0
xs =4, Ss =0, LY=0
eventl s | ¢, =6, S, =01, Lf=1 (5.1f)
T, > 7, AfF =o0.

Now we model the receiver. While the sender acts at integer time points as
measured on its own clock, the events do not always take place after an integer
number of time units on the receiver’s clock, as a result of clock inaccuracies.
Let us assume that the receiver will round times to the nearest integer in the
set {4,6,8,9}. The operation of the receiver may then be described as follows,
notation being similar to the one used for the sender:

receiver : clock_receiver || events_receiver || timelimit (5.2a)
clock_receiver : z, = 1+wu,, —0.05<wu, <0.05 (5.2b)
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A7 =0, wakeup._r

events_receiver : C =1, z} =0, L =0, event0_r
Af =1, T
L- =1, eventlr
(5.2¢)
wakeup r : S, =1, A =1 LI=1 (5.2d)
2, < 5, S, =1, LF=1
5<a, <7, S.=0, Lt=0
eventQ_r = o ! (5.2e)
7<w,<9, S,=01, Lf=1
. =9, AfF =0
2, <5, S,=0, Lf=0
eventlr | 5< 2, <7, Sy =01, LF=1 (5.2f)
T, =T, At =0
timelimit : L, =1, z,<9 | L.=0, =, <T. (5.2¢g)

We consider solutions in NZ/1/C'/C° of the system as a whole, which is
described by

system : sender || receiver. (5.3)

In particular we are interested in the question whether the discrete external
communication traces of sender and receiver are identical for all solutions.
The protocol is said to be correct if the string of output symbols is always
equal to the string of input symbols. The correctness condition can be de-
scribed as a (discrete) reachability condition: no discrete states (s1, s2) with
s1 # s9 should be reachable. This means that transitions to such states should
never be possible. The verification of this condition requires inspection of the
jump conditions and the transition rules, and since these involve continuous
dynamics, we have at each discrete state and for each discrete input value a
continuous reachability problem. Actually in the present case the continuous
dynamics is the same at each discrete state, so it suffices to draw a single
picture. In Fig.5.1 the reachable set of continuous states (x1,x2) is indicated
(shaded) together with the set of points that should be avoided in order to
prevent illicit transitions. The reachable set is a cone whose width is deter-
mined by the tolerance of the clocks; it is seen that the 5% tolerance is enough
(although only barely so) to ensure the correctness of the protocol. An in-
teresting feature of the example is that although as far as the description of
the dynamics is concerned there would be no need to distinguish for instance
between the discrete states (1,1) and (1,01), this distinction does however
become important if one wants to formulate correctness requirements. The
example also shows that such requirements may take the form of reachability
conditions that are ultimately formulated in the continuous state space.
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0 1 2 3 4 5 6 7 8 9 %

Figure 5.1: Reachable set and avoidance set for audio protocol
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5.1.3 Algorithms for verification

Given that verification problems can often be written as reachability problems,
the question arises whether it is possible in principle to write an algorithm
that will decide, given a hybrid system and an initial condition, whether a
certain state is reachable or not. For finite automata, it is easy to construct
such an algorithm, so that the discussion in this case would concentrate on
the efficiency of algorithms. In the case of continuous systems on the other
hand, a simple test is available for the case of linear finite-dimensional time-
invariant systems, but there is no general test for nonlinear systems and it
would be too much to expect that such a test can be found. So along a scale
that begins with finite automata and ends with general hybrid systems, there
should be somewhere a point that divides the system types that can be tested
for reachability from those for which this is not the case.

It has been shown that for timed automata the reachability problem is
decidable [1]. Timed automata can be looked at as hybrid systems in which
there is only one continuous variable called “time”, which satisfies the dif-
ferential equation ¢ = 1. The inclusion of this variable makes it possible to
express quantitative statements (“after the command login, connection to
the host computer takes place within three seconds”) rather than only qual-
itative statements such as in standard temporal logic (“after the command
login, connection to the host computer takes place eventually”). From the
standpoint of finite automata this is a major extension, from the standpoint
of hybrid systems however timed automata form a rather small class.

It was shown in [1] that the reachability problem is still decidable for hy-
brid systems that have several clocks running at different rates (so continuous
variables x; satisfying differential equations of the form &; = ¢; where the ¢;’s
are constants), as long as all inequality constraints involving these clocks are
of the form z; > k or z; < k (so not of the form x; > ;). As soon as one
allows two clocks that run at different rates and that may be compared to each
other, however, the reachability problem becomes undecidable [1, Thm. 3.2].
So it must be concluded that, for hybrid systems in which there is any seri-
ous involvement of continuous variables, one cannot expect to find a general
algorithm that will decide reachability.

This being the case, one can still attempt to design algorithms that will
sometimes terminate, in particular for limited classes of hybrid systems. The
tool HYTECH [76] has been built at Cornell for the reachability analysis of
systems with several clocks under constraints that guarantee that the reachable
sets in the continuous state space can always be described by sets of linear
inequalities. A symbolic model checker for timed automata is KroNOs [41],
developed at IMAG in Grenoble.

So what can be said about the verification of hybrid systems that involve
a significant amount of (nonlinear) continuous dynamics? The problem itself
is certainly of importance; there are many cases in which computer programs
interact with the continuous “real” world, and it can literally be a matter of life
and death to make sure that the interaction takes place as expected. It should
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be noted in the first place that tools like HYTECH can still be used for the
analysis of hybrid systems that do not strictly satisfy their assumptions, since
one can approximate the given system by one that does fall within the scope
of the tool. If the approximation is done conservatively (so that for instance
the reachable set of the approximating system always contains the reachable
set of the given system), one can even obtain strict guarantees. In the case of
tools that are based on differential equations with constant right hand sides
(so that the reachable sets are indeed polyhedral) one will need to approximate
a given function by a piecewise constant function. Depending on the nature
of the given function, a reasonable approximation may require a large number
of pieces, and both the memory requirements and the computation time of a
formal verification tool may soon become prohibitive.

An alternative is to resort to simulation: simply generate a large num-
ber of scenarios to see if any faults occur. This methodology can provide at
least some test of validity in cases where other methods do not apply. Purely
random simulation may take a long time to find potentially hazardous situa-
tions; therefore one should use rare-event simulation techniques which should
be guided as much as possible by information about situations where problems
may be expected. Such information might come for instance from model check-
ing on a coarse approximation of the system. Alternatively one may attempt
to look systematically for worst-case situations, by introducing an “adversary”
who is manipulating disturbance inputs (or more generally any available non-
determinism) with malicious intent. The adversary’s behavior may be formally
obtained as the solution of an optimization problem which may however be
difficult to solve; in general, optimization problems in a hybrid system context
have not been studied much yet. If at the same time one wants to design opti-
mal strategies for the system to respond to adverse circumstances one obtains
a minimax game problem, which may be even harder to solve. Experience
in case studies such as the one in [88] will have to determine the ranges of
applicability of each of the possible methodologies or combinations of them.

5.2 Stability

5.2.1 Lyapunov functions and Poincaré mappings

In the study of the stability of nonlinear dynamical systems, Lyapunov func-
tions and Poincaré mappings play a central role. Lyapunov functions can
be used to prove the stability of equilibria or the invariance of certain sets;
such sets are the level sets of a scalar function on the state space which has
monotonous behavior along system trajectories. The idea behind Poincaré
mappings is that of the stroboscope. By looking at the continuous states only
at certain points in time, one obtains a discrete-time system. By analyzing
this discrete-time system, one may obtain information about the stability of
certain motions of the continuous-time system (for instance periodic orbits).
For nonlinear systems there are in fact many different notions of stability,
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ranging from local stability to uniform global asymptotic stability. The notion
of stability may be applied to equilibrium points but also more generally to
invariant sets. Given a dynamical system, a subset M of the state space is
said to be (forward) invariant if all trajectories that have their initial point in
M are in fact full contained in M. With this terminology, an equilibrium may
simply be defined as an invariant set consisting of one point.

In the hybrid context, we have a state space with a continuous and a
discrete part. There is no problem in extending the notion of invariance to this
setting. Convergence to a discrete equilibrium point means that the system
eventually settles in one particular mode; such a property may be of interest
in specific applications. Certainly also the notion of invariance of a certain
subset of the discrete state space can be of importance, for instance from
a verification point of view. Methods that allow proofs of convergence and
invariance are therefore at least as important in hybrid systems as they are in
smooth dynamical systems.

First let us review a few definitions that are used in stability theory. Con-
sider a dynamical system defined on some state space X which is equipped
with some metric d. The state space X may be a product of a continuous space
like R¥ (or more generally a differentiable manifold) and a discrete space S.
The set S of possible values of the discrete variables will always be assumed to
carry the discrete metric, which means that convergence is the same as even-
tual equality. If one is interested only in stability of the continuous variables,
one may consider the dynamical system defined on the continuous part which
is obtained by simply omitting the symbolic parts of trajectories. Now let xg
be an equilibrium point. The equilibrium is said to be stable (or sometimes
also stable in the sense of Lyapunov, or marginally stable) if for every e > 0
there exists a § > 0 such that every trajectory that starts at a distance less
than § from zy will stay within a distance € from zy. In other words, ac-
cording to this definition z is stable if we can guarantee that trajectories will
remain arbitrarily close to zy by giving them an initial condition sufficiently
close to zg. There is no implication here that trajectories will converge to
xg. In the following notion of stability we do have such an implication. The
equilibrium xg is said to be asymptotically stable if there exists € > 0 such that
all trajectories with initial conditions at distance less than € to z¢ converge
to xg. Clearly this is a local notion of stability. The equilibrium xy is said
to be globally asymptotically stable if all trajectories of the system converge
to xg. There are various related notions such as ultimate boundedness and
exponential stability that we shall not discuss here; also, all definitions may
be generalized in a straightforward way to the case in which the equilibrium
Zo is replaced by an invariant set.

In the standard application of Lyapunov functions to smooth dynamical
systems, the stability of an equilibrium can be concluded if it possible to
find a continuous scalar function V(z) that has a minimum at zo and that
is nonincreasing along trajectories. By imposing additional conditions on the
Lyapunov function V(x), one can obtain stronger properties such as asymp-
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totic stability and global asymptotic stability. At first sight it would seem that
the condition that V' (z) should be nonincreasing along trajectories depends on
knowing the solutions. Of course, any method that requires the computation of
solutions is uninteresting, firstly because it is usually not possible to compute
the solutions explicitly, and secondly because the stability problem becomes
trivial once the solutions are known (because one can then see immediately
from the computed trajectories whether stability holds). Fortunately, if V(z) is
differentiable and the system is given by a differential equation z(¢) = f(z(t)),
one can verify that V' (x) is nonincreasing along trajectories, without knowing
the solutions, by checking that (0V/0xz)(x)f(x) < 0. In the context of hybrid
systems however this simple check is not available, since the system is not
given by a single differential equation and there may be jumps in the state
trajectories at event times. For this reason the transplantation of Lyapunov
theory from the continuous to the hybrid domain is not straightforward.

The most direct generalization of the method of Lyapunov functions to
hybrid systems would be the following (see for instance [161]). Suppose there
is a continuous function V(z) defined on the continuous state space which has
a minimum at an equilibrium point zg, is nondecreasing along trajectories on
interevent intervals, and satisfies V(z7) < V(2~) whenever 2~ and zT are
connected through a jump rule. Under these conditions, the equilibrium g
is stable. With appropriate additional conditions on V(z), stronger conclu-
sions can be drawn; also, analogous statements can be made for invariant sets
instead of equilibrium points. As is the case for smooth nonlinear systems,
there are no general rules for constructing functions that satisfy the above
properties. For hybrid systems in which jumps occur, the condition that V (z)
should also be nonincreasing across jumps may introduce an additional com-
plication. An example in which a Lyapunov function is easy to find is the class
of unilaterally constrained mechanical systems with Moreau’s switching rule
for inelastic collisions, where the energy can be taken as such (see Section 4.5).

In some cases, information from the event conditions may make it easier to
construct a Lyapunov function. For instance, in the case of the bouncing ball
(Subsection 2.2.3) it is natural to take the energy as a Lyapunov function, and
it follows immediately from the event conditions that V(™) = €2V (z™) at
event times, so that stability (even global asymptotic stability) of the equilib-
rium follows if the restitution coefficient e is less than 1. In between events, the
energy is constant and so without the information from the event conditions
one could only conclude stability in Lyapunov’s sense. In general, stability of
an equilibrium point will follow if one can find a scalar function V satisfying
suitable growth conditions and having a minimum 0 at zg, which is nonin-
creasing on the sequence 7,7, --- of event times and for which an inequality
of the form V{(x(t)) < h(V(z(rx))) (t € (7, Tk+1)) can be proven, where h is
a nonnegative function satisfying h(0) = 0 [161, 127].

Given the extremely wide scope of the class of hybrid dynamical systems,
perhaps not too much should be expected from studies of stability that are
conducted on this level of generality; for specific classes, it might be easier
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to come up with verifiable stability criteria. For systems that move between
several operating conditions each related to a particular region of the state
space it may be a good idea to look for multiple Lyapunov functions defined
on each of the operating regions. For systems that can be written as feedback
systems consisting of a “plant” satisfying passivity conditions and a static
feedback the hyperstability theory due to Popov [130] may be useful; here the
proofs also ultimately depend on Lyapunov functions, but as a result of the
special assumptions it is possible to give specific recipes for the construction of
these functions. In situations in which one has design freedom for instance in
the choice of a control scheme, a possible approach is to try to ensure stability
by choosing some function and making it a Lyapunov function by a suitable
choice of the design parameters.

Stability of equilibria is of interest for systems that are supposed to stay
close to some operating point. Many systems however operate in a periodic
manner, and in that case one is interested in the stability of periodic orbits.
An often used instrument in this context is the Poincaré map (sometimes also
called return map). In the case of smooth dynamical systems, the idea of the
return map works as follows. Given some periodic orbit that is to be checked
for stability, take a point on the orbit and a surface through that point that
is transversal to the orbit. Trajectories that start on the surface sufficiently
close to the chosen point will intersect the surface again after a time that is
approximately equal to the period of the orbit under investigation. The map
which takes the initial point of the trajectory to the point where it intersects
the chosen surface again is called the Poincaré map or return map. It is map-
ping defined on a neighborhood of the point that we started with; one could
look at the map as defining a discrete-time dynamical system on a space whose
dimension is one lower than that of the original state space. It is in general a
nonlinear system, but the point on the orbit that we selected is an equilibrium
(because of the periodicity of the orbit) and so we can linearize the system
around this equilibrium by taking the Jacobian of the return mapping. If the
linearized system is stable (i.e. all eigenvalues are inside the unit circle), then
we know that the periodic orbit is attracting so that the corresponding peri-
odic regime is stable. Note that the method requires the computation of the
Jacobian of the return map, which may be done on the basis of a linearization
of the system in a neighborhood of the periodic orbit. The computation may
not be very easy, but at least it does not require finding the solutions of the
full original nonlinear system.

In the context of hybrid systems, the idea of using a return map may
even be more natural than in the smooth context, since any switching surfaces
that occur provide natural candidates for the transversal surfaces on which the
return map is defined. One has to be careful however since a small perturbation
of an initial condition will in general have an effect on event times or might even
change the order of events. Especially in cases where the dynamics between
events is fairly simple (for instance in piecewise linear systems), the Poincaré
map can nevertheless be a very efficient tool.
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5.2.2 Time-controlled switching

If a dynamical system is switched between several subsystems, the stability
properties of the system as a whole may be quite different from those of the
subsystems. This can already be illustrated in switching between two linear
systems, as is shown by the following calculation.

Consider a system that follows the dynamics @ (t) = A, z(t) for a period 1,
then switches to () = Asx(t) for again a period %5, then switches back, and
so on. An event-flow formula for the system can be written down as follows:

P=1, &=Auz
=1, 71<3ie,
P:2, ZE:Aliﬂ
(5.4)
P =1 Pt =2
T =1, T =0, '
P-=2 pPt=1

Let us consider a time point #y at which the system begins a period in mode 1,
with continuous initial state zg. At time g+ %5, the state variable has evolved
to

2
€ g2 .
z(to + %5) = EXP(%&‘h)xo = z9 + §A1$0 + gAfxo +

(this is a consequence of the general rule exp(A4) = Y~ (1/k!)A*). At time
top + ¢, we get

2to+e) = (T+540+5A3 4 )T+ 54+ 5A7+--)xo
2

(I +e[3A1+ FAs) + S [AT + AL+ 24, A1) + - .

If we compare the above expression to the power series development for
exple(3A1 + 3 A,)] which is given by

2
exple(bA; + 145)] = T+e[LA; + 14,]+ %[Af FAZ A Ay As At

we see that the constant and the linear term are the same, whereas the
quadratic term is off by an amount of A;A; — A3 A; (the “commutator” of
Ay and As). So the difference between the solution of the switched system
and that of the smooth system & = (§A; + $A2)x on a time interval of length
¢ is of the order £2. If we let £ tend to zero, then on any fixed time interval
the solution of (5.4) will tend to the solution (with the same initial condition)
of the “averaged” system

B(t) = (541 + 5A2)z(t). (5.5)

In particular, the stability properties of the switched system (5.4) will for small
¢ be determined by the stability properties of the averaged system (5.5), that
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is, by the location of the eigenvalues of %Al + %Az. Now it is well-known that
the eigenvalues are nonlinear functions of the matrix entries and so it may well
happen that the matrices A; and A, are both Hurwitz (all eigenvalues have
negative real parts) whereas the matrix 14, 4+ £ A4, is unstable, or vice versa.
This is illustrated in the following example.

Example 5.2.1. Consider the system (5.4) with

05 1 ~1  -100
4, = . Ay = . (5.6)
100 -1 05 -1

Although A4; and A, are both unstable, the matrix £(A; + A,) is Hurwitz.
Therefore the switched system should be stable if the frequency of switching
is sufficiently high. The switching frequency that is minimally needed can be
found by computing the eigenvalues of the mapping exp(%EAl) exp(%sAg) as
a function of €; stability is achieved when both eigenvalues are inside the unit
circle. For the present case, it turns out that a switching frequency of at least
50 Hz is needed. The plot in Fig. 5.2 shows a trajectory of the system when it
is switched at 100 Hz.
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-15+

-20 I I I I I I I
-20 -15 -10 -5 0 5 10 15 20

Figure 5.2: Trajectory of the switched system defined by (5.6). Initial point
marked by a star. Switching frequency 100 Hz; simulation period 2 units of
time
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Instead of staying both in mode 1 and in mode 2 for a time interval of
length %6, we can also consider the situation in which mode 1 is followed
during a time he and mode 2 during a time interval (1 — h)e, where h is a
number between 0 and 1. By the same reasoning as above, the behavior of
such systems on fixed time intervals is well approximated by that of the system
#(t) = Apz(t), where Ay, = hA; + (1 — h)As. The choice of the parameter
h influences the system dynamics and so A might be considered as a control
input; the averaging analysis requires, however, that if h varies it should be
on a time scale that is much slower than the time scale at which the switching
takes place. When mode 1 corresponds to “power on” and mode 2 is “power
off”, the parameter h is known as the duty ratio. In power electronics the
use of switches is popular because theoretically it provides a possibility to
regulate power without loss of energy. Fast switching is a particular form of
this method of regulation; for further discussion see 6.2.2.

Remark 5.2.2. Using a standard trick in differential equations, one may con-
sider the time parameter ¢t as a state variable satisfying the simple differential
equation £ = 1. The systems considered in this subsection may then be seen as
parallel compositions of two hybrid systems which are coupled via a discrete
communication channel. For instance, for the case of equidistant switching
instants one may write an event-flow formula as follows:

system = top-level || low-level (5.7a)
with
t=1, t<ie
top-level (5.7b)
t- =12, tF=0, S=toggle
T = APLB
low-level P =1, Pt=2 (5.7¢)
S = toggle,
P~ =2 Pt=1

Clearly the top-level mechanism might be replaced by something considerably
more complicated, which would lead us into largely unexplored research terri-
tory. Stability results are available, however, for systems of the above type in
which the top-level mechanism is a finite-state Markov chain and the low-level
systems are linear (jump linear systems); see for instance [107, 52].

5.2.3 State-controlled switching

In the previous subsection we have considered systems in which the switching
is not at all influenced by the continuous state whose stability we are inter-
ested in. Let us now take an opposite view and consider systems in which the
switching is completely determined by the continuous state. Below we shall
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consider in particular cases in which the discrete state of the system is deter-
mined by the current continuous state, so that there is no “discrete memory”
or “hysteresis”. For such systems the continuous state space can be thought of
as being divided into cells which each correspond to a particular discrete state,
so that each cell has its own continuous dynamics associated to it. Switching
of this type is often referred to as state-controlled, with an implicit identifica-
tion of “state” and “continuous state”. Compare also the distinnction between
internally and externally induced events that was discussed in Chpater 1. We
shall concentrate in particular on cases where the trajectories of the continu-
ous state variables are continuous functions of time (no jumps) and the cells
all have equal dimension (no motions along lower-dimensional surfaces).

Specifically, let the continuous state space X be divided into cells X; cor-
responding to discrete states ¢ € I, and suppose that the dynamics in each
mode ¢ is given by the ODE () = f;(x(¢)). To prove for instance stability of
the origin, a possible strategy is to look for a Lyapunov function V(x) which
in particular should be such that %—‘;(x)fl(x) < 0 when z € X;. Finding a
Lyapunov function for systems with a single mode is already in most cases a
difficult problem; in the multimodal case things can only be expected to be
worse in general. Below we shall concentrate attention on situations in which
the cells are described by linear inequalities and the dynamics in each cell is
linear.

In the single-mode case, the theory of constructing a Lyapunov function for
linear systems is classical. Given a linear ODE of the form 4(t) = Az(t) with
A € R*™™ one looks for a quadratic Lyapunov function, that is, one of the
form V(z) = 27 Pz where P is a positive definite matrix. For such a function,
the expression 2 is a quadratic form that we may write as 27 (ATP + PA)z,
and so the function V(2) = 2?7 Pz qualifies as a Lyapunov function for the
system # = Az if and only if the matrix ATP + PA is negative definite.
To find a Lyapunov function of this form we may solve the linear equation
ATP + PA = —(Q where @ is some given positive definite matrix (take for
instance () = I) and where P is the unknown. A standard result in stability
theory asserts that, whenever the matrix A is Hurwitz, this equation has a
unique solution which is positive definite. So, asymptotic stability of linear
systems can always be proved by a quadratic Lyapunov function, and such
a Lyapunov function can be found by solving a linear system of %n(n +1)
equations in n(n + 1) unknowns. The stability analysis of linear systems is
therefore computationally quite feasible, in sharp contrast to the situation for
general nonlinear systems.

In the multimodal case it is a natural idea to look for piecewise quadratic
Lyapunov functions when the dynamics in all modes are linear. In general, a
dynamical system defined on R" is said to be quadratically stable with respect
to the origin if there exists a positive definite matrix P and a scalar ¢ > 0
such that d(z! Px)/dt < —exTx along trajectories of the system. We shall
concentrate here on quadratic stability with respect to the origin, although
there are of course other types of stability, and stability of periodic orbits is in
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many applications perhaps even more interesting than stability of equilibria.

Consider now a piecewise linear system; specifically, let the dynamics in
mode ¢ be given by & = A;x. The strongest case of stability occurs when all
the modes have a common Lyapunov function. If the Lyapunov function is
quadratic, this means that there exists a symmetric positive definite matrix P
such that

ATP+PA; <0 (5.8)

for all . In this case the stability does not even depend on the switching
scheme. Note that the common Lyapunov function may be found, if it exists,
by solving a system of linear matrix inequalities (LMIs).

The condition (5.8) requires in particular that all the constituent matri-
ces A; are Hurwitz. One can easily find examples, however, in which state-
controlled switching of unstable systems leads to an asymptotically stable sys-
tem. Consider for instance the two linear systems given by the matrices

0.1 -5 01 -1
4, = . Ay = . (5.9)
1 01 5 0.1

Figure 5.3 shows trajectories of the systems & = A;2 and & = Asx starting
from (1,0) and (0, 1) respectively. Clearly both systems are unstable. However,
if we form the switched system which follows the law & = A,z on the first and
third quadrant and the law & = Asx on the second and fourth quadrant, then
the result is asymptotically stable as can be verified in this case by computing
the trajectories of the switched system explicitly. By reversing time in this
example one gets an example of an unstable system that is obtained from
switching between two asymptotically stable systems.

For a state-controlled switching scheme, the condition (5.8) can be replaced
by the weaker condition

foralli e I: 2T(ATP+ PA)x < 0 forallz€ X;, z #0. (5.10)

which still implies asymptotic stability of the system subject to state-controlled
switching. The above condition is even sufficient for asymptotic stability in
case a sliding mode occurs along the boundary of two regions X; and Xj,
since the conditions 7 (A] P + PA;)z < 0 and 2" (AT P 4+ PA;)z < 0 imply
T (AT P+ PA)z < 0 for all convex combinations A of 4; and A;. A concrete
way of using the criterion (5.10) is to look for symmetric matrices .S; such that
2T S;z > 0 for x € S;. The existence of a positive definite matrix P such that
for all ¢

ATP+PA;+S; <0 (5.11)

is then sufficient for asymptotic stability. This is the so-called S-procedure
(see e.g. [25]).
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Figure 5.3: Trajectories of the systems (5.9); initial points marked by stars
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To further weaken the conditions for stability, one may look at Lyapunov
functions that are piecewise quadratic rather than quadratic. If a region-
controlled system of the above type is considered, then a natural idea is to
look for a function of the form z” Pz for # € X;, where one should have
2T P = xTij when z is in a common boundary of regions X; and X, in
order to make the definition consistent and to make the standard stability
arguments work. As a particular case, consider a system of the form

t=Azif Cx >0, &=AxxifCx <0 (5.12)

where C is a linear mapping from R™ to R and where it is assumed that
no sliding mode occurs, so that we do not necessarily need to assume that
Ajx = Az when Cx = 0. Stability will be guaranteed if we can find symmetric
positive definite matrices P, and P, such that AiTPZ- + PA; < 0fori=1,2,
and 2T Pz = 2T Pyx when Cx = 0. The latter condition is fulfilled when P
and P, are given by P, = P, P, = P + aCTC for some real a. So a sufficient
condition for stability of the system (5.12) is the existence of a matrix P and
a scalar « such that

P=PT' >0, ATP+PA <0, P+aCTC >0,
AT(P+aCTC) + (P+aCTC)Ay < 0. (5.13)

Note that (5.13) constitutes a system of linear matrix inequalities. The condi-
tions above imply in particular that both matrices and A; and A, are stable,
so that the suggested method can only used for systems composed of sta-
ble subsystems. There is no help from the observation that it is sufficient if
2T (ATP + PAy)x <0 for Cz > 0, and likewise for the other mode, because
the condition is invariant under change of sign of . It can be seen from simple
examples that a system of the form (5.12) may well be asymptotically stable
even if A; and A, are not both stable; take for instance

11 -2 1
A = . Ay = (5.14)
-1 1 -1 -2

together with any nonzero functional C.

An even further reduction of conservatism can be obtained by dropping the
requirement that the Lyapunov function should be continuous; indeed, there is
no problem with discontinuities as long as jumps that take place along trajec-
tories are downward. Again, this observation is of no help when the considered
Lyapunov functions are piecewise quadratic and the cells are halfspaces. In
other cases, however, one may write down the inequalities that should be satis-
fied by a piecewise quadratic but not necessarily continuous Lyapunov function
and attempt to solve the resulting system by LMI techniques.

Remark 5.2.3. In the above we have assumed in a number of places that
no sliding modes occur. The presence of motions along lower-dimensional
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manifolds may definitely affect the stability analysis. As shown in the following
simple example, a sliding mode can be unstable even when it is composed from
two stable dynamics.

Example 5.2.4. Consider the systems & = A;x and & = A2 with

1 2 1 -2
4, = . Ay = (5.15)
—2 -2 2 -2

and suppose that mode 1 is valid for 22 < 0 and mode 2 for z9 > 0. It is
easily verified that both modes would be asymptotically stable if they would
be valid on the whole plane. On the line o = 0 there is a sliding mode which
is obtained by averaging the two dynamics, and which results in an unstable
motion &, = ;.

5.3 Chaotic phenomena

As is well-known, smooth dynamical systems of dimension three and higher
may give rise to complicated behavior. Although there is no universally ac-
cepted definition of “chaos”, the term is usually associated to phenomena such
as sensitive dependence on initial conditions and the presence of attractors
containing several dense orbits. In the literature, several examples are known
of situations in which a few simple smooth systems (for instance linear sys-
tems) give rise to chaotic phenomena when they are combined into a hybrid
system by some switching rule. Here we briefly discuss three of these examples.

Example 5.3.1 (A switched arrival system). The following system was
described in [36]. Consider N buffers from which work is removed at rates
pi (i =1,...,N). A server delivers work to one of the buffers at rate 1. It
is assumed that the total amount of work in the system is constant, so that
Zfil pi = 1. As soon as one of the buffers becomes empty, the server switches
to that buffer. The system has N continuous variables z; which denote the
amounts of work in each of the buffers, and one discrete variable j which
denotes the buffer currently being served. The dynamics of the system is
given by the EFF

i =ej—p || liewlelz =0, j* =4} (5.16)

where z is the vector of buffer contents, p is the constant vector of extraction
rates, e; denotes the ith unit vector, and N is the set {1,..., N}. Note that
the system is not deadlock-free; if two buffers empty at the same time, there
is no way to continue. However it is shown in [36] that for almost all initial
conditions this never happens.

For N = 2, it is easy to verify that the switched arrival system has a
simple periodic behavior. However already for N = 3 most trajectories have a
highly irregular behavior, and it can be shown that all periodic trajectories are
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unstable. There is some regularity in a statistical sense, however. The main
result of [36] states that there is one probability distribution which is stationary
in the sense that if the initial condition with one of the buffers empty is drawn
from this distribution, then the distribution of the state at the next event
time is the same. This distribution gives certain probabilities (depending on
the rates p1, p2 and p3) to each of the three buffers being empty, and within
these cases assigns a uniform distribution over the contents of the other two
buffers, subject, of course, to the requirement that the sum of the contents
of the buffers should be equal to the constant amount of work that is always
present in the system. It is moreover shown that this distribution is statistically
stable, which means that if we start with an initial condition that is distributed
according to some arbitrary distribution, then the distribution of the state
(taken at event times) will converge to the stationary distribution. Finally
the ergodicity property holds. FErgodicity means that for almost all initial
conditions “time averages are the same as sample averages”, that is to say
that the value of the average over time of any measurable function of the state
at event times can be computed as the expected value of that function with
respect to the stationary distribution. By this result, it can be computed that
for almost all inital conditions the average interevent time for the trajectory
starting from that initial condition is equal to %(plpg + paps + p1ps) L.
Example 5.3.2 (A vibrating system with a one-sided spring). In [74]
a mechanical system is described that consists of a vibrating beam and a one-
sided spring. The spring is placed in the middle of the beam in such a way that
it becomes active or inactive when the midpoint of the beam passes through
its equilibrium position. The system is subject to a periodical excitation from
a rotating mass unbalance attached to the beam. The model proposed in [74]
has three degrees of freedom. The equations of motion are given by

M{i+Bg+(K+H)q = Gf (5.17)
if the displacement of the midpoint of the beam is positive, and by
MG+ Big+ Kq = Gf (5.18)

if the displacement is negative. Here, q is the three-dimensional configuration
variable, M is the mass matrix, B is the damping matrix, K is the stiffness
matrix when the spring is not active, H is the additional stiffness due to the
spring, f is the excitation force, and G is an input vector.

The main emphasis in [74] is on control design and no extensive study of
chaotic phenomena is undertaken. Still the analysis shows at least that there
are several unstable periodic orbits. In the cited paper the aim is to add a
controller to the system which will stabilize one of these orbits. Because the
control takes place around an orbit that is already periodic by itself (although
unstable), one may expect that a relatively small control effort will be needed
for stabilization once the desired periodic regime has been achieved. This idea
of using only a small control input by making use of the intrinsic nonlinear
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properties of the given system is one of the leading themes in the research
literature on “control of chaos”.

Example 5.3.3 (The double scroll circuit). A well-known example of a
simple electrical network that shows chaotic behavior is Chua’s circuit, de-
scribed for instance in [38]. The circuit consists of two capacitors, one induc-
tor, one linear resistor and one (active) nonlinear resistor. The equations may
be given in the form of a feedback system with a static piecewise linear element
in the feedback loop, as follows:

1 = alz; —u)
Ty = T1—T2+x

’ T (5.19)
3 = —[fx2

y = 1

and
y< -1, u=miz— (mg—m)
-1<y<1l, wu=mox (5.20)

y>1, u=mix+ (mg—mq).

Note that the function defined in (5.20) is continuous, so that the above system
may also be looked at as a three-dimensional dynamical system defined by a
piecewise linear continuous vector field. The symbols «, 3, mg and m denote
parameters. If one studies the system’s behavior in terms of these parameters
one finds a rich variety of motions. For some parameter values, trajectories
occur that look like two connected scrolls, and for this reason the system above
is also known as the “double scroll system”. The presence of chaos (in one of
the possible definitions) is shown in [38] for the values mg = —1/7, my = 2/7,
a =7, and 3 near 8.6.

The examples above present just a few instances of chaos in nonsmooth
dynamical systems; many more examples can be found in the literature. We
have chosen examples that exhibit switching between different modes. The
earliest examples of chaos in nonsmooth systems are related to what might
be called impacting systems in which there are state-generated events but no
changes of mode. The standard example is the one of a ball bouncing on a
vibrating table, which is discussed in the well known textbook [59]. In contexts
of this type it is natural to look for parameter changes that will lead from a
situation in which there are no impacts to a situation in which one does have
(low-velocity) impacts. The associated bifurcations are called grazing bifurca-
tions or border collision bifurcations; see for instance [32]. Impacting systems
can be seen as limiting cases of situations in which a contact regime exists for
a very short time period. In many mechanical applications it is reasonable to
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consider systems that are subject to different regimes for periods of compara-
ble length. The one-sided spring mentioned above is an example of this type.
Chaotic behavior has also been shown to occur for instance in periodically
excited mechanical systems subject to Coulomb friction, and also in this case
one typically sees different regimes that coexist on the same time scale; see
for instance [131]. In an electrical circuit context, the occurrence of chaotic
phenomena in systems with diodes, and in particular DC-DC converters, is
well documented; see for instance [42, 47]. In this context one typically has
linear dynamics in each mode. In particular it is noted from these examples
that linear complementarity systems, which were extensively discussed in the
previous chapter, may exhibit chaotic behavior.

5.4 Notes and references for Chapter 5

The issue of formal verification has been extensively discussed in computer
science. Various methodologies exist; see for instance [91, 110]. In the par-
ticular context of hybrid systems, many papers related to verification can be
found in the workshop proceedings [58, 5, 3, 100, 6, 137, 153]; see also [87].
A classical text on stability is the book by Hahn [60]; for the special case of
linear systems see also Gantmacher [56]. A switched linear system can some-
times be looked at as a smooth system with a nonsmooth feedback. The study
of such systems has a long history; see for instance Popov’s book [130]. In
the control context, the issue of stability is closely related to stabilization.
This topic will be discussed in the following chapter. In Subsection 5.2.3 we
have partly followed the paper [83] by Johansson and Rantzer, which gives
a nice survey of quadratic stability for hybrid systems. Other references of
interest in this connection include [126, 127]. The literature on chaos is of
course enormous; see for instance [59, 123, 134] for entries into the literature.
A specific list of references on the analysis of nonsmooth dynamical systems
can be found at a useful website maintained at the University of Cologne
(www.mi.uni-koeln.de/mi/Forschung/Kuepper/Forschungl.htm).



Chapter 6

Hybrid control design

In this chapter we indicate some directions in hybrid control design. Apart
from the introduction of a few general concepts, this will be mainly done by
the treatment of some illustrative examples.

The area of hybrid control design is very diverse. The challenging topic
of controlling general hybrid systems is a wide open problem, and, following
up on our discussion in Chapter 1 on the modelling of hybrid systems, it is
not to be expected that a powerful (and numerically tractable) theory can
be developed for general hybrid systems. Particular classes of hybrid systems
for which control problems have been addressed include, among others, batch
control processes, power converters and motion control systems, as well as
extensions of reactive program synthesis to timed automata. Furthermore,
in some situations it is feasible to abstract the hybrid system to a discrete-
event system (or to an automaton or Petri-net), in which case recourse can
be taken to discrete-event control theory. Since our aim is to expose some
general methods, we will not elaborate on these more specific areas, but instead
indicate in Section 6.1 some general methods of hybrid control design based on
game theory and viability theory (or, in control theoretic parlance, the theory
of controlled invariance). In particular, we discuss the synthesis of controllers
enforcing reachability specifications.

The main emphasis in this chapter will be on the design of hybrid controllers
for continuous-time systems as ordinarily considered in control theory. From a
control perspective this subject has classical roots, and we will actually refor-
mulate some classical notions into the modern paradigm of hybrid systems. In
particular, in Section 6.2 we introduce some general terminology on switching
control, and we give relations with the classical notions of pulse width modula-
tion and sliding mode control. Furthermore, in continuation of the discussion
of quadratic stability in Subsection 5.2.3, we discuss the quadratic stabilization
of multi-modal linear systems. In Section 6.3 we consider the specific topic of
stabilizing continuous-time systems by switching control schemes. This, partly
classical, area has regained new interest by the discovery that there are large
classes of nonlinear continuous time systems that are controllable and can be
stabilized by switching control schemes, but nevertheless cannot be stabilized
by continuous state feedback. Also we will indicate that for controlling certain
physical systems, switching control schemes may be an attractive option which
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allows for a clear physical interpretation.

6.1 Safety and guarantee properties

Let us consider a hybrid system, either given (see Chapter 1) as a (generalized)
hybrid automaton (Definitions 1.2.3 and 1.2.5), as a hybrid behavior (Defini-
tion 1.2.6), or described by event-flow formulas (Subsection 1.2.6). Consider
the total behavior B of the hybrid system, e.g., in the (generalized) hybrid
automaton model, the set of trajectories x of the hybrid system given by func-
tions P:17¢ > Lyx:7e - X, 5:& = A, w:1e = W, for time event sets &,
and the corresponding time evolutions 7¢. A property, P, of the hybrid system

is a map
P : B — {TRUE, FALSE}.

A trajectory x satisfies property P if P(x) = TRUE, and the hybrid system
satisfies property P if P(x) = TRUE for all trajectories x € B.

As already indicated in Chapter 5 in the context of verification, although
a general formulation of correctness of a hybrid system should be in terms
of language inclusion, certain properties of interest of a hybrid system can
be often expressed more simply as reachability properties of the discrete and
continuous state variables, so that legal trajectories are those in which certain
states are mot reached. Thus, let as above L denote the discrete part of the
state space and X the continuous part of the state space of the hybrid system.
Given a set F' C (L x X)) we define a safety property, denoted by OF, by

TRUE if for all t € 72, (P(t),x(t)) € F
OF(x) =

FALSE otherwise

Also, we can define a guarantee property, denoted by $F, by

TRUE if there exists ¢ € 7¢ such that (P(t),z(¢)) € F
OF(x) =

FALSE otherwise

(The notations O and ¢ originate from temporal logic, cf. [104].) These two
classes of properties are dual in the sense that for all subsets F' C L x X and
all trajectories x

OF(x) <= —~0OF°(x)

where F'° denotes the complement of the set F. Thus, in principle, we may
only concentrate on safety properties.

Remark 6.1.1. Of course, one can still define other properties given a subset
F C L x X. For example, one may require that y will enter the subset F'
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at some finite time instant, and from then on will remain in F. This can be
seen as a combination of a guarantee and a safety property. Alternatively,
one may define a property by requiring that x enters the set F' at infinitely
many time instants. Also this property can be regarded as a combination of
guarantee and safety (after any finite time instant we are sure that x will visit
F). From a computational point of view these “combined” properties can often
be studied by combining the algorithms for safety and guarantee properties,
see (especially for the finite automaton case) [102].

6.1.1 Safety and controlled invariance

For finite automata (Definition 1.2.2) the study of safety properties, as well
as of guarantee properties, is relatively easy. In particular, let us consider
automata given by the following generalization of input-output automata (1.3):

IF e 8(1,4)

(6.1)
o = n(,i)

where ¢ : L x I — 2% defines the possible state successors I¥ to a state [ given
the control input ¢ € I. This models automata where the transitions are only
partially controlled, or non-deterministic automata.

Let FF C L be a given set. Recall that a trajectory x has property OF
if its discrete state trajectory P(t) satisfies P(t) € F for all time instants t.
This motivates the following invariance definition. First, for any initial state
lp at time 0, and a control sequence g, %1, ¢2, ... at the time instants 0,1,2, ...,
let us denote the resulting state trajectories of (6.1) by lo,l1,12,1s, ..., where
Iy € 6(lo, o), la € 6(l1,41), I3 € §(l2,42), and so on. A subset V C L is called
controlled invariant for (6.1) if for all Iy € V there exists a control sequence
i0,%1,102,... such that any resulting state trajectory lo,l1,l2,l3,... of (6.1)
remains in V, that is, {; € V for j =0,1,2,....

Define for any subset V' C L its controllable predecessor con(V) by

con(V) = {l € L | 3i € I such that 6(l,7) C V}. (6.2)

It follows that V is controlled invariant if and only if

V C con(V). (6.3)
In order to compute the set of discrete states [ € F' for which there exists a
control action ig, 1,42, ... such that the state will remain in F for all future
discrete times 0,1,2,... we thus have to compute the mazimal controlled

invariant subset contained in F. This can be done via the following algorithm.
Ve = F
Vi-l = Fncon(VY), for j=0,-1,-2,..., until (6.4)
vi-l = i,
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Clearly, the sequence of subsets VO, V=1, V=2 ... is non-increasing, and so,
by finiteness of F', the algorithm converges in at most |F'| steps. At each step
of the algorithm, the set V7 contains the discrete states for which there exists
a sequence of control actions i;,%j41,%42,... ,9—1 which will ensure that the
system remains in F' for at least —j steps. It is easy to see that the subset
obtained in the final step of the algorithm, that is

VHF) = ViTh = v/

is the mazimal controlled invariant subset contained in F. Indeed, V*(F) is
clearly a controlled invariant subset of F', since it satisfies by construction

V*(F) = Fncon(V*(F))

and therefore V*(F) satisfies (6.3), as well as V*(F) C F. Furthermore, it
can be shown inductively that any controlled invariant subset V' C F' satisfies
V cViforj=0,-1,-2,..., and hence V C V*(F), proving maximality of
V*(F).

Hence for every state | € V*(F) there exists a control action such that
the resulting trajectory satisfies property OF, and these are precisely all the
states for which this is possible.

Note that algorithm (6.4) is constructive also with regard to the required
control action: in the process of calculating V/~! we compute for every | €
V3=1 a control value i such §(1,i) C V7. So, at the end of the algorithm we
have computed for every I € V*(F') a sequence of control values which keeps
the trajectories emanating from ! in F' (in fact, in V*(F)). Furthermore,
outside V*(F) we still have complete freedom over the control action.

Using the duality between safety properties and guarantee properties, we
can also immediately derive an algorithm for checking the property $F:

$* = F
gi-1 — FUcon(Sj), for 7=0,-1,-2,..., until (6.5)
Sj71 = SJ

Here S7 contains the discrete states from which a visit to F' can be enforced
after at most —j steps. Furthermore, S°, S~',S72,... is a non-decreasing
sequence, and the limiting set

S*(F) =511 =5

defines the set of locations for which there exists a control action such that
the resulting trajectory of the finite automaton satisfies property ¢F.

As noted in Chapter 1 the two most “opposite” examples of hybrid sys-
tems are on the one hand finite automata (Definition 1.2.2) and continuous-
time systems (Definition 1.2.1). It turns out, roughly speaking, that also for
continuous-time systems a safety property OOF can be checked in a similar
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way as above, provided the subset F' of the continuous state space X is a
submanifold of X. Indeed, let us consider for concreteness a continuous-time
input-state-output system

& = f(x)+g(@)u+plx)d
y = h(z)

(6.6)

where, compared with (1.2), we have split the input variables into a set of
control variables u € R™ and a set of disturbance variables d € R!. The
interpretation is similar to (6.1): part of the input variables can be completely
controlled, while the remaining part is totally uncontrollable. Furthermore,
as compared with (1.2) we have assumed for simplicity of exposition that
the dependence on the input variables u and d is of an affine nature via the
matrices g(z) and p(x) (see for the general case e.g. [121], Chapter 13).

Now, let F be a given submanifold of the state space X. Denote the tangent
space of X at a point z € X by T, X, and the tangent space of any submanifold
N C X at a point x € N by T, N. Furthermore, define G(z) as the subspace
of T, X spanned by the image of the matrix ¢g(z), and similarly P(z) as the
subspace of T, X spanned by the image of the matrix p(z).

Consider the algorithm

N = F

NITt = {z e N[ f(z) + P(x) € TNV + G(a)} (6.7)
for j=0,-1,-2,..., until

Nj71 = N]

where we assume that the subsets N7~! C X produced in this way are all
submanifolds of X (see for some technical conditions ensuring this property, as
well as for computing N7~ in local coordinates, [121], Chapters 11 and 13). It
is immediately seen that the sequence of submanifolds N7 for j = 0, -1, -2, ...
is mon-increasing, that is

NoN1oN2Z2o...

and so by finite-dimensionality of F' the algorithm will converge in at most
dim F steps to a submanifold

N*(F):= N/t =NJ
satisfying the property
f(z)+ P(z) C T, (N*(F)) + G(z), forall z € N*(F) (6.8)

Also in this case (see e.g. [121]) it can be shown that N*(F) is the maximal
submanifold with this property. For this reason N*(F) is called the mazimal
controlled invariant submanifold contained in F'.
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Under a constant rank assumption (see again [121], Chapters 11 and 13,
for details) it can be shown that (6.8) implies the existence of a (smooth) state
feedback u = «a(x) such that the closed-loop system

& = f(z) + g(x)a(z) + p(z)d (6.9)

leaves the submanifold N*(F) invariant, for any disturbance function d(-).
Hence, the trajectories of the closed-loop system (6.9) starting in N*(F') satisfy
property OOF.

Algorithm 6.7 can be regarded as an infinitesimal version of Algorithm 6.4;
it replaces the transitions in the finite automaton by conditions on the velocity
vector & and works on the tangent space of the state space manifold X. Note
also that the finiteness property of F' in Algorithm 6.4 has been replaced in
Algorithm 6.7 by the finite-dimensionality of the submanifold F'.

Algorithm 6.7 works well provided the set F' (as well as all the subsequent
subsets N~1, N=2 N3 ...) is a submanifold, but breaks down for more gen-
eral subsets. A fortiori for general hybrid systems it is not clear how to extend
the algorithm.

6.1.2 Safety and dynamic game theory

Another approach to checking safety properties of the form OF is based on
dynamic game theory. Indeed, consider a continuous-time system

= f(z,u,d) (6.10)

where, as before in (6.6), u € U are the control inputs (corresponding to
the first player) and d € D are the disturbance inputs (corresponding to the
second player who is known as the adversary). However, we allow U and D
to be arbitrary sets, not necessarily R™ and R!, implying that (part of) the
control and disturbance inputs may be discrete.

Furthermore, contrary to the submanifolds F' considered before, we assume
that the safety subset F is given by inequality constraints, that is

F={xeX| k(z)>0} (6.11)
where k : X — R is a differentiable function with 2£(z) # 0 on the boundary
OK ={z € X |k(z) =0}
Let now ¢t < 0, and consider the cost function
J:XxUxDxR SR (6.12)

where U and D denote the admissible control, respectively, disturbance func-
tions, with the end condition

J(x,u(-),d(-),t) = k((0)). (6.13)
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This function may be interpreted as the cost associated with a trajectory of
(6.10) starting at z at time ¢ < 0 according to the input functions u(-) and
d(-), and ending at time ¢ = 0 at the final state £(0). Furthermore, define the
value function

(z,t) = i , . .14
J*(z,t) I;lél&(gg%l](x,u,d,t) (6.14)

Then the set

{r € X| min J*(x,t') >0} (6.15)
t'€[t,0]
contains all the states for which the system can be forced by the control u to
remain in F for at least |¢| time units, irrespective of the disturbance function
d.
The value function J* can be computed, in principle, by standard tech-
niques from dynamic game theory (see e.g. [14]). Define the (pre-) Hamiltonian
of the system (6.10) by

H(z,p,u,d) =p’ f(x,u,d) (6.16)

where p is a vector in R™ called the costate. The optimal Hamiltonian is
defined by

H(,p) = maxmin H(z,p,u, d) (6.17)

If J* is a differentiable function of z,¢, then J* is a solution of the Hamilton-
Jacobi equation

oJ*(x,t) ., O0J*(z,t)
J(2,0) = k(z) (6.18b)

It follows that there exists a control action such that the trajectory emanating
from a state x has property OF if and only if (compare with (6.15))

J*(z,t') >0 forall ¢ € (—oc,0]. (6.19)

In [99] it is indicated how to simplify this condition by considering a modified
Hamilton-Jacobi equation. Indeed, to prevent states from being relabeled as
safe once they have been labeled as unsafe (J*(x,t) being negative for some
time t), one may replace (6.18) by

—&]NT(:’” = min{O,H*(aj,&];i(j’t))} (6.20a)
J¥(z,0) = k(z) (6.20Db)

Assume that (6.20) has a differentiable solution J™~(x,t) which converges for
t — —oc to a function J. Then the set

N*(F) ={z | J(z) > 0}
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is the set of initial states of trajectories that, under appropriate control ac-
tion, will remain in F' for all time. Furthermore, the actual construction of
the controller that enforces this property needs only to be performed on the
boundary of N*(F).

Although in many cases the (numerical) solution of the Hamilton-Jacobi
equations (6.18) or (6.20) is a formidable task, it provides a systematic ap-
proach to checking safety properties for continuous-time systems, and a start-
ing point for checking safety properties for certain classes of hybrid systems,
see e.g. [99] for two worked examples.

6.2 Switching control

In some sense, the use of hybrid controllers for continuous-time systems is clas-
sical. Indeed, we can look at wvariable structure control, sliding mode control,
relay control, gain scheduling and even fuzzy control as examples of hybrid con-
trol schemes. The common characteristic of all these control schemes is their
switching nature; on the basis of the evolution of the plant (the continuous-
time system to-be-controlled) and/or the progress of time the hybrid controller
switches from one control regime to another.

6.2.1 Switching logic

One way of formalizing switching control for a continuous-time input-state-
output system is by means of Figure 6.1. Here the supervisor has to decide on
the basis of the input and output signals of the system, and possibly external
(reference) signals or the progress of time, which of the, ordinary, continuous-
time controllers is applied to the system. The figure indicates a finite number
of controllers; however, we could also have a countable set of controllers. Of
course there could in fact be a continuum of controllers, but then the resulting
control schemes would no longer be referred to as switching control schemes.

In many cases the different controllers can all be given the same state space
(shared state variables), which leads to the simpler switching control structure
given in Figure 6.2. In this case the supervisor generates a discrete symbol
o corresponding to a controller X.(¢) producing the control signal u,. An
example of a switching control scheme was already encountered in Subsection
2.2.8 (the supervisor model), in which case the supervisor is a finite automaton
which produces control signals on the basis of the measurement of the output
of the plant and the discrete state of the automaton.

The supervisor in Figures 6.1 and 6.2 is sometimes called a switching logic.
One of the main problems in the design of a switching logic is that usually it
is not desirable to have “chattering”, that is, very fast switching. There are
basically two ways to suppress chattering: one is sometimes called hysteresis
switching logic and the other dwell-time switching logic.

e (Hysteresis switching logic).
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Choose h > 0. Suppose at some time tg, the supervisor ¥; has just
changed the value of o to q. Then o is held fized at the value ¢ unless
and until there exists some t; > to at which 7, +h < 7, (or (1+h)m, <
7, if a scale-invariant criterion is needed) for some p. If this occurs
then o is set equal to p. Here n, denotes some performance criterium
depending on ¢ and some signal derived from the input and the output
signals of the continuous-time plant, which is used in the switching logic.
Clearly, because of the treshold parameter i no infinitely fast switching
will occur. (The idea is similar to the use of a boundary layer around the
switching surface in order to avoid chattering in sliding mode control;
see Subsection 6.2.3.)

¢ (Dwell-time switching logic).

The basic idea is to have some fixed time 7 > 0 (called the dwell-time)
such that, once a symbol ¢ is chosen by the supervisor it will remain
constant for at least a time equal to 7. There are many versions of
dwell-time switching logics.

We refer to [115] for further developments and other switching logic schemes.
From a general hybrid system point of view a continuous-time system (plant)
controlled by switching logic is a hybrid system with continuous state corre-
sponding to the continuous state of the plant and the continuous state of the
controller, together with discrete states residing in the controller. Usually, the
transition from one discrete state to another will not give rise to a jump in
the continuous state of the plant, although it could give rise to a jump in the
continuous state of the controller (“resetting” the controller). Seen from this
point of view it is clear that switching control, although being a very gen-
eral concept, certainly does not cover all possible hybrid control strategies for
continuous-time systems. In fact, the following hybrid control example (taken
from [163]) exhibits jumps in the controlled plant and therefore does not fit
within the switching control scheme.

Example 6.2.1 (Juggling robot). Consider a one degree-of-freedom jug-
gler, i.e., a system composed of an object (a ball) subject to gravity, which
bounces on a controlled mass (a one degree-of-freedom robot).

migyi = -—myg
Mmolo = —Mog+u
22 29 (6.21)
yr—y2 > 0

() — g2 (tf) —e[in(ty) — g2(t;)]

where e € [0,1] is Newton’s restitution coefficient (see also Subsection 2.2.3).
Here y; represents the height of the ball, while yo represents the vertical co-
ordinate of the juggling robot (which is controlled by w). The only way of
influencing the trajectory of the ball is through the impacts, i.e., at the times
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tr such that y; (tx) —y2(tx) = 0, when the velocity of the ball is reset depending
on its initial velocity and the initial velocity of the robot. Note that in order
to compute the velocity of the ball (and of the robot) just after an impact time
one also needs to invoke the law of conservation of momentum, that is,

magi(ty;) + maga(ty ) = mugy (t)) + maga ().

6.2.2 PWM control

In some applications one encounters control systems of the following form:
z=f(z,u), z€X, uel, (6.22)

where X is some continuous space, say R, while the input space U is a finite
space (or, more generally, the product of a continuous and a finite space). An
appealing class of examples consists of power converters, see e.g. Subsection
2.2.13, where the discrete inputs correspond to the switches being closed or
open. Since the input space is finite such systems can be considered as a
special case of hybrid systems.

In some cases, for instance in power converters, it makes sense to relate
the behavior of these hybrid systems to the behavior of an associated control
system with continuous inputs, using the notion of Pulse Width Modulation.
Consider for concreteness a control system with U = {0, 1}, that is,

&= f(z,u), wue{0,1}. (6.23)

The Pulse Width Modulation (PWM) control scheme for (6.23) can be de-
scribed as follows. Consider a so-called duty cycle of fixed small duration A.
On every duty cycle the input u is switched exactly one time from 1 to 0. The
fraction of the duty cycle on which the input holds the fixed value 1 is known
as the duty ratio and is denoted by a. The duty ratio may also depend on the
state x (or, more precisely, on the value of the state sampled at the beginning
of the duty cycle). On every duty cycle [¢,¢+ A] the input is therefore defined
by

u(r) = 1, fort<7<t+al
(6.24)
u(t) = 0, fort+aA<7T<t+A
It follows that the state x at the end of this duty cycle is given by
t+aA t+A
z(t+A) =x(t) + / flz(r),1)dr + / f(z(r),0)dr (6.25)
t t+aA

The ideal averaged model of the PWM controlled system is obtained by letting
the duty cycle duration A go to zero. In the limit, the above formula (6.25)
then yields

z(t+ A) —2(t)

i) = Jim TSI < af(a(t),1) + (1- ) f(2(0,0) (6.26)
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The duty ratio o can be thought of as a continuous-valued input, taking its
values in the interval [0,1]. Hence for sufficiently small A the trajectories of
the continuous-time system (6.26) will be close to trajectories of the hybrid
system (6.23). Note that in general the full behavior of the hybrid system
(6.23) will be richer than that of (6.26); not every trajectory of (6.23) can be
approximated by trajectories of (6.26).

The Pulse Width Modulation control scheme originates from the control
of switching power converters, where usually it is reasonable to assume that
the switches can be opened (u = 0) and closed (u = 1) sufficiently fast at any
ratio a € [0, 1].

A similar analysis can be performed for a control system (6.23) with arbi-
trary finite input space U C R™. Then the PWM-associated continuous-time
system has continuous inputs a taking values in the convez hull of U.

6.2.3 Sliding mode control

A classical example of switching control is variable structure control, as already
partly discussed in Subsection 2.2.7 and Chapter 3. Consider a control system
described by equations of the form

#(t) = f(2(t), u(t))

where u is the (scalar) control input. Suppose that a switching control
scheme is employed that uses a state feedback law u(t) = ¢4 (z(t)) when
the scalar variable y(t) defined by y(t) = h(z(t)) is positive and a feedback
u(t) = ¢_(z(t )) whenever y(t) is negative. Writing fi(z) = f(, ¢+ (z)) and
f-(z) = f(z,¢—(x)), we obtain a dynamical system that obeys the equa-
tion #(t) = fi(z(t)) on the subset where h(z) is positive, and that fol-
lows @(t) = f_(z(t)) on the subset where h(z) is negative. The surface
{z|h(x) = 0} is called the switching surface. The equations can be taken
together in the form (see (3.3))

i =5(1+0)fy(x)+ 3501 —v)f-(z), v=sgn(h(z)) (6.27)

The extension to multivariable inputs u and outputs y is straightforward.
Solutions in Filippov’s sense (cf. Chapter 3) can be used in the situation in
which there is a “chattering” behavior around the switching surface h(z) = 0.
The resulting solutions will remain on the switching surface for some time.
For systems of the form (6.27), where v is the input, the different solution
notions discussed by Filippov all lead to the same solution, which is most easily
described using the concept of the equivalent control veq(z). The equivalent
control is defined as the function of the state z, with values in the interval
[—1, 1], that is such that the vector field defined by

(t) = 3(1 4 veq()) f1+(2) + 3(1 = veq(2)) f- (@)

leaves the switching surface h(z) = 0 invariant (see Chapter 3 for further
discussion).
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In sliding mode control, or briefly, sliding control, the theory of variable
structure systems is actually taken as the starting point for control design.
Indeed, some scalar variable s depending on the state  and possibly the time
t is considered such that the system has a “desired behavior” whenever the
constraint s = 0 is satisfied. The set s = 0 is called the sliding surface. Now
a control law u is sought such that the following sliding condition is satisfied
(see e.g. [144])

d
——35" < —als (6.28)

where « is a strictly positive constant. Essentially, (6.28) states that the
squared “distance” to the sliding surface, as measured by s2, decreases along
all system trajectories. Thus it constraints trajectories to point towards the
sliding surface. Note that the lefthand side can be also written as s$; a more
general sliding condition can therefore be formulated as designing u such that
s$ < 0 for s # 0.

The methodology of sliding control can be best demonstrated by giving a
typical example.

Example 6.2.2. Consider the second-order system
G=f(g.4) +u

where u is the control input, ¢ is the scalar variable of interest (e.g. the position
of a mechanical system), and the dynamics described by f (possibly non-linear
or time-varying) is not exactly known, but estimated by f . The estimation
error on f is assumed to be bounded by some known function F'(g, §):

If-fI<F

In order to have the system track some desired trajectory q(t) = gqq(t), we
define a sliding surface s = 0 with

s=é+ Ae

where e = g — qq is the tracking error, and the constant A > 0 is such that the
error dynamics s = 0 has desirable properties (e.g. sufficiently fast convergence
of the error to zero). We then have

S=f+u—dq+ Aé.

The best approximation @ of a continuous control law that would achieve § = 0
is therefore

G=—f+d{g— Ae.

Note that @ can be interpreted as our best estimate of the equivalent control.
In order to satisfy the sliding condition (6.28) we add to 4 a term that is
discontinuous across the sliding surface:

u=1u—ksgns (6.29)
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where sgn is the signum function defined in (1.13). By choosing & in (6.29)
large enough we can guarantee that the sliding condition (6.28) is satisfied.
Indeed, we may take k = F' + «. Note that the control discontinuity k& across

the sliding surface s = 0 increases with the extent of parametric uncertainty
F.

The occurrence of a sliding mode may not be desirable from an engineering
point of view; depending on the actual implementation of the switching mech-
anism, a quick succession of switches may occur which may lead to increased
wear and to high-frequency vibrations in the system. Hence for the actual
implementation of sliding mode control it is usually needed, in order to avoid
very fast switching, to embed the sliding surface in a thin boundary layer, such
that switching will only occur outside this boundary layer (hysteresis switching
logic). Furthermore, the discontinuity sgn s in the control law can be further
smoothened, say, by replacing sgn by a steep sigmoid function. Of course, such
modifications may deteriorate the performance of the closed-loop system.

One of the main advantages of sliding mode control, in addition to its con-
ceptual simplicity, is its robustness with respect to uncertainty in the system
data. A possible disadvantage is the excitation of unmodeled high-frequency
modes.

6.2.4 Quadratic stabilization by switching control

In continuation of our discussion of quadratic stability in Chapter 5, let us now
consider the problem of quadratic stabilization of a multi-modal linear system

i=Amw, i€l, TR (6.30)

where [ is some finite index set. The problem is to find a switching rule such
that the controlled system has a single quadratic Lyapunov function =7 Px. Tt
is not difficult to show that this problem can be solved if there exists a convex
combination of the matrices A;, ¢ € I, which is Hurwitz (compare with the
corresponding discussion in Chapter 5, Subsection 5.2.3). To verify this claim,
assume that the matrix

is Hurwitz. Take a positive definite matrix @, and let P be the solution of
the Lyapunov equation ATP 4+ PA = —Q; because A is Hurwitz, P is positive
definite. Let now  be an arbitrary nonzero vector. From z7 (AT P4+ PA)z < 0
it follows that

Z ai[zT (AT P+ PA;)z] < 0. (6.32)

Because all the «a; are nonnegative, it follows that at least one of the num-
bers 27 (AT P + PA;)x must be negative, and in fact we obtain the stronger
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statement

1
{z 12" (AT P+ PA)z < —Na:TQa:} = R? (6.33)
iel

where N denotes the number of modes.
It is clear how a switching rule for (6.30) may be chosen such that asymp-
totic stability is achieved; for instance the rule

i(z) = arg minz? (AT P + PA))x (6.34)

is an obvious choice.

The minimum rule (6.34) indeed leads to an asymptotically stable system,
which is well-defined if one extends the number of discrete states so as to
include possible sliding modes. To avoid sliding modes, the minimum rule
may be adapted so that the regions in which different modes are active will
overlap rather than just touch. For instance, a modified switching rule (based
on hysteresis switching logic) may be chosen which is such that the system
will stay in mode i as long as the continuous state x satisfies

el (ATP+ PA)z < —%xTQa:. (6.35)
When the bound in (6.35) is reached, a switch will take place to a new mode
j that may for instance be determined by the minimum rule. At the time
at which the new mode j is entered, the number =7 (AT P + PA;)z must be
less than or equal to —%xTQx. Suppose that the switch to mode j occurs at
continuous state xg. The time until the next mode switch is given by

1
7i(xo) = min{t >0 | a:OTetAJ‘T [A;‘.FP + PA; + ﬁQ]e“mo >0} (6.36)

(taken to be infinity if the set over which the minimum is taken is empty).
Note that 7j(zq) is positive, its dependence on ¢ is lower semi-continuous,
and satisfies 7j(azo) = 7;(xo) for all nonzero real a. Therefore there is a
positive lower bound to the time the system will stay in mode j, namely

. 1
Tj := min{rj(zo) | [|zo|| =1, 2§ (A] P+ PA;)xo = —ﬁ%Ton}
(6.37)

So under this switching strategy the system is asymptotically stable and there
will be no chattering.

6.3 Hybrid feedback stabilization

In this section we treat a few examples of (simple) continuous-time systems
that can be stabilized by hybrid feedback, so as to illustrate the potential of
hybrid feedback schemes.
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6.3.1 Energy decrease by hybrid feedback

First we consider the well-known harmonic oscillator, with equations given as
(after a normalization of the constants)

i = v
v = —q+u (638)
y = 4q

It is well-known that the harmonic oscillator cannot be asymptotically stabi-
lized using static output feedback. However, since the system is controllable
and observable, it can be asymptotically stabilized using dynamic output feed-
back. (One option is to build an observer for the system, and to substitute
the estimate of the state produced by this observer into the asymptotically
stabilizing state feedback law.) As an illustration of the novel aspects created
by hybrid control strategies, we will show (based on [9]) that the harmonic
oscillator can be also asymptotically stabilized by a hybrid static output feed-
back.

Example 6.3.1. Consider the following controller automaton for the har-
monic oscillator. It consists of two locations, denoted + and —. In each
location we define a continuous static output feedback uy(gq), respectively

u_(q) by

0 forg >0
ut(q) = (6.39)
—3q forg<0

and

—3q forqg>0
u_(q) = (6.40)
0 for g < 0

Furthermore, we define a dwell-time T, respectively T_ for each location,
which specifies how long the controller will remain in a location before a tran-
sition is made, either to the other or to the same location. The value of ¢ at
the transition time is denoted by ¢;.. The controller automaton is depicted in
Figure 6.3.

To verify that such a hybrid feedback asymptotically stabilizes (6.38), con-
sider the energy function H(g,p) = £(¢*> + v*). In the region where u = 0
there is no change in the energy. When u(q) = —3¢, the time-derivative of the
energy along the solution is

d 1., 2
7 (3@ () +v7(1) = =3q(t)v(t)

so that the energy decreases if ¢ - v > 0. As shown in Figure 6.3, after a
transition the input u = —3¢ is in operation only when the sign of ¢(¢) - v(¢)
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qir <0
gir >0 qer <0

\—/

QtrZO

Figure 6.3: Hybrid feedback for the harmonic oscillator

changes from negative to positive, and then for at most % time units, in which
q(t) - v(t) remains positive. (Note that with u = —3¢ the solutions ¢(t) and
v(t) of the closed-loop system are shifted sinusoids with frequency 2; hence
the product ¢(t) - v(¢) is a shifted sinusoid with frequency 4. However, since
> %, q(t) - v(t) will not change sign during the time the input v = —3¢ is in
operation.)

An alternative asymptotically stabilizing hybrid feedback, this time hav-
ing three locations is provided by the following controller automaton depicted
in Figure 6.4, with 6 > 0 small. In order to verify that this hybrid feed-

qer <0

(1

back also stabilizes the harmonic oscillator, consider again the total energy
H(q,v) = $(¢*® + v?). At the locations + and — there is no change in energy.
These two locations serve to detect a shift of ¢ from positive to negative in
the case of location +, and from negative to positive in the case of location

Figure 6.4: An alternative hybrid feedback
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—. In both cases the change in sign will occur within a bounded number of
transition periods. Then the location is shifted to d, which serves as a dissi-
pation location. Furthermore, since during both 4+ and — the trajectory turns
clockwise, when d is switched on, the initial condition starts at either the first
or the third orthant (i.e. ¢-v > 0), and since T; = 7§ — 26, the solution
stays in that orthant as long as d is on. Furthermore, when the location d is
reached after a transition, there is a loss of order of % of the energy (up to §)
before one of the locations + or — is switched on, depending on whether ¢ > 0
or ¢ < 0, and the search for the change of the sign starts again. All in all,
once + is on with ¢ > 0, or — is on with ¢ < 0, the hybrid trajectory passes
through d infinitely often, with bounded gaps between occurrences, and each
time there is a proportional loss of energy of order close to %. The conclusion
is that H(gq,v) tends to zero, uniformly for ¢(0),v(0) in a compact set. This
proves the asymptotic stabilization, provided the hybrid initial condition sat-
isfies ¢ > 0 in location +, or ¢ < 0 in location —. It is straightforward to check
that starting from an arbitrary initial condition, the hybrid trajectory reaches
one of these situations within an interval of length 7, and thus asymptotic
stability is shown.

The main difference between both hybrid feedback stabilization schemes is
that in the first case we had only two locations with a nonlinear control, while
in the second case we only employ linear feedback at the price of having three
locations. Furthermore, one could compare the convergence and robustness
properties of both schemes, as well as compare the two schemes with a dynamic
asymptotically stabilizing output feedback.

As a preliminary conclusion of this subsection we note that the above hy-
brid feedback stabilization strategies for the harmonic oscillator are based on
energy considerations. Indeed, the hybrid feedback schemes were constructed
in such a manner that the energy is always non-increasing along the hybrid
trajectories. The difficulty of the actual proof of asymptotic stability lies in
showing that the energy is indeed in all cases non-increasing, and that more-
over eventually all energy is dissipated. (The idea is somewhat similar to
LaSalle’s version of Lyapunov stability theory: the Lyapunov function should
be always non-increasing along trajectories, while there should be no non-
trivial invariant sets where the Lyapunov function remains constant.) The
tools for showing this, however, are rather ad hoc. Furthermore, there is not
yet a systematic procedure to construct hybrid feedback stabilization strate-
gies. The main problem seems to be that in the hybrid case we do not have
an explicit expression of the energy decrease analogous to the time-derivative
4H= %—f(x)f(x, u) of the energy H for a continuous-time system & = f(z,u).

Clearly, the idea of a non-increasing energy can be extended from physical
energy functions H to general Lyapunov functions V' (with the ubiquitous
difficulty of finding feasible Lyapunov functions). The setting seems somewhat
similar to the use of control Lyapunov functions in the feedback stabilization
of nonlinear control systems, see e.g. [143].
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6.3.2 Stabilization of nonholonomic systems

While the above example of stabilizing a harmonic oscillator by hybrid static
output feedback may not seem very convincing, since the goal could be also
reached by other means, we now turn to a different class of systems where
the usefulness of hybrid feedback stabilization schemes is immediately clear.
Indeed, let us consider the example of the nonholonomic integrator

Tz = u
y = v (6.41)
Z = av-—yu

where v and v denote the controls. To indicate the physical significance of
this system it can be shown that any kinematic completely non-holonomic
mechanical system with three states and two inputs can be converted into this
form (see e.g. [118]).

The nonholonomic integrator is the prototype of a nonlinear system, which
is controllable, but nevertheless cannot be asymptotically stabilized using con-
tinuous state feedback (static or dynamic). The reason is that the nonholo-
nomic integrator violates what is called Brockett’s necessary condition [29],
which is formulated in the following theorem.

Theorem 6.3.2. Consider the control system
&= flz,u), ze€R", uwelR™, f(0,0)=0, (6.42)

where f is a C function. If (6.42) is asymptotically stabilizable (about 0) using
a continuous feedback law uw = a(x), then the image of every open neighborhood
of (0,0) under f contains an open neighborhood of 0.

Remark 6.3.3. Since we allow for continuous feedback laws (instead of C*
or locally Lipschitz feedback laws) some care should be taken in connection
with the ezistence and uniqueness of solutions of the closed-loop system.

It is readily seen that the nonholonomic integrator does not satisfy the
condition mentioned in Theorem 6.3.2 (Brockett’s necessary condition), de-
spite the fact that it is controllable (as can be rather easily seen). Indeed,
(0,0,¢) & Im (f) for any € # 0, and so the nonholonomic integrator cannot be
stabilized by a time-invariant continuous feedback.

In fact, the nonholonomic integrator is an example of a whole class of
systems, sharing the same property. For example, actuated mechanical systems
subject to nonholonomic kinematic constraints (like rolling without slipping)
do not satisfy Brockett’s necessary condition, but are often controllable.

For the nonholonomic integrator we consider the following sliding mode
control law (taken from [21]):

u = —x+ysgnz
vse (6.43)
v = —y—zTsgnz
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Consider a Lyapunov function for the (z,y)-subspace:
V(z,y) = 5(z° +y°)

The time-derivative of V along the trajectories of the closed-loop system (6.41-
6.43) is negative:

V=—a®+aysgnz—y® —zysgnz = — (2 +y%) = —2V. (6.44)

It already follows that the variables z,y converge to zero. Now let us consider
the variable z. Using equations (6.41-6.43) we obtain

Z=av—yu=—(2*+y?)sgnz = —2Vsgnz (6.45)

Since V does not depend on z and is a positive function of time, the absolute
value of the variable z will thus decrease and will be able to reach zero in finite
time provided the inequality

2 /0 Virydr > |2(0)| (6.46)

holds. If this inequality is an equality, then z(¢) converges to the origin in
infinite time. Otherwise, it converges to some constant non-zero value that
has the same sign as z(0). After reaching zero z(f) will remain there, since
according to (6.45), all trajectories are directed towards the surface z = 0 (the
sliding surface), while z and y always converge to the origin while within this
surface.

From (6.44) it follows that

V() = VO = S@(0) + 57 (0)e .

Substituting this expression in (6.46) and integrating, we find that the condi-
tion for the system to be asymptotically stable is that

3(@°(0) +y7(0)) > [2(0)].
The inequality
%(mQ +9?) < |2| (6.47)

defines a parabolic region in the state space. The above derivation is summa-
rized in the following theorem.

Theorem 6.3.4. If the initial conditions for the system (6.41) do not belong
to the region defined by (6.47), then the control (6.43) asymptotically stabilizes
the system.
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If the initial data are inside the parabolic region defined by (6.47), we can
use any control law that first steers it outside. In fact, any nonzero constant
control can be applied. Namely, if u = ug = const, v = vg = const, then

z(t) = upt+ xg
y(t) = wol+yo
2(t) = z(t)vo —y(H)uo

= t(zovo — Youo) + 2o

With such z, y and z the left hand side of (6.47) is quadratic with respect to
time ¢, while the right hand side is linear. Hence, the state will always leave the
parabolic region defined by (6.47), and then we switch to the control given by
(6.43). Note that the resulting control strategy is inherently hybrid in nature:
first we apply the constant control u = ug, v = vy if the state belongs to the
parabolic region defined by (6.47), and if the system is outside this region then
we switch to the sliding control (6.43).

A possible drawback of the above hybrid feedback scheme is caused by the
application of sliding control: in principle we will get chattering around the
sliding surface z = 0. Although this can be remedied with the usual tools in
sliding control (e.g. putting a boundary layer around the sliding surface, or
approximating the sgn function by a steep sigmoid function), it motivates the
search for an alternative hybrid feedback scheme that completely avoids the
chattering behavior.

Remark 6.3.5. An alternative sliding mode feedback law can be formulated
as follows:

u = —xr+ 5 sgnz

2
oy (6.48)

vo= -y sgn z.

224y

This feedback will result in the same equation (6.44) for the time-derivative of
V', while the equation (6.45) for the time-derivative of z is improved to

Z= —sgnz. (6.49)

Of course, the price that needs to be paid for this more favorable behavior is
that the control (6.48) is unbounded for z? + y? tending to zero.

In connection to the above hybrid feedback schemes (6.43) and (6.48) we
consider the following alternative scheme, taken from [77, 78]. Let ¢ = (x,y, z),
and define W (q) = (w1(q),w2(q)) € R? by

wa(q) = 2> +y°
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We now define four regions in R?, and construct the following hybrid feed-
back with four locations.

1. Pick four continuous functions 7y, : [0,00) = R, k € I = {1,2,3,4} with
the following properties.

(a) m(0) =0 for each k € {1,2,3,4}.
(b) for each k € {1,2,3,4} and for all w > 0

0 < m(w) < me(w) < m3(w) < ma(w).

(c) m and w2 are bounded.

(d) i is such that if w — 0 exponentially fast then R
nentially fast.

(e) my4 is differentiable on some non-empty, half-open interval (0, ¢] and

dms ma(w)
dw (w) < w

w € (0,cl.

Moreover, if w — 0 exponentially fast, then m4(w) — 0 exponen-
tially fast.

2. Partition the closed positive quadrant @ C R? into four overlapping

regions
R = {(wi,ws) € Q:0<wy < my(w)}
Ry = {(wi,wq) € Q:m(w1) <wy < mglwr)}
Ry = {(w1,wq) € Q:ws > m3(w1)}
Ry = {(0,0)}.

3. Define the control law

(u(),v(®))" = go( (a(t)

where o(t) is a piecewise constant switching signal taking values in I =

{1,2,3,4} and
1
g1(q) =
1
Yz
T+ 1'2 + y2
QQ(C]) = €Tz
Y —

x2+y2
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+ Yz
=
72 4+ 32
gB(q) = Tz
Y- 22 + 92
0
g4(q) =
0

The signal o(t) is defined to be continuous from the right and is deter-
mined recursively by

o(t) = d(q(t),0™ (1), o (to) =00 €l

where o~ (t) denotes the limit of o(t) from below and ¢ : R® x I — I is
the transition function

o if W(q) € R,

¢(q,0) =
max{k € I : W(q) € Ry} otherwise

A typical example is obtained by taking 7 (w1) = (1 — e”V¥), 19 = 27y,
w3 = 3w, and w4 = 4m;. The resulting regions R, R> and R3 are shown in
Figure 6.5.

© A
. m Wt =L -
%:2:' H:7n é?/—/

Figure 6.5: A typical partition of

Although the closed-loop system is not globally Lipschitz, global existence
of solutions can be easily established. Indeed, simple calculations show that

wy < 2wy +wo, Wy < 2wy + 2.

Since the bounds for the right-hand sides of the above equations are globally
Lipschitz with respect to w; and ws, these variables and their derivatives are
bounded on any finite interval, from which the global existence of solutions
can be established (see [78] for details). Note that if we start in region R,
then we apply the constant control u = 1 and v = 1 as in the previous hybrid
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sliding mode design. For the same reason as given above, this will lead us to
the region R,. Furthermore, if the switching signal is equal to 2 or 3 we obtain
(compare with (6.49))

u)l = —21[)1

and so wy, and hence z, will converge to zero. Detailed analysis (cf. [78])
indeed shows this to happen, and moreover shows that also z and y converge
to zero. The convergence of all variables is exponential.

Let us try to summarize what we have learned from this example of hybrid
feedback stabilization of a nonholonomic system. As a general remark, there
seems to be at the moment no general design methodology for constructing
hybrid feedback stabilization schemes. The first scheme for asymptotic stabi-
lization of the nonholonomic integrator that we discussed is based on sliding
control, while also the second scheme takes much inspiration from such sliding
control schemes. However it is not easy to extract a systematic design method-
ology from this example. Furthermore, the actual proofs that the proposed
hybrid feedback schemes do work are typically complicated and rather ad hoc.

6.3.3 Set-point regulation of mechanical systems by en-
ergy injection

In analogy with Subsection 6.3.1 let us continue with hybrid feedback strategies
that are based on energy considerations. Instead of decreasing the energy of
the system in bringing the system to a desired rest configuration, there are
also cases where actually we like to “inject” energy into the system in an
efficient manner. A typical example of this is to swing up a pendulum from
its hanging position to the upright position, cf. [10]. The equations of motion
of a pendulum are given by

J,0 — mglsin 6 + mul cos§ = 0. (6.50)

Here m denotes the mass of the pendulum, concentrated at the end, [ denotes
the length, and J, is the moment of inertia with respect to the pivot point.
The angle between the vertical and the pendulum is denoted by 8, where 6 is
positive in the clockwise direction. The acceleration due to gravity is g and the
horizontal acceleration of the pivot point is u. Note that the linearized systems
are controllable, except when § = 7 or —7, i.e. except when the pendulum is
horizontal. One way to swing the pendulum to its upright position is to inject
into the system an amount of energy such that the total energy corresponds to
the potential energy of the upright position. Once the pendulum is sufficiently
close to the upright position one then switches to a (say, linear) controller in
order to keep the system near this upright equilibrium—so this is already a
switching control strategy! The energy of the system is given by

1. .
E= EJPHQ + mgl cos@ (6.51)
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Computing the derivative of E with respect to time we find
dE

P J,06 — mglfsin @ = mulf cos 6 (6.52)
It follows from (6.52) that it is easy to control the energy. Only for fcosb =0,
that is, for # = 0, § = §, or § = —7, controllability of the energy increase

is lost. Physically these singular states correspond to the case when the pen-
dulum reverses its velocity or when it is horizontal. Control action is most
effective when the angle 6 is close to 0 or 7 and the velocity is large. To in-
crease energy the horizontal acceleration of the pivot u should be positive when
the quantity 6 cos is negative. To change the energy as quickly as possible
the magnitude of the control signal should be as large as possible.

Let the desired energy be Ey. The following sliding control law is a simple
strategy for achieving the desired energy:

u = sat.(k(E — Ey)) sgn(f cos ) (6.53)

where k is a design parameter. In this expression the function sat. saturates
the control action at the level ¢. The strategy is essentially a bang-bang
strategy for large errors and a proportional control for small errors. For large
values of k the strategy (6.53) is arbitrarily close to the strategy that gives the
maximum increase of energy.

Let us now discuss strategies for bringing the pendulum from rest in down-
ward position to a stationary position in the upright equilibrium. The potential
energy of the pendulum is normalized to be zero at the upright position and
is thus equal to —2mgl at the downward position. One way to swing up the
pendulum is therefore to control it in such a way that its energy increases from
—2mgl to 0. A very simple strategy to achieve this is as follows. Accelerate
the pendulum with maximum acceleration in an arbitrary direction and re-
verse the acceleration when the velocity becomes zero. It can be seen that this
strategy is optimal as long as the pendulum does not reach the horizontal po-
sition, because it follows from (6.52) that the acceleration should be reversed
when the pendulum reaches the horizontal position.

The behavior of the swing depends critically on the maximum acceleration
¢ of the pivot. If ¢ is large enough the pendulum can be brought up in one
swing, but otherwise multiple swings are required.

In fact it can be seen that if ¢ > 2g then one swing is sufficient by first
using the maximum acceleration until the desired energy is obtained, and then
setting the acceleration to zero. (Note that with ¢ = 2¢g this comes down to
maximum acceleration until the pendulum is horizontal, and then switching
off the acceleration.) However, using more than two switches as above, it
can be seen that it is possible to bring the pendulum in upright position if
%g <e<2g. Infact,if c = %g then we maximally accelerate till the pendulum
is horizontal, and then we maximally reverse the acceleration until the desired
energy is reached, at which moment we set the acceleration equal to zero.

It is interesting to compare these energy-based switching strategies with
minimum time strategies. Indeed, from Pontryagin’s Maximum principle it
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follows that minimum time strategies for |u| bounded by ¢ are of bang-bang
type as well. It can be shown that these strategies also have a nice interpre-
tation in terms of energy. They will inject energy into the pendulum at a
maximum rate and then remove energy at maximum rate in such a way that
the energy corresponds to the equilibrium energy at the moment when the
upright position is reached. In fact, for small values of ¢ the minimum-time
strategies produce control signals that at first are identical to those produced
by the energy-based strategies. The final part of the control signals, however,
is different, because the energy-based control strategies will set the accelera-
tion equal to zero when the desired energy has been obtained, while in the
minimum-time strategies there is an “overshoot” in the energy.

In principle, the same reasoning can be used for set-point regulation of
other mechanical systems.

6.4 Notes and References for Chapter 6

Section 6.1 is mainly based on [99] and [102]. The theory of controlled invari-
ance for linear systems can be found in [160], [15], and for the nonlinear case
e.g. in [121]. In a more general context the property of controlled invariance
has been studied as “viability theory”, cf. [11]. Conceptually very much re-
lated work in the area of discrete-event systems is the work of Wonham and
co-workers; see e.g. [132], [149]. For optimal control of hybrid systems, in par-
ticular the extension of the Maximum Principle to the hybrid case, we refer
to [147]. Subsection 6.2.1 is largely based on [115], while part of Subsection
6.2.3 is based on the exposition of sliding mode control in [144]. There is a
substantial body of literature on the topic of quadratic stabilization that we
touched upon in Subsection 6.2.4. A few references are [103], [128], and [154]
where the switching rule according to (6.35) is suggested. Subsection 6.3.1 is
taken from [9]. The first part of Subsection 6.3.2 is based on [21], see also [22].
The second part of Subsection 6.3.2 is based on [78], see also [77]. Finally,
Subsection 6.3.3 is based on [10]. Of course, there is much additional work
on the control of hybrid systems that we did not discuss here. For further
information the reader may refer to the papers in the recent special issues [7]
and [116]. A survey of hybrid systems in process control is available in [94].
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