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Some people have had some trouble with the linear algebra form of the MLE for multiple regression.  I tried to find a nice
online derivation but I could not find anything helpful.  So I have decide to derive the matrix form for the MLE weights for
linear regression under the assumption of Gaussian noise.  

The Model
Lets say we are given some set of data X  and y.   The matrix X  has n  rows corresponding to each of the examples and d
columns corresponding to  each of  the  d  features.   The  column vector  y  consists  has  n  rows corresponding to  each of  the
examples and 1 column.  We want to "learn" the relationship between an individual feature vector x and an outcome y.  In
some sense we want to learn the function f : d Ø  which satisfies:

(1)y = f HxL

„ Linear Models
There are many functions f  that we could chose from (I am sure you have some favorites).  To simplify our computation
and to impose some assumptions (which often aids in generalization) we will restrict f  to the class of linear functions.  That
is for a choice of weights w we can express f  as:

(2)fwHxL = ‚
j=1

d

w j x j

„ Nonlinear Features
Often  people  find  this  assumption  to  restrictive.   We  can  permit  a  more  complex  class  of  functions  by  creating  new
(nonlinear)  features from the original features x j.  For example:

(3)fwHxL = ‚
j=1

d

w j x j + ‚
j=d+1

2 d

w j SinAx j
2E

To formalize this notion we can rewrite equation 3 as:

(4)fwHxL = ‚
j=1

m

w j f j@xD

Returning to the example in equation 3 we can use the notation of equation 4 by defining:

f j @xD =

x j if 1 § j § d

SinAx j
2E if d + 1 § j § 2 d

0 otherwise

This  technique  allows  us  to  lift  our  simple  linear  function  fw  into  a  more  complex  space  permitting  a  richer  class of
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functions in our original space d .   With this transformation we can define a matrix F  which is like X  but consists of the
transformed features.  If we do not want to transform our features then we simply define:

(5)f j @xD =
x j if 1 § j § d

0 otherwise

The matrix F is constructed by:

(6)F =

f1@X11, …, X1 dD … fm@X11, …, X1 dD
... ... ...

f1@Xn1, …, XndD … fm@Xn1, …, XndD

If we use the trivial transform in equation 5 equation 6 becomes:

(7)F =

X11 … X1 d

... ... ...
Xn1 … Xnd

= X

For the rest of these notes I will use the trivial feature space X . However feel free to substitute F where ever X  is used if a
nonlinear feature space is desired.

„ Noise
Sadly  we  live  in  the  real  world  where  there  is  random noise  e  that  gets  mixed  into  our  observations.   So  a  more  natural
model would be of the form:

(8)y = fwHxL + e

We have to pick what type of noise we expect to observe.  A common choice is 0 mean independent gaussian noise of the
form:

e ~ NH0, sL

„ Which fw

Having  selected  the  feature  transformation  f  and  having  decided  to  use  a  linear  model  we  have  reduced  our  hypothesis
space (the space of functions we are willing to consider for f ) from all the functions (and then some) to linear functions in
the feature space determined by f.   The functions in this space are indexed by w  (the weight vector).  How do we pick f
from this reduced hypothesis space?  We simply choose the "best" w.  For the remainder of these notes we will be describing
how to choose the w that maximizes the likelihood of our data X  and y.

Matrix Notation
Lets begin with some linear algebra.  We can apply our model to the data in the following ways:

(9)y =

y1

…
yn

=

fwH < X11, …, X1 d >L + e1

…
fwH < Xn1, …, Xnd >L + en

=

⁄j=1
d w j X1 j + e1

…

⁄j=1
d w j Xnj + en

= X w + e

where w is a d ä1 column vector of weights and e is a d ä1 column vector of iid ei ~ NH0, sL gaussian noise.  Notice how we
can compactly compute all the y at once by simply multiplying X w.  If we solve for the noise in equation 9 we obtain:

y - X w = e ~ NH0, s IL;
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(10)Hy - X wL ~ NH0, s IL;

We see that the residual of our regression model follows a multivariate gaussian with covariance s I  were I   is the identity
matrix.  The density of the multivariate Gaussian takes the form:

(11)pHV L =
1

H2 pLN ê2 … S »1ê2
 ExpB-

1

2
 HV - mL S-1HV - mLF

where V ~ NHm, SL and V œ Nä1 is a column vector of size N .

Likelihood
Using equation 10 and 11 we can express the likelihood of our data given our weights w as:

PHX , y » wL ∂ LHwL ∂ ExpB-
1

2
 Hy - X wL

1

s
 I Hy - X wLF

We now want to maximize the likelihood of our data given the weights.   First we take the Log to make thinks easier

lHwL ∂ Hy - X wL I Hy - X wL

Notice that we can remove any additional multiplicative constants.  We now have

lHwL ∂ Hy - X wL
row vector

I
identity Matrix

Hy - X wL
col vector

You should be able to convince yourself that this is equivalent to:

lHwL ∂ Hy - X wL Hy - X wL

Now lets take the gradient (row vector) derivative with respect to w:

∑

∑w
lHwL ∂

∑

∑w
@Hy - X wL Hy - X wLD

To compute this we will use the gradient of a quadratic matrix equation.
For more details see http://en.wikipedia.org/wiki/Matrix_calculus 
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html#deriv_quad

∑

∑w
lHwL ∂ -Hy - X wL X - Hy - X wL X

Simplifying a little

∑

∑w
lHwL ∂ -2 Hy - X wL X

Removing extraneous constants

∑

∑w
lHwL ∂ -Hy - X wL X

Apply the tranpose
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∑

∑w
lHwL ∂ -Hy - w X L X

Multiplying through by X :

∑

∑w
lHwL ∂ - y  X + w X  X

Finally we set the derivative equal to zero and solve for w to obtain:

∑

∑w
lHwL ∂ - y  X + w X  X = 0

w X  X = y  X

w = y  X HX  X L-1

Finally remvoing the transpose we have:

w = HX  X L-1 X y

Thus you have the matrix form of the MLE.
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