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Course	Outcomes

CO1:	Ability	to	EXPLAIN	control	systems	and	control	
systems	design.	

CO2:	Ability	to	DESCRIBE	the	mathematical	model	models	
for	such	mechanical,	electrical	and	electromechanical	
systems.	(state	variable	systems,	stability	in	feedback	
control	systems,	and	frequency	domain).		

CO3:	Ability	to	ANALYZE	AND	DESIGN	linear	feedback	
systems	using	root	locus	method,	digital	control	systems.	
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Evaluation

Mid-Term:	 	 	 	 	 	 	 20%		
Final	Examination:	 	 	 	 	 40%	

Quizzes:	 	 	 	 	 	 	 	 5%	
Assignment:	 	 	 	 	 	 	 10%	

Laboratory:	
Report	and	Assessment:		 	 						15%	
Mini	Project:		 	 	 	 	 						10%	
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Teaching	Plan
Week Course	Contents
1 Introduction	to	Control	Systems
2-3 Mathematical	Models	of	Systems
4-5 State	Variable	Models
6-7 Feedback	Control	Systems	And	Characteristics,	

Performance	and	Stability	of	Linear	Feedback	
Systems.

9 Root	Locus	Method
10-11 Frequency	Response	Method	
12-13 Stability	in	the	frequency	domain.
14-15 Digital	Control	Systems	
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Chapter	1:	Learning	Outcomes

Define	a	Control	System	and	describe	some	application	

Describe	control	system	analysis	and	design	objectives	

Describe	a	control	system’s	design	process	

Describe	the	benefit	from	studying	control	system	
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Definition	on	standard	terms	used:	
Control:	The	process	of	causing	or	regulate	the	system	to						
																to	desired	value.	

System:	A	collection	of	components	which	are					
															coordinated	together	to	perform	a	function.			

Control	System:		
Interconnection	of	components	forming	a	system	
configuration	that	will	provide	a	desired	system	response.

Figure	1.1:	Simplified	description	of	a	control	system 7



Example	1:	Elevator

Figure	1.2	Elevator	response
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German	train	crash	investigators	focus	on	signal	controller	–	source	10	Feb	2016		
Image	adapted	from	Google	news.
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Figure:	Escalator	incident.	Adapted	from	Harian	Metro,	13	Feb	2016.



Advantages	of	Control	Systems

• Can	move	large	equipment	with	precision	that	otherwise	be		
				impossible.	
• Can	point	huge	antennas	toward	the	farthest	reaches	of	the	
				universe	to	pick	up	faint	radio	signals	
• Elevators	(timing)	carry	us	quickly	to	our	destination.

Control	systems	built	for	four	(4)	primary	reason:
• Power	amplification	
• Remote	control	
• Convenience	to	input	form	
• Compensation	to	disturbances	
• Others?…
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Control	System:	System	Configuration

• Open	loop	system	
• Closed-loop	system

Figure	1.3:	Block	diagram	of	control	system,	(a)	Open	loop	system;		
(b)	Closed-loop	system
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Example	2:	Antenna	azimuth	position	control

Figure	1.4	(a):	System	concept	
Figure	1.4	(b):	Detailed	layout	
Figure	1.4	(c):	Schematic	
Figure	1.4	(d):	Functional	block	diagram
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Analysis	and	Design	Objectives

• Analysis	is	the	process	by	which	a	system’s	performance		
			is	determine.	
• Design	is	the	process	by	which	a	system’s	performance		
				is	created	or	changed.	
• Familiar	with	Transient,	Steady-State,	and	Stability	
				(please	refer	Fig	1.2)	
• Other	considerations:	Hardware	selection,	finances,	and	
robustness		

*please	describe	based	on	your	understanding
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The	Design	Process	

Figure	1.5:	The	control	system	design	process
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Summary

What	have	you	learned	from	this	topic?
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1.	Name	three	applications	for	feedback	control	systems.	
Guided	missiles,	automatic	gain	control	in	radio	receivers,	satellite	tracking	antenna	

2.	Name	three	reasons	for	using	feedback	control	systems	and	at	
least	one	reason	for	not	using	them.	
Yes	-	power	gain,	remote	control,	parameter	conversion;	No	-	Expense,	complexity	

3.	Give	three	examples	of	open-loop	systems.	
Motor,	low	pass	filter,	inertia	supported	between	two	bearings	

4.	Functionally,	how	do	closed-loop	systems	differ	from	open-loop	
systems?	
Closed-loop	systems	compensate	for	disturbances	by	measuring	the	response,	comparing	it	to	the	input	response	(the	desired	output),	and	then	correcting	the	
output	response.		

5.	Name	the	three	major	design	criteria	for	control	systems.		
Stability,	transient	response,	and	steady-state	error	

6.	Name	the	two	parts	of	a	system’s	response.		
Steady-state,	transient	

7.	Physically,	what	happens	to	a	system	that	is	unstable?		
It	follows	a	growing	transient	response	until	the	steady-state	response	is	no	longer	visible.	The	system	will	either	destroy	itself,	reach	an	equilibrium	state	because	of	
saturation	in	driving	amplifiers,	or	hit	limit	stops.  

Review	Questions
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A	 temperature	 control	 system	 operates	 by	 sensing	
the	 difference	 between	 the	 thermostat	 setting	 and	
the	actual	temperature	and	then	opening	a	fuel	valve	
an	 amount	 proportional	 to	 this	 difference.	 Draw	 a	
functional	closed-loop	block	diagram	similar	to	Figure	
1.9(d)	 identifying	 the	 input	 and	 output	 transducers,	
the	 controller,	 and	 the	 plant.	 Further,	 identify	 the	
input	and	output	signals	of	all	subsystems	previously	
described.		

Exercise	1
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Answer	to	Exercise	1
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CHAPTER	2:		
MATHEMATICAL	MODELS	OF	SYSTEM	
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Learning	Outcomes:

After	completing	this	chapter,	you	will	be	able	to:	

• Find	the	Laplace	transform	of	time	functions	and	the	inverse		
						Laplace	transform.	
• Find	the	transfer	function	from	a	differential	equation	and		
					solve	the	differential	equation	using	the	transfer	function	
• Find	the	transfer	function	for	linear,	time-invariant		
					electrical	networks.	
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2.1	Introduction:

Last	lecture:	

We	discussed	the	analysis	and	design	sequence	that	included		
Obtaining	the	system’s	schematic	and	demonstrated	with		
several	applications.	

Why?	
Because,	to	obtain	schematic,	the	control	system	engineer	must		
often	make	many	simplifying	assumptions	in	order	to	keep	the		
ensuing	model	manageable	and	still	approximate	physical	reality.	

Two	methods:	Trans.	functions	in	frequency	domain	(CH2)	
	 	 	 	 State	equation	in	time	domain	(CH3)
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2.2	Laplace	Transform

Where: s=σ + jω
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Table	2.1:	Laplace	transform	table:

Laplace	Transform
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Table	2.2:	Laplace	Transform	theorems	
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Example	2.1

Find	the	Laplace	Transform	of:	
		

e−at sinωtu(t)

e−at cosωtu(t)

t3u(t)

Ae−atu(t)
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Table	2.3:	Voltage	current,	voltage-charge,	and	impedance	relationships	for	capacitors,		
resistors,	and	inductors	
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Given	the	electric	network	shown	in	figure	below.	Assume:	

a) Write	the	differential	equation	for	the	network	if	v(t)=	u(t).	
b) Solve	the	differential	equation	for	the	current,	i(t)	if	there	is	no	initial	energy		
							in	the	network	
c)	Make	plot	of	your	solution	if	R/L=1.

R=1Ω L =1H 1
LC

= 25
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Answer:
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Transfer	Function:		

To	formulate	the	system	representation	that	algebraically	relates		
a	system’s	output	to	it	input.
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Example	2.6:

Figure 2.3: Series 
RLC network

Figure 2.4:  
Block diagram  
of series RLC  
electrical network 

31



Example	2.10:

Note:	Please	prove	the		
transfer	function	obtained

32



Operational	Amplifier

Inverting	Amplifier Non-inverting	Operational	Amplifier

Note:	Please	prove	the	transfer	function
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Example	2.14:

Figure	2.11:	
Inverting	operational	
amplifier	circuit	for	
Example	2.14

Find	the	transfer	function,	Vo(s)/Vi(s)

Answer:	
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Figure	2.13		
Noninverting	
operational	amplifier	
circuit	for	
Example	2.15

Example	2.15:

Find	the	transfer	function,	Vo(s)/Vi(s)

Answer:	
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Figure 2.14  
Electric circuit for 
Skill-Assessment 
Exercise 2.6

Exercise	@	Assignment:

Find	the	transfer	function,	VL(s)/V(s)
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• Find	the	transfer	function	for	linear,	time-invariant		
					translational	mechanical	systems	
• Find	the	transfer	function	for	linear,	time-invariant	
					rotational	mechanical	systems		
• Find	the	transfer	functions	for	gear	systems	with	no		
					loss	and	for	gear	systems	with	loss	
• Find	the	transfer	function	for	linear,	time-invariant		
					electromechanical	systems	
• Produce	analogous	electrical	and	mechanical	circuits	
• Linearise	a	nonlinear	system	in	order	to	find	the	transfer	

function	

Learning	Objectives:
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Translational	Mechanical	System	Transfer	Function:

In	this	section	we	concentrate	on	translational	mechanical	systems

Figure	2.4:	Force-velocity,		
force-displacement,	and		
impedance	translational		
relationships	for	springs,		
viscous	dampers,	and		
mass.
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What	can	we	relate	between	electrical	and	mechanical	system	analogies?	
Mechanical:	Also	have	three	passive,	linear	components.

K:	spring	constant	
fv	:	coefficient	of	viscous	friction	
M:	mass

Force-velocity=	voltage-current	
Force	displacement=	voltage	charge	
Spring=	capacitor	
Viscous	damper=	resistor	
Mass=	Inductor

39



Example	2.16:	Find	the	transfer	function	X(s)/F(s)	for	the	
system	of	Figure	2.15.

Figure	2.15:	Mass	spring	and	damper	system
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Example	2.16:	Find	the	transfer	function	X2(s)/F(s)	for	the	
system	of	Figure	2.15.
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CHAPTER	3:	MODELING	IN	TIME	DOMAIN	
(STATE-SPACE	FORM)
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Objectives:	

• Find	a	mathematical	model,	called	a	state-space	representation,	
				for	a	linear,	time-invariant	system	

• Model	electrical	and	mechanical	systems	in	state	space	

• Convert	a	transfer	function	to	state	space	

• Convert	a	state-space	representation	to	a	transfer	function	

• Linearise	a	state-space	representation	
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What	have	we	learnt	in	Chapter	2?	
classical	frequency-domain	

What	is	the	advantages	and	disadvantages	of	this	system?	
• simplifies	the	representation,	also	simplifies	modeling		
					interconnected	system.	
• Limited	applicability:	only	to	LTI	systems		
		
• So	what	about	non-linear	system:	backlash,	saturation,		
					dead	zone,…	non-zero	initial	condition?	

Solution:	State-space	(Time	domain)	approach	
The	state-space	approach	is	a	unified	method	for	modeling,		
analyzing,	and	designing	a	wide	range	of	systems.	
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Time	varying	systems:	Missiles	with	varying	fuel	levels		
or	lift	in	an	aircraft	flying	through	a	wide	range	of	altitudes	

Multiple	input	and	output:		vehicle	with	input	direction	and	input		
velocity	yielding	an	output	direction	and	an	output	velocity	

The	state-space	approach	is	also	attractive	because	of	the		
availability	of	numerous	state-space	software	packages	for	the		
personal	computer.	
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Example	3.1:	
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The	function	i(t)	is	a	subset	of	all	possible	network	variables	that	
we	are	able	to	find	from	Eq.	(3.4)	if	we	know	its	initial	condition,	
i(0),	and	the	input,	v(t).	Thus,	i(t)	is	a	state	variable,	and	the	
differential	equation	(3.1)	is	a	state	equation.
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Example	3.2:

Please	create	the	state	space	equation	for	the	above	figure	with:	
i. i(t)	and	q(t)	as	a	state	variable	

Figure	3.2:	RLC	circuit
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Chapter	4:	Time	Response	
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Course	Outcome:	

• Use	poles	and	zeros	of	transfer	functions	to	determine	the	time		
	 response	of	a	control	system.	
• Describe	quantitatively	the	transient	response	of	first	order	systems.	
• Write	the	general	response	of	second-order	systems	given	the	pole		
	 location.	
• Find	the	damping	ratio	and	natural	frequency	of	a	second-order		
	 system.	
• Find	the	settling	time,	peak	time,	percent	overshoot,	and	rise	time		
	 for	under-damped	second	order	system.	
• Approximate	higher-order	systems	and	systems	with	zeros	as	first-		
	 or	second-order	systems.	
• Describe	the	effects	of	nonlinearities	on	the	system	time	response.	
• Find	the	time	response	from	the	state-space	representation.	
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4.1	Introduction:	

We	have	learn	mathematical	modeling	in	frequency	domain	and	
state-space	form.	

From	that	mathematical	representation	of	a	subsystem,	the	
subsystem	is	analyzed	for	its	transient	and	steady	state	
responses:-	to	see	if	these	characteristics	yield	the	desired	
behavior.		

This	chapter	is	devoted	to	the	analysis	of	system	transient	
response.	
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4.2:	Poles,	Zero	and	System	Response	

The	output	response	of	a	system	is	the	sum	of	two	responses:	
the	forced	response	and	the	natural	response.	

We	analyze	the	output-	model	in	mathematics	–	Derivative	or	
Inverse	Laplace	transform-	time	consuming.	

Concept	poles	and	zeros-	simplifies	the	evaluation	of	a	system’s	
response.	
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Poles:	refer	to	denominator	(s-variable)	
Zeros:	refer	to	nominator	(s-variable)	
(the	exact	and	detail	meaning	can	be	referred	to	text	book)	

Example	4.0	(Explanation…)	
Given	the	transfer	function	G(s)	in	Figure	4.1(a).	To	show	the	
properties	of	the	poles	and	zeros,	let	us	find	the	unit	step	response	
of	the	system.	

Figure	4.1(a)
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Figure	4.1:		
a.	System	showing	input	and	
output	
b.	pole-zero	plot	of	the	system		
c.	evolution	of	a	system	
response.		

Follow	blue	arrows	to	see	the	
evolution	of	the	response	
component	generated	by	the	
pole	or	zero.	
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Example	4.1:	Evaluating	Response	Using	Poles	
Given	the	system	of	Figure	4.3,	write	the	output,	c(t),	in	general	
terms.	Specify	the	forced	and	natural	parts	of	the	solution.	

SOLUTION:	By	inspection,	each	system	pole	generates	an	
exponential	as	part	of	the	natural	response.	The	input’s	pole	
generates	the	forced	response.	Thus,	

Figure	4.3:	System	for	example	4.1
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Find	the	value	of	all	K’s.

Exercise:	A	system	has	a	transfer	function	

Write,	by	inspection,	the	output,	c(t),	in	general	terms	if	the	
input	is	a	unit	step.	
	

c(t) ≡ A + Be−t   + Ce−7t + De−8t + Ee−10t
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4.3:	First-Order	Systems	

Figure	4.3:	a)	First	order	system	
																				b)	Pole	plot

If	the	input	is	a	unit	step,	where	R(s)	=	1/s,	the	Laplace	transform	
of	the	step	response	is	C(s),	where
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Figure	4.5:	First-order	system	response	to	a	unit	step	
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Time	Constant	
We	call	1/a	the	time	constant	of	the	response.	From	Eq.	(4.7),	the	time	constant	can	be	
described	as	the	time	for	e−at		to	decay	to	37%	of	its	initial	value.	Alternately,	from	Eq.	
(4.8)	the	time	constant	is	the	time	it	takes	for	the	step	response	to	rise	to	63%	of	its	
final	value.	

Rise	Time,	Tr	
Rise	time	is	defined	as	the	time	for	the	waveform	to	go	from	0.1	to	0.9	of	its	final	value.	

Settling	Time,	Ts	
Settling	time	is	defined	as	the	time	for	the	response	to	reach,	and	stay	within,	2%	of	its	
final	value.	

62



Exercise:	
A	system	has	a	transfer	function,		Find	the	time	constant,	Tc,	
settling	time	Ts,	and	rise	time	Tr.	

Tc	=	0.02	s,	Ts	=	0.08	s,	and	Tr	=	0.044	s.
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Forced	 response:	 For	 linear	 systems,	 that	 part	 of	 the	 total	
response	 function	 due	 to	 the	 input.	 It	 is	 typically	 of	 the	 same	
form	as	the	input	and	its	derivatives.	

Natural	response:	That	part	of	the	total	response	function	due	to	
the	system	and	the	way	the	system	acquires	or	dissipates	energy.	
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A	control	system	is	defined	as	an	interconnection	of	components	forming	a	system		
that	will	provide	a	desired	system	response.	

An	open-loop	system	operates	without	feedback	and	directly	generates	the	output	in	
response	to	an	input	signal.	

A	 closed-loop	 system	 uses	 a	measurement	 of	 the	 output	 signal	 and	 a	 comparison		
with	 the	desired	output	 to	 generate	 an	error	 signal	 that	 is	 used	by	 the	 controller	 to	
adjust	the	actuator.	

Review	



Figure 4.1   A closed-loop system.

Second-Order	Systems



Figure	4.3:	Standard	Closed-loop	system	block	diagram

Figure 4.4   (a) Open-loop amplifier. (b) Amplifier with feedback.

vo=-Ka*vin vo=-Ka/(1+KaB)*vi																*B=R2/R1



Figure 4.5   Block diagram model of feedback amplifier assuming Rp >> R0 of the amplifier.



Figure 4.13   Open-loop speed control system (without feedback).



Figure 4.14   (a) Closed-loop speed control system. (b) Transistorised closed-loop speed control system.



Transient	Response	of	Second-Order	Systems-	Performance



Time	domain	vs	Frequency	domain:	Result	will	be	similar



Transient	Response	of	Second-Order	Systems-	Performance
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Second-Order	Systems
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Second-order response as a function of damping ratio



Summary:	Second	Order	System	

1.	 Overdamped	responses	
Poles:	Two	real	at	−σ1,	−σ2	
Natural	response:	Two	exponentials	with	time	constants	equal	to	the	reciprocal	of	the	
pole	locations,	or	

2. Underdamped	responses	
Poles:	Two	complex	at	−σd	±	jωd	

Natural	response:	Damped	sinusoid	with	an	exponential	envelope	whose	time	
constant	is	equal	to	the	reciprocal	of	the	pole’s	real	part.	The	radian	frequency	of	the	
sinusoid,	the	damped	frequency	of	oscillation,	is	equal	to	the	imaginary	part	of	the	
poles,	or	
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3. Undamped	responses	
Poles:	Two	imaginary	at	±jω1	

Natural	response:	Undamped	sinusoid	with	radian	frequency	equal	to	the	
imaginary	part	of	the	poles,	or	

4. Critically	damped	responses	
Poles:	Two	real	at	−σ1	
Natural	response:	One	term	is	an	exponential	whose	time	constant	is	equal	to	the	
reciprocal	of	the	pole	location.	Another	term	is	the	product	of	time,	t,		
and	an	exponential	with	time	constant	equal	to	the	reciprocal	of	the	pole	location,	
or
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FIGURE 4.10: Step responses for second-order system damping cases
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Exercise:		
For	each	of	the	following	transfer	functions,	write,	by	inspection,	
the	general	form	of	the	step	response:
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Section	4.5:	The	General	2nd	Order	System

We	generalise	the	discussion	and	establish	quantitative	
specifications	defined	in	such	a	way	that	the	response	of	a	second-
order	system	can	be	described	to	a	designer	without	the	need	for	
sketching	the	response.	

In	this	section,	we	define	two	physically	meaningful	specifications	
for	second-order	systems.	These	quantities	can	be	used	to	describe	
the	characteristics	of	the	second-order	transient	response	just	as	
time	constants	describe	the	first-order	system	response.		

The	two	quantities	are	called	natural	frequency	and	damping	
ratio.	
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Natural	Frequency,	ωn	
The	natural	frequency	of	a	second-order	system	is	the	frequency	
of	oscillation	of	the	system	without	damping.		
For	 example,	 the	 frequency	 of	 oscillation	 of	 a	 series	 RLC	 circuit	
with	the	resistance	shorted	would	be	the	natural	frequency.		

Damping	Ratio,	ζ	
A	 viable	 definition	 for	 this	 quantity	 is	 one	 that	 compares	 the	
exponential	 decay	 frequency	 of	 the	 envelope	 to	 the	 natural	
frequency	

The	damping	ratio,	ζ,	defined	to	be:		
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General	2nd	Order	Transfer	Function

Example	4.3:		 Finding	ζ	and	ωn	For	a	Second-Order	System	
PROBLEM:	Given	the	transfer	function	G(s),	find	ζ	and	ωn.	
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Now	that	we	have	defined	ζ	and	ωn,	let	us	relate	these	quantities	to	
the	pole	location.	Solving	for	the	poles	of	the	transfer	function	in	
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FIGURE	4.11:		 Second-order	response	as	a	function	of	damping	ratio84



Example	4.4:	
For	each	of	the	systems	shown	in	Figure	4.12,	find	the	value	of	
zeta	and	report	the	kind	of	response	expected.	

Figure	4.12
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4.6:	Underdamped	Second-Order	Systems
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1. Rise	Time,	Tr	
• 0.1-0.9	of	final	value	

2.	Peak	Time,	Tp	
• Fist	maximum	peak	
• .	

3.	Percent	Overshoot,	%OS	
• .	

4.	Settling	Time,	Ts	
• .	
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Example	4.5:		
Find	Tp,	%OS,	Ts	and	Tr	for	the	given	transfer	function:
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