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Course Outcomes

CO1: Ability to EXPLAIN control systems and control
systems design.

CO2: Ability to DESCRIBE the mathematical model models
for such mechanical, electrical and electromechanical
systems. (state variable systems, stability in feedback
control systems, and frequency domain).

CO3: Ability to ANALYZE AND DESIGN linear feedback
systems using root locus method, digital control systems.
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Evaluation

Mid-Term:
Final Examination:

Quizzes:
Assignment:

Laboratory:

Report and Assessment:

Mini Project:

20%
40%

5%
10%

15%
10%
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Teaching Plan

Week Course Contents

1 Introduction to Control Systems
2-3 Mathematical Models of Systems
4-5 State Variable Models

6-7 Feedback Control Systems And Characteristics,
Performance and Stability of Linear Feedback
Systems.

9 Root Locus Method

10-11 Frequency Response Method
12-13 Stability in the frequency domain.
14-15 Digital Control Systems




Chapter 1: Learning Outcomes
Define a Control System and describe some application
Describe control system analysis and design objectives
Describe a control system’s design process

Describe the benefit from studying control system

. @
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Definition on standard terms used:

Control: The process of causing or regulate the system to
to desired value.

System: A collection of components which are
coordinated together to perform a function.

Control System:
Interconnection of components forming a system
configuration that will provide a desired system response.

[nput; stimulus Control Output; response
- -

Desired response system Actual response @
7

Figure 1.1: Simplified description of a control system




Elevator location (floor)

Example 1: Elevator

Input command

TN

B

Transient
response

Elevator response

!

Steady-state Steady-state
response error

[a—

Time

Figure 1.2 Elevator response
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German train crash investigators focus on signal controller — source 10 Feb 2016
Image adapted from Google news.




E = - ¥
1s kakinya tersep:t di eskalat

or KL Sentral, Isnin lalu.

p 2

saksikan video di
www.youtube.com/hmetromy

Kementerian
Pembangunan Wanita,
Keluarga dan Masyarakat
(KPWKM) meminta
Jabatan Keselamatan dan
Kesihatan Pekerja (DOSH)
" menambah baik ciri
keselamatan eskalator
pada masa hadapan.
Menterinya, Datuk Seri
Rohani Abdul Karim
berkata, pengurusan perlu
‘sentiasa mengadakan
pemantauan terhadap
eska]ator dalam jadual rutin.

“Ia perlu d11ad1kan «.«' "“-.’

pengauaran dan lktlbar

kepada semua pihak g,, e _,,,,—,.,

dalam aspek penjagaan
keselamatan anak kecil
termasuk ibu bapa supaya
berwaspada,” Katanya
selepas melawat Dzil
Mikhail Nasaruddin yang

~ putus sebahagian tapak

kaki Kiri akibat tersepit di

eskalator di Hospital Kuala.

Lumpur (HKL), di sini,
semalam. '
Pada masa sama, Rohani
menyampaikan bantuan
segera daripada KPWKM.
Rohani berkata, setakat
ini, punca insiden masih

~belum diketahui, tetapi
_pihaknya difahamkan

DOSH datang berjumpa,

£ L, P gV

Menurutnya keluarga

mangsa memaklumkan

kementerian laporan
penyiasatan itu dijangka
siap minggu depan.

“Kita akan minta laporan
daripada DOSH apabila
siap nanti,” katanya.

Pengarah HKL, Datuk Dr
Zaininah Mohd Zain
berkata, pihaknya
melakukan rawatan
lakaran kulit mangsa bagi
menstabilkan pergerakan

~ kaki kirinya.

“Dia akan d1pantau dan
diberi rehabilitasi sehingga
memasuki usia belasan
tahun,” katanya.

Figure: Escalator incident. Adapted from Harian Metro, 13 Feb 2016.
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Advantages of Control Systems

 Can move large equipment with precision that otherwise be
impossible.

e Can point huge antennas toward the farthest reaches of the
universe to pick up faint radio signals

* Elevators (timing) carry us quickly to our destination.

Control systems built for four (4) primary reason:

 Power amplification

* Remote control

* Convenience to input form
 Compensation to disturbances

e QOthers?... @




Control System: System Configuration

Disturbance 1

Disturbance 2

[nput + + Output
Input * Process + or
or —= d —1 Controller Pl ‘

Reference transducer or Plant Controlled
Summing Summing variable
junction junction

(@)
Error
or . :
: Disturbance 1 Disturbance 2
Actuating
signal + + Output
[nput + + +
Input Process or
or —#= Controller ‘
.| transducer or Plant Controlled
Reference - : ) :
, Summing Summing variable
Summing junction junction
junction
Output
transducer |
or Sensor
(b)

Figure 1.3: Block diagram of control system, (a) Open loop system;

(b) Closed-loop system
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Example 2: Antenna azimut

a:(1)

(,1.__,, % Potentiometer

Antenna

Potentiometer
Z10]
( / Oo(1)
Desired // Azimuth

. angle
azimuth angle

. output
input
(@)
Potentiometer
Antenna
(1)

Desired
azimuth angle
input

Azimuth
angle
output

Differential amplifier
and power amplifier

Motor Potentiometer

()

Figure 1.4 (a): System concept

Figure 1.4 (b): Detailed layout

Figure 1.4 (c): Schematic

Figure 1.4 (d): Functional block diagram

Amplifiers Motor
slock -
Armature
resistance
+| Differential
- and Armature
_ power Gear
> amp11<1ﬁer 6,(1)
Fixed field | | G¢ar
j Inertia  Viscous
damping
Potentiometer%q——.— Gear
+
(c)
Plant
Input or
transducer Voltage _ Error Controller Process
proportional Summing  or :
Angular to junction Acmating Signal Motor, | Angular
input ) input + signal and load, | output
—| Potentiometer —(g) ™ power and >
-4 amplifiers gears
Volt Sensor
/oltag
ottage (output transducer)
proportional
to
output .
Potentiometer [
13

h position control
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Analysis and Design Objectives

e Analysis is the process by which a system’s performance
is determine.

e Design is the process by which a system’s performance
is created or changed.

e Familiar with Transient, Steady-State, and Stability
(please refer Fig 1.2)

e Other considerations: Hardware selection, finances, and
robustness

*please describe based on your understanding

. @
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The Design Process

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
) Use the~ [f multiple Analyze,
Determine schematic .
. . blocks, reduce design, and test
a physical Draw a Transform to obtain a
. . . the block to see that
system and functional the physical block diagram, ) :
. . . . —m  diagramtoa [ requirements
specifications block system Into signal-flow .
. . . . single block or and
from the diagram a schematic diagram, . .
i closed-loop specifications
requirements or state-space
. system are met
representation
1 —
—_—— — O — .
Analog: Chapter 1 Chapters 2, 3 Chapter 5 Chapters 4, 612
Digital: Chapter 13 Chapter 13 Chapter 13

Figure 1.5: The control system design process
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Summary

What have you learned from this topic?

16




Review Questions

1. Name three applications for feedback control systems.

Guided missiles, automatic gain control in radio receivers, satellite tracking antenna

2. Name three reasons for using feedback control systems and at
least one reason for not using them.

Yes - power gain, remote control, parameter conversion; No - Expense, complexity

3. Give three examples of open-loop systems.

Motor, low pass filter, inertia supported between two bearings

4. Functionally, how do closed-loop systems differ from open-loop
systems?

Closed-loop systems compensate for disturbances by measuring the response, comparing it to the input response (the desired output), and then correcting the
output response.

5. Name the three major design criteria for control systems.

Stability, transient response, and steady-state error

6. Name the two parts of a system’s response.

Steady-state, transient

7. Physically, what happens to a system that is unstable?

It follows a growing transient response until the steady-state response is no longer visible. The system will either destroy itself, reach an equilibrium state because of
saturation in driving amplifiers, or hit limit stops.

17
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Exercise 1

A temperature control system operates by sensing
the difference between the thermostat setting and
the actual temperature and then opening a fuel valve
an amount proportional to this difference. Draw a
functional closed-loop block diagram similar to Figure
1.9(d) identifying the input and output transducers,
the controller, and the plant. Further, identify the
input and output signals of all subsystems previously

described.




Answer to Exercise 1

Fuel
flow

Desired Temperature Voltage
temperature difference difference
+
- — P Thermostat [ B™

Amplifier and |

valves

Heater

Actual
temperature

1

[




CHAPTER 2:
MATHEMATICAL MODELS OF SYSTEM
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Learning Outcomes:
After completing this chapter, you will be able to:

* Find the Laplace transform of time functions and the inverse
Laplace transform.

* Find the transfer function from a differential equation and
solve the differential equation using the transfer function

 Find the transfer function for linear, time-invariant
electrical networks.

. @
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2.1 Introduction:

Last lecture:

We discussed the analysis and design sequence that included
Obtaining the system’s schematic and demonstrated with

several applications.

Why?

Because, to obtain schematic, the control system engineer must
often make many simplifying assumptions in order to keep the
ensuing model manageable and still approximate physical reality.

Two methods: Trans. functions in frequency domain (CH2)
State equation in time domain (CH3) @
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2.2 Laplace Transform

L) = F(s) = : f(t)e ™ de

Where: S=0 + j(D

N F(s)] =5 "E (s)e”ds = f(t)u(r)

; 2_7[] o—joo
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Laplace Transform

Table 2.1: Laplace transform table:

Item no. [0 F(s)
1. (1) 1
2. u(t) l

s
3 tu(r) 1

s
4, "u(t) n

st 41
5 e "u(r) 1

s+a
6. sin wtu(t) @

52 + w?
7 cos wtu(t) >

52 + w?
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Table 2.2: Laplace Transform theorems

h. Mo 9 9

10.
L,
12.

Z[f(0)]
L |kf(t )]
Z[f1(0)

ZLlef (1)
LU~ T

Z[f(at)]
v f
v _E]

-dzf-
ar
. dnf
f _dt"_

a([)

dr] = —

= [ f@)erd
=kF( )
()] = Fi(s) + Fa(s)
= F(s +a)
= ¢ F(s)

1 /s
=R
= sF(s) — f(0-)

= s*F(s) — sf(0-) — f'(0-)

—SnF an kfk 1

F(s)

s
= l_ing sF(s)
= lim sF(s)

§—0O0

Definition

Linearity theorem
Linearity theorem
Frequency shift theorem
Time shift theorem

Scaling theorem

Differentiation theorem

Differentiation theorem

Differentiation theorem

Integration theorem

Final value theorem'

Initial value theorem?

'For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real
parts, and no more than one can be at the origin.

*For this theorem to be valid, f(r) must be continuous or have a step discontinuity at ¢ = 0 (that is, no
impulses or their derivatives at t = 0).
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Example 2.1

Find the Laplace Transform of:

Ae ?ut)

e A sinw tu(t)
& cosw tu(t)

B u(t)
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Table 2.3: Voltage current, voltage-charge, and impedance relationships for capacitors,
resistors, and inductors

L Impedance Admittance J
omponent Voltage-current Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s)=1(s)/V(s
4 % 1 /! dv(t) 1 1
v(t) = —/ i(t)dt it =6 v(t) = =q(1) Siu® Cs
Capacitor CJo dt C Cs
. 1 1
AN~ v(r) = Ri(t) i(t) = = v(t) v(t) = g0 R =T
Resis R dt R
esistor
_/()()()()\_ di(t T i 2
v(t) =L d(t) i(t) = —/ v(t)dr v(t) = Ld qgt) Ls 1
Inductor L Jy dt Ts
Note: The following set of symbols and units is used throughout this book: v(7) — V (volts), i(f) — A (amps), g(t) — Q (coulombs), C — F (farads)
R — () (ohms), G — () (mhos), L. — H (henries).

27
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Given the electric network shown in figure below. Assume:

R=1Q L=1H 1 _,.

LC

a) Write the differential equation for the network if v(t)= u(t).

b) Solve the differential equation for the current, i(t) if there is no initial energy
in the network

c) Make plot of your solution if R/L=1.

L R

— 0000 —\V\/\—
v(?) Cj) C A= Ve

i(?)

28




Answer:

a. Writing the loop equation, Ri + L% - lj idt +v.(0)= W)
d’i . di

b. Differentiating and substituting values, ; +2 Z +25i=0

Writing the characteristic equation and factoring,

M?+2M +25=(M +1+24i)(M +1-24i) .

The general form of the solution and its derivative is
i=Ae”’ cos(\/2_4t) + Be™ sin(\/2_4t)
% =(—A++24B)e cos(~24t) — (24 A+ B)e ™' sin(~/24¢)

v©_1_,

Using £(0) =0; —(0) 7 7

i (0)=4=0
%(O)=—A+\/2_43=1

1
V24
The solution is

ﬁ e’ sin(«/ﬁt)

Thus, A =0 and B =

i=

0.25

0.2

0.15

01

0.051

-0.05

01

29




Transfer Function:

To formulate the system representation that algebraically relates
a system’s output to it input.

[nput Output
——— | System [f——
r (1) c(?)

(a)

[nput Output
T Subsystem = Subsystem [ Subsystem Tﬁ-
r(1 c(1
(b)

Note: The input, (¢), stands for reference input.
The output, c(¢), stands for controlled variable.

30




Example 2.6:

Figure 2.3: Series
RLC network

Figure 2.4:

Block diagram

of series RLC
electrical network

Vi(s)

L R
_+_
C o~ ve
i(7)

1

L.C VC (S)
g2 + R g+ L g

L LC




Example 2.10:

R,

W
v ()

i1(2)

»

i(1)

i

_+_
C <

| A A Vi(s) A Ve
11t
s (&) &
[1(5’) [2(8)
V) LCs? Is)

(R;+ Ry)LCs? +(R;R,C + L)s + R,

(c)

ve (1)

Note: Please prove the
transfer function obtained

32




Operational Amplifier

Inverting Amplifier

V,(s)

Zy(s)
Vi), A e )
T(ST I,(s)
Vo(s) _ Z,(s)
Vils)  Zi(s)

Non-inverting Operational Amplifier

Z5(s)

4/\/\/\/7

1) 1 v (s)
%Zl(s)

V(s)

Note: Please prove the transfer function

33




Example 2.14:

Figure 2.11: Ry = =

Inverting operational 220k 0.1 uF
amplifier circuit for

4
Example 2.14 5.6 Uk 4/\/\/\/ N

v | V(0
\ v, (0)
AM-

360 k€

Find the transfer function, V_(s)/V.(s)

Answer: y/ (s) s* + 45.95s +22.55

= —1.232 @

Vi(s) S




Example 2.15:

G,
| [
Figure 2.13 I\
Noninverting R,

operational amplifier A A A
circuit for b (0
Example 2.15 1 = ;
i V() [

Find the transfer function, V_(s)/V.(s)

Answer: v (s)  C,CiRyRis> + (C2Ry + C1Ry + CiRy)s + 1
V,'(S) N Cr,CiRrR 5% + (C2R2 -+ ClRQS + 1

U AP




Exercise @ Assignment:

Figure 2.14 N " N n

Electric circuit for 1H
Skill-Assessment 1Q 1 Q)

Exercise 2.6 A A A /\/\/\/7
v(0) @) H H S v ()

Find the transfer function, V,(s)/V(s)

36




Translational Mechanical System Transfer Function:

Learning Objectives:

Find the transfer function for linear, time-invariant
translational mechanical systems

Find the transfer function for linear, time-invariant
rotational mechanical systems

Find the transfer functions for gear systems with no
loss and for gear systems with loss

Find the transfer function for linear, time-invariant
electromechanical systems

Produce analogous electrical and mechanical circuits
Linearise a nonlinear system in order to find the transfer
function

37
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Translational Mechanical System Transfer Function:

In this section we concentrate on translational mechanical systems

Force- Force- Impedance
Component velocity displacement Zu(s) = F(s)/X(s)
Spring
«‘—» x(7) .
) f(t) = KJ w(t)dT f(t) = Kx(1) K
l 0
K
Viscous damper
——= (/)
_ dx(t)
% T, JO=m0  f0=h7 fis
Jy
Mass
i V(1) 2
o dv(t) L dox(t) 5
= /()

Note: The following set of symbols and units is used throu;,hout this book: f(7) =
(newtons) x(7) = m (meters), (1) = m/ 's (meters/second), K = N/ m(newtons ‘meter), /,
N-s/m (newton-seconds/ meter), M = kg (kilograms = newton- seconds?, / meter).

N

Figure 2.4: Force-velocity,
force-displacement, and
impedance translational
relationships for springs,
viscous dampers, and
mass.

38

U MAP



What can we relate between electrical and mechanical system analogies?
Mechanical: Also have three passive, linear components.

IC Impedance Admittance l
omponent Voltage-current Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s) =1(s)/V(s
4' e . . dv(t) 1
v(t) == | i(r)dr i(t)=C——= v(t) = Sast Cs
Capacitor CJo dr Cs
. 1 1
J\/\/\ﬁ v(r) = Ri(r) i(t) = —v(t) v(f) =R R Y .
; R R
Resistor
14 6066 \ di(t T i 2
v(t) = Ld—(t) i(t) = —/ v(t)dr v(t) = Ld 9(t) Ls o
Inductor L Jo Ls
ote: The following set of symbols and units is used throughout this book: v(r) — V (volts), i(f) — A (amps), g(¢) — Q (coulombs), C — F (farads)
— () (ohms), G — Q) (mhos), L. — H (henries).

Force- Force- Impedance

Component velocity displacement Zy(s) = F(s)/X(s)
Spring
4’—> x(1) ,
%W 0 f(t) = Kjo v(r)dt f(t) = Kx(t) K
K
Viscous damper
—t— (/)
_ _ _ @
g—E—> o JO=o S0 = fis
Jy
Mass
— = () 0 Mdv(t) ) Mdzx(f) e
M L e 10 J0 = M=5, S0 = dr? y

Note: The following set of symbols and units is used throughout this book: f(f) = N
(newtons), x(#) = m (meters), w(f) = m/s (meters/second), K = N/m (newtons/meter), f. =
N-s/m (newton-seconds/ meter), M = kg (kilograms = newton-seconds?/meter).

K: spring constant
f, : coefficient of viscous friction
M: mass

Force-velocity= voltage-current
Force displacement= voltage charge
Spring= capacitor
Viscous damper= resistor
Mass= Inductor

39
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Example 2.16: Find the transfer function X(s)/F(s) for the
system of Figure 2.15.

K

o,

Jy
(@)

Figure 2.15: Mass spring and damper system

Ms?+fs+K

X(5)

(b)

40
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Example 2.16: Find the transfer function X,(s)/F(s) for the
system of Figure 2.15.

LU R

: | J() —— ' :
[ | [ l

T T T T T T T T N T T T T T T T T T T 1
T T T T T T T T U T T T T T T T T T T T T T 1

fvl/ fv/

(@)

F(s) (fVBS +K,) X5(5)

(b)

[Mis*(f,, + fi,)s + (K1 + K2)] X1(s) — (f,,s + K2)X2(s) = F(s)
—(fv_zS == Kz)Xl (S) S [MzSz + (fv2 —1—fv3)s -+ (Kz + K3)]X2(S) =0

41




)
\ |

1/ |
o e

_ K —— x(1)
M — f0)
T |
.
£
(@)
M K

mass =M —»

viscous damper = f,, —»
spring = K —»

applied force = f(t) —»

velocity = v(f) —»

(d)

42

inductor
resistor

capacitor

= M henries
= f, ohms

= 1 farads
K

voltage source = f{(1)

mesh current

= v(1)




CHAPTER 3: MODELING IN TIME DOMAIN
(STATE-SPACE FORM)

. @
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Objectives:

* Find a mathematical model, called a state-space representation,
for a linear, time-invariant system

Model electrical and mechanical systems in state space

* Convert a transfer function to state space

Convert a state-space representation to a transfer function

. @

* Linearise a state-space representation




What have we learnt in Chapter 2?
classical frequency-domain

What is the advantages and disadvantages of this system?

* simplifies the representation, also simplifies modeling
interconnected system.

* Limited applicability: only to LTI systems

 So what about non-linear system: backlash, saturation,
dead zone,... non-zero initial condition?

Solution: State-space (Time domain) approach
The state-space approach is a unified method for modeling,
analyzing, and designing a wide range of systems.

. @




Time varying systems: Missiles with varying fuel levels
or lift in an aircraft flying through a wide range of altitudes

Multiple input and output: vehicle with input direction and input
velocity yielding an output direction and an output velocity

The state-space approach is also attractive because of the

availability of numerous state-space software packages for the
personal computer.

. @




Example 3.1:

v(1)
1(1)

p
Ld—; + Ri = v(7)

L[sI(s) —i(0)] + RI(s) = V(s)

111 i(0)
S \) T,

(3.1)

(32)

(3.3)

47



1
i(f) = (1- e—W“’) +i(0)e (R/L (3.4)

The function i(t) is a subset of all possible network variables that
we are able to find from Eq. (3.4) if we know its initial condition,

i(0), and the input, v(t). Thus, i(t) is a state variable, and the
differential equation (3.1) is a state equation.

. @




Example 3.2:

v(1) —~ C

Figure 3.2: RLC circuit

Please create the state space equation for the above figure with:

i. i(t) and g(t) as a state variable




L — -I—Rz—l——/zdt—v (3.9)

d’q B
T o R dt | Cq—v(t) (3.10)
dg .
E_l (3123)
di 1 R. 1
==zl —r i+ v(l) (3-12b)
1 .
v (f) = —Eq(t) — Ri(t) + v(t) (3.13)°

. @




0 1
—-1/LC —-R/L
0
_1/L_. u = v(t)
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Chapter 4: Time Response

52




Course Outcome:

e Use poles and zeros of transfer functions to determine the time
response of a control system.

* Describe quantitatively the transient response of first order systems.

* Write the general response of second-order systems given the pole
location.

* Find the damping ratio and natural frequency of a second-order
system.

* Find the settling time, peak time, percent overshoot, and rise time
for under-damped second order system.

* Approximate higher-order systems and systems with zeros as first-
or second-order systems.

* Describe the effects of nonlinearities on the system time response.

* Find the time response from the state-space representation. Q
53
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4.1 Introduction:

We have learn mathematical modeling in frequency domain and
state-space form.

From that mathematical representation of a subsystem, the
subsystem is analyzed for its transient and steady state
responses:- to see if these characteristics yield the desired

behavior.

This chapter is devoted to the analysis of system transient

response.
54 E
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4.2: Poles, Zero and System Response

The output response of a system is the sum of two responses:
the forced response and the natural response.

[nput Output
»| System -

r (1) c(?)

We analyze the output- model in mathematics — Derivative or
Inverse Laplace transform- time consuming.

Concept poles and zeros- simplifies the evaluation of a system’s

response.
55 ?
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Poles: refer to denominator (s-variable)

Zeros: refer to nominator (s-variable)

(the exact and detail meaning can be referred to text book)

Example 4.0 (Explanation...)
Given the transfer function G(s) in Figure 4.1(a). To show the

properties of the poles and zeros, let us find the unit step response

of the system.

G(s)
R(s)=5 |s+2] C©)
>s+5 o
Figure 4.1(a)
s+2) A B
C ) de— = — e
(5) s(s+35) s+s+5
2. 3.5
[)==+4+=€ "
c(t) 5+56

~2/5  3/5

\)

+

s+5

(4.1) @
(4.2) s
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A
s-plane
| G(s)
R$)=5 [s+2] C&

s |s+2 M
g s+H . x—)
=5 =2

(a) ®)

Input pole System zero System pole

Output

transform | :
______ t___ B |
Output I~~~ 5 ___3 T
time : c(t) = = 4+ Zet :

response | NN _
: / \

Forced response Natural response

(¢)

>0

Figure 4.1:

a. System showing input and
output

b. pole-zero plot of the system
c. evolution of a system
response.

Follow blue arrows to see the
evolution of the response
component generated by the
pole or zero.
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Example 4.1: Evaluating Response Using Poles
Given the system of Figure 4.3, write the output, c(t), in general
terms. Specify the forced and natural parts of the solution.
|
Rs)=5 (s +3) C(s)

o o

(s+2)(s+4)(s+)5)

Figure 4.3: System for example 4.1

SOLUTION: By inspection, each system pole generates an
exponential as part of the natural response. The input’s pole

generates the forced response. Thus,
58 z
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K K> K3 K4

Cs)= — + e + 4.3
() 0y s+2 s+4 s+5 (:3)
D | J
Forced Natural
response response

Find the value of all K's.

Exercise: A system has a transfer function
10(s +4)(s + 6)
(s+1)(s+7)(s+8)(s+ 10)

Gls) =

Write, by inspection, the output, c(t), in general terms if the

input is a unit step.
59 !
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4.3: First-Order Systems

jo
A
G(s) s-plane
R(s) a C(s)
" s+a = X il
—-a
(a) (b)

Figure 4.3: a) First order system
b) Pole plot

If the input is a unit step, where R(s) = 1/s, the Laplace transform
of the step response is C(s), where

C(s) = R(s)G(s) = - (si a)

c(t) = cr(t) Tcu(t) =1 —e* . @

U AP




Figure 4.5: First-order system response to a unit step

(1)
A Initial slope = - ! =a
time constant
1.0
/
0.9 ~
0.8 - 4
0.7
0.6 63% of final value
at 1 = one time constant
0.5
04+
031
02 F
0.1
| | | o
0 1 2 3 4 5
a a a a 7
~ T’ .
- 7~s
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Time Constant
We call 1/a the time constant of the response. From Eq. (4.7), the time constant can be
described as the time for e to decay to 37% of its initial value. Alternately, from Eq.

(4.8) the time constant is the time it takes for the step response to rise to 63% of its
final value.

e " =1/a = e 1 =037 (4.7)

C(t)|{=]/(l — 1 — e_atlt:]/a — 1 — 0.37 — 063 (48)
Rise Time, T,
Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final value.

231 011 22

a a a

Settling time is defined as the time for the response to reach, and stay within, 2% of its
final value.

T,

q

a 62
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Exercise:
A system has a transfer function, Find the time constant, T_

settling time T, and rise time T,

50
s+ 50

G(s)

63
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Forced response: For linear systems, that part of the total
response function due to the input. It is typically of the same
form as the input and its derivatives.

Natural response: That part of the total response function due to
the system and the way the system acquires or dissipates energy.

. @
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Review

A control system is defined as an interconnection of components forming a system
that will provide a desired system response.

An open-loop system operates without feedback and directly generates the output in
response to an input signal.

A closed-loop system uses a measurement of the output signal and a comparison
with the desired output to generate an error signal that is used by the controller to
adjust the actuator.




Second-Order Systems

Controller Process
Output
Comparison Measurement

ight © 2011 Pearson Education, Inc. publishing as Prentice Hall

Figure 4.1 A closed-loop system.



R(s)

Controller

E (s)
G.(5)

— G(s)

T,(s)

Process

Sensor

H(s) |

Figure 4.3: Standard Closed-loop system block diagram

Uin

Gain

a

(a)

Figure 4.4 (a) Open-loop amplifier. (b) Amplifier with feedback.

vo=-Ka*vin

Uin O—¢——— ——0 V)
Gain , §Rl
_Ka R2
(b)
vo=-Ka/(1+KaB)*vi *B=R2/R1

» Y(s)

N(s)




Figure 4.5 Block diagram model of feedback amplifier assuming R, >> R, of the amplifier.

_K(l
1+K,(B+1) + E,(s) &, ’
Vi (s) P Vi(s) Vi, () 2 > Vo(s)
1 1+K,(B+1)
=]
(a) (b)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall




i ;= Constant field current

1 ky > J, b
L S + Load
V

— w(1)

Copyrignt©201 Pearson Edueatn, I publishing as Prenta Hall

Figure 4.13 Open-loop speed control system (without feedback).




. k,E + Y Amplifier V.(s) ,| Motor Speed
R(s) = — K G(s) w(s)

a

V,(s) Tachometer
KI

(a)

Tachometer

(b)

Figure 4.14 (a) Closed-loop speed control system. (b) Transistorised closed-loop speed control system.




Transient Response of Second-Order Systems- Performance

w? w?
A= 52 + 28w,s + 2 ¥ig) = st + 2w,s + w,z. R(s)

With a unit step input, we obtain

2
w,

s(.s*’ + 2w,s + w,z,)’

Y(s) = (5.8)

for which the transient output, as obtained from the Laplace transform table in
Table 2.3, is

y(it)=1- %e"‘“’*’ sin(w, Bt + 6), (5.9)

where B = V1 — %6 = cos™' £, and 0 < £ < 1. The transient response of this
second-order system for various values of the damping ratio { is shown in Figure 5.5.

G(s) =

o; 2" -order system
sts + 2{w,) + 2

Ris) > " ) 5) = s
l 5) Ris Gis) 5+ 20w

+ Yis)
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Time domain vs Frequency domain: Result will be similar

Convolution Example

— U (1) ¥ h(E) N :{e"
- I () * u (t) O
n (@) ulE-1) 4T

‘-’x“-"‘ L — s

£ 0
|-e~%%) 20

—

(4 % &) {Lf :
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Transient Response of Second-Order Systems- Performance

System Pole-zero plot Response
G(s)
1
(@) R(s)= 5 b C(s) ~
s2+as+b
General
c(t) c(t)=1+0.171¢78% —
jo 1A 1.171¢71-1461
G(s) s-plane
1
(b) R(s)= 3 : 9 C(s) _ % " - o5l
i R ~7.854 —1.146
Overdamped
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Second-Order Systems

System Pole-zero plot Response
c(t) c(t) = 1-e(cosV8t +J§ sinvV8r)
jw | '4‘_ =1-1.06¢™" cos/81—19.47°)
A 121
s-plane 5
' o 3 0s)
o Fo=5 | o SO e ol
s24+2549 = 04l
Underdamped X | -8 021
I | | | 1 >
0 1 2 3 4 5
c(1)
_ A c(n=1-cos3t
jo 2+
: s-plane
| G(s) p 3
(d) Rs)= s . 5 9 5 a0, o > O |
5+
Undamped * EL
1 L I
0 1 2 3 4 5
jw c(t)
A
G(s) s-plane A i o) =1 =3¢ g3
| n
@ S O Xx—t=o o4l
s +6s5s+9 _3 04l
Critically damped 021 S
Ll 4
0 1 2 3 4 5




Second-order response as a function of damping ratio

4 Poles Step response
jo c(1)
. s-plane
%an g
0 > O
+ T W, t
Undamped
Jj@ s-plane c(t)
I
X Jjop V1 - (2
0<{<1 -
_Cwn
. 1
X o, 1 - §2 Underdamped

c(t
A ()
s-plane
C =1 _)2( » 0
_Cwn
1

Critically damped

jo c(1)

—Cco,,+(o,, VCZ_I '
\ s-plane
£ > 1 X
f
t

~C0,; 0, \/§2-1 Overdamped

X
Y
Q




Summary: Second Order System

1. Overdamped responses
Poles: Two real at -0, -0,

Natural response: Two exponentials with time constants equal to the reciprocal of the
pole locations, or

C(I) — K](f_alt - Kze_gzt

2. Underdamped responses
Poles: Two complex at -0, % jw,

Natural response: Damped sinusoid with an exponential envelope whose time
constant is equal to the reciprocal of the pole’s real part. The radian frequency of the
sinusoid, the damped frequency of oscillation, is equal to the imaginary part of the

poles, or sy
c(t) = Ae 7 cos(waqt — @)

76

U MAP



3. Undamped responses
Poles: Two imaginary at +jw,

Natural response: Undamped sinusoid with radian frequency equal to the
imaginary part of the poles, or

c(t) = Acos(wit — @)

4. Critically damped responses
Poles: Two real at -0,

Natural response: One term is an exponential whose time constant is equal to the
reciprocal of the pole location. Another term is the product of time, t,
and an exponential with time constant equal to the reciprocal of the pole location,

or
c(t) = Kie " + Kyte

77
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c(1)

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

Undamped

Critically
- damped ‘ - —
Overdamped
1 I I L ;
0.5 1 1.5 2 2.5 3 3.5 4

FIGURE 4.10: Step responses for second-order system damping cases
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Exercise:
For each of the following transfer functions, write, by inspection,
the general form of the step response:

400

Gl =g 1 125 + 400

900
~ $24+90s + 900

25
- §2 +30s + 225

625
- §2 4625
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Section 4.5: The General 2" Order System

We generalise the discussion and establish quantitative
specifications defined in such a way that the response of a second-
order system can be described to a designer without the need for
sketching the response.

In this section, we define two physically meaningful specifications
for second-order systems. These quantities can be used to describe
the characteristics of the second-order transient response just as
time constants describe the first-order system response.

The two quantities are called natural frequency and damping

ratio.
80 2
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Natural Frequency, w,

The natural frequency of a second-order system is the frequency
of oscillation of the system without damping.

For example, the frequency of oscillation of a series RLC circuit
with the resistance shorted would be the natural frequency.

Damping Ratio, {

A viable definition for this quantity is one that compares the
exponential decay frequency of the envelope to the natural
frequency

The damping ratio, {, defined to be:

~ Exponential decay frequency 1 Natural period (seconds)
~ Natural frequency (rad/second) 27 Exponential time constant

. @




General 2" Order Transfer Function

b
G(s) - s24as+b
2
a)n
A o e

Example 4.3: Finding { and w, For a Second-Order System
PROBLEM: Given the transfer function G(s), find {and w,

B 36
- 24425+ 36

G(s)
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Now that we have defined {and w,, let us relate these quantities to
the pole location. Solving for the poles of the transfer function in

2

GEI= s% + 28w, + w2

$1,2 = —fwy, T wn\/é'z —1

83




4 Poles Step response

Jjo c(1)
. s-plane
+an ;
0 >0
+ T, t
Undamped
jw s-plane c(1)
A
X Jj@, V 1= CZ
0<¢<1 - O
_Cwn
; t
X @, \[1- §? Underdamped
ff:’ (1)
s-plane
C H— l —)2( = O
"Cwn
1
Critically damped
jo c(1)
_Cwn"'wn ng_l '
\ s-plane
C > 1 — - > O
- = . 1
Cop=w, /G2~ 1 Overdamped

FIGURE 4.11: Second-order response as a function of damping ratio




Example 4.4:
For each of the systems shown in Figure 4.12, find the value of
zeta and report the kind of response expected.

R(s) 12 C(s) R(s) 16 C(s)
\ e = o
s2+8s+12 s“+8s5+16
(a) (b)
R(s) 20 C(s)
o o
52+85+20
(c)

Figure 4.12
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4.6: Underdamped Second-Order Systems

c(t) =1 — e~ %! (cos wp\/1 — &%t + ¢ sin w1 — g“zt)

V=g
1
. — —{wy )R
=1 _1_42 ‘cos(wp /1 — &%t — @)
c(@,t)
A
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1.

2.

3.

Rise Time, T,
0.1-0.9 of final value

Peak Time, T,
Fist maximum peak

T

W/ 1 — &2

ercent Overshoot, %0S

T, =

%O0S = Cmax — Cfinal % 100
Cfinal

%0S = e~/ V1=8) % 100

—In(%0S/100)

/72 + In*(% 0S/100)

4. Settling Time, T,

4

Cwp

I =

()

A
Cmax te
1.02Cﬁna|
Cfinal ~ - e —
0-98Cﬁnal /
0.9¢final
0.1¢fina —
>
—>| T, |l T, / i

P
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Example 4.5:
Find T,, %0S, T and T, for the given transfer function:

100

O =g T
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