Parallel Logic Simulation of VLSI Systems
MARY L. BAILEY

Department of Computer Science, University of Arizona, Tucson, Arizona 85721

JACK V. BRINER, JR.

Department of Mathematics, The University of North Carolina at Greensboro, Greensboro, North Carolina
27412

ROGER D. CHAMBERLAIN
Department of Electrical Engineering, Washington University, St. Louis. Missouri 63130

Fast, efficient logic simulators are an essential tool in modern VLSI system design.
Logic simulation is used extensively for design verification prior to fabrication, and as
VLSI systems grow in size, the execution time required by simulation is becoming more
and more significant. Faster logic simulators will have an appreciable economic impact,
speeding time to market while ensuring more thorough system design testing. One
approach to this problem is to utilize parallel processing, taking advantage of the
concurrency available in the VLSI gystem to accelerate the logic simulation task.

Parallel logic simulation has received a great deal of attention over the past several
years, but this work has not yet resulted in effective, high-performance simulators
being available to VLSI designers. A number of techniques have been developed to
investigate performance issues: formal models, performance modeling, empirical
studies, and prototype implementations. Analyzing reported results of these techniques,
we conclude that five major factors affect performance: synchronization algorithm,
circuit structure, timing granularity, target architecture, and partitioning. After
reviewing techniques for parallel simulation, we consider each of these factors using
results reported in the literature. Finally we synthesize the results and present
directions for future research in the field.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—simulation;
B.7.2 [Integrated Circuits]: Design Aids—simulation; C.2.4 [Computer-
Communications Networks]: Distributed Systems—distributed applications; 1.6.3
[Simulation and Modeling]: Applications; 1.6.8 [Simulation and Modeling]: Types
of Simulation—discrete event; distributed; parallel

General Terms: Experimentation, Algorithms, Performance

Additional Key Words and Phrases: Circuit structure, parallel architecture, parallelism,
partitioning, synchronization algorithm, timing granularity

1. INTRODUCTION simulation in the overall design process.

Extensive simulation-based design verifi-
The design of large digital systems and, cation prior to fabrication is necessary
in particular, the design of VLSI systems because probing and repair of already-
have increased the importance of logic fabricated VLSI systems is currently
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impractical. As systems have grown, sim-
ulation tasks have become significant
bottlenecks in the design cycle. In an
attempt to address this bottleneck, re-
searchers have turned to parallel and
distributed processing.!

VLSI systems exhibit a great deal of
concurrency, which is inherent in their
normal operation. Standard discrete-
event simulation algorithms, however,
serialize this activity, and therefore do
not exploit the concurrency present in

'Here, we will not distinguish between parallel and
distributed processing, and treat the two words as
synonymous. Architectural differences between the
two are discussed in Section 6.
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the underlying system (the VLSI circuit,
in this case). If the concurrency inherent
in the simulated system can be exploited
by parallel versions of the simulation al-
gorithms, parallel processors can be used
to perform the simulation task and yield
significant performance improvements
over uniprocessor architectures. It is not
unreasonable to believe that two to three
orders of magnitude performance im-
provement may be achievable by using
parallel processing.

Five major factors affect the perfor-
mance of parallel logic simulation:

(1) Synchronization algorithm
(2) Circuit structure

(3) Timing granularity

(4) Target architecture

(5) Partitioning and mapping

A synchronization algorithm is used
to coordinate the simulation across mul-
tiple processors. A number of synchro-
nization algorithms have been proposed
for discrete-event simulation on parallel
machines, including synchronous, con-
servative, and optimistic approaches. We
will also discuss an alternative synchro-
nization algorithm, the oblivious ap-
proach, which is not based on events. The
circuit structure of the VLSI system,
as well as its input vectors, can have a
dramatic effect on the performance of
parallel simulations. Simulations of some
circuits exhibit good parallel perfor-
mance, while others have proven to be
problematic. Even given the same circuit,
different inputs vectors give dramatically
different performance. The timing gran-
ularity of the underlying logic simulator
also has an effect on simulation perfor-
mance. There is a wide spectrum of tim-
ing granularities, ranging from fine-
grained (e.g., 0.1 ns time resolution) to
coarse-grained granularities (e.g., unit-
delay or zero-delay).

The target architecture impacts the
performance of the parallel simulation,
as it does for all parallel programs. A
related issue is the partitioning of the
simulated circuit among the parallel pro-
cessors. Prior to initiating one of the par-



allel simulation algorithms, the circuit
elements must be partitioned and as-
signed or mapped to individual proces-
sors. This problem is related to the
general problem of task assignment and
load balancing on parallel machines.

Many of these factors are present in all
parallel simulations. Indeed, there has
been a great deal of work in general par-
allel and distributed simulation over the
past few years. Unfortunately, there have
been a limited number of general results,
in part due to the wide variety of applica-
tions. Logic simulation is one application
area that has received significant atten-
tion, largely because of its potential eco-
nomic impact. Although Smith [1986]
assessed the state of parallel logic simu-
lation, a great deal of research has been
performed since 1986.

In this survey we will discuss and ana-
lyze the current state of the art of paral-
lel logic simulation by focusing on five
factors: synchronization algorithm, cir-
cuit structure, timing granularity, target
architecture, and partitioning. In partic-
ular, we are interested in understanding
relationships between the factors.

The survey begins with a brief overview
of logic simulation. Next we review com-
mon mechanisms for parallelizing logic
simulation and the synchronization algo-
rithms necessary to keep a parallel sim-
ulation consistent with an equivalent
sequential one. Sections 4 through 7
describe and synthesize techniques and
results of research investigating the five
factors impacting performance. First,
Section 4 reviews how researchers have
compared the synchronization mecha-
nisms using formal modeling techniques.
In Section 5 we consider the relationship
between circuit structure and timing
granularity. In Section 6 we review tar-
get architectures. The effect of partition-
ing and mapping on performance follows.
Once the five factors and work relating
them have been reviewed, two sections,
performance models and implementa-
tions, describe results of work that, di-
rectly or indirectly, studies the interrela-
tionships among the factors. Finally, we
conclude with a summary of the current
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state of the art and issues for future
directions in parallel logic simulation.

2. LOGIC SIMULATION

VLSI circuits are simulated at a mul-
titude of abstraction levels, from the
circuit level to the behavioral level. In
circuit-level simulation, node voltages are
represented by continuous values, and
the simulator solves numerically the dif-
ferential equations representing the cir-
cuit. In logic-level simulation, node volt-
ages are represented by discrete quanti-
ties and change state at discrete points
in time. The term logic simulation is
used in a number of ways. Some people
use logic simulation to mean the simula-
tion of gate-level circuit elements (e.g.,
NAND gates, flip flops). Others use a
broader definition, using logic simulation
to mean any discrete simulation of a VLSI
circuit, where circuit components vary
from transistors (modeled as ideal
switches), through traditional logic gates,
to high-level behavioral models (e.g., pro-
cessors, multipliers). We use this broader
definition throughout.

In discrete-event simulation, system
state variables are modeled as discrete-
valued quantities that change value at
discrete points in time. In logic simula-
tion, the state variables represent typi-
cally signal levels on wires that intercon-
nect circuit elements. In the simplest
two-valued logic simulations, state vari-
ables are constrained to two quantities
representing Boolean values (i.e., 0 or 1).
Most modern logic simulators use multi-
valued variables to represent additional
information. For example, many switch-
level simulators add an X state to repre-
sent unknown or floating signals, and
gate-level simulators add states to repre-
sent drive strength and high-impedance
conditions. The IEEE standard logic sys-
tem for VHDL simulation (STD_LOGIC_
1164) uses a 9-valued logic; the allowable
states are shown in Table 1 [Billowitch
1993].

In logic simulation, state changes are
restricted to discrete points in time. The
resolution of the simulation clock deter-
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Table 1. IEEE Standard Logic System
State | Purpose
U uninitialized state

X forcing unknown
0 forcing zero

1 forcing one

Z high impedance
w weak unknown
L weak zero

H weak one

don’t care

mines the allowable points in time when
state variables can change. This is re-
ferred to as the timing granularity, and
allowable time values are called time
points or time steps. Using a fine gran-
ularity, a simulator can model timing-
dependent behavior more accurately,
with the possible penalty of an increase
in execution time. Simulators with a
course granularity provide little GGif any)
timing behavior, but generally have
faster execution. The specific impact of
timing granularity on performance is ex-
amined in Section 5.

For simulation purposes, we model a
VLSI system as a collection of logic ele-
ments at varying levels of abstraction
(e.g., transistors, NAND gates, flip flops,
multipliers, etc.) and their interconnect-
ing wires. Input vectors are then pro-
vided to exercise the circuit. A gate-level
example using three logic elements is
shown in Figure 1. This example has two
inverters (labeled @ and 8) and a single
AND gate (labeled y); the interconnect-
ing wires are labeled a through e. The
delay through each gate (the time re-
quired for an input signal change to be
reflected at the output) is indicated im-
mediately below the gate.

State changes are represented by
events in the simulation, such as the
change in output value of an individual
gate. As in general discrete-event simula-
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Figure 1. Gate-level example circuit.

tion, pending state changes (those at
some future point in simulated time) are
retained in an event queue data struc-
ture, sorted by event time. The logic sim-
ulation algorithm is given in Figure 2.
Assuming a two-valued simulation and a
timing granularity of 1 ns, a representa-
tive simulation of the example circuit is
described below.

The simulation is initialized at time
t = 0 ns, with signals a =b =1 and ¢ =
d =e =0. The input signals are to
change as follows: a changesto 0 at ¢ = 1
ns, and b changes to 0 at ¢ = 2 ns. This
is represented by an initial event queue
of [(t =1,a = 0);, (¢t =2, b = 0)]. The ini-
tial simulation state is represented by
the first line of Table 2, and the main
loop of the simulation is then executed.

In the loop execution, the first event is
removed from the event queue. Simu-
lated time is updated to ¢ = 1 ns; signal
a 1s changed to 0; and gate « is evalu-
ated. The result is that signal ¢ will
change to 1 at £ = 6 ns (current simu-
lated time of 1 ns plus the gate delay of 5
ns). This is scheduled in the event queue,
and the simulation state is represented
by the second line of Table 2.

In the second loop, simulated time is
updated to ¢t = 2 ns; b is changed to O;
and gate B is evaluated. The result is
that d will change to 1 at ¢ = 4 ns, which
is scheduled in the queue. Notice that in
the queue, signal d is ahead of signal c,
since the signal d change has a smaller
timestamp.

In the third loop, ¢ = 4 ns; d is 1; and
v is evaluated. Since the output of vy does
not change, no additional events are
scheduled. At £ =6 ns, ¢ is 1, and vy is
evaluated again. This time, e is sched-



while (event queue is not empty)
retrieve next event from event queue
update simulated time to time of event
update gate output to new value
for each gate connected to gate output
evaluate logic function
if output changes then schedule change
in event queue
endfor
endwhile

Figure 2. Simulation algorithm.

Table 2. Simulation State

Time Signals Queue
t a b ¢ d e
0 1 1.0 0 0] [(t=1,a=0);(t=2,b=0)]
1 0 1 0 0 O0f[(t=2,b=0);{t=6,c=1)]
2 0 0 0 0 0] [(t=4,d=1);(t=6,c=1)]
4 0 0 1 0] [(t=6,c=1)]
6 0 0 1 1 0f[{t=9,e=1)]
9 0 0 1 1 1|[]

uled to changeto l1at £t =9 ns. At t =9
ns, e 1s 1, and the event queue is empty.
The final simulation state is represented
by the last line of Table 2.

Note that even though the simulation
ran up to time ¢# = 9 ns, the simulation
loop was not executed 9 times (once per
ns). The loop was executed only 5 times
(once per required gate evaluation). The
event-driven nature of the algorithm al-
lows the simulator to skip time points
that have no circuit activity, thereby
improving performance (i.e., decreasing
execution time).

As VLSI integrated circuits increase in
size (more than a million transistors on a
chip and climbing), the time required to
execute the simulation algorithm be-
comes unacceptably long, even wusing
event-driven techniques. This is due to a
number of factors. First, the number of
required functional evaluations grows as
the number of logic elements grows. Sec-
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ond, as the number of pending events
gets larger, the overhead associated with
managing the event queue increases.
Third, with larger circuits, a larger num-
ber of input vectors are needed to verify
proper circuit operation, further increas-
ing the length of the simulation run.

For this reason, parallel machines are
being investigated as a vehicle for in-
creasing the performance of VLSI logic
simulations. The event-driven algorithm
(Figure 2) is serial in nature, executing
events in sequential order. However, this
is a limitation of the algorithm, not the
VLSI system. For example, the evalua-
tion of gates @ and B could clearly be
executed in parallel without altering the
results of the simulation.

There are, in fact, a number of ways
that parallelism can be exploited to
improve simulator performance
[Mueller-Thuns et al. 1990]. Algorithm
parallelism uses pipelining techniques to
accelerate the major loop by executing
individual program steps on different
processors (e.g., event queue manage-
ment, functional evaluation). A limited
amount of parallelism is available using
this technique, since there are a limited
number of steps in the major loop. Data
parallelism uses different processors to
simulate the circuit for distinct input
vectors. This technique is quite effective
for fault simulation, where a large num-
ber of independent input vectors need to
be simulated. It is less effective, however,
during design verification, where the goal
is to minimize the completion time of an
individual input vector. Model paral-
lelism, alluded to in the previous para-
graph, uses different processors to per-
form the functional evaluations for dis-
tinct logic elements. When state changes
on one processor affect the simulation on
another processor, a timestamped mes-
sage is used to communicate both the
state change and the simulated time the
state change occurs in. A time synchro-
nization algorithm is then needed to de-
termine which functional evaluations can
safely be executed in parallel. This sur-
vey concentrates on techniques for ex-
ploiting model parallelism, exploring the
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major factors that impact the perfor-
mance of parallel logic simulation.

3. PARALLEL LOGIC SIMULATION

Prior to executing a parallel simulation,
the logic elements are typically assigned
to individual processors. The functional
evaluations for each logic element are
then executed by its assigned processor.
To maintain correct simulation time, co-
ordinating execution between processors
is crucial. The simulation clock is the
usual mechanism for this coordination.
In sequential, event-driven simulation,
events are typically maintained on a
time-ordered queue. As events are re-
moved from the queue, simulated time is
updated and the events evaluated, which
may cause other events to be placed on
the queue. In parallel simulation, there
are often multiple queues, one per pro-
cessor. Coordinating event evaluations
and managing these queues are neces-
sary to ensure correct simulation. There
are several mechanisms for ensuring cor-
rectness; we refer to these as time syn-
chronization strategies. We summarize
the most common synchronization strate-
gies in this section. For a more complete
description of the current state of re-
search in general parallel discrete-event
simulation, see Fujimoto [1990].

3.1 Obilivious Simulation

The oblivious strategy is not event
driven. Instead, all circuit elements are
evaluated during every time step,
whether or not their inputs have changed.
The workload here is fixed for each time
step, so scheduling can be performed
statically at compile time, and no
scheduling overhead is incurred at run
time.

Rank ordering is often used in these
simulators as a means of scheduling ele-
ment evaluations. All elements, gener-
ally gates, are ordered according to the
availability of their inputs. Gates whose
inputs are also inputs to the simulation
are at rank 0. A gate is at rank i if all of
its inputs are produced by gates at ranks
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less than ¢ and at least one of its inputs
is produced by a gate at rank i — 1. Eval-
uating gates in rank order ensures that
(1) the inputs for all gates will be stable,
(2) each gate will be evaluated a single
time, and (3) gates will be evaluated as
soon as possible. In the example of Fig-
ure 1, gates a and B are at rank 0, and
gate v is at rank 1.

To parallelize the oblivious algorithm,
three approaches can be taken. The first
is to use a vector processor and design
the simulation so that identical opera-
tions are performed on gates of a given
type at the same level. The second ap-
proach is to use independent, general-
purpose processors as a pipeline, evaluat-
ing one rank on every processor. The third
approach schedules element evaluations
among the processors by solving a gen-
eral optimization problem, maximizing
processor utilization while keeping the
number of evaluations constant between
processors and minimizing interproces-
sor communication [Kravitz et al. 1991].

In oblivious strategies, the major
source of overhead for logic simulation is
redundant evaluation of elements whose
inputs have not changed. However, the
computation per element is often much
less than that in event-driven strategies.
Thus in comparing the two strategies,
one must consider both effects. Let the
amount of computation for an individual
element evaluation in the event-driven
strategy be C times that in the oblivious
strategy. Additionally, assume that E is
the ratio of the number of events in the
event-driven strategy to the number of
evaluations in the oblivious strategy.
Then for a sequential simulation, the
oblivious strategy is preferred if E >
1/C. Currently values for C are approxi-
mately 100 for traditional simulators,
making the oblivious strategy preferred
if E > 0.01. Recently, techniques have
been proposed that reduce C to between
20 and 50, making the oblivious strategy
preferred if E > 0.04 to 0.10 [Lewis
1991].

Another criticism of the oblivious
strategy is the coarse timing model typi-
cally used in these simulations. This crit-



icism has been addressed recently by the
advent of oblivious algorithms for finer
timing models, but their impact on C is
unclear [Maurer and Lee 1994; Shriver
and Sakallah 1992].

Comparing oblivious and event-driven
strategies for parallel simulation is com-
plicated by the addition of synchroniza-
tion and communication mechanisms.
Static scheduling is feasible for oblivious
simulations, resulting in still more sav-
ings over the event-driven strategy. How-
ever, low circuit activities still favor the
event-driven strategy. Large pipelined
circuits may have enough activity to
make the oblivious strategy an attractive
alternative to the event-driven strategy;
more research is needed to determine
when each strategy is preferred.

3.2 Synchronous Algorithms

The most obvious synchronization algo-
rithm is to have all processors work on
the same time step in a synchronous
lock-step fashion. Since the resulting
simulated time is common across all pro-
cessors, this is also referred to as a
global-clock algorithm.

Consider the example simulation of
Figure 1, and assume each gate is as-
signed to a distinet processor. The se-
quence of operations in a synchronous
algorithm is illustrated in Table 3. Ini-
tially (¢ = 0 ns), messages are delivered
from the primary inputs to gates « and
B describing the input vector. At global
time ¢ = 1 ns, « is evaluated, causing a
message to be sent from « to y with a
timestamp of ¢ = 6 ns; at time ¢ = 2 ns,
B is evaluated, causing a message to be
sent from B to y with a timestamp of
t =4 ns; at time ¢ = 4 ns, y evaluates
the message from B (the message with
the smaller timestamp); and at time ¢ = 6
ns, y evaluates the message from o,
sending a message to the output for ¢t = 9
ns. Since no two evaluations occur at the
same point in simulated time, no paral-
lelism is exploited in this example. The
amount of parallelism available in realis-
tic circuits is examined in Section 5.
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Table 3. Synchronous Example
Time | Evaluations Messages
0 m— o (t=1,a=0) |1 = g (t=2,b=0)
1 a a -y (t=6,c=1)
2 8 A=y (t=4,d=1)
4 ki
6 b} ¥ — out (t=9,e=1)

The difficulties in this algorithm in-
clude determining when all processors
have completed a time step and what the
next time step should be. Determining
completion can be accomplished with a
simple barrier which may be supported
by the parallel architecture or software.
Determining the next time step depends
on how the events are managed. If there
is a central event queue, the central event
queue simply finds the lowest time; how-
ever, insertions and deletions from the
queue can serialize. When each processor
has a local queue, a global minimum op-
eration must be performed. Additionally,
another problem develops, that of load
balancing. Because the processors will
likely have different numbers of events
active during a given time step, some
processors may finish earlier than oth-
ers, resulting in potentially significant
load imbalance.

3.3 Conservative Asynchronous Algorithms

To reduce the problem of load imbalance
and central-queue contention, algorithms
which allow the processors to proceed at
independent rates with independent
queues and clocks are attractive. If each
processor or logic element maintains its
own local simulation time, the algorithm
1s known as a local-clock or asynchro-
nous algorithm. There are two classes of
local-clock algorithms: conservative and
optimistic.?

“The synchronous algorithm described earlier can
also be classified as a conservative algorithm.
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Figure 3. Local clock example.

Figure 3 shows the example circuit
with each gate assigned to an individual
processor. The clock symbol associated
with each processor indicates the fact
that simulation time is maintained lo-
cally, within the processor. The value of
the local simulation time may therefore
be different from one processor to the
next.

Conservative asynchronous algorithms
have their origins in Chandy and Misra
[1981], and Bryant {1977]. They require
that the local simulated time associated
with a logic element is only advanced to
the extent that the advance cannot vio-
late causality in the system being mod-
eled (i.e., before a logic element will ad-
vance its local simulated time to ¢, it
must know that it will receive no addi-
tional messages with timestamps less
than ¢). In order to be able to draw con-
clusions about the timestamps of mes-
sages it might receive in the future, the
conservative algorithms require that
messages from one logic element to an-
other be sent in nondecreasing time-
stamp order.

To ensure compliance with the conser-
vative requirements, two constraints are
placed on the logic elements. The first is
called the input waiting rule, which con-
strains the advancement of local simu-
lated time to be the minimum timestamp
associated with the last message received
from any other logic element. Thus the
input waiting rule ensures that messages
are processed in timestamp order. The
second constraint, the output waiting
rule, ensures that messages to other pro-
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cesses arrive in timestamp order. Mes-
sages waiting for output must not be sent
before it is certain that all other output
messages will have later timestamps. If
different events have different propaga-
tion times (such as different rise and fall
times for a gate element), then output
events must be queued to ensure that all
messages arrive in timestamp order. An
assumption is made here concerning the
underlying system, that it supports FIFO
message delivery on each channel.

Consider the simulation of our exam-
ple circuit, again assigning each gate to a
separate processor. The local time for
each gate is maintained independently,
and is initialized at O ns. Table 4 shows
the sequence of operations in the conser-
vative algorithm.> The first round of
messages communicate the input vector
to o and B. This updates their local time
to t =1 ns and ¢ = 2 ns, respectively.
Gates o and 8 can then be evaluated (in
parallel), triggering two messages to y.
Two additional messages are sent from
the inputs to a and B, indicating no
more input changes will take place, up-
dating their local times to ¢ = .. The
need for these two messages will be de-
scribed below. As a result of the input
waiting rule, y’s local clock can now be
updated to £ = 4 ns.

All three gates can now be evaluated
(again in parallel), triggering two more
messages to y. Again following the input
waiting rule, y can now update its local
time to ¢t = 6 ns, since it now has a mes-
sage from f indicating no additional
messages will come between ¢ = 4 ns and
t = 6 ng. Gate y is then evaluated, and a
message is sent to the output at £ = 9 ns.

As another example, consider the cir-
cuit in Figure 4. Assume that the propa-
gation delay of each gate is 3 ns, and
each gate is on a separate processor. The
Jocal clock of the processor containing the
top gate has a simulated time of 1 ns,
while the local clock of the lower proces-

SWe are using lookahead to relax the output wait-
ing rule.
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Table 4. Conservative Example

. 263

Messages

in = g (t=2,b=0)
8= v (t=4,d=1)

8= (t=0c0)

in = a {t=o00)

mm— g (t:OO)

Local time | Evaluations
a B v
0 0 0 m = a (t=1,a=0)
1 2 0 a, B a— v {(t=6,c=1)
© oo 4 a, B,y a— vy (t=o00)
o0 oo 6 vy v — out (t=9,e=1)
Reset
Set
0>1@ t=4 0@t

3ns

Figure 4. Flip flop example circuit.

sor is at time 3 ns. The processor contain-
ing the top gate can process the message
changing the value of Reset from 1 to O,
since the value of Qbar will not change
until after time 3 ns. However, the pro-
cessor containing the lower gate cannot
process the message changing the value
of Set at time 4 ns, because it cannot
determine that the value of @ will not
change before time 4 ns, even though in
this example @ would not change until
time 5 ns.

As presented above, the conservative
algorithm is prone to deadlock. For in-
stance, if @bar in the example is at time
1 ns instead of time 3 ns, then neither
the Set nor Reset change can take place
because there is no assurance that either
Q or Qbar will not change before time 2
ns.

A number of techniques have been pro-
posed to deal with the deadlock problem.
These techniques can be broadly catego-
rized into two classes: deadlock avoid-

ance and deadlock detection and recov-
ery. Deadlock avoidance techniques use
a special message type that has a time-
stamp but no content (a null message)
[Misra 1986]. Whenever a logic element
receives a message, it must send a mes-
sage on each of its outputs. If the simula-
tion does not require a regular message
to be output on a channel, a null message
is sent in its place. The algorithm elimi-
nates the potential for deadlock, but with
the penalty of increasing substantially
the total number of messages required to
execute the simulation. In the first exam-
ple, the messages from the input to gates
« and B at £ = « are null messages.

The deadlock detection and recovery
algorithms allow the basic conservative
algorithm to deadlock, detect the dead-
lock condition, and invoke a recovery al-
gorithm to break the deadlock [Chandy
and Misra 1981]. Deadlock detection al-
gorithms can be either centralized, typi-
cally only detecting global deadlock, or
decentralized, typically using circulating-
marker algorithms that can detect local
deadlock conditions. The deadlock recov-
ery algorithm often depends upon the
type of detection algorithm used, but one
algorithm usable in all cases is to per-
form a global minimum over all pending
simulation events on all logical pro-
cesses. The local simulated time can
safely be advanced to the result of this
global minimum operation, and the
events at that simulated time processed,
thereby breaking the deadlock.
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There are other conservative ap-
proaches which have been reported in
the literature. These involve using
knowledge about the application to re-
duce the overhead associated with the
Chandy-Misra algorithm. Lubachevsky
[1989] uses a moving time window in
which only events whose timestamp lies
in the time window are eligible for pro-
cessing. Lookahead is another approach
which has been effective in reducing
overhead [Fujimoto 1989]. In this case, a
process with local time ¢ knows all events
it will produce up to time ¢ + L, where L
is the lookahead. In practice, logic gates
often have a minimum delay, L, and will
not produce any events before time ¢ + L,
which can be used to reduce the number
of null messages sent.

3.4 Optimistic Algorithms

The original optimistic asynchronous al-
gorithm, Time Warp, was devised by Jef-
ferson [1985]. Here, whenever a message
is received by a logic element, the process
advances its local simulated time to the
timestamp on the message and simulates
the effects of the incoming message. This
simulated time advance is performed in-
dependent of the fact that future mes-
sages might have a lower timestamp,
thereby potentially invalidating the work
performed when the original message
arrived.

In the first example circuit (Figure 3),
the simulation starts out as in the con-
servative algorithm, with messages from
the input to gates a and B (see Table 5).
Gates o and B are both evaluated (in
parallel), each sending a message to y.
Both of these messages are evaluated by
v, and the local time of vy is optimisti-
cally updated to # = 6 ns, assuming no
additional messages will come from B
between 4 ns and 6 ns. Gate y sends an
output message for { = 9 ns.

In the second example circuit (Figure
4), both processors would process mes-
sages, assuming that no messages would
arrive “in the past.” If the top gate has a
delay of 3 ns, then this assumption holds,
and the simulation proceeds correctly.
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Table 5. Optimistic Example

Local time | Evaluations Messages

a B 9

0 0 0 m — a (t=l.a=0) | n — 7 (t=2b=0)
1 2 0 a, g a— 7 (t=6c=1) J -y (t=4d=1
1 2 6 9 ~ — out (t=9e=1)

However, if the top gate has a delay of 1
ns, then the lower processor has now
processed a message at time 4 ns and
will later receive a message at time 3 ns
(from @). It must undo the damage
caused by processing the change to Se?
at time 4 ns. Thus, the event from @
triggers a roll back, forcing the lower
processor to return to the state it had
before it evaluated the Set event. Addi-
tionally, the event from Set could have
caused an erroneous event to be sent to
the top gate. To remove this event, an
antimessage would be sent from the lower
processor to the top processor. If the an-
timessage arrives before its correspond-
ing real message 1s processed, both events
are removed; otherwise the antimessage
triggers a roll back on the receiving
processor.

In order to perform roll back, proces-
sors must have saved the state of the
circuit. During a roll back, local simu-
lated time is backed up to the value asso-
ciated with the incoming message; the
system state associated with the logical
process is restored from an earlier copy;
and antimessages are sent out along out-
put channels to invalidate any previously
transmitted messages with timestamps
greater than the new local simulated
time. When these antimessages are re-
ceived at their destination logical pro-
cesses, they may trigger roll back on those
processes as well.

Clearly, the Time Warp algorithm re-
quires overhead to perform roll backs and
save state. The saved state also takes up
memory. To reduce the memory require-
ments, old states can be removed when
no longer needed. The minimum of the
processors’ local times and messages in
transit 1s known as the global virtual



time (GVT). No message can arrive at a
processor earlier than GVT, so states
and messages saved before GVT, called
fossils, can be discarded.

Gafni’s [1988] lazy cancellation strai-
egy reduces the impact of roll back on the
performance of simulation. Instead of ag-
gressively cancelling previously sent
messages whenever roll back occurs, the
lazy cancellation algorithm waits to can-
cel the message until it is known that the
wrong message had been sent. Thus, if
the right event had been delivered for
the wrong reasons, the receiving proces-
sor is not inhibited because of excessive
causality constraints.

As with the conservative algorithms,
there are variants on the optimistic
strategy. One such variation is the Mov-
ing Time Window (MTW) algorithm pro-
posed by Sokol et al. [1988]. It attempts
to exploit the observation that the most
likely events to be rolled back are those
that are farthest ahead in simulated time.
The MTW algorithm establishes a win-
dow immediately ahead of GVT and only
allows local simulated time for a logical
process to be advanced to a point within
the time window. If an incoming message
has a timestamp that is ahead of the
window, it is placed in the local event
queue and processed once GVT is ad-
vanced enough that the timestamp falls
within the window.

4. SYNCHRONIZATION ALGORITHMS

Comparing synchronization algorithms
for general parallel simulations is diffi-
cult. However, there has been some suc-
cess in using formal models to compare
these algorithms in the logic simulation
domain. We summarize these results
here.

While considering the effect of timing
granularity on circuit parallelism, Bailey
[1992b] considered two synchronization
strategies: the synchronous strategy and
an idealistic conservative strategy. The
idealistic conservative strategy is a lower
bound on the execution time for all con-
servative algorithms (including both syn-
chronous and conservative asynchro-

Parallel Logic Simulation . 265
nous). She shows that if overheads are
ignored and all events have the same
evaluation time, the idealistic conserva-
tive algorithm will perform at least as
well as the synchronous algorithm. The
two algorithms will perform identically
for unit-delay timing. Since synchronous
algorithms are generally simpler than
conservative asynchronous algorithms,
then with reasonable load balancing, one
would expect a synchronous simulation
to outperform a conservative asyn-
chronous simulation if unit-delay timing
is used.

Bailey and Lin [1993] extend this work
to include four different synchronization
strategies: synchronous strategy, the
conservative asynchronous strategy, the
optimistic asynchronous strategy, and the
conservative optimal strategy. The con-
servative optimal strategy is an artificial
strategy that uses knowledge of all events
in the simulation to construct an optimal
scheduling of events, with the constraint
that messages on a given processor are
evaluated in timestamp order. Two as-
sumptions were made for all synchro-
nization strategies to keep the analysis
tractable. First, it is assumed that there
is a fixed, positive time delay associated
with each logic element. This precludes
elements from having a delay of zero,
which can occur in some simulators. This
also precludes having different time de-
lays for the same element, such as is
found in RNL [Terman 1983]. Second, it
is assumed that every evaluation ele-
ment is on its own processor.

Bailey and Lin’s first result shows that
the synchronous strategy is slower than
the conservative optimal strategy. Com-
munication costs are assumed to be neg-
ligible in the synchronous simulation,
eliminating the costs of maintaining a
global event queue and synchronizing at
the end of each time step. Next the con-
servative optimal strategy is shown to be
faster than the conservative asyn-
chronous strategy with null messages.
Communications costs for the conserva-
tive asynchronous strategy are not as-
sumed to be zero, although it is assumed
that the presence of null messages does
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not degrade the performance of the sys-
tem by increasing resource contention in
the communications structure or by tak-
ing evaluation time on the target proces-
sor. There are mixed results in compar-
ing the synchronous and conservative
asynchronous strategies. If the circuit is
strongly connected, an unlikely situation
for a logic simulation, then the syn-
chronous strategy will be faster. If the
fanout is limited, then the conservative
asynchronous strategy may be superior.
The remaining results pertain to the
Time Warp or optimistic strategy. The
cost of saving state is ignored, as well as
the cost of restoring state during roll
backs. Other roll back costs, such as the
cost of sending antimessages, are in-
cluded. Under these assumptions, Time
Warp with either aggressive or lazy can-
cellation outperforms the conservative
optimal strategy. The issue of limited
processors is also addressed. If all logic
elements on a given processor are consid-
ered as a single process, then the above
analysis holds. However, this means that
progress is delayed until all inputs to the
logic block are known, as opposed to each
individual logic element. This can de-
grade performance. A similar problem oc-
curs in Time Warp upon roll back. Under
this assumption the entire logic block is
rolled back instead of rolling back just
the element which receives the antimes-
sage. Without these restrictions, the
above results cannot be proven; more re-
search is needed to address these issues.
Thus using simple analytic models,
Bailey and Lin have shown that the opti-
mistic synchronization strategy is pre-
ferred, although several unrealistic sim-
plifications were necessary in order to
obtain these results. It would be nice to
eliminate many of these simplifications
to determine whether these conclusions
hold given the complex factors involved
with implementing each algorithm on
real hardware.

5. CIRCUIT STRUCTURE AND TIMING
GRANULARITY

The information inherent in the circuit
being simulated and the input vectors
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used to exercise the circuit can have a
large impact on the performance of the
simulation algorithm. Circuit structure
includes such aspects as circuit topology,
circuit size, abstraction level, fanout,
feedback, circuit type, and circuit activ-
ity.

Circuit topology refers to the intercon-
nection pattern between circuit elements.
The abstraction level is the underlying
model assumed for individual elements
(e.g., switch level, gate level, etc.). The
circuit type classifies the circuit in terms
of its design style and goals, distinguish-
ing between combinational circuits and
sequential circuits, clocked and self-timed
circuits. Circuit activity is concerned with
the dynamic nature of signal value
changes—how frequently signals change
value, number of simultaneous value
changes, etc.

The interrelationships between circuit
structure and the other factors are signif-
icant enough that it is difficult Gf not
impossible) to isolate the impact that cir-
cuit structure alone has on the perfor-
mance of parallel simulation. For this
reason, the impact of circuit structure
will primarily be addressed in conjunc-
tion with the other factors rather than in
isolation. An exception to this is circuit
activity, which has received extensive
study.

One of the best understood relation-
ships among the factors affecting perfor-
mance is that between circuit activity
and timing granularity. Work in this area
began by simply measuring circuit activ-
ity. More recently, formal models have
been developed that relate circuit activ-
ity and timing granularity.

5.1 Circuit Activity

VLSI designers have long been inter-
ested in measuring activity in their cir-
cuits. Circuit activity has a broader in-
terest than parallel logic simulation: for
example, it affects power requirements
in CMOS designs directly. In the early
1970’s, Rattner instrumented a logic sim-
ulator to measure the average number
of gates which were active during simu-



lation runs (personal communication).
He found that, on average, approxi-
mately 2.5 percent of the gates were on
the event queue at any given time during
a simulation run.

A few years later, research in circuit
activity increased due to its importance
in event-driven parallel simulation. The
focus changed from measuring the per-
centage of simulation elements on the
event queue to the average number of
simulation elements evaluated in the
same time step.

Frank [1985; 1986] published a fairly
extensive study of circuit activity as part
of his work on a parallel data-driven logic
simulation engine, the Fast-1. This simu-
lation engine used an event-driven algo-
rithm, so its potential speedup was influ-
enced by the activity in the -circuits.
Frank did not directly measure circuit
activity, but rather estimated the poten-
tial speedup of the parallel Fagt-1 over a
uniprocessor version by considering the
number of instructions the sequential and
parallel versions required. The ratio of
the number of sequential instructions to
the number of parallel instructions pro-
vided an upper bound on speedup and a
rough estimate of the circuit activity. Us-
ing 13 circuits ranging in size from 78 to
20,300 transistors, he found potential
speedups ranging from 4.1 to 192.1, with
a mean of 49.5. The low values surprised
Frank, and he was not optimistic about
the potential for the parallel Fast-1
engine.

Soon after Frank’s work, other expe-
riments were performed using existing
sequential simulators to consider the po-
tential of parallel event-driven simula-
tion. The metric used in these experi-
ments is usually referred to as circuit
parallelism, which is defined to be the
average number of events executed per
active simulation time step. Time steps
in which no events are executed are ig-
nored, since there is no overhead for
skipping them in an event-driven simula-
tor. Circuit parallelism provides an up-
per bound on the speedup one can obtain
using a parallel, synchronous, event-
driven simulator.
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Wong et al. [1986] were the first to
report actual circuit parallelism mea-
surements. They used a gate- and
switch-level simulator and measured the
parallelism of five circuits ranging from
650 to 8000 transistors, using fixed-delay
timing. The parallelism values ranged
from 2.1 to 55 with an average of 18.6.
They scaled these parallelism values to
estimate the circuit parallelism of
100,000 component circuits. The scaled
values ranged from 80 to 3,294 with an
average of 1,279. In contrast to Frank,
Wong et al. were optimistic about the
potential for parallel simulation, based
on the scaled parallelism values.

Soule and Blank [1987] and Soule
[1992] were the first researchers to con-
sider the impact of different abstraction
levels on circuit parallelism. Four differ-
ent abstraction levels were presented: in-
struction, behavioral, RTL, and gate.
THOR, a multilevel, event-driven simu-
lator, was used here to measure the ide-
alized speedup of three circuits using the
four abstraction levels. Two of the cir-
cuits (3400 and 5000 elements) were sim-
ulated at the gate level. A third circuit
was simulated using a different func-
tional simulator. The speedup measure-
ments were obtained by simulating the
event trace with an “ideal” parallel simu-
lator having no cost for scheduling, no
memory contention, and equal cost for
event evaluation. For 1000 processors,
the speedup was less than 10 for all but
one circuit and abstraction level, where
the speedup was near 100. Additionally,
they found speedup to be relatively con-
stant over all four abstraction levels, and
element activity between 0.1% and 0.5%
at any particular time point.

During the following two years, Bailey
[1992a] and Bailey and Snyder [1988]
presented additional circuit parallelism
measurements using the switch-level
simulator RNL. RNL models a transistor
as a resistance in series with a voltage-
controlled switch and provides timing es-
timates with 0.1 ns resolution [Terman
1983]. The nine circuits used in these
measurements ranged from 200 to 61,600
transistors. The resulting circuit paral-
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lelism values ranged between 2.8 and 23.
The measurements in Bailey [1992a] in-
cluded a different activity metric, the
queue metric, which corresponds more
closely with Rattner’s early measure-
ments. The queue metric measures the
average length of the simulation queue.
The values measured using the queue
metric will be higher than those found
using the average parallelism, since there
will usually be additional elements on
the event queue which are not executed
in the current time step. Using the same
nine circuits, they found, on average, be-
tween 0.22% to 8.9% of the nodes were
on the queue at each time step. These
values have much more variance than
Rattner found in his measurements.

Additionally, Bailey [1992a] presents
empirical evidence to demonstrate that
circuit parallelism does not generally
scale linearly with circuit size as was
assumed in Wong's optimistic paral-
lelism measurements. In one circuit fam-
ily, the shift register, parallelism did
scale almost linearly. For other circuit
families, this was not the case. The par-
allelism does generally increase with cir-
cuit size, but it is not a simple linear
function.

Rather than using circuit parallelism
as the mechanism for defining activity,
Briner [1988] and Briner et al. [1988]
devised a new metric, the spanning met-
ric, to estimate the potential for parallel
simulation using the interdependence
of model evaluations. Two additional
sources of parallelism are measured with
this technique. First, additional paral-
lelism is measured because a signal
change may cause more than one model
evaluation due to fanout. If event han-
dling is inexpensive compared to model
evaluations, this is a more accurate mea-
sure of the parallelism available for sim-
ulation. Second, just because events hap-
pen at different times does not mean that
there is a causal effect between them.
Thus, events at different time steps may
be processed in parallel if model evalua-
tions caused by the earlier event do not
impact the later event. By extracting
causal data from a sequential simulation,
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Briner et al. estimated the parallel activ-
ity in three circuits, ranging in size from
700 to 15,000 transistors, and found val-
ues ranging between 4.7 to 19.5. They
compared this to the circuit parallelism
for the same circuits and found that the
spanning metric provided 4 to 10 times
more potential parallel activity than was
found using circuit parallelism.

Thus there have been several studies
of circuit activity over the past few years,
with conflicting conclusions. There are
several reasons for these differences.
First, different researchers used different
metrics for evaluating circuit activity.
Second, different sequential simulators
were used, having different model ab-
stractions and different timing resolu-
tions. Finally, different circuits were
used for the various measurements, re-
sulting in differences due directly to the
structure of the individual benchmark
circuits.

5.2 Timing Granularity

Logic simulation covers a broad spec-
trum of model representations, each with
different timing granularities ranging
from very fine-grained timing (such as
0.1 ns) to coarse-grained timing (such as
zero-delay). Timing granularity can sig-
nificantly impact simulator performance.
Simulators using fine-grained timing at-
tempt to model time accurately in the
simulator. Often these simulators use a
time resolution in the range of 0.1 ns or
smaller. An additional issue in fine-
grained simulators is whether a given
element always has the same delay. For
instance, some gate-level simulators may
use a single delay for a given gate type,
independent of the output value of the
gate. Others have different delays de-
pending on output capacitance and
whether the signal is rising or falling. In
transistor-level simulators with fine-
grained timing, delay computations can
be even more complex, resulting in a large
number of different possible delays for a
single signal. We will consider fine-
grained timing to include both small time
resolutions and a large number of possi-



ble delays in the circuit. As either the
number of possible delay values de-
creases or the time resolution increases,
we say that the timing resolution is
coarser.

Unit-delay and zero-delay timing are
at the extreme of the coarse-grained tim-
ing granularities. Both are quite common
in logic simulations. Unit-delay timing
assumes that every element has a propa-
gation delay of one unit. Zero-delay, used
for sequential circuits, is even coarser.
Here, only functionality is preserved,
with no attempt to measure timing.

5.3 Relating Circuit Activity and Timing
Granularity

The effect of timing granularity on cir-
cuit activity has been investigated via
both empirical studies and formal mod-
els. The first empirical study was an ex-
tension of Bailey’s [1992a] earlier circuit
parallelism results. A unit-delay simula-
tor, SwitchSim, was used to measure the
circuit parallelism of the circuits previ-
ously measured using RNL. SwitchSim,
written by Frank, is based on the algo-
rithms developed for the Fast-1 simula-
tion engine. The circuit parallelism mea-
sured by the unit-delay simulator was
always larger than that measured by
RNL. The parallelism values ranged from
35 to 593 on circuits ranging in size from
200 to 61,600 transistors. These values
were larger than the RNL measurements
by factors ranging from 3.6 to 25.8.

Even though this work compared the
effect of two different timing granulari-
ties on circuit parallelism, it failed to
provide a good characterization of the
relationship between timing and paral-
lelism. However, Bailey [1992b; 1993] has
since developed two formal models to
compare the effects of time resolution on
circuit parallelism. Both models begin
with the same initial abstraction, a graph
representing the execution of a given cir-
cuit. In the graph, nodes correspond to
events in the simulation, and edges rep-
resent causality. It is assumed that no
more than one change occurs at any in-
stant in time; an infinite resolution clock
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is used for timing. It is also assumed that
exactly one event causes a subsequent
event. These two assumptions ensure
that the graph is a tree. Edges in the tree
are labeled with the delay between the
event and its parent. Because of the infi-
nite resolution clock, every event is in its
own time step, and there is no circuit
parallelism.

In order to investigate the relationship
between parallelism and time resolution,
each model has a mechanism for increas-
ing the timing granularity of the simula-
tion. In the time-based model, events are
placed in time steps of larger resolutions
by their simulation time, preserving
causality constraints [Bailey 1992b]. This
differs from the way in which simulators
place events into time steps, but the re-
sulting analysis is simpler. For example,
consider the situation with three depen-
dent events, the first one oceurring at
time 0, the second at time 1, and the
third at time 4. If the simulation clock
has a time base of 2, these events are
placed in time steps 0, 2, and 4, respec-
tively using the time-based model. Using
this model, it can be shown that circuit
parallelism is a nondecreasing function
of time resolution. The parallelism found
using unit-delay timing provides an up-
per bound on the circuit parallelism for
all time resolutions.

In the second model, the delay-based
model, events are placed in time steps
according to the delays between events
[Bailey 1993]. This corresponds more
closely to the placement of events in ac-
tual event-driven simulators, so it is more
realistic than the time-based model. In
the above example, the last event is
placed in time step 6 rather than time
step 4 since the delay between it and its
parent event is 3. Unfortunately, the re-
sults obtained from this model are more
complex than those in the time-based
model, and circuit parallelism is no longer
a nondecreasing function of time base.
There are instances where increasing the
time base actually decreases parallelism.
However, as the resolution increases, cir-
cuit parallelism tends to increase or re-
main constant. More precisely, Bailey
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Figure 5. Average parallelism measurements.

considers the family of all circuits with
the same wunit-delay parallelism. The
unit-delay parallelism provides an upper
bound on the circuit paralielism for these
circuits, over all time resolutions. The
lower bound on the circuit parallelism for
these circuits is a nondecreasing function
of time resolution, which equals the
unit-delay parallelism when the time
resolution is sufficiently large. Bailey
confirms the delay-based model predic-
tions by effectively changing RNL’s time
resolution and measuring the resulting
effects on circuit parallelism.

Figure 5 shows a composite graph of
many of the parallelism results [Bailey
1992a; Briner 1990; Soule and Blank
1987; Wong et al. 1986]. Included are
measurements from a variety of timing
granularities (fine-grained, fixed-delay,
and unit-delay), and from a variety of
abstraction levels ranging from switch to
functional. The largest parallelism value
is obtained from the largest circuit using
the coarsest timing granularity (unit-
delay). In order to view the results for
the smaller circuits better, an enlarge-
ment of the lower left quadrant of the
figure is shown in Figure 6. Overall, the
higher parallelism values result from
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measurements taken with coarser timing
granularities, as predicted by Bailey’s
model. It is not clear whether the ab-
straction level makes a significant differ-
ence in the measurements, but the type
of circuit (together with its input vectors)
appears to make a significant difference.

Thus we have evidence that coarser-
grained timing can result in dramatically
higher levels of circuit parallelism, and
there is a definite relationship between
timing resolution and circuit activity. If
higher levels of circuit activity imply bet-
ter performance by parallel simulators,
then coarser-grained timing appears
more promising for parallel simulators.
Note that the results do not cover all
timing granularities, for example, zero-
delay timing. Additionally, the range of
parallelism measurements, even using
the same simulator, indicate that circuit
activity also depends on other aspects of
circuit structure. Unfortunately, these
studies shed little light on the exact
nature of these relationships.

6. TARGET ARCHITECTURES

Parallel architectures are classically par-
titioned into MIMD (multiple-instruc-
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Figure 6. Average parallelism measurements for small circuits.

tion, multiple-data) machines, where
each processor executes code indepen-
dently, and SIMD (single-instruction,
multiple-data) machines, where all pro-
cessors execute the same instruction on
independent data [Flynn 1966]. MIMD
machines can be further classified as
shared memory, where a common global
address space is used to implement data
sharing and synchronization between
processors, or distributed memory, where
communications is via explicit messages.

In SIMD architectures, processors exe-
cute instructions synchronously in lock-
step. Processors may be programmed to
avoid computing during a step if desired.
Since all processors must perform the
same instruction, only one type of gate is
modeled at a time. A table lookup is often
performed to help mitigate this restric-
tion. If there are many types of models
(as is the case in hierarchical system
descriptions), simulation performance
will be greatly diminished. Processors are
often connected by a grid which allows
neighboring processors to communicate
quickly with each other. If nonadjacent
processors must communicate, the mes-

sages must be routed through other
processors or a global router. This is typi-
cally more expensive than nearest-
neighbor communication. Most logic sim-
ulations are not limited to nearest-
neighbor communication, complicating
partitioning and mapping.
Shared-memory MIMD architectures
utilize a common global address space to
communicate between processors. Small-
scale parallelism is typically imple-
mented via a bus architecture, in which
processors contend for access to a single
physical memory located on the bus.
These machines exhibit a uniform mem-
ory access time, independent of the pro-
cessor or memory address. When the
number of processors is large, a general-
purpose interconnection network is used
to communicate between memory mod-
ules associated with each processor. In
these machines, memory access times are
nonuniform, and depend upon whether
the referenced address is local or remote.
Communication between processors is
relatively fast, usually on the order of
microseconds. Depending on the inter-
connection network, however, contention
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can be a problem. On a bus-based archi-
tecture with common memory and local
caches, contention for the bus, false shar-
ing, and protocol overhead can be very
expensive, On machines which have
nonuniform memory access, one of the
partitioning goals is to avoid excessive
communication to slower remote mem-
ory.

In distributed-memory MIMD architec-
tures, the memory associated with each
processor is local to that processor, and
communication between processors is
handled via explicit messages. These ma-
chines are typically constructed using a
scalable topology, such as a mesh, torus,
or hypercube. Message latencies can be
long relative to functional evaluation
times. If a signal being transmitted from
one processor to another happens to be
one of the circuit’s synchronization sig-
nals, simulation performance can be seri-
ously degraded [Briner 1990].

A parallel execution platform that has
become increasingly popular is a network
of workstations. Generally similar in style
to distributed-memory MIMD machines,
these platforms have several unique
features. Their communication capabili-
ties are strongly influenced by the fact
that message delivery is via a general-
purpose network. This implies signifi-
cantly longer message latency. Also, mul-
tiple users are often executing programs
while tightly coupled multicomputers of-
ten are dedicated resources.

In addition to general-purpose ma-
chines, there have been a number of spe-
cial-purpose architectures proposed and
built to implement parallel logic simula-
tion [Blank 1984; Goering 1988]. Unlike
general-purpose machines, these engines
typically restrict the type of simulation
that can be performed. Usually a single
synchronization mechanism is employed,
and only limited modeling levels are
available. Many industrial companies
have built logic simulation engines. For
example, the Yorktown Simulation En-
gine [Denneau et al. 1983; Pfister 1986]
and EVE [Beece et al. 1988] were de-
signed at IBM; the MARS accelerator was
designed at AT & T [Agrawal and Dally
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1990}; NEC built HAL [Takasaki et al.
1986]; Fujitsu developed the SP [Saitoh
1988]; and Zycad Corporation manufac-
tures an entire line of machines. Addi-
tionally, several logic simulation engines
have been proposed and /or prototyped in
universities; the Munich Simulation En-
gine [Hahn 1989] and a modified data
flow architecture [Mahmood et al. 1992]
are two of these. In this survey we will
not focus on logic accelerators, although
many of the issues discussed here also
pertain to the effectiveness of these en-
gines.

7. PARTITIONING AND MAPPING

The placement of circuit elements on the
processors of a parallel machine can
greatly affect the simulation of a VLSI
system. One goal of partitioning ele-
ments for parallel simulation is to adjust
the balance of computation among pro-
cessors by assuring that each processor
has useful work. The most common tech-
nique attempts to achieve load balance
by ensuring that processors have a nearly
equal number of components. However,
this technique assumes that all compo-
nents are equally active. Both Soule and
Blank [1987] and Briner et al. [1988]
have shown that a circuit’s activity is
usually uneven during simulation and
varies over time. Further, it is difficult to
know a priori which parts of the circuit
will be active concurrently. Some re-
searchers have performed a preliminary
simulation to detect circuit behavior, pro-
viding more information for partitioning
[Briner 1990; Chamberlain and Hender-
son 1994; Maanjikian and Loucks 1993].
Others have investigated the feasibility
of dynamically adjusting the partition,
allowing the simulator to adjust to cir-
cuit activity [Kravitz and Ackland 1988;
Nicol and Reynolds 1985].

Another goal in placement is to reduce
communication, which can represent a
major performance bottleneck. Channels
may become congested. Communication
requires message-handling time and ad-
ditional event-scheduling time. It also
stresses the synchronization algorithm;



as a signal crosses processor boundaries,
the synchronization mechanism must en-
sure that the signal is properly handled.
Per message synchronization costs are
low for synchronous simulation but can
be high for the asynchronous techniques.
In optimistic algorithms, the probability
of a roll back is proportional to the proba-
bility of a message being received [Briner
1990]. In conservative algorithms, with
more communication channels the likeli-
hood of deadlock is higher, or, in dead-
lock avoidance algorithms, additional
null messages must be sent [Soule and
Gupta 1992].

Finally, mapping is related to commu-
nication. Mapping allocates partitions to
processors. On machines with different
interprocessor communication times, it is
best to place frequently communicating
partitions closer to reduce message la-
tency and congestion. This problem has
not been thoroughly investigated but has
received some attention [Davoren 1989;
Nandy and Loucks 1992].

7.1 Partitioning to Reduce Communication
and Synchronization Costs

The most actively pursued area in parti-
tioning has focused on reducing commu-
nication and synchronization overhead.
In order to account for load balance, most
partitioning research that focuses on
communication ensures an equal number
of gates are assigned to each processor.
We illustrate a number of the more com-
mon algorithms using the example cir-
cuit of Figure 7, a two-bit full adder.
Levendel et al. [1982] present a parti-
tioning method based on strings. The al-
gorithm follows a primary input to a
fanout gate and selects one of the fanout
gates to add to the string. The process
continues to a primary output. The gates
on the string are placed on the same
processor. If nodes remained unassigned,
one is randomly selected to start a new
string until no more nodes remain. In the
example of Figure 7, a possible string
associated with input @ includes gates 1,
4, 5, and 7. The string associated with
input & then includes only gate 3, since
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Figure 7. Partitioning example circuit.

the fanout of gate 3 is already assigned
to another string. The string of input ¢ is
gate 2; the string of input d is gates 6, 9,
and 10; and the string of input e is gate
8. For a two-processor simulation, assign-
ing strings a and b to processor 1 leaves
half of the gates for processor 2. The
resulting partitioning is illustrated in
Figure 8(a). Note that the resulting par-
titioning is highly dependent upon the
choices of fanout gates used to build the
strings and the ordering in which the
strings are constructed. The algorithm is
fast and ensures that at least one fanout
gate will be on the current processor.
However, the algorithm fails to reduce
communication of closely related compo-
nents significantly. Agrawal [1986] ex-
tends this algorithm to account for tim-
ing delays of gates in the circuit so that
more concurrency may be exploited.
Smith et al. [1987] introduce fanin and
fanout cones to improve the problem of
communication. A cone of gates is gener-
ated by processing the gates in rank or-
der. Each gate has a cone consisting of
the set of gates which are affected by the
output of the gate. Once the cones are
built for all gates, the gates driven by
primary inputs are evenly assigned to
processors. After the primary inputs have
been assigned, a gate is randomly se-
lected. The gate’s cone set and the union
of cone sets associated with all gates al-
ready placed on each processor are com-
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Figure 8. Example partitioning results.

pared. The processor which has the
largest set in common is selected for the
gate. After a processor is full, it is no
longer considered for assignment. They
report that this is fairly fast and reduces
communication greatly when compared
to a simple organization which places
gates on the same processor if they are of
the same rank.

We illustrate this algorithm using
fanin cones, starting from the primary
outputs and working back to the primary
inputs. Table 6 shows the fanin cones for
each of the gates in the example circuit.
Starting from the primary outputs, we
arbitrarily assign gate 2 to processor 1
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Table 6. Fanin Cones for Example Circuit

Gate | Gates in Fanin Code || Gate | Gates in Famn Code
1 1 6 6
2 1,2 7 1,3,4,5,6,7
3 3 8 8
1 |14 9 [1,3,4.56,9
5 1,3,4,5 10 |11,3,4,5,6,8,9,10

and gates 7 and 10 to processor 2. Choos-
ing gate 5 at random, we note that it has
more overlap with the cones of gates 7
and 10, so it is assigned to processor 2.



Choosing gates 6 and 8 at random re-
sults in the same conclusion, assignment
to processor 2. Since half of the gates are
now on processor 2, the remaining gates
are assigned to processor 1. This results
in 1):he partitioning illustrated in Figure
8(b).

Mueller-Thuns et al. [1993] believe that
the cost of communication in a parallel
and distributed environment is the major
factor in obtaining speedups in parallel
simulation. To reduce communication,
they place entire cones on a processor
without regard to whether the gates
within the cone have already been placed
on another processor (a gate may be in
more than one cone). This leads to redun-
dant evaluation of gates. The partition-
ing problem then becomes which cones to
place on which processor rather than
which gates to place on which processor.
To reduce communication between cones,
they use a depth-first search on the in-
puts to cones, forming a tree. Thus, leaf
cones of the tree are likely to be on the
same processor and have a parent cone
on the same processor.

One common variation on cone parti-
tioning is to form the partitions starting
from latches in addition to primary out-
puts. This limits interprocessor commu-
nication to clock events, decreasing syn-
chronization overhead. This technique is
particularly attractive for zero-delay,
rank-order simulation and oblivious
algorithms.

Bisection and multiway partitioning
are graph-partitioning algorithms which
have been used extensively in placement
and routing problems [Fiduccia and
Mattheyses 1982; Kernighan and Lin
1970]. In both, the components are
treated as nodes, and signals are treated
as arcs in a graph. The goal is to divide
the graph recursively into partitions to
minimize arcs between partitions. A bi-
section of the example circuit is illus-
trated in Figure 8(c), with only a single
arc connecting the two partitions. Briner
[1990] shows that for optimistic time
synchronization, bisection improves
gate-level simulation greatly over ran-
dom methods where the cost for func-
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Figure 9. Random vs. bisection partitioning of a
transistor network.

tional evaluations is similar to com-
munications costs. However, manual
partitioning can be far superior when
available. Figure 9 shows that for a
transistor-level simulation using lazy
cancellation, a good random partitioning
is better than a bisection partitioning.
This is true even when various sizes of
moving time windows are used. Random
partitioning performs better than the bi-
section partitioning because, for transis-
tor-level simulations, model evaluations
dominate the computation, and the ran-
domness of the data provides better load
balance. Load balance is achieved at the
cost of communication and synchroniza-
tion overhead (roll backs). The side ef-
fects of roll backs, repeated model evalu-
ations, are diminished by the use of lazy
cancellation.

Sporrer and Bauer [1993] have per-
formed a number of experiments on par-
titioning circuits. Using the rank-order
techniques of Smith et al. [1987] (placing
cuts at elements of the same rank),
Sporrer and Bauer achieve good load bal-
ance, but nearly 30% of all signals must
cross between processors. They also im-
plemented a bisection technique based on
Fidducia and Mattheyses [1982] which
reduces the number of boundary signals
to 10-20%. They present a modified clus-
tering technique which goes through two
phases: fine-grained clustering and
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course-grained clustering. In the first
phase, they use either a flip flop cluster-
ing algorithm or the corolla-partitioning
technique of Dey et al. [1990] to form
small clusters. Flip flop clustering places
gates in small clusters near flip flops.
Corolla partitioning detects reconvergent
signals, creating what is known as a
petal. Figure 8(d) shows two petals in the
example circuit. Overlapping petals are
then grouped into disjoint sets called
corollas. In the second phase of the parti-
tioning, the clusters are grouped together
into larger clusters while minimizing the
number of interconnections. The flip flop
clustering technique reduces the number
of signal crossings to around 4%, and
corolla partitioning reduces signal cross-
ings to around 1%.

Simulated annealing is a common
method for reducing interconnections in
physical design. Thus, it seems appropri-
ate to consider it for reducing communi-
cation in logic simulation. Frank [1985]
and Chamberlain and Franklin [1990]
have both used simulated annealing to
partition circuits prior to simulation.
However, this work has been hindered by
two factors. First, the time required to
perform the simulated-annealing task is
Jong relative to the serial execution time
of the simulation. Second, the lack of
information about circuit activity prior to
simulation limits the ability to formulate
an effective cost function to drive the
simulated-annealing algorithm. Some
performance predictions for circuits par-
titioned with simulated annealing are
presented in Section 8.

7.2 Partitioning to Improve Load Balance

The easiest and fastest partitioning tech-
nique is random partitioning, in which
elements are randomly assigned proces-
sors [Chamberlain and Franklin 1990;
Frank 1985; Kravitz and Ackland 1988;
Smith et al. 1987]. This ensures good
load balance. If a portion of the circuit
(e.g., an ALU in a CPU) is active, that
portion of the circuit is distributed (e.g.,
bit-slices of the ALU) across the proces-
sors for simulation rather than concen-
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trated on a single processor (which may
be the result in a partitioning algorithm
that stresses a reduction in communica-
tion). Smith et al. [1988] show that if
model evaluations take significantly more
time than communication, random parti-
tioning does a much better job of ensur-
ing concurrency than cone partitioning.
However, if the cost of communication is
of the same order as functional evalua-
tion, closely related elements need to be
on the same processor to avoid communi-
cation and synchronization overhead.

Wong and Franklin present an algo-
rithm which attempts to minimize com-
munication while maintaining processor
balance [1987bl. The basic method is to
use an undirected graph with vertices to
represent gates and edges to represent
interconnections between gates. A vertex
is selected for each processor such that
all selected vertices are at least some
distance D away from each other. Subse-
quent vertices are added to each proces-
sor in a breadth-first, round-robin fash-
ion. Partitioning the circuit of Figure 7,
we start with gates 3 and 8 initially on
processors 1 and 2, respectively. In round
2, gate 5 1s added to processor 1 (since it
is adjacent to gate 3), and gate 10 is
added to processor 2 (being adjacent to
gate 8). In round 3, gate 1 is added to
processor 1, and gate 6 is added to pro-
cessor 2. In round 4, gate 7 is added to
processor 1, and gate 9 is added to pro-
cessor 2. Finally, in round 5, gate 4 is
added to processor 1, and gate 2 is left
for processor 2. The resulting partition-
ing is the same (in this case) as the
strings algorithm and is illustrated in
Figure 8(a). Analytic comparisons with
random partitioning show that this
heuristic partitioning is up to twice as
effective for several circuits on a bus-
based architecture. However, later re-
lated work shows that for a hypercube
executing a synchronous algorithm, ran-
dom partitioning outperforms frequently
the heuristic partitioning, while the
heuristic shows better potential for use
with the optimistic asynchronous algo-
rithm [Chamberlain and Franklin 1990;
1991].



The above algorithms all make the im-
plicit assumption that the computational
load associated with individual gates is
consistent across the circuit. This as-
sumption is not valid, however, since the
frequency of evaluation of individual
gates can be significantly different. To
address this issue, Manjikian and Loucks
[1993] focus on redundant computation
in cone partitioning by extending the
process to do presimulation to get better
information about load balance. Rather
than counting the number of components
in a cone for maintaining load balance,
they measure the activity of each cone
and any overlapping subcones from pre-
simulations. With this information, they
then perform iterative improvement
[Sanchis 1989] that attempts to mini-
mize the difference between the total ac-
tivity per processor (including repeated
activity) and the total activity in a
uniprocessor simulation. To avoid putting
all cones on the same processor, we may
only move cones from larger cone sets to
smaller ones, and once moved, they can-
not be moved again.

The use of presimulation to character-
ize gate activity is supported in a study
by Chamberlain and Henderson [1994],
who measured the predictive power of
presimulation on a number of circuits.
They showed that, at least for sufficient
numbers of random input vectors, pre-
simulation is an excellent predictor of
subsequent gate activity.

Another technique for handling load
balancing is to adjust the partitions dy-
namically. Nicol and Reynolds [1985] use
histories to determine when to reparti-
tion. Using Bayesian decision processes,
they develop a model to decide when the
cost of repartitioning is worth the ex-
pected improvement in concurrency. For
repartitioning they suggest using a min-
cut (bisection) with clustering algorithm.

Kravitz and Ackland [1988] performed
studies of the simulations of two circuits
and found that dynamic partitioning of a
transistor-level simulation on a dis-
tributed-memory machine was not effec-
tive. Theoretically, dynamic partitioning
could be more effective than static parti-
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tioning, but their results showed
marginal gain even if partitioning was
decided with an omniscient scheduler.
However, the measurements were per-
formed using relatively small circuits
(about 10,000 transistors), and it is un-
clear whether their conclusions hold for
larger circuits.

7.3 Mapping to Reduce Communication
Latency and Congestion

A related problem is mapping partitions
to processors. On machines with uniform
memory access, mapping is not of con-
cern. However, for machines which have
nonuniform memory access, the proxim-
ity of partitions can affect message de-
lays and congestion. Few investigations
have been attempted in this area.

Using the hierarchical structure of a
design, Davoren [1989] defines locality
trees as an approximation technique for
reducing communication between proces-
sors. A locality tree uses a circuit’s hier-
archical definition to define a tree of
components. These components are then
arranged within the tree so that those
components which communicate are
mapped closer together. One should note
that physically connected components
may not necessarily communicate with
each other but just pass information
through them; thus, proximity alone is
insufficient and may not necessarily be
available early in the design.

Returning to the example two-bit adder
of Figure 7, a hierarchical decomposition
might place one bit of the adder on pro-
cessor 1 and the other bit of the adder on
processor 2. This results in the partition-
ing illustrated in Figure 8(c). Note, it is
not surprising that this is the same re-
sult as bisection, since the underlying
strategy of the two algorithms is similar
(i.e., group-connected components to-
gether). Davoren’s results show perfor-
mance increases of 208% when scaling
from a network of 8 to 64 transputers for
a circuit of 1060 gates using a conserva-
tive algorithm.

Nandy and Loucks [1992] study a
number of factors including load balance,
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Figure 10. Random, iterative improvement, map-
ping, and optimal partitioning of a gate-level simu-
lation.

partitioning and mapping. They use an
iterative improvement technique similar
to Manjikian and Loucks [1993] but in-
stead focus on the cost of nets crossing
partitions rather than the cost of re-
dundant computations. On a network
of transputers using a conservative
asynchronous paradigm, they achieve
speedups on the average of 4.5 on very
small circuits. By adding weights to the
communication arcs, they are able to map
the partitions on the transputer to ac-
count for its nonuniform message rate.
Figure 10 displays the theoretical opti-
mal performance of the simulator using a
technique similar to Briner [1988] versus
iterative improvement partitioning, iter-
ative improvement partitioning with
mapping, and random partitioning. Of
particular note is that performance is
increased an additional 10-20% when
the target architecture’s communication
limitations are considered.

7.4 Discussion

Research clearly shows that effective
partitioning and mapping depends on a
number of factors: the computation /com-
munication ratio, the circuit activity
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(especially variation in location of activ-
ity), and the target architecture’s com-
munication capabilities. In static parti-
tioning, a random partitioning works well
for both conservative and optimistic syn-
chronization algorithms when functional-
evaluation time dominates communica-
tion time. However, when functional
evaluations are not as costly, bisection,
corolla, clustering, and Wong and
Franklin’s [1987b] heuristic outperform
random partitioning for optimistic syn-
chronization techniques because commu-
nication and synchronization overheads
are reduced. Because different circuits
and simulation models were used, it is
difficult to compare the different tech-
niques. While many authors report the
cut size, cut gize alone does not guaran-
tee better performance because circuit
activity may vary, leading to load imbal-
ance.

For synchronous simulation, cone-
partitioning methods have lead to good
performance. Iterative improvement on
cone partitioning with presimulation data
has reduced the number of redundant
computations while cone levelization re-
duces communication. When available,
manual partitioning has performed ex-
tremely well. To date, simulated anneal-
ing has not proven effective both due to a
lack of a good cost function and excessive
execution requirements. One possible im-
provement is to use presimulation data
in the cost function formulation.

The problems of mapping to nonuni-
form memory access machines and of dy-
namic and incremental partitioning have
not been thoroughly investigated. Map-
ping has improved the performance of
transputer-based parallel simulation.
Techniques for detecting when to reparti-
tion have not been well defined, and the
overhead costs associated with reparti-
tioning may overshadow any gain in per-
formance. However, this mechanism may
be the only way to handle a circuit’s dy-
namic behavior. Research is needed to
understand the tradeoffs in these areas
better.

Finally, it should be noted that most
results in the literature have ignored the



cost of simulation preparation: if it takes
longer to partition a circuit than simu-
late it, what use is there in accelerating
the simulation? Most of the partitioning
techniques discussed are linear in the
size of the circuit. However, is this really
fast enough? For regression testing, when
large numbers of input vectors are used,
partitioning costs are not as significant
as they are early in the design phase
when only a few vectors may be needed.
To speed partitioning, it is also possible
to use parallel processing [Nandy and
Loucks 1993].

8. PERFORMANCE MODELS

Now that the factors that impact the per-
formance of parallel logic simulation have
been described, we present methods to
assess the likelihood of achieving accept-
able performance in realistic scenarios
(i.e., ones that include the impact of mul-
tiple factors). There have been a number
of performance models developed to in-
vestigate parallel simulation, including
both analytic and trace-driven modeling.
Even though the final say in perfor-
mance is the measurement of a real im-
plementation, performance models have
distinct advantages: they are consider-
ably faster to develop than full-fledged
implementations, and they can charac-
terize performance over a larger range of
parameters than is practical (or even
possible) with implementations alone.

8.1 Analytic Modeling

An analytic performance model of the
synchronous simulation algorithm was
originally developed by Wong and
Franklin [1987a], who considered a
special-purpose architecture dedicated to
logic simulation. It was extended by
Chamberlain and Franklin [1988] to in-
clude hierarchical component modeling
on a general-purpose, distributed-mem-
ory machine. The performance model as-
sumes a synchronous algorithm execut-
ing on a hypercube architecture. Circuit
components are statically allocated to
processors and do not migrate during ex-
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ecution. If the simulation runs for B busy
ticks (simulation time points that have
one or more events that need to be evalu-
ated), the execution time for P proces-
sors is expressed as

Rp =B [max(tcpy,tcoum) + tsync

where t.p;; is the average processor exe-
cution time per busy tick; ¢co 18 the
average communications time per busy
tick; and fgynye 1s the time required to
synchronize at the end of a busy tick. The
processor and communications times are
combined using a maximum operator to
reflect the fact that computation and
communications can occur simultane-
ously (provided the memory bandwidth is
not saturated). The synchronization time
must be added to the maximum since its
execution does not overlap with either
event processing or data communica-
tions.

The variables in the above expression
can be expressed as a function of sim-
ulation properties (e.g.,, event counts,
functional-evaluation counts, etc.) and
architectural properties (e.g., functional-
evaluation time, message formulation
time, message delivery time, ete.). A com-
plete derivation and explanation for the
model is given in Chamberlain and
Franklin [1990]. Using technology pa-
rameters typical of an nCUBE 2 machine
and input parameters measured from se-
rial simulations of three benchmark cir-
cuits, the model provides predicted per-
formance for a number of distinct parti-
tioning strategies [Chamberlain and
Franklin 1986; 1990].

Figure 11 shows the predicted speedup
over a single-processor implementation,
R,/Rp, for one of the benchmark cir-
cuits, Curves are presented for three dif-
ferent circuit partitionings: random (R),
Wong and Franklin’s heuristic (H), and
simulated annealing (S). Random parti-
tioning performs the best, because per-
formance is limited by load balance
rather than communications require-
ments. The heuristic and simulated-an-
nealing partitioning algorithms attempt
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Figure 11. Predicted synchronous speedup.

to decrease communications at the ex-
pense of poorer load balance.

Agrawal and Chakradhar [1992] pre-
sent a statistical model of the processor
workload in synchronous simulation. The
model is based on circuit activity, and
can be viewed as a refinement of the ¢,y
term of the Chamberlain and Franklin
model. Agrawal and Chakradhar define
circuit activity as the mean number of
logic elements that must be evaluated
per busy tick. The number of functional
evaluations on a processor is modeled as
a binomially distributed random vari-
able. The average processing time per
busy tick (f:p, ) is then derived as the
expectation of the maximum of P sam-
ples from this distribution.

They evaluate the model by comparing
the predicted performance with observed
performance on several production VLSI
circuits. The results of one of these com-
parisons is shown in Figure 12. The dot-
ted line represents ideal speedup; the
dashed line shows observed performance
with up to 16 processors [Agrawal 1986];
and the solid line shows the predicted
performance using the model. The mod-
eled results match the observed perfor-
mance closely for all of the circuits they
investigated.

The above models address synchronous
algorithms, but are not useful for asyn-
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chronous techniques. The next section
describes models that can be used to pre-
dict the performance of asynchronous
algorithms as well.

8.2 Trace-Driven Modeling

There have been two efforts at trace-
driven simulation modeling to predict the
potential performance of parallel logic
simulation. Briner’s [1988] spanning
metric determines performance of a
near-optimal parallel simulator running
on shared-memory architectures with
uniform and nonuniform memory access
times. Chamberlain and Franklin’s {1991]
architectural simulation model predicts
the execution time of several optimistic
algorithms executing on a hypercube ma-
chine.

8.2.1 Spanning-Metric Model

Briner [1988] extends the spanning met-
ric (Section 5) for measuring potential
parallelism on an infinite number of pro-
cessors to the more realistic case of a
finite number of processors. The first ex-
tension considers uniform-access,
shared-memory machines. The second
considers nonuniform memory access and
partitioning. After capturing the causal-
ity of a sequential RNL simulation, a



trace-driven simulation is performed on
the data. The trace-driven simulation
uses techniques from the task assign-
ment literature [Gonzalez 1977] to ac-
count for scheduling on a finite number
of processors. Measurements of three
small circuits show that near-perfect
speedups are possible up to the maxi-
mum speedup of the unlimited processor
case.

Briner extends the model of task as-
signment to consider the problem of data
accesses in a machine with a nonuniform
memory architecture. His results show
that data assignment is a difficult prob-
lem and that poor assignment reduces
potential parallelism by at least a factor
of two below the uniform memory access
model.

8.2.2 Architectural Simulation Model
Chamberlain and Franklin [1991] devel-

oped an architectural simulation of sev-
eral parallel simulation algorithms exe-
cuting on a hypercube architecture. First,
a circuit description and random set of
input vectors are simulated on a stan-
dard uniprocessor, and trace data is col-
lected. Second, the circuit is statically
partitioned using the heuristic of Wong
and Franklin [1987b]. Third, the trace
data, partitioned circuit description, ar-
chitecture description, and parallel-al-
gorithm description are input into an ar-
chitectural simulator that performs a
trace-driven simulation.

Data is collected for three different
time synchronization strategies. The first
is an optimal algorithm that is not at-
tainable in practice but bounds the po-
tential performance. The second two are
both optimistic asynchronous algorithms
using aggressive cancellation: the basic
time warp (TW) algorithm and a moving
time window (MTW) variant. The opti-
mal bound is found by determining the
most heavily loaded architectural re-
source (either processor or communica-
tions link) and observing that this re-
source must be on the execution’s critical
path. The execution time is then modeled
as the workload performed by this re-
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source. Note that this execution time is
optimal only for a given partitioning.
A different allocation of circuit compo-
nents to processors will yield a different
optimal performance.

Figure 13 compares the speedup pre-
dicted for two different benchmark cir-
cuits. The most notable conclusion from
these curves is the extreme variation in
performance from one circuit to the next.
Using TW, benchmark 1 (Figure 13(a))
has speedup less than unity (i.e., the par-
allel execution 1s slower than the serial
execution) for 32 processors, while bench-
mark 2 (Figure 13(b)) has near-optimal
performance. One also notices a phe-
nomenon in which the speedup curves
have more than one local maxima. This
phenomenon has also been observed in
TW simulations for other application do-
mains [Lin and Lazowska 1991].

Note that the MTW algorithm will oc-
casionally perform noticeably better than
the TW algorithm, and rarely perform
appreciably worse. To some extent, it is
successful in decreasing the frequency
(and resulting performance degradation)
of roll back.

8.3 Discussion

Both analytic and trace-driven perfor-
mance models allow us to draw a number
of conclusions. First, parallel logic simu-
lations can have significant performance
advantages over serial simulation. Thus,
there is the potential for parallel logic
simulation to have a real economic im-
pact in the design automation commu-
nity. Second, the interrelationships be-
tween the factors and the combination of
factors that would ensure good perfor-
mance are still not well understood. For
example, widely varying performance is
predicted for optimistic algorithms for
different processor populations, different
circuits, and different partitionings.
Third, a good partitioning algorithm 1is
essential, as poor partitionings degrade
performance seriously.

What remains to be accomplished is to
understand better how individual factors
(or combinations of factors) impact per-

ACM Computing Surveys, Vol. 26, No. 3, September 1994



282 . Mary L. Baileyv et al.

S 1 @ optimum ®
+ MTW
O TW
‘U_ﬁ ]
g
2o '
g7 |
[/p]
]
0
n o [ )
a° °
o +

0 10 20 30 40 50 60
(a) Number of Processors

& 41 @ optimum
+ MTW
O T™W
© ® L
g e ®
3o O
2 @ +
w
[ ]
@
o
e
[ ]
Q -

T T T T T T

0 10 20 30 40 50 60
(b) Number of Processors

Figure 13. Architectural simulation.

formance. The analytic models need to be
refined to rely less on empirical input
data. For example, the circuit activity in
Agrawal and Chakradhar’s model must
currently be measured from simulation
executions. If it could be reasonably pre-
dicted from the circuit structure and/or
input vectors, conclusions could be drawn
about the appropriateness of the syn-
chronous algorithm for a particular in-
stance without having previously run the
simulation. The trace-driven models
have, to date, only been used to predict
the execution time for a small number of
data points, and several factors impact-
ing performance differ from one data
point to the next. Controlled experiments
using trace-driven models need to vary
only a single factor at a time to help
guantify the impact each factor has on
performance.

9. IMPLEMENTATIONS

In addition to formal studies and perfor-
mance modeling, a number of parallel
simulators have been implemented using
a variety of synchronization strategies.
Implementations give the most accurate
feedback on actual performance. Unfor-
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tunately, different implementations are
often difficult to compare, since they tend
to vary across multiple factors. We pre-
sent the implementations via their syn-
chronization strategy and compare them
at the end of the section.

9.1 Oblivious Simulators

As well as being used in hardware accel-
erators, the oblivious approach has been
considered for use on general-purpose,
parallel computers. Kravitz et al. [1991]
addressed the feasibility of mapping the
unit-delay simulator COSMOS [Bryant
et al. 1987] onto SIMD computers. This
implementation was able to take advan-
tage of both course-grained parallelism
from many simultaneous element evalu-
ations and fine-grained parallelism used
to evaluate the Boolean equations repre-
senting the behavior of each element. Be-
cause of static scheduling, the equations
can be rank ordered, and the evaluation
of each rank comprises an atomic opera-
tion. A simple model of processors and
interconnection structures is used in the
parallel COSMOS implementation, plac-
ing significant scheduling demands on
the compiler.



Two relatively small circuits (of 20,000
and 43,000 transistors) were used to
evaluate the performance of parallel
COSMOS. The effective parallelism, the
average number of Boolean operators
which can be evaluated concurrently,
provides an upper bound on the speedup
that can be obtained using the oblivious
strategy and includes the redundant
evaluations of elements whose inputs
have not changed. The effective paral-
lelism for one circuit achieved a maxi-
mum value around 2500, while the other
circuit reached a lower maximum near
400. These high speedups are not gener-
ally attainable in practice, due to com-
munications and scheduling constraints.
To measure actual speedups, a prototype
parallel COSMOS simulator was imple-
mented on the Thinking Machines CM-2
[Hillis 1986]. This simulator used a sim-
ple SIMD model, and thus did not exploit
the full power of the Connection Ma-
chine’s instruction set. Using this paral-
lel simulator, one circuit simulation ran
at twice the speed of sequential COS-
MOS, while the other only ran at half
that of sequential COSMOS. These cir-
cuits are relatively small, and the au-
thors expect better performance with
larger circuits.

Jun et al. [1990] proposed a variant of
the oblivious strategy for use in gate-level
simulation, where some care was taken
to minimize memory usage and time
spent in simulating feed-back loops. It
uses a segmented waveform relaxation
method in conjunction with bit-wise op-
erations. The segmented waveform relax-
ation method is used to divide the simu-
lation interval into a number of subinter-
vals, each of which can be represented by
a single word. Each element’s state dur-
ing a subinterval is represented by a sin-
gle word, and bit-wise operations can be
performed on the entire word to propa-
gate behavior throughout the -circuit.
Logical shifts are used to represent
gate delays. Parallel computation is
used in two ways: (1) to evaluate gates at
the same rank order and (2) to pipeline
the subintervals in the waveform evalua-
tions. While the authors report good per-
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formance on the ISCAS combinational
benchmarks [Brglez and Fujiwara 1985]
using a single processor, no results were
available for the parallel implementa-
tion.

9.2 Synchronous Simulators

Several parallel logic simulators use syn-
chronous algorithms. Soule and Blank
[1988] implemented a synchronous simu-
lator on a 16-processor Encore machine.
Speedups ranging from 4 to 9 were
obtained on circuits ranging in size
from approximately 500 to 5000 using 15
processors.

Mueller-Thuns et al. [1990] have syn-
chronous implementations for two differ-
ent abstraction levels of logic circuits:
switch level and gate level. For switch-
level simulation, they preprocess the
original “flat” transistor netlist to create
an acyclic set of strongly connected com-
ponents. These components are then used
as tasks and are available for scheduling
on a parallel processor. As in the work of
Jun et al., parallelism is obtained by
evaluating strongly connected compo-
nents in parallel during the same time
unit if they have the same rank order,
and by evaluating components in differ-
ent ranks in parallel if the time for the
component with lower rank is greater
than that for the component with higher
rank. Using these techniques, they ob-
tain speedups ranging from 2.21 to 7.56
on circuits having approximately 10,000
to 34,000 transistors using 8 processors
of an Encore multiprocessor.

For their gate-level circuits, clocks at
latches are used as the synchronization
mechanism {Mueller-Thuns et al. 1993].
The circuit is partitioned according to the
input cones of latches (or primary out-
puts). All gates on a path between pri-
mary inputs (or outputs of other latches)
and primary outputs (or inputs to latches)
are on the same processor, creating a
simple combinational circuit. Once all
primary inputs and outputs of latches
are known, a zero-delay simulation is
performed which allows updating of the
primary outputs and latches. After these
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have stabilized, signals are propagated
to other processors, beginning another
cycle. This algorithm has been imple-
mented on both shared-memory and
distributed-memory parallel processors.
Using 8 processors, they obtained
speedups ranging from 4.6 to 4.9 on the
distributed-memory machine and 4.8 to
5.0 on the shared-memory machine using
three example circuits from the ISCAS-89
benchmarks [Brglez et al. 1989]. The cir-
cuits ranged in size from just under
18,000 to almost 24,000 gates.

Bataineh et al. [1992] implemented a
synchronous event-driven algorithm for a
gate-level simulation on the Cray Y-MP.
They used both vectorization and paral-
lel processing to process all events in a
given time step in parallel. For this tech-
nique to perform well, they report that
there needs to be 32 events available for
each of the 8 processors at each time
step. Using two example circuits, a com-
binational circuit from the ISCAS-85
benchmarks and a linear-feedback shift
register, they found that there were
enough events in each time step and ob-
tained speedups of 36 over a scalar ver-
sion running on the Cray for the ISCAS
circuit (2406 gates), and 52 for the shift
register (size not reported). Thus the
combination of vector and parallel pro-
cessing resulted in good speedups.

9.3 Conservative Asynchronous Simulators

As a part of Soule and Blank’s [1988]
parallel implementation of a gate-level
and register-transfer-level simulator,
they implemented a conservative asyn-
chronous algorithm using deadlock de-
tection and recovery. They obtained
speedups of 7 to 11 for circuits of size 100
to 5000 elements on a 16 processor En-
core. They found that this mechanism
worked more efficiently than the syn-
chronous algorithm when more than 10
processors were utilized.

Despite the early promise of conserva-
tive algorithms, Soule and Gupta [1992]
show that large circuits cause frequent
deadlock and that deadlock resolution re-
quires 50-80% of the total execution
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time. With deadlock avoidance, they esti-
mate that 20 to 100 null messages would
have to be sent for each real message.
Thus, they conclude that deadlock detec-
tion and recovery are more likely to suc-
ceed. In a study to detect the sources of
deadlock in the conservative algorithm
specific to digital simulation, Soule and
Gupta found four sources of deadlock:
feedback to registers, multiple paths with
different delays, the simulation algo-
rithm’s order of updating nodes, and de-
sensitized nodes. They are able to per-
form a number of optimizations with this
information. By exploiting element be-
havior, deadlock can be avoided. For ex-
ample, since a register’s output only
changes on a clock, the time of the next
output can be predicted, taking advan-
tage of lookahead. Combinational circuits
that are desensitized (e.g., an AND gate
with a zero input) produced no events,
allowing signals to other inputs to be
ignored until the critical signal changes.
Passing information about the lookahead
of the sensitized signal directly to af-
fected nodes avoids the overhead of pass-
ing a message through the desensitized
combinational circuit. Grouping elements
together into a single element reduces
both event handling and the probability
of a deadlock. Speedups of 16-32 on an
ideal multiprocessor with 64 processors
are predicted for circuits of size 5000-
25,000. However, these results are self-
relative. Even with these optimizations,
they conclude that for most circuits the
conservative algorithm will be 2.8 to 3.5
times slower than a synchronous algo-
rithm.

Su and Seitz [1989] considered a num-
ber of variants of the conservative asyn-
chronous strategy on distributed-memory
MIMD machines. All variants used dead-
lock avoidance; they differ in minimizing
the number of null messages by sending
them in a “lazy” fashion. They used Intel
iPSC machines to measure the speedup
of a 1376-gate multiplier network. Using
a 128-node iPSC /1 they obtain speedups
of approximately 10, and on a 16-node
1IPSC /2 they obtain speedups of 2 for the
best variant. They conclude that if the



time to process null messages is com-
parable to the time to process actual
messages, then the conservative asyn-
chronous algorithm will not perform well
when the number of processors is small.

To reduce the overhead of null mes-
sages, they study a conservative asyn-
chronous algorithm which groups multi-
ple circuit elements together into a single
element. Elements in a single group are
gsimulated via a sequential algorithm,
while different groups use the conserva-
tive asynchronous strategy. They use a
1067-gate self-timed FIFO circuit to eval-
uate this algorithm, and achieve much
more promising results using a small
numbers of processors, especially if the
circuit 1s manually partitioned.

Ackland et al. [1985] and Kravitz and
Ackland [1988] have implemented a MOS
timing simulator on a message-based
multiprocessor using a conservative
asynchronous algorithm. While their tim-
ing simulator provides continuous wave-
forms, it uses discrete-event simulation
techniques to communicate between sub-
circuits. Speedups from 7 to 20 are re-
ported on a 60-processor system. One
thing to note with these results is that
the timing simulator requires much more
computation per element evaluation than
a logic-level simulator, and thus commu-
nication overhead is less critical.

Subramanian and Zargham [1990] pre-
sent a parallel, demand-driven simulator
for a Sequent Balance. In demand-driven
simulation, results are requested at the
output nodes, and requests propagate
back to the input nodes. Extensive mem-
ory is required as events propagate to the
inputs. The parallel version takes advan-
tage of global memory by allowing pro-
cessors to use a central task queue which
supports better load balance. Using 5
processors, randomly devised combina-
tional circuits of 500 gates show speedups
of 2 to 3 times a sequential implementa-
tion. Larger simulations on larger paral-
lel processors are needed to make a fair
comparison with the Chandy-Misra-
Bryant approach.

Chung and Chung [1990] implemented
three conservative algorithms for gate-
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level simulation on the Connection Ma-
chine CM-2, an SIMD architecture. The
first is a synchronous algorithm, using
a global clock. The second is a null-
message implementation of the conserva-
tive asynchronous algorithm with no
lookahead. The third algorithm adds
lookahead to the asynchronous algo-
rithm. Two circuits were used to measure
the performance of these algorithms; a
16-bit combinational multiplier from the
ISCAS-85 benchmarks (2406 gates) and
a 32-bit array multiplier (8000 gates). All
three of these algorithms outperform
Time Warp on the Connection Machine,
in part due to the complexity of the Time
Warp implementation. Among the three
algorithms, the algorithm using looka-
head outperforms the other two in most
cases, although when the number of in-
puts is small, the synchronous algorithm
performed best for the smaller multi-
plier. Due to memory limitations in the
Connection Machine, large circuits may
require the synchronous algorithm, since
its memory requirements are less than
those for the conservative algorithms.

Arvind and Smart [1991] implemented
ELSA, a framework for event-driven logic
simulation in a nonuniform memory en-
vironment. This framework supports both
conservative and optimistic synchroniza-
tion strategies, as well as a hybrid strat-
egy. The conservative synchronization
strategy uses deadlock avoidance with
null messages. To lessen the cost of send-
ing and processing null messages, their
number is minimized by eliminating re-
dundant ones. ELSA is implemented in
Occam2 on a transputer-based multipro-
cessor. Three multiplier circuits are stud-
ied. Speedups over a uniprocessor are not
reported, because the minimum number
of transputers used is 8 or 16, depend-
ing on the circuit. However, the exe-
cution gains appear fairly dramatic—one
circuit executes 3.6 times faster on 40
transputers than on 16.

9.4 Optimistic Simulators

There have been several VLSI system
simulators implemented using optimistic
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techniques. The earliest simulator was
built by Arnold, who reports on a LAN
implementation [Arnold 1985; Arnold and
Terman 1985]. The internals of RSIM
[Terman 1983] were changed for parallel
simulation and modified for a fixed-point
implementation because there was no
floating support on the machines used.
One processor acted as a master, keeping
a database and user interface. The other
6 nodes worked as slaves, performing the
simulation. Intermittently during simu-
lation, each processor checkpoints its in-
ternal state consisting of the event queue,
all nodes, all transistors, and simulated
time. To avoid excessive memory usage
and CPU overhead, checkpoints are not
taken on each event. Thus roll backs may
have to go back further than the time-
stamp of a late-arriving event, leading to
repeated computations. Arnold’s simula-
tor performs no fossil collection and is
unable to simulate large systems. In the
simulation of a 64-bit adder with seven
processors, a speedup of 4.2 is obtained.

Chung and Chung [1989] implemented
a Time Warp simulator on the CM-2.
Processors on the machine represent ei-
ther an event or a gate. For the gate
processors, a table lookup alleviates the
problem of evaluating different types of
gates on a SIMD processor. However,
table lookup allows only a limited set of
models with few inputs. While it is rea-
sonable to break some large gates into
smaller gates, some gates cannot be eas-
ily broken into simple AND, OR, and flip
flop gates. All event processors can per-
form the same operations. Because some
processors are dedicated to event han-
dling and others to modeling, the Con-
nection Machine is effectively losing 50%
of the processors in each step of the
simulation.

Their general algorithm computes the
local time for each gate, evaluates those
events at this time, evaluates active
gates, propagates any events to event
processors, calculates global virtual time,
and performs garbage collection of past
events. They take advantage of primitive
operations of the machine to optimize the
selection of the next event. After all the
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events have been evaluated, new events
can be added to the segment of the ap-
propriate gate using the enumerate fea-
ture of the parallel machine. All of the
operations take O(log P) instructions on
each simulation cycle, where P is the
number of processors.

They conclude that they have maxi-
mized the data parallelism of the Con-
nection Machine by using an asyn-
chronous algorithm for a synchronous
machine. The largest shortcoming of the
work is the lack of utilization of the event
processors. To increase event processor
utilization, they describe a technique
called Lower Bound of Rollback, which
reduces the number of past events re-
quired by the usual GVT calculations. No
absolute results are presented which
compare performance of a sequential
simulation and the parallel algorithm,
although the later results presented in
the previous section show that the con-
servative strategies outperform this
optimistic version.

Briner et al. [1991] present another
version of the Time Warp algorithm on a
BBN GP1000, a nonuniform access,
shared-memory machine. The costs of
distributing events, saving state, and
rolling back are kept proportional to the
sequential simulation’s event overhead
by using incremental state saving. Un-
like Arnold’s implementation, the state
of the queue, gates, and other data strue-
tures are saved incrementally on each
event. While the cost of processing an
event increases with the parallel imple-
mentation, there is no overhead beyond
the effects of the event, unlike Arnold’s
implementation, where the cost of saving
state is proportional to the size of the
circuit. If large portions of the circuit are
inactive, Arnold’s simulator wastes ex-
cessive time saving unchanged informa-
tion, and as seen in Section 5, much of a
circuit is inactive.

Briner et al. find that lazy cancellation
removes some of the interdependence
of events and improves performance.
However, partitioning is still critical be-
cause an event from another processor
may roll back all the gates on a proces-
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sor. These effects are mitigated if gates
on a processor are synchronized indepen-
dently rather than aggregately. With in-
dependent gates, a roll back of one gate
will not cause unrelated gates to roll back.
However, if independent gates are kept
on the same processor, additional over-
head is incurred because the same node
may be replicated on the same processor.
Figure 14 shows speedup curves for com-
ponent (COMP) and processor (PROC)
synchronization using both aggressive
(AGGR) and lazy (LAZ) cancellation tech-
niques. It appears more important to re-
duce synchronization than to reduce re-
peated operations. Interestingly, what
may reduce synchronization costs for one
synchronization algorithm may increase
it for another. Su and Seitz found that
for conservative algorithms it is neces-
sary to group elements to minimize the
overhead of null messages.

Briner [1990] also considers some other
techniques to speed up the simulation. In
order to reduce communication latency
for high-fanout nodes, he uses a re-
peated-message structure which allows
high-fanout nodes to be sent in a paral-
lel, rather than sequential, fashion. This
technique reduces the synchronization
effect large fanout nodes (e.g., the clock)
have on the simulation. Another tech-
nique used to improve performance is to
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use a variant of moving time windows.
By reducing the time skew between pro-
cessors, the probability of roll back is
lessened. Absolute speedups ranging from
7 to 23 are obtained on 32 processors
using circuits ranging from 666 to 31,680
elements.

As discussed in the previous section,
the ELSA framework includes optimistic
as well as conservative synchronization
strategies on a transputer system [Arvind
and Smart 1991]. Its optimistic strategy
uses lazy cancellation. When compared to
the conservative strategy, the optimistic
strategy performed at least as well in
all instances except one, and generally
performed better, especially on larger
circuits. No application-specific optimiza-
tions have been included for these re-
sults. ELSA also has a hybrid conserva-
tive /optimistic mode, where the coarser
parts of the simulation use the conserva-
tive strategy, and the finer-grained ones
use the optimistic strategy; no results
are presented for this model.

Manjikian and Loucks [1993] extend
the synchronous algorithm of Mueller-
Thuns et al. to allow optimistic simula-
tion before all inputs to a processor are
known. However, they do not propagate
the output results until the input values
are actually known. Thus, no interpro-
cessor rollback is necessary. Given that,
for the circuits studied, between 2 and
20% of the latches change, significant
speedups are possible. Because zero-
delay simulation is used, the states of
internal nodes do not have to be pre-
served. Further, portions of the circuit
simulated with earlier-arriving inputs
that do not interact with later-arriving
inputs will not be resimulated. In report-
ing the results of their measurements,
Manjikian and Loucks compare the per-
formance of the parallel simulator run-
ning on a network of 7 Sun Sparcstation
IPCs against a pure sequential algo-
rithm. They use circuits from the ISCAS-
89 benchmarks, and obtain speedups of
2.5 to 4.1. Thus, these results reflect ac-
curately the impact of parallel simula-
tion and are impressive because they
have obtained approximately 50% effi-
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ciency in an environment with a large
communications overhead.

Bauer et al. [1991] and Sporrer and
Bauer [1993] have implemented a logic
simulator using the Time Warp synchro-
nization strategy on both shared and
distributed machines. As in Briner
et al. [1991], they also used incremental
state savings to reduce the overhead of
the simulation. The simulator was first
prototyped on a Sequent, but used a mes-
sage-based communication structure
since the final target machine did not
have shared memory. Subsequently, they
implemented the simulator on a network
of Sun Sparcstation 2’s. Measurements
for both the Sequent and Sun implemen-
tations compare the performance of the
parallel simulator running on a single
node with the same version running on
multiple nodes. With this comparison,
they obtain speedups from approximately
2 to 3 on a subset of the ISCAS-89 bench-
marks using a 5-processor Sequent, and
5.2 to 5.7 using a network of 8 Sparcsta-
tions, with some circuits improving with
additional nodes. In order to compare this
work with Manjikian and Loucks, we note
that Bauer and Sporrer [1993] report that
the parallel version of their simulator
required 70% more overhead than the
sequential version. If we factor this into
the speedups reported above, we find that
the speedups using a network of 8 Sparc-
stations now ranges from 3.1 to 3.4, much
closer to those results reported by Man-
jikian and Loucks [1993].

Kim and Chung [1994] implemented
on optimistic algorithm using a token-
passing mechanism for GVT mainte-
nance. They report varying performance,

with speedups ranging from 2 to 15 on an
80-processor BBN Butterfly.

9.5 Discussion

There have been a number of imple-
mentations spanning all of the major
synchronization algorithms. What syn-
chronization strategy is preferred? This
is somewhat difficult to answer, since
there are so many differences in the im-
plementations, even within the same
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Figure 15. Comparing reported speedups from dif-
ferent synchromzation strategies (8 processors).

synchronization algorithm. It is hard to
determine accurately to what extent the
synchronization algorithm is impacting
performance and to what extent other
factors are influencing the outcome.

If the oblivious strategy is used,
speedups appear quite promising. How-
ever, the speedups show comparisons of
the cost of the oblivious strategy for mul-
tiple processors over the oblivious strat-
egy for a single processor. Considering
the low values obtained in circuit paral-
lelism measurements (Section 5), most of
this computation is redundant, although
the low cost of element evaluation may
mitigate this somewhat.

Now we consider ways to compare dif-
ferent synchronization strategies for
event-driven simulation. First, Figure 15
shows a number of speedups that span
the synchronization strategies. Data for
eight processors were used, since this was
a common number of processors reported
in the literature. These results were ob-
tained from different researchers, using
different abstraction levels, different tim-
ing models, and different example cir-
cuits. Additionally, some researchers
compute speedups by comparing the par-
allel implementation with a good sequen-
tial one, while others compare it with a



parallel implementation running on a
single processor. Thus only general com-
parisons can be made. However, no con-
servative asynchronous implementation
resulted in good speedup, while both op-
timistic and synchronous implementa-
tions performed quite well. Fine timing
granularities were used in some of the
optimistic implementations that obtained
good speedup, while all of the syn-
chronous implementations used coarse
timing. From these data points, it ap-
pears that a synchronous implementa-
tion is sufficient if coarse timing models
are used; if fine timing is used, an opti-
mistic implementation should strongly be
considered. As the number of processors
increases, synchronous implementations
may suffer; optimistic implementations
are likely to scale better.

More precise comparisons between
synchronization strategies cannot be
made from Figure 15; to do this we con-
sider small numbers of similar imple-
mentations. Several researchers have im-
plementations using two synchronization
strategies. Chung and Chung [1989;
1990] used SIMD machines as a platform
for all three strategies, and found that
the conservative asynchronous imple-
mentation with lookahead is generally
preferred on SIMD machines. ELSA is
implemented for both conservative and
optimistic asynchronous strategies, and
the optimistic strategy performed better
generally, especially on large circuits.
Soule and Gupta [1992] implemented
both synchronous and conservative asyn-
chronous strategies, and found that the
synchronous strategy was preferred. This
may be simply due to the relative coarse-
ness of their timing granularity, or may
be a more general result.

Finally, several researchers have used
a subset of the ISCAS-89 benchmarks to
report their findings. We have taken
measurements reported by Mueller-
Thuns et al., Manjikian and Loucks, and
Sporrer and Bauer [1993] to compare
their results on one of these circuits,
838584. The speedup curves are shown in
Figure 16. Here we show speedup versus
the number of processors to provide a
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feeling for the way speedups change as
the number of processors increase. Addi-
tionally, we have factored the Bauer and
Sporrer results to reflect the fact that
their single-processor comparison uses
70% more overhead than a true sequen-
tial implementation, as in Section 9.4.
The Mueller-Thuns et al. results appear
more promising, although this may be
due in large part to the fact that they use
a shared-memory implementation, and
the other two groups use workstation
networks. Of the two optimistic ap-
proaches, Manjikian and Loucks achieve
better performance than Bauer and
Sporrer for the data they report, but
Bauer and Sporrer achieve even better
performance by using additional work-
stations. It is not clear whether the de-
crease in performance from 6 to 7 proces-
sors will continue in the Manjikian and
Loucks results, or whether it is simply a
local minimum.

In conclusion, it is very hard to com-
pare data from different implementa-
tions. However, we have seen some inter-
esting trends. If coarse timing is used,
synchronous algorithms perform well on
small numbers of processors, and vector
machines can also provide good speedups.
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If fine timing is used, the optimistic
strategy appears to be most promising.
Both Briner et al. and Bauer and Sporrer
have found that incremental state saving
is critical in minimizing overhead due to
state saving. Briner [1990] also finds it
important to reduce the synchronizing
effect of large fanout nodes and to reduce
the granularity of synchronization by
having smaller but more partitions per
processor. Moving time windows is neces-
sary to keep processors from excessive
roll backs.

On SIMD architectures, conservative
algorithms outperform optimistic ones.
On MIMD machines, if there is increased
computation per element evaluation, the
conservative strategy can perform well,
as seen with the MOS timing simulator.
As with general discrete-event simula-
tion applications, good lookahead is criti-
cal to performance of conservative logic
simulation.

10. CONCLUSIONS

Parallel simulation of VLSI systems is
feasible if implementations can account
for the five factors which impact parallel
simulation: synchronization algorithm,
circuit structure, timing granularity, tar-
get architecture, and partitioning and
mapping. A number of techniques for
studying the five factors have been pre-
sented: formal models, performance
models, empirical studies, and imple-
mentations. Formal models are useful in
obtaining general results, although sim-
plifying assumptions are generally neces-
sary to make the analysis tractable. Per-
formance models are usually more con-
strained than formal models, but they
can include more details, thus making
the results more realistic. Empirical
studies can focus both types of models as
well as help guide choices in implemen-
tations. Implementations, in the form of
prototypes, provide the most accurate
feedback on performance, but it is ex-
tremely difficult to draw general conclu-
sions from an implementation because of
the large number of design decisions
which impact performance.
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By reviewing the results of all of the
analysis techniques, we are able to draw
some general conclusions concerning the
five factors. Circuit structure has clearly
a dramatic influence on the performance
of parallel simulations. This has been ob-
served both through studies on circuit
activity as well as in actual implementa-
tions. The exact relationship between cir-
cuit structure and simulation perfor-
marnce ig not well understood. We cannot
accurately predict which types of circuits
will perform well using parallel simula-
tors and which will perform poorly.

Timing granularity and synchroniza-
tion algorithms also affect performance.
Clearly, coarser timing increases circuit
parallelism. Thus for synchronous simu-
lations, coarser timing granularities are
the most promising, assuming event
evaluation times are relatively constant.
It is unclear whether parallel simulation
using finer timing will have acceptable
performance. Asynchronous algorithms
have the potential of allowing these sim-
ulations to approach or exceed the per-
formance obtained using coarser granu-
larities, but the overheads needed to run
these algorithms may be too costly. At
this time the optimistic algorithms seem
to perform better than the conservative
asynchronous algorithms, both in formal
models and in implementations. The
oblivious strategy is another alternative.
With its redundant computations, it is
unclear whether this strategy can out-
perform the discrete-event simulation
techniques which better adjust to circuit
activity.

Very little data is available for under-
standing the relationship between target
architecture and simulation perfor-
mance, although architecture affects the
performance of all parallel programs
clearly. Good results with nearly 50%
efficiency have been obtained over rela-
tively slow networks, while some imple-
mentations on tightly coupled systems
perform poorly.

Finally, partitioning and mapping are
very important. To date, static partition-
ing has received the most attention. The
best automatic partitioning algorithm



will depend on the relative importance
of load balancing, communication and
synchronization costs, and the target
architecture. When the communication /
computation ratio is small, random parti-
tioning performs well; when it is large,
more formal techniques which reduce
communication and synchronization costs
are necessary. Less is known about the
impact of dynamic partitioning, and
whether the gain in performance is worth
the overhead associated with repartition-
ing.

Where do we go from here? Obviously,
obtaining good performance from parallel
logic simulation is nontrivial. While we
have seen some performance gains over
sequential simulation, no implementa-
tion has emerged as the clear winner.
Progress has been made in understand-
ing some of the relationships between
the factors affecting performance, but this
has not yet led to breakthroughs. Addi-
tional research is needed to make real
progress. New or hybrid synchronization
algorithms may be needed. If we hope to
exploit the full potential of parallel logic
simulation, we must understand the re-
lationships among all five factors and
how they impact performance. We need
to find the function f, such that

performance
= f(synchronization, structure,

timing, architecture,

partitioning).

This function can be used to determine
the circumstances under which parallel
logic simulation is viable, and to guide
the design, implementation, tuning, and
use of parallel logic simulators.

Since this function [ is clearly com-
plex, it is important initially to isolate as
many of its variables (the five factors) as
possible. Trace-driven models can help
here. While to date, trace-driven models
have only been used to predict the execu-
tion time for particular sets of circum-
stances, they can be used to isolate these
variables and begin to understand their
impact. Later, they can also be used
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to explore interactions among different
factors.

Another step in better understanding
the effectiveness of parallel simulations
is to encourage more cooperative re-
search. There have been many imple-
mentations of parallel logic simulators.
However, few if any of these implementa-
tions are available to users for experi-
mentation. Moreover, the set of circuits
used to characterize the efficiency of the
implementations is quite diverse. The IS-
CAS benchmarks have been used by a
number of researchers, but these circuits
are relatively small. Larger circuits are
needed for testing; parallel simulators are
not generally necessary for small cir-
cuits, and results may be skewed by con-
sidering only small circuits. Further-
more, there are a large number of vari-
ables in circuits which are not fully char-
acterized in the ISCAS benchmarks: tim-
ing granularity, model abstraction, and
input vectors are three important ones. A
well-chosen set of benchmarks, synthetic
or real, is critical for both implementa-
tions and trace-driven modeling; other-
wise erroneous conclusions may result.

Real progress has been made in the
area of logic simulation, but there is much
still to be done. With cooperation of the
logic simulation research community,
progress can continue, and fast, efficient
parallel logic simulators running on gen-
eral-purpose machines can become a re-
ality, allowing a significant reduction in
the design cycle while allowing more
thorough system design testing.
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